Large-Eddy Simulation of the Convective Boundary Layer:
A Comparison of Four Computer Codes

F.T.M. Nieuwstadt', P.J. Mason?, C-H. Moeng® and U. Schumann*

! Laboratory of Aero and Hydrodynamics, Delft University of Technology, 2628 AL Delft, The
Netherlands

2 Meteorological Office, Bracknell, Berkshire RG12 2SZ, England

3 National Center for Atmospheric Research, Boulder, CO 80307, USA

4DLR, Institute of Atmospheric Physics, W-8031 Oberpfaffenhofen, Germany

Abstract

To test the consistency of large-eddy simulation we have run four existing large-eddy codes for the
same case of the convective atmospheric boundary layer. The four models differ in various details,
such as: the subgrid model, numerics and boundary conditions.

The agreement between the four models is excellent. In general model results lie within the
scatter of available observations. Most of the disagreement between the model results can be at-
tributed to the parameter C; of the subgrid model. The effect of other differences between the four
models, such e.g. due to numerics, is found to be small.

1. Introduction

In large-eddy simulation we seek to compute the large scales of turbulence. This is
accomplished by performing on the Navier-Stokes equations a filter operation, designed
10 remove the small scales from these equations. The resulting set of equations is then
solved numerically. Large-eddy simulation is considered to be a tool to study the details
of wrbulence and it is enjoying an increasing popularity.

The most successful application of large-eddy modelling has been to the atmospheric
boundary layer and in particular the convective boundary layer. The reason is of course
that the convective boundary layer is dominated by large structures. These are known
as thermals and they are responsible for most of the vertical transport processes. They
make the convective boundary layer an ideal subject for large-eddy simulation.

The study of the convective boundary layer with large-eddy models has started with
the pioneering work of Deardorff in the seventies (e.g. Deardorff 1974). Since then
extensive and detailed simulations have been reported by Moeng (1984), Mason (1989)
and Schmidt & Schumann (1989). A more general review of large-eddy simulation of
convection is presented by Nieuwstadt (1990)
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Here, we will not add another simulation to this list. Instead this study has a different
objective.

The philosophy of large-eddy modelling is to isolate the dynamics of the large scales.
The small scales are treated by a more or less simple parameterization: the so-called
subgrid model. This approach hinges on the hypothesis that the actual details of the
subgrid model have only minor effects on the large scales. As this may be considered
the fundamental premise of large-eddy modelling there are also other uncertainties. Any
large-eddy model requires a large number of assumptions about details of the model,
ranging from the choice of a numerical scheme to the selection of boundary conditions.
It would be very undesirable if a large-eddy simulation tums out to be sensitive to these
modelling details.

In this paper we aim to address these questions and investigate whether present large-
eddy models are in line with the philosophy mentioned above. Do they lead to consistent
simulations for the case of the convective atmospheric boundary layer? Such consistency
would present a further argument that large-eddy simulations can be trusted to give a
realistic representation of atmospheric turbulence.

To this end four research groups represented by the authors of this paper have decided
to test their large-eddy models for a simulation of the convective boundary layer. Besides
using different subgrid models, these cedes also differ in many other details. We run the
models starting from the same initial conditions and using the same forcing. By comparing
the results we expect to learn the sensitivity of these models to the various parameters.

First we shall discuss in some detail the differences between the models, Next we
shall specify the initial conditions and the calculation procedure. Then we tumn to a
discussion of the results. In particular we will consider in some detail the effect of the
subgrid model.

2. Description of Large-Eddy Codes

As already mentioned above we shall use in this study existing large-eddy codes which
have already been described elsewhere (Mason, 1989; Moeng, 1984; Nieuwstadt & Brost,
1986 and Schmidt & Schumann, 1989). Therefore, we shall restrict ourselves in this
section to highlighting the various differences between the four models.

2.1 Subgrid Model

The main purpose of a subgrid model is to “dissipate” the energy which is passed down
the cascade from the large eddies. Views at present differ on the complexity needed to
meodel the subgrid terms,

The most simple parameterization is the well-known Smagorinsky model, which
relates the subgrid stresses to the deformation of the resolved velocity field by means of
an eddy viscosity, Kir. This eddy viscosity is expressed as

Ky = &5 (1



LES Simulation of the CBL 345

where § is the absolute value of the strain rate and £ is the so-called mixing length, This
mixing length is proportional to the filter length.

The Smagorinsky model is used by Mason and for a more detailed discussion we refer
to Mason & Callen (1986) and Mason (1989). In particular Mason (1989) introduces an
extension of (1) to convective turbulence, Here, it suffices to mention that in the context
of the Smagorinsky model a fundamental role is played by the coefficient C,. It is defined
as the ratio between the mixing length and a characteristic grid size A

C.I = E/A. (2)

Mason (1989) has considered the effect of several values for C, and recommends C, =
0.32.

