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A simple model for the convective boundary layer over
wavy terrain with variable heat flux

Ulrich Schumann
DLR, Institut fiir Physik der Atmosphéare

Abstract

A simple analytical model is derived for the convective boundary layer over a wavy
surface with variabel surface heat flux and for zero mean wind. The amplitude of the
surface wave is 4, its wavelength is A. The surface heat flux varies by g around a mean
flux Q. The surface roughness height is z,, and the domain height is H. The flow
domain is approximated by four control volumina. For steady state, the related
budgets of heat and momentum predict the horizontal and vertical velocities, u and
w = 2uH/[A. The solutions show a mean convective circulation induced by the undu-
lated surface which is strongest at wavelength A ~4H. For small amplitudes é6<H
and ¢q<Q and for 1 =4H, we find u/w. 2 0.7[1 + 6/(2H) + q/(2Q)], where w. is the
convective velocity scale. At larger wavelengths, a variable heat flux has the same
effect as a surface height variation if §/(2H) = gq/Q. Results from large-eddy simu-
lations and observations from motorgliders support the model up to a factor of two,
but show also that small-scale thermals may be important which are not resolved by
the present model.

1. Introduction

The effects of surface inhomogeneities on the structure of the atmospheric boundary
layer, the related surface fluxes of heat and momentum, their parameterization and
remote sensing are subject of intensive research within the World Climate Research
Programme (Becker, Bolle and Rowntree, 1988). It is well-known to glider pilots
(Reinhardt, 1985) that wavy and thermally inhomogenous terrain induces a regular
convective flow structure with updrafts above hills or relatively warmer surfaces. By
means of large-eddy simulation (LES), the flow field in a convective boundary layer
at weak mean winds has been determined for homogeneous surfaces (Schmidt and
Schumann, 1989), for variable heat fluxes at the surface (Graf and Schumann, 1991),
and above sinusoidally variing surfaces (Krettenauer and Schumann, 1991). We
found that the convection is dominated by a coherent structure at wavelength
A =4H, and this motion structure reacts most strongly to surface inhomogeneities at
such wavelengths. Other related numerical studics and some experimental results are
summarized in the references cited. In this paper, a simple model is deduced which
explains these findings quasi analytically.

2. The Model

We consider the turbulent convection in a boundary layer of mean depth H driven
by a mean surface temperature flux Q at zero mean wind. The surface is assumed to
have a regular sinusoidal wavy form with wavelength 1 and amplitude é. The surface
heat flux varies also periodically with the same wavclength and amplitude g around
the positive mean value Q. The surface is assumed to be rough with roughness height
z, (we take equal valucs for momentum and heat transfer, for simplicity). The top of
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the boundary layer is assumed to be represented by a very stable inversion such that
it can be approximated by a rigid free-slip adiabatic boundary. The fluid is exposed
to gravity g. We assume the Boussinesq approximation for a fluid with uniform den-
sity p, and constant volumetric expansion coefficient § = — (3p/dT)/p; B = 1/T in air.
Because of constant surface heating, the volume averaged temperature T increases
at constant rate

dT |dt = Q/H. (D
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Figure 1. Sketch of a half-wave (wavelength A = 4b) of a vertical cross-section of the
periodic flow domain of mean height H = 2h with surface height amplitude é and
variable surface temperature flux Q + g, showing the four control volumina 1 to
4, and characteristic horizontal and vertical velocities # and w. The domain
extends infinitely in the homogeneous direction y normal to the depicted cross-

section.

