Diplomarbeit

Simulation eines Parabolrinnenkollektors mit direkter Dampferzeugung

Marc Röger
Simulation eines Parabolrinnenkollektors
mit direkter Dampferzeugung

Diplomarbeit

angefertigt von

cand. utech. Marc Röger
Theodor-Storm-Str. 15
70197 Stuttgart
Matr. Nr.: 1746619

Betreuer: Prof. Dr.-Ing. A. Voß, Dr.-Ing. G. Weinrebe, IER
Dipl.-Ing. M. Eck, Dipl.-Ing. W.-D. Steinmann, DLR
Dr.-Ing. E. Lüpfert, PSA Almería

Studienrichtung: Umweltschutztechnik
1. Vertiefungsfach: Energie und Umwelt II
2. Vertiefungsfach: Biologische und Chemische Verfahrenstechnik II
3. Vertiefungsfach: Grundwasserwirtschaft, Boden- und Grundwasserschutz II

Beginn der Arbeit: 01. Februar 2000

Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart
Prof. Dr.-Ing. A. Voß
Abteilung Neue Energietechnologien und Technikanalyse (NET)
PD Dr.-Ing. M. Kaltschmitt
Inhaltsverzeichnis

Abbildungsverzeichnis .. III
Tabellenverzeichnis ... V
Formelzeichen .. VI
Kurzfassung .. XI
Abstract .. XII
1 Einleitung .. 1
2 Solarthermische Stromerzeugung durch Parabolrinnenkraftwerke 3
 2.1 Aufbau eines Parabolrinnenkollektors ... 3
 2.2 Bestehende Parabolrinnen-Kraftwerke ... 4
 2.3 Solare Hochdruck-Direktverdampfung in Parabolrinnenkraftwerken 4
3 Mathematisch-Physikalisches Modell der Komponenten 7
 3.1 Die Zweiphasenströmung in horizontalen Verdampferohren 7
 3.1.1 Strömungsformen der horizontalen Zweiphasenströmung 7
 3.1.2 Strömungsformenkarten ... 10
 3.1.3 Grundlegende Beziehungen und Definitionen ... 11
 3.2 Modell des instationären Absorberrohres .. 13
 3.2.1 Modell der Fluidströmung ... 13
 3.2.1.1 Erhaltungsgleichungen ... 13
 3.2.1.2 Reibungsdruckverlust ... 26
 3.2.2 Modell der Rohrwand .. 33
 3.2.3 Modelle für die Wärmeübergänge .. 34
 3.2.3.1 Phasenverteilungsmodell ... 35
 3.2.3.2 Wärmeübergang an der inneren Rohrwand 41
 3.2.3.3 Wärmeübertragung an der äußeren Rohrwand 48
 3.3 Modelle weiterer Komponenten ... 51
 3.3.1 Kollektoroptik ... 51
 3.3.2 Regler .. 54
 3.3.3 Ventile .. 54
 3.3.4 Düse .. 57
 3.3.5 Pumpe ... 57
 3.3.6 Abscheidebehälter ... 58
4 Umsetzung des Modells in Modelica ... 60
 4.1 Diskretisierung der Erhaltungsgleichungen .. 60
 4.1.1 Finite-Differenzen .. 60
 4.1.2 Verwendete Diskretisierungsschemata .. 60
 4.1.3 Genauigkeit diskretisierter Gleichungen – numerische Diffusion 63
 4.2 Objektorientierte Modellierung physikalischer Systeme mit Modelica 66

5 Modellvalidierung und dynamische Simulation eines Kollektors 69
 5.1 Validierung des instationären Kollektormodells 69
 5.2 Kollektor im Verdampferabschnitt ... 71
 5.3 Kollektor im Überhitzerabschnitt .. 74
 5.4 Kollektoren mit wandernem Verdampfungsanfangspunkt 77

6 Dynamische Simulation der DISS-Testanlage ... 83

7 Zusammenfassung und Ausblick ... 86

8 Literaturverzeichnis .. 88

Anhang

A Gleichungen für das heterogene Modell ... 93

B Umformungen zu den Erhaltungsgleichungen .. 94

C Finite-Differenzen-Schemata ... 97

D Erläuterungen zu den Eigenschaften diskretisierter Gleichungen 99
 D.1 Konsistenz ... 100
 D.2 Stabilität .. 100
 D.3 Konvergenz .. 102

E Erläuterungen zur numerischen Dissipation und Dispersion 103
 E.1 Modifizierte Gleichungen .. 103
 E.2 Genauigkeitsuntersuchung durch erweiterte Stabilitätsanalyse 103

F Klassendiagramme .. 108
Abbildungsverzeichnis

Abb. 1-1:	SEGS-Kraftwerke III-VII bei Kramer Junction, Kalifornien	2
Abb. 2-2:	LS-3-Kollektor	3
Abb. 2-3:	Darstellung eines Absorberrohes	3
Abb. 2-4:	Schematische Darstellung der drei Grundkonzepte der Direktverdampfung	5
Abb. 2-5:	Kollektorstrang der DISS-Testanlage auf der PSA	6
Abb. 3-1:	Zweiphasen-Strömungsformen in einem horizontalen Rohr	8
Abb. 3-2:	Wassertransport durch Entrainment	9
Abb. 3-3:	Taitel-Dukler-Diagramm	10
Abb. 3-4:	Bezeichnungen zur Beschreibung von Schicht-Wellen- und (offenen/ge- schlossenen) Ringströmungen	13
Abb. 3-5:	Bilanzaeraum für die Erhaltungsgleichungen der Fluidströmung	14
Abb. 3-6:	Verlauf der Charakteristiken für die Eulergleichungen	21
Abb. 3-7:	Verlauf der Charakteristiken für die vereinfachten Eulergleichungen	24
Abb. 3-8:	Reibungsdruckverluste der Ein- und Zweiphasenströmung für verschiedene Massenströme	30
Abb. 3-9:	Reibungsdruckverluste der Ein- und Zweiphasenströmung für verschiedene Drücke	30
Abb. 3-10:	Vergleich des Zweiphasen-Druckverlustmodells von Lockart-Martinelli mit dem vom ZSW entwickelten Modell	31
Abb. 3-11:	Relative Abweichung der gemittelten Werte des Lockart-Martinelli-Modells vom Zweiphasen-Druckverlustmodell des ZSW	32
Abb. 3-12:	Rohrsegment mit den beschreibenden Größen, Randbedingungen und Glei- chungen der geometrischen Zusammenhänge	33
Abb. 3-13:	Vergleich verschiedener Modellansätze für den volumetrischen Dampf- gehalt	37
Abb. 3-14:	Dimensionslose statische Flüssigkeitshöhe h/d	38
Abb. 3-15:	Benetzungsstätte h_{ben}, obere Wellenstätte h_f, und korrigierte, statische Flüssigkeitshöhe $h_{f,korr}$ der unbeheizten Zweiphasenströmung	40
Abb. 3-16:	Benetzungsstätte h_{ben}, obere Wellenstätte h_f und korrigierte, statische Flüssigkeitshöhe $h_{f,korr}$ der beheizten Zweiphasenströmung	40
Abb. 3-17:	Vergleich der Wärmeübergänge von Goebel und Gungor & Winterton für die benetzte Rohrwanb bei einem Massenstrom von 0,3 kg/s	45
Abb. 3-18:	Vergleich der Wärmeübergänge von Goebel und Gungor & Winterton für die benetzte Rohrwanb bei einem Massenstrom von 0,6 kg/s	45
Abb. 3-19:	Vergleich der Wärmeübergänge von Gnielinskiy und Gungor & Winterton für die benetzte Rohrwanb bei schwach und nicht bestrahlten Rohren	46
Abb. 3-20:	Gemittelte Wärmeübergangskoeffizient	48
Abb. 3-21:	Vergleich der exakten und genäherten Berechnung der Abstrahlung; Energiestätte der äußeren Rohrwanb	50
Abb. 3-22:	Wirkungsplan eines Reglers und dazugehörige Größen	54
Abb. 3-23:	Simulierte Ventilkennlinien	56
Abb. 4-1: Ausbreitung eines Rechteckimpulses der Temperatur in adiabater Strömung (ohne Rohrwand) ... 64
Abb. 4-2: Ausbreitung eines Rechteckimpulses der Temperatur in adiabater Strömung (ohne Rohrwand) für verschiedene Diskretisierungsschemata .. 65
Abb. 4-3: Übertragungsverhalten eines Rechteckimpulses der Temperatur in adiabater Strömung (ohne Rohrwand) für verschiedene feine Diskretisierungen 66
Abb. 4-4: Klassendiagramm für die Druckverlustmodelle .. 67
Abb. 5-1: Bezeichnungen der Randbedingungen für den simulierten Kollektor 69
Abb. 5-2: Vergleich des instationären Kollektormodells mit dem Referenzmodell von Steinmann 1998/ im Verdampferabschnitt .. 70
Abb. 5-3: Vergleich des instationären Kollektormodells mit dem Referenzmodell von Steinmann 1998/ im Überhitzerabschnitt .. 71
Abb. 5-4: Spezifische Enthalpieänderung am Austritt eines Verdampferkollektors nach einer sprungförmigen Erhöhung der spezifischen Eintrittsenthalpie 72
Abb. 5-5: Spezifische Enthalpieänderung am Austritt eines Verdampferkollektors nach einer sprungförmigen Erhöhung des Eintrittsmassenstromes 73
Abb. 5-6: Spezifische Enthalpieänderung am Austritt eines Verdampferkollektors nach einer sprungförmigen Erniedrigung des Einspritzmassenstromes 74
Abb. 5-7: Temperaturänderung innerhalb eines Überhitzerkollektors nach einer sprungförmigen Erhöhung der Eintrittstemperatur .. 75
Abb. 5-8: Temperaturänderung am Austritt eines Überhitzerkollektors nach einer sprungförmigen Erhöhung des Eintrittsmassenstromes .. 76
Abb. 5-9: Temperaturänderung innerhalb eines Überhitzerkollektors nach einer sprungförmigen Erniedrigung des Einspritzmassenstromes .. 77
Abb. 5-10: Randbedingungen und stationäre Fluidzustände für die Untersuchung eines Kollektors, in dem sich der Verdampfungsanfangspunkt befindet 78
Abb. 5-11: Massenströme bei einer sprungartigen Zunahme der Einstrahlung an einem Kollektor, in dem sich der Verdampfungsanfangspunkt befindet 79
Abb. 5-12: Massenströme bei einem sprungartigen Rückgang der Einstrahlung an einem Kollektor, in dem sich der Verdampfungsanfangspunkt befindet 80
Abb. 5-13: Randbedingungen und stationäre Fluidzustände für die Untersuchung eines Absorberstrangabschnittes bei teilweiser Abschattung .. 81
Abb. 5-14: Änderung der spezifischen Enthalpie innerhalb eines Absorberrohrabschnittes bei teilweiser Abschattung ... 82
Abb. 6-1: Verschaltung der DISS-Testanlage für die Tests vom 30.06.2000 und 03.07.2000 ... 83
Abb. 6-2: Temperaturverläufe vom 30.06.2000 bei Variation des Massenstrumes 83
Abb. 6-3: Verlauf des Druckverlustes vom 30.06.2000 über die Überhitzerkollektoren 10 und 11 .. 84
Abb. 6-4: Temperaturverläufe vom 03.07.2000 beim Defokussieren von Kollektoren 85
Abb. D-1: Veranschaulichung des Courant-Friedrichs-Lewy-Kriterium 101
Abb. E-1: Betrag des Verstärkungsfaktors für verschiedene Courant-Zahlen 106
Abb. E-2: Relativer Phasenfehler für verschiedene Courant-Zahlen 106
Tabellenverzeichnis

Tabelle 2-1: Kenndaten der kalifornischen Parabolrinnenkraftwerke SEGS I-IX 4
Tabelle 3-1: Möglichkeiten für die Aufbringung der Randbedingungen des vereinfachten Gleichungssystems der Strömung .. 24
Tabelle 3-2: Vergleich des vom ZSW entwickelten Zweiphasen-Druckverlustmodells mit den gemittelten Werten des Modells von Lockart-Martinelli 32
Tabelle 3-3: Überblick über den Einsatz der verschiedenen Wärmeübergangsmodelle 47
Tabelle 3-4: Geometriedaten des auf der PSA vermessen, modifizierten LS-3-Kollektors und für die Simulation angenommene Kollektordaten 53
Tabelle 4-1: Überblick über gebräuchliche Finite-Differenzen-Schemata 60
Tabelle C-1: Explizite Finite-Differenzen-Schemata ... 97
Tabelle C-2: Implizite Finite-Differenzen-Schemata .. 98
Tabelle C-3: Mehrschrittverfahren ... 98
Große lateinische Buchstaben

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fläche</td>
<td>m²</td>
</tr>
<tr>
<td>A</td>
<td>Matrix des Differenzialgleichungssystems der Fluidströmung</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Breite</td>
<td>m</td>
</tr>
<tr>
<td>Bo</td>
<td>Boiling-Number</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Transformationsmatrix</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Courant-Zahl</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Faktor zur Berechnung des Rohrreibungswiderstandes</td>
<td></td>
</tr>
<tr>
<td>C<sup>*</sup></td>
<td>Verlustwiderstand für Düsen</td>
<td></td>
</tr>
<tr>
<td>D<sub>E</sub></td>
<td>Dämpfungsglied</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Abbruch-Fehler</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Enhancement-Faktor</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Einheitsmatrix</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>implizite Funktion</td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>Froude-Zahl</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Parameter im Taitel-Dukler-Diagram</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Verstärkungsfaktor</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Ventilstellung</td>
<td></td>
</tr>
<tr>
<td>I<sub>dr</sub></td>
<td>Direkte Solarstrahlung</td>
<td>W/m²</td>
</tr>
<tr>
<td>K</td>
<td>Parameter im Taitel-Dukler-Diagram</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Regelparameter</td>
<td></td>
</tr>
<tr>
<td>K<sub>HM</sub></td>
<td>Incident Angle Modifier</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Länge</td>
<td>m</td>
</tr>
<tr>
<td>M</td>
<td>Masse</td>
<td>kg</td>
</tr>
<tr>
<td>M</td>
<td>Massenstrom</td>
<td>kg/s</td>
</tr>
<tr>
<td>M<sub>W</sub></td>
<td>Molgewicht</td>
<td>kg/kmol</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt-Zahl</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Leistung</td>
<td>W</td>
</tr>
<tr>
<td>P</td>
<td>Wellenzahl</td>
<td>l/m</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl-Zahl</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds-Zahl</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Schlupe</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Suppression-Faktor</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Thermodynamische Temperatur</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>sky</sub></td>
<td>Himmelstemperatur</td>
<td>K</td>
</tr>
<tr>
<td>T<sub>amb</sub></td>
<td>Umgebungstemperatur</td>
<td>K</td>
</tr>
<tr>
<td>U</td>
<td>Umfangslänge</td>
<td>m</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
<td>m³</td>
</tr>
<tr>
<td>V<sub>l</sub></td>
<td>Volumenstrom</td>
<td>m³/s</td>
</tr>
<tr>
<td>X</td>
<td>Martinelli-Parameter</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Bezeichnung</td>
<td>Einheit</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>(a)</td>
<td>Schallgeschwindigkeit</td>
<td>m/s</td>
</tr>
<tr>
<td>(a)</td>
<td>Parameter in hyperbolischer Differenzialgleichung für Diskretisierungs-Schemata</td>
<td></td>
</tr>
<tr>
<td>(c_p)</td>
<td>spezifische Wärmekapazität bei konstantem Druck</td>
<td>J/kg K</td>
</tr>
<tr>
<td>(c_s)</td>
<td>spezifische Wärmekapazität der Rohrwand</td>
<td>J/kg K</td>
</tr>
<tr>
<td>(\bar{c})</td>
<td>Spaltenvektoren der Transformationsmatrix (C)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Durchmesser</td>
<td>m</td>
</tr>
<tr>
<td>(\vec{d})</td>
<td>Vektor für rechte Seite des Gleichungssystems der Fluidströmung</td>
<td></td>
</tr>
<tr>
<td>(d_h)</td>
<td>hydraulischer Durchmesser</td>
<td>m</td>
</tr>
<tr>
<td>(f_1, f_2)</td>
<td>Hilfsfunktionen zur Bestimmung des Wärmeübergangs</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>Erdbeschleunigung</td>
<td>kg/m² s</td>
</tr>
<tr>
<td>(h)</td>
<td>Höhe</td>
<td>m</td>
</tr>
<tr>
<td>(h)</td>
<td>spezifische Enthalpie</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>(h_f)</td>
<td>statische Flüssigkeitshöhe</td>
<td>m</td>
</tr>
<tr>
<td>(h_{f'})</td>
<td>dynamische Flüssigkeitshöhe (obere Wellenhöhe)</td>
<td>m</td>
</tr>
<tr>
<td>(h_{film})</td>
<td>Filmhöhe</td>
<td>m</td>
</tr>
<tr>
<td>(i)</td>
<td>komplexe Zahl (\sqrt{-1})</td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>Rohrrauhigkeit</td>
<td>m</td>
</tr>
<tr>
<td>(k_{V0})</td>
<td>Ventilkennwert</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>(k_{YS})</td>
<td>Ventilkennwert</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>(k_{Vclt})</td>
<td>numerischer Ventilkennwert</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>(l)</td>
<td>Längenbezeichnung für Rohrsegmente</td>
<td>m</td>
</tr>
<tr>
<td>(l)</td>
<td>Füllhöhe eines Behälters</td>
<td>m</td>
</tr>
<tr>
<td>(\dot{m})</td>
<td>Massenstromdichte</td>
<td>kg/m² s</td>
</tr>
<tr>
<td>(\dot{m}_{g1/umschlag})</td>
<td>Mindestdampfmassenstromdichte für Ringströmung</td>
<td>kg/m² s</td>
</tr>
<tr>
<td>(n)</td>
<td>Exponent zur Berechnung des Rohrreibungsbewertes</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>Ventilkennwert</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>Druck</td>
<td>bar</td>
</tr>
<tr>
<td>(q)</td>
<td>Wärmestromdichte</td>
<td>[W/m²]</td>
</tr>
<tr>
<td>(t)</td>
<td>Zeit</td>
<td>s</td>
</tr>
<tr>
<td>(u)</td>
<td>spezifische innere Energie</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>(v)</td>
<td>spezifisches Volumen</td>
<td>m³/kg</td>
</tr>
<tr>
<td>(v)</td>
<td>Variable für Diskretisierungs-Schemata</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>Führungsgröße (Sollwert)</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td>Geschwindigkeit</td>
<td>m/s</td>
</tr>
<tr>
<td>(x)</td>
<td>Regelgröße</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>Massendampfgehalt</td>
<td></td>
</tr>
<tr>
<td>(\dot{x})</td>
<td>Strömungsmassendampfgehalt</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td>Stellgröße</td>
<td></td>
</tr>
<tr>
<td>(z)</td>
<td>Längenkoordinate</td>
<td>m</td>
</tr>
</tbody>
</table>
Griechische Buchstaben

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Absorptionsgrad</td>
<td>-</td>
</tr>
<tr>
<td>α</td>
<td>Wärmeübergangskoeffizient</td>
<td>W/m² K</td>
</tr>
<tr>
<td>β</td>
<td>Winkel für Wandsegment</td>
<td>-</td>
</tr>
<tr>
<td>γ</td>
<td>Intercept-Faktor</td>
<td>-</td>
</tr>
<tr>
<td>Δ</td>
<td>Differenz</td>
<td>-</td>
</tr>
<tr>
<td>δ</td>
<td>Dicke</td>
<td>m</td>
</tr>
<tr>
<td>ε</td>
<td>Emissivität</td>
<td>-</td>
</tr>
<tr>
<td>ε</td>
<td>Dämpfungskoeffizient</td>
<td>-</td>
</tr>
<tr>
<td>ε</td>
<td>volumetrischer Dampfgehalt</td>
<td>-</td>
</tr>
<tr>
<td>$\dot{\varepsilon}$</td>
<td>volumetrischer Strömungsdampfgehalt</td>
<td>-</td>
</tr>
<tr>
<td>ζ</td>
<td>Rohrreibungsbeiwert</td>
<td>-</td>
</tr>
<tr>
<td>ζ_{Roh}</td>
<td>Summand für Rohrreibungsbeiwert der Dampfphase</td>
<td>-</td>
</tr>
<tr>
<td>η</td>
<td>Wirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>η</td>
<td>dynamische Viskosität</td>
<td>kg/m s</td>
</tr>
<tr>
<td>Θ</td>
<td>Phasenwinkel</td>
<td>-</td>
</tr>
<tr>
<td>θ</td>
<td>Einfallswinkel der Solarstrahlung zur Kollektornormalen</td>
<td>-</td>
</tr>
<tr>
<td>ϑ</td>
<td>Temperatur</td>
<td>°C</td>
</tr>
<tr>
<td>λ</td>
<td>Eigenwert der Matrix A</td>
<td>-</td>
</tr>
<tr>
<td>λ</td>
<td>Wärmeleitfähigkeit</td>
<td>W/m K</td>
</tr>
<tr>
<td>λ</td>
<td>Wellenlänge</td>
<td>m</td>
</tr>
<tr>
<td>ν</td>
<td>kinematische Viskosität</td>
<td>m²/s</td>
</tr>
<tr>
<td>ξ</td>
<td>komplexer Fourierkoeffizient</td>
<td>-</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
<td>kg/m³</td>
</tr>
<tr>
<td>ρ</td>
<td>Reflektivität</td>
<td>-</td>
</tr>
<tr>
<td>σ</td>
<td>Oberflächenspannung</td>
<td>N/m</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann-Konstante</td>
<td>W/m² K⁴</td>
</tr>
<tr>
<td>τ</td>
<td>Schubspannungskräfte</td>
<td>N</td>
</tr>
<tr>
<td>τ</td>
<td>Transmissionsgrad</td>
<td>-</td>
</tr>
<tr>
<td>Φ</td>
<td>Phasenwinkel des Verstärkungsfaktors</td>
<td>-</td>
</tr>
<tr>
<td>Φ</td>
<td>Zweiphasenmultiplikator</td>
<td>-</td>
</tr>
<tr>
<td>φ</td>
<td>Neigungswinkel des Rohres</td>
<td>-</td>
</tr>
<tr>
<td>φ</td>
<td>Umfangswinkel</td>
<td>-</td>
</tr>
</tbody>
</table>
Indizes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>außen</td>
</tr>
<tr>
<td>a</td>
<td>Austritt</td>
</tr>
<tr>
<td>abs</td>
<td>absorbiert</td>
</tr>
<tr>
<td>amb</td>
<td>Umgebung</td>
</tr>
<tr>
<td>ben</td>
<td>benetzt</td>
</tr>
<tr>
<td>bestr</td>
<td>bestrahlt</td>
</tr>
<tr>
<td>BS</td>
<td>Blasensieden</td>
</tr>
<tr>
<td>dir</td>
<td>direkt</td>
</tr>
<tr>
<td>e</td>
<td>Eintritt</td>
</tr>
<tr>
<td>e</td>
<td>exakt</td>
</tr>
<tr>
<td>eff</td>
<td>effektiv</td>
</tr>
<tr>
<td>f</td>
<td>flüssig</td>
</tr>
<tr>
<td>g</td>
<td>gasförmig</td>
</tr>
<tr>
<td>gain</td>
<td>gewonnen</td>
</tr>
<tr>
<td>ges</td>
<td>gesamt</td>
</tr>
<tr>
<td>gl</td>
<td>gleichprozentig</td>
</tr>
<tr>
<td>HCE</td>
<td>Heat Collecting Element</td>
</tr>
<tr>
<td>hf</td>
<td>statische Flüssigkeitshöhe</td>
</tr>
<tr>
<td>i</td>
<td>innen</td>
</tr>
<tr>
<td>i</td>
<td>Zählindex</td>
</tr>
<tr>
<td>inj</td>
<td>Einspritzung (injection)</td>
</tr>
<tr>
<td>ins</td>
<td>Isolierung (insulation)</td>
</tr>
<tr>
<td>IR</td>
<td>Integral-Regler</td>
</tr>
<tr>
<td>is</td>
<td>isentrop</td>
</tr>
<tr>
<td>k</td>
<td>Stützstelle der Ortsdiskretisierung</td>
</tr>
<tr>
<td>k</td>
<td>Zählindex</td>
</tr>
<tr>
<td>Koll</td>
<td>Kollektor</td>
</tr>
<tr>
<td>Konv</td>
<td>Konvektion</td>
</tr>
<tr>
<td>konz</td>
<td>konzentriert</td>
</tr>
<tr>
<td>korr</td>
<td>korrigiert</td>
</tr>
<tr>
<td>lin</td>
<td>linear</td>
</tr>
<tr>
<td>loss</td>
<td>Verlust</td>
</tr>
<tr>
<td>m</td>
<td>gemittelt</td>
</tr>
<tr>
<td>mot</td>
<td>Motor und Getriebe</td>
</tr>
<tr>
<td>opt</td>
<td>optisch</td>
</tr>
<tr>
<td>P</td>
<td>Pumpe</td>
</tr>
<tr>
<td>PR</td>
<td>Proportional-Regler</td>
</tr>
<tr>
<td>quer</td>
<td>Querschnitt</td>
</tr>
<tr>
<td>(\dot{q})</td>
<td>beheizt</td>
</tr>
<tr>
<td>R</td>
<td>Reibung</td>
</tr>
<tr>
<td>rev</td>
<td>reversibel</td>
</tr>
<tr>
<td>s</td>
<td>isentrop</td>
</tr>
</tbody>
</table>
s Rohrwand (solid)
s solar
S Strahlung
$tech$ technisch
$teilben$ teilbenetz
t beide Phasen turbulent
$unbeh$ unbeheizt
V Ventil
W Wand
zu zugeführt

* Verwendung im Zweiphasengebiet mit veränderter Reynolds-Zahl und hydraulischem Durchmesser
0 bei Einheitsbedingungen für Ventile
0 bei senkrechtem Einfall der Strahlung
$0f$ Leerrohrgröße der Flüssigphase
$0g$ Leerrohrgröße der Gas-/Dampfphase
$2ph$ zweiphasig

Hochgestellt

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Stützstelle der Zeitdiskretisierung</td>
</tr>
<tr>
<td>*</td>
<td>modifiziert</td>
</tr>
<tr>
<td>'</td>
<td>gesättigt (flüssig)</td>
</tr>
<tr>
<td>''</td>
<td>gesättigt (gasförmig)</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>Vektor</td>
</tr>
<tr>
<td>$^{-1}$</td>
<td>inverse Matrix</td>
</tr>
</tbody>
</table>

Abkürzungen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEMAT</td>
<td>Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt e.V.</td>
</tr>
<tr>
<td>DISS</td>
<td>Direct Solar Steam</td>
</tr>
<tr>
<td>DYMOLA</td>
<td>Dynamic Modeling Laboratory (Simulationsumgebung)</td>
</tr>
<tr>
<td>GUDE</td>
<td>Grundlegende Untersuchungen zur Direktverdampfung nach dem Einspritzkonzept</td>
</tr>
<tr>
<td>HCE</td>
<td>Heat Collecting Element</td>
</tr>
<tr>
<td>HIPRESS</td>
<td>High Pressure Experiments on Solar Steam</td>
</tr>
<tr>
<td>LS</td>
<td>LUZ-System (Bezeichnung der Parabolrinnen-Kollektoren der Firma LUZ)</td>
</tr>
<tr>
<td>PSA</td>
<td>Plataforma Solar de Almería</td>
</tr>
<tr>
<td>SEG5</td>
<td>Solar Electric Generating System</td>
</tr>
<tr>
<td>ZSW</td>
<td>Zentrum für Sonnenenergie- und Wasserstoff-Forschung</td>
</tr>
</tbody>
</table>
Kurzfassung

Simulation eines Parabolrinnenkollektors mit direkter Dampferzeugung

Abstract

Simulation of a Parabolic Trough Collector with Direct Steam Generation

In this diploma thesis, a model library for the simulation of a parabolic trough collector with direct steam generation in the absorber tubes is created. The model library is written in Modelica, a unified object-oriented language for physical systems modelling. The translation of the Modelica-code into C-code is performed by the simulation programme Dymola.

The modelling of the two-phase flow is done under the assumption of a homogenous equilibrium model. By means of the theory of characteristics the underlying partial differential equations of flow are simplified and the changed properties of the resulting, simplified equations are examined. The used models for the phase distribution, the heat transfer and the pressure drop are presented. Different finite difference schemes for the discretization of the conservation equations of fluid flow are investigated and their properties are explained theoretically. The validation of the collector model is done by means of an already existing, validated model and by comparison with measurements of a test facility.

Some simulations are performed for examining the dynamic behaviour of a single collector of the evaporator and superheater section after a step change in irradiation, inlet mass flow, inlet specific enthalpy and injection mass flow. One simulation study investigates the part of the collector which contains the preheater and evaporating section. In the last chapter, a simulation of the superheater section of a test-facility for direct steam generation with real boundary conditions is presented. The performed simulations should be considered as exemplary and not as a detailed study of the dynamics of a solar steam generating system. The focus of this thesis is on the creation of the model library.
1 Einleitung

Die thermohydraulischen Grundlagen zur Beherrschung der Wasser-Dampf-Strömung in den Absorberrohren wurden in den letzten Jahren geschaffen. Simulationsprogramme zur Be-

\(^1\) Für verschiedene Emissionszenarien berechnet das IPCC (Intergovernmental Panel on Climate Change) bis 2100 eine mittlere globale Temperaturerhöhung zwischen 1,0 und 3,5°C. Eine unmittelbare Stabilisierung der Kohlendioxid-Konzentration auf dem gegenwärtigen Wert könnte nur durch eine sofortige Reduktion der Emissionen auf 50 bis 70 % und weiteren Reduktionen danach erreicht werden /IPCC 1995/.
trachtung des dynamischen Verhaltens der Anlage, z. B. bei Wolkendurchgängen, wurden erstellt. Auf der PSA (Plataforma Solar de Almería) ist eine Großversuchsanlage (DISS-Projekt, Direct Solar Steam) zur Untersuchung der Direktverdampfung in Parabolrinnenkollektoren errichtet worden.

Die Mehrzahl der vorhandenen Simulationsprogramme für die dynamische Beschreibung der Direktverdampfung liegt in einer prozeduralen Programmiersprache vor (z. B. in Fortran oder Pascal). Die Pflege und Anpassung der Software an die jeweilige Simulationsrechnung ist ein zeitaufwendiger, und insbesondere für andere Personen als den ursprünglichen Programmierer ein schwieriger Prozess. Mit der Simulationsumgebung Dymola und seiner objektorientierten Sprache Modelica kann das Modellwissen effizient und flexibel für die erforderlichen Simulation bereitgestellt werden. Aus einer Modellbibliothek wird das zu simulierende Anlagenkonzept flexibel und übersichtlich zusammengestellt.

Abb. 1-1: SEGS-Kraftwerke III-VII bei Kramer Junction, Kalifornien

Im Rahmen der vorliegenden Arbeit wird in der Simulationssprache Modelica eine Modellbibliothek für die dynamische Simulation eines Parabolrinnenkollektors mit Direktverdampfung erstellt. Sie umfasst die benötigten Komponenten für die Absorberrohrströmung, sowie weitere Peripheriekomponenten für die unterschiedlichen Anlagenkonzepte der Direktverdampfung. Die Modellbibliothek wird in der Simulationsumgebung Dymola getestet und anhand von einem Modellvergleich und anhand von Messdaten der Versuchsanlage auf der PSA validiert. Im Vordergrund der Arbeit steht die Erstellung der Bibliothek in Modelica, die im DLR weiterentwickelt wird. Die durchgeführten Simulationen haben den Test und die Validierung der Modellbibliothek zum Ziel und haben eher exemplarischen Charakter als den einer detaillierten Untersuchung der Dynamik eines solaren Dampferzeugersystems.
2 Solarthermische Stromerzeugung durch Parabolrinnenkraftwerke

2.1 Aufbau eines Parabolrinnenkollektors

Abb. 2-2: LS-3-Kollektor

Abb. 2-3: Darstellung eines Absorberrohres /Hay 2000/

\(^2\) LS steht für LUZ System
2.2 Bestehende Parabolrinnen-Kraftwerke

Tabelle 2-1: Kenndaten der kalifornischen Parabolrinnenkraftwerke SEG5 I-IX /Cohen 1996/.

<table>
<thead>
<tr>
<th>SEG5</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistung [MWₑₐ]</td>
<td>14</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>LS-1 (Anzahl)</td>
<td>560</td>
<td>536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS-2 (Anzahl)</td>
<td>48</td>
<td>518</td>
<td>980</td>
<td>980</td>
<td>992</td>
<td>800</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS-3 (Anzahl)</td>
<td></td>
<td>32</td>
<td>184</td>
<td>852</td>
<td>888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiegelssegm. (in 1000)</td>
<td>41,6</td>
<td>96,5</td>
<td>117,6</td>
<td>117,6</td>
<td>126,2</td>
<td>96,0</td>
<td>89,2</td>
<td>190,8</td>
<td>198,9</td>
</tr>
<tr>
<td>Apertur in [1000 m²]</td>
<td>83,0</td>
<td>190,3</td>
<td>230,3</td>
<td>230,3</td>
<td>250,6</td>
<td>188,0</td>
<td>194,3</td>
<td>464,3</td>
<td>484,0</td>
</tr>
<tr>
<td>Feldströmtemper. [°C]</td>
<td>240</td>
<td>231</td>
<td>248</td>
<td>248</td>
<td>293</td>
<td>293</td>
<td>293</td>
<td>293</td>
<td>293</td>
</tr>
<tr>
<td>Feldausströmtemper. [°C]</td>
<td>307</td>
<td>321</td>
<td>349</td>
<td>349</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>Ausleg.wirkungsgrad thermisch (%Jahr)</td>
<td>35</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>42</td>
<td>43</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>optisch (Spitze) [%]</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>73</td>
<td>73</td>
<td>76</td>
<td>76</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Aperturfächen: LS-1: 128 m²; LS-2: 235 m²; LS-3: 545 m²

Eine wesentliche Verbesserung dieses Konzeptes kann nicht mehr erreicht werden, da mit ca. 400 °C die Stabilitätsgrenze des Wärmeträgeröls erreicht ist und daher die obere Prozesstemperatur nicht weiter erhöht werden kann. Die Investitionskosten können nur noch durch eine Serienproduktion gesenkt werden. Dagegen ermöglicht die Technologie der solaren Direktverdampfung des Speisewassers in den Absorberrohren eine weitere Reduzierung der Stromgestehungskosten.

2.3 Solare Hochdruck-Direktverdampfung in Parabolrinnenkraftwerken

Vorteile der Direktverdampfung. Durch die Technologie der Direktverdampfung kann der Ölkreislauf eingespart werden, was eine Reihe von Vorteilen mit sich bringt:

- Die Begrenzung der Fluidtemperatur durch die Stabilitätsgrenze des Thermoöls entfällt. Durch eine Steigerung der mittleren Fluidtemperatur wird der exergetische Wirkungsgrad des Kraft-Wärme-Prozesses verbessert.
- Durch den eingesparten Wärmetauscher werden Exergieverluste vermieden.
Der Eigenbedarf an elektrischer Energie für die Umwälzpumpen ist durch den Wegfall des Ölkreislaufes reduziert.

Die Kosten für den Austausch des Thermoöls entfallen.

Die Investitionskosten können durch den Wegfall der Wärmetauscher und anderer Komponenten des Thermoölkreislaufes reduziert werden.

Auf die Besonderheiten und möglichen Probleme der Direktverdampfung wird in Kapitel 3.1 bei der Beschreibung der Zweiphasenströmung eingegangen.

Konzepte der Direktverdampfung. Für die Direktverdampfung sind drei grundlegende Konzepte entwickelt worden (siehe Abb. 2-4), die jedoch auch miteinander kombiniert werden können.

Abb. 2-4: Schematische Darstellung der drei Grundkonzepte der Direktverdampfung

* Durchlaufkonzept. Beim Durchlaufkonzept wird der gesamte Wassermassenstrom am Eintritt des Absorberrohres zugeführt. Der einfache Aufbau bei diesem Konzept führt zu geringeren Investitionskosten als bei den anderen Konzepten. Problematisch kann bei diesem Konzept die Regelung sein, da sich bei Absorberrohrängen von über 500 m die Regeleingriffe am Absorberrohreintritt erst nach einer erheblichen Verzögerung am Austritt der Strecke bemerkbar machen.

höhere Investitionsaufwand für Abscheidebehälter und Rezirkulationspumpe, sowie einen erhöhten Eigenleistungsbedarf durch die Rezirkulationspumpe und den erhöhten Druckverlust in der Verdampfeinheit.

Abb. 2-5: Kollektorstrang der DISS-Testanlage auf der PSA

\(^3\) Grundlegende Untersuchungen zur solaren Direktverdampfung nach dem Einspritzkonzept (stationäre Thermohydraulik)

\(^4\) Voruntersuchung zum DISS Projekt im Hinblick auf die Dynamik der Direktverdampfung; Entwicklung von Meßtechnik und Regelkonzepten.
3 Mathematisch-Physikalisches Modell der Komponenten

3.1 Die Zweiphasenströmung in horizontalen Verdampferrohren

Im Vergleich zu den in der konventionellen Kraftwerkstechnik auftretenden Strömungsparametern liegen bei der direkten Dampferzeugung in Parabolrinnen folgende Unterschiede vor /Goebel 1998/:

- horizontale Lage der Verdampferrohre
- größere Innendurchmesser
- geringere Massenstromdichten
- geringere und azimuthal am Rohrumfang stark unterschiedliche Wärmestromdichten

3.1.1 Strömungsformen der horizontalen Zweiphasenströmung.

Abb. 3-1: Zweiphasen-Strömungsformen in einem horizontalen Rohr

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure32.png}
\caption{Wassertransport durch Entrainment, dargestellt bei verschiedenen Drücken im Querschnitt (entnommen aus /Goebel 1998/). In der linken Hälfte (30 bar) liegt eine geschlossene Ringströmung, in der rechten Hälfte (100 bar) eine offene Ringströmung vor.}
\end{figure}

\(^5\) Dies ist einfach mit der Bernoulli-Gleichung nachzuweisen: Bei gleichem Druckgradient besitzt die Phase mit geringerer Dichte die höhere Geschwindigkeit.
3.1.2 Strömungsformenkarten

![Taitel-Dukler-Diagramm](image)

Abb. 3-3: Taitel-Dukler-Diagramm als Beispiel einer Strömungsformenkarte einer Zweiphasenströmung (entnommen aus / Geske 1998/). Bei seitlicher Bestrahlung des Absorberrohres liegt die Grenzkurve zwischen Wellenströmung und Ringströmung (Kurve mit Fr¹ beschriftet) ca. um den Faktor 2 höher / Goebel 1998/.

Die einzelnen Kennzahlen sind folgendermaßen definiert:

\[
X = \left(\frac{\rho_g}{\rho_f} \right)^{0.5} \left(\frac{\eta_f}{\eta_g} \right)^{0.1} \left(\frac{1 - \dot{x}}{\dot{x}} \right)^{0.9}
\]

\[(3-1)\]

\[
Fr^* = \frac{\rho_g}{\sqrt{\rho_f - \rho_g}} \frac{w_{0g}}{\sqrt{gd_i}}
\]

\[(3-2)\]

\[
G = \left[\frac{\left(\frac{dp}{dz} \right)_{0f}}{\left(\frac{\rho_f - \rho_g}{g} \right)_{0f}} \right]^{1/2}
\]

\[(3-3)\]

\[
K = Fr^* Re_{0f}^{0.5} = \left[\frac{\rho_g w_{0f}^2 w_{0f}}{\left(\frac{\rho_f - \rho_g}{g} \right) v_f} \right]^{1/2}
\]

\[(3-4)\]
\(X_g\) ist der Lockart-Martinielli-Parameter, der das Verhältnis der Druckverluste beider Phasen angibt (siehe Seite 29). \(Fr^*\) ist eine mit den Dichten modifizierte Froude-Zahl. Der Parameter \(G\) setzt den Reibungsdruckverlust der Flüssigphase (mit der scheinbaren Geschwindigkeit \(w_{gf}\) berechnet) zum Auftrieb des Gases ins Verhältnis. Die dimensionslose Zahl \(K\) ist das Produkt der modifizierten Froude-Zahl und der Wurzel der Reynolds-Zahl für die Flüssigphase. Eine Grenzlinie ist durch \(X_g\) und einen zusätzlichen Parameter bestimmt, der an der Kurve angegeben ist. So ist z. B. die Schicht- und die Wellenströmung durch die Parameter \(X_g\) und \(K\) bestimmt.

3.1.3 Grundlegende Beziehungen und Definitionen

Zur Beschreibung der Zweiphasenströmung werden an dieser Stelle grundlegende Definitionen und Beziehungen vorgestellt. Die Größen der Flüssigphase werden mit dem Index \(w\) die der Gasphase\(^6\) bzw. Dampfphase mit dem Index \(g\) versehen. In einem betrachteten Element der Länge \(dz\) setzt sich das Gesamtvolumen des Fluids aus dem Volumen des Dampfes und der Flüssigkeit zusammen. Entsprechendes gilt für die Gesamtmasse:

\[
V_{gw} = V_f + V_g \quad \text{und} \quad M_{gw} = M_f + M_g
\]

(3-5)

Der volumetrische Dampfgehalt \(\varepsilon\) ist das Verhältnis des Dampfvolumens zum Gesamtvolumen. Er ist gleich dem Quotienten aus der dampfdurchströmten Querschnittsfläche zur gesamten Querschnittsfläche:

\[
\varepsilon = \frac{V_g}{V_{gw}} = \frac{A_g}{A}
\]

(3-6)

Der Massendampfgehalt \(x\) ist als Verhältnis der Dampfmasse zur Gesamtmasse definiert:

\[
x = \frac{M_g}{M_{gw}}
\]

(3-7)

Da Flüssig- und Gasphase meist eine unterschiedliche Geschwindigkeit besitzen, müssen noch die Strömungsgrößen definiert werden. Es gilt wieder für die Volumen- bzw. Massenströme:

\[
\dot{V}_{gw} = \dot{V}_f + \dot{V}_g \quad \text{und} \quad \dot{M}_{gw} = \dot{M}_f + \dot{M}_g
\]

(3-8)

Der auf die Querschnittsfläche \(A\) bezogene Massenstrom ist die Massenstromdichte \(\dot{m}_{gw}\):

\[
\dot{m}_{gw} = \frac{\dot{M}_{gw}}{A} = \frac{\dot{M}_f}{A} + \frac{\dot{M}_g}{A} = \dot{m}_f + \dot{m}_g
\]

(3-9)

Als volumetrischer Strömungsgehalt wird definiert:

\[
\hat{\varepsilon} = \frac{\dot{V}_g}{\dot{V}_{gw}}
\]

(3-10)

\(^6\) Die Beziehungen gelten auch für ein Zweistoffsystem (z. B. ein Luft-Wasser-Gemisch)
Das Verhältnis von Dampf- zu Gesamtmassenstrom wird als Strömungsmassendampfgehalt bezeichnet:

\[\dot{x} = \frac{\dot{M}_g}{\dot{M}_{gs}} \]
(3-11)

Das Verhältnis der jeweiligen Volumenströme zur Gesamtquerschnittsfläche wird als Leerrohrgeschwindigkeit bezeichnet. Das ist die scheinbare Geschwindigkeit, die sich ergeben würde, wenn der Dampf- bzw. Flüssigvolumenstrom den gesamten Rohrquerschnitt für sich allein hätte:

\[w_{0g} = \frac{\dot{V}_g}{A} = \frac{\dot{M}_g}{\rho_g A} = \frac{\dot{x} \dot{M}_{gs}}{\rho_g A} \]
(3-12)

\[w_{0f} = \frac{\dot{V}_f}{A} = \frac{\dot{M}_f}{\rho_f A} = \frac{(1 - \dot{x}) \dot{M}_{gs}}{\rho_f A} \]
(3-13)

Die mittlere Geschwindigkeit einer Phase berechnet sich aus dem Verhältnis des Volumenstromes der Phase zur durchströmten Querschnittsfläche \(A \):

\[w_g = \frac{\dot{V}_g}{A_g} = \frac{\dot{M}_g}{\rho_g A} = \frac{\dot{x} \dot{M}_{gs}}{\rho_g A} \]
(3-14)

\[w_f = \frac{\dot{V}_f}{A_f} = \frac{\dot{M}_f}{(1 - \varepsilon) A} = \frac{(1 - \dot{x}) \dot{M}_{gs}}{\rho_f (1 - \varepsilon) A} \]
(3-15)

Das Geschwindigkeitsverhältnis beider Phasen wird als Schlupf \(S \) bezeichnet. Wenn man die Beziehung für die beiden mittleren Geschwindigkeiten einsetzt, erhält man eine wichtige Gleichung:

\[S = \frac{w_g}{w_f} = \frac{\dot{x}}{1 - \dot{x}} \frac{1 - \varepsilon}{\varepsilon} \frac{\rho_f}{\rho_g} \]
(3-16)

Sie bringt die Verbindung zwischen dem Strömungsmassendampfgehalt \(\dot{x} \) und dem Dampfgehalt \(\varepsilon \).

Die von Goebel 1998 verwendeten Beziehungen benutzen die in Abb. 3-4 dargestellten Größen. Mit \(h_f \) wird die statische Flüssigkeitshöhe bezeichnet, die bei Schichtströmung ohne Wellen vorliegt. Die Bezeichnung der oberen Höhe der Wellen bei Wellenströmung lautet \(h_w \). Zusätzlich kann die Benetzung bei einer Ringströmung noch durch die Filmhöhe \(h_{film} \) gesteigert werden. Die Filmhöhe wird ab der oberen Wellenhöhe \(h_f \) gemessen. Obere Wellenhöhe und Filmhöhe zusammen ergeben die Benetzungshöhe \(h_{ben} \). Die Benetzungshöhe kann auch über den so genannten Benetzungswinkel \(\phi_{ben} \) ausgedrückt werden.
3.2 Modell des instationären Absorberrohres

In diesem Kapitel erfolgt die Modellbildung für das Absorberrohr. Um die instationären Phänomene richtig darstellen zu können, ist der Absorberstrang als ein örtlich verteiltes System abgebildet. Es werden die Modelle für die Fluidströmung, die Rohrwand und die Wärmeübergänge beschrieben. Weitere modellierte Komponenten des Absorberstranges befinden sich in Abschnitt 3.3.

3.2.1 Modell der Fluidströmung

In diesem Abschnitt werden die Gleichungen für eine Fluidströmung hergeleitet und vereinfacht. Es erfolgt eine mathematisch-physikalische Charakterisierung der Ursprungsgleichungen wie auch der vereinfachten Gleichungen. Im Anschluss daran werden die benutzten empirischen Beziehungen des Druckverlustes vorgestellt, die zusammen mit den Stoffwertroutinen das System lösbar machen.

Erhaltungsgleichungen

Um die einzelnen Annahmen bei der Herleitung der benutzten Erhaltungsgleichungen zu verdeutlichen, sind die Herleitungen hier kurz skizziert (z. B. /Hirsch 1988/, /Kolev 1986/, /Mayinger 1982/).
Herleitung für die Einphasenströmung. Zuerst wird die Herleitung der Kontinuitätsgleichung, der Impulsbilanz und der Energiebilanz für die Einphasenströmungen des Vorwärm- und Überhitzerbereichs beschrieben. Die instationären Bilanzen werden an einem ortsfesten und volumenkonstanten, durchströmten Fluidelement der Länge dz aufgestellt (Eulersche Betrachtungsweise, siehe Abb. 3-5). Dabei wird von einer eindimensionalen Durchströmung ausgegangen; die beschreibenden Größen sollen über den Querschnitt als konstant angesehen werden. Um die Herleitung zu vereinfachen, wird schon zu Beginn von einem Rohr mit konstanter Querschnittsfläche A ausgegangen. Für die aus dem Fluidelement austretenden Größen wird jeweils eine Taylor-Reihe angesetzt, die nach dem ersten Glied abgebrochen wird.

Abb. 3-5: Bilanzraum für die Erhaltungsgleichungen der eindimensionalen Fluidströmung

Kontinuitätsgleichung. Für die Kontinuitätsgleichung gilt, dass die zeitliche Änderung der Masse im Bilanzraum gleich der Differenz der ein- und austretenden Massenströme ist. Weitere Massenzu- oder –abströme, wie sie z. B. an Einspritzstellen vorliegen, werden in einem separaten Element betrachtet und treten daher hier nicht auf. Als Gleichung geschrieben und mit A und dz gekürzt, lautet die Kontinuitätsgleichung:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho \bar{w})}{\partial z}$$ (3-18)

$$\frac{\partial (\rho \bar{w})}{\partial t} = -\frac{\partial (\rho \bar{w}^2)}{\partial z} - \frac{\partial \rho z}{\partial z} - \rho g \sin \varphi - \frac{U}{A}$$ (3-19)
Energiebilanz. Die in einem Fluidelement gespeicherte (Gesamt-)Energie setzt sich aus der inneren Energie sowie der kinetischen Energie des darin enthaltenen Fluids zusammen. Der Energieinhalt des Fluidelements ändert sich auf Grund des konvektiven Zu- und Abflusses von Strömen unterschiedlicher innerer Energien \(\rho A w \) und unterschiedlicher kinetischer Energien \(\rho Aw(0,5w^2) \). Zudem muss Verschiebearbeit \(pAw \) gegen den anliegenden Druck \(p \) beim Ein- und Ausschieben in und aus dem Bilanzelement geleistet werden. Gegen die anreißende Gewichtskraft muss ebenfalls Arbeit geleistet werden \(\rho gw4dz \sin \varphi \). Außerdem ändert sich der Energieinhalt durch Wärmezu- bzw. -abfuhr. Die durch Reibungsvorgänge dissipierte Arbeit taucht in der Energiebilanz nicht auf, da angenommen wird, dass durch Reibung entstandene Wärme im Fluid verbleibt und nicht aus dem System (z. B. an die Rohrwand) abgegeben wird. Die Wärmeleitung in axialer Richtung wird vernachlässigt, da der durch sie transportierte Energiesstrom im Verhältnis zum konvektiven Energiesstrom sehr klein ist. Der konvektive Teil der spezifischen inneren Energie und der Verschiebearbeit kann vereinfacht mit der spezifischen Enthalpie geschrieben werden:

\[
\rho Awu + pAw = \rho Aw\left(u + \frac{P}{\rho} \right) = \rho Awh
\]

Nachdem mit \(A \) und \(dz \) gekürzt ist, ergibt sich die Energiebilanz:

\[
\frac{\partial}{\partial t} \left(\rho(u + \frac{1}{2}w^2) \right) = -\frac{\partial}{\partial z} \left(\rho w(h + \frac{1}{2}w^2) \right) - \rho gw\sin \varphi + q \frac{U}{A}
\]

Zudem wird hier von einem thermodynamischen Gleichgewicht zwischen den beiden Phasen ausgegangen. Dies führt zum Modell der homogenen Gleichgewichts-Zweiphasenströmung. Die Erhaltungsgleichungen sind dieselben wie für die Einphasenströmung, nur dass die Stoffwerte gemittelt sind. Der Wandreibungsterm wird durch den Term des Reibungsdruckverlustes ersetzt. Für ein waagrechtes Rohr (\(\sin \varphi=0\)) lauten die Beziehungen (3-18), (3-19) und (3-21) dann:

\[
\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho w)}{\partial z} - \frac{\partial (\rho w^2)}{\partial z} - \frac{\partial p}{\partial z} \left(\frac{dp}{dz} \right)_p
\]

\[
\frac{\partial (\rho w)}{\partial t} = -\frac{\partial (\rho w^2)}{\partial z} + \frac{\partial p}{\partial z} \left(\frac{dp}{dz} \right)_p + \frac{U}{A}
\]

Diese Gleichungen gelten also für eine Einphasenströmung wie für eine Zweiphasenströmung unter der Annahme eines homogenen Modells. Sie sind in der Literatur als Eulergleichungen bekannt. Mit den konstitutiven Gleichungen zur Bestimmung des Reibungsdruckverlustes und der eingekoppelten Wärme sind sie mit einer Stoffwertbeziehung der Form

\[
F(u, \rho, p) = 0,
\]

und der Definition der spezifischen Enthalpie

\[
h = u + \frac{p}{\rho}
\]

lösbar.
Physikalisches Verständnis und Vereinfachung der Erhaltungsgleichungen.

- Charakterisierung der Euler-Gleichungen und Koordinatentransformation mit Hilfe der Theorie der Charakteristiken
- Vereinfachung der transformierten Euler-Gleichungen
- Korrektur der vereinfachten Euler-Gleichungen

1. Schritt: Charakterisierung der Euler-Gleichungen.

Innenhalb des drei Gleichungen umfassenden Systems der Euler-Gleichungen treten vier\(^7\) Unbekannte Größen auf: Die Dichte \(\rho\), die Geschwindigkeit \(w\), der Druck \(p\) und die spezifische innere Energie \(u\). Das Gleichungssystem wird durch die Stoffwertbeziehung der Form (3-23) ergänzt. Wenn der Reibungsterm in der Impulsbilanz und die Energiequelle oder -senke in der Energiebilanz bekannt sind, ist das Differenzial-Algebra-System mit vier Unbekannten und vier Gleichungen lösbar. Um das drei Gleichungen umfassende Differenzialgleichungssystem (3-22) zu charakterisieren, wird die vierte Unbekannte eliminiert. Dies wird durch die Einführung der stoff- und zustandsspezifischen Schallgeschwindigkeit \(a\) erreicht\(^8\):

\[
a^2 = \frac{\partial p}{\partial \rho} \bigg|_w
\]

(3-25)

Damit lässt sich die Kontinuitätsgleichung anstatt mit der Dichte \(\rho\) mit dem Druck \(p\) formulieren. Dichteänderungen werden also jetzt mittels Druckänderungen dargestellt. Im Anhang B sind die Umformungen der Erhaltungsgleichungen dargelegt. Als Kontinuitätsgleichung soll Beziehung (B-4), als Impulsbilanz die Beziehung (B-5) (für ein waagrechtes Rohr, d. h. \(\varphi=0\)) und als Energiebilanz die thermische Energiebilanz (B-9) verwendet werden. Als neues Differenzialgleichungssystem erhält man:

\(^7\) Die spezifische Enthalpie \(h\) ist über \(u, p\) und \(\rho\) bestimmt: \(\dot{h} = u + p/\rho\).

\(^8\) Der Index \(s\) steht für die Näherung der isentropen Ausbreitung der Druckstörung.
\[\begin{align*}
\frac{\partial p}{\partial t} + \rho a^2 \frac{\partial w}{\partial z} + w \frac{\partial p}{\partial z} &= 0 \\
\frac{\partial w}{\partial t} + \frac{w \cdot \partial w}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} &= -\frac{1}{\rho} \left(\frac{dp}{dz} \right) \\
\frac{\partial u}{\partial t} + \frac{w \cdot \partial u}{\partial z} + p \frac{\partial w}{\partial z} &= \frac{w}{\rho} \left(\frac{dp}{dz} \right) + \frac{1}{\rho} \frac{U}{A}
\end{align*} \]

Dieses System enthält nur noch die drei Unbekannten Druck \(p \), Geschwindigkeit \(w \) und spezifische innere Energie \(u \). Es lässt sich als Matrizengleichung schreiben:

\[\frac{\partial \vec{v}}{\partial t} + \mathbf{A} \frac{\partial \vec{v}}{\partial z} = \vec{d} \]

mit

\[\vec{v} = \begin{pmatrix} p \\ w \\ u \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \frac{w \rho a^2}{p} & 0 \\ 0 & \frac{w}{p} & 0 \\ 0 & \frac{w}{p} & \frac{w}{p} \end{pmatrix}, \quad \vec{d} = \begin{pmatrix} 0 \\ \frac{1}{\rho} \left(\frac{dp}{dz} \right) \\ \frac{w}{\rho} \left(\frac{dp}{dz} \right) + \frac{1}{\rho} \frac{U}{A} \end{pmatrix} \]

Die Matrizengleichung (3-27) ist im Koordinatensystem \((p,w,u)\) gültig. Durch eine Koordinatentransformation wird nun versucht, die Matrix \(\mathbf{A} \) zu diagonalisieren. Die Eigenwerte der Matrix \(\mathbf{A} \) werden durch das charakteristische Polynom bestimmt:

\[\det(\mathbf{A} - \lambda \mathbf{E}) = 0 \]

Es ergibt sich:

\[\lambda_1 = w, \quad \lambda_2 = w + a \quad \text{und} \quad \lambda_3 = w - a \]

Das System (3-27) hat also drei reelle, verschiedene Eigenwerte. Daraus kann geschlossen werden, dass die dazugehörigen Eigenvektoren linear unabhängig sind, was Voraussetzung für die Diagonalisierbarkeit der Matrix \(\mathbf{A} \) ist [Meyberg 1993]. Da alle drei Eigenwerte verschieden sind, spricht [Thomas 1995] von einem strikt hyperbolischen System. Die zu den Eigenwerten gehörenden Eigenvektoren lauten:

\[\vec{c}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{c}_2 = \begin{pmatrix} \rho a \\ 1 \\ \frac{p}{\rho a} \end{pmatrix}, \quad \vec{c}_3 = \begin{pmatrix} -\rho a \\ 1 \\ -\frac{p}{\rho a} \end{pmatrix} \]

Werden die Eigenvektoren als Spaltenvektoren in die Transformationsmatrix \(\mathbf{C} \) geschrieben, so kann eine Diagonalisierung von \(\mathbf{A} \) erfolgen. Gleichung (3-27) kann von links mit \(\mathbf{C}^{-1} \) und von rechts mit der Einheitsmatrix \(\mathbf{E} = \mathbf{CC}^{-1} \) multipliziert werden:

\[\mathbf{C}^{-1} \frac{\partial \vec{v}}{\partial t} + \mathbf{C}^{-1} \mathbf{A} \cdot \mathbf{CC}^{-1} \frac{\partial \vec{v}}{\partial z} = \mathbf{C}^{-1} \vec{d} \]

Es gilt \(\mathbf{C}^{-1} \mathbf{A} \cdot \mathbf{C} = \mathbf{D} \), wobei \(\mathbf{D} \) die Diagonalmatrix mit den Eigenvektoren von \(\mathbf{A} \) ist. Gleichung (3-27) lässt sich also im neuen Koordinatensystem vereinfacht schreiben als:

\[\mathbf{C}^{-1} \frac{\partial \vec{v}}{\partial t} + \mathbf{D} \cdot \mathbf{C}^{-1} \frac{\partial \vec{v}}{\partial z} = \mathbf{C}^{-1} \vec{d} \]

wobei
\[
\mathbf{C} = \begin{pmatrix} 0 & \rho a & -\rho a \\ 0 & 1 & 1 \\ 1 & \frac{\rho}{\rho_a} & -\frac{\rho}{\rho_a} \end{pmatrix}, \quad \mathbf{C}^{-1} = \begin{pmatrix} \frac{\rho}{\rho_a} & 0 & 1 \\ \frac{1}{2\rho a} & \frac{1}{2} & 0 \\ -\frac{1}{2\rho a} & \frac{1}{2} & 0 \end{pmatrix}, \quad \text{und} \quad \mathbf{D} = \begin{pmatrix} w & 0 & 0 \\ 0 & w + a & 0 \\ 0 & 0 & w - a \end{pmatrix} \tag{3-34}
\]

Die Inverse der Transformationsmatrix \(\mathbf{C}^{-1} \) in Gleichung (3-33) kann nicht in die Differenziale der zeitlichen und örtlichen Ableitungen der Gleichung hineingezogen werden, da deren Koeffizienten keine Konstanten sind. Um die Zeitkonstanten des Differenzialgleichungssystems dennoch ableisen zu können, kann das nichtlineare Gleichungssystem linearisiert werden. Für einen kleinen Bereich um die Lösung können die Koeffizienten der Matrix \(\mathbf{C}^{-1} \) als konstant angenähert werden und in die Ableitungen hineingezogen werden:

\[
\frac{\partial \mathbf{\ddot{r}}}{\partial t} + \mathbf{D} \cdot \frac{\partial \mathbf{\ddot{r}}}{\partial z} = \mathbf{C}^{-1} \mathbf{\ddot{d}} \quad \text{mit} \quad \mathbf{\ddot{r}} = \mathbf{C}^{-1} \cdot \mathbf{\ddot{v}} \tag{3-35}
\]

An dieser Form des Gleichungssystems ist zu erkennen, dass die Koeffizienten auf der Spur der Diagonalmatrix \(\mathbf{D} \), d. h. die Eigenwerte Gl. (3-30), die Ausbreitungsgeschwindigkeit von Störungen angeben. Die durch das Differenzialgleichungssystem beschriebenen Phänomene breiten sich mit der Absolutgeschwindigkeit \(w + a \) in Strömungsrichtung (rechtslaufende Machlinie), mit der Absolutgeschwindigkeit \(w - a \) gegen die Strömungsrichtung (linkslaufende Machlinie) und mit der Konvektionsgeschwindigkeit \(w \) (Teilchenbahn) aus, wobei \(a \) die Schallgeschwindigkeit ist. Für eine bestimmte Länge \(dz \) ergeben sich große Unterschiede in der Zeitkonstanten. Es liegt ein steifes Differenzialgleichungssystem vor /Hall 1976/.

Die Unterschiede in der Zeitkonstante erschweren die Integration der Gleichungen. Sollen auch die Vorgänge mit sehr kleinen Zeitkonstanten dargestellt werden, so muss sich der Zeitschritt des Lösungsalgorithmus an der kleinsten Zeitkonstante orientieren, was, um auf einen stationären Wert auch für die Vorgänge mit größeren Zeitkonstanten zu kommen, sehr große Rechenzeiten erforderlich macht. Wird die Zeitschrittweite größer gewählt, als dies für die schnell stattfindenden Prozesse notwendig wäre, führt dies in der Regel bei expliziten Verfahren zur Instabilität, bei impliziten Verfahren wird die Dynamik der Vorgänge mit kleiner Zeitkonstante nicht richtig dargestellt. Da in dieser Arbeit der Zeitintegrator von Dymola mit automatischer Schrittweitensteuerung verwendet werden soll und auf die Darstellung von mit Schallgeschwindigkeit ablaufenden Vorgänge (Druckstöße) verzichtet werden kann, wird im 2. Schritt eine Vereinfachung der Eulergleichungen angestrebt.

Das Charakteristiken-Verfahren zur Lösung partieller Differenzialgleichungen wandelt die drei partiellen Differenzialgleichungen (3-26) in sechs gewöhnliche Differenzialgleichungen um. Drei der sechs gewöhnlichen Differenzialgleichungen bestimmen die Richtung der Charakteristiken und drei auf den Charakteristiken gültige gewöhnliche Differenzialgleichungen beschreiben die Strömung. Das Problem der Lösung partieller Differenzialgleichungen kann auf die Lösung gewöhnlicher Differenzialgleichungen zurückgeführt werden. Das Charakteristiken-Verfahren zur Lösung von Differenzialgleichungen soll hier nicht weiter vertieft.
werden. Jedoch geben die drei Charakteristiken wichtige Auskünfte über die Anzahl physikalisch notwendiger Randbedingungen. Die Gleichungen der Charakteristiken lauten\(^9\):

\[
\frac{dz}{dt} = w \quad (3-36)
\]

\[
\frac{dz}{dt} = w + a \quad (3-37)
\]

\[
\frac{dz}{dt} = w - a \quad (3-38)
\]

Bezüglich der notwendigen Randbedingungen für das Anfangs-Randwertproblem (3-26) gibt Abb. 3-6 eine Vorstellung. Für die drei partiellen Differenzialgleichungen (3-26) müssen am Ein- und Austritt jeweils drei Größen bekannt sein: Zwei Größen, die den Fluidzustand beschreiben (z. B. u, p oder h, p) und eine Größe, die den Strömungszustand des Fluides bestimmt (z. B. w oder \(\dot{M}\)). Am Eintritt ist durch die linkslaufende Machlinie jedoch schon eine Größe über die Anfangsbedingungen festgelegt. Es sind dort also nur noch zwei Randbedingungen notwendig. Am Austritt werden zwei Größen durch die rechtslaufende Machlinie und die Teilchenbahn über die Anfangsbedingungen festgelegt. Es ist dort also nur noch eine Randbedingung notwendig. Weitere physikalische Randbedingungen würden das System unlösbar machen\(^10\).

\(^9\) Die Gleichungen können hergeleitet werden, indem in Gleichung (3-27) das totale Differenzial einge führt wird und die Lösbarkeit des entstehenden Gleichungssystem nach \(\partial v/\partial z\) untersucht wird. Das System ist auf den Charakteristiken nicht lösbar, da dort auf Grund von Diskontinuitäten die erste Ableitung nicht existiert. Es muß also gelten, dass die Determinante der Matrix des Gleichungssystem auf den Charakteristiken gleich Null ist. Aus dieser Bedingung folgen Gleichungen (3-36) bis (3-38).

\(^10\) Durch verschiedene Diskretisierungsschemata können weitere Randbedingungen nötig werden. Dies sind jedoch numerische und keine physikalischen Randbedingungen (siehe Kapitel 4.1.2).

2. Schritt: Vereinfachung der Euler-Gleichungen

Die Natur der Euler-Gleichungen, die Werkzeuge für deren Untersuchung und die Schwierigkeiten bei der numerischen Lösung (steifes System) sind in den letzten Abschnitten dargestellt worden. Um das Gleichungssystem im Simulationsprogramm Dymola mit vertretbarem Aufwand lösen zu können, werden die Gleichungen der transformierten Form vereinfacht. Dies wird im Folgenden dargestellt. Das System (3-33) ausmultipliziert ergibt:

\[
- \frac{p}{\rho^2 a^2} \left(\frac{\partial p}{\partial t} + w \frac{\partial p}{\partial z} \right) + \frac{\partial u}{\partial t} + w \frac{\partial u}{\partial z} = \frac{w}{\rho} \left(\frac{dp}{dz} \right) + \frac{1}{\rho} \frac{\partial U}{\partial z} \tag{3-39}
\]

\[
\frac{1}{2 \rho a} \left(\frac{\partial p}{\partial t} + (w + a) \frac{\partial p}{\partial z} \right) + \frac{1}{2} \left(\frac{\partial w}{\partial t} + (w + a) \frac{\partial w}{\partial z} \right) = -\frac{1}{2 \rho} \left(\frac{dp}{dz} \right) \tag{3-40}
\]

\[
- \frac{1}{2 \rho a} \left(\frac{\partial p}{\partial t} + (w - a) \frac{\partial p}{\partial z} \right) + \frac{1}{2} \left(\frac{\partial w}{\partial t} + (w - a) \frac{\partial w}{\partial z} \right) = -\frac{1}{2 \rho} \left(\frac{dp}{dz} \right) \tag{3-41}
\]

Die Schallgeschwindigkeit ist um Größenordnungen höher als die Konvektionsgeschwindigkeit \((w<<a)\). Es gilt also die Näherung

\[
w + a \approx a \tag{3-42}
\]

\[
w - a \approx -a
\]

Für Gleichungen (3-40) und (3-41) sind die zeitlichen Änderungen an einem Ort viel kleiner als die Änderungen, die ein mit Schallgeschwindigkeit mitbewegter Beobachter wahrnehmen würde:
\[
\frac{\partial p}{\partial t} \ll (w + a) \frac{\partial p}{\partial z} \quad \text{und} \quad \frac{\partial w}{\partial t} \ll (w + a) \frac{\partial w}{\partial z} \quad (3-43)
\]

\[
\frac{\partial p}{\partial t} \ll (w - a) \frac{\partial p}{\partial z} \quad \text{und} \quad \frac{\partial w}{\partial t} \ll (w - a) \frac{\partial w}{\partial z}
\]

Die zeitlichen Ableitungen können also vernachlässig werden. Die Gleichung (3-39) bleibt erhalten. Es ergibt sich folgendes System:

\[
- \frac{p}{\rho^2 a^2} \left(\frac{\partial p}{\partial t} + w \frac{\partial p}{\partial z} \right) + \frac{\partial u}{\partial t} + w \frac{\partial u}{\partial z} = \frac{w}{\rho} \left(\frac{dp}{dz} \right)_{\beta} + 1 \frac{\dot{q} U}{\rho} \quad (3-44)
\]

\[
\frac{1}{2} \frac{\partial p}{\partial z} + \frac{1}{2} \frac{\partial w}{\partial z} = - \frac{1}{2 \rho} \left(\frac{dp}{dz} \right)_{\beta} \quad (3-45)
\]

\[
\frac{1}{2} \frac{\partial p}{\partial z} - \frac{1}{2} \frac{\partial w}{\partial z} = - \frac{1}{2 \rho} \left(\frac{dp}{dz} \right)_{\beta} \quad (3-46)
\]

Anschaulich wurde die Steigung der Charakteristik (3-37) auf unendlich und die Steigung der Charakteristik (3-38) auf minus unendlich gesetzt. Addiert man Gleichungen (3-45) und (3-46) so erhält man eine vereinfachte Form der Impulsbilanz:

\[
\frac{\partial p}{\partial z} = - \left(\frac{dp}{dz} \right)_{\beta} \quad (3-47)
\]

Sie entspricht der einfachen Druckverlustbeziehung. Um zu einer vereinfachten Energiebilanz zu kommen, wird Gleichung (3-47) mit \(w/\rho \) multipliziert und zu Beziehung (3-44) addiert. Unter Nutzung von \(x \) soll für die Zeit \(t \) oder den Ort \(z \) stehen

\[
\frac{\partial h}{\partial x} = \frac{\partial (u + \frac{p}{\rho})}{\partial x} = \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} + p \frac{\partial (\frac{1}{\rho})}{\partial x} \quad (3-48)
\]

folgt

\[
- \frac{p}{\rho^2 a^2} \left(\frac{\partial p}{\partial t} + w \frac{\partial p}{\partial z} \right) + \frac{\partial h}{\partial t} - \frac{\partial p}{\partial t} - p \frac{\partial (\frac{1}{\rho})}{\partial t} + \frac{w}{\rho} \left(\frac{\partial h}{\partial z} - p \frac{\partial (\frac{1}{\rho})}{\partial z} \right) = 1 \frac{\dot{q} U}{\rho} \quad (3-49)
\]

Wird

\[
\frac{1}{a^2} = \frac{\partial \rho}{\partial t} \quad \text{und} \quad - \frac{1}{\rho^2 a^2} = \frac{\partial (\frac{1}{\rho})}{\partial z}
\]

in (3-49) eingesetzt, so folgt:

\[
p \frac{\partial (\frac{1}{\rho})}{\partial t} + w \frac{\partial (\frac{1}{\rho})}{\partial z} + \frac{\partial h}{\partial t} - \frac{\partial p}{\partial t} - p \frac{\partial (\frac{1}{\rho})}{\partial t} + \frac{w}{\rho} \left(\frac{\partial h}{\partial z} - p \frac{\partial (\frac{1}{\rho})}{\partial z} \right) = 1 \frac{\dot{q} U}{\rho} \quad (3-50)
\]

Vereinfacht und mit \(\rho \) multipliziert folgt die Energiebilanz:

\[
\rho \frac{\partial h}{\partial t} - \frac{\partial p}{\partial t} + \rho \frac{\partial h}{\partial z} = \frac{\dot{q} U}{A} \quad (3-52)
\]

Diese Energiebilanz entspricht der Form (B-12) von Anhang B:

\[
\frac{\partial (\rho u)}{\partial t} = - \frac{\partial (\rho w h)}{\partial z} + \frac{\dot{q} U}{A} \quad (3-53)
\]
Wenn Gleichung (3-46) von Gleichung (3-45) abgezogen wird, erhält man eine vereinfachte Kontinuitätsgleichung:

\[
\frac{\partial w}{\partial z} = 0
\]
(3-54)

Das Ausgangsgleichungssystem (3-22) hat sich also mit Hilfe der Theorie der Charakteristiken physikalisch und mathematisch nachvollziehbar folgendermaßen vereinfachen lassen:

\[
\frac{\partial w}{\partial z} = 0
\]
(3-55)

\[
\frac{\partial p}{\partial z} = \left(\frac{dp}{dz} \right)_{\hat{r}}
\]
(3-56)

\[
\frac{\partial (\rho u)}{\partial t} = -\frac{\partial (\rho wh)}{\partial z} + \frac{q U}{A}
\]
(3-57)

Am vereinfachten System der Gleichungen (3-55) bis (3-57) soll die Anzahl der notwendigen Randbedingungen an Ein- und Austritt geklärt werden. Die gewonnenen Erkenntnisse lassen sich auch auf das im 3. Schritt angegebene, korrigierte Gleichungssystem übertragen. Die rechts- und linkslaufende Machlinie wurden durch die Vereinfachungen verändert. Sie erhielten die Steigung plus bzw. minus unendlich. Für das System der Gleichungen (3-55) bis (3-57) liegen also folgende Charakteristiken vor:

\[
\frac{dz}{dt} = w
\]
(3-58)

\[
\frac{dz}{dt} = +\infty
\]
(3-59)

\[
\frac{dz}{dt} = -\infty
\]
(3-60)

Druckstörungen laufen jetzt nicht mehr mit Schallgeschwindigkeit, sondern mit unendlicher Geschwindigkeit durch das Rohr. In Abb. 3-7 ist der Verlauf der Charakteristiken für zwei Punkte schematisch skizziert. Der Punkt P zum Zeitpunkt 2\(\Delta t\) wird durch die Teilchenbahn bestimmt, sowie durch zwei Charakteristiken mit unendlicher Steigung (bzw. der Steigung \(dt/dz=0\)). Er wird also durch eine Anfangsbedingung und zwei Randbedingungen zum Zeitpunkt 2\(\Delta t\) festgelegt. Der Punkt A am Austritt wird durch eine Anfangsbedingung durch die Teilchenbahn und zwei Randbedingungen bestimmt. Die Randbedingungen können entweder am Austritt (Punkt A) direkt vorgegeben sein, oder am Eintritt. Wenn sie am Eintritt aufgeprägt werden, erfolgt die Informationsvermittlung zum Punkt A über die Charakteristiken mit unendlicher Steigung.
Abb. 3-7: Verlauf der Charakteristiken für die vereinfachten Gleichungssysteme (3-55) bis (3-57) und (3-61) bis (3-63). Dargestellt sind die Charakteristiken innerhalb des Berechnungsgebietes für den Punkt P (mittlerer Teil) und am Austritt Punkt A (rechter Teil). In Wirklichkeit sind die Charakteristiken gekrümmt.

Für die Charakteristiken mit den unendlichen Steigungen ist es unerheblich, ob die Randbedingungen am Ein- oder Austritt angegeben werden. Die Information wird unendlich schnell in beide Richtungen ausgedehnt. Da am Austritt die Charakteristik der Teilchenbahn Informationen liefert, dürfen dort maximal zwei Randbedingungen angegeben werden. Einigt man sich auf die thermodynamische Größen spezifische Enthalpie h, Druck p und die kinematische Größe Massenstrom \dot{M}, so sind mit dem Gleichungssystem (3-55) bis (3-57) folgende Randbedingungen physikalisch denkbar:

Tabelle 3-1: Physikalisch begründete Möglichkeiten für die Aufbringung der Randbedingungen des vereinfachten Gleichungssystems (3-55) bis (3-57) bzw. (3-61) bis (3-63).

<table>
<thead>
<tr>
<th>Eintritt</th>
<th>Art der Randbedingungen</th>
<th>Austritt</th>
<th>Art der Randbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h</td>
<td>2</td>
<td>p, \dot{M}</td>
</tr>
<tr>
<td>2</td>
<td>h, \dot{M}</td>
<td>1</td>
<td>p</td>
</tr>
<tr>
<td>2</td>
<td>h, \dot{M}</td>
<td>1</td>
<td>\dot{M}</td>
</tr>
<tr>
<td>3</td>
<td>h, p, \dot{M}</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

3. Schritt: Korrektur des vereinfachten Systems und Charakterisierung

Das Gleichungssystem (3-55) bis (3-57) hat den Nachteil, dass es nicht mehr massenkonserverativ ist /Thomann 1991/. Deshalb wird im Folgenden die nicht vereinfachte Kontinuitätsgleichung aus System (3-22) weiterverwendet.
Das korrigierte Gleichungssystem (mit ursprünglicher Kontinuitätsgleichung) lautet also:
\[
\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho w)}{\partial z} \tag{3-61}
\]
\[
\frac{\partial p}{\partial z} = -\left(\frac{dp}{dz}\right)_r \tag{3-62}
\]
\[
\frac{\partial (\rho u)}{\partial t} = -\frac{\partial (pwh)}{\partial z} + \frac{q}{A} \tag{3-63}
\]
Um die Frage zu beantworten, inwiefern sich die Charakteristiken durch den Austausch der Kontinuitätsgleichung verändert haben, wird das Gleichungssystem in ähnlicher Weise wie das ursprüngliche System umgeschrieben. In der Impulsbilanz ist die Zeitableitung der Geschwindigkeit herausgefallen. Um sie wieder aufzunehmen, wird die Impulsbilanz (3-62) mit einem Parameter \(b\) geschrieben, der später auf unendlich gesetzt wird:
\[
\frac{1}{b} \frac{\partial w}{\partial t} + \frac{\partial p}{\partial z} = -\left(\frac{dp}{dz}\right)_r \tag{3-64}
\]
Durch die Grenzwertbetrachtung \(b \to \infty\) geht die Impulsbilanz (3-64) in die Impulsbilanz (3-62) über. Die Energiebilanz (3-63) kann mit der Kontinuitätsgleichung und der Definition der spezifischen Enthalpie \(h = u + p/\rho\) umgeschrieben werden. Die Kontinuitätsgleichung wird analog wie in (3-26) umgeformt. Man erhält:
\[
\frac{\partial p}{\partial t} + \frac{\rho a^2}{b} \frac{\partial w}{\partial z} + w \frac{\partial p}{\partial z} = 0
\]
\[
\frac{\partial w}{\partial t} + b \frac{\partial p}{\partial z} = -b \left(\frac{dp}{dz}\right)_r \tag{3-65}
\]
\[
\frac{\partial u}{\partial t} + w \frac{\partial u}{\partial z} + \frac{w \partial p}{\rho} + b \frac{\partial w}{\rho} = \frac{1}{\rho} \frac{q}{A} \frac{U}{A} \tag{3-66}
\]
Dieses System kann wieder als Matrizengleichung geschrieben werden:
\[
\frac{\partial \vec{v}}{\partial t} + A \frac{\partial \vec{v}}{\partial z} = \vec{d} \tag{3-66}
\]
Die Eigenwerte der Matrix \(A\) sind:
\[
\lambda_1 = w
\]
\[
\lambda_2 = \frac{1}{2} \frac{\sqrt{w^2 + 4 \rho a^2 b}}{w} \to b \to \infty \quad \infty
\]
\[
\lambda_3 = \frac{1}{2} \frac{-\sqrt{w^2 + 4 \rho a^2 b}}{w} \to b \to \infty \quad -\infty
\]
Der zweite und dritte Eigenwert strebt für die notwendige Grenzwertbetrachtung für \(b \to \infty\) gegen plus bzw. minus unendlich. Die Eigenwerte stellen dieselben Charakteristiken wie die Gleichungen (3-58) bis (3-60) des vereinfachten Systems des zweiten Schrittes dar. Aus diesem Grund gelten die für dieses System gemachten Aussagen bzgl. der Charakteristiken und Randbedingungen auch für das jetzt vorliegende, korrigierte System des 3.Schrittes (Glei-
chungen (3-61) bis (3-63)). Aus den möglichen Kombinationen der Randbedingungen der Tabelle 3-1 wird für das Rechenprogramm folgende ausgewählt: Am Eintritt des Absorber-rohrstranges wird der Massenstrom und die spezifische Enthalpie, am Austritt der Druck vorgegeben (siehe auch Seite 61).

Zusammenfassung
Es wurde das die Strömung beschreibende System (3-22) zu den Gleichungen (3-61) bis (3-63) vereinfacht und mit Hilfe der Theorie der Charakteristiken näher untersucht. Die kinetische Energie \(\frac{1}{2} w^2 \) ist in der Energiebilanz (3-63) vernachlässigt worden. Dies hätte man ohne weiteres auch an einer direkten Abschätzung rechtfertigen können. Die auftretenden Änderungen der kinetischen Energie liegen mehrere Größenordnungen unter den Änderungen der spezifischen inneren Energie des hier betrachteten Fluids. Schwieriger wäre die Argumentation der Vernachlässigung der Terme in der Impulsbilanz (3-62) geworden: Der Speichervermöge und die Impulskräfte sind vernachlässigbar. Es bleibt nur der Druckverlust auf Grund der Rohrreibung. Durch die Vereinfachung lässt sich das System durch eine Finite-Differenzen-Approximation in Dymola lösen.

Ein weiterer Erkenntnigewinn obiger Ableitung ist, dass abgeschätzt werden kann, wie sich das vereinfachte Gleichungssystem verhalten wird. Da die Schallgeschwindigkeit auf unendlich gesetzt wurde, laufen alle Druckstörungen mit unendlicher Geschwindigkeit durch das Rohr. Die Simulation von Druckstößen wird also mit diesem Modell nicht möglich sein\(^{11}\). Langsamer ablaufende Vorgänge wie die Ausbreitung von Temperaturstörungen können weiterhin dargestellt werden.

Nicht zuletzt wurde durch obiges Vorgehen die Anzahl physikalisch notwendiger Randbedingungen an Rande des Integrationsgebiets ermittelt.

Reibungsdruckverlust

Reibungsdruckverlust der Einphasenströmung. Allgemein berechnet sich der Reibungsdruckverlust innerhalb eines Rohres durch:

\[
\left(\frac{dp}{dz} \right)_R = -\zeta \frac{L}{d_i} \frac{1}{2} \rho w^3
\]

(3-68)

Der Widerstandsbeiwert \(\zeta \) berechnet sich aus der Reynolds-Zahl \(Re \) und der relativen Rohrrauhigkeit \(k/d_i \):

\[
\zeta = \zeta \left(Re, \frac{k}{d_i} \right)
\]

(3-69)

Für sehr große Reynolds-Zahlen (voll ausgebildete turbulente Strömung) ist der Widerstandsbeiwert nur noch von der Rohrrauhigkeit abhängig; es ergibt sich dann ein quadratisches Druckverlustgesetz (\(\Delta p \sim w^2 \)). Für niedrige Reynolds-Zahlen (laminare Strömung, \(Re<2300 \)) ist der Beiwert \(\zeta \) nur von der Reynolds-Zahl abhängig. Bei laminerer Strömung

\(^{11}\) Auch ohne vereinfachte Impulsbilanz wäre dies auf Grund der vereinfachten Stoffwertroutinen nicht möglich.
liegt ein lineares Druckverlustverhalten ($\Delta p \sim w^2$) vor. Im Übergangsbereich der mittelgroßen Reynolds-Zahlen ist der Beiwert von beiden Parametern abhängig. Ein häufig angewendetes Gesetz für technisch glatte Rohre ist das Gesetz von Blasius /VDI 1994a/. Es wird hier für die Wasser-Einphasenströmung angewendet:

$$\zeta_f = C_f \cdot Re^{-n_f} \quad \text{für} \quad 3 \cdot 10^3 < Re < 1 \cdot 10^5 \quad (3-70)$$

Für höhere Bereiche der Reynolds-Zahlen, wie sie in der Dampfströmung vorkommen, besitzt das Gesetz von Herrmann /VDI 1994a/ Gültigkeit. Es wird in der vorliegenden Arbeit für die Simulation der einphasigen Dampfströmung im Überhitzerbereich verwendet:

$$\zeta_g = \zeta_{0g} + C_g \cdot Re^{-n_g} \quad \text{für} \quad 2 \cdot 10^4 < Re < 2 \cdot 10^6 \quad (3-71)$$

Für die Parameter C_g und n_g werden hier die in /VDI 1994a/ angegebenen Werte übernommen, also $C_g=0,3964$ und $n_g=0,3$. Der additive Parameter ζ_{0g} wird durch die Bedingung innerhalb des Zweiphasengebietes bestimmt, dass keine Unstetigkeitsstelle des Druckverlustes als Funktion des Strömungsmassendampfgehaltes vorliegen darf.

Das Modell nach Lockhart-Martinelli geht wie die meisten Ansätze davon aus, dass der Zweiphasendruckverlust sich mittels eines Korrekturfaktors aus dem Reibungsdruckabfall der Einzelphasen ermitteln lässt:

\[
\left(\frac{dp}{dz} \right)_{R,2\text{ph}} = \Phi_f^2 \cdot \left(\frac{dp}{dz} \right)_{R,0f} \tag{3-72}
\]

\[
\left(\frac{dp}{dz} \right)_{R,2\text{ph}} = \Phi_g^2 \cdot \left(\frac{dp}{dz} \right)_{R,0g} \tag{3-73}
\]

Hierin ist \((dp/dz)_{0f}\) der Reibungsdruckabfall der Flüssigkeit, \((dp/dz)_{0g}\) der des Dampfes, unter der Voraussetzung, dass jede der beiden Phasen das Rohr allein durchströmt. Als Strömungsgeschwindigkeit wird also jeweils die Leerrohrgeschwindigkeit \(w_0\) bzw. \(w_0\) genommen. Ist \(\Phi_f^2\) bzw. \(\Phi_g^2\) bekannt, so ist der Druckverlust der Zweiphasenströmung über den Druckverlust der Einphasenströmung der Flüssigkeit oder den des Dampfes berechenbar. Ziel ist es, die Zweiphasenmultiplikatoren \(\Phi_f\) bzw. \(\Phi_g\) in Abhängigkeit eines Parameters darzustellen. Es wird der so genannte Lockhart-Martinelli-Parameter \(X\) eingeführt, dessen Quadrat das Verhältnis des Druckabfalls der Flüssigphase zur Gazephase darstellt:

\[
X = \left(\frac{(dp/dz)_{R,0f}}{(dp/dz)_{R,0g}} \right)^{0.5} \tag{3-74}
\]

Werden nach Gleichung (3-68) die Druckverluste der einzelnen Phasen mit den Leerrohrgeschwindigkeiten der Beziehungen (3-12) und (3-13) eingeführt

\[
\left(\frac{dp}{dz} \right)_{R,0f} = -\zeta_f \frac{1}{2} \left(1 - \hat{x}^2 \right) \frac{\dot{M}}{\rho_f A^2} \frac{1}{d_i} \tag{3-75}
\]

\[
\left(\frac{dp}{dz} \right)_{R,0g} = -\zeta_g \frac{1}{2} \frac{\hat{x}^2 M^2}{\rho_g A^2} \frac{1}{d_i} \tag{3-76}
\]

so erhält man für den Lockhart-Martinelli-Parameter \(X\):

\[
X = \left(\frac{\zeta_f}{\zeta_g} \right)^{0.5} \cdot \frac{1 - \hat{x}}{\hat{x}} \cdot \left(\frac{\rho_g}{\rho_f} \right)^{0.5} \tag{3-77}
\]

Für die Berechnung der Widerstandsbeiwerte setzen Lockart und Martinelli für turbulente Strömungen die Gültigkeit des Blasius-Gesetzes voraus. Die Reynolds-Zahlen sind mit der Leerrohrgeschwindigkeit der Phasen gebildet:

\[
\zeta_f = \frac{C}{Re_f^n} = \frac{C}{\left(\dot{M} (1 - \hat{x}) d_i \right)^n A \eta_f} \tag{3-78}
\]

\[
\zeta_g = \frac{C}{Re_g^n} = \frac{C}{\left(\hat{x} \dot{M} d_i \right)^n A \eta_g} \tag{3-79}
\]
Eingesetzt in Gleichung (3-77) ergibt sich mit $n=0,2$ (turbulent, technisch glattes Rohr) der Lockart-Martinelli-Parameter für eine turbulente Strömung X_n^{12}:

$$X_n = \left(1 - \frac{x}{\bar{x}}\right)^{0.9} \left(\frac{\eta_f}{\eta_g}\right)^{0.1} \left(\frac{\rho_g}{\rho_f}\right)^{0.5}$$ \hspace{1cm} (3-80)

Mit diesem Parameter lassen sich die Zweiphasenmultiplikatoren darstellen. Für eine turbulente Strömung gilt:

$$\Phi_f^2 = 1 + \frac{20}{X_n} + \frac{1}{X_n^3}$$ \hspace{1cm} (3-81)

$$\Phi_g^2 = 1 + 20X_n + X_n^2$$ \hspace{1cm} (3-82)

Damit lässt sich der Druckverlust der Zweiphasenströmung mit Hilfe des Druckverlustes der Einphasenströmung berechnen.

In Abb. 3-8 ist der Reibungsdruckverlust der Ein- bzw. Zweiphasenströmung in Abhängigkeit der spezifischen Enthalpie dargestellt. Die Berechnung ist für drei Massenströme $M = 0,25$ kg/s, 0,50 kg/s und 0,75 kg/s bei einem Druck von jeweils $p=60$ bar und einem Rohrinnendurchmesser von $d_f=50$ mm erfolgt. Der Druckverlust im Einphasengebiet des unterkühlten Wassers ist gering. Im Bereich der Einphasenströmung des überhitzten Dampfes ist er auf Grund der höheren Strömungsgeschwindigkeiten größer. Er nimmt dort mit steigender spezifischer Enthalpie zu, da die Dichte abnimmt und die Strömungsgeschwindigkeit zunimmt13. Im Zweiphasengebiet ist ein Maximum des Druckverlustes zu erkennen. Dies liegt am oben beschriebenen irreversiblen Impulsaustausch zwischen der Wasser- und Dampfphase. Diese Irreversibilitäten nehmen für Strömungsmassendampfgehalte $\dot{x} \to 0$ und $\dot{x} \to 1$, also bei Näherung an die Einphasenströmung wieder ab, was das Maximum im Druckverlust erklärt. An Abb. 3-8 ist auch deutlich zu erkennen, dass mit zunehmenden Massenstrom, d. h. zunehmenden Strömungsgeschwindigkeiten der Reibungsdruckverlust stark ansteigt.

12 Der Index n deutet an, dass dieser Zweiphasenmultiplikator Gültigkeit besitzt, wenn beide Phasen turbulent strömen.

13 Die Geschwindigkeit geht in das Einphasendruckverlustmodell von Hermann für turbulente Strömung mit einer Potenz $n>1$ ein, d. h. trotz niedrigerer Dichte steigt der Druckverlust bei höherer Enthalpie.
Abb. 3-8: Reibungsdruckverluste der Ein- und Zweiphasenströmung für die Massenströme 0,25 kg/s, 0,50 kg/s und 0,75 kg/s (bei $p=60$ bar, $d_t=50$ mm). Der Zweiphasendruckverlust ist mit dem Modell von Lockhart-Martinelli berechnet.

In Abb. 3-9 ist der Einfluss des Druckes auf den Reibungsdruckverlust verdeutlicht. Für die Drücke $p=30$ bar, 60 bar und 100 bar ist für einen Massenstrom $\dot{M}=0,5$ kg/s der Druckverlust bei verschiedenen Strömungsmassendampfgehalten\(^{14}\) eingezeichnet. Die Ursache der niedrigeren Druckverluste bei hohen Drücken liegt an den kleineren Dampfgeschwindigkeiten: Bei hohen Drücken ist die Dichte des Dampfes größer als bei kleinen Drücken, was bei gleichem Massenstrom eine geringe Geschwindigkeit der Dampfphase bedeutet.

Abb. 3-9: Reibungsdruckverluste der Ein- und Zweiphasenströmung für die Drücke $p=30$ bar, $p=60$ bar und $p=100$ bar bei einem Massenstrom von 0,5 kg/s ($d_t=50$ mm). Der Zweiphasendruckverlust ist mit dem Modell von Lockhart-Martinelli berechnet.

\(^{14}\) Die Strömungsmassendampfgehalte $\dot{x}<0$ und $\dot{x}>1$ sind rechnerische Größen. Sie geben den Grad der Unterkühlung bzw. Überhitzung an.
Um abschätzen zu können, ob das Modell von Lockhart-Martinelli auch für die Anwendung in solaren Verdampferrohren mit ihren zum Teil hohen Drücken anwendbar ist, erfolgt ein Vergleich mit einem vom ZSW entwickelten Modell /Diss-I-Report 1999/. Dieses Modell ist aus Messungen entwickelt worden, die dem Parameterbereich eines Parabolrinnenabsorbers mit Direktverdampfung entsprechen. Es liefert einen über alle Strömungsmassendampfgehalte \(\dot{x} \) gemittelten Zweiphasenmultiplikator \(R \) für einen Absorberstrang im Durchlaufkonzept:

\[
R = 2051.3 \cdot p^{-1.377} \quad p \text{ in [bar]}
\]

(3-83)

In diesem Modell ist der Zweiphasenmultiplikator \(R \) definiert als das Verhältnis des Zweiphasendruckverlustes zum Einphasendruckverlust, wenn die gesamte Masse als Flüssigkeit strömen würde:

\[
R = \frac{\left(\frac{dp}{dz} \right)_{R,2,ph}}{\left(\frac{dp}{dz} \right)_{R,1}}
\]

(3-84)

Beispielhaft sind die Ergebnisse beider Modelle in Abb. 3-10 für die Drücke \(p=30 \) bar und \(p=100 \) bar und für einen Massenstrom \(\dot{M} = 0.5 \text{ kg/s} \) eingetragen.

\[\text{Abb. 3-10:} \quad \text{Vergleich des Zweiphasen-Druckverlustmodells von Lockart-Martinelli (M2) mit dem vom ZSW für das Durchlaufkonzept entwickelten Modell (M1) bei einem Massenstrom von 0,5 kg/s (d=50 mm) und verschiedenen Drücken. Der über den Zweiphasenbereich gemittelte Druckverlust des Modells M2 müsste bei Übereinstimmung der beiden Modelle dem Wert des Modells M1 entsprechen.}\]

Tabelle 3-2: Vergleich des vom ZSW entwickelten Zweiphasen-Druckverlustmodells (M1) mit den gemittelten Werten des Modells von Lockhart-Martinelli (M2) bei verschiedenen Drücken und Massenströmen ($d=50$ mm).

<table>
<thead>
<tr>
<th>Massenstrom [kg/s]</th>
<th>Druck [bar]</th>
<th>Modell ZSW (M1) [Pa/m]</th>
<th>Lockhart-Martinelli (M2) [Pa/m]</th>
<th>Relative Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{M} =0.25$ kg/s</td>
<td>30</td>
<td>168</td>
<td>165</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>81</td>
<td>106</td>
<td>-24</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49</td>
<td>77</td>
<td>-36</td>
</tr>
<tr>
<td>$\dot{M} =0.50$ kg/s</td>
<td>30</td>
<td>634</td>
<td>626</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>304</td>
<td>402</td>
<td>-24</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>183</td>
<td>292</td>
<td>-37</td>
</tr>
<tr>
<td>$\dot{M} =0.75$ kg/s</td>
<td>30</td>
<td>1377</td>
<td>1363</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>660</td>
<td>877</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>398</td>
<td>636</td>
<td>-37</td>
</tr>
</tbody>
</table>

Die Werte sind Mittelwerte für alle λ zwischen 0 und 1.

Abb. 3-11: Relative Abweichung der gemittelten Werte des Lockhart-Martinelli-Modells vom Zweiphasen-Druckverlustmodell des ZSW in Abhängigkeit von Druck und Massenstrom ($d=50$ mm).

3.2.2 Modell der Rohrwand

Die Energiebilanz wird für ein Rohrsegment aufgestellt. Das in Abb. 3-12 dargestellte Segment wird in einer Geometrieklasse durch den Rohraußen- und –innendurchmesser \(d_i \) und \(d_a \), den Winkel \(\Delta \beta \) und die Länge \(dz \) beschrieben.

\[
dl_1 = \frac{1}{2} d_a \cdot \Delta \beta \\
dl_3 = \frac{1}{2} d_i \cdot \Delta \beta \\
dl_2 = dl_4 = \frac{1}{2} (d_a - d_i) \\
dA_{quer} = \frac{1}{8} (d_a^2 - d_i^2) \Delta \beta
\]

Abb. 3-12: Rohrsegment mit den beschreibenden Größen, Randbedingungen und Gleichungen der geometrischen Zusammenhänge.

Innerhalb des Segments wird eine einheitliche Temperatur \(T_w \) angenommen. Das Rohr soll aus einem Material konstanter Dichte und spezifischer Wärmekapazität gefertigt sein. Die axiale Wärmeleitung innerhalb des Rohres wird nicht berücksichtigt. Ein Temperaturgradient in radialer Richtung soll vernachlässigt werden. Die Energiebilanz für das dargestellte Segment lautet dann:

\[
\rho \cdot c_p \cdot dA_{quer,i} \cdot \frac{dT_{w,i}}{dt} = \sum_{k=1}^{4} \dot{q}_k \cdot dl_k \cdot dA_{quer,i} - \rho \cdot c_p \cdot dA_{quer,i} \cdot \frac{dT_{w,i}}{dt} \tag{3-85}
\]

Durch die Definition einer Geometrieklasse in Dymola, die die Größe des Rohrsegments beschreibt, kann die Objektklasse Rohrwand flexibel an die jeweilige Fragestellung angepasst werden. Die zeitliche Ableitung der Fläche (letzte Term der rechten Seite) in Gleichung (3-85) stellt einen Quell- bzw. Senkenterm dar, wenn sich die Grenzen des Rohrsegmentes ändern.

16 Die Rohrwand kann z. B. in mehrere Segmente unterschiedlicher Temperaturen unterteilt werden. Die Wärmestromdichten in azimuthaler Richtung (\(q_2 \) und \(q_4 \)) können näherungsweise über eine stationäre, analytische Lösung abgeschätzt werden (siehe /Steinmann 1998/).
auf Grund einer sich verschiebenden Benetzungshöhe ändert. Weitet sich das Rohrsystem i auf Kosten des Segmentes j aus $(\Delta A_{\text{quer}}/d) = 0$, und ist die Temperatur $T_{w,i}$ des Segments j kleiner als die Temperatur $T_{w,i}$ des Segmentes i, dann muss sich aus Gründen der Energieerhaltung die Temperatur des Segmentes i erniedrigen. Geht man von festen Grenzen zwischen den Rohrsegmenten aus, so entfällt der Term.

Da die Simulationen in dieser Arbeit zur Begrenzung des Rechenaufwandes mit nur einem, nicht veränderlichen Rohrsegment ($\Delta \beta = 2\pi$ konstant) durchgeführt werden, entfällt der Quell- und Senkenterm. Als Randbedingungen müssen nur \dot{q}_i (über Gleichung 3-124) und \dot{q}_j (über den konvektiven Wärmetransport an die Strömung) bestimmt werden. Dadurch vereinfacht sich Gleichung (3-85) zu:

$$\rho, c, dA_{\text{quer}} \frac{dT_w}{dt} = \dot{q}_i dl_i + \dot{q}_j dl_j$$ \hspace{1cm} (3-86)

Durch die vereinfachende Annahme einer einheitlichen Temperatur für den gesamten Rohrquerschnitt ($\Delta \beta = 2\pi$) werden folgende Fehler in Kauf genommen: Die Wärmestromdichte der Abstrahlung wird als zu gering berechnet, da die Temperatur dort in vieler Potenz eintritt. Bei Temperaturdifferenzen von maximal ca. 50 K liegt der Fehler jedoch bei wenigen Prozent der Abstrahlungsverluste. Zweitens ist für die Berechnung des Wärmeübergangs die treibende Kraft nicht die Differenz zwischen berechneten, gemittelten Rohrwandtemperaturen zur Fluidtemperatur, sondern die Differenz zwischen der tatsächlich vorliegenden Temperatur zur Fluidtemperatur. Dies müsste in Gleichung (3-120) bei der Berechnung des gemittelten Wärmeübergangs berücksichtigt werden, was aber auf Grund der Unkenntnis der verschiedenen Rohrwandtemperaturen nicht möglich ist (siehe auch Fußnote 21 auf Seite 46).

3.2.3 Modelle für die Wärmeübergänge

Phasenverteilungsmodell

Um den unbekannten volumetrischen Dampfgehalt ε zu bestimmen, mit dem auch die Geschwindigkeiten der beiden Phasen über die Gleichungen (3-14) und (3-15) berechnet werden, gibt es folgende Möglichkeiten. Der Dampfgehalt ε kann bei bekanntem Schlupf über Gleichung (3-16) berechnet werden. Dafür ist aber eine separate Beziehung für das Geschwindigkeitsverhältnis (Schlupf) notwendig, die meist empirischer oder halbempirischer Art ist. Die zweite Möglichkeit besteht darin, sofort eine Beziehung für den Dampfgehalt zu nutzen. Im folgenden Abschnitt werden die Ergebnisse verschiedener Ansätze verglichen, um sich dann für die Verwendung einer Beziehung in der Simulation zu entscheiden.

Schlupfmodelle

Ansatz nach Levy. Einer der ersten und einfachsten theoretischen Ansätze für den Schlupf stammt von Levy. Er setzte für beide, getrennt strömenden Phasen die Impuls- und Bernoulli-Gleichung an und kam zu folgender Beziehung /Mayinger 1982/:

$$ S = \frac{\rho_f}{\rho_e} \varepsilon $$

(3-87)

Levy stellte jedoch fest, dass zwischen Rechnung und Messung Abweichungen bis 50% auftraten. Gleichung (3-87) in (3-16) eingesetzt ergibt eine implizite Beziehung für den volumetrischen Dampfgehalt ε:

$$ \varepsilon = \frac{1}{1 + \frac{1 - \dot{x}}{\dot{x}} \sqrt{\frac{\rho_g \varepsilon}{\rho_f}}} $$

(3-88)

Ansatz nach Goebel. Für den Parameterbereich eines Parabolrinnenkraftwerkes stellte /Goebel 1998/ für den Schlupf folgende, nur vom Druck abhängige Korrelation fest:

$$ S = 2,5 + (100 - p) \cdot \frac{2,5}{70} \quad \text{für} \ 0,2 < \dot{x} < 0,9 $$

(3-89)

p in [bar]

Für Dampfgehalte kleiner als 0,2 strebt der Schlupf gegen $S=1$, da die Wellenspitzen den Rohrquerschnitt für die Dampfströmung verkleinern (Schwallströmung). Für Dampfgehalte größer als 0,9 wird in der Vergleichsrechnung angenommen, dass sie die obige Beziehung ihre Gültigkeit behält. Mit dem bekannten Schlupf erhält man mit der umgeformten Gleichung (3-16) den Dampfgehalt ε:

$$ \varepsilon = \frac{1}{1 + S \cdot \frac{1 - \dot{x}}{\dot{x}} \cdot \frac{\rho_g}{\rho_f}} $$

(3-90)
Modelle zur direkten Bestimmung des Dampfgehaltes ε

Ansatz nach Rouhani. In /VDI 1997/ wird die Beziehung nach Rouhani empfohlen, die den Dampfgehalt ohne den Umweg über den Schlupf bestimmt:

$$
\varepsilon = \frac{\dot{x}}{\rho_g} \left[(1 + 0,12(1 - \dot{x})) \cdot \left(\frac{\dot{x}}{\rho_g} + 1 - \dot{x} \right) + \frac{1,18(1 - \dot{x})(g \sigma (\rho_f - \rho_g))^{0,25}}{\dot{m} \rho_f^{0,5}} \right]^{-1}
$$

mit

- Strömungsmassendampfgehalt \dot{x} in [-]
- Dichten der Flüssig- und Dampfphase ρ_f, ρ_g in [kg/m³]
- Erdbeschleunigung g in [m/s²]
- Oberflächenspannung σ in [N/m]
- Massenstromdichte \dot{m} in [kg/(m²s)]

Ansatz nach Laufs. In /Laufs 1997/ wird eine Korrelation für den Flüssigkeits-Holdup ε_f nur in Abhängigkeit des Lockart-Martinelli-Parameters X_n (siehe Gleichung (3-80)) aufgestellt. Für den Dampfgehalt ε ergibt sich dann:

$$
\varepsilon = 1 - \varepsilon_f = 1 - \left[1 + \frac{4,3}{X_n} + \frac{3,7}{X_n^2} \right]^{-1.08}
$$

Am Verlauf der Kurven ist zu erkennen, dass schon eine geringe Menge verdampften Wassers einen großen Querschnitt des Rohres belegt. Dies ist auf den großen Dichteunterschied des Dampfes gegenüber Wasser zurückzuführen.

17 Der Flüssigkeits-Holdup ε_f ist der volumengemittelte, relative Anteil der flüssigen Phase am Querschnitt. Es gilt die Beziehung: $\varepsilon_f + \varepsilon = 1$.

18 Die Kurve nach /Goebel 1998/ weist eine Knickstelle bei $\dot{x}=0,2$ auf, da die Schlupffunktion in ihrem Definitionsbereich konstant ist und mit Hilfe einer linearen Interpolation auf den gesamten Zweiphasenbereich $\dot{x} \in [0,1]$ mit einer Unstetigkeit bei $\dot{x}=0,2$ erweitert wurde.
Abb. 3-13: Vergleich verschiedener Modellansätze für den volumetrischen Dampfgehalt \(\varepsilon \), berechnet für ein Wasser-Dampf-Gemisch bei \(p=60 \) bar und einer Massenstromdichte von \(m=250 \) kg/(m²s).

Mit Hilfe des volumetrischen Dampfgehaltes \(\varepsilon \) ist aus geometrischen Betrachtungen der zugehörige Winkel \(\varphi_{hf} \) der statischen Flüssigkeitshöhe (siehe Abb. 3-4 auf Seite 13) darstellbar:

\[
\varepsilon = \frac{1}{\pi} \left(\varphi_{hf} - \frac{1}{2} \sin \left(2 \varphi_{hf} \right) \right)
\]
(3-93)

Wird Beziehung (3-17) der Seite 13 eingesetzt, folgt aus dem Dampfgehalt eine iterativ zu lösende Gleichung für die statische Wellenhöhe \(h_f \):

\[
\varepsilon = \frac{1}{\pi} \left(\arccos \left(\frac{2h_f}{d_i} - 1 \right) - \frac{1}{2} \sin \left(2 \arccos \left(\frac{2h_f}{d_i} - 1 \right) \right) \right)
\]
(3-94)

Um eine aufwendige, iterative Lösung der Gleichung zu vermeiden, wurde Gleichung (3-94) durch eine einfache, lineare Beziehung ersetzt:

\[
h_f = d_i \cdot \left(1.0 - \varepsilon \right)
\]
(3-95)

In Abb. 3-14 sieht man im linken Diagramm die dimensionslose statische Flüssigkeitshöhe \(h_f/d_i \) als Funktion vom Dampfgehalt \(\varepsilon \), berechnet durch die exakte Beziehung (3-94) und die Näherung (3-95). Im rechten Diagramm der Abb. 3-14 ist die dimensionslose statische Flüssigkeitshöhe \(h_f/d_i \) über dem Strömungsmassendampfgehalt \(\varepsilon \) aufgetragen, wieder mit der exakten Beziehung und der Näherung berechnet. Man erkennt, dass die Vereinfachung durchaus zulässig ist. Die Fehler in der statischen Flüssigkeitshöhe liegen unter 5 % des Rohrinnendurchmessers.
Abb. 3-14: Dimensionslose statische Flüssigkeitshöhe h_f/d, aufgetragen über dem volumetrischen Dampfgehalt ε (linkes Diagramm) und dem Strömungsmassendampfgehalt x (rechtes Diagramm), berechnet mit der exakten Beziehung (3-94) und der Näherungsbeziehung (3-95).

Die folgenden empirischen Korrelationen für die Phasenverteilung sind Ergebnisse des GUDE-Projektes /Goebel 1998/, in dem die Zweiphasenströmung unter den Randbedingungen eines Absorberrohres mit Direktverdampfung untersucht wurde. Es wurde festgestellt, dass auch bei Strömungsmassendampfgehalten nahe $x = 1$ die statische Flüssigkeitshöhe h_f nicht unter 2,5 mm absinkt. Es wird daher eine korrigierte statische Flüssigkeitshöhe $h_{f,korr}$ eingeführt:

$$h_{f,korr} = h_f + \frac{2.5 \text{ mm}}{d_i} \quad \text{mit } d_i \text{ in [mm]}$$

(3-96)

Die obere Wellenhöhe19 h_{f_e} wurde innerhalb des GUDE-Versuchsprogrammes als doppelt so groß wie die statische Wellenhöhe ermittelt. Es gilt also:

$$h_{f_e} = 2 \cdot h_{f,korr}$$

(3-97)

Die Benetzung der Rohrwand durch Entrainment und Deposition nimmt mit zunehmender kinetischer Energie der Dampfphase zu. Die Filmhöhe $h_{f,lm}$ steigt also quadratisch mit der Dampfmassenstromdichte \dot{m}_g:

$$h_{f,lm} = 45 \text{ mm} \left(\frac{\dot{m}_g}{\dot{m}_{g,\text{Umschlag}}^{\text{uboh}}} \right)^2$$

(3-98)

Dabei soll mit $\dot{m}_{g,\text{Umschlag,uboh}}$ diejenige Dampfmassenstromdichte bezeichnet werden, die für eine geschlossene Ringströmung mindestens erforderlich ist. Diese Umschlagsmassenstromdichte ist abhängig vom Druck und von der Beheizung. Für eine unbeheizte Strömung gilt:

$$\dot{m}_{g,\text{Umschlag,uboh}} = 46.6 + 0.595 p + 0.0119 p^2 \quad \text{mit } p \text{ in [bar]}$$

(3-99)

Für eine beheizte Strömung tritt die geschlossene Ringströmung erst bei höheren Dampfmassenstromdichten ein. Es gilt:

$$\dot{m}_{g,\text{Umschlag,uboh}} = \dot{m}_{g,\text{Umschlag,uboh}} \left(1 + \frac{1.3 \dot{q}}{56} \right) \quad \text{mit } \dot{q} \text{ in [kW]}$$

(3-100)

19 Die entsprechenden Größen wurden in Abb. 3-4 auf Seite 13 eingeführt.
Die gesamte benetzte Höhe berechnet sich schließlich aus der Summe der oberen Wellenhöhe \(h_f \) und der Filmhöhe \(h_{film} \). Es wird zwischen zwei Benetzungshöhen unterschieden:

- Teilbenetzungshöhe: Die Höhe, unterhalb welcher Deposition stattfindet, aber nicht genügend, um einen dauerhaften Flüssigkeitsfilm aufrecht zu erhalten. Aus den GÜDE-Versuchen hat sich gezeigt, dass eine weitere Unterteilung innerhalb der Teilbenetzung notwendig ist:

\[
h_{tdiben} = h_f + 45 \text{ mm} \left(\frac{\dot{m}_g}{\dot{m}_{g,\text{übergang}}^{\text{ach}}}
ight)^2 \text{ für } \dot{m}_g < \dot{m}_{g,\text{übergang}}^{\text{ach}} \tag{3-101}
\]

\[
h_{tdiben} = h_f + 45 \text{ mm} \left(\frac{\dot{m}_g}{\dot{m}_{g,\text{übergang}}^{\text{ach}}}
ight)^{0.4} \text{ für } \dot{m}_g > \dot{m}_{g,\text{übergang}}^{\text{ach}} \tag{3-102}
\]

- Benetzungshöhe: Die Höhe unterhalb welcher ein Flüssigkeitsfilm an der Rohrwand anliegt:

\[
h_{ben} = h_f + 45 \text{ mm} \left(\frac{\dot{m}_g}{\dot{m}_{g,\text{übergang}}^{\text{ach}}}
ight)^2 \tag{3-103}
\]

Mit Gleichung (3-17) können dann die Winkel für die entsprechenden Höhen berechnet werden:

\[
\varphi_{tdiben} = \arccos \left(\frac{2h_{tdiben}}{d_i} - 1 \right) \quad \text{und} \quad \varphi_{ben} = \arccos \left(\frac{2h_{ben}}{d_i} - 1 \right) \tag{3-104}
\]

In Abb. 3-15 sind die mit dem Rohrdurchmesser normierten Höhen für eine unbeheizte Zweiphasenströmung bei \(p=30 \text{ bar} \) und \(p=100 \text{ bar} \) aufgetragen. In allen Bereichen, in denen die gepunktete Linie der Benetzungshöhe \(h_{ben} \) oberhalb der Linie der Rohrwand liebt, herrscht eine geschlossene Ringströmung. Eine Schwallströmung liegt dann vor, wenn die obere Wellenhöhe \(h_f \): die Rohroberseite übersteigt. In Abb. 3-15 liegt bei \(p=30 \text{ bar} \) Schwallströmung nur für Strömungsmassendampfgehalte \(\dot{x} <0.05 \) vor, während für \(p=100 \text{ bar} \) diese Strömungsform bis \(\dot{x} =0.15 \) auftaucht. Dies kann dadurch erklärt werden, dass bei niedrigen Drücken die Dampfphase eine geringe Dichte besitzt und daher eine geringe Dampfmasse ein großes Volumen einnimmt, die die Flüssigphase von der Rohroberseite verdrängt. Bei höheren Drücken besitzt der Dampf eine größere Dichte und die Verdrängung erfolgt erst bei höheren Strömungsmassendampfgehalten.

Die Tatsache, dass die Filmhöhe (Abstand zwischen \(h_f \) und \(h_{ben} \)) bei niedrigeren Drücken schneller mit dem Strömungsmassendampfgehalt zunimmt als bei höheren Drücken, lässt sich auch auf die Dichte zurückführen. Durch die geringere Dichte bei niedrigen Drücken weist bei einem bestimmten Strömungsmassendampfgehalt die Gasphase eine höhere Geschwindigkeit auf als dies bei höheren Drücken der Fall ist. Wie oben beschrieben worden ist, wird die Benetzung durch Entrainment und Deposition durch eine hohe Dampfphasengeschwindigkeit begünstigt.
Abb. 3-15: Mit den Korrelationen von /Goebel 1998/ berechnete Benetzungsfläche h_{ben}, obere Wel lenhöhe h_f, und korrigierte, statische Flüssigkeitshöhe $h_{f,korr}$ der unbeheizten Zweiphasenströmung bei $p=30$ bar (links) und $p=100$ bar (rechts), jeweils bei einer Massenstromdichte $m_{gr}=350$ kg/(m²·s). Aufgetragen sind die mit dem Rohrdurchmessер normierten Größen.

In Abb. 3-16 sind die normierten Höhen für eine beheizte Zweiphasenströmung ($\dot{q}=38$ kW/m²) bei $p=30$ bar und $p=100$ bar zu sehen. In Vergleich mit Abb. 3-15 ist zu erkennen, dass mit Beheizung geringere Filmhöhen vorliegen als ohne Beheizung. Oberhalb der Benetzungsfläche findet zwar zum Teil noch Tröpfchenablagerung statt, aber nicht genug, um eine vollständige Benetzung zu gewährleisten.

Für höhere Massenstromdichten verbessert sich die Benetzung vor allem auf Grund von erhöhtem Entrainment und Deposition. Deshalb ist eine zu geringe Massenstromdichte vor allem bei seitlicher Einstrahlung kritisch einzuschätzen. Aus den vorgestellten Abbildungen ist auch zu erkennen, dass der Bereich, in dem keine Rundumbenetzung der Rohrwand vorliegen kann, vor allem bei mittleren Strömungsdampfgehalten auftritt. In diesem Parameterbereich wird die Rohrwand nicht mehr durch Schwäle befeuchtet wird, und die Dampfgeschwindigkeit ist zum Teil noch nicht so hoch ist, dass der Mechanismus des Entrainment und Deposition ausreichend wäre.

Abb. 3-16: Mit den Korrelationen von /Goebel 1998/ berechnete Benetzungsfläche h_{ben}, obere Wel lenhöhe h_f, und korrigierte, statische Flüssigkeitshöhe $h_{f,korr}$ der beheizten Zweiphasenströmung bei $p=30$ bar (links) und $p=100$ bar (rechts), jeweils bei einer Massenstromdichte $m_{gr}=350$ kg/(m²·s) und einer Wärmestromdichte $\dot{q}=38$ kW/m². Aufgetragen sind die mit dem Rohrdurchmessers normierten Größen.
Nachdem die Verteilung von Flüssig- und Gasphase, sowie deren mittlere Geschwindigkeiten berechnet werden können, werden im nächsten Abschnitt die verwendeten Beziehungen für den Wärmeübergang an der inneren Rohrwand vorgestellt.

Wärmeübergang an der inneren Rohrwand

An der inneren Rohrwand wird die Wärme zwischen Fluid und Wand durch Konvektion übertragen. Der unbekannte Wärmeübergangskoeffizient \(\alpha \) der folgenden Gleichung muss bestimmt werden:

\[
\dot{q} = \alpha \cdot (T_w - T)
\]
(3-105)

Dabei ist \(T_w \) die Rohrwandtemperatur und \(T \) die Fluidtemperatur.

Wärmeübergang der Einphasenströmung. Für die Berechnung des Wärmeübergangskoeffizienten im Einphasengebiet der Vorwärmung wie der Überhitzung wird die Beziehung von Gnielinsky verwendet /VDI 1994b/:

\[
Nu = \frac{\zeta / 8(Re - 1000)Pr}{1 + 12.7 \sqrt{\zeta / 8(Pr^{2/3} - 1)}}
\]
\[
1 + \left(\frac{d_s}{L} \right)^{2/3}
\]
(3-106)

mit dem Druckverlustbeiwert \(\zeta \):

\[
\zeta = (1,82 \log Re - 1,64)^2
\]
(3-107)

Für die in Parabolrinnenkollektoren auftretenden Längen kann der Klammerausdruck \((1 + (d_s/L)^{2/3})\) durch eins angenähert werden. Die Temperaturabhängigkeit der Stoffwerte müsste noch mit einem zusätzlichen Faktor berücksichtigt werden: Bei Flüssigkeiten durch \((Pr/Pr_w)^{0.11}\) und bei Gasen durch \((T/T_w)^\eta\). Der Einfluss liegt aber im vorliegenden Bereich bei wenigen Prozent und wird vernachlässigt. Der Wärmeübergangskoeffizient \(\alpha \) kann aus der Nusselt-Zahl bestimmt werden:

\[
Nu = \frac{\alpha d_s}{\lambda} \quad \Rightarrow \quad \alpha = \frac{\lambda Nu}{d_s}
\]
(3-108)

\[
Re_g = \frac{w_g d_h}{\nu} \quad \text{und} \quad Nu_g = \frac{\alpha d_h}{\lambda}
\]
(3-109)
mit der erhöhten Dampfgeschwindigkeit
\[w_g = \frac{M \dot{x}}{\rho e A} \]
(3-110)

und dem hydraulischen Durchmesser
\[d_h = 4 \frac{A}{U} = \frac{4 e A}{d \left(\varphi_{h_0} + \sin \varphi_{h_0}\right)} \].
(3-111)

Der Winkel, \(\varphi_{hf} \), gibt die Lage der Phasengrenzfläche an und kann aus Beziehung (3-17) berechnet werden.

Das Problem des Filmsiedens, bei dem sich der Wärmeübergang schlagartig verschlechtert, gibt es bei den eher geringen Wärmestromdichten eines Parabolrinnenkraftwerkes nicht. Im Rohrgrund tritt bis \(\dot{x} < 0,99 \) Blasensieden auf /Goebel 1998/, an den Rohrwänden auch konvektives Strömungssieden. Mit Sprühkühlung ist bei der Direktverdampfung bei hohen Dampfgehalten zu rechnen. Es ist auch unterkühltes Sieden im Vorwärmbereich zu erwarten.

Beim Blasensieden wird durch das Ablösen der Blasen und die dadurch entstehende Turbulenz der Wärmeübergang gegenüber Konvektion ohne Sieden verbessert. Während beim konvektivem Strömungssieden der Wärmeübergang hauptsächlich von der Massenstromdichte abhängt, wird er beim Blasensieden vor allem durch die Wärmestromdichte beeinflusst /Baehr 1996/.

tig. Um trotzdem eine Modellklasse erstellen zu können, die richtige Wärmeübergangskoeffizienten im benetzten Teil des Rohres auch bei Abschattung liefert, wird als unteres Limit für den Wärmeübergang die Beziehung nach Gnielinski verwendet.

Wärmeübergang nach Goebel. Diese empirische Korrelation ist nur im Parameterbereich der GUDE-Versuche verifiziert:

\[
\alpha_{\text{Go}} = \left(5,85 - 0,0278 \cdot p + 0,00064286 \cdot p^2\right) f_1 \cdot f_2
\]

mit den Faktoren:

\[
f_1 = 0,56247 + 0,0241265 \cdot \dot{q} - 5,7786 \cdot 10^{-5} \cdot \dot{q}^2
\]

\[
f_2 = \left[0,72 - \left(\frac{144}{m_g + 150}\right) \frac{25}{\dot{q}}\right] + 1
\]

mit \(\alpha_{\text{Go}}\) in [kW/m² K], \(p\) in [bar], \(m_g\) in [kg/m²s] und \(\dot{q}\) in [kW/m²].

Die Grundgleichung (3-112) berücksichtigt die Druckabhängigkeit der für den Wärmeübergang relevanten Stoffgrößen. Durch den Faktor \(f_1\) wird die Verbesserung des Wärmeübergangs durch Blasensieden beschrieben. Der Faktor \(f_2\) berücksichtigt den verbesserten Wärmeübergang bei erhöhten Dampfgeschwindigkeiten. Dieser Einfluss hat bei großer Wärmestromdichte eine geringere Bedeutung, was durch den Faktor \(25/\dot{q}\) zum Ausdruck kommt.

Wärmeübergang nach Gungor und Winterton. In dieser Korrelation wird der Wärmeübergang in zwei Anteile aufgespalten: Den makrokonvektiven Beitrag der erzwungenen Konvektion und den mikrokonvektiven Beitrag des Blasensiedens. Die beiden Wärmeübergangskoeffizienten fließen mit Gewichtungsfaktoren ein (E=Enhancement-Faktor, S=Suppression-Faktor):

\[
\alpha_{\text{Go}} = E \alpha_{\text{Con}} + S \alpha_{\text{BS}}
\]

Als Wärmeübergangskoeffizient \(\alpha_{\text{Con}}\) einer erzwungenen Flüssigströmung wird von Gungor und Winterton die Beziehung von Dittus-Boelter vorgeschlagen. Im Rechenprogramm wurde die Beziehung nach Gnielinsky (3-106) verwendet, die einen ähnlichen Einsatzbereich wie die Beziehung von Dittus-Boelter besitzt. Hierbei wird zur Berechnung der Reynolds-Zahl die Leerrohrgeschwindigkeit \(w_0\) nach Gleichung (3-13) verwendet. Zur Berechnung des Wärmeübergangs bei Blasensieden wird die Zahlenwertgleichung nach Cooper vorgeschlagen:

\[
\alpha_{\text{BS}} = 55 \cdot Pr^{0.12} \left(-10 \log Pr\right)^{-0.55} \cdot M_w^{-0.5} \cdot \dot{q}^{0.67}
\]

mit \(\alpha_{\text{BS}}\) in [W/m² K], dem Molgewicht von Wasser \(M_w=18\) [kg/kmol] und der Wärmestromdichte \(\dot{q}\) in [W/m²].

Der Enhancement-Faktor \(E\) wird nötig, da die Reynolds-Zahl mit der Leerrohrgeschwindigkeit berechnet wird. In Wirklichkeit liegt jedoch eine viel höhere Geschwindigkeit vor, die den Wärmeübergang begünstigt. Der Suppression-Faktor \(S\) ist damit erklärt, dass mit steigender erzwungener Konvektion die thermische Grenzschicht dünner wird und damit die zum Blasenwachstum notwendige Überhitzung geringer ist.
Der Enhancement-Faktor \(E \) wird mit der Boiling-Number \(Bo \) und dem Lockhart-Martinelli-Parameter \(X_\alpha \) (siehe Gleichung (3-80)) ausgedrückt:

\[
E = 1 + 24000 \cdot Bo^{1,16} + 1,37 \cdot \frac{1}{X_\alpha^{0,86}} \quad (3-117)
\]

mit der Boiling-Number:

\[
Bo = \frac{\dot{q}}{\dot{m}(h'' - h')} \quad (3-118)
\]

Die Boiling-Number ist der Quotient des auf der Rohrwand senkrecht stehenden, durch Sieden verursachten Massenstromes und des totalen (axialen) Massenstromes.

Der Suppression-Faktor \(S \) wird durch folgende Gleichung bestimmt:

\[
S = \frac{1}{1 + 1,5 \cdot 10^{-6} E^2 Re_0^{1,37}} \quad (3-119)
\]

Dabei wird die Reynolds-Zahl \(Re_0 \) mit der Leerrohrgeschwindigkeit nach Gleichung (3-13) gebildet. Bei sehr geringen Massenstromdichten, wenn die Froude-Zahl \(Fr < 0,05 \) ist, müssten der Enhancement-Faktor und der Suppression-Faktor noch korrigiert werden. Dieser Fall tritt jedoch nur bei sehr geringen Massenströmen auf, wie sie höchstens evtl. beim Einspritzkonzept im vorderen Teil des Absorberstranges vorliegen könnten, und wird daher nicht weiter vertieft. Es sei auf /Gungor et al. 1986/ verwiesen.

In Abb. 3-17 und Abb. 3-18 sind für verschiedene Wärmestromdichten jeweils im linken Diagramm die Wärmeübergangskoeffizienten der benetzten Rohrwand nach Goebel, im rechten Diagramm der Wärmeübergang nach Gungor und Winterton dargestellt. Abb. 3-17 gilt für einen Massenstrom \(\dot{M} = 0,3 \) kg/s, Abb. 3-18 für einen Massenstrom \(\dot{M} = 0,6 \) kg/s. In beiden Abbildungen liegt ein Druck von \(p = 60 \) bar zu Grunde. Mit steigender eingekoppelter Leistung steigt auch der Wärmeübergangskoeffizient. Die Korrelation von Gungor und Winterton liefert in großen Bereichen größere Werte als die Beziehung nach Goebel. Diese Diskrepanz spiegelt die Unsicherheit der empirischen Beschreibungen wieder. Die Korrelation nach Goebel ist im Parameterbereich der GUDE-Versuche für Berechnungen in einem Para-

20 Eine Berechnung des hydraulischen Radius mit \(d_i = 4A / U = (4(1-\varepsilon)A) / (\pi(\pi-\varphi_{th}+\sin\varphi_{th})) \) bringt unphysikalische Lösungen für \(\varepsilon \rightarrow 1 \) und wird daher nicht verwendet.
bolrinnenkraftwerk verifiziert. Sie wird daher in dieser Arbeit der Beziehung von Gungor und Winterton bevorzugt.

Abb. 3-17: Vergleich der Korrelationen von Goebel (linkes Diagramm) und Gungor & Winterton (rechtes Diagramm) im Zweiphasenbereich für den Wärmeübergang der benetzten Rohrwand bei verschiedenen Wärmestromdichten. Der Massenstrom beträgt 0,3 kg/s ($p=60$ bar, $d=50$ mm).

Abb. 3-18: Vergleich der Korrelationen von Goebel (linkes Diagramm) und Gungor & Winterton (rechtes Diagramm) im Zweiphasenbereich für den Wärmeübergang der benetzten Rohrwand bei verschiedenen Wärmestromdichten. Der Massenstrom beträgt 0,6 kg/s ($p=60$ bar, $d=50$ mm).

Der Wärmeübergangskoeffizient nach Gnielinsky ist mit der Korrelation von Gungor und Winterton in Abb. 3-19 für einen Druck von $p=60$ bar und einen Massenstrom $\dot{M}=0,5$ kg/s dargestellt. Im linken Diagramm ist der Wärmeübergang für unbestrahlte Rohre berechnet, im rechten Diagramm für eine geringe Wärmestromdichte von 4 kW/m². Es ist zu erkennen, dass beide Wärmeübergangskoeffizienten ungefähr die selbe Größenordnung haben. Es kann...
also für nicht bestrahlte und schwach bestrahlte Absorberrohre die angegebene Gleichung nach Gnielinsky auch im Zweiphasengebiet benutzt werden.

Abb. 3-19: Vergleich der Korrelationen von Gnielinsky und Gungor & Winterton im Zweiphasenbereich für den Wärmeübergang der benetzten Rohrwand. Das linke Diagramm zeigt den Wärmeübergang bei unbestrahlten Rohren, das rechte Diagramm bei einer kleinen Wärmestromdichte von \(q = 4 \) kW/m² (jeweils für \(P = 60 \) bar, \(M = 0.5 \) kg/s, \(d = 50 \) mm).

Gemittelter Wärmeübergangskoeffizient der Zweiphasenströmung. Da die Rohrwandtemperatur azimutal in Umfangsrichtung nur mit einem Knoten diskretisiert ist, (siehe Abschnitt 3.2.2) wird im Zweiphasengebiet ein gemittelter Wärmeübergangskoeffizient verwendet. Der Wärmeübergangskoeffizient der benetzten Rohrwand \(\alpha_{benn} \) und der Koeffizient der unbenetzten Wand \(\alpha_{benn} \) gehen mit den jeweiligen Bogenlängenanteilen des benetzten und unbenetzten Rohrsegments in den gemittelten Wärmeübergangskoeffizienten ein:

\[
\alpha_m = \frac{\alpha_{benn}}{\pi} \alpha_r + \left(1 - \frac{\alpha_{benn}}{\pi} \right) \alpha_{benn} \quad (3-120)
\]

Zusammenfassend sind die benutzten Wärmeübergänge für das gesamte Gebiet der Vorwärmung, Verdampfung und Überhitzung in einem direktverdampfenden Kollektor in Tabelle 3-3 dargestellt:

\[\text{21 Um exakt zu sein, dürften nicht die Wärmeübergangskoeffizienten gemittelt werden, sondern die Mittelung müsste mit den Wärmestromdichten der einzelnen Rohrsegmente stattfinden. Daraus ließe sich dann ein gemittelter Wärmeübergangskoeffizient ableiten, der aber von den unbekannten Temperaturen der jeweiligen Rohrsegmente abhängen. Da dies aber bei einer azimuthalen Diskretisierung mit nur einem Rohrsegment nicht möglich ist, wird mit Gleichung (3-120) gearbeitet.}\]
Tabelle 3-3: Überblick über den Einsatz der verschiedenen Wärmeübergangsmodule.

<table>
<thead>
<tr>
<th></th>
<th>Dampfgehalt [-]</th>
<th>Koeffizienten</th>
<th>Modelle</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einphasenströmung Wasser</td>
<td>$\dot{x} < -0.05$</td>
<td>α_f</td>
<td>Gnielinsky (Wasser)</td>
<td>Wassertromung</td>
</tr>
<tr>
<td></td>
<td>$-0.05 < \dot{x} < 0.00$</td>
<td>$\alpha_f, \alpha_f \rightarrow \alpha_{ben}$</td>
<td>Gnielinsky (Wasser) / Goebel</td>
<td>Unterkühltes Sieden</td>
</tr>
<tr>
<td></td>
<td>$0.00 \leq \dot{x} < 0.05$</td>
<td>$\alpha_f, \alpha_f \rightarrow \alpha_{ben}$</td>
<td>Gnielinsky (Wasser) / Goebel</td>
<td>Schwallströmung, dadurch Vollbenetzung</td>
</tr>
<tr>
<td></td>
<td>$0.05 \leq \dot{x} < 0.10$</td>
<td>$\alpha_f \rightarrow \alpha_m$</td>
<td>Gnielinsky (Wasser) / Goebel</td>
<td>Mittlerer Wärmeübergangskoeffizient nach Phasenverteilungsmodell</td>
</tr>
<tr>
<td>Zweiphasenströmung</td>
<td>$0.10 \leq \dot{x} < 0.90$</td>
<td>$\alpha_m = f(\alpha_f, \alpha_{ben}, \alpha_{n^*})$</td>
<td>Gnielinsky (Wasser) / Goebel / Gnielinsky (Dampf)</td>
<td>Einsetzende Sprühkühlung</td>
</tr>
<tr>
<td></td>
<td>$0.90 \leq \dot{x} < 0.98$</td>
<td>$\alpha_m \rightarrow \alpha_{n^*}$</td>
<td>Gnielinsky (Dampf)</td>
<td>Sprühkühlung sehr klein</td>
</tr>
<tr>
<td></td>
<td>$0.98 \leq \dot{x} < 1.00$</td>
<td>α_{n^*}</td>
<td>Gnielinsky (Dampf)</td>
<td></td>
</tr>
<tr>
<td>Einphasenströmung Dampf</td>
<td>$\dot{x} \geq 1.00$</td>
<td>α_f</td>
<td>Gnielinsky (Dampf)</td>
<td>Dampfströmung</td>
</tr>
</tbody>
</table>

Mit den Indizes f und g sind die Wärmeübergänge der Einphasenströmung bezeichnet. Ist zusätzlich ein (*) vermerkt, so zeigt dies deren Verwendung im Zweiphasenbereich mit veränderter Reynolds-Zahl und hydraulischem Radius an. Der Index ben steht für den Wärmeübergang nach Goebel. Der Index m steht für den gemittelten Wärmeübergangskoeffizient nach Gleichung (3-120). Der Pfeil "→" deutet einen linearen Übergang beim Wechsel des Modells an (siehe Text).

Im Folgenden werden die in Tabelle 3-3 aufgeführten Grenzen für den Wechsel zwischen den einzelnen Wärmeübergangsmodellen erklärt. Die Erläuterung erfolgt für ein bestehendes Rohr. Für die Berechnung des Wärmeübergangs wird im Bereich des unterkühlten Wassers bis $\dot{x} <-0.05$ angenommen, dass erzwungene Konvektion ohne Blasenbildung vorliegt (Gnielinsky). Ab $\dot{x} =-0,05$ wird von unterkühltem Sieden ausgegangen, was den Wärmeübergang verbessert (linearer Übergang). Im Anschluss daran folgt Blasensieden mit seinem guten Wärmeübergang (Goebel). Bei Strömungsmassendampfgehalten $\dot{x} < 0.05$ wurden in den GUDE-Versuchen Schwallströmung gemessen, was eine gute Benetzung und daher einen guten Wärmeübergang mit sich bringt. Zur Vermeidung von Unstetigkeiten folgt ein linearer Übergang des Wärmeübergangskoeffizienten, bis bei $\dot{x} =0,10$ der mit dem Benetzungswinkel gemittelte Wärmeübergangskoeffizient erreicht ist (Goebel, Gnielinsky). Ab einem Strömungsmassendampfgehalt von $\dot{x} =0.90$ wird davon ausgegangen, dass die Rohrwand langsam austrocknet und sich der Einfluss der Sprühkühlung bemerkbar macht. Der Wärmeübergang sinkt also langsam (linearer Übergang). Ab $\dot{x} =0.98$ ist die Kühlwirkung der noch vorhandenen Tröpfchen so klein, dass der Wärmeübergang der Gasströmung (Gnielinsky) verwendet wird.
Der auf diese Weise berechnete Wärmeübergangskoeffizient ist für zwei verschiedene Wärmestromdichten und Massenströme beim Druck von $p=60$ bar in Abb. 3-20 dargestellt. Beim linken Diagramm, das für eine Beheizung von $\dot{q}=30$ kW/m² und $\dot{M}=0.5$ kg/s gilt, wird eine geschlossene Ringströmung erreicht. Im rechten Bild, das für $\dot{q}=56$ kW/m² und $\dot{M}=0.3$ kg/s erstellt ist, liegt im Zweiphasenbereich neben Schwalm- und Nebelströmung nur eine offene Ringströmung vor. Die geschlossene Ringströmung wird auf Grund der geringeren Dampfgeschwindigkeit (geringerer Massenstrom) nicht erreicht.

In den Einphasengebieten ist zu erkennen, dass der größere Massenstrom des linken Diagramms einen verbesserten Wärmeübergang hervorruft. Im Zweiphasenbereich sind in den Diagrammen die Wärmeübergangskoeffizienten der benetzten (obere Linie) und der unbnetzten Rohrwand (untere Linie) gekennzeichnet. Im benetzten Teil der Rohrwand ist im rechten Diagramm, wo die stärkere Beheizung auftritt, auch wie zu erwarten der höhere Wärmeübergang vorhanden. Der gemittelte Wärmeübergang ist aber auf Grund der schlechten Benetzung kleiner als im linken Diagramm.

Abb. 3-20: Gemittelte Wärmeübergangskoeffizient (durchgezogene Linie) für die Einphasenwasserströmung, die Zweiphasenströmung und die Einphasendampfströmung. Das linke Diagramm gilt für $\dot{q}=30$ kW/m² und $\dot{M}=0.5$ kg/s, das rechte für $\dot{q}=56$ kW/m² und $\dot{M}=0.3$ kg/s (jeweils bei $p=60$ bar). Die gepunkteten Linien deuten den Wärmeübergang der benetzten (obere Linie) bzw. unbenetzten Rohrwand (untere Linie) an.

Wärmeübertragung an der äußeren Rohrwand

Die Emisssivität ist für eine diffus strahlende Oberfläche von der Wellenlänge und der Temperatur abhängig. Für die abgestrahlte Energie der Wellenlänge \(\lambda \) eines realen Strahlers gilt mit der Stefan-Boltzmann-Konstante \(\sigma = 5,67051 \cdot 10^{-8} \) W/m\(^2\)K\(^4\) /Baehr 1996/: \[
\dot{q}_{\lambda,s} = \varepsilon(\lambda, T)\sigma T^4 \tag{3-121}
\]

Mit der Vereinfachung der Vernachlässigung des Hüllrohres steht die äußere Rohrwand mit der Himmelsstrahlung und der Solarstrahlung im Strahlungsaustausch. Für eine diffus strahlende Oberfläche ist der hemisphärische spektrale Emissionsgrad gleich dem hemisphärischen spektralen Absorptionsgrad \(\varepsilon(\lambda, T) = \alpha(\lambda, T) \). Wird angenommen, dass die Himmelsstrahlung und die abgestrahlte Wärmestrahlung ähnliche Wellenlängenbereiche haben, bzw. dass sich die Rohrwand dort wie ein grauer Strahler verhält, so gilt \(\varepsilon(T) \approx \alpha(T) \). Damit gilt für die Abstrahlungsverluste der Rohrwand bei der Temperatur \(T_w \): \[
\dot{q}_{\text{loss}} = \sigma \left(\varepsilon T_w^4 - \alpha T_{\text{sky}}^4 \right) = \sigma \varepsilon \left(T_w^4 - T_{\text{sky}}^4 \right) \tag{3-122}
\]

wobei für die Emissivität \(\varepsilon = \alpha(T_w) \) gilt.

Die Vereinfachung des grauen Strahlers gilt nicht für die unterschiedlichen Wellenlängenbereiche der Solarstrahlung und der Wärmestrahlung. Es gilt hier auf Grund der selektiven Beschichtung: \(\varepsilon(T) \neq \alpha(T) \). Die Temperaturabhängigkeit des Absorptionsgrades \(\alpha_s \) der Cermet-Beschichtung des Absorberrohres ist nur sehr schwach ausgeprägt. Die Wärmestromdichte der absorbierter konzentrierter Solarstrahlung berechnet sich mit dem Absorptionsgrad der Solarstrahlung \(\alpha_s \): \[
\dot{q}_{\text{abs}} = \alpha_s \dot{q}_{\text{konz}} \tag{3-123}
\]

Somit berechnet sich die für die Rohrwand gewonnene Energieflussdichte zu: \[
\dot{q}_{\text{gain}} = \frac{\dot{Q}}{\pi d^2 \cdot l} = \frac{1}{2} \dot{q}_{\text{abs}} - \dot{q}_{\text{konz}} = \frac{1}{2} \alpha_s \dot{q}_{\text{konz}} - \sigma \varepsilon(T_w) \left(T_w^4 - T_{\text{sky}}^4 \right) \tag{3-124}
\]

Der gewonnene Wärmestrom \(Q \) ist also die absorbierter konzentrierter Solarstrahlung\(^{22} \) abzüglich der Abstrahlungsverluste gegenüber der Umgebung. Die Himmelstemperatur \(T_{\text{sky}} \) berechnet sich z. B. nach /Swinbank 1963/ aus der Umgebungstemperatur \(T_{\text{amb}} \): \[
T_{\text{sky}} = 0,0552 \cdot (T_{\text{amb}})^{1,5} \tag{3-125}
\]

\alpha_s = 0,966 \tag{3-126}
\]

bestimmt. Die Messwerte für die Emissivität können in Abängigkeit der Rohrwandtemperatur \(T_w \) in [K] folgendermaßen ausgedrückt werden: \[
\varepsilon(T_w) = 0,02303 + 9,28571 \cdot 10^{-5} T_w \tag{3-127}
\]

\(^{22}\) Die Strahlungsfussdichte der konzentrieren Strahlung muß mit 0,5 multipliziert werden, da \(\dot{q}_{\text{konz}} \) auf die halbe Rohreneinheit bezogen ist (nur ca. die Hälfte des Rohrumsauers wird bestrahlt), die Wärmestromdichte \(\dot{q} \) jedoch auf die gesamte Rohreneinheit bezogen ist.
Damit ergeben sich im Temperaturintervall zwischen 250°C und 400°C Emissivitäten zwischen 0,072 und 0,086.

In der Gleichung (3-122) für die Berechnung der Abstrahlverluste geht die Rohrwandtemperatur, wenn man die Temperaturabhängigkeit der Emissivität mitberücksichtigt, in fünfter Potenz ein. Dies brachte Schwierigkeiten bei der numerischen Lösung mit sich. Es wurde eine einfache Annäherung für die Gleichungen (3-122), (3-125) und (3-127) ausgearbeitet. Diese Zahlenwertgleichung setzt eine Umgebungstemperatur von 25 °C ($T_{amb}=298,15$ K) voraus. Sie enthält bereits die Temperaturabhängigkeit der Emissivität nach (3-127):

$$q_{loss} = \sigma \cdot 4,8232777185 \cdot 10^8 \cdot e^{(T_r - 300,68)/131,94} \quad q_{loss} \text{ in [W/m}^2\text{], } T_r \text{ in [K]} \quad (3-128)$$

Abb. 3-21: Linkes Diagramm: Vergleich der exakten und geräumten Berechnung der Verlustwärstemstromdichte durch Abstrahlung ($T_{amb}=25$ °C). Rechtes Diagramm: Auf die Länge bezogene Energieströme der äußeren Rohrwand ($q_{loss} = 56$ kW/m², $d_r=70$ mm, $T_{amb}=25$ °C).
3.3 Modelle weiterer Komponenten

3.3.1 Kollektoroptik

Die in diesem Abschnitt beschriebene Modellklasse führt die Berechnung der auf die Außenseite des Absorberrohres fallenden, konzentrierten Solarstrahlung aus. Dabei müssen eine Reihe von Verlusten beachtet werden.

Optische Verluste charakterisieren die Qualität eines Kollektors. Sie werden durch die Reflektivität des Spiegels, die Transmissivität des Glashüllrohres, den Absorptionsgrad der selektiven Beschichtung und den Intercept-Faktor bestimmt. Zusätzlich geht noch eine Korrektur für die tatsächliche Spiegelfläche23 und für nicht absorbierende Teilstücke des bestrahlten HCE24 ein. Der Intercept-Faktor gibt den Anteil der konzentrierten Strahlung an, der vom Absorberrohr eingefangen wird.

Thermische Verluste des Kollektors sind bereits in der Wärmeübertragung an der äußeren Rohrwand in Kapitel 3.2.3 ab Seite 48 berücksichtigt worden und gehen nicht in die Modellklasse der Kollektoroptik ein.

23 Die effektive Aperturfläche der Spiegel A_{eff} ist auf Grund von Lücken zwischen den Spiegelfacetten kleiner als die aus Aperturöffnung B_{col} und Kollektorlänge L_{col} berechnete Fläche.

Einfaches Modell für die Kollektoroptik. Der Bilanzaum für das einfache Kollektoroptik-Modell umfasst Spiegel und Hüllrohr, aber nicht die Rohrwand. Die Absorptivität der selektiven Beschichtung, sowie die Abstrahlung ist bereits in der Modellklasse für die Rohrwand berücksichtigt worden. Das Hüllrohr geht nur mit seinem Transmissionsgrad ein. Die verwendeten Wirkungsgrade müssen als integrale Werte über einen gesamten Kollektor betrachtet werden. Der optische Wirkungsgrad wird hier folgendermaßen definiert:

\[
\eta_{opt} = \frac{\text{Leistung der konzentrierten Solarstrahlung auf Absorberrohroberfläche}}{\text{Leistung der Direktstrahlung auf Aperturfläche des Kollektors}} \tag{3-129}
\]

Der in Gleichung (3-129) definierte, optische Wirkungsgrad berechnet sich für den Spezialfall des *senkrechten Einfallswinkels* (Index 0) folgendermaßen:

\[
\eta_{opt,0} = \left(\frac{A_{eff,0}}{L_{Koll}} \right) \left(\frac{L_{IK,Eff, bear,0}}{L_{IK,Eff, bear,0}} \right) \cdot \rho_0 \tau_0 \gamma_0 \tag{3-130}
\]

mit:
- \(A_{eff,0} \): Effektive Aperturfläche der Spiegelfacetten im Einbauzustand \([m^2]\)
- \(L_{Koll} \): Länge des Kollektors \([m]\)
- \(B_{Koll} \): Aperturweite des Kollektors \([m]\)
- \(L_{IK,Eff, bear,0} \): Effektive (absorbierende) bestrahlte Länge des Absorberrohres \([m]\)
- \(L_{IK,Eff, bear,0} \): bestrahlte Länge des Absorberrohres \([m]\)
- \(\rho_0 \): Reflexionsgrad der Spiegel \([-]\)
- \(\tau_0 \): Transmissionsgrad des Hüllrohres \([-]\)
- \(\gamma_0 \): Intercept-Faktor \([-]\)
- Index \(\theta \): bei senkrechtem Einfall der Strahlung.

Bei nicht senkrechtem Einfall der Solarstrahlung auf den Kollektor geht der Wirkungsgrad mit dem Kosinus des Einfallswinkels zur Kollektornormalen zurück. Hinzu kommen noch End- und Mittelverluste, Änderungen in den bestrahlten Längen der HCE, sowie die Winkelabhängigkeit der Materialgrößen \((\rho_0, \tau_0, \alpha_0) \) und des Intercept-Faktors. Dieses Verhalten kann durch den Incident Angle Modifier (IAM) beschrieben werden. Er wird hier wie folgt definiert:

\[
K_{IAM} = \frac{\eta_{opt}}{\eta_{opt,0}} \tag{3-131}
\]

\[
K_{IAM} = \cos \theta - 0,0003512 \cdot \theta - 0,00003137 \cdot \theta^2 \tag{3-132}
\]

Dabei ist \(\theta \) der Einfallswinkel der Solarstrahlung zur Kollektornormalen in Grad.

25 Der IAM ist in der Testreihe von SNL etwas anders als in der vorliegenden Arbeit definiert worden. Die Endverluste sind eliminiert worden, d. h. Beziehung (3-132) gilt für einen unendlich langen Kollektor, während die in dieser Arbeit benutzte Definition (3-131) des IAM Endverluste enthält.
Die Wärmestromdichte der konzentrierten Solarstrahlung auf der Absorberrohraußenseite kann über den optischen Wirkungsgrad, das geometrische Konzentrationsverhältnis und die Direktstrahlung berechnet werden. Dabei ist zu beachten, dass die Wärmestromdichte der konzentrierten Solarstrahlung \(q_{konz} \) im Rechenprogramm auf die halbe äußere Rohrumfangsfläche bezogen ist:

\[
q_{konz} = \eta_{\text{eff}} \left(\frac{B_{\text{koll}}}{\pi d_a} \right) \cdot I_{d_r}
\]

(3-133)

In Tabelle 3-4 sind die für die Simulation zu Grunde gelegten Kollektorabstände abgedruckt. Mit diesen Werten errechnet sich ein optischer Kollektorwirkungsgrad bei senkrechtem Einfallswinkel der Strahlung

\[
\eta_{\text{opt}} (\theta = 0^\circ) = \eta_{\text{opt},0} = 76\%
\]

(3-134)

In /Pharabod 1991/ ist für den LS-3-Kollektor ein optischer Wirkungsgrad angegeben, der umgerechnet auf die Definition (3-129) einen Wert von 79,6 % ergibt.

Tabelle 3-4: Geometriedaten des auf der PSA vermessen, modifizierten LS-3-Kollektors und für die Simulation angenommenen Kollektordaten.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Größe</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{\text{eff}})</td>
<td>271,8 m²</td>
<td>Effektive Aperturfläche der Spiegelfacetten im Einbauzustand + Aperturfläche des Absorberrohres</td>
</tr>
<tr>
<td>(L_{\text{kol}})</td>
<td>49,36 m</td>
<td>Länge eines Kollektors</td>
</tr>
<tr>
<td>(B_{\text{koll}})</td>
<td>5,76 m</td>
<td>Aperturweite eines Kollektors</td>
</tr>
<tr>
<td>(L_{\text{HCE,best}})</td>
<td>3,987 m</td>
<td>Ein HCE ist 4,074 m lang (^1). Davon werden aber nur 3,987 m von den Spiegeln bestrahlt.</td>
</tr>
<tr>
<td>(L_{\text{HCE,eff,best}})</td>
<td>3,844 m</td>
<td>Von 3,987 m bestrahlten HCE sind nur 3,844 m absorbierend.</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>0,90</td>
<td>Mittelwert des Reflexionsgrades der Spiegel mit Verschmierungs- und Wasch-Zyklus wie in Kramer Junction (^2)</td>
</tr>
<tr>
<td>(\varphi_0)</td>
<td>0,95</td>
<td>Mittelwert des Transmissionsgrades des Hülrohres mit Verschmierungs- und Wasch-Zyklus wie in Kramer Junction (^2)</td>
</tr>
<tr>
<td>(\gamma_0)</td>
<td>0,96</td>
<td>Annahme für den Intercept-Faktor (^2)</td>
</tr>
</tbody>
</table>

\(^1\)/Cohen 1999/ \(^2\)/Kemme 1998/

26 Die Simulationsrechnungen in Kapitel 5 wurden alle mit einem Einfallswinkel von 0° berechnet.

27 In /Pharabod 1991/ ist der optische Wirkungsgrad mit 77,2 % angegeben (inklusive Absorptionsgrad von 97 %). Da in dieser Arbeit der optische Wirkungsgrad den Absorptionsgrad des Rohres nicht enthält, müßte der Wirkungsgrad von 77,2 % noch durch den Absorptionsgrad von 0,97 geteilt werden.
3.3.2 Regler

\[y = K_{PR} \cdot (w - x) + K_{IR} \cdot \int (w - x) dt \] \hspace{1cm} (3.135)

\(K_{PR} \) und \(K_{IR} \) sind Parameter, die bei der Reglersynthese bestimmt werden.

3.3.3 Ventile

Unter Vernachlässigung der Speicherfähigkeit des Ventils lautet die Kontinuitätsgleichung:

\[\dot{M}_1 + \dot{M}_2 = 0 \] \hspace{1cm} (3.136)

In der Energiebilanz wird die Gewichtskraft und die kinetische Energie vernachlässigt. Das Ventil sei gegenüber der Umgebung gut isoliert (Betrachtung als adiabates Ventil):

\[\dot{M}_1 h_1 + \dot{M}_2 h_2 = 0 \] \hspace{1cm} (3.137)

Die Impulsbilanz, in der auch der Reibungsdruckverlust eingeht, wird durch die Ventilkennlinie beschrieben. Sie hängt von der Bauart des Ventils ab und beschreibt den Zusammenhang zwischen Ventilstellung \(H \), Massenstrom \(\dot{M} \) und Druckdifferenz \(\Delta p_v \):

\[F(H, \dot{M}, \Delta p_v) = 0 \] \hspace{1cm} (3.138)

Gleichprozentige Ventilkennlinie. Die gleichprozentige Kennlinie kann durch eine Exponentialfunktion dargestellt werden:

\[k_V = k_{V0} \cdot e^{n_{gl} H} \quad (3\text{-}139) \]

Die Ventilkennlinie ist durch die zwei Parameter \(k_{V0} \) und \(n_{gl} \) bestimmt. Der Parameter \(n_{gl} \) kann aus dem \(k_{V\text{NS}} \)-Wert und dem \(k_{V\text{0}} \)-Wert folgendermaßen berechnet werden:

\[n_{gl} = \ln \left(\frac{k_{V\text{NS}}}{k_{V0}} \right) \quad (3\text{-}140) \]

Aus Gleichung (3-139) erhält man für die gleichprozentige Ventilkennlinie:

\[H = \frac{1}{n_{gl}} \cdot \ln \left(\frac{3600 \cdot \dot{M} \cdot \sqrt{\Delta p_{V0}}}{k_{V0} \cdot \sqrt{\rho_0 \cdot \rho \cdot \Delta p_V}} \right) \quad \text{für } H \geq 0,10 \quad (3\text{-}141) \]

mit \(\rho \) und \(\rho_0 \) in [kg/m\text{3}], \(k_{V0} \) in [m\text{3}/h] und \(\dot{M} \) in [kg/s]. Der Faktor 3600 wird notwendig, da der \(k_{V0} \)-Wert nicht in SI-Einheiten gemessen wird.

Lineare Ventilkennlinie. Die lineare Kennlinie kann durch 2 Parameter folgendermaßen beschrieben werden /Schneider 1984/:

\[k_V = k_{V0} + (k_{V\text{NS}} - k_{V0}) \cdot H \quad (3\text{-}142) \]

In /Dubbel 1981/ wird die Schreibweise mit einem zusätzlichen Parameter \(n_{lin} \) angegeben, der aber durch den \(k_{V0} \)-Wert und \(k_{V\text{NS}} \)-Wert ausgedrückt werden kann:

\[k_V = k_{V0} + n_{lin} k_{V\text{NS}} \cdot H \quad \text{mit} \quad n_{lin} = 1 - \frac{k_{V0}}{k_{V\text{NS}}} \quad (3\text{-}143) \]

Aus Gleichung (3-142) erhält man für die lineare Ventilkennlinie:

\[H = \frac{1}{(k_{V\text{NS}} - k_{V0})} \cdot \left(\frac{3600 \cdot \dot{M} \cdot \sqrt{\Delta p_{V0}}}{\sqrt{\rho_0 \cdot \rho \cdot \Delta p_V}} - k_{V0} \right) \quad \text{für } H \geq 0,10 \quad (3\text{-}144) \]

mit \(\rho \) und \(\rho_0 \) in [kg/m\text{3}], \(k_{V0} \) und \(k_{V\text{NS}} \) in [m\text{3}/h] und \(\dot{M} \) in [kg/s].

Korrektur für Ventilöffnungen kleiner 10 %. Die obigen Ventilkennlinien sind theoretische Grundformen. Für kleine Ventilöffnungen wird das reale Ventil häufig nicht mehr korrekt durch die Grundform beschrieben. Aus diesem Grund wurde für die Simulation des Ventils ein weiterer Parameter \(k_{V\text{idel}} \) eingeführt, der den \(k_l \)-Wert für ein vollständig geschlossenes Ventil \((H=0) \) darstellt. Für Hubstellungen unterhalb 10 % der Öffnung \((H<H_{10}) \) ist vereinfacht ein linearer Verlauf des Volumenstromes gegen den Wert \(k_{V\text{idel}} \) für ein vollständig geschlossenes Ventil vorgesehen. Für beide beschriebenen Ventiltypen soll für Öffnungen kleiner 10 % gelten:

\[H = \frac{1}{10 \cdot k_{V10} - k_{V\text{idel}}} \cdot \left(\frac{3600 \cdot \dot{M} \cdot \sqrt{\Delta p_{V0}}}{\sqrt{\rho_0 \cdot \rho \cdot \Delta p_V}} - k_{V\text{idel}} \right) \quad \text{für } H < 0,10 \quad (3\text{-}145) \]

Der \(k_{V\text{idel}} \)-Wert kann für die Modellierung aus numerischen Gründen nicht vollständig auf Null gesetzt werden. Er kann auf einen Wert von ca. minimal 10\(^{-6}\) verkleinert werden, bis eine Division durch Null auftritt.

\(^28\) Der \(k_{V\text{idel}} \)-Wert kann für die Modellierung aus numerischen Gründen nicht vollständig auf Null gesetzt werden. Er kann auf einen Wert von ca. minimal 10\(^{-6}\) verkleinert werden, bis eine Division durch Null auftritt.
wobei \(k_{\text{fl}} \) der \(k_{\text{fl}} \)-Wert bei 10 % Ventilöffnung \((H=10)\) und \(k_{\text{Vdb}} \) der \(k_{\text{fl}} \)-Wert bei geschlossenem Ventil \((H=0)\) ist.

\[M \left[\frac{\text{kg}}{\text{s}} \right] = \frac{\Delta p}{V} \]

\(\Delta p = 1 \text{ bar}, 3 \text{ bar} \) und 6 bar. Das linke Diagramm stellt ein Ventil mit gleichprozentiger Kennlinie, das rechte ein Ventil mit linearer Kennlinie dar \((k_{\text{fl}}=0,4; k_{\text{Vdb}}=0,04; k_{\text{Vdb}}=10^{-6}=0.\) Unterkühltes Wasser: \(\theta = 255 \text{ °C}, p = 60 \text{ bar}.\)

Abb. 3-23: Massenstrom \(\dot{M} \) in Abhängigkeit des Ventilhubes \(H \) bei Druckdifferenzen über das Ventil von \(\Delta p = 1 \text{ bar}, 3 \text{ bar} \) und 6 bar. Das linke Diagramm stellt ein Ventil mit gleichprozentiger Kennlinie, das rechte ein Ventil mit linearer Kennlinie dar \((k_{\text{fl}}=0,4; k_{\text{Vdb}}=0,04; k_{\text{Vdb}}=10^{-6}=0.\) Unterkühltes Wasser: \(\theta = 255 \text{ °C}, p = 60 \text{ bar}.\)

Die Stell dynamik des Ventils (Zeit für Öffnen und Schließen) ist bisher nicht beachtet worden. Sie spielt in der Regel bei richtig eingestellten Reglparametern auch keine Rolle, da die Zeitkonstante des Reglers dann größer als die des Ventils ist\(^{29}\).

\(^{29}\) In die Modellbibliothek ist ein lineares und ein gleichprozentiges Ventil, welches die Stell dynamik berücksichtigt, aufgenommen worden. Mit diesen Ventilen könnten die unterlagerten Regelkreise der Ventile im Hinblick auf das Zusammenspiel von Regel- und Stell dynamik untersucht werden. Die Berechnung erfolgt aus numerischen Gründen (Events) in der aktuellen Bibliothek sehr langsam.
3.3.4 Düse

Bei allen Konzepten der Direktverdampfung ist im Überhitzerbereich ein Einspritzkühler vorhanden, der die Temperaturregelung für den Eintritt des Dampfes in die Turbine gewährleistet. Im Injektionskonzept sind Einspritzkühler auch im Verdampferabschnitt angeordnet.

Mit denselben Vereinfachungen wie beim Ventil (Seite 54) sind die Kontinuitätsgleichung (3-136) und die Energiebilanz (3-137) auch für die Düse gültig30. Die stationäre Impulsbilanz führt zu folgender Druckverlustcharakteristik der Düse:

\[
\Delta p = C \cdot \frac{\dot{M}^2}{\rho} \tag{3-146}
\]

Der Druckverlust über die Düse wird mittels eines Druckdifferenzmessers aufgenommen. Daraus kann mit der Düsenkenmlinie der Massenstrom bestimmt werden \cite{Zarza1998}. Der so ermittelte Massenstrom stellt die Regelgröße für den PI-Regler des Einspritzventils dar. Die Düsenkenmlinie muss zur Gewährleistung des richtigen Einspritzmassenstromes genau bekannt sein. Aus diesem Grund wurden die Verlustbeiwerte \(C'' \) experimentell für jede Düse der DISS-Anlage ermittelt. Für die bei der Messung ermittelten Werte \(C'' \)-Werte muss Gleichung (3-146) modifiziert werden:

\[
\Delta p = 10^{10} C'' \cdot \frac{\dot{M}^2}{\rho} \tag{3-147}
\]

mit \(\Delta p \) in [N/m\(^2\)], \(\dot{M} \) in [kg/s] und \(\rho \) in [kg/m\(^3\)].

3.3.5 Pumpe

SimplePump. Diese Klasse umfasst die Pumpe, jedoch ohne Antrieb und Getriebe. Die Pumpe wird ohne Speichervermögen und als örtlich nicht verteiltes System modelliert. Die Kontinuitätsgleichung lautet wie bei Düse und Ventil:

\[
\dot{M}_1 + \dot{M}_2 = 0 \tag{3-148}
\]

Unter Vernachlässigung von kinetischer und geodätischer Energie und unter der Voraussetzung, dass das gepumpte Fluid keine Wärme abgibt (adiabat), lautet die Energiebilanz:

\[
\dot{M}_1 h_1 + \dot{M}_2 h_2 + P_{ech} = 0 \tag{3-149}
\]

30 Die kinetische Energie zwischen Ein- und Austritt der Düse ändert sich zwar stark. Sie ist aber in der Energiebilanz im Vergleich zu der im Absorberrohr zugeführten Energie vernachlässigbar.
mit der zugeführten technischen Arbeit \(P_{tech} \). Die reversibel zuzuführende Arbeit einer idealen Pumpe für ein inkompressibles Medium ist:

\[
P_{rev} = \frac{M}{\rho} (p_2 - p_1)
\]

Nach dem Hauptsatz \(dh = v dp + T ds \) geht bei einer realen Pumpe ein Teil der technischen Arbeit durch Irreversibilitäten nicht als Druckgewinn ein \((T ds) \). Dies wird durch den isentropen Wirkungsgrad \(\eta_s \) ausgedrückt:

\[
P_{tech} = \frac{1}{\eta_s} \cdot P_{rev}
\]

Auf Grund von Reibungsvorgängen innerhalb der Pumpe und der Welle zum Motor, sowie Liefergraden<1 sind weitere Exergieverluste zu verzeichnen. Dies soll mit dem Wirkungsgrad \(\eta_p \) berücksichtigt werden. Insgesamt lautet dann die der Pumpenwelle (nicht dem Motor) zuzuführende Leistung\(^{31}\):

\[
P_{welle} = \frac{1}{\eta_p} \cdot \frac{1}{\eta_s} \cdot \frac{M}{\rho} (p_2 - p_1)
\]

MotorAndDrive. In dieser Klasse wird das Verhalten von Motor und Getriebe dargestellt. Zum jetzigen Zeitpunkt ist dies durch die Angabe eines weiteren Wirkungsgrades \(\eta_{mot} \) berücksichtigt:

\[
P_{zu} = \frac{1}{\eta_{mot}} \cdot P_{welle}
\]

3.3.6 Abscheidebehälter

In dieser Arbeit wird der Abscheidebehälter als Spezialfall der Basisklasse eines Behälters mit \(n \) Anschlüssen dargestellt. Um Informationen über die Füllhöhe des Behälters zu bekommen ist noch eine Klasse implementiert, die als Füllstandsanzeige dient. Über die Füllhöhe wird beim Rezirkulationskonzept der Massenstrom der Speisewasserpumpe geregelt.

Basisklasse Behältermodell. Für das Wasser-Dampf-Gemisch wird von einem homogenen Gleichgewichtsmodell ausgegangen. Die Durchmischung innerhalb des Behälters sei so gut, dass überall von einer konstanten Fluidtemperatur \(T \) ausgegangen werden kann. Im Behälter liegt der konstante Siededruck \(p \) vor. Der Wärmeverlustwiderstand der Wand ist die

\(^{31}\) In der Energiebilanz tritt \(P_{tech} \) und nicht \(P_{welle} \) auf, da angenommen wird, dass die durch Reibung der Maschinenteile produzierte Wärme an die Umgebung und nicht an das Fluid abgegeben wird.
Summe aus den einzelnen Widerständen, wobei der Gesamtwiderstand durch den Wärmeleitwiderstand der Isolierung angenähert werden kann:

\[
R = \frac{1}{\alpha_i A_i} + \frac{\delta_{i\text{ns}}}{\lambda_{m,i\text{ns}} A_{m,i\text{ns}}} + \frac{\delta_{i\text{VH}}}{\lambda_{m,i\text{VH}} A_{m,i\text{VH}}} + \frac{1}{\alpha_i A_i} \geq \frac{\delta_{i\text{ns}}}{\lambda_{m,i\text{ns}} A_{m,i\text{ns}}}
\]

(3-154)

Damit berechnet sich der Verlustwärmestrom des Behälters vereinfacht durch:

\[
\dot{Q}_{\text{loss}} = \frac{\lambda_{m,i\text{ns}}}{\delta_{i\text{ns}}}(T - T_{\text{amb}})
\]

(3-155)

Durch obige Vereinfachung ist die Wandtemperatur \(T_w\) gleich der Fluidtemperatur \(T\). Zusätzlich wird angenommen, dass die Wärmekapazität der Isolierung im Vergleich zur Wärmekapazität von Behälterwand und Fluid vernachlässigbar ist. Die Wärmekapazität der Rohrwand sei unabhängig von der Temperatur. Kinetische Energien und der Einfluss der Gewichtskraft werden vernachlässigt. Unter diesen Annahmen gelten für den gesamten Behälter mit \(n\) Anschlüssen folgende Gleichungen:

\[
\frac{dM_{SYS}}{dt} = \sum_{i=1}^{n} \dot{M}_i
\]

(3-156)

\[
(M_w c_w) \frac{dT}{dt} + \frac{d(M_{SYS} u)}{dt} = \sum_{i=1}^{n} \dot{M}_i h_i - \frac{\lambda_{m,\text{ns}}}{\delta_{\text{ns}}} A_{m,\text{ns}} (T - T_{\text{amb}})
\]

(3-157)

für alle \(i, j = 1 \ldots n\): \(p_i = p_j\)

(3-158)

Weitere benutzte Zusammenhänge sind die Stoffwertroutinen und der Zusammenhang zwischen der Dichte \(\rho\) des homogenen Gemisches, der sich im Behälter befindlichen Masse \(M_{SYS}\) und dem Behältervolumen \(V_{SYS}\):

\[
F(T, \rho, u) = 0 \quad \text{und} \quad \rho = \frac{M_{SYS}}{V_{SYS}}
\]

(3-159)

Abscheidebehälter. Für den Spezialfall des Abscheidebehälters im Rezirkulationskonzept ist die Anzahl der Anschlüsse \(n=3\), wobei zwei Bedingungen für die spezifische Enthalpie vorgegeben sind: Am Ausgang der flüssigen Phase muss in Gleichung (3-157) \(h = h'\) (Siedelinie) gelten, am Ausgang des Dampfes ist \(h = h''\) (Taulinie).

Füllstandsanzeige. Für eine Füllstandsregelung muss der Füllstand in der Abscheidetrommel bekannt sein. Für die Simulation der Füllstandshöhe wird der reale Abscheidetank durch einen zylindrischen Tank (ohne Deckel- und Bodenwölbung) gleichen Volumens \(V_{SYS}\) und Innendurchmessers \(d_t\) angenähert. Der Massendampfgehalt \(x\) ist über eine Zustandsgröße (z. B. \(h\)) berechenbar. Über den Dampfgehalt \(\varepsilon\)

\[
\varepsilon = \frac{x}{x + (1-x) \cdot \frac{\rho_g}{\rho_f}}
\]

(3-160)

lässt sich die Füllhöhe \(l\) des Tankes berechnen:

\[
l = (1 - \varepsilon) \cdot \frac{4 \cdot V_{SYS}}{\pi d_t^2}
\]

(3-161)
4 Umsetzung des Modells in Modelica

4.1 Diskretisierung der Erhaltungsgleichungen

Um partielle Differentialgleichungen numerisch lösen zu können, müssen die kontinuierlichen Gleichungen diskretisiert werden. In dieser Arbeit erfolgt die Diskretisierung mit Hilfe finiter Differenzen.

4.1.1 Finite-Differenzen

Tabelle 4-1: Überblick über gebräuchliche Finite-Differenzen-Schemata.

<table>
<thead>
<tr>
<th></th>
<th>Rückwärtsdifferenzen</th>
<th>Vorwärtsdifferenzen</th>
<th>Zentraldifferenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ableitung</td>
<td>(\frac{f_{k} - f_{k-1}}{\Delta x})</td>
<td>(\frac{f_{k+1} - f_{k}}{\Delta x})</td>
<td>(\frac{f_{k+1} - f_{k}}{2\Delta x})</td>
</tr>
<tr>
<td>2. Ableitung</td>
<td>(\frac{f_{k+2} - 2f_{k+1} + f_{k}}{(\Delta x)^2})</td>
<td>(\frac{f_{k+2} - 2f_{k+1} + f_{k}}{(\Delta x)^2})</td>
<td>(\frac{f_{k+1} - 2f_{k+1} + f_{k}}{(\Delta x)^2})</td>
</tr>
<tr>
<td>Fehlerordnung</td>
<td>O((\Delta x))</td>
<td>O((\Delta x))</td>
<td>O((\Delta x^2))</td>
</tr>
</tbody>
</table>

4.1.2 Verwendete Diskretisierungsschemata

Die die Fluidströmung beschreibenden, vereinfachten Differentialgleichungen (3-61) bis (3-63) müssen daher nur bezüglich der Ortskoordinaten diskretisiert werden. Die Nutzung der automatischen Zeitintegration hat neben vielen Vorteilen aber auch den Nachteil, dass die Auswahl der Diskretisierungsmethoden sehr eingeschränkt ist. Da der Zeitintegrator die Zeit schrittweite automatisch wählt, hat der Anwender auch keinen Einfluss auf die Courant-Zahl, 32 Die Tabelle hat keinen Anspruch auf Vollständigkeit. Es gibt weitere Differenzenschemata mit noch höheren Fehlerordnungen.
welche mitentscheidend für die Genauigkeit eines Verfahrens ist (siehe Anhang E). Auch die
vielversprechenden Mehrschritt-Methoden sind dann nicht anwendbar. Die mit
DASSL/DASSLRT und einfacher Ortsdiskretisierung erreichten Ergebnisse liefern jedoch für
den Anwendungsbereich des Modells ausreichend genaue Ergebnisse (siehe Kapitel 5.1
Validierung des instationären Kollektormodells). Will man die nichtvereinfachten Euler-
Gleichungen (3-22) auch im Hinblick auf Druckstörungen ausreichend genau lösen, so ist die
eigene Programmierung der Zeitdiskretisierung nicht vermeidbar.

Verfahren erster Ordnung. Die spezifische Enthalpie des Wassers am Absorberrohrereintritt
can über die bekannten spezifischen Enthalpie im Vorratsbehälter und der eingekoppelten
Pumpleistung berechnet werden. Daher soll der Massenstrom und die spezifische Enthalpie
des einströmenden Mediums am Eintritt in das Absorberrohr vorgegeben werden. In einem
Kraftwerk wird der Druck am Absorberrohraustritt über den Kondensationsdruck und die Art
der Fahrweise der Turbine festgelegt. Diese Aufbringung der Randbedingungen ist eine der
Möglichkeiten, die seitens der Theorie der Charakteristiken physikalisch möglich ist (siehe
Tabelle 3-1 auf Seite 24). Es bietet sich daher an, die örtlichen Gradienten der Kontinuitäts-
gleichung und Energiebilanz durch Rückwärtsdifferenzen zu diskretisieren und die Druck-
verlustgleichung durch Vorwärtsdifferenzen. Dadurch ergibt sich aus den Gleichungen (3-61)
bis (3-63) das diskretisierte System erster Ordnung:

\[
\frac{\partial \rho_k}{\partial t} = - \rho_k \frac{w_{k-1} w_{k-1}}{\Delta z}
\]
\[
0 = - \frac{p_{k+1} - p_k}{\Delta z} - \left(\frac{dp}{dz} \right)_{v_k}
\]
\[
\frac{\partial \left(\rho_k \left(\frac{h_k + w_k^2}{2} \right) \right)}{\partial t} = - \rho_k \frac{w_k}{h_k + \frac{w_k^2}{2}} - \rho_{k-1} w_{k-1} \left(\frac{h_{k-1} + \frac{w_{k-1}^2}{2}}{\Delta z} \right) + q_k \frac{U_k}{A}
\]

Das Ergebnis dieses Diskretisierungsschemas ist im oberen Diagramm der Abb. 4-2 auf Seite
65 zu sehen. Wenn nicht anders erwähnt, werden die Simulationen in dieser Arbeit mit dem
Diskretisierungsschema (4-1) durchgeführt.

Der Ausdruck \(\rho w \) kann wie folgt durch den Massenstrom ausgedrückt werden: \(\rho w = \dot{M}/A \).
In der Energiebilanz wird die kinetische Energie hier berücksichtigt. Wird die kinetische Energie
vernachlässigt, formt Dymola die Gleichungen anders um und das Problem konvergiert nicht. Eine
genaue Begründung für dieses Verhalten kann im Rahmen dieser Arbeit nicht gegeben werden.
Verfahren zweiter Ordnung. Um die numerische Dissipation (siehe Kapitel 4.1.3) zu vermindern, wird in einer weiteren Version für Kontinuitätsgleichung und Energiebilanz das Zentraldifferenzenschema eingesetzt. Die Druckverlustgleichung bleibt unverändert mit Vorwärtsdifferenzen diskretisiert. Die Gleichungen lauten dann:

\[
\frac{\partial \rho_k}{\partial t} = -\frac{\rho_{k+1} w_{k+1} - \rho_{k-1} w_{k-1}}{2\Delta z} \\
0 = -\frac{p_{k+1} - p_k}{\Delta z} - \left[\frac{dp}{dz} \right]_{k} \\
\frac{\partial \left(\rho_k \left(u_k + \frac{v_k^2}{2} \right) \right)}{\partial t} = -\rho_{k+1} w_{k+1} \left(h_{k+1} + \frac{v_{k+1}^2}{2} \right) - \rho_{k-1} w_{k-1} \left(h_{k-1} + \frac{v_{k-1}^2}{2} \right) + \frac{q_k}{A}
\]

(4-2)

Wie zu erkennen ist, sind jetzt auch noch zusätzliche Randbedingungen für den Massenstrom \(\dot{M} \) und die spezifische Enthalpie \(h \) am Rohraustritt vorzusehen. Diese Randbedingungen sind keine physikalischen, sondern numerische Randbedingungen. Das Problem dieser unbekannten Randbedingungen kann gelöst werden, indem das letzte Element des Absorberstranges mit dem Verfahren erster Ordnung von Gleichung (4-1) gebildet wird. Dann ist wie beim Verfahren erster Ordnung am Austritt nur der physikalisch vorgegebene Druck anzugeben. Das Ergebnis dieses Diskretisierungsschemas ist im mittleren Diagramm der Abb. 4-2 auf Seite 65 zu sehen.

\[
D_v = -\varepsilon(\Delta z)^4 \frac{\partial^4 v}{\partial z^4}
\]

(4-3)

bzw. mit einem Zentraldifferenzenschema diskretisiert:

\[
D_v = -\varepsilon(v_{k-2} - 4v_{k-1} + 6v_k - 4v_{k+1} + v_{k+2})
\]

(4-4)

Dieses Dämpfungsglied wurde in einer dritten Version der Diskretisierung auf die rechte Seite der mit Zentraldifferenzen diskretisierten Kontinuitätsgleichung und Energiebilanz (Gleichungen (4-2)) hinzuaddiert. Der Dämpfungskoeffizient \(\varepsilon \) darf nicht zu groß gewählt werden /Hoffmann 1993/. Im mittleren Diagramm der Abb. 4-2 auf Seite 65 ist die Wirkung des Dämpfungsgliedes zu erkennen. Es vermindert die Oszillationen, ohne dass die Dissipation merklich verstärkt wird.
4.1.3 Genauigkeit diskretisierter Gleichungen – numerische Diffusion

Wenn für ein vorliegendes Problem ein konvergentes Lösungsschema gefunden ist, stellt sich noch die Frage nach der Genauigkeit der Lösung der Finite-Differenzen-Gleichung gegenüber der Lösung der ursprünglichen, partiellen Differenzialgleichung.

Abb. 4-1: Ausbreitung eines Rechteckimpulses der Temperatur in adiabater Strömung (ohne Rohrwand). Dargestellt ist links ein Verfahren erster Ordnung (Rückwärtsdifferenzen), rechts ein Verfahren zweiter Ordnung (Zentraldifferenzen mit Dämpfungsglied).

Insgesamt sind drei verschiedene Diskretisierungsschemata implementiert worden. Als ein Verfahren erster Ordnung sind Rückwärtsdifferenzen34, als Verfahren zweiter Ordnung sind Zentraldifferenzen und zur Verringerung der numerischen Dispersion Zentraldifferenzen mit einem Dämpfungsglied vierter Ordnung gewählt worden. Die Ergebnisse des oben beschriebenen, numerischen Experiments der drei Verfahren sind in Abb. 4-2 in Zeitdiagrammen dargestellt. Im oberen Diagramm der Rückwärtsdifferenzen ist deutlich die Verschmierung und Abflachung des aufgebrachten Rechteckimpulses durch numerische Dissipation zu erkennen. Im mittleren Diagramm der Zentraldifferenzen ohne Dämpfungsglied ist die numerische Dissipation geringer, dafür ist aber deutlich eine numerische Dispersion zu erkennen. Im unteren Diagramm der Zentraldifferenzen mit Dämpfungsglied ist anschaulich die Wirkung des Dämpfungsgliedes auf die durch ein Verfahren zweiter Ordnung verursachten Oszillationen aufgezeigt.

34 Die verschiedenen Diskretisierungsverfahren beziehen sich hier nur auf die Kontinuitätsgleichung und die Energiebilanz. Die Druckverlustgleichung wird immer mit Vorwärtsdifferenzen diskretisiert.
auf die Zeitdiskretisierung hat, existieren sicherlich besser geeignete Diskretisierungsschemata für die zu Grunde liegenden partiellen Differentialgleichungen.

Abb. 4-2: Ausbreitung eines Rechteckimpulses der Temperatur in adiabater Strömung (ohne Rohrwand) für verschiedene Diskretisierungsschemata. In jedem Diagramm ist der zeitliche Verlauf des aufgegebenen Rechteckimpulses am Eintritt (z=0 m), in der Rohrmitte (z=25 m) und am Rohrende (z=50 m) aufgezeichnet. Als Dämpfungsfaktoren des Verfahrens mit Dämpfung wurden \(\varepsilon_{\text{Konst}} = 0.01 \) und \(\varepsilon_{\text{Energiebilanz}} = 0.58 \) benutzt.

Einfluss der Diskretisierungslänge. Wie in Anhang E auf Seite 105 beschrieben, ist die numerische Dissipation abhängig von der Courant-Zahl und dem Winkel \(\Theta \) (Der Winkel \(\Theta \) ist abhängig von Diskretisierungschnittweite bzgl. des Ortes und der Wellenlänge der Störung). Im Folgenden wird angenommen, dass sich die Gleichungen in Dymola mit der automatischen Zeitdiskretisierung verhalten wie das in Anhang E betrachtete System. Wird die Diskretisierungslänge verkleinert, so wird, gleiche Zeitschrittweite vorausgesetzt, die Courant-Zahl größer. Auch der Winkel \(\Theta \) wird vergrößert. Nach den Erklärungen in Anhang E müsste sich dann die numerische Dissipation durch eine feinere Diskretisierung vermindern. Aus diesem Grund wurde für die oben beschriebene 50 m lange, adiabate Rohströmung das Übertragungsverhalten des Rechteckimpulses am Rohraustritt mit 10 und 20 Elementen berechnet und mit der exakten Lösung verglichen. Im linken Teil von Abb. 4-3 ist das Ergebnis
der Diskretisierung mit Rückwärtsdifferenzen, im rechten Teil das Ergebnis der Diskretisie-
run mit Zentraldifferenzen mit Dämpfungsglied dargestellt. Wie zu erwarten war, verklei-
nert sich die numerische Dissipation mit feinerer Diskretisierung. Einem beliebig kleinen
Knotenabstand der finiten Differenzen stehen aber häufig, wie auch im vorliegenden Fall,
Restriktionen bzgl. der Rechnerkapazität entgegen.

\[\text{Zeit [s]} \]
\[\text{Temperatur [°C]} \]
\[\text{exakt} \]
\[n=20 \]
\[n=10 \]

Abb. 4-3: Übertragungsverhalten eines Rechteckimpulses der Temperatur in adiabater Strömung
(ohne Rohrwand) für verschiedene Anzahlen an Diskretisierungselementen. Links
Diskretisierung mit Rückwärtsdifferenzen, rechts Diskretisierung mit Zentraldifferen-
zen mit Dämpfungsglied vieter Ordnung. \((L=50 \text{ m}) \).

4.2 Objektorientierte Modellierung physikalischer Systeme mit Modelica

Dymola ist eine kommerziell erhältliche Simulationsumgebung für die multidisziplinäre Mo-
dellierung physikalischer Systeme. Zur Erstellung einer Modellbibliothek in Dymola kann
die Simulationssprache Modelica verwendet werden. Mit Modelica wird eine einheitliche
Simulationssprache geschaffen, die von allen Simulationsumgebungen genutzt werden soll.
Im Gegensatz zu einer Programmiersprache (z. B. C++) ermöglicht es Modelica in Verbin-
dung mit der Simulationsumgebung Dymola dem Benutzer, auf einer höheren Abstraktions-
ebene zu arbeiten. Der Nutzer gibt die Gleichungen des physikalischen Systems in der Simu-
lationssprache Modelica ein. Dymola generiert daraus einen C-Quellcode, der von einem C-
Compiler in eine ausführbare Datei umgewandelt wird.

Durch den modularen, flexiblen Einsatz der Modelle in Dymola wird die Wiederverwend-
barkeit des erstellten Modellwissens erhöht. Die Simulationsumgebung vermindert den Pro-
grammieraufwand erheblich und der von Dymola erstellte Quellcode ist sehr effizient.

Objektorientierte Simulationssprache. In Modelica ist das Konzept einer objektorientierten
Simulationssprache verwirklicht. Im Gegensatz zur prozeduralen Programmierung werden
Daten (Attribute) und auf sie angewendete Operationen (Methoden) in abgeschlossenen Ein-
heiten, den Objekten, zusammengeführt. Struktur und Verhalten eines Objektes wird in einer
zu Grunde liegenden Klasse definiert. Die verschiedenen Objekte einer Klasse besitzen die
gleichen Methoden, aber einen eigenen Datenraum. Grundlegende Beziehungen zwischen
den Klassen lassen sich durch die zwei Grundmuster der Vererbung und Aggregation be-

schreiben /Mühlthaler et al. 1998/. In Anlehnung an die Notation von /Booch 1994/ ist in Abb. 4-4 ein Klassendiagramm für die erstellten Druckverlustmodelle abgebildet.

Vererbung oder „is-a“-Relation. Eine Unterklass erbt von einer (Einfachvererbung) oder mehreren Oberklassen (Mehrfachvererbung). Die Unterklasse stellt in der Regel eine Spezialisierung einer Oberklasse dar. In Abb. 4-4 erben z. B. die Einphasendruckverluste für Flüssigkeiten und Gas (OnePhaseGasdp, OnePhaseLiqdp) und die Basisklasse für den Zweiphasendruckverlust (BaseTwoPhasedp) von der Basisklasse des Einphasendruckverlustes (BaseOnePhasedp).

Aggregation oder „part-of“-Relation. Verschiedene Klassen werden zu einer neuen Klasse zusammengeführt. In Abb. 4-4 ist z. B. zu erkennen, dass sich die Basisklasse für den Einphasendruckverlust (BaseOnePhasedp) aus einem auswechselbaren Stoffwertmodell (mediumModel für die Größen υ, p, T, u, h, x), aus einem auswechselbaren Stoffwertmodell für weitere Stoffwerte (mediumextModel, für die Größen η, λ, Pr) sowie den Schnittstellen für die Informationen der Fluidströmung (inwshpMdot für die Größen h, p und M) und des Druckverlustes (infdp für die Größe dp) zusammensetzt.

Abb. 4-4: Klassendiagramm für die Druckverlustmodelle (Ausschnitt aus dem Klassendiagramm für das Absorberrohrmodell in Anhang F).

Hierarchische Modellierung. Durch die oben beschriebenen Werkzeuge ist eine hierarchische Modellierung möglich. In ähnlicher Weise wie in Abb. 4-4 für Druckverlustmodelle dargestellt, lassen sich Modelle für die Wärmeübergange, die Rohrwand und Modelle für die Fluidströmung erstellen, die mit einem Modell für die Kollektoren zu einem Diskretisierungselement des Kollektors aggregiert werden. In Anhang F ist das gesamte Klassendiagramm für die Druckverlustmodelle abgebildet.
gramm für das Absorberrohrmodell für Direktverdampfung in Parabolrinnen sowie der Peripheriekomponenten abgebildet.

Dymola besitzt eine graphische Oberfläche, in denen die Schnittstellen der einzelnen Objekte miteinander verschaltet werden können. Nur gleiche Schnittstellen dürfen miteinander verbunden werden. Man unterscheidet zwei Typen von zu übergebenden Größen: Potenzialgrößen (across-Variable) und Flussgrößen (through-Variable). Bei der Verschaltung zweier Schnittstellen werden die Potenzialgrößen (z. B. h und p) auf den selben Wert gesetzt, während die Summe aller Flussgrößen (z. B. M oder \dot{q}) einer Verbindung Null ergeben muss.

Der Dymola-Übersetzer, der den C-Quellencode erstellt, benutzt die Graphentheorie für Kausalitätszuweisungen, um die Differenzial-Algebra-Gleichungen (DAE) zu sortieren und um minimale, simultan zu lösende Gleichungssysteme zu erhalten (Tearing). Durch Verschaltung der Modellklassen kann es zu Singularitäten kommen, die von Dymola durch eine Index-Reduktion aufgelöst werden35 (siehe auch /Otter et al. 1999/). Mit Ereignissen (so genannte Events) kann die Integration der Differenzialgleichungen unterbrochen und nach Auswertung der Ereignissgleichungen wieder gestartet werden36.

35 Das Fluidelement (mit den instationären Erhaltungsgleichungen) und die Stoffwertroutine ergeben zusammen ein System mit einer so genannten Zwangsungleichung (ρ und u sind über die Stoffwertroutine verbunden und nicht unabhängig voneinander integrierbar). Dymola differenziert die Stoffwert-Routine um das Problem einer singulären Jacobi-Matrix zu lösen.

36 Events werden u. a. beim Übergang von den Einphasengebieten zum Zweiphasengebiet oder umgekehrt eingesetzt.
5 Modellvalidierung und dynamische Simulation eines Kollektors

Im folgenden Kapitel wird die Gültigkeit des erstellten Kollektormodells aufgezeigt und der Einfluss verschiedener Diskretisierungsverfahren auf das Ergebnis diskutiert. Im Anschluss daran wird das Verhalten einzelner 50 m langer Kollektoren mit verschiedenen Randbedingungen simuliert und die Ergebnisse diskutiert. In Abb. 5-1 ist schematisch ein Kollektor mit den aufgeprägten Randbedingungen und Bezeichnungen dargestellt. Wenn nicht anders vermerkt, ist der Injektionsmassenstrom gleich Null.

Abb. 5-1: Bezeichnungen der Randbedingungen für den simulierten Kollektor.

5.1 Validierung des instationären Kollektormodells

Das instationäre Kollektormodell wurde analytisch mit einfachen Energie- und Massebilanzen erfolgreich validiert. Außerdem wurde das Modell mit einem von /Steinmann 1998/ aufgestellten, validierten, numerischen Modell für die instationäre Absorberrohrströmung verglichen und eine gute Übereinstimmung festgestellt. In Abb. 5-2 ist die relative Änderung der spezifischen Enthalpie eines 50 m langen Kollektors abgebildet, der sich innerhalb des Kollektorstrings im Verdampferbereich befindet und dessen Solarstrahlung um 80 W/m\(^2\) sprunghartig zurückgeht. Aufgetragen sind die Ergebnisse des erstellten Modells mit varia-

\(^{37}\) Die Erhaltungsgroße Impuls wurde in dem vorliegenden Modell nicht analytisch betrachtet, da in der zur Druckverlustgleichung vereinfachten Impulsbilanz, die Impulskräfte vernachlässigt worden sind.

![Diagramm](image)

Abb. 5-2: Vergleich des instationären Kollektormodells mit dem Referenzmodell von Steinmann 1998 im Verdampferabschnitt. Normierte spezifische Enthalpieänderung am Austritt des Kollektors beim Rückgang der Einstrahlung um 80 W/m² bei t=10 s (p_e=60 bar, \(M_e=0,5 \) kg/s, \(h_c=2000 \) kJ/kg, \(I_{av}=800 \) W/m²→720 W/m², \(L=50 \) m)

Das numerische Experiment des Rückgangs der Einstrahlung wurde mit sonst gleichen Randbedingungen auch für einen Kollektorstrang im Überhitzerbereich mit beiden Modellen durchgeführt und in Abb. 5-3 dargestellt. Die zeitliche, relative spezifische Enthalpieände-

38 FCT bedeutet Flux-Corrected-Transport. Die FCT-Verfahren eignen sich für die Darstellung scharfer Gradienten (siehe Fletcher 1991).
5 Modellvalidierung und dynamische Simulation eines Kollektors

... (Fortsetzung)

... (Fortsetzung)

5.2 Kollektor im Verdampferabschnitt

Im folgenden Abschnitt wird mit dem erstellten Modell das dynamische Verhalten eines 50 m langen Kollektors unter verschiedenen Randbedingungen untersucht. Der Kollektor befinde sich im Verdampferabschnitt innerhalb des Kollektorstranges.

Um den Einfluss des Wärmeübergangs besser beurteilen zu können, wurde das Kollektorverhalten neben dem vollständigen Modell mit variablen Wärmeübergang auch mit einem vereinfachten Modell mit konstantem Wärmeübergangskoeffizienten von 10000 W/m²K untersucht. Wie man aus Abb. 5-4 erkennt, besitzt die Änderung des Wärmeübergangs einen großen Einfluss auf die Dynamik des Kollektors. Die oben erläuterten Effekte werden durch einen während der Massenstromsteigerung stattfindende Verbesserung des Wärmeübergangs überlagert (siehe durchgezogene Linie). Durch den verbesserten Wärmeübergang wird Energie aus der Rohrwand in das Fluid ausgespeichert, was den kurzzeitigen Anstieg vor dem Rückgang der spezifischen Enthalpie beim Modell mit variablem Wärmeübergangskoeffizienten erklärt.

Abb. 5-4:
Spezifische Enthalpieänderung am Austritt eines Verdampferkollektors nach einer sprungförmigen Erhöhung \(t=10 \text{ s} \) der spezifischen Eintrittsenthalpie \(h_e \) um 335 kJ/kg. Berechnet mit dem vollständigen Modell mit variablem Wärmeübergangskoeffizient (durchgezogene Linie) und einem vereinfachten Modell mit konstantem Wärmeübergangskoeffizienten (gestrichelte Linie). \(\rho_e=60 \text{ bar}, \dot{M}_e=0,5 \text{ kg/s}, h_e=1999 \text{ kJ/kg} \rightarrow 2334 \text{ kJ/kg}, I_{sp}=800 \text{ W/m²}, L=50 \text{ m} \).
Sprungförmige Erhöhung des Eintrittsmassenstromes. In Abb. 5-5 ist die Übertragungsfunktion eines Verdampferkollektors bei einer Erhöhung des Eintrittsmassenstromes zum Zeitpunkt \(t=10 \) s dargestellt. Wie zu erwarten, sinkt die spezifische Enthalpie auf den neuen stationären Endzustand. Innerhalb des Rohres liegt eine offene Ringströmung vor. Da durch die Massenstromerhöhung der Wärmeübergang sowohl an den benetzten, wie auch an den unbenetzten Rohrab schnitten um wenige Prozent verbessert wird, erfolgt eine Wärmeaus- speicherung aus der Rohrwand, was den Rückgang der spezifischen Enthalpie geringfügig verzögert.

Der Massenstrom am Austritt des Kollektors nimmt erst nach einer gewissen Verzögerung den Wert des Eintrittsmassenstromes an. Die Begründung dafür ist, dass sich im neuen stationären Zustand ein größeres Wasserinventar im Kollektor befindet, das erst vom Eintrittsmassenstrom aufgefüllt werden muss.

\[
\begin{align*}
&\text{Enthalpieänderung} \ [\text{kJ/kg}] \\
&\text{Zeit} \ [\text{s}] \\
&0 & 0 \\
&10 & -5 \\
&20 & -10 \\
&30 & -15 \\
&40 & -20 \\
&50 & -25 \\
&60 & -30 \\
&70 & -30 \\
&80 & -30
\end{align*}
\]

\(p_v=60 \) bar, \(M_c=0,5 \) kg/s \(\rightarrow 0,55 \) kg/s, \(h_t=1999 \) kJ/kg, \(I_{de}=800 \) W/m², \(L=50 \) m.

Sprungförmige Erniedrigung des Einspritzmassenstromes am Kollektoreintritt. In der folgenden Simulation ist ein Verdampferkollektor mit Einspritzstelle am Kollektoreintritt berechnet. Ändert sich der Einspritzmassenstrom, so ändert sich für den Kollektor gleichzeitig der Eintrittsmassenstrom und die spezifische Eintrittsenthalpie. Zum Zeitpunkt \(t=10 \) s wird der Einspritzmassenstrom um 0,005 kg/s erniedrigt. Dies kommt einem gleichzeitigen Rückgang des Eintrittsmassenstromes und einer Erhöhung der spezifischen Eintrittsenthalpie gleich. Der neue stationäre Endzustand wird also bei einer höheren spezifischen Enthalpie liegen.
Wie in Abb. 5-6 zu erkennen ist, erfolgt eine merkliche Änderung der spezifischen Enthalpie erst ca. 5 s nach dem aufgebrachten Sprung im Einspritzmassenstrom. Dieses verzögerte Verhalten ist Folge der Überlagerung des Effekts des kurzzeitigen Rückgangs der spezifischen Enthalpie bei Zunahme der spezifischen Eintrittsenthalpie von Abb. 5-4 und der Zunahme der spezifischen Enthalpie bei Rückgang des Eintrittsmassenstromes: die beiden Effekte kompensieren sich in dem betrachteten Spezialfall in den ersten fünf Sekunden. Im Rohr liegt eine offene Ringströmung vor.

Abb. 5-6: Spezifische Enthalpieänderung am Austritt eines Verdampferkollektors nach einer sprungförmigen Erniedrigung ($t=10$ s) des Einspritzmassenstromes um 0,005 kg/s. ($p_a=60$ bar, $\dot{M}_c=0,450$ kg/s, $h_i=2,098$ kJ/kg, $\dot{M}_{\text{in}}=0,050$ kg/s → 0,045 kg/s, $h_{\text{up}}=1110$ kJ/kg, $I_a=800$ W/m², $L=50$ m).

5.3 Kollektor im Überhitzerabschnitt

In diesem Kapitel wird ein 50 m langer Kollektor im Überhitzerabschnitt simuliert. Die Dynamik der Absorberrohrströmung wird stark durch Energieein- und -ausspeichervorgänge der Rohrwand bestimmt, was die Zeitkonstante des Systems um etwa eine Größenordnung gegenüber der eines Verdampferkollektors erhöht.

Im Verdampferkollektor spielt die Dynamik der Rohrwand auf Grund der nur vom Druck abhängigen und daher fast konstanten Siedetemperatur nur eine untergeordnete Rolle.
Sprungförmige Erhöhung der spezifischen Eintrittsenthalpie. In Abb. 5-7 sind die Temperaturänderungen an verschiedenen Stellen eines Überhitzerkollektors bei einer sprunghaften Erhöhung der spezifischen Eintrittsenthalpie dargestellt. Der Temperatursprung kommt an der Stelle 4 m nach Kollektoreintritt seiner Laufzeit entsprechend nach ca. 0,5 s an, abgeschwächt durch die an die Rohrwand abgegebene Energie. Die Zeitkonstante der Aufwärmung der ersten 4 m der Rohrwand beträgt ca. 60 s. Bei längeren Überhitzerrohren (siehe Kurve 50 m) ist am Austritt nach der Laufzeit des Eingangsimpulses kein Temperatursprung mehr festzustellen. Stattdessen erfolgt ein langsamer Temperaturanstieg, der erst einsetzt, wenn sich die Rohrwand etwas erwärmt hat.

Für Vorwärma- und Überhitzersysteme ist in der Literatur häufig das k\textsubscript{D}-Modell erwähnt. In /Profos 1962/ entsprechen die damit erzielten dimensionslosen Formfunktionen den in Abb. 5-7 dargestellten Kurven.

Die Änderung der spezifischen Enthalpie im neuen, stationären Zustand am Austritt des Überhitzerkollektors fällt geringer aus als am Rohreintritt. Dies ist auf Grund der erhöhten thermischen Verluste des Kollektors bei höheren Temperaturen bedingt. Da die Simulationen mit vereinfachten, linearisierten Stoffwertroutinen durchgeführt wurden, verhalten sich in Abb. 5-7 die Temperaturänderungen wie die beschriebenen Änderung der spezifischen Enthalpie. In der Realität überwiegen jedoch die Nichtlinearitäten der Stoffwertroutinen gegenüber dem Effekt der erhöhten thermischen Verluste, und die Temperaturänderung im neuen, stationären Zustand am Austritt des Überhitzerkollektors ist größer als die am Rohreintritt. In diesem Punkt liefert das Modell also noch fälsche Aussagen. Die Stoffwertroutinen sind linearisiert worden, nachdem beim Einsatz nichtlinearer Routinen Konvergenzprobleme aufgetreten sind. Die Erstellung nichtlinearer Stoffwertroutinen könnte ein Punkt für die zukünftige Weiterentwicklung der Bibliothek sein.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{figure.png}
\caption{Temperaturänderung innerhalb eines Überhitzerkollektors nach einer sprungförmigen Erhöhung (\(t=50\) s) der Eintrittstemperatur \(T_e\) um 34 K. Dargestellt ist der Verlauf am Eintritt (0 m), nach 4 m, 12 m, 28 m und am Austritt (50 m). (\(p_e=60\) bar, \(\dot{M}_e=0,5\) kg/s, \(h_e=2804\) kJ/kg→2901 kJ/kg, \(I_{\text{e}}=800\) W/m\(^2\), \(L=50\) m).}
\end{figure}
Sprungförmige Erhöhung des Eintrittsmassenstromes. In Abb. 5-8 ist das Übertragungsverhalten eines Überhitzerkollektors bei einer Erhöhung des Eintrittsmassenstromes zum Zeitpunkt $t=0$ s dargestellt. Die Temperatur des ausströmenden Mediums nimmt auf Grund der Wärmeausspeicherung der Rohrwand an das Fluid nur langsam ab. Die Zeitkonstante ist im Vergleich mit einem Kollektor im Verdampferabschnitt (Abb. 5-5) um eine Größenordnung höher. Abb. 5-8 zeigt in den ersten 200 s den charakteristischen, linearen Rückgang der Temperatur bei einer Erhöhung des Eintrittsmassenstromes eines Überhitzerkollektors.

![Graph der Temperaturänderung im Kollektor](image)

Abb. 5-8: Temperaturänderung am Austritt eines Überhitzerkollektors nach einer sprungförmigen Erhöhung ($t=0$ s) des Eintrittsmassenstromes M_e um 0,05 kg/s. ($p_d=60$ bar, $M_e=0,5$ kg/s \rightarrow 0,55 kg/s, $h_f=2804$ kJ/kg, $I_{\omega}=800$ W/m2, $L=50$ m).

Am Austritt kommt im stationären Endzustand zur Temperaturerhöhung durch Erhöhung der spezifischen Eintrittsenthalpie des Gemisches noch die Temperaturerhöhung auf Grund des geringeren Gesamtmasstransferstromes hinzu.
Abb. 5-9: Temperaturänderung innerhalb eines Überhitzerkollektors nach einer sprungförmigen Ermiedrigung ($t=50$ s) des Einspritzmassenstromes um 0,005 kg/s. Dargestellt ist der Verlauf am Eintritt (0 m), nach 4 m, 12 m, 28 m und am Austritt (50 m). ($p_e=60$ bar, $\dot{M}_v=0,450$ kg/s, $h_i=2992$ kJ/kg, $\dot{M}_v=q=0,050$ kg/s $\rightarrow 0,045$ kg/s, $h_i=1110$ kJ/kg, $I_v=800$ W/m², $L=50$ m).

Der **sprungförmige Rückgang der Einstrahlung** an einem Überhitzerkollektor ist in Kapitel 5.1 dargestellt worden.

5.4 Kollektoren mit wanderndem Verdampfungsanfangspunkt

Ein weiteres Charakteristikum eines solaren Dampferzeugers ist die Tatsache, dass sich die Schwankung der eingekoppelten Energieströme teilweise nur auf begrenzte Abschnitte des Dampferzeugers auswirken. Man denke z. B. an eine Abschattung der ersten Kollektoren durch eine kleine Wolke während der restliche Absorberstrang bestrahlt bleibt. Im zweiten Teil des Kapitels wird beispielhaft für einen 100 m langen Abschnitt des Kollektorstranges eine teilweise Abschattung simuliert.
Kollektor beim Übergang von der Flüssig- in die Zweiphasenströmung. In der folgenden Rechnung wird simuliert, wie ein mit Wasser befüllter Kollektor beim Anstieg der Solarstrahlung in das Gebiet der Zweiphasenströmung übergeht. In den Kollektor tritt ein Massenstrom unterkühltes Wasser von 0,5 kg/s. Im stationären Anfangszustand mit einer geringeren Einstrahlung von 500 W/m² tritt das Wasser leicht unterkühlt aus dem Kollektor wieder aus. Zum Zeitpunkt \(t = 100 \, \text{s} \) steigt die Einstrahlung sprungartig auf 800 W/m² an und ein Teil der Strömung geht in das Zweiphasengebiet über. Eine derartige Kombination der Randbedingungen hat man in einem Absorberstrang im Vorwärmschnitt, wenn die Einstrahlung ansteigt. Das geschilderte, numerische Experiment mit seinen Randbedingungen und Fluidzuständen ist in Abb. 5-10 dargestellt.

Abb. 5-10: Randbedingungen und zugehörige, stationäre Fluidzustände für die Untersuchung eines Kollektors beim Übergang von der Flüssig- in die Zweiphasenströmung (Zustand A→B) bzw. beim Wiederauffüllen mit Wasser (Zustand B→A).

In Abb. 5-11 sind die Massenstromverläufe an verschiedenen Stellen im Kollektor aufgezeichnet. Am Austritt des Kollektors (Kurve mit Bezeichnung 50 m) ist eine Zunahme des Massenstromes während ca. 300 s zu sehen. Die Verläufe an den verschiedenen Stellen im Kollektor können folgendermaßen erklärt werden: Der Massenstrom an der Stelle 30 m erhöht sich nur kurzzeitig und nur wenig. Dies liegt daran, dass stromaufwärts von 30 m anschließend flüssiges Wasser vorliegt, dessen Dichte bei Temperaturerhöhung nur geringfügig zunimmt. Die Position 32 m ist die am weitesten stromaufwärts liegende Stelle im Absorberrohr und zeitlich die letzte Stelle, an der Verdampfung einsetzt. An der Position 34 m findet die Verdampfung auf Grund der Vorwärmung im Absorberrohr stromaufwärts schon früher statt. Außer der Massenstromerhöhung durch die Verdampfung an der jeweiligen Stelle erhöht sich der Massenstrom zusätzlich durch sämtliche Verdampfungsvorgänge, die stromaufwärts stattfinden. Diese Tatsache erklärt die stromabwärts immer größer werdenden Änderungen im Massenstrom.

Abb. 5-11: Massenströme bei einer sprunghafte Zugnahme der Einstrahlung um 300 W/m². Innerhalb des Kollektors findet nach dem Sprung der Übergang von der Flüssigkeitsströmung in die Zweiphasenströmung statt. Dargestellt ist der Verlauf bei 30 m, 32 m, 34 m und am Austritt (50 m). ($p_e=60$ bar, $\dot{M}_f=0,5$ kg/s, $h_i=1010$ kJ/kg, $I_{th}=500$ W/m² →800 W/m², $L=50$ m).

In der Zweiphasenströmung liegt auf Grund eines geringen Strömungsmassendampfgehalts ($\dot{x} < 0.1$) noch Schwallströmung vor. Die Rohrwand kann also als völlig benetzt betrachtet werden /Goebel 1998/.

Kollektor beim Wiederauffüllen mit Wasser. In diesem Abschnitt wird der umgekehrte Vorgang wie im vorhergehenden Abschnitt betrachtet. Der Kollektor wird am Eintritt mit flüssigem Wasser beschickt und mit einer Einstrahlung von 800 W/m2 beaufschlagt. Dann befindet sich im Kollektor im stationären Anfangszustand im letzten Stück eine Zweiphasenströmung. Durch einen Rückgang in der solaren Einstrahlung zum Zeitpunkt $t=100$ s um 300 W/m2 reicht die eingekoppelte Leistung nicht mehr aus, das einströmende Wasser zu verdampfen und der Kollektor wird langsam wieder mit flüssigem Wasser befüllt. Das numerische Experiment wird verdeutlicht, wenn Abb. 5-10 von unten nach oben gelesen wird (Anfangszustand B und Endzustand A).

In Abb. 5-12 sind die zeitlichen Verläufe der Massenströme an verschiedenen Stellen im Absorberrohr dargestellt.

![Massenstromverlauf](image)

Abb. 5-12: Massenströme bei einem sprungartigen Rückgang der Einstrahlung um 300 W/m2. Innerhalb des Kollektors findet nach dem Sprung der Übergang von der Zweiphasenströmung zur Flüssigströmung statt. Dargestellt ist der Verlauf bei 30 m, 32 m, 34 m und am Austritt (50 m). ($p_o=60$ bar, $\dot{M}_l=0,5$ kg/s, $h_u=1010$ kJ/kg, $I_d=800$ W/m2 →500 W/m2, $L=50$ m).
Stromaufwärts von 31 m liegt während des gesamten, dynamischen Vorganges flüssiges Wasser vor, dessen Temperatur leicht abnimmt und dessen Dichte geringfügig zunimmt. Zum Zeitpunkt des Strahlungsrückganges (t=100 s) nimmt der Strömungsmassenendampfgehalt im gesamten Gebiet der Zweiphasenströmung, also ab der Position 31 m und stromabwärts, ab. Während der Massenstrom an der Stelle 32 m nur auf Grund des Wiederbefüllens des Abschnitts zwischen 31 m und 32 m abnimmt, reduziert sich der Massenstrom an der Stelle 50 m auf Grund der Erniedrigung des Strömungsmassenendampfgehaltes im gesamten Abschnittes der Zweiphasenströmung. Dies erklärt den nach Eintritt des Strahlungsprunges auftretenden starken, sprungartigen Rückgang des Austrittsmassenstromes (siehe Kurve mit Parameter „50 m“), der etwa ein Viertel des Massenstromes im stationären Zustand beträgt. Die Nickstelle im Verlauf der Kurven sind den im vorherigen Abschnitt erläuterten simulationstechnischen Ursachen zuzuschreiben.

Die Simulationsergebnisse des Kollektorverhaltens beim Wiederbefüllen legen nahe, die Auswirkungen des Massenstromrückganges auf die nachfolgenden Kollektoren näher zu betrachten:

Teilweise Abschattung von Kollektoren. Der im Folgenden betrachtete Vorgang simuliert einen Strahlungsrückgang um 300 W/m² auf den ersten 50 m eines 100 m langen Absorberstrangabschnittes. Die Abschattung findet zum Teil im Vorwärmschnitt des Absorberrohrstranges statt. Die in Abb. 5-13 dargestellte Skizze verdeutlicht die Randbedingungen und die zugehörigen, stationären Zustände.

Abb. 5-13: Randbedingungen und zugehörige, stationäre Fluidzustände für die Untersuchung eines 100 m langen Absorberstrangabschnittes bei teilweiser Abschattung. Der betrachtete Abschnitt liegt im Bereich des Übergangs von der Flüssig- zur Zweiphasenströmung.
Das Simulationsergebnis des numerischen Experiments ist in Abb. 5-14 zu sehen. Eine teilweise Abschattung bewirkt am Austritt (Kurve mit Parameter 100 m) eine kurzzeitige Erhöhung der spezifischen Enthalpie, bevor ein neuer, stationärer Zustand mit niedrigerer spezifischer Enthalpie erreicht wird.

Das Verhalten wird sehr schnell klar, wenn man in Betracht zieht, dass die Randbedingungen der ersten 50 m des Absorberrohrstranges denen des vorherigen Abschnittes der Abb. 5-10 entsprechen. Daher entspricht der beobachtete Massenstrom in der Mitte des 100 m langen Absorberrohrabschnittes etwa der Kurve mit dem Parameter „50 m“ in Abb. 5-12. Der zweite Teil des betrachteten 100 m langen Abschnitts erlebt also temporär einen Einbruch des Massenstromes, was bei gleichbleibender, eingekoppelter Leistung eine kurzzeitig höhere spezifische Austrittsenthalpie hervorruft.

Abb. 5-14: Änderung der spezifischen Enthalpie innerhalb eines 100 m langen Absorberrohrabschnittes bei einer teilweisen Abschattung ($t=100$ s) der ersten 50 m. Dargestellt ist der Verlauf bei 48 m, 60 m, 72 m und am Austritt (100 m). Innerhalb des Kollektors findet der Übergang von der Flüssig- zur Zweiphasenströmung statt. ($p_x=60$ bar, $\dot{M}_c=0,5$ kg/s, $h_x=1010$ kJ/kg, $I_{dr}=800/800$ W/m² $\rightarrow 500/800$ W/m², $L=100$ m).
6 Dynamische Simulation der DISS-Testanlage

Abb. 6-1: Vereinfachte Darstellung der DISS-Testanlage auf der PSA. Abgebildet ist die Verschaltung für die Tests vom 30.06.2000 und 03.07.2000.

Abb. 6-2: Zeitliche Temperaturverläufe vom 30.06.2000 am Eintritt in den Überhitzerbereich (Eintritt Koll. 10), nach 25 m (Austritt Koll. 10) und am Austritt des Absorberstranges (Austritt Koll. 11) bei Variation des Massenstromes. Die Simulationsergebnisse sind als durchgezogene Linien, die Messergebnisse als gepunktete Linien dargestellt.

\begin{center}
\includegraphics[width=0.7\textwidth]{druckverlust.png}
\end{center}

\textbf{Abb. 6-3:} Zeitlicher Verlauf des Druckverlustes vom 30.06.2000 über die Überhitzerkollektoren 10 und 11. Die Simulationsergebnisse sind als durchgezogene Linie, die Messergebnisse als gepunktete Linie dargestellt.

\(^{40}\) Z. B. ist der Reflexionsgrad der Spiegel am Versuchstag und der Incident Angle Modifier der Kollektoren unbekannt.

![Diagramm](image_url)

Abb. 6-4: Zeitliche Temperaturverläufe vom 03.07.2000 am Eintritt in den Überhitzerbereich (Eintritt Koll. 10), nach 25 m (Austritt Koll. 10) und am Austritt des Absorberstranges (Austritt Koll. 11). Zuerst ist Kollektor 10, danach Kollektor 11 defokussiert worden. Die Simulationsergebnisse sind als durchgezogene Linien, die Messergebnisse als gepunktete Linien dargestellt.

7 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit wird in der Simulationssprache Modelica eine Modellbibliothek für die dynamische Simulation eines Parabolrinnenkollektors mit direkter Dampferzeugung in den Absorberrohren erstellt. Modelica soll zu einem neuen Standard für die Simulationsumgebungen der verschiedenen Hersteller werden. In dieser Arbeit wird die Simulationsumgebung „Dymola“ verwendet.

In den vorliegenden Simulationen ist die Wand des Absorberrohres in azimutaler Richtung durch einen einzelnen Knoten diskretisiert. Das Modell für die Rohrwand ist jedoch so vorbereitet, dass eine Erweiterung der Simulation mit mehreren Rohrsegmenten auch in azimutaler Richtung möglich ist.

Derzeit wird in den Simulationen der Absorberrohrströmung noch eine vereinfachte Stoffwertroutine für Wasser und Wasserdampf verwendet. Die Erstellung einer nichtlinearen Stoffwertroutine, die in Dymola keine Konvergenzprobleme in der dynamischen Simulation hervorruft, könnte ein Punkt für die zukünftige Weiterentwicklung der Stoffwert-Bibliothek sein.

Das Absorberrohrmodell wird mit einem validierten Referenzmodell (/Steinmann 1998/) verglichen und es wird eine gute Übereinstimmung festgestellt. Das Verhalten einzelner Kol lektoren sowohl im Verdampfer- als auch im Überhitzerbereich nach sprunghaften Änderun-

Im letzten Kapitel wird schließlich der Überhitzerbereich der DISS-Testanlage auf der PSA im Rezirkulationskonzept mit realen Randbedingungen simuliert. Die Simulationsergebnisse zeigen mit den Messwerten eine gute Übereinstimmung. Die Wärmeverluste der Kollektoren werden noch als etwas zu gering berechnet.

Die Erstellung der Modellbibliothek hat sich an den Grundsätzen der objektorientierten Analyse und des objektorientierten Designs orientiert. Dadurch und durch die Möglichkeit des flexiblen Einsatz der Modellkomponenten in Dymola kann das Modellwissen einfach wiederverwendet und erweitert werden.

8 Literaturverzeichnis

/Alexopoulos 1999/

/Anderson 1984/

/Baehr 1996/

/Booch 1994/

/Chester 1971/

/Cohen 1996/

/Cohen 1999/

/DISS-I-Report 1999/

/Dubbel 1981/

/Dudley 1984/

/Eck 1999/

/Edelmann 1992/
Edelmann, H.: Modellierung der Dynamik und des Regelverhaltens für einen Dampferzeuger mit zirkulierender Wirbelschichtfeuerung. VDI-Fortschriftenberichte, Reihe 6, Nr. 275, 1992

/Elmqvist et al. 1999a/
/Elmqvist et al. 1999b/

/Fletcher 1991/

/Geskes 1998/

/Geyer 1998/

/Geyer 2000/

/Goebel 1998/

/Gurgo et al. 1986/

/Hall 1976/

/Hay 2000/

/Hirsch 1988/

/Hoffmann 1993/

/IPCC 1995/

/Kemme 1998/

/Kolos 1986/

/Luafs 1997/
/Lippke 1994/

/Phanabod 1991/

/Profos 1962/

/May 1983/

/Mayinger 1982/

/Meyberg 1993/

/Mühlthaler et al. 1998/

/Müller 1995/
Müller, M.J.: Strömungsphänomene bei der Direktverdampfung in Parabolrinnen-Solarkraftwerken. VDI-Fortschrittsberichte, Reihe 6, Nr. 335, 1995

/Otter et al. 1999/

/Schneider 1984/
Schneider, W.: Regelungstechnik für Maschinenbauer. Vieweg, Braunschweig, Wiesbaden, 1984

/Steinmann 1998/

/Steinmann 2000/

/Swinbank 1963/

/Thomann 1991/

/Thomas 1995/
/VDI 1997/

/VDI 1994a/

/VDI 1994b/

/Winter 1997/

/Zarza 1998/
Anhang

A Gleichungen für das heterogene Modell

Im heterogenen Modell werden unterschiedliche Geschwindigkeiten der flüssigen und
gasförmigen Phase berücksichtigt. Innerhalb einer Phase wird das bestehende
Geschwindigkeitsprofil durch eine gemittelte Geschwindigkeit angenähert. Es wird eine Gleichung für die Ge-
samtmasse, den Gesamtimpuls und die Gesamtenergie beider Phasen aufgestellt. Dadurch
entfallen die schwer zu modellierenden Transportterme zwischen den Phasen. Mit Vernach-
lässigung der Terme der kinetischen Energie in der Energiebilanz lauten die Gleichungen für
das heterogene Modell (siehe auch /Mayinger 1982/):

$$\frac{\partial}{\partial t}(\varepsilon \rho_g + (1-\varepsilon)\rho_f) = -\frac{\partial}{\partial x}(\varepsilon \rho_g \dot{w}_g + (1-\varepsilon)\rho_f \dot{w}_f)$$

$$\frac{\partial}{\partial t}(\varepsilon \rho_g \dot{w}_g + (1-\varepsilon)\rho_f \dot{w}_f) = -\frac{\partial}{\partial x}(\varepsilon \rho_g \dot{w}_g^2 + (1-\varepsilon)\rho_f \dot{w}_f^2) - \frac{\partial p}{\partial x} - \left((1-\varepsilon)\rho_f + \varepsilon \rho_g\right)g \sin \varphi - \left(\frac{dp}{dz}\right)_R \quad (A-1)$$

$$\frac{\partial}{\partial t}(\varepsilon \rho_g \dot{u}_g + (1-\varepsilon)\rho_f \dot{u}_f) = -\frac{\partial}{\partial x}(\varepsilon \rho_g \dot{h}_g + (1-\varepsilon)\rho_f \dot{h}_f) - \left((1-\varepsilon)\rho_f + \varepsilon \rho_g\right)gw \sin \varphi + \frac{\dot{q}}{A}$$

Dabei muss man beachten, dass der Reibungsdruckverlust zwar durch die Wandschub-
spannung verursacht wird, diese aber nicht von der Wandschubspannung einer Einphasenströ-
mung entspricht. Die Wandschubspannung ist durch den Impulstransport an der Phasengrenz-
fläche und Impulstransport durch z. B. Flüssigkeitsmitreifen in der Regel erhöht. Dies macht
eine Berechnungsmethode für den Druckverlust in Zweiphasenströmungen notwendig.

Zur vollständigen Lösung des Systems sind neben den konstitutiven Gleichungen für den
Reibungsdruckverlust und zur Bestimmung der eingekoppelten Energie noch weitere Bezie-
hungen notwendig: Eine Stoffwert-Beziehung der Form:

$$F(u_i, \rho_i, p) = 0 \quad (A-2)$$

die Definitionsgleichung für die spezifische Enthalpie

$$h = u + \frac{p}{\rho} \quad (A-3)$$

und eine Beziehung, die den Schlupf S (Geschwindigkeitsverhältnis w_g/w_f) mit dem Dampf-
gehalt ε und dem Strömungsmaßendampfgehalt \dot{x} in Beziehung bringt:

$$S = \frac{w_g}{w_f} = \dot{x} \cdot \frac{1-\varepsilon \cdot \rho_f}{\rho_g} \quad (A-4)$$

Wird angenommen, dass beide Phasen miteinander im thermodynamischen Gleichgewicht
sind, dann fehlt für die Lösung des obigen Gleichungssystems mit den 7 Unbekannten u, ρ
p, h, w_g, w_f und ε noch die siebte Beziehung. Dies ist eine mit einer großen Unsicherheit be-
lastete, empirische bzw. halbempirische Gleichung der Form:

$$S = S($$Strömungsparameter$$) \quad oder \quad \varepsilon = \varepsilon($$Strömungsparameter$$) \quad (A-5).$$
B Umformungen zu den Erhaltungsgleichungen

Als Ausgangsgleichungen werden die Euler-Gleichungen mit konstantem Rohrquerschnitt A ohne Zufuhr oder Abfuhr technischer Arbeit verwendet:

Masse
\[
\frac{\partial \rho}{\partial t} = - \frac{\partial (\rho w)}{\partial z}
\]

Impuls
\[
\frac{\partial (\rho w)}{\partial t} = - \frac{\partial (\rho w^2)}{\partial z} - \frac{\partial p}{\partial z} - \rho g \sin \varphi - \left(\frac{dp}{dz} \right)_r
\]

Energie
\[
\frac{\partial (\rho (u + \frac{1}{2} w^2))}{\partial t} = - \frac{\partial (\rho w (h + \frac{1}{2} w^2))}{\partial z} - \rho g w \sin \varphi + \dot{q} \frac{U}{A}
\]

Die Kontinuitätsgleichung kann anstatt mit der Dichte mit dem Druck geschrieben werden. Druck- und Dichteänderungen sind über die Schallgeschwindigkeit a gekoppelt:

\[
a^2 = \frac{\partial p}{\partial \rho},
\]

Damit kann ein allgemeines Differenzial der Dichte ρ folgendermaßen umgeschrieben werden, wobei x für die Zeit t oder den Ort z stehen soll:

\[
\frac{\partial \rho}{\partial x} = \frac{\partial \rho}{\partial x} = \frac{1}{a^2} \frac{\partial \rho}{\partial x}
\]

Wird auf die Kontinuitätsgleichung des Gleichungssystems (B-1) die Produktregel angewandt, die Umformungen nach (B-3) vollzogen und mit a^2 multipliziert, erhält man als Massenbilanz:

\[
\frac{\partial \rho}{\partial t} = -\rho a^2 \frac{\partial w}{\partial z} - w \frac{\partial \rho}{\partial z}
\]

Die Impulsbilanz kann mit Hilfe der Kontinuitätsgleichung umgeschrieben werden. Mit

\[
\frac{\partial (\rho w)}{\partial t} = \rho \frac{\partial w}{\partial t} + w \frac{\partial \rho}{\partial t} + \rho \frac{\partial w}{\partial t} - w \frac{\partial (\rho w)}{\partial z}
\]

und

\[
- \frac{\partial (\rho w^2)}{\partial z} = -w \frac{\partial (\rho w)}{\partial z} - \rho w \frac{\partial w}{\partial z}
\]

folgt für die Impulsbilanz:

\[
\frac{\partial w}{\partial t} = -w \frac{\partial w}{\partial z} - \frac{1}{\rho} \frac{\partial p}{\partial z} - g \sin \varphi - \left(\frac{dp}{dz} \right)_r
\]

Für die Herleitung der thermischen Energiebilanz wird später die mechanische Energiebilanz benötigt. Die mechanische Energiebilanz kann aus der Impulsbilanz der Gleichung (B-5) durch Multiplikation mit der Geschwindigkeit w und Division durch ρ abgeleitet werden:

\[
\rho \frac{\partial \left(\frac{1}{2} w^2 \right)}{\partial t} = -\rho w \frac{\partial \left(\frac{1}{2} w^2 \right)}{\partial z} - w \frac{\partial p}{\partial z} - \rho g w \sin \varphi - w \left(\frac{dp}{dz} \right)_r
\]
Die kinetische Energie innerhalb eines Fluidelements ändert sich also durch die verschiedenen kinetischen Energien im Zu- und Abstrom, auf Grund der Arbeit gegenüber Druck- und Gewichtskräften und auf Grund von Reibungsvorgängen.

Die thermische Energiebilanz kann aus der (Gesamt-)Energiebilanz aus dem Gleichungssystem (B-1) und der mechanischen Energiebilanz (B-6) hergeleitet werden. Die Term der kinetischen Energie der (Gesamt-)Energiebilanz (B-1) werden in getrennte Differenziale geschrieben und dann die mechanische Energiebilanz (B-6) abgezogen. Es ergibt sich:

\[
\frac{\partial (\rho u)}{\partial t} + \frac{1}{2} w^2 \frac{\partial \rho}{\partial t} = - \frac{\partial (\rho u h)}{\partial z} + w \frac{\partial \rho}{\partial z} - \frac{1}{2} w^2 \frac{\partial \rho w}{\partial z} + w \left[\left(\frac{dp}{dz} \right) \right]_R + q \frac{U}{A} \tag{B-7}
\]

mit

\[
- \frac{\partial (\rho u h)}{\partial z} = - \frac{\partial (\rho u w)}{\partial z} - p \frac{\partial w}{\partial z} - w \frac{\partial p}{\partial z}
\]

und der Kontinuitätsgleich.

\[
\frac{1}{2} w^2 \frac{\partial \rho}{\partial t} = - \frac{1}{2} w^2 \frac{\partial \rho w}{\partial z}
\]

erhält man für die thermische Energiebilanz:

\[
\frac{\partial (\rho u)}{\partial t} = - \frac{\partial (\rho u w)}{\partial z} - p \frac{\partial w}{\partial z} + w \left[\left(\frac{dp}{dz} \right) \right]_R + q \frac{U}{A} \tag{B-8}
\]

In der thermischen Energiebilanz tritt jetzt der Reibungsterm als Quelle auf. In der Gesamtenergiebilanz (B-1) tritt dieser Term nicht auf, da die dissipierte kinetische Energie nur in die andere Energieform der thermischen Energie umgewandelt wird. Die Gesamtenergie ist eine Erhaltungsgröße, die thermische Energie und die kinetische Energie nicht. Dafür fehlt in der thermischen Energiebilanz der Term der Arbeit gegen die Gewichtskräfte. Die innere Energie ändert sich folglich nicht mit angreifenden Gewichtskräften. Diese haben keinen Einfluss auf die thermische Energie.

Mit der Kontinuitätsgleichung kann man die thermische Energiebilanz (B-8) auch schreiben:

\[
\rho \frac{\partial u}{\partial t} = - \rho w \frac{\partial u}{\partial z} - p \frac{\partial w}{\partial z} + w \left[\left(\frac{dp}{dz} \right) \right]_R + q \frac{U}{A} \tag{B-9}
\]

Lässt man in Gleichung (B-7) die spezifische Enthalpie im konvektiven Anteil stehen und setzt nur die Kontinuitätsgleichung ein, so ergibt sich eine weitere Form der thermischen Energiebilanz:

\[
\frac{\partial (\rho u)}{\partial t} = - \frac{\partial (\rho u h)}{\partial z} + w \frac{\partial p}{\partial z} + w \left[\left(\frac{dp}{dz} \right) \right]_R + q \frac{U}{A} \tag{B-10}
\]

An Gleichung (B-10) kann man schon vorab für einen Spezialfall folgendes ableiten: Vernachlässigt man in der Energiebilanz von Gleichungssystem (B-1) die kinetische Energien und beschreibt man ein waagrechtes Rohr (\(\phi=0 \)), dann geht Gleichung (B-10) in die Energiebilanz von Gleichung (B-1) über, wenn gilt:

\[
\frac{\partial p}{\partial z} = - \left[\left(\frac{dp}{dz} \right) \right]_R \tag{B-11}
\]
Dies ist der auf Seite 25 mit der Theorie der Charakteristiken hergeleitete Spezialfall der vereinfachten Impulsbilanz.

Im Folgenden wird eine vereinfachte Form der Energiebilanz in mehreren Schreibweisen geschrieben. Vernachlässigt man in der Energiebilanz in (B-1) die kinetische Energie und schreibt die Bilanz für waagrechte Rohre (sin \(\varphi = 0 \)), so erhält man:

\[
\frac{\partial (\rho u)}{\partial t} = - \frac{\partial (\rho w h)}{\partial z} + \frac{\dot{q}}{A} \tag{B-12}
\]

Mit \(u = h - p / \rho \) und unter Verwendung der Kontinuitätsungleichung kann man die vereinfachte Energiebilanz nur mit der spezifischen Enthalpie \(h \) auch wie folgt schreiben:

\[
\rho \frac{\partial h}{\partial t} - \frac{\partial p}{\partial t} + \rho w \frac{\partial h}{\partial z} = \frac{\dot{q} U}{A} \tag{B-13}
\]
C Finite-Differenzen-Schemata

Die in den folgenden Tabellen mit verschiedenen Finite-Differenzen-Schemata diskretisierte, partielle Differentialgleichung lautet:

\[
\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial z} = 0 \quad \text{(C-1)}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Schema</th>
<th>Stabilität</th>
<th>Ordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTBS</td>
<td>(v_{k+1}^{n+1} = v_k^n - C(v_k^n - v_{k-1}^n))</td>
<td>(0 \leq C \leq 1)</td>
<td>(O(\Delta t), O(\Delta z))</td>
</tr>
<tr>
<td>FTFS</td>
<td>(v_{k+1}^{n+1} = v_k^n - C(v_{k+1}^n - v_k^n))</td>
<td>(-1 \leq C \leq 0)</td>
<td>(O(\Delta t), O(\Delta z))</td>
</tr>
<tr>
<td>FTCS</td>
<td>(v_{k+1}^{n+1} = v_k^n - \frac{1}{2} C(v_{k+1}^n - v_{k-1}^n))</td>
<td>Nicht stabil</td>
<td>(O(\Delta t), O(\Delta z^2))</td>
</tr>
<tr>
<td>Lax-Wendroff (explizit)</td>
<td>(v_{k+1}^{n+1} = v_k^n - \frac{1}{2} C(v_{k+1}^n - v_{k-1}^n))</td>
<td>(</td>
<td>C</td>
</tr>
<tr>
<td>Lax-Friedrichs</td>
<td>(v_{k+1}^{n+1} = \frac{1}{2} (v_{k+1}^n + v_k^n) - \frac{1}{2} C(v_{k+1}^n - v_{k-1}^n))</td>
<td>(</td>
<td>C</td>
</tr>
<tr>
<td>Midpoint-Leapfrog</td>
<td>(v_{k+1}^{n+1} = v_k^n - C(v_{k+1}^n - v_{k-1}^n))</td>
<td>(</td>
<td>C</td>
</tr>
</tbody>
</table>

Mit der Courant-Zahl \(C = \frac{\Delta t}{\Delta z} \), Midpoint-Leapfrog auch als Mehrschrittverfahren klassifizierbar.

FTBS=Forward Time Backward Space; FTFS=Forward Time Forward Space; FTCS=Forward Time Central Space
Tabelle C-2: Implizite Finite-Differenzen-Schemata /Thomas 1995/., /Hoffmann 1993/.

<table>
<thead>
<tr>
<th>Name</th>
<th>Schema</th>
<th>Stabilität</th>
<th>Ordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTBS</td>
<td>(- CV_{k-1}^{n+1} + (1 + C)v_{k}^{n+1} = v_{k}^{n})</td>
<td>C ≥ 0</td>
<td>O(Δt), O(Δx)</td>
</tr>
<tr>
<td>BTFS</td>
<td>((1 - C)v_{k}^{n+1} + CV_{k+1}^{n+1} = v_{k}^{n})</td>
<td>C ≤ 0</td>
<td>O(Δt), O(Δx)</td>
</tr>
<tr>
<td>BTCS</td>
<td>(- \frac{C}{2}v_{k-1}^{n+1} + v_{k}^{n+1} + \frac{C}{2}v_{k+1}^{n+1} = v_{k}^{n})</td>
<td>A-stabil</td>
<td>O(Δx)</td>
</tr>
<tr>
<td>Lax-Wendroff (implizit)</td>
<td>(- \frac{C^2}{2}v_{k-1}^{n+1} + (1 + C^2)v_{k}^{n+1} + \left(- \frac{C^2}{2} + \frac{C}{2}\right)v_{k+1}^{n+1} = v_{k}^{n})</td>
<td>A-stabil</td>
<td>O(Δx)</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>(- \frac{C}{4}v_{k-1}^{n+1} + v_{k}^{n+1} + \frac{C}{4}v_{k+1}^{n+1} = \frac{1}{2}v_{k-1}^{n+1} + 2v_{k}^{n+1} - \frac{C}{2}v_{k+1}^{n+1})</td>
<td>A-stabil, störanfällig</td>
<td>O(Δx)</td>
</tr>
</tbody>
</table>

Mit der Courant-Zahl \(C = \frac{\Delta t}{\Delta x}\).

BTBS = Backward Time Backward Space; BTFS = Backward Time Forward Space; BTCS = Backward Time Central Space

Tabelle C-3: Mehrschrittverfahren /Thomas 1995/., /Hoffmann 1993/.

<table>
<thead>
<tr>
<th>Name</th>
<th>Schema</th>
<th>Stabilität</th>
<th>Ordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lax-Wendroff-multiplex</td>
<td>(v_{k+\frac{1}{2}}^{n+1} = \frac{1}{2}(v_{k+1}^{n} + v_{k}^{n}) - \frac{C}{2}(v_{k+1}^{n} - v_{k}^{n}))</td>
<td>(</td>
<td>C</td>
</tr>
<tr>
<td>und</td>
<td>(v_{k}^{n+1} = v_{k}^{n} - C(v_{k+1}^{n} - v_{k-1}^{n}))</td>
<td>(0 \leq C \leq 2)</td>
<td>O(Δt), O(Δx)</td>
</tr>
<tr>
<td>Beam-Warming</td>
<td>(v_{k}^{n} = v_{k}^{n} - C(v_{k+1}^{n} - v_{k-1}^{n}))</td>
<td>(0 \leq C \leq 2)</td>
<td>O(Δt), O(Δx)</td>
</tr>
<tr>
<td>MacCormack</td>
<td>(v_{k}^{n} = v_{k}^{n} - C(v_{k+1}^{n} - v_{k-1}^{n}))</td>
<td>(</td>
<td>C</td>
</tr>
<tr>
<td>und</td>
<td>(v_{k}^{n+1} = \frac{1}{2}(v_{k+1}^{n} + v_{k}^{n} - C(v_{k}^{n+1} - v_{k-1}^{n+1}))</td>
<td>(</td>
<td>C</td>
</tr>
<tr>
<td>FCT</td>
<td>Siehe Literatur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mit der Courant-Zahl \(C = \frac{\Delta t}{\Delta x}\).

FCT = Flux Corrected Transport
D Erläuterungen zu den Eigenschaften diskretisierter Gleichungen

Bei der numerischen Lösung partieller Differenzialgleichungen treten im Allgemeinen zwei Typen von Lösungsfehlern auf: Rundungsfehler und Fehler durch die Anwendung einer bestimmten numerischen Methode /Hoffmann 1993/. Während man auf Rundungsfehler wenig Einfluss hat, können Fehler durch die Auswahl einer geeigneten Diskretisierung minimiert werden. Daher werden im Folgenden einige Begriffe, die die Eigenschaften diskretisierter Gleichungen beschreiben, erläutert:

Äquivalenztheorem von Lax. Für eine Finite-Differenzen-Gleichung, die ein lösbares, lineares Anfangswertproblem approximiert, ist die notwendige und hinreichende Bedingung für Konvergenz die Konsistenz und Stabilität der Finite-Differenzen-Gleichung.

\[
\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial z} = 0
\]

(D-1)
Mit dem FTBS-Schema diskretisiert, lautet die Finite-Differenzen-Approximation:

\[
\frac{v_k^{n+1} - v_k^n}{\Delta t} + a \frac{v_k^n - v_{k-1}^n}{\Delta z} = 0
\] (D-2)

bzw.

\[
v_k^{n+1} = v_k^n - a\frac{\Delta t}{\Delta z} \left(v_k^n - v_{k-1}^n\right)
\] (D-3)

D.1 Konsistenz

Der Rechner löst die approximierte Finite-Differenzen-Gleichung (D-2). Die exakte Finite-Differenzengleichung enthält aber noch die vernachlässigten Abbruchterme und lautet:

\[
\frac{v_k^{n+1} - v_k^n}{\Delta t} + a \frac{v_k^n - v_{k-1}^n}{\Delta z} = \frac{\Delta t}{2!} \frac{\partial^2 v}{\partial t^2} - a \frac{\Delta z}{2!} \frac{\partial^2 v}{\partial z^2} + \ldots
\] (D-4)

Abbruchfehler \(E_k^n\)

Die der partiellen Differenzialgleichung entsprechende, exakte Finite-Differenzengleichung (D-4) geht in die approximierte Gleichung (D-2) über, wenn der Abbruchfehler \(E_k^n\) gegen Null strebt. Da für alle \(k\) und \(n\)

\[
\lim_{\Delta z, \Delta t \to 0} E_k^n = 0
\] (D-5)

gilt, ist das Differenzenschema mit der Differenzialgleichung konsistent.

D.2 Stabilität

Courant-Friedrichs-Lewy-Kriterium. Die CFL-Bedingung und das zugehörige Theorem lautet [Thomas 1995]:

„Eine partielle Differenzialgleichung und ein abgeleitetes Differenzen-Schema erfüllt die Courant-Friedrichs-Lewy-Bedingung, wenn das analytische Abhängigkeitsgebiet innerhalb des numerischen Abhängigkeitsgebietes liegt.“ Das zugehörige Theorem besagt, dass eine erfüllte CFL-Bedingung eine notwendige Bedingung für Konvergenz ist.

Aus der Theorie der hyperbolischen Differenzialgleichungen folgt, dass sich Störungen mit einer endlichen Geschwindigkeit längs der so genannten Charakteristiken ausbreiten (siehe Kapitel 3.2.1). Ein Punkt der Lösungsebene kann nur die anderen Punkte beeinflussen, die in seinem Einflussgebiet liegen, bzw. umgekehrt, er wird nur von Punkten beeinflusst, die in seinem Abhängigkeitsgebiet liegen. Dieses analytische Einfluss- bzw. Abhängigkeitsgebiet ist physikalisch durch die hyperbolischen Differenzialgleichungen festgelegt. Gilt für die Ausgangsgleichung (D-1) die Anfangsbedingung \(v(z,0)=f(z)\) und besteht die Lösungsebene aus \(z \in \mathbb{R}\) und \(t>0\), dann hängt die Lösung im Punkt \((z,t)\) nur vom Funktionswert vom Punkt
(z_0,t) mit \(z_0 = z - at \) bzw. von allen dazwischen liegenden Punkte ab. Diese Punkte sind das analytische Abhängigkeitsgebiet vom Punkt \((z,t)\).

Es gibt aber auch ein durch den gewählten numerischen Lösungsverfahren beeinflusstes numerisches Abhängigkeitsgebiet. So erkennt man an der Finite-Differenzengleichung (D-3), dass der Funktionswert an der Stelle \(k \) zum neuen Zeitpunkt \(n+1 \) aus Werten an der Stelle \(k \) und \(k-1 \) berechnet wird, nicht aber z. B. von den Stellen \(k+1 \) oder \(k-2 \). Die erläuterten Zusammenhänge werden in Abb. D-1 dargestellt.

\[(z,t) = (k\Delta z, (n+1)\Delta t) \]

Abb. D-1: Veranschaulichung des Courant-Friedrichs-Lewy-Kriterium. Dunkel schattiert ist der analytische Abhängigkeitsbereich der parabolischen Differenzialgleichung, hell schattiert (inklusive dunkel schattierter Bereich) ist der numerische Abhängigkeitsbereich des Finiten-Rückwärtsdifferenzen-Schemas.

Ein Punkt \((z,t)\) hat die das analytische Abhängigkeitsgebiet begrenzende Charakteristik:

\[z_0 = z - at \] \hspace{1cm} (D-6)

In der diskretisierten Lösungsebene kann der Punkt \((z,t)\) dargestellt werden als:

\[(z,t) = (k\Delta z, (n+1)\Delta t) \] \hspace{1cm} (D-7)

Die diskretisierten Koordinaten (D-7) in (D-6) eingesetzt, ergibt die das analytische Abhängigkeitsgebiet begrenzende Charakteristik des Punktes \((z,t)\) in der diskretisierten Lösungsebene:

\[z_0 = k\Delta z - a(n+1)\Delta t = \left(k - \frac{a\Delta t}{\Delta z} n \right) \Delta z \] \hspace{1cm} (D-8)

Das analytische Abhängigkeitsgebiet ist inAbb. D-1 dunkel scharfriert. In derselben Abbildung erkennt man auch leicht das numerische Abhängigkeitsgebiet \(I_{abh} \) des Differenzschema (D-3). Es ist hell und dunkel scharfriert:

\[I_{abh} = [(k - n - 1)\Delta z, k\Delta z] \] \hspace{1cm} (D-9)
Das CLF-Kriterium verlangt nun, dass das analytische Abhängigkeitsgebiet innerhalb des numerischen Abhängigkeitsgebietes liegt, also $z_0 \in I_{ab}$:

$$k - n - 1 \leq k - \frac{a \Delta t}{\Delta z} (n + 1) \leq k \quad \text{(D-10)}$$

$$- (n + 1) \leq - \frac{a \Delta t}{\Delta z} (n + 1) \leq 0 \quad \text{(D-11)}$$

$$0 \leq \frac{a \Delta t}{\Delta z} \leq 1 \quad \text{(D-12)}$$

Die Diskretisierungsschritte Δt und Δz sind positiv. Die Ungleichung (D-12) kann nur für positive a erfüllt werden\(^\text{42}\). Bei vorgegebenem a darf also die Zeitschrittweite nicht zu groß gewählt werden, sonst wird das Verfahren instabil. Wird die Zeitschrittweite sehr klein gewählt, ergeben sich kleine Courant-Zahlen, und es kann verstärkt numerische Dissipation auftreten (siehe Anhang E). Dieselbe Stabilitätsbedingung (D-12) liefert auch die Von-Neumann-Stabilitätsanalyse, die das Verhalten der Amplitude einer Fourier-Komponente untersucht.

D.3 Konvergenz

Für ein richtig gestelltes, lineares Anfangswertproblem kann die Konvergenz der finiten Differenzen-Gleichung mit dem Äquivalenztheorem von Lax nachgewiesen werden (siehe Seite 99). Da für die Finite-Differenzengleichung Konsistenz und Stabilität\(^\text{43}\) gezeigt wurde, ist hiermit auch deren Konvergenz nachgewiesen.

\(^{42}\) Ein stabiles Verfahren für negative a erhält man z. B., indem man Vorwärtsdifferenzen anstatt Rückwärtsdifferenzen in der Ortsdiskretisierung verwendet. Das Verhältnis $a \Delta t / \Delta z$ ist die Courant-Zahl.

\(^{43}\) Die hinreichende Bedingung für Stabilität wurde hier nicht bewiesen. Es sei auf die Literatur verwiesen.
E Erläuterungen zur numerischen Dissipation und Dispersion

E.1 Modifizierte Gleichungen

Numerische Diffusion kann z. B. mit Hilfe so genannter modifizierter Gleichungen näher untersucht werden. Dazu wird die partielle Differenzialgleichung (D-1), ohne die Abbruchterme zu vernachlässigen, diskretisiert:

\[
\frac{V_{k+1} - V_k}{\Delta t} + a \frac{V_k - V_{k-1}}{\Delta z} + \frac{\Delta t}{2!} \frac{\partial^2 v}{\partial t^2} + a \frac{\Delta z}{2!} \frac{\partial^2 v}{\partial z^2} + \cdots = 0 \quad (E-1)
\]

Anschließend werden in dieser Gleichung die Abbruchterme, die Differenzenquotienten nach der Zeit enthalten, durch Termen mit Differenzenquotienten nach dem Ort ersetzt. Dies wird durch geschicktes Ableiten der Differenzengleichung (E-1) und Einsetzen der Ableitung in dieselbe Gleichung (E-1) erreicht. Als Ergebnis erhält man die so genannte modifizierte Gleichung /Hoffmann 1993/:

\[
\frac{\partial v}{\partial t} + a \frac{\partial v}{\partial z} + \frac{a \Delta z}{2} (C-1) \frac{\partial^2 v}{\partial z^2} + a \frac{(\Delta z)^2}{6} \left(2C^2 - 3C + 1 \right) \frac{\partial^3 v}{\partial z^3} + O(\Delta t^3, (\Delta z)^2, \Delta z, (\Delta z)^2) = 0
\]

mit der Courant-Zahl

\[
C = \frac{a \Delta t}{\Delta z} \quad (E-3)
\]

Der Rechner löst also nicht die ursprüngliche Differenzialgleichung, sondern Gleichung (E-2). Diese enthält jedoch Ableitungen zweiter und dritter Ordnung. Die Ableitung zweiter Ordnung wirkt dabei dissipativ als numerisches Diffusionsglied mit dem numerischen Diffusionskoeffizienten \(-\frac{a \Delta z}{2} (C-1)\). Die Ableitung dritter Ordnung wirkt sich dispersiv aus. Sowohl Dissipation wie auch Dispersion sind abhängig von der gewählten Diskretisierungsgröße \(\Delta z\) und der Courant-Zahl, die bei vorgegebenem \(a\) und \(\Delta z\) von der Zeitschrittweite des Verfahrens abhängt. Man erkennt dass für Courant-Zahlen \(C<1\) die Lösung dissipativ ist, für Courant-Zahlen \(C=1\) aber keine Dämpfung vorliegt. Das Verfahren für \(C>1\) instabil, da dann ein negativer numerischer Diffusionskoeffizient auftreten würde. Diese letzte Aussage wird durch das Ergebnis der Stabilitätsanalyse Gleichung (D-12) bestätigt.

E.2 Genauigkeitsuntersuchung durch erweiterte Stabilitätsanalyse

44 Der Abbruchterm ist von Ordnung drei und hat in Relation zu den Termen erster und zweiter Ordnung in \(\Delta z\) (Ableitungen zweiter und dritter Ordnung) nur einen untergeordneten Einfluss.
Exakte Lösung der partiellen Differenzialgleichung. Zuerst sollen noch einmal kurz die Eigenschaften der partiellen Differenzialgleichung (D-1) und deren exakten Lösung dargelegt werden. Es ist eine hyperbolische, lineare, nicht dissipative Gleichung eines Konvektionsproblems. Eine eingebrachte Störung wandert, ihre Form beibehaltend, durch die Ort-Zeit-Ebene. Da die Gleichung linear ist, reicht es aus, eine Elementarlösung zu untersuchen. Eine analytische Elementarlösung kann durch einen Separationsansatz der Form\(^{45}\)

\[
 v_i = e^{\omega t} e^{iPz} \quad \text{(E-4)}
\]

gefunden werden. In diesem Ansatz ist \(i\) ist die komplexe Zahl \(\sqrt{-1}\) und \(P\) ist die Wellenzahl in \(z\)-Richtung, d. h. für die Wellenlänge \(\lambda_z\) gilt \(\lambda_z = \frac{2\pi}{P}\). Der Parameter \(\gamma\) kann eine reelle oder komplexe Zahl sein. Den Ansatz (E-4) in die Differenzialgleichung (D-1) eingesetzt, ergibt für den Parameter \(\gamma=-iP\alpha t\) und somit:

\[
 v_i = e^{-i\omega t} e^{iPz} = e^{i\gamma(z-\alpha t)} \quad \text{(E-5)}
\]

Diese exakte Elementarlösung beschreibt eine Störung, die nicht dissipativ mit der Konvektionsgeschwindigkeit \(\alpha\) durch die Ort-Zeit-Lösungssebene hindurchwandert. Nicht dissipativ, aber stabil bedeutet, dass die Amplitude der Fourier-Komponente zu allen Zeiten konstant bleibt und daher der Betrag des exakten Verstärkungsfaktors \(G_c\) eins betragen muss:

\[
 G_c = \frac{v_i(t + \Delta t)}{v_i(t)} = \frac{e^{i\gamma(z-\alpha(t+\Delta t))}}{e^{i\gamma(z-\alpha t)}} \quad \text{(E-6)}
\]

gekürzt

\[
 G_c = e^{-i\alpha \Delta t} = e^{\Phi_c} \quad \text{(E-7)}
\]

mit dem exakten Phasenwinkel

\[
 \Phi_c = -Pa\Delta t = -\Theta C \quad \text{(E-8)}
\]

und dem Betrag eins:

\[
 |G_c| = 1 \quad \text{(E-9)}
\]

Lösung der approximierenden Finite-Differenzen-Gleichung. Im folgenden Teil wird untersucht, wie sich die Lösung der approximierenden Finite-Differenzen-Gleichung verhält. Dazu wird die Lösung durch eine komplexe Fourier-Reihe angenähert. Da das Problem linear ist, genügt die Untersuchung einer Komponente der Reihe. Für den Funktionswert \(v_n\) an der Stelle \(k\) zum Zeitpunkt \(n\) lautet sie:

\[
 v_k^n = \xi^n e^{iP(\lambda_z)k} \quad \text{(E-10)}
\]

Hierbei ist \(\xi^n\) der komplexe Fourierkoeffizient, der die Amplitude der Funktion zum Zeitpunkt \(n\) angibt, \(i\) ist die komplexe Zahl \(\sqrt{-1}\) und \(P\) ist die Wellenzahl in \(z\)-Richtung, d. h. für die Wellenlänge \(\lambda_z\) gilt \(\lambda_z = \frac{2\pi}{P}\). In gleicher Weise gilt für die Stelle \(k\) zum Zeitpunkt \(n+1\):

\[
 v_k^{n+1} = \xi^{n+1} e^{iP(\lambda_z)k} \quad \text{(E-11)}
\]

und an der Stelle \(k-1\) zur Zeit \(n\):

\[
 v_{k-1}^n = \xi^n e^{iP(\lambda_z)(k-1)} \quad \text{(E-12)}
\]

\(^{45}\) Der Index \(e\) steht im Folgenden für „analytisch exakt“.
Werden Gleichungen (E-10), (E-11) und (E-12) in die Finite-Differenzengleichung (D-3) eingesetzt und ein Phasenwinkel \(\Theta = P\Delta z \) definiert, so ergibt sich:

\[
\xi^{n+1} e^{ik} = \xi^n e^{ik} - \frac{a\Delta t}{\Delta z} \left(\xi^n e^{ik} - \xi^n e^{ik(k-1)} \right)
\]

(E-13)

Der Verstärkungsfaktor \(G \), der Aussagen über die Amplitude der Fourier-Komponente von Zeitschritt \(n \) zu Zeitschritt \(n+1 \) macht, berechnet sich aus Gleichung (E-13):

\[
G = \frac{\xi^{n+1}}{\xi^n} = 1 - C \left(1 - \cos \Theta + i \sin \Theta \right)
\]

mit der Courant-Zahl \(C = a\Delta t/\Delta z \). In Polarkoordinaten geschrieben:

\[
G = |G| e^{i\Phi}
\]

(E-15)

ergibt sich der Phasenwinkel:

\[
\Phi = \arctan \left(\frac{\text{Im}(G)}{\text{Re}(G)} \right) = \arctan \left(\frac{-C \sin \Theta}{1 - C \cos \Theta} \right)
\]

(E-16)

und der Betrag:

\[
|G| = \sqrt{(1 - C \cos \Theta)^2 + (-C \sin \Theta)^2}
\]

(E-17)

Der Winkel \(\Theta \), in den Informationen über die Ortsdiskretisierungsänge \(\Delta z \) und die Wellenlänge \(\lambda \) einer Störung eingehen, lautet:

\[
\Theta = P\Delta z = \frac{2\pi}{\lambda} \Delta z
\]

Abb. E-1: Betrag des Verstärkungsfaktors aufgetragen als Funktion des Winkels $\Theta=(2\pi/\lambda)\Delta z$ für die Courant-Zahlen 0,5; 0,75; 1,0 und 1,25. Die Abbildung gilt für das FTBS-Schema von Gleichung D-3.

Zur Minimierung der numerischen Dissipation wären also Courant-Zahlen nahe eins anzustreben. Wie sieht es nun mit dem Phasenfehler für die verschiedenen Diskretisierungen und Störungen aus? Ein Phasenfehler führt zu vorausgehenden bzw. nachfolgenