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Abstract. The interaction of an internal gravity wave with a critical layer and the generation
of turbulence are studied by three-dimensional numerical simulations. Based on a successful
comparison of a two-dimensional version of the model with experimental observations {Thor-
pe, 1981), we discuss results obtained with two different models of viscosity., Although the
variances of the turbulent quantities are nearly the same, a direct numerical simulation gives
a smooth breaking with stable vortices. The motion remains two-dimensional. In a large-
eddy simulation, the initial field is randomly disturbed and a turbulent viscosity (function of
the local shear and Richardson number) is used. The breakdown of the convectively unsta-
ble regions occurs immediately afler the appearance of convective instability, and small-scale
three-dimensional turbulent motion is generated.

Introduction

The generation of turbulence by overturning of internal gravity waves is an
important factor in the microscale dynamics of the atmosphere and ocean. For
instance, the overturning of internal gravity waves and the resulting turbulence
are thought to be the primary cause for clear-air turbulence [9] and for the
occurrence of thin turbulent layers in the free atmosphere [10, 6, 11]. For weak
stratification (Ri < 0.25) the turbulence may be generated by shear instability.
Some theories and numerical attempts exist to explain how overturning waves
are excited, however it is not known how these waves break in detail.

One of the fundamental mechanisms that lead to the breaking of gravity
waves and production of turbulence is the interaction of an internal gravity
wave with a critical level. In a shear flow, a critical level is the height where
the phase speed of a wave equals the mean flow speed [1]. As a propagating
wave approaches its critical level, the wave propagation is strongly modified:
waves above the critical level decay (the trapping effect of the critical layer).
In the critical layer, all momentum of the wave is transferred into the mean
motion. Depending on the excitation energy of the initial wave field, shear
and stratification of the basic flow, turbulence can be generated.

The gravity-wave critical-layer interaction is difficult to study observation-
ally in the free atmosphere because of the broad spectrum of scales which
prevents the observation of isolated events. In the planetary boundary layer
some attempts have been made to demonstrate the critical layer effect (8, 5].
In the laboratory, the interaction has been observed under controlled condi-
tions by defining one wavelength and prescribing a mean velocity profile. So
far, only a few (mostly qualitative) observations are known {13, 3, 2].
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Thorpe [13] used a simple experimental device: a long rectangular tube,
filled with a stably stratified fluid. The lower boundary has sinusoidal corru-
gations of amplitude § and wavelength A which excite internal gravity waves
with zero phase speed in the stratified shear flow. The shear flow with zero
mean is forced by tilting the tube horizontally by a small angle. Its strength
depends on this angle and the time of tilting. As in other experiments, no
wavy motion could be observed above the critical layer. Near the critical layer
the vertical propagation of the internal gravity waves was stopped and regions
of reduced density gradients develop over the troughs of the surface waves.
These regions become gravitationally unstable (Kelvin-Helmholtz instability
is not observed).

In this paper, we present results of three-dimensional numerical simulations
of the interaction of vertically propagating gravity waves with a critical layer.
Two different regimes can be identified. For a smooth breaking, we use a direct
namerical simulation (DNS) with constant viscosity. The mixing occurs due to
a continuous rolling-up of density surfaces. In the large-eddy simulation (LES),
the initial field is randomly disturbed and a turbulent viscosity is used. The
breakdown of the convectively unstable regions occurs immediately after the
appearance of instability and small-scale turbulent motion is generated.

Section 2 introduces the numerical model. The comparison with the exper-
imental results of Thorpe [13] for a shear flow with zero mean is presented in
section 3. Section 4 discusses the results of the three-dimensional simulations.

