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ABSTRACT

From results of large-eddy simulations of the clear convective boundary layer and of a stratus-topped boundary
layer, we evaluate the budgets of mass, momentum, heat, moisture, and turbulent kinetic energy within “plumes”
that are formed by “updrafis” or “downdrafts.” Each grid cell is classified as part of updrafts or downdrafis
according to the sign of the resolved vertical velocity. By means of the divergence theorem and Leibniz’ rule,
the mixing flux across the interface between plumes can be computed from volume integrals. The general form
of the budget equation is deduced and compared to previous two-stream models. Both the mean convective
circulation and small-scale turbulent motions contribute to the mixing flux across the interface. The small-scale
fluxes are largest near the inversion layer at the top of the boundary layers and are important also in the surface
fayers. Vertical and horizontal velocities in plumes are strongly influenced by the vertical mean pressure gradient
and horizontal pressure forces at the plume’s lateral surfaces, For the cloudy case, the plume budgets differ from
those in the clear boundary layer because of latent heat release and radiation cooling near the cloud top. We
find stronger downdrafts because of buoyancy and pressure forces. In both the clear and the cloudy cases, most
of the kinetic energy of turbulence within the upper part of the downdrafts comes from the updrafis through
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lateral mixing, not from buoyancy forcing.

1. Introduction

Motions in the clear and the stratus-cloud-topped
convective boundary layers are dominated by “plumes”
of “updrafts” or “downdrafts” (Lenschow and Ste-
phens 1980; Nicholls 1989). These plumes carry a large
fraction of the vertical fluxes and justify, therefore, the
“top-hat profile approximation,” in which vertical
fluxes are computed as if the vertical velocity and the
transported quantity at a given height were horizontally
constant within the plumes (Betts 1973). In a previous
study (Schumann and Moeng 1991, hereafter referred
to as SM) we used data from large-eddy simulation
(LES) of convective boundary layers to compare var-
ious plume definitions. We found that the top-hat pro-
file approximations give the most uniform approxi-
mation to the actual flux profiles and describe about
60% of the actual fluxes if the plumes are so-called w
plumes. Such w plumes are classified according to the
sign of vertical velocity w. Application of such ap-
proximations requires knowledge of the plume-aver-
aged motion field. Here we continue the previous study
(SM) and analyze the properties that determine the
dynamics of w plumes.
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Models for the dynamics of plumes have been pro-
posed by Telford (1970) on the concept of steadily
rising thermals. Arakawa and Schubert (1974) set up
a model for the ensemble of cumulus clouds relative
to environmental air. Updraft and downdraft circu-
lation models, based on the top-hat approximation and
the assumption that both parts of the circulation have
constant (in space and time) area fractions, have been
deduced by Hanson (1981), Randall and Huffman
(1982), and Wang and Albrecht (1986, 1990). Chat-
field and Brost (1987) considered the budget of air
components in updrafts and downdrafts, which they
call “streams.” These models require information on
the plume geometry, the contributions from the re-
solved plume motions, and from the subplume tur-
bulence; such data were presented in SM. Moreover,
the models need data on the mixing between plumes,
on the pressure forces driving the motions, and on the
contributions to the budgets of the conserved quantities
in such plumes. These data are difficult to deduce from
measurements.

Few experimental studies have considered budgets
of vertical velocity in updrafts and downdrafts using
aircraft measurements at various heights within the
boundary layer. Lenschow and Stephens (1980) de-
duced such a budget for updrafts in a clear convective
boundary layer over the ocean. They use “q plumes”;
that is, they classify updrafts as those parts of the mea-
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sured flight legs where moisture fluctuations g’ exceed
a given threshold over a certain flight distance. Young
(1988) analyzed data from a convective boundary layer
over land and defined updrafts and downdrafts in terms
of either positive or negative spatially filtered vertical
velocity. He determined the budgets of vertical velocity
for both updrafts and downdrafts. However, in both
studies, the data were insufficient to separate the con-
tributions from lateral mixing between updrafts and
downdrafts and from pressure forces. Experimental
data on plume budgets in convective boundary layers
for quantities other than vertical velocity are not known
to us.

In this paper we analyze results from the LES de-
scribed in SM to determine the components of budgets
for vertical and horizontal momentum, pw and pu;
potential temperature 6 or liquid water potential tem-
perature 6;; total moisture ¢ (vapor plus liquid water);
and turbulent kinetic energy E in updrafts and down-
drafts. The turbulent kinetic energy is of interest be-
cause it is important for lateral entrainment between
updrafts and downdrafts (Telford 1970) and for en-
trainment at the inversion above the mixed layer. Our
conceptual model is similar to that of Chatfield and
Brost (1987) and Young (1988). It approximates the
vertical circulation from the ensemble of updrafts and
downdrafts in convective boundary layers as two
streams of variable cross section, one stream upward
and the other downward. The ensembles are horizon-
tally homogeneous but their properties are permitted
to vary in the vertical. The theoretical concept would
also apply to three classes of motions; for example,
including environmental air between the updrafts and
downdrafts. We determine the pressure forces and the
mixing at the moving interface between the ensemble
of updrafts or downdrafts and their respective envi-
ronment. The related surface integrals are difficult to
identify from gridpoint values. We will present a
method to replace the surface integrals by volume in-
tegrals that can be approximated simply by sums over
all grid points within a plume. The method is applied
to determine the budgets for two types of boundary
layers, the convective boundary layer (CBL) and the
stratus-topped boundary layer (STBL) (details as given
in SM). By this, we will see how latent heat release
and radiation cooling at the cloud top change the plume
properties relative to those in clear cases. Such infor-
mation helps in understanding observed plume prop-
erties and forms the basis for testing plume models of
clear and cloudy cases.

2. Analysis of plume budgets from LES
a. Conditional sampling method

As explained in SM, a time-dependent indicator
function I, is defined locally for a plume of type p,
which discriminates between “updrafts” (subscript p
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= y) and “downdrafts” (p = d) (in principle more
than two classes are conceivable ). The indicator func-
tion is determined for each grid index i, j of the M- M,
grid cells in the computational domain at a given grid
level z, k =1, + - +, M, or altitude z. In the present
study, I, = 1, if the local vertical velocity w is positive,
otherwise I, = 0. Similarly, I; = 1 when w <0, and I,
= ( elsewhere. The computational domain covers the
horizontal area 4 = M, M, AxAy. The horizontal cross
section taken by the plumes within the computational
domain at height z is 4, = AxAy 25 2 L(, j,
k). The fractional area of the plumes at height z; equals
a, = A,/A.

Mean values of any function f in the computational
domain at height z; are defined, in the notation of
Young (1988), discretely by

/102
M,
=Z
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i=1

M, M,
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but may also be understood in the continuous sense
for infinitesimal grid spacings as

U ~ g5 [ [, [rexroav

1
%ELpff(x, Y, Z)dS’

whatever gives the more convenient notation. As
sketched in Fig. 1, the volume AV, consists of a hori-
zontal slice of thickness Az in height with cross-section
area A,, AV, = A,Az. Note that this slice horizontalwise
consists, in general, of several nonconnected slices of
the various plumes of given type p inside the com-
putational domain. The plume mean value [f],
differs from the horizontal (or ensemble) mean value
f, which averages over all plumes:

=2 alf1p-

(2)

(3)

To simplify notation, we omit the brackets where pos-
sible without ambiguity and introduce deviations 1,
from the plume’s mean value, whereas the conven-
tional fluctuations around the ensemble mean are de-
noted by f":

p=f~Jo =T (4)

We also define the plume-surface mean value, which
averages over the lateral surface AS, of a plume slice
of thickness Az, see Fig. 1:

1
s = 55 | [, 725 ()
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FIG. 1. Sketch of the plume geometry. /,: indicator function for
updrafts, Az: slice thickness, AV,: updraft volume at level z, A,:
cross section, P,: perimeter, {n; }: plume-surface normal vector, {¢; }:
unit coordinates; {#; }: fluid velocity; { us, }: plume-surface velocity.

b. Leibniz’ rule and divergence theorem

For later usage, we refer to Leibniz’ rule

INE
2L -] s

where #; is the outer unit vector normal to the surface
of the volume AV, and us, is the vector of the velocity
of this surface. The summation convention is used ev-
erywhere for repeated lower indices. Note that u; dif-
fers from the fluid velocity #;. The upper and lower
plane surface bounding the slice of thickness Az are
fixed in space and, therefore, the surface velocity u;,;
is identical to zero on these parts of the volume’s sur-
face. For this reason, the given surface integral is taken
over the lateral surface only. If one divides the above
equation by AV, and employs the previous definitions
of plume mean values, one obtains

of

[—],, = (% ) — Dy ' [minsi f s,

% (7

where D, = AV,/AS,. The length scale will not be
computed explicitly. It equals one-fourth of the di-
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ameter of an equivalent circular plume [as introduced
by Lenschow and Stephens (1980)] if the plume
boundaries are vertical but is smaller otherwise.

Likewise, we express the divergence theorem (with
w=u3):

fLV,, f 5‘37, (wf)dV = ng(z+Az) wfdS
- J.L,,(z) wfds + J-pr nau; fdS, (8)

for Az — 0, as
[f’—(u-f)] = o 2 (w1 + Dy Imit f]
ax,-‘,,”az"”"“sp'

(9)

These relationships will be used in the subsequent sec-
tion.

¢. General form of the plume budgets

The objective of this section is to deduce the budget
equations for plumes in a form such that its terms can
be evaluated from the LES result. The problem here
is that the budget will contain surface integrals which
are difficult to identify from gridpoint values. Thus,
we seek to replace the surface integrals by volume in-
tegrals that can be approximated simply by sums over
all grid points within a plume.

The derivation of the budget equation for the plume
mean value of any quantity f'starts from the instan-
taneous local equation for f, to which we apply the
averaging operator [ ], term by term:

k

. |
a—t]p + [;x— (uif)]p =101 (10)

The source terms Qrare specified in the Appendix for
various fields f, but the analysis of the mixing between
plumes will be performed without knowing the sources

explicitly. Using Eqgs. (7) and (9), Eq. (10) is converted
into

a a
& [f]p + ap—l 3; (ap[wf]p)

+ Dy Ini(wi — ugi)f1s, = [Q7)p. (11)

For f= 1 orfor f= p = const., we have the continuity
equation

d
o™ == (el w,) + Dy [l = ws)ls, = 0, (12)

where the first term describes the vertical divergence
of the mass flux at a given height within the plume,
and the second the net mass flux across the plume’s
lateral surface at the same height.
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Now we split the function finto its horizontal (en-
semble) mean value f and its fluctuating part /' = f
— f and insert this into Eq. (11). Moreover, we use
(12) to simplify terms including the mean field f and
obtain

3 d
Ut = (@lw/])

of
+ My, + (Wl oo = (O], (13)
Here the “mixing term”
My, = Dp_l[ni(ui - us,i)f']S,, (14)

represents transport of the conserved quantity across
the interface between plumes. It defines the mixing at
the plume’s lateral surface due to entrainment and de-
trainment between a plume and its environment. It
describes the net effect; i.e., M, is zero if the amount
of fthat is entrained equals the amount that is de-
trained. Hence, M; , is zero if /= const, so that /' =
although the amount of fluid exchange might be con-
siderable. All the other terms in Eq. (13) describe solely
internal transports within the plume and external
sources.

For given source terms @y, one could evaluate the
mixing term Mj, as the residual from Eq. (13). Since
the source term may be difficult to reevaluate by anal-
ysis from given LES results and even more difficult
from measurements, an alternative method is described
below. For this purpose, we perform the difference of
Eq. (10)(with f=f + f') and (13) and obtain, using
local continuity (du; /dx; = 0),

Mir=[aan] + 5] -5

~ o (Wl ). (1)

From this equation we can evaluate the mixing between
a plume and its environment without having to know
the surface details. It can easily be evaluated from the
LES where all the local fields and the local time deriv-
atives are available.

In order to identify the contributions that are re-
solvable by a plume model as far as possible, we follow
Young (1988) and split the vertical fluxes contained
in Eq. (13) into fluxes from plume mean values ac-
cording to the top-hat approximation and subplume
contributions:

WSl = wp([f 1o =)+ [Wof 7).

With this splitting, Eq. (13) (omitting brackets where
possible) forms the basis for the discussion of the nu-
merical results, as

(16)
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i) ., 0 = -
&fp = ap ‘éz(apwp(fp_f)) —a,”!
a ” " af—
X E(aplwp olp) — Wp'a'; + Orp — My, (17)

Here the first term on the rhs describes contributions
to ffrom mean vertical advection within plumes, the
second gives the contributions from vertical subplume
mixing, the third describes advection by vertical plume
motion times the ensemble mean gradient of the con-
served field, the fourth contains the additional sources
within the plume, and the last contains the mixing loss.
If one multiplies with a, and sums over all classes of
plumes p, according to Eq. (3), one obtains the budget
of the horizontal mean field /. The effect of interplume
mixing is zero in this sum:

z Dlpr,p = (.