In order to obtain an estimate of the resultant convective motions we approximate the
flow domain, as sketched in Fig. 1, by four subdomains, I to 4, each of width
b = A/4. On average the depth of the subdomains is A = H[2. Between the subdo-
mains, we assume a flow with surface averaged velocitics # from domain 1 to domain
2, and, for continuity, at the same rate from domain 3 to 4. In the vertical directions
the corresponding flow velocities from 2 to 3 and from 4 to I have the mean value
w. Flow across other boundaries of the subdomains are zero because of symmetry,
periodicity and because of top and bottom boundary conditions. Because of continu-

ity,

uh=wh. (2)
This equation applies for arbitrary values of 6 < H because the velocities are the
Cartesian components and because the domain height is 2 & at the mid-interface for

symmetry. The volume sizes of the four subdomains, per unit length in y-direction,
are

V,=Vy=blh+8/4), V,="V;=>b(h—5/4). 3)

Let 7,,i = 1, 2, 3, 4, denote the mean local temperature deviations from the (arbi-
trary) mean temperature 7. We approximate advective fluxes by “upstream” values,
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c.g. the flux from volume 1 to volume 2 cquals &« T,. Without loss of generality, this
requires u > 0. Morcover, we apply Eq. (2). Then, the heat balance for cach of the
subdomains results in

dT, - , dT
V) — = = (h + wh)(Ty = Tg) =W (T, - +@-h-Vi——, @

dT, , , dT
Vz—c;t— =+ (uh + Wh)(T) — Ty) = wb(T, — T3) + (@ + ¢)b = 1, “dr (5)
v 5 ks wBYT — Ty) — wh(T, — Ty) — vy 4L (6
3 dt = — (u +w ) 3 2 u 3 4) 3 dt s ))
V ATy _ + (uh + W' h)(Ty — Ty) —wb(Ty— T})) = V. L/ (7)

4" g ’ 3 4 4 ! 4 dr

Here, «' and w' arc cffective turbulence velocities such that, c.g., w'H(T, — T,)
describes the turbulent flux between volumes, c.g. from 1 into 4. They are related to
horizontal and vertical diffusivitics, K, = u’h and K, = w'h, respectively.

The horizontal momentum balance is set up for a control volume of size V,=5bh
enclosing either the lower or the upper lateral interfaces between volumes 1 and 2 and
between 3 and 4. The shear stress at the bottom surface is denoted by —u? as a
function of the friction velocity u.. To first order in gecometrical terms, the balances
are

Vi e = i+ 6]4) = polh — 5]4) — 2w'ub — ub + (py + py + Py + P)I8 = p.O(®)

for the lower of the two volumes V,, and

d '

vV, —d—l;— = p3(h — 5]8) — pa(h + 6[4) — 2w'ub + (p + py + p3 + pg)d/8. (9)
for the upper volume. Here p; is the mean pressure (per unit mass) in the i-th control
volume; p, is the pressure at the bottom surface of the lower domain V,. By hydros-
tatic approximation, to first order in gecometrical terms,

ps = (p + py)[2 — Be(T| + TH)h/4. (10)

Similarly, the vertical momentum balance is formulated for the two control volumina
enclosing the interface between subdomains 2 and 3 and 4 and 1. The left of these
has the size V,, the right one has the size V,:

d '
vy T = (pa— p)b = BE(Ty + TV, 2 = 20k w, (In
Vz% = (py = P3)b + Be(Ty + T3)Vy[2 = 2u'h w. (12)

Here, the last term describes lateral mixing of vertical momentum, which is a non- |
hydrostatic effect.

To close the set of equations, we have to specify the turbulent diffusivities Kj, K,, and
the surface friction velocity u.. The latter is related to the horizontal flow velocity u
according to the Monin-Obukhov relationships, following Dyer (1974):
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u === [ In(zf7) — Y2l L) + Y(2fL)], L = — i [(1cBgQ), (13)
o -2
V. (0)=21In (—U—;f’n)+ln (- 42(/)'"——)——2arctan(q);,[)+—n—, (14)
2
0,0 =0 —160)" " k=041 (15)

These cquations apply to the unstable case, i.c. for @ > 0, where the Obukhov-length
L is ncgative. They arc evaluated for z = h/2.

The turbulent diffusivitics arc roughly approximated by
K, =3av'h, K,=av'h, Vv = (w,,2 +- 411,,2)”2, W = (ﬂgHQ)l/3. (16)

Here, « ~ 0.1 and K,/K, =~ 3 arc empirical paramecters, w. is Decardorff’s convective
velocity scale and v onc possible form of a scaling velocity for shearcd convection,
proposcd by Penc and Albrecht (1987).