Numerical model

We consider a stably stratified fluid with density p = pgy + 7 4 p’. The back-
ground density pg is constant, the stratification is characterized by the mean
part p(z) whereas the density fluctuations in the fluid are p'. In the numerical
simulations we use the temperature, ¢ = 8 + © + #', with the mean O as
dependent variable (linearized equation of state) instead of the density:
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The Boussinesq approximation is assumed and the equations are transformed
to dimensionless form with constant reference values for time, length, velocity,
temperature, and pressure, respectively:

_ 0
ref T AU

where AU and A® are the velocity and temperature differences across the
vertical depth H. The bulk Richardson number is defined by:
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t Lo = H Upey = AU 0rcp = A, and Py = AU?py, (2)

Ri (3)
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The governing equations are then the conservation laws for mass, momentum
and temperature

a% (ngquuq) =0, (4)
%(V’Ua‘)'i' % (Vquuqui) =~ 32*9 (VGgip)

_ % (Gds(VFis))+RiV0’53i, (5)
gt (V) + @i (VGUu,8) +Vusji ) a?d (6" (van).  ®

The Cartesian velocity components u; = {u, v, w)and the temperature pertur-
bation §' are computed on a terrain following coordinate system in which the
curvilinear coordinates (%,7,%) are related to Cartesian coordinates (z,y, 2)
according to

(2 —h)
(H —h)’

The Jacobian of the transformation G = 0%;/0x; is V = (det G¥)™" and
h(z,y) is the prescribed height of the bottom surface. For details of the
numerical implementation of this coordinate transformation see Krettenauer
and Schumann [4]. The diffusive fluxes in Eq. 5 and Eq. 6 are

T=1x, H=y and Z=nz,y,2)=H {7)

VE;=-pKuV Dy, VQi=—-pKy — (VGNQI) ®

a
oF"
where Kny = 1/Re + vy and Ky = 1/ReSc + vyurs/ S¢iurs- The Reynolds
and Schmidt numbers are defined by Re = AUH/v and Sc = v/fv,. The
turbulent viscosity is determined as a function of the local Richardson number
as suggested by Mason and Derbyshire [7]:

2 W&
erb—{A[S S5]y/1 7, when Ri< Ri.=1 9)

otherwise,

where 5 is the deformation tensor in terrain following coordinates

S o 1(8.5D5jD5j, DgJ = ‘1/_ 8?-" (VGTJ‘H., + VG”ZLJ) (10)

The mean shear § = AU/H is subtracted from the local deformation §
in Eq. 9 so that the turbulent diffusivity is zero in the unperturbed mean
flow and nonzero only in the ‘turbulent’ regions with strong deviations from
the linear profile. The mixing scale is related to the grid spacings as A =
0.1 (Ar + Ay + Az) /3. The initial velocity field and the mean temperature
field are given by:
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u(z) = %(zm 0.5H),0(z) = fo {1 + ‘;?(2 “ETM)}. (11)

At the beginning, the perturbations are set to zero or small random fluctu-
ations are prescribed. The computational domain covers one wavelength of
the surface undulation, and cyclic boundary conditions in the x-direction are
used. The boundary conditions in the cross-stream (y-) direction are also peri-
odic. Since we are not interested in resolving the viscous surface layers of the
laboratory model, the boundary conditions

a0 0 du AU av 0 OV Fi

2= e 5" T O (12)

are used at the upper and lower surfaces. The normal velocity is zero at the
wall boundaries.

Comparison with measurements for a weakly nonlinear shear flow

In this chapter, we compare the results of a two-dimensional numerical simula-
tion with the measurements of Thorpe [13] who observed the internal gravity-
wave critical-layer interaction in the laboratory. In this case, the mean velocity
is zero and an uniform shear is induced initially. In the experiment, the lower
undulated surface, consisting of sixteen sinusoidal waves, excites the internal
gravity waves with zero phase speed in the shear flow. We compare our results
with the observations shown in Fig. 4 of Thorpe [13], when the tube is returned
into the horizontal position after the time ¢,, when the shear flow is no longer
accelerated. Its strength depends on the angle a, the time of tilting {, and
the Brunt-Viisild frequency N = 2.06s™! according to AU/H = N, sina
[12].