14

(18)

Equation ( 17) forms the general basis for plume mod-
eling.

d. Discussion and comparison to previous proposals

The budget equation for vertical velocity (with zero
mean value w) can be deduced from Eq. (17) and the
source term as given in Eq. (31) of the Appendix is

Ie] . 9
:9—{ Wy = —ay, '—z' (au(wu)z)
— o (el Wil — o L
0z
+ (Bgb.l. — [p'0p'/02]u — My, (19)
where
M, , = D, [ni(w — ug)W']s, (20)

describes the net loss of vertical momentum from
plumes by mixing across the plume’s lateral surface.
The mixing term would be identical to zero if we were
using w plumes in the strict sense of zero vertical ve-
locity at the interface between plumes because the
transported quantity w’ would be zero at that surface.
(This does not mean that mixing terms M, are small
for other transported quantities f with nonzero fluc-
tuations at the plume’s surface.) In practical measure-
ments or numerical simulations this strict definition
cannot be implemented, and, therefore, there will al-
ways be mixing at least on the subgrid-scale level.
However, the mixing of vertical momentum should be
definitely smaller for w plumes than for either q plumes
or wq plumes (SM) or any other plume definition. For
this reason, the mixing term discussed by Young (1988)
should be small, because his definition of plumes is
based on low-pass—filtered vertical velocity with a cutoff
wavelength of 0.1z; . His approach is actually very sim-
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ilar to our procedure of using grid-filtered variables to
identify the plumes.

The vertical acceleration of mean plume vertical
motion, 3] w},/a¢, is zero in steady state. In reality, the
convective circulation will take some time to approach
this steady state even for fixed values of the surface
heat flux and the boundary-layer depth. Young (1988)
accounted only for changes induced by the latter by
including the time derivative of the normalization ve-
locity w, into the budget. However, in general, the ac-
celeration d[{w],/d¢ is small in comparison to other
terms in Eq. (19). Moreover, the sum of the local ac-
celerations, weighted with their fractional area a;,, over
updrafts, downdrafts, and possibly environmental air—
see Eq. (3)—is identically zero because of continuity
and w = Z, a,w, = 0, except for mean subsidence
changes. This sum relates the mean pressure gradient
to the vertical velocity variance,

—9p/3z = 8(pw?)/dz. (21)

Obviously, the mean pressure gradient balances a large
fraction of the vertical advection terms in Eq. (19).
For the q plumes considered by Lenschow and Ste-
phens (1980), the vertical velocity fluctuations are
nonzero at the interfaces between a plume and its en-
vironment. As a consequence, the mixing term M,, ,,
which Lenschow and Stephens called the edge-effect
E, », should have a significant magnitude. They de-
termined E,, , — [8p/0z], as the residual of their budget
equation. Because of unknown pressure effects, they
were not able to differentiate between mixing and pres-
sure forcing. Moreover, comparing the result of Len-
schow and Stephens [1980, their Eq. (16)], with the
present result as given in Eq. (17), we find that their
edge-effect term, E,, , is related to our mixing term by

.0
E,,=M,,+ wp(ap 1 Py (apwp))

Y _, O _, 0d
+ [szlp(ap ! 5;1) -4, ! EZE) . (22)
The profile of the plume diameter d, differs from that
of the area fraction «, (see SM), so that the last term
is nonzero. We see that part of the edge effect can be
computed from plume mean values.

3. Results and discussions

In this section, the budget components will be pre-
sented and discussed as computed from the LES. In
the discussions we refer to the previous paper (SM)
where we have presented plume-mean values. The sign
of the plotted budget components is selected such that
positive terms, according to Eq. (17), increase the
quantity under consideration. In most figures, the re-
sults are normalized by the depth of the boundary layer,
z;, and the convective scales w,, T, which are defined
as usual (SM). We will find that some of the results
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show considerable oscillations. These oscillations are
particularly large for quantities computed from finite
differences of mean profiles. Similar effects have been
found by Moeng and Wyngaard (1989) for the dissi-
pation rate which was computed, from the same data,
as the residual of the energy budget. These oscillations
are to be considered as spurious results of insufficient
data for computing the ensemble average or are effects
of finite-difference approximation errors.

a. The mass fluxes and pressure in and between plumes

According to the continuity equation (12), the mean
vertical divergence within an updraft and the mixing
from downdrafts into updrafis has been evaluated, see
Fig. 2. Both terms represent contributions to the specific
volume balance within an updraft. The mixing term

a
M, = Du—l[ni(ui - us,i)]Su = __au—_l E [auwy]y

(23)

is nonzero because of the vertically changing area frac-
tion and mean velocity in updrafts (see SM). The mix-
ing term describes the net outflux from the updrafts
into downdrafts, both due to the mean convective cir-
culation and the small-scale turbulent mixing. The zero
value of M, in the middie of the mixed layer means
that the net mass exchange between updrafts and
downdrafts is zero there; it does not mean that mixing
is zero at this level. As to be expected from the general
circulation pattern, — M,, is positive in the lower part
of the mixed layer and negative above. At the inversion,
the sign of M, oscillates, which may be spurious as
explained before. The mixing term is balanced exactly,
for continuity, by the divergence of the vertical mean
volume flux. In the present normalization, Fig. 2 shows
that the mixing is only a little larger in STBL than in
the CBL. The additional buoyancy induced by radia-
tion cooling at the cloud top and the latent heat release

1.2 . ——
z (@ I L | ® 'EI
Z et R e
10 | ~.§ -~ ] (__,-
0.8 | { S
“ \\ 4
\‘ 4
06 1 \ ] 1
\ 4 H 9
\
04 | | \ J
1 \ 4 \ 1
\\ ‘\
0.2 5 N 1
0 S S L - ——
-6 -3 0 3 -3 0 3 6

volume budget [w,/z;]

FIG. 2. Contributions to continuity equation (volume budget) in
(a) the CBL and (b) the STBL. The line coding corresponds to the
individual terms in —a,'8(aJw),)/8z — M, = 0 as solid (first
term) and dashed (second term).
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in the cloudy updrafts increase the circulation intensity,
in particular near the inversion, but also at the bottom
surface.