Alongside the Smagorinsky model for subgrid stresses, an analogous model is used
to parameterize subgrid heat fluxes. It relates the temperature flux to the resolved tem-
perature gradient by mgans of an eddy diffusivity Ky. The Ky is connected to the Ky
by means of a turbulent Prandil number

= Ku
" Kn' ©)

A slightly more complicated subgrid closure model is used by Moeng and Nieuwstadt, It
is also based on a relation between the subgrid stress and the resolved deformation rate
but in this case the eddy viscosity is defined as

Ky = 0.124¢'7? @

where e is the subgrid energy. A separate equation for the subgrid energy is formulated,
which is then solved along with the other equations of the large-eddy model (Moeng,
1984). If we simplify the subgrid energy equation to a balance between shear production
and dissipation, we may derive a representative value for C,. In case of the subgrid model
of both Moeng and Nieuwstadt, we find C, = 0.18,

Schumann adopts the most complicated subgrid model. It is a second order closure
model, in which the following simplifications are made. Only for the subgrid energy a full
equation, including time derivatives and transport terms, is solved. In the other equations
of the subgrid model these terms are neglected. Moreover, the production terms in these
equations are limited to the isotropic part. As a result the subgrid model can be expressed
as a decoupled algebraic system of equations, which can be explicitly solved. For further
details we refer to Schmidt and Schumann (1989), where it is also derived that their
representative value for C; is: C, = 0.165.

Another detail of the subgrid models which varies between the four codes is the
formulation of the mixing length. In the interior of the boundary layer all four authors take
the mixing length ¢ proportional to a characteristic grid size A. Moeng and Nieuwstadt
use the geometric mean A = (Ax Ay Az)'/?, whereas Schumann takes the arithmetic
average: A = (Ax + Ay + Az)/3. Mason uses a non-uniform grid and he provides no
explicit expression of A in terms of the grid spacing.

Furthermore, Mason and Schumann allow € to become proportional to height when
the surface is approached. Nicuwstadt takes this effect into account through a different
parameterization of the dissipation term in the equation for ¢ near the surface.

Finally, Mason, Moeng and Nieuwstadt limit the mixing length to a smaller value in
stable conditions. This plays for instance a role in the stable layer above the boundary
layer (Schumann, 1991).

Pr
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Nevertheless, we shall see that the most important parameter influencing the effect
of the subgrid model is C, and perhaps to a lesser extent the Prandtl number Pr. For
convenience we have collecied these parameters in table 1.

Table 1. Representative values of the coefficient Cs and the turbulent Prandfl number Pr for the
subgrid model of the four large-eddy codes.

.| Mason Moeng Nieuwstadt Schumann
Cs 0.32 0.18 0.18 0.165
Pr 0.46 0.33 0.33 0.42

2.2 Numerics

The models of Mason, Nieuwstadt and Schumann use a full staggered grid. This means
that the velocity components are defined on the sides of the rectangular grid volume with
the pressure in the centre. Moeng uses staggering only in the vertical direction, so that
in her model all variables are defined on the same x,y-position,

The subgrid energy e, used in the subgrid models of Nieuwstadt and Schumann is also
defined in the centre of the grid volume. This means that in these models the exchange
coefficients are located on the same position. Mason and Moeng adopt a different view
and collocate the exchange coefficients with the w-point to avoid vertical averaging of
z-derivatives.

The resolved temperature is governed by an advection-diffusion equation. Therefore,
the most obvious location for the temperature is the centre of the grid volume. This
view is taken by all participants except Nieuwstadt, who stores the temperature at the
w-point. His argument is to avoid vertical averaging of temperature in the w-equation,
where buoyancy is the dominant forcing term,

Next we consider the numerical schemes. With respect to time advancement Moeng
and Schumann use the Adams-Bashford scheme, whereas Mason and Nieuwstadt employ
the leap-frog method. The leap-frog scheme is unstable for the diffusion terms, Therefore,
the latter authors resort for these terms to the simple forward Euler scheme.

Mason and Nieuwstadt treat the advection terms by scheme proposed by Piascek and
Williams (1970). This is a second-order method designed to conserve variances even if the
continuity equation is satisfied only approximately. Schumann uses standard second-order
differencing for the momentum equations which conserves kinetic energy if the continuity
equation is satisfied. For the temperature, he uses a second-order upwind scheme which
preserves positivity. All three authors take second-order, central differencing to solve
the diffusion terms. Moeng adopts a somewhat different approach. She uses a pseudo-
spectral method to calculate all horizontal derivatives and a finite difference technique to
calculate the vertical derivative. To avoid aliasing errors in the pseudo-spectral technique
all Fourier expansions are truncated beyond the wave number 2/3 kmas.

All four authors use a mixed fast-Fourier and finite difference technique to solve the
Poisson equation for the pressure.
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2.3 Boundary Conditions

In all four models horizontal boundary conditions satisfy periodicity. However, differ-
ences are found in the specification of the vertical boundary conditions.

At the lower boundary the vertical velocity w is set equal to zero. For the horizontal
velocities one resorts to Monin-Obukhov similarity. This means that a relation is specified
between the surface stress and the horizontal velocity in the first grid cell. Furthermore,
it is assumed that the velocity and stress are parallel.