The sixteen corrugated waves are replaced by one wave in the computation
and cyclic boundary conditions in the horizontal direction. Therefore, the
horizontal length of the model domain is A = 1.5625H with H = 0.16m. The
number of grid points is (200x128). Further parameters supported by the
experiment are the amplitude of the wave § = 0.03125H, and the angle and
time of tilting of the tube, @ = 7.1 ° . and t, = 3.75s, respectively, implying
AU = 0.34m/s. The mean density profile is assumed to be linear with the
constant gradient AG/H = N26y/g. The corresponding Richardson number
is Ri =~ 1.1. The initial velocity distribution is prescribed according to Eq. 11
and the temperature field # is zero. The viscosity is constant, the turbulent
viscosity is set to zero in this simulation.

In the observations, layers of constant density were marked by adding dye.
These layers have a certain thickness depending on the experimental set-up.
The deformation of these black and white regions illustrates the wave prop-
agation with time. For a quantitative comparison with the measurements,
we plot the contour lines of the temperature field with a constant increment
Af# = 0.0032A0 in such a way that the thickness and the position of the areas
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Fig. 1. Comparisor with the observations of Thorpe {1981}, Left side: experimental

results at ¢ = 4.5s, t = 7.95, and ? = 10.2s. Right side: Results of the numerical simulation
at corresponding times. The length and height are in units of H.

between adjacent contour lines correspond to the black and white layers doc-
umented in the photographs of the observations. The most interesting areas
in the middle of the numerical domain are also made black in Figure 1.

At the beginning, the lines of constant temperature are horizontal, i.e.
colder (heavier) fluid is lying in the trough and the fluid gets warmer (lighter)
with increasing height. The mean flow is towards the left near the surface
and towards the right at the top boundary. The overall features of the flow
evolution in the laboratory and in the numerical simulation are obviously sim-
ilar. The sinusoidal corrugations at the bottom surface excite internal gravity
waves that propagate vertically towards the critical level (Figure 1(e)). The
amplitude of the waves increases with height but falls to zero at the critical
level. No wavy motion is found above this level which acts as an absorber
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whereby momentum is transfered to the mean flow causing an advection in
the positive x-direction. Regions of reduced vertical temperature (density)
gradients (characterized by thickening of the marked layers) are mainly found
above the trough (Figure 1(h)). Because of the reduced gradients, the local
Richardson number drops and these regions become convectively (gravitation-
ally) unstable, where the advection puts colder (heavier) fluid over warmer
(lighter) fluid, which finally leads to the wave breaking. Between these sites
of instability the vertical gradient is enhanced and the black and white areas
over the crest become thinner, a structure similar to that found for Kelvin-
Helmholtz instability.

A slight difference can be seen between the observed and the computed
position of the unstable region. In the computations overturning occurs further
to the right and a more unstable region is visible also on the left side. This may
be possibly caused by differences in the shear profile because we do not know
the details of the transition from the tilted to the non-tilted tube position.
Tests have shown that the acceleration of the mean flow depends very much
on the Reynolds number. The lower the Reynolds number the weaker is the
transfer of momentum to the mean flow and the smaller the advection causing
the breaking. Although we have not used the same boundary conditions as
in the experiment (no friction) excellent agreement with the observed flow
patterns was obtained. Obviously, the viscous friction at the top and bottom
surface is of minor importance in this case. The comparison shows that the
model reproduces the weakly nonlinear interaction of a gravity wave with the
critical level well.

Breaking of internal gravity waves

Based on the test presented in the former section (and comparisons to lin-
ear solutions, to be published elsewhere), we apply the code to the three-
dimensional interaction of nonlinear internal gravity waves with the critical
layer and the breakdown to turbulence. The domain size in units of H is
(0,1.5625) x {0,0.3125) x (0, 1). The characteristic length scale of the expect-
ed structures caused by the breaking is of the order of the thickness of the
resulting mixed layer. This scale is essentially less than a quarter of H. Thus,
the lateral domain size of A\/5 = H /3 seems to be large enough to allow a well
resolved turbulent motion. The finite difference grid is uniform and isotropic
with (150x30x96) nodes.