The pressure field is a function of the vertical ac-
celerations in the plumes and the horizontal acceler-
ations of the convective circulation between updrafts
and downdrafts. No model exists, yet that predicts these
properties in detail. For example, Telford (1970) had
to assume that the pressure profiles are the same in
updrafts and downdrafts with no horizontal pressure
differences between the plumes. Therefore, it is of in-
terest to see the LES results for the plume-averaged
pressure profiles in updrafts and downdrafts, both for
CBL and STBL, as shown in Fig. 3. The ensemble mean
of the pressure profile, i.e., a,p, + azps = p(z), equals
the negative ensemble mean profile of vertical velocity
variance, see Eq. (21). The difference in pressure be-
tween updrafts and downdrafts induces the horizontal
parts of the convective circulation. This pressure dif-
ference is negative in the surface layer and positive
near the inversion, see Fig. 3. This difference is, how-
ever, not a simple function of the vertical velocity, as
can be seen from the fact that the pressure differences
between updrafts and downdrafts vanishes at an alti-
tude that differs from the altitude where the mixing
flux M, gets zero. The pressure difference is larger in
the STBL than in the CBL. This is caused by the more
vigorous circulation, as can be seen from the larger
mass-flux budgets in Fig. 2, and also by differences in
the horizontal scales of updrafts and downdrafts. We
found larger normalized horizontal scales in the LES
results for the STBL than for the CBL (SM).

b. Budgets in the CBL

Figure 4 depicts the individual terms contributing
to the budget of vertical momentum in the ensemble
of updrafts of the CBL, i.e., the six terms on the rhs of
Eq. (19) for p = u. The sum of all terms represents
the mean tendency dw,, /9t of vertical motion. Its mag-
nitude is of order 0.5w%/z;. It is not exactly zero be-

10
08 :
06 4
0 ]
02 1
1
0 e S
03 -1 -05 0 05
P, Py Lgw?]

FIG. 3. Vertical pressure profiles in updrafts (full curves) and
downdrafts (dashed curves), for (a) the CBL and (b) the STBL.
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FIG. 4. Contributions to the budget of vertical velocity in up-
drafts of the CBL, dw,/d8t = (a) —a, '8 (w,)?)/ 8z — a,”!
O fwi2).)/0z — p~'8p/dz and (b) [Bg ], — [0~ 0p' /821y — M.
In (a) and (b) the solid, dashed, and dotted lines correspond to the
respective terms.

cause the circulation intensity increases with the slowly
growing boundary layer height and because we are av-
eraging over a finite set of data in which the actual
mean values still deviate from the ensemble mean
value. We see from Fig. 4b (dotted curve) that the
mixing term is small and typically of the same mag-
nitude as the remaining vertical acceleration. As noted
before, it would be zero exactly if subgrid-scale con-
tributions to fluxes were neglected because the resolved
vertical velocity is zero at the interface between updrafts
and downdrafts. The mixing source —M,,, = D,”!
X [nius;w'ls, — Dy '[mu;w']s, is positive. This is sur-
prising because it requires some countergradient flux
for which we have no clear physical explanation. It is
positive presumably because the first term in the above
sum dominates; the plume’s surface normal velocity
n;us; contains the component n;w,, which may be
nonzero even at the resolved scales so that a positive
correlation with w' appears possible. If the same LES
results are analyzed using T plumes instead of w plumes
(i.e., a plume definition based on the sign of temper-
ature fluctuations), — M, ,z;w3’ reaches a maximum
of 1.2 near z/z; = 0.2 but a strongly negative minimum
of —5 at the inversion. This large sensitivity to the type
of plume definition is consistent with our interpreta-
tion.

The updraft circulation is driven mainly by buoy-
ancy; full curve in part (b) of Fig. 4. The small negative
contributions at the inversion are either due to over-
shooting thermals or result from small-scale circula-
tions at the inversion. The mean vertical advection,
the first term [ full curve in (a)], transports vertical
momentum generated in the lower part of the mixed
layer upward into the upper part of the mixed layer,
where buoyancy is weaker. Small-scale plume turbu-
lence [dashed curved in (a)] supports the mean ad-
vection but at a smaller rate.

Both the ensemble-mean pressure profile p and the
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local fluctuations p’ around this mean contribute to
vertical accelerations. The plume-averaged pressure
profiles p, and p, have been shown in Fig. 3. The mean
vertical pressure gradient contributes strongly to ver-
tical motions, see the dotted curve in Fig. 4a. It accel-
erates upward motion in the lower half and decelerates
it in the upper half. The upward acceleration from the
mean vertical pressure gradient within the lower half
of the updrafts has also been noted by Lenschow and
Stephens (1980). However, their profile assumption,
—[0p/3z),zi(pw2)™" > 0.9(z/z;)"'/3, is not sup-
ported by our result, which shows a more linear trend
of the pressure gradient with height. In contrast to the
mean pressure, the small-scale pressure fluctuations
(dashed curve in Fig. 4b) contribute relatively little to
the budget. The pressure gradient term [dp’/dz], equals
o, '9/8z(e[p’).) — D, '[nsesp']s, where nse; defines
the projection of the surface normal into the vertical
direction. In the present simulations, it has been found
that the surface contribution is negligibly small. This
fact may be useful for model simplifications. In hy-
drostatic flows, the pressure gradient should just bal-
ance the buoyancy forces. The dynamics of updrafts
obviously depart strongly from hydrostatic behavior
because of large advective accelerations. This is differ-
ent in the lower part of downdrafts (not plotted) where
pressure forces balance the buoyancy forcing to a larger
extent; i.e., the flow in downdrafts is more hydrostatic
than in updrafts. However, in the upper part of the
boundary layer, where buoyancy is still positive or
small, the sinking motions are driven by the plume-
averaged vertical gradient of the mean and fluctuating
pressure. This corroborates Young’s (1988) conjecture
that the pressure forcing provides the initial impetus
to CBL downdrafts.