The models of Mason, Moeng and Schumann specify the temperature flux at the
surface. Surface similarity is then used to obtain the surface temperature T, (i.e. the
temperature at z = zo) from the temperature calculated in the centre of the first grid
volume, Nieuwstadt has to adopt a different procedure, because he defines the temperature
at the location of the w-variable. He then uses surface-layer similarity to specify a
relationship between the surface-temperature flux and the temperature difference across
the first grid cell. Note that in convective conditions the temperature profile near the
surface is strongly curved. This curvature cannot be resolved within the first grid cell. As
a result the subgrid exchange coefficients in Nieuwstadi’s model are revised in relation
to the standard surface-layer expressions.

With respect to the upper boundary conditions all four models agree on stress free
conditions: i.e. du/9z = v /8z = 0. Furthermore the temperature gradient at the top of
the calculation domain is set equal to the gradient I”, which is prescribed in the initial
conditions as the temperature gradient above the boundary layer.

There are however, some important differences in the treatment of the vertical velocity
at the upper boundary. The goal is to avoid reflecting gravity waves from the top of the
model. Moeng and Schumann prescribe a radiation boundary condition which allows
gravity waves 1o propagate out of the calculation domain. Mason uses an expanding grid
near the top of the calculation domain in conjunction with a damping layer. Nieuwstadt
also uses a damping layer but no expanding grid. The role of the damping layer is to
dissipate gravity waves before they can reflect back into the boundary layer. This is
accomplished by adding to the equations of motion in the upper part of the calculation
domain a relaxation term, This relaxation term then damps fluctuations at a prescribed
relaxation time scale. Nieuwstadt takes the relaxation time scale equal to 50s at the
highest calculation level. The relaxation time scale in his model is then increased by a
factor of 5 at each computation level for the next 9 levels down.

3. Calculation

The calculations are performed in a rectangular domain. Its horizontal dimensions are
6400 x 6400m’. The vertical domain size is 2400m for the computations of Moeng,
Nieuwstadt and Schumann and 8000 m for the computation of Mason (remember that
the latter author uses a non-uniform, expanding grid in the upper part of the calculation
domain).

To limit the computational effort for this comparison study we took only a modest
number of grid points. All authors use 40 grid points for both horizontal directions.
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This implies a horizontal grid spacing of Ax = Ay = 160m, In the vertical direction
Nieuwstadt and Schumann use also 40 grid points so in their case Az = 60m. Moeng
takes 48 grid points which implies Az = 50m. As mentioned before Mason specifies a
non-uniform grid with 68 grid points. Near the surface his grid spacing is Az = 20m
and within the boundary layer a typical grid spacing amounts to Az = 80m. Near the
top of the boundary layer the grid spacing is again reduced to about Az = 30m. The
grid then expands to Az = 250m towards the top of the calculation domain.

Convection is driven by a constant temperature flux at the surface of @y =<w'T’ >p=
0.06 K ms™*. This flux is directly prescribed at the surface in the models of Mason, Mo-
eng and Schumann. The model of Nieuwstadt requires a different procedure because the
heat flux is not defined at the surface due to the w-location of the temperature variable. In
his case a constant temperature increase was prescribed at the surface with a magnimde
of (dT /dt)o = 0.16K hour™}. With this value of (dT /dt)o the temperature flux varied
slightly during the calculation, say between 0.061 Kms™! and 0.058 K ms~!. However,
averaged over the whole calculation period the temperature flux was found to be equal
to 0.06Kms™'.

The calculations were set up in such a way that boundary-layer height would reach a
value in the neighbouthood of 1600 m. Therefore, we introduce as a scaling height z;o =
1600 m. We can now define a convective velocity scale w.o as: w.o = [(g /To)Qszi0)'/>.
The gravitational acceleration g is taken here to be: g = 9.81 ms~? and the reference
temperature 7o = 300K. A temperature scale can now be defined as T.o = Q. /w.0 and a
time scale as t. = zio/wuo. With the values of zip and Q. mentioned above, w.o becomes
equal to 1.46ms~", T.o equal to 0.041K and 1, = 1096ss.

Note that in most presentations, to be discussed in the following section, we shall use
instead w, and T, to scale the results. These variables are called the convective scales
defined by

We = (.%Q,z.-)‘”, )
)]
T, = ._Qi,
Wi

where z; is an actual boundary-layer height. That means a boundary-layer height repre-
sentative for the time period for which the results are evaluated. This actual boundary
layer height has in principle a different value for each calculation.

Other parameters of interest are the constant temperature gradient I" above the bound-
ary layer. This was specified to be I = 0.003 K m™!. Furthermore, the roughness length,
which enters the surface similarity relationships, is taken to be zo = 0.16 m. The density
p has been set to 1kgm™ because its value is irrelevant in the normalized results

As initial conditions we prescribe the following profiles for the temperature T and
the three velocity components u, v, w.

For z < z;; = 0,844z,

T = To+0.1r(1 — =T
. Zil

w = 01r(1 - L)w.o
F431

u=v =20

and for z > z)
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T =To+(z—za)l
u=v=w=0

In these equations r stands for a random number uniformly distributed between —0.5
and 0.5.