3. Solutions

For steady statc, i.c. dw/dt =0, Eqs. (11), (12) with Eq. (2), determinc the pressure
differences

e — py = Pe(Ty + T)(h + 8/8)[2 + 2u'uh’®[b?, (17)

Py — Py = Be(Ty + T3)(h — 5/4)[2 — 2u'uh®[b>. (18)
The sum of Egs. (8) and (9) gives

2V ((111: (P, + 3 — Py —pdh+ (py + py— 2p)d[2 — Aw'u b — ulb. (19)
Using Egs. (10), (17), and (18) results in
du 3,2 2
S —— = —(4'h b+ AW h)u — u.
2V, o (4'h”] w'b)u — ush (20)

+ pe[(T,+ T3 — T, — TOh?[2 — (T3 — T, + Ty — T))hd/[8].

For stcady state, i.c. dT;/(dt) = 0, Egs. (4) - (7) together with (1) result in
b{(l - 8/(4n))Q/2 — 4}

T~ Ty=—u(T, — Ty) + Wy; W, = e Q1)
Ty Ty = — Ty~ Ty + Wy, W, =L igi”)gg/ 244} (22)
T, = T3=u(Ty — T) + W3 Wy= i l—l—h(s‘{‘(lxll);Q/z ’ 23)
Ty~ Ty=w(Ty—T)) + W, W= s :théi(‘:l’f;l)Q/ 2 (24)

where
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T e 25)
This sct of lincar equations can be solved to obtain the temperature differences
To—T,=D""(— W, — uW, + pW; + 1>y W)), (26)
Ty~ Ty=D" (= Wy+ vWy + pvW, — p*wy), 27)
Ty— Ty =D (W + uW, — nW, — i’vivy), (28)
Ty— Ta=D" (W, —vW, — pvW, + uv’ Wy). (29)

The solutions exist as long as the determinant
D=1—u*"=(1—pv)(1 +pv), (30)
stays positive, which is the case for u > 0.

Inserting the temperature results into Eq. (20) gives,

2V, dufdt = — 4(u'h>[b* + w'b)u — ush

h2 .
ﬁfD Wyt Wy —v(Ws + W) — po(We + W) + (W, + W) (3D

If we insert the various abbreviations, we get finally,

H du u' 3,3, 0w u 2, 2
7—;{—[2—-4(7}7}1/’) +T*>—w—:—u./w.

W 1 5 4 w'b 5 4
Y7 a0 + ) {l+4h+Q uh + w'h <l ah Q> (32)
5 uh+uh | 0 q9 u 0,9
+ 4h uh +w'bh [l 4 0 t u+u <l+ 4h + Q)}}

" For steady state (du/dt = 0), the solution u/w. of this equation for given values of
A/H =2b/h, 6/|H = 6/(2h), q/Q, and for given z,/H can be detcrmined iteratively by

solving
u ' 2 , u
— = X'+ </ x +r,whercx——2', (33)

with
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o q w'b 0 q
{' Yt O T Ty Wb <' ah Q ) 39
0 uh+u'h o q u' 0 q
a0 uh T wh [' T T T (' "t )]}

Here C, = u.[u is the drag cocfficicnt given by the solution, using Eq. (13).

4. Discussion
4.1 Limiting analytical results

The model equations show that a surface undulation of height §/H has the same
cffect as a variable heat flux of magnitude q/Q if ¢/Q = §/(2H) as long as the surface
undulation is small. Note that § denotes the wave amplitude while g the mecan of the
wavy deviation, so that the factor 2 is irrclevent. For large values of §/H ‘the oro-
graphic undulation causes a stronger convection than the equivalent surface heat
variation. If both types of inhomogencity are present, the two effects tend to reduce
cach other for large undulation.

For the limiting casc of A/H — oo, we find

2
u u' u 1 q/Q+ 6/(2H)
Wa { ~wn T \/< Wa ) t 2 4w’ [w. + Cyunfwe (- (33)

Hence, we obtain a finite coherent circulation which magnitude depends strongly on
the turbulent velocity scales w’ and .. In this limit the equivalence of §/(2H) and
q/Q is given even for large values of §/H. Since «'[w. — 0 for large A/H, we obtain

u | q/Q+/2H)

We T\ 2 aw'jw. + Cts[ws

(36)

Obviously, the large-scale convection is the larger the smaller the turbulent velocity
scales arc. Since C;<1, surface friction will in general be less important than the
convective turbulence in limiting the coherent motions.