The budget for the x component of the horizontal
velocity u in updrafts is presented in Fig. 5. A similar
result can be computed for the y component (not plot-
ted). We recall (see SM) that the downstream velocity
i is of order 10 m s~!. The vertical gradient di7/dz of
the horizontally averaged upstream velocity # is small
in the mixed layer but large near the bottom surface
and in the inversion layer. Updrafts have a smaller
downstream velocity u, than downdrafts because the
fluid in the updraft has experienced the surface friction
and is, therefore, more retarded than the fluid in the
downdrafts which still carry the stronger momentum
from above the boundary layer. In Fig. 5, the individual
terms of the budget are plotted according to Eq. (17)
for f = u (see the figure legend). The sum (not plotted)
of the five components shown specifies the mean ac-
celeration of the horizontal velocity within updrafts. It
is negative near the bottom surface (—w2/z;) and near
the inversion (—1.5 w/z;) and slightly negative but
small in the remainder of the layer. The retardation at
the lower surface is due to friction. The retardation at
the inversion reflects the downward momentum trans-
port within the boundary layer. Subplume motions are
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FIG. 5. Contributions to the budget of horizontal velocity in up-
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(b).

important in the shear layer near the lower surface.
They transfer the downward momentum flux from
plume scales to the surface, and this causes the resultant
flux divergence as given by the dashed curve in Fig.
5a. Above the surface layer, small-scale fluxes have
negligible divergence. Mean vertical motions in the
updrafts transport slow fluid upwards and, hence,
—w,0u/0z forms the main source for decelerating the
updraft’s velocity in the surface layer and even more
at the inversion, see the dotted curve in (a). The con-
vergence and divergence between the faster moving
downdrafts and the slower updrafts induce a pressure
field that tends to reduce the difference in plume ve-
locities in x direction, in particular in the surface layer
and near the inversion. The related mean horizontal
pressure gradient, full curve in (b), is consistent with
the estimate :

(24)

which follows from the linear theory given by Rotunno
and Klemp (1982) for pressure fluctuations induced
by updrafts (and downdrafts) in a unidirectionally
sheared environment. The factor «, ! is included be-
cause the mean horizontal gradient of pressure fluc-
tuations is zero in the ensemble mean given by Eq.
(3). Also, the mixing term [dashed curve in (b)] con-
tributes positively to horizontal acceleration because
the fluid mixed in from downdrafts into updrafts has
larger horizontal speed. The magnitude of this mixing
effect is about the same as that from the horizontal
pressure gradient; i.e., large-scale dynamics and small-
scale mixing are of comparable importance.

The budget for the horizontal velocity in downdrafts
(not plotted ) shows the same general trends as the up-
drafts except for reversed signs. The mixing sink in the
updrafts equals the mixing source in the downdrafts
up to factors a,, see Eq. (18). The first two terms from
the updraft and downdraft budgets (multiplied by the

[8p/8x)u ~ &' p(wy — ws)3il /02,
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respective area fractions) equal the horizontally aver-
aged divergence of the vertical flux of horizontal mo-
mentum u'w’, which is shown in SM.

The profile of the temperature deviation 6'(z) from
ensemble mean 6(z) corresponds to the buoyancy term
in Fig. 4b. In Fig. 6, we show the budget of potential
temperature in the updrafis. The updraft is heated from
the bottom surface by small-scale turbulence, and the
corresponding flux divergence is depicted by the dashed
curve. The heat from this source is distributed across
the mixed layer by advection of temperature differ-
ences, the full curve. Additional heating occurs in the
lower part of the mixed layer due to upward advection
against the decreasing mean temperature gradient (the
dotted curve). Above the height of the temperature
minimum (z ~ 0.3z;) this term is converted into the
most important cooling term. This vertical advection
effect is balanced by the mixing of cooler air from
downdrafts into the updrafts in the lower half [see full
curve in (b)] and reverse in the upper half of the
boundary layer. The sum (not plotted ) of the four terms
shown represents the mean temperature change in the
updrafts. Because of surface heating, it is of order unity
in the convective units throughout the mixed layer; it
is slightly negative at the inversion because of the in-
creasing boundary layer height. The downdraft budget
of temperature shows trends similar to those in updrafts
with reversed signs, except for the first two terms; the
weighted sum of these two terms from both updraft
and downdraft budgets equals the mean divergence of
vertical temperature flux. This sum amounts to about
w, T, /(0.82;) in the mixed layer, where 0.8z; corre-
sponds to the height where the total vertical heat flux
w'8’ becomes zero, see SM.

Figure 7 depicts the seven terms contributing to the
updraft budget of kinetic energy E = u/?/2, of tur-
bulent motions in the updrafts. Vertical buoyancy flux,
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F1G. 6. Contributions to the budget of potential temperature in
updrafts of the CBL, d6,/0t = (a) —a, 'd(a,w, (6, — 8))/8z
- a, '8 fw;8,),)/ 8z — w,88/8z and (b) — M,,,. Lines correspond
to terms as in preceding figures. The dotted curved in (a) and the
full curve in (b) reach extreme values of about +200 near the in-
version. The dashed curve in (b) represents the model result, Eq.
(25), for the mixing term.
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the full curve in (b), represents the main source of
energy. The buoyancy flux in updrafts is larger than
its horizontal average, which enters the common en-
semble-averaged budget of turbulent kinetic energy
(this “total” budget has been shown in Moeng and
Wyngaard 1989). The production rate from shear in
updrafts [dotted curve in (b)] is smaller than in the
total budget because the downstream velocity « in up-
drafts is smaller than in downdrafts. Anyway, it is im-
portant only in the surface layer. Dissipation forms the
primary sink term, in particular near the lower surface
[dashed in (b)]. In updrafts it is larger than in the total
budget because of more vigorous turbulence. An es-
sential source is represented by mixing of turbulent
fluid from downdrafis into the updrafis in the lower
part of the mixed layer [dash—-dotted in (b)]. In the
uppermost part (z > 0.7z;), this mixing term contrib-
utes to energy loss. Mean updrafts contribute strongly
to divergence of advection [ full curve in (a)] while
small-scale vertical mixing is rather unimportant. Also
the work done by pressure fluctuations against velocity
fluctuations [dotted curve in (a)] is relatively small
throughout the boundary layer. The sum of the first
two terms from updrafts and downdrafts (weighted
with their respective area fractions) represents the di-
vergence of the “diffusional” transport —aw'u/?/2/
9z in the total budget. We find that most of this trans-
port is affected by vertical advection of kinetic energy
in updrafts (the downdraft contributions are much
smaller and generally of opposite sign).

In the budget for kinetic energy in downdrafts (not
plotted), all terms (except for mixing) are of smaller
magnitude than those shown for updrafts. Near the
bottom of the boundary layer, the divergence of vertical
advection forms the most important energy source
(whereas it is a sink in updrafts). It is even larger than
the buoyancy and shear forcing at this level. The mixing
of energy out of updrafts and into downdrafts sums to
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zero, see Eq. (18). The mixing provides the main en-
ergy source in the upper part of the downdrafts; i.e.,
downdrafts start to be turbulent not by themselves
rather than by turbulence energy gained from updrafts.
Such a gain term is necessary to balance the energy
sink from negative entrainment heat flux. Hence, we
may conjecture that the entrainment is driven mainly
by turbulence from updrafts.

¢. Budgets for STBL

Figures 8 to 1 1 depict similar budgets for the stratus-
topped boundary layer. For this layer, the LES includes
the total moisture g as an additional conserved field,
and we present a corresponding budget. The heat and
moisture budgets are presented in physical units be-
cause any definition of convective temperature and
moisture scales would be rather arbitrary; they can be
defined either in terms of surface, inversion, or layer-
integrated fluxes (as given in SM).

The budget of vertical velocity in updrafts, Fig. 8,
looks qualitatively similar to that shown in Fig. 4 for
the CBL, except for the profile of buoyancy from virtual
potential temperature, the full curve in (b). It reflects
the additional buoyancy from latent heat release in the
cloudy layer and radiative cooling near cloud top. As
a consequence, the amplitude of the budget contri-
butions near the inversion are larger in magnitude than
in the dry case. They are also larger near the bottom
surface because of stronger circulations across the whole
boundary layer induced by the additional buoyancy.
These circulations have been made visible in the form
of composites in Moeng and Schumann (1990). The
buoyancy and the fluctuating pressure terms shown in
Fig. 8b are balancing each other to a larger degree than
in Fig. 4. This would suggest that the STBL updrafts
are closer in hydrostatic equilibrium than the CBL up-
drafts. However, the large nonlinear terms plotted in
Fig 8a, which balance each other, show that this flow
also is basically nonhydrostatic.

The budget components of vertical velocity in
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FIG. 8. Same as Fig. 4 for STBL (vertical velocity in updrafts).
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downdrafts (not plotted ) show about the same profiles
as in Fig. 8a and negatively the same as in Fig. 8b. This
symmetry is much more pronounced than for the dry
case, which is expected since the STBL that we analyze
is driven by both the cloud-top radiative cooling and
surface heating. Therefore, it is reasonable that updrafts
and downdrafts show smaller differences in velocity
magnitude and smaller skewness in vertical velocity
fluctuations, as discussed in Moeng and Rotunno
(1990). In fact, the magnitude of the downward ac-
celerations from mean advection and from the vertical
pressure gradient are even a little larger than in the
updrafts and this causes the downdrafts to be a little
more vigorous than the updrafts.

The budget for horizontal velocity « in x direction
in the STBL is not much different from that shown in
Fig. 5 for the dry case, except that the amplitudes of
the profiles are slightly larger. It is therefore not shown.

Figure 9 exhibits the radiation cooling [ full curve
in (b)] in a rather thin layer near the cloud top. This
cooling enters the budget of the liquid water potential
temperature 6, in this simulation in contrast to the dry
case. The cooling in the upper part of the updrafts adds
to the production of negative buoyancy, which then
drives the downdrafts. In the present case, the cooling
is larger than the surface heating (see the source terms
in Fig. 9a near the surface), and, therefore, the circu-
lation is driven more by the radiation cooling.

Figure 10 depicts the budget of total moisture in the
updrafts of the STBL. The updrafts gain moisture by
evaporation from the bottom surface (dashed curve in
Fig. 10a). This moisture excess is transported upward
by mean vertical motion in the updrafts according to
the two advection terms [ full and dotted curvesin (a)]
and increases the moisture at the inversion. This ad-
vection is balanced to a large extent by the mixing of
relatively dry air from downdrafts into updrafts [ full
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FiG. 10. Contributions to the budget of total moisture (water vapor
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and the full curve in (b) reach extreme values of about +8 g h™!
near the inversion. The dashed curve in (b) represents the model
result, Eq. (25), for the mixing term.

curve in (b)]. In comparison to the mixing near the
surface or at the inversion, the net exchange of moisture
between updrafts and downdrafts [ full curve in (b)]
is rather small at intermediate altitudes in the mixed
layer, but it is still large in comparison to all other
terms of the budget at the same altitude. Since ¢ is a
conserved quantity in these simulations, we expect that
any passive tracer, emitted at the surface and trans-
ported upward, would exhibit the same form of budget.

Finally, Fig. 11 depicts the budget of turbulent ki-
netic energy in updrafts of the STBL. The results look
generally similar to those shown for the CBL in Fig. 7
with a few important differences. The cloud layer in-
duces additional buoyancy fluxes by latent heat release
from upward motions of saturated air and by radiation
cooling, see full curve in (b). The buoyancy forcing at
the cloud levels is much larger than in the dry case. As
a consequence, all the transport terms at that level get
larger in the STBL than in the CBL. The rather large
dissipation [dashed curve in (b)] near the inversion
(large in comparison to the mean dissipation of the
total budget shown in SM) reflects intensive small-scale
turbulence in updrafts at this altitude. The large budget
contributions at the surface are induced by strong con-
vective circulations involving the whole layer depth.
Again, the lateral mixing forms a very large source term
near the surface and the most important sink-term near
the inversion. This implies that turbulence is far from
local equilibrium (between local general and dissipa-
tion) in such updrafts.

Corresponding budgets have been computed also for
downdrafts in the STBL (not plotted). The general
behavior is as discussed for the CBL, but updrafts and
downdrafts are more similar to each other in the STBL
than in the CBL. This was noted already for the budget
of vertical velocity, Buoyancy forcing in the STBL is
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of comparable magnitude both in updrafts and down-
drafts. Hence, the surface heating, which mainly drives
the updrafts, and the cloud-top radiation cooling, which
mainly drives the downdrafts, are of comparable im-
portance. The latter is slightly larger and therefore the
cloudy downdrafts are more vigorous than the updrafts.
The results reveal, as in the dry case, that turbulence
in the uppermost part of downdrafts is imported from
updrafts, rather than directly driven by buoyancy. This
fact should have consequences for entrainment models.
It has also been found from composite analysis (Moeng
and Schumann 1990) and agrees qualitatively with ob-
servations of Nicholls (1989). The results would be
different if one changes considerably the ratio between
surface heating and cloud-top radiation cooling.

d. Comparison with Chatfield and Brost

Chatfield and Brost (1987) set up a two-stream
model of updrafts and downdrafts to describe tracer
transport in a CBL. Their concept is similar to ours in
that they define the streams in terms of w plumes. By
taking the difference between their budget equation for
tracers in a plume (their Eq. 7) and our equivalent
budget, Eq. (17), we see that they model the mixing
term by

My, == (m+ |mD(f-fip)

1
2

= d
F30m=mDT=f), m=2(wpap). (25)

d
Here, the first term is nonzero and the second is zero
for the lower part of an updraft where m is positive,
and vice versa for the upper part of an updraft where
m is negative. For downdrafts just the opposite applies.
Thus, an updraft, e.g., increases in f, at a rate |m|(f;
— f) in its lower part and decreases at a rate |m|(f,
— f) in its upper part; this is reasonable. The formula
predicts zero mixing in the middle of the boundary
layer where the gradient m vanishes.

Chatfield and Brost (1987) determined the param-

E, -budget (wd/z)

FIG. 11. Same as Fig. 7 for STBL (kinetic energy in updrafts).
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eters of the model by fitting the results to dispersion
measurements. For example, the plume flux a,w,,
which is an important quantity for such a model,
reaches a maximum value of 0.175w, at about midlevel
of the CBL in their model. In view of the database, this
is quite close to 0.23w,, which we obtain from the
LES (SM).

Figures 6 and 10 contain comparisons between the
LES results or: the mixing terms My, (full curves) and
the model predictions from Eq. (25) (dashed curves)
for temperature in the CBL and for moisture in the
STBL. For this comparison we use the LES results to
compute m. We find that the model agrees to first order
with the LES, but the LES results generally show larger
mixing. Obviously, the model describes only that part
of the entrainment which is carried by the mean con-
vective circulation. It does not include the small-scale
turbulent mixing which was apparently of minor im-
portance in the applications of Chatfield and Brost
(1987). In order to model the small-scale turbulent
fluxes, one might add an entrainment model in terms
of the plume diameter, an entrainment velocity, and
the difference in mean properties between the plumes.
For example, Telford (1970) developed such a model
where the entrainment velocity is related to the square
root of the turbulent kinetic energy within the updrafts.

Our comparison shows that the largest differences
appear between the LES results and the modeled mix-
ing near the inversion. Recall that our mixing term
includes components of the lateral and the vertical
mixing fluxes in the normal direction of the plume’s
surface (see Fig. 1) whose orientation fluctuates with
time. Hence, the LES includes large parts of the vertical
mixing across the inversion in this mixing term. On
the other hand, Eq. (25) intends to model the lateral
mixing only, whereas the vertical mixing was included
in Chatfield and Brost (1987) separately by a gradient
model that approximates turbulent fluxes within the
plumes. In their applications, the fluxes at the inversion
were unimportant. Therefore, they could work with
eddy diffusivities, which are zero at the inversion.
Hence, such models still have to be extended and tested
for cases with nonzero entrainment fluxes. As a more
formal point we recall that the mixing for w is smaller
than for other quantities and, hence, should be modeled
differently from that for any other fluctuating quantity
in w plumes. But this is irrelevant for Chatfield and
Brost (1987), who applied their model only to tracer
transport.

e. Comparison with Young

Young (1988 ) determined the advective parts of the
plume budget for vertical velocity. In his analysis of
aircraft data it was impossible to separate the mixing
term from the effects of pressure forces, which he had
to summarize in a residuum. He used a different split-
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ting of the various contributions to the budget and
considered:

Acceleration + Size + Buoyancy = Residuum,
with

; — i 2 ”2 — 4 12
Acceleration = aZ(w,, + [wifl) = az[W lus (26)

ooy,

0z

Size = (w2 + [wil)ay, ™

-1 da,
9z’

= [leluau (27)

Buoyancy = —8g[6%).. (28)

Here, positive quantities represent sink terms of w,.
This form of equation agrees with our derivation if the
Residuum contains [—p~'dp/3z), — M, — Ow,/dt.
The contributions from the pressure gradient have been
plotted in Fig. 4. The largest part of the Residuum stems
from the gradient of the mean pressure [i.e., from the
negative gradient of mean vertical velocity variance,
see Eq. (21)], whereas the other parts are relatively
small.

In Fig. 12, we compare the LES results for case CBL
with the results of Young (1988). We find general
agreement, but the measured acceleration magnitude

o.4j

0.2 :J

-2

Wy, Wy ~budget (wg/z))

FI1G. 12. Comparison with Young (1988), see Eqgs. (26) to (28),
for the CBL. Upper panels for updrafts, lower panels for downdrafts.
Thick curves from Young, thin curves from LES. Left panels: Ac-
celeration (full curve) and size term (dashed). Right panels: buoyancy
(full) and residuum (dashed).
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in updrafts is a little smaller in the upper part of the
mixed layer than computed. For downdrafts, the
agreement is quite close for all curves. In view of the
fact that these profiles are based on vertical derivatives
of mean profiles, which exhibit considerable scatter
both in the LES and in the measurements, the differ-
ences are to be considered small.

4. Conclusions

We have deduced the budget equations for the en-
semble of updrafts and downdrafts. The result, Eq.
(17), contains a mixing term that defines the source
term due to net mixing between the plume under con-
sideration and its environment. This mixing term rep-
resents the transport across the surface of a plume at
a given height. The surface itself is of complex geometry
and moving at its own speed different from the fluid’s
velocity. By means of Leibniz’ rule and the divergence
theorem, it is possible to determine the flux across this
complicated surface, without knowing the details of
this surface, purely from volume integrals, see Eq. (15).
Also, we do not need to know explicitly the source
terms contributing to the budget.

The method could be applied to any type of plumes
in any horizontally homogeneous field. Here we have
applied the method to data obtained by the LES-
method of Moeng (1984, 1986) for the dry and the
stratus-topped convective boundary layer and for w
plumes classified according to the sign of the vertical
velocity in each individual grid cell.

We have presented budgets for mass or volume, ver-
tical and horizontal momentum, temperature, mois-
ture, and turbulent kinetic energy. Comparable results
for w plumes were available only for parts of the budget
of vertical velocity from Young (1988) for the CBL.
The agreement is satisfactory in this respect. Minor
differences have been found in the surface layer and at
the inversion where the LES results are affected by res-
olution limitations.

The results show that in the present case the dry and
the cloudy boundary layer are similar in the basic
structure of the normalized budget profiles. The latent
heat release in cloudy updrafts and the radiational
cooling at the top of the stratus layer increase the buoy-
ancy from surface heating. For the given ratio of top
cooling and bottom heating, the downdrafts in the
STBL are a little stronger than updrafts, but overall
the flow and the related budgets of updrafts and down-
drafts are more symmetric than in the CBL.

In both cases, the budgets are generally controlled
by divergence of vertical advection according to the
plume’s vertical mean velocity and the vertical mean
profiles of the advected fields. However, mixing be-
tween updrafts and downdrafts is essential to balance
these advections. The net mixing magnitude is small
in the middle of the mixed layer, larger in the surface
layer, and most important at the inversion, in particular
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in the cloudy case. Only part of the mixing can be
explained with the mean convective circulation. Non-
coherent turbulent motions provide the other part. A
large portion of the kinetic energy of turbulence in the
uppermost part of downdrafts stems from turbulence
generated in updrafts. This should be taken into ac-
count in modeling entrainment at the inversion. Pres-
sure forces contribute considerably to the exchange of
horizontal momentum between updrafts and down-
drafts and drive fluid in the upper parts of downdrafts
toward the bottom surface. The mixing model by
Chatfield and Brost (1987) describes that fraction of
the mixing which is induced by the mean convective
circulation and the related volume flux. Future work
has to consider models that predict the plume’s dy-
namics and account for the small-scale mixing. The
results shown in this paper should help in developing
such models.
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APPENDIX
Source Terms of Various Budgets

The source terms for f= 1, f= 8, and f = g are
simply

(A, =0, [O)p=[Crly, [Qe), =0, (29)

where O is the local heating rate due to radiation. The
source term for the x component of the horizontal mo-
mentum u = u, is still quite simple (we neglect the
contributions of Coriolis forces and large scale subsi-
dence that are present in the LES simulation but have
very small effects in the present case):

[Qu), = —p7'[80'/8x], = —p 7' D, '[meip'ls,, (30)

where ¢, is the unit vector in x direction (x = x;) and
n; the corresponding component of the normal vector.
The source term for vertical velocity is composed of a
pressure and a buoyancy term:

(0.1, = —p7'[0D'/0z], — p™'8p /82 + [Bg8:),, (B1)

where Bg = g/ T is the buoyancy coeflicient. The term
P represents the mean pressure induced by turbulence.
It does not contain the hydrostatic mean pressure
{which does not appear in these equations because we
have defined the buoyancy in terms of temperature
fluctuations) or any large-scale gradients. As can be
seen from the horizontally averaged vertical momen-
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tum balance, Eq. (21), the turbulence contribution to
the mean pressure equals p = —pw?,

The source term for the plume mean of the kinetic
energy of turbulent motions [E],, E = u{* /2, is given
by

[ /aui r 9 gt
[Qcl, = —u,~u,~52+u,-a—zu,-w
-4

ip'/p)— e+ "0
ax,-("p/”) €+ Ggw

P

(32)

Consistent with the LES, the local stresses are computed
from the sum of resolved and SGS stresses. Here, ¢
denotes the local dissipation rate, and this term is eval-
uated using the SGS model (Moeng 1984). The second
term on the right of Eq. (32) is unfamiliar from com-
mon models for kinetic energy. It is zero in the hori-
zontal mean but nonzero for averaging over plumes;
it is, however, of minor importance in the present con-
vective cases.

REFERENCES

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus
cloud ensemble with the large-scale environment, Part 1. J. At-
mos. Sci., 31, 674-701.

Betts, A. K., 1973: Non-precipitating cumulus convection and its
parameterization. Quart. J. Roy. Meteor. Soc., 99, 178-196.

Chatfield, R. B, and R. A. Brost, 1987: A two-stream model of the
vertical transport of trace species in the convective boundary
layer. J. Geophys. Res., 92(D11), 13 263-13 276.

Hanson, H. P., 1981: On mixing by trade-wind cumuli. J. Atmos.
Sei., 38, 1003-1014.

Lenschow, D. H., and P. L. Stephens 1980: The role of thermals in

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 48, No. 15

the convective boundary layer. Bound.-Layer Meteor., 19, 509
532.

Moeng, C.-H., 1984: A large-eddy-simulation model for the study of
planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052~
2062.

-——, 1986: Large-eddy simulation of a stratus-topped boundary layer.
Part I: Structure and budgets. J. Atmos. Sci., 43, 2886-2900.

——, and J. C. Wyngaard, 1989: Evaluation of turbulent transport
and dissipation closures in second-order modeling. J. Atmos.
Sci., 46, 2311-2330.

——,and R. Rotunno, 1990: Vertical-velocity skewness in the buoy-
ancy-driven boundary layer. J. Atmos. Sci., 47, 1149-1162.

——, and U. Schumann, 1990: Composite updraft and downdraft
in stratus-topped boundary layer. Proc. 9th Symposium on Tur-
bulence and Diffusion, Roskilde, Denmark, Amer. Meteor. Soc.,
7-10.

Nicholls, S., 1989: The structure of radiatively driven convection in
stratocumulus. Quart. J. Roy. Meteor. Soc., 115, 487-511.
Penc, R. S., and B. A. Albrecht, 1987: Parametric representation of
heat and moisture fluxes in cloud-topped mixed layers. Bound.-

Layer Meteor., 38, 225-248.

Randall, D. A., and G. J. Huffman, 1982: Entrainment and detrain-
ment in a simple cumulus cloud model. J. Atmos. Sci., 39,
2793-2806.

Rotunno, R., and J. B. Klemp, 1982: The influence of shear-induced
pressure gradient on thunderstorm motion. Mon. Wea. Rev.,
110, 136~151.

Schumann, U., and C.-H. Moeng, 1991: Plume fluxes in clear and
cloudy convective boundary layers. J. Atmos. Sci., 48, 1746-
1757.

Telford, J. W., 1970: Convective plumes in a convective field. J.
Atmos. Sci., 27, 347-358.

Wang, S., and B. A. Albrecht, 1986: A stratocumulus model with an
internal circulation. J. Atmos. Sci., 43, 2374-2391.

——, and ——, 1990: A mean-gradient model of the dry convective
boundary layer. J. Atmos. Sci., 47, 126~-138.

Young, G. S., 1988: Turbulence structure of the convective boundary
layer. Part III: The vertical velocity budgets of thermals and
their environment. J. Atmos. Sci., 45, 2039-2049.