In individual calculations these initial profiles are sometimes slightly modified. For
instance, Nieuwstadt prescribes for the horizontal velocity components, 4 and v, at the
lowest grid cell the value 0.01rw.o to avoid problems with the surface-layer similarity
relationships. Furthermore, he increases the temperature at the surface by 2 K with respect
to the value specified by the profile above. Finally the subgrid energy is initialized in the
models of Moeng, Nieuwstadt and Schumann with the profile proposed by Schmidt and
Schumarm (1989),

e = 0.1wZ(1 — =). 6)
Zi0

Starting from these initial profiles we ran our models with a constant forcing Q, for
a period of 10¢,. It was expected that after this period turbulence would reach a quasi-
stationary state. Next, calculations were continued for 10 < ¢/, < 11. Within this time
interval various quantities were calculated as averages over N, timesteps. These are the
quantities which we shall discuss in the following section. It also means that our results
have been averaged over only one time-scale. As we shall see, this is too short to obtain

stable statistics especially for the higher order moments.

Table 2. Several smtistics of the computations; Nx, Ny, Nz: number of grid points in the two
hotizontal and the vertical directions; Lx, Ly, L;: horizontal and vertical size of the computation
domain; At: timestep; Topyy: CPU time per time step; N7 : total number of time steps to calculate
the time period 0 < ¢ /t. < 11; Ny number of timesteps used in the calculation of averages.

Mason Moeng Nieuwstadt  Schumann
Nx, Ny 40 40 40 40
N; 68 43 40 40
Lx, Ly (m) 6400 6400 6400 6400
Lz (m) 8000 2400 2400 2400
At (s) 0.65 3 4.48 10.96
Tcru (s) 23.55 1.15 0.86 1.33
Storage (M words) 0.64 0.53 175 23
Computer IBM 3084 Cray-YMP  Cray-XMP  Cray-YMP
Nt 20000 4000 2750 1100
Nt 40 10 4 10

For further information we have summarized in table 2 various statistics of the four
computations. Mason uses the smallest time step as required for stability in view of his
small vertical grid spacing near the surface. Nieuwstadt’s code performs most efficiently
but the total computation time is smallest in Schumann’s case because of the larger time
step. The larger integration time per time step in Schumann’s model is a consequence
of the second-order upwind scheme for the temperature variable and the more complex
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Fig. 1. The total kinetic energy vertically averaged across the boundary-layer height as a function
of dimensionless time

subgrid model. His rather large storage requirements come from analysis parts which
are executed during the integration. It is also interesting to note that the pseudo-spectral
scheme of Moeng performs quite efficiently.

4. Results

First, we consider whether our simulations have indeed reached a state of quasi-stationary
turbulence. To that end we have plotted in Fig. 1 the kinetic energy averaged across the
boundary layer as a function of the dimensionless time ¢ /z,. Note that we have plotted
the total energy < E > where E = (u” + v + w?)/2, i.e the resolved plus subgrid
contribution < ¢ >. The energy quickly grows in the initial phase of the computation.
After an overshoot it seitles towards a constant value, which can be interpreted as reach-
ing a state of quasi-stationary turbulence. The overshoot is presumably caused by initial
development of large convective rolls, which at later time turn into more random mo-
tions. In the case of Mason’s computation the overshoot occurs at a later time and it
is also larger than for the other models. We believe this to be due to the larger value
of C, in Mason’s subgrid model, which leads to a rapid initial loss of energy from the
random perturbations. The fact that Moeng’s results are somewhat larger than the other
calculations seems to agree with her data for the variances to be presented later,

Another proof of quasi-stationarity is given in Fig. 2, where we show the profile of
the temperature flux averaged over the time period 10 < t/t. < 11 as a function of
dimensionless height. Quasi-stationarity should lead 10 a linear temperature flux profile
in the boundary layer. This is very well satisfied by all models.



LES Simulation of the CBL 351

1.5
— Mason
~ Moeng
—— Nieuwstadt
1 —- Schumann
l\..lcz
~N
05
0 p—
0 05 1
<WT'>/Q,

Fig. 2. The temperature flux profile as a function of dimensionless height z /z;

Tabel 3. The actual boundary-layer height z;, the convective velocity scale w,, and the entrainment
temperature flux — < w'0’ >; representative for the time period 10 < 1/, < 11; the surface
temperature T;; the average boundary layer temperature above the surface layer T (both Ty and T
are calculated at ¢ /t, = 11).

Mason Moeng  Nieuwstadt  Schumann
2 [zi0 1.0563  1.0312 1.0688 1.0%00
Wa [Weo 1.018 1.010 1.022 1.029
— < w0 >; [Qs 0.147 0.106 0.118 0.188
T: (K) 302.17  301.53 302.54 302.5
T(K) 300.55  300.57 300,58 300.57

Another well-known property of the convective boundary layer is that the mean tem-
perature is approximately constant over most of the boundary layer. This is corroborated
by the calculated temperature profiles (not shown). As additional information on the
temperature profile we give in table 3 the value of the surface temperature T, and the
average boundary-layer temperature above the surface layer T calculated at ¢/, = 11.

The contribution by the subgrid heat flux is small except near the surface, where
subgrid effects should dominate by definition. The anomalous value of the temperature
flux near the surface in Schumann’s model should be disregarded because it is the result
of using interpolations for statistics but upwind fluxes in the simulations.