The reference scales of the simulations are the height H = 0.16m, the veloc-
ity scale AU = 0.3147m/s, and the temperature scale AQ/fy = 0.0692, which
gives a bulk Richardson number of 1.1 at the beginning of the simulations.
We present the results of two runs: first, a DNS with constant eddy viscosities
Ky and Ky (Vurs = 0, Re=20000, $S¢=500) and the zero initial temperature
field, and secondly, a LES where the eddy viscosities are calculated by means
of Eq. 9, Scrurs = 1, and the molecular viscosity is zero. In the LES, the initial
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Fig. 2. Profiles of the mean horizontal velocity and Richardson number at five different
times for the DNS, The times are t = ( LB =6tegg - - - b= F2Eap ~ — -, U 248,y
— e = Aty e — -

temperature field is disturbed by small random fluctuations with a variance

VB = 0.001A0. The time step is At = 0.005¢,.; and the simulations run
until § = 40¢,;.

Figure 2 shows the horizontally (at 5 = const.) averaged profiles of the n-
velocity and the local Richardson number at five different times for the DNS.
Below the critical level 7 ~ 0.5H the mean velocity increases in time. While
the increase up to about ¢ = 20f,.s is similar in the DNS and the LES, the
final speed-up at t = 40ty is 0.011AU in the DNS and only 0.007AU in the
LES. The layer directly influenced by the momentum transfer between the
wave and the mean flow has a thickness of about H/4. We expect that this
layer thickness depends on Ri and possibly on §/H. Just below the critical
level the Richardson number becomes much larger compared to its initial value
due to the decreasing shear and the increasing stratification at this altitude.
Below the level of maximum acceleration (n &~ 0.4H) the shear is large and
Ri drops below the critical value Ri, and becomes even negative indicating a
layer with smaller or negative temperature gradients. Indeed, the temperature
fluctuations (not shown) are positive below and negative above this level and
cause a convectively unstable layer. This suggests that mixing is mainly driven
by the wave induced convective instability and not by a Kelvin-Helmholtz
instability.

Figure 3 shows the profiles of the horizontally averaged kinetic energy
E =05 (W-I— "5*”54»%1?) at the same instances as in Figure 2 for the DNS

and LES. Despite the two different regimes of breaking (see Figure 5 } the
magnitude of the variances is nearly the same in the two cases. The kinetic
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Fig. 3. Profiles of the horizontally averaged kinetic energy £ = 0.5 (?;M’i“+;?~’_+ w?) for
the DNS (a) and the LES {b). Line coding as in Fig. 2.

energy E exhibits two maxima, one near the surface and one below the critical
level. The first one is caused kinematically by the flow over the wavy terrain
and is mainly due to the contribution of the w-variance. The second extreme
value is produced dynamically by the breakdown of the vertically propagating
wave and comprises contributions of the u- and w-variance. The v-variance
is different from zero only in the disturbed case and is one order of magni-
tude smaller than u/2. Hence, the flow remains essentially two-dimensional in
the DNS case but becomes turbulent and three-dimensional in the LES case.
Above the critical level, up to 0.6H, the variances start to grow slightly in
an initial period but return to zero soon. This illustrates the inhibiting effect
of the critical layer on the dynamics. The temporal evolution of the variance
profiles is different for the two cases, The u-variances increase at the same
rate up to about 24¢,..s in both cases, but the magnitude of v stays nearly
constant in the uniform viscosity case while it decreases strongly in the dis-
turbed case. Obviously, the three-dimensional mixing is more effective and
prevents a further acceleration of the mean flow and leads to a restratification
of the fluid which limits further mixing. The ongoing growth of energy E in
the DNS is caused by the increasing w-variance due to the continuous build
up of unstable regions by rolling motions in the mixed layer. If we look at the
vertical position of this layer, we observe a sinking motion with time, which is
stronger for the LES case. Such sinking of thin turbulent lavers has also been
observed by radar in the free atmosphere {10].

One of the most important consequences of the absorption of a wave at
the critical level is the acceleration of the mean flow (see Figure 2). This
acceleration requires a vertical gradient of the shear stress, because du/dt ~
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Fig. 4. Profiles of the momentum flux «/w’ for the DNS (a) and the LES (b}. Line coding
as in Fig. 2.

—0u'w' /82, Idealized waves with infinite extent have an uniform momentum
flux and the gradient is zero, i.e. on average the fluid is never forced. In our
simulations, the ww’-profiles manifest a strong vertical structure (Figure 4).
Initially, the vertical flux of horizontal momentum is constant (zero for the
disturbed, slightly negative for the uniform viscosity case). At ¢ = 6t,.s, the
u'w’-profile exhibits vertically a wavelike structure. Its amplitude increases
with altitude but strongly decreases to the initial value just below the critical
level. Between z = 0.3H and 2 ~ 0.5H the gradient is negative and large and
causes the strong acceleration of the mean flow. Due to the wavelike structure
of the profiles, below this region other layers exist with an accelerated or
decelerated motion. At t > 12t,.s, the number of waves is increased and at
t > 24%,.; the shear stress is nearly uniform below the critical level. After the
breaking event, the shear stress is heavily reduced and becomes negative in
the formerly forced region. The reduction is much stronger in the LES than
in the DNS. This means the turbulent mixing (which now actually includes
the third dimension) in the LES is much more effective than the more or less
two-dimensional regime of the DNS.

Figure 5 shows contour lines of the temperature field '+ ©(z) at a late time
for the DNS and LES, respectively. In order to make the important effects
better visible, four intervals between constant temperature contours have been
marked black. From a sequence of those pictures at various times, we find that
the temporal development of the wave structure up to the time { = 181, is
similar to the results shown in Figure 1. The flow over the wavy surface excites
internal gravity waves which propagate vertically upward and generate regions
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Fig. 5. Contour lines of ' + @ at ¢ = 40, for the DNS (a) and the LES (b).

of reduced stability (over the trough) as well as regions where the contour lines
are crowded (the braids over the crest). Above the critical level, no or very
reduced wavy motion is observed. When we measure the difference of the
extreme values of a contour line, we realize that this amplitude increases as a
function of height and becomes nearly 38. This indicates that the wavy motion
at the critical level experiences a long lasting excitation from the surface wave.
At other levels the longitudinal motion of the fluid prevents such an excitation.
The first overturning occurs at about ¢ = 14#,.;. Then the flow development
becomes different for the DNS and LES. The uniform viscosity case shows a
smoothly breaking regime, which consists of the repeated rolling-up of density
surfaces whereas the turbulent viscosity case leads to a fully turbulent mixed
layer below the critical level.

In the DNS, we see no indication of the onset of secondary, smaller-scale or
three-dimensional instabilities, neither in the statically unstable cores, nor in
the braids, where a shear driven instability would be possible. Here, the main
characteristic is the continuous generation of overturning waves induced by
shear and the primary waves. After the breakdown of the first wave at earlier
times (between t = 30 and ¢ = 361,.5), we find a second unstable region which
itself creates a smaller wave with growing amplitude. In the LES, the heavier
fluid breaks immediately by falling down and a strong turbulent mixing occurs
in the unstable regions. Between t = 30 and ¢ = 361,y there is also a tendency
to build up a secondary wave structure but this is destroyed quickly by the
mixing. At the end of the simulation we find large areas of reduced vertical
density gradients, but only small portions of the fluid are convectively unstably
stratified.

Conclusions

The nonlinear interaction of an internal gravity wave with the critical level
and the generation of a turbulent mixed layer has been investigated by means



199

of DNS and LES. The turbulent viscosity is assumed to be proportional to
the fluctuation of the local shear and is a function of the Richardson num-
ber. The flow structure in the DNS remains essentially two-dimensional. The
mixing takes place as a process of repeated rolling-up of density surfaces so
that the flow shows permanently overturning waves which generate vertical
motions in a quasi periodic manner without real turbulence. Because of the
three-dimensional initial disturbances and the weaker effective diffusivity, the
overturning waves in the LES produce turbulent mixing which is more efficient
than the two-dimensional counterpart. In both cases, no Kelvin-Helmholtz
instability is observed. Further studies will be devoted to the investigation of
the effects of the bulk Richardson number, the amplitude of the surface wave
and the characteristics of the resulting turbulence.
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