In the other extreme, for very short wavelengths, A/H<1, we have to assume that §
decreases in proportion to A, because otherwise we would have an infinitely rough
terrain. In this limit we obtain,

u 1L X
We T 9216 42 pS \ 2H

q 0 H
e+ 12 === 37
However, this limit is valid only as long as u<u'. Since, as we will sce below, #' is

small, we also have the range where 0 < A/H < 1, w'<u, u'<u, u.<u, §|H<I1, for
which we find
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u 1 A 1 q , é
We =16 H2\/3a(l+Q+H>' (38)
i.e. a weaker increase with A/H. In any case we find a strong dependence on a. The

results for the limiting cases of large and small wavelengths together show the exist-
ence of a critical wavelength A, with maximum coherent motion.

The limiting results for a homogeneous surface, i.e. § = g = 0, are easily derived from
the above equations. We see that u/w. — 0 both for very small and very large wave-
lengths. This is a noteworthy result because it deviates from the linear theory of con-
vection (Krettenauer, 1991) which predicts onset of convection over a uniformly
heated surface at infinite wavelengths.

4.2 Estimate for the circulation at critical wavelength

As discussed below, the critical wavelength is of order 4H. Moreover, the model sol-
utions suggest that «’<u and w’<u for this wavelength. For these conditions, Eq. (33)
reduces to an explicit expression for the coherent flow amplitude,

u [V +0/H+q/Q—(8/(2H) + q/Q)5/(2H)
19a + 4C u.[w. '

(39)

Wa

It shows that the surface friction plays the smaller role in comparison to the convec-
tive turbulence in limiting the coherent motions. Moreover, we note again the non-
linear interaction of undulation and variable heat flux which tends to reduce the
convection for large values of d/H.

Since C,<1, we find, for a« = 0.1, and for small inhomogeneities, the simple result

u_ . 0 9
—M,T:O.7[l +'———2H + 20 (40)

Obviously, this motion amplitude is much larger than the asymptotic value for
A/H — oo, compare Eq. (36).

4.3 Numerical results for the general cases

Figures 2 and 3 show the numerical solutions of Eq. (33) for cases with zero heat flux
variations (full curves) and for cases with plane surfaces (dashed curves) and for
various values of the inhomogeneity parameters, d/H and q/Q, as a function of wav-
elength A/H. The figures contains two sets of solutions, one for a = 0.1, and one for
0.05, where a =u'[/v' =w'[v’ is the open empirical parameter of this model. As
expected from Eq. (39), u increases strongly with decreasing a. Moreover, smaller
values of a shift the wavelength of maximum reaction to rather large values. From
LES, we expect a cohcrent motion amplitude of order unity and a wavelength of
order 4H. Therefore, the value o« = 0.1 appears to be more realistic than a = 0.05.
Tests with other models for v/, including v/ = w., and v' = w. + 0.1u(l + h/b), showed
smaller effects. Hence, we recommend to use a = 0.1 and v’ as given in Eq. (16).

For a« = 0.1, Fig. 2 shows that the coherent flow part achieves a maximum at about
A, = 4H with respect to the horizontal component. The vertical one is maximum
near A, = 2H. The critical wavelength increases slightly for increasing inhomogeneity
parameters. The effect from surface undulation is little larger than from variation of
the heat flux but approximately the same for §/H = q/Q. The numerical results show
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the strong increase proportional to (1/H)’ for A/H < 0.1, see Eq. (37), but propor-
tional to (1/H)? for larger values with A/H < 1, as predicted by Eq. (38). The results
also show the tendency towards a finite asymptotic value at large wavelengths. The
asymptotic value is zero for § = g = 0, compare Eq. (36). We see that both inhomo-
geneity parameters increase the coherent circulation, but the circulation is quite large
already for a homogeneous surface. Further parameter studies have shown a very
weak sensitivity to the surface roughness height; its effect is less than 3 % for
zo/ H < 1074

1.6 . - ; v v —

AH

Figure 2. Horizontal convection velocity u/w. versus wavelength A/H for various val-
ues of surface heating 2¢/Q =0, 0.1, and 0.5 (note factor 2), with 6/H =0
(dashed curves), and for various values of terrain amplitude 6/H =0, 0.1, and
0.5, with ¢/Q =0 (full curves). Thick curves for a=0.1, thin curves for
o« = 0.05, see Eq. (16). Asymptotic solutions for 1/H = 1000 = oo (x =0.1) are
indicated at the right vertical axis. The symbols denote the LES results from
Krettenaue{ and Schumann (1991) for 6/H =0.1 and ¢/Q =0. In all cases,
zo/H =10""

4.4 Comparisons with numerical and observational results

As shown by LES results and observations, see Schmidt and Schumann (1989), Graf
and Schumann (1991) and Krettenauer and Schumann (1991), the characteristic dis-
tance between updrafts and the wavelength of w-spectra is of order 2 to 4H for
homogeneous surfaces. Also, the maximum root-mean-square value of the horizontal
velocity fluctuations and the maximum value of u in conditional plume averages is
of order 0.7w.. Moreover, Krettenauer and Schumann (1989) found a maximum
response to wavy terrain for A = 4H. These findings are in rough agreement with the
prediction of the model, for a = 0.1, as shown in Fig. 2 and 3. However, the figures
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show that the simple model underestimates the maximum response in motion ampli-
tude for wavy terrain of amplitude 6/H = 0.1, in comparison to the LES results. It
should be noted that the LES results refer to the maximum values of u/w., where u
denotes the local maximum of the mean horizontal circulation velocity, whereas the
present theory predicts an average velocity # within a volume of size (H/2) - (1/4).
Moreover, the simple model excludes variations on smaller scales which may react
more strongly. Hence we cannot expect complete agreement. However, both the LES
and the present model agree in predicting approximately the same trends in velocity
magnitude. In view of the differences between the LES and the model, the agreement
appears to be satisfactory. The present model predicts the mean circulation magni-
tude up to about a factor of two.

1,0 T T T T T T T T T
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Figure 3. Same as Fig. 2 for the vertical convection velocity w/w. versus wavelength
AlH.

As discussed in Krettenauer and Schumann (1991), no laboratory experiment exists
on the effects of surface inhomogeneities as studied here. Field observations deal with
non-ideal conditions with respect to terrain and always are affected by the more
complex terrain of real surfaces and by the ever present mean wind. In addition, long
times are required to reach a steady circulation. The time scales of the present model
can be read from Egs. (4) to (7) and (20). The largest time scales are those to reach
thermal equilibrium (of order b/u’ + h/w’) whereas those for velocity are smaller (of
order (2u'h’/b* + 4w’ + C,u.)/(2h)) because of continuity and imposed symmetry.
From LES we know that steady state is reached after a time of about 6H/w. for
A/H =~ 4, which amounts to more than one hour for typical scale values in the
atmosphere. The time scale increases with A/H. The mean circulation cannot fully
develop if the flow passes over the surface wave within a time interval shorter than
the time in which the circulation develops. Hence, the mean wind U must be small in
comparison to w. to establish strong circulations and to make the present theory
applicable. Otherwise, the reactions to surface variations will be smaller than pre-
dicted by the present model. However, the effects of inhomogeneities should be nota-
ble at smaller spatial scales with shorter time scales (e.g. by triggering local thermals
or bubbles), which are not resolved by the simple model. Such local motions have
been observed by Reinhardt (1985). He reported about bursts at the edges of forest
areas surrounded by cultured acres.
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The present model shows that scales smaller than the depth of the boundary layer
should be of small relevance for climate modelling. In a future study, one might ex-
tend the present model to include the effects of prescribed variations in surface tem-
perature or the effect from momentum and heat exchange at the top of the domain
for an entraining mixed layer below a finite inversion.
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