Near the top of the turbulent boundary layer we observe a negative temperature flux.
It results from the fact that the boundary layer grows into the stable layer above. This
process is called entrainment, The minimum value of the temperature flux is defined as
the entrainment flux, — < w’@’ >;. Its value for the four models is given in table 3.
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Note that the magnitude of this entrainment flux varies considerably between the four
computations. As the entrainment flux is largely resolved, this must be a property of
the individual models. However, we cannot offer at this stage an explanation of this
behaviour in terms of the model parameters.

Furthermore we note that Schumann’s model predicts the largest entrainment heat
flux. This is partly due to the fact that his model calculates a considerable subgrid con-
tribution to the entrainment flux. The explanation for this result lies in his formulation of
the subgrid mixing length £. Remember that Schumann’s subgrid model uses a mixing
length which is not limited by stability. Therefore it will lead to larger subgrid fluxes
near the top of the boundary layer (Schumann, 1991).

The boundary-layer height z; is defined as the height where the entrainment temper-
anre flux occurs. Its value for the four models is entered in table 3. The height of the
boundary-layer seems to correlate positively with the value of the entrainment flux. As
already mentioned in the previous section we shall use this actual boundary-layer height
to scale the calculation results of each model. In connection we will also use w., defined
by (5). Its value is also entered in table .

4.1 Variances

In Fig. 3 we present the variance of the vertical velocity fluctuations as a function of
z/z;. We have plotted in this figure both the total variance, i.e. resolved plus subgrid,
and the subgrid contribution.

15
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22
<W'T>/We

Fig. 3. The variance of vertical velocity fluctuation as a function of dimensionless height z /z;;
plotied is the total variance (resolved plus subgrid) and the subgrid contribution; laboratory data are
from Willis & Deardorff (1974) and Deardorff & Willis (1985); atmospheric data from Lenschow
ct al. (1980).
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The subgrid model of Schumann allows a direct estimate of the subgrid contribution
to < w'? >, Moeng and Nieuwstadt calculate the subgrid energy e. They then assume
isotropy so that for the subgrid contribution to < w'? > results 2/3¢. Mason estimates
the subgrid energy from the following diagnostic relationship

e =a~f8*(1 — Rif)

where Rir is the flux Richardson number equal to Riy = g/(ToPr)dT/8z /S?. The
constant a is taken as 0.3, The contribution to < w" > is then calculated by the same
method as used by Moeng and Nieuwstadt.

The agreement between the four models is clearly excellent. Only Mason’s model
exhibits a slightly different profile. The other models only differ in their prediction of
the maximum value of < w' >,

We have plotted in Fig, 3 also some observations obtained from laboratory experi-
ments (Willis & Deardorff, 1974 and Deardorff & Willis, 1985) and from atmospheric
field tests (Lenschow et al., 1980). Moreover, the present results agree closely with those
of Schmidt & Schumann (1989) who used a much finer grid (160 x 160 x 48). It seems
that the differences between the four models are smaller than the scatter in the experi-
mental data. It is therefore not possible to conclude from this figure which model gives
the best simulation. We will see that the same statement applies to other comparisons
with observational data.

1.5
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Fig. 4. The variance of horizontal velocity fluctuation as a function of dimensionless height z /z;;
plotted is the total variance (resolved plus subgrid) and the subgrid contribution.

In Fig. 4 we show a dimensionless plot of the total horizontal velocity variance and
its subgrid contribution. The subgrid contributions are calculated by the same method as
discussed above for Fig. 3.

In this case differences between the four models are somewhat larger but they lie
still within the scatter of the observations, also shown in this figure,
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Points to be noted are: Mason’s model shows a strong increase towards the top of the
boundary layer. His results indicate dominance of large-scale thermals or rolls which span
over the whole boundary-layer depth with strong horizontal components at the surface
and near the inversion. In the next section we will find that this effect is due to the
subgrid model, Moeng's profile exhibits a mid-layer maximum, which we believe to be
unrealistic, It explains her somewhat larger values of the boundary-layer averaged energy
found in Fig. 1. Finally, the results of Nieuwstadt show a large value of the variance near
and even above the boundary-layer top. This is caused by his upper boundary condition,
which uses a damping layer. It seems that the damping layer fails to remove fluctuations
sufficiently.

1.5
-l\:“"“v
123 8§
oy --—--"_‘:_'__.*_"':3:_':_':,':.‘:::: ----
0.9 ! -
. i — Mason
N ...... Moeng
0.6 =~ Schumam
=+ Schumann
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0 -."_Z-.'r"' s y I
: 7 14 2! 8 »
<TE5/T%

Fig. 5. The variance of temperature fluctuations as a function of dimensionless height z /z;; plotted
is the total variance (resolved plus subgrid) and the subgrid contribution.

A dimensijonless profile of the temperature variance is shown in Fig. 5. The subgrid
contribution can be directly calculated by Schumann’s model. Mason and Nieuwstadt
estimate this contribution from

2
<T? >= ar H-
e
where H is the subgrid temperature flux, The value of the constant ar is taken as 0.67.

The largest disagreement between the four models is found near the top of the bound-
ary layer. This can be partly explained by differences in the temperature gradient. This
gradient enters in the production term of the temperature variance and therefore de-
termines the magnitude of < 72 >. It turns out that Moeng’s model, which has the
largest variance, has indeed also the largest temperature gradient near the top of the
boundary-layer. However, we should also mention here that she uses a somewhat dif-
ferent procedure to calculate her statistics compared with the other participants. Moeng
scales her results at each calculation step with scaling variables appropriate for that time
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step. After that she performs the average over the N, time steps. The other authors av-
erage first their calculation results over the N; time steps and then scale them with z;
and w, representative for the whole averaging period. It is expected that the procedure
of Moeng leads 10 somewhat higher variances.

1.5
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—-— Nieuwstadt
09t ~ Schurnann
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N
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. | S b
0 0.1 0.2 0.3 0.4 05

<p.2>1 IZIPW?

Fig. 6. The variance of pressure fluctuations as a function of dimensionless height z /z;.

Finally, we give in Fig. 6 a dimensionless profile of the pressure variance. Except
the data of Moeng all other models agree very well. An explanation for the deviating
behaviour of Moeng’s model cannot be offered.

Note that the pressure variance of Mason’s model increases strongly towards the top
of the boundary layer. The same behaviour was already found in Fig. 4 and we shail
come back to it in the next section.

4.2 Higher Order Moments

In Fig. 7 we show the dimensionless profile of the third moment of the vertical velocity
fluctuations. This variable is strongly influenced by the thermals in the convective bound-
ary layer. A boundary layer consisting of isolated thermals with inside these a strong
vertical upward motion, necessarily leads to a positive third moment as found in Fig. 7.

The agreement between the four models is quite acceptable in view of the observations
which are also shown in the same figure.

The models of Moeng, Nieuwstadi and Schumann lead to a negative value of < w”? >
near the surface. This is considered unrealistic because it would imply that downdrafts be-
come stronger than updrafis when they approach the surface. Mason (1989) and Schmidt
& Schumann (1989) have investigated the background of negative values of < w> > in
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Fig. 7. The third moment of the vertical velocity fluctuations as a function of dimensionless height
2fz.
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Fig. 8. The skewness Sk of the vertical velocity fluctuations as a function of dimensionless height
z/z.

more detail, They conclude that it is a consequence of the subgrid model. Our calculations
confirm this as we shall see in the next section.

The third moment can be combined with the variance to form a dimensionless param-
eter called skewness: Sk =< w” > / < w" >%2, Note that in this case both < w2 >
and < w” > are calculated from resolved motions only. The profile of Sk is shown in
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Fig. 9. The dissipation of turbulent kinetic energy as a function of dimensionless height z /z;.

Fig. 8. The results of all models are again quite close. Schumann’s data show a rather
high value of Sk near the top of the boundary layer. This might be attributed to the fact
that according to Fig. 7 his value of < w” > is somewhat larger in this region compared
with the other models. Nevertheless Fig. 7 also shows that this difference is rather small
but its effect on Sk is magnified by the small values of < w” > near the top of the
boundary layer.

For a more detailed discussion of skewness in the convective boundary layer we
refer to Moeng and Rotunno (1990). The comparison of the simulation results for Sk
with observations is discussed by Lemone (1990).

4.3 Energy budget

The kinetic energy budget of turbulence in a quasi-stationary convective boundary layer
reads

_ _g_ rnt _ ﬁ o l rot .
0—T0<w9> az(<wE.‘ >+p<pw >)—¢ €))
where we have omitted the shear production term, which is zero in this case because
<u>=0.

The first term in (7) denotes the production of kinetic energy by buoyancy forces.
It is proportional to the temperature flux which we already have shown in Fig. 2. This
production is balanced by the viscous dissipation ¢ which is computed from the subgrid
model. Its vertical profile is given in Fig. 9. The agreement between the four models is
excellent. Mason’s calculation shows again a maximum towards the top of the boundary
layer, the background of which will be disclosed in the next section, Moreover, we see
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Fig. 10. The divergence of the vertical transport of kinetic energy (with as definition E/ = (u? +
v’2 +w?)/2) by velocity fluctuations, normalized by w3 /z;, as a function of dimensionless height
z/2.

that near the surface the e calculated by the models of Moeng, Nieuwstadt and Schumann
increase very rapidly. The model of Mason exhibits a more gradual profile. Schmidt &
Schumann (1989) have pointed out that such rapid increase of ¢ usually goes together
with a negative third moment near the surface as a dissipation excess requires downward
transport of kinetic energy. This is indeed confirmed by our calculations and we remind
the reader to the negative values of < w® > found in Fig. 7.

As the vertical profiles of the buoyancy production and dissipation are different we
need the transport terms to satisfy the budget. The transport of kinetic energy by vertical
velocity fluctuations, < w’E’ >, turns out to be the most important. Its profile is shown
in Fig. 10. Despite some scatter, probably due to the inadequacy of averaging over only
one time scale, the agreement between the four models seems again quite acceptable.
However, this can no longer come as a surprise because we have already found good
agreement for the production and the dissipation terms. The energy budget then forces
agreement of the transport terms.

The profile of the pressure transport term < p'w’ > is shown in Fig. 11, As suggested
above its magnitude is indeed small. In view of this fact it is difficult to draw any
conclusions from the rather large differences between the four models which we observe
in Fig. 11. Moreover we note again that some of the scatter in Fig. 11 is probably again
caused by the insufficient averaging period.

4.4 Conditional averages

In this subsection we discuss the properties of thermals by performing a conditional
averaging procedure. It means that we calculate the average of a certain quantity only
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Fig. 11. The divergence of the ver-
tical transport of kinetic energy by
pressure fluctuations, normalized by
pwl/z;, as a function of dimension-
less height z /2;.

Fig. 12. The area fraction occupied by updrafts as a function of dimensionless height z /z;.

over the area which is occupiced by thermals, i.e. where w > 0. Let us first consider the
area fraction ay, occupied by the thermals. It is shown in Fig. 12. It is interesting to note
that this figure seems to be the mirror image of the skewness shown in Fig. 8.

In Figs. 13 and 14 we show the profiles of vertical velocity w, and the mean tem-
perature excess Ty— < T > in thermal areas characterized by w > 0. The agreement
between the four models is surprisingly good.
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Fig. 13. The conditionally averaged vertical velocity in areas with w > 0 as a function of dimen-
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Fig. 14. The conditionally averaged temperature excess in areas with w > O as a function of
dimensionless height z /z;.

A point to note is the large value of w, in Nieuwstadt’s results above the boundary
layer. This is again the consequence of his upper boundary condition.

For a more extensive discussion of conditional averages in the convective boundary
layer we refer to Schumann and Moeng (1991a).
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4.5 Spectra

In Figs. 15 and 16 we show the spectra of the resolved horizontal and vertical velocity
fluctuations at three levels in the boundary layer. The spectra of the resolved temperature
fluctuations are given in Fig. 17. Remember that Moeng uses a spectral cut-off to avoid
aliasing in her pseudo-spectral method. Therefore, her spectra stop beyond wave number
kzip = 22 whereas the other spectra continue until kzjp = 29.84 (in the figures the spectral
values at the last wave number £z;p = 31.41 have been omitted).

One fact which becomes immediately clear when we look at these figures is that
the spectra of Mason have a much steeper slope at high wave numbers than the spectra
calculated by the other models. This must clearly be an effect of the subgrid model and
we shall come back to it in the next section,

However, we point to the fact that in all three figures the spectra of all models are
again very close at low wave numbers, i.e kz; < 10. This should not come as a total
surprise because it is consistent with the good agreement for the variances between all
four models. Nevertheless, it supports the fundamental premise of large-eddy modelling,
which we have stressed in our introduction: the large eddies do not depend strongly on
the details of the subgrid model.

Finally, we should note that none of the spectra seems to follow the well-known
—2/3 slope of the inertial range. However, this may be due to the rather poor resolution
of our calculations, which is only 40 in the horizontal, There is some evidence (see e.g.
Moeng and Wyngaard, 1988 and Schmidt and Schumann, 1989) that the spectra become
more realistic at higher resolution.
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Fig. 16. The spectra of the resolved vertical velocity fluctuations at three levels in the boundary
layer.
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Fig. 17. The spectra of the resolved temperature fluctuations at three levels in the boundary layer.

5. Discussion

A main conclusion which we can draw from the results shown in the previous section is
that the four models seem to fall into two categories with Mason in the one and Moeng,
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Nieuwstadt and Schumann in the other. (However, in the latter group the models of
Nieuwstadt and Schumann seem to agree slightly better). The most obvious support for
this distinction into two groups is given by the results for the spectra shown in Figs. 15-
17. In addition, Mason’s model leads also frequently to a different shape of the vertical
profile in comparison with results of the other models, Examples are Figs. 3, 4, 6 and 9.

The main difference in Mason’s model with respect to the others is the values of
the constant C,. We have seen in table that for Mason’s subgrid model C, = 0.32,
whereas the value of the other models vary around (.18, According to the definition of
C; given in (2) this means that the mixing or filter length in Mason’s model is larger
with respect to the grid spacing. In other words, much of the variance at higher wave
numbers is filtered out in comparison with the other models with smaller values of C;.
This immediately explains the behaviour of the spectra in Figs. 15-17.

To test this effect of Cr, Mason has rerun his model with a value of C, = 0.23.
At the same time he changed to an equidistant grid within the boundary layer with a
representative vertical grid spacing of ~ 45 m. However, we expected that the effect of
the equidistant versus non-uniform grid will be minimal. Therefore, the new results will
primarily reflect the influence of C; in Mason’s model.

Let us consider a few of the results obtained from this additional calculation, They
are plotted in the same format as used in the previous section. This means that in the
following figures the results of Moeng, Nieuwstadt and Schumann have remained exactly
the same.
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Fig. 18. The variance of vertical velocity fluctuation as a function of dimensionless height z /z;;
plotted is the total variance (resolved plus subgrid) and the subgrid contribution. In comparison with
Fig. 3 we have rerun Mason’s model with Cs = 0.23 instead of C; = 0.32. The results of Moeng,
Nieuwstadt and Schumann have not been changed.

First we show the profile of the vertical variance in Fig. 18. If we compare this with
Fig. 3 it is clear that the shape of Mason’s profile has become much closer to the result
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Fig. 19. The dissipation of turbulent kinctic energy as a function of dimensionless height z /z;. In
comparison with Fig. 9 we have rerun Mason's modcl with Cy = 0.23 instead of Cs = 0.32. The
results of Moeng, Nieuwstadt and Schumann have not been changed.

of the other models. As a matter of fact the models are now almost indistinguishable and
differ only in their prediction of the maximum value of < w'? >.

Another effect which we consistently found in Mason’s results presented in the pre-
vious section was a maximum in the profiles near the top of the boundary layer (see e.g.
Figs. 4, 6, and 9). This phenomenon has completely disappeared for the new calculation.
As an example we show in Fig. 19 the new results for the dissipation profile which we
should compare with Fig. 9. The fact that the upper level maximum has disappeared
may suggest that the large scale thermals in the new calculation have become somewhat
wedker resulting in stronger small-scale motions. This suggestion is borne out by the
results of the third moment < w'® >, which for the new calculation are indeed found to
be smaller.

Comparison of the Figs. 9 and 19 shows also that the behaviour of € near the surface
for the new results of Masen is now much closer to that of the other models. The rather
gradual increase in ¢, which we observed in Fig. 9, has disappeared and the ¢ increases
now fast when the surface is approached. We have argued above that such a sudden
increase of ¢ near the surface is consistent with a negative value of the third moment
< w” >. Indeed, we find for Mason’s new results that the < w'> > becomes negative
at the lowest grid point.

Finally, we show in Fig. 20 the new spectra of the vertical velocity fluctuations. The
agreement between the four models has much improved in comparison with Fig, 16,
especially at the higher wave numbers. This result clearly confirms the effect of C;.
However, the slope of Mason's spectra in Fig, 20 is still somewhat steeper than that of
the other models. This is consistent with the fact that C, = 0.23 is still slightly larger
than the representative C, values of the other models.
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Fig, 20. The spectra of the resolved vertical velocity fluctuations at three levels in the boundary layer.

In comparison with Fig. 16 we have rerun Mason's model with C; = 0.23 instead of C; == 0.32.
The results of Moeng, Nieuwstadt and Schumann have not been changed.

6. Conclusion

Our comparison of four large-eddy codes has showed clearly that large-eddy simulation
leads to a generally consistent picture of convective turbulence despite differences in
many details of the models. This fact should strengthen our confidence in the realism of
the simulated turbulence.

However, at this stage such statement can only be made for large-eddy simulation of
convective turbulence. In other words, convective turbulence seems to be a rather easy
case for large-eddy simulations. A relatively coarse resolution as used in this calculation
is able to represent much of the salient characteristics of convective turbulence. In a
separate calculation, Schumann (1991) found that an even coarser resolution, such as
only 15 grid points distributed over the vertical domain of 2400 m, leads to about the
same results. Shear turbulence seems to be more challenging test case for large-eddy
modelling. Therefore, we are contemplating to perform a similar comparison study for
the neutral boundary layer.

Based on this study we may draw several conclusions about details of our large-eddy
models. The most important one concerns the subgrid mode! and in particular the value
of the parameter C,, which can be interpreted as the ratio between the mixing or filter
length and the grid spacing. A large value of C, leads to reduced values of the variance
at high wave numbers in accordance with the notion of a larger filter length. Moreover, a
large value of C, results in somewhat stronger thermals at larger scales which influence
the vertical profiles of some variables. Nevertheless, the effect of C; on the large scales
seems to be relatively minor, which supports the fundamental hypothesis of large-eddy
modelling: the large eddies are little sensitive to the details of the subgrid model.
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We have also found that the upper boundary condition should be formulated in such
a way that gravity waves are not reflected from the top of the boundary layer. Otherwise
we should expect to see increased values of the variance above the boundary layer.
However, increased variances above the boundary layer do not seem to influence the
simulation results inside the boundary layer. Nevertheless, we recommend the use of a
radiation condition as upper boundary condition, which lets gravity waves propagate out
of the domain. It seems to work very well and it is less expensive than an increase of
the vertical computation domain together with an expanding grid.

Other differences between our four models which seem to have had hardly any effect
on the calculation results, are: the numerical methods, the details of the staggered grid
and the details of the lower boundary condition. For instance, there seems to be no
advantage in applying a pseudo-spectral method (at least for a flow with small mean
horizontal velocity). Also the use of a non-uniform versus an equidistant grid seems to
have negligible influence. The only advantage of a non-uniform grid is perhaps that with
a careful distribution of grid points one is perhaps able to get away with the use of fewer
grid points.

Nevertheless, we should also point to what we believe to be genuine differences
between the four models. These are differences, which can be attributed to the resolved
scales. Examples are the entrainment temperature flux, the horizontal velocity fluctuations
and perhaps also differences in the predicted maximum values of < w2 > and < w? >,
The explanation for these admittedly rather small differences is not clear,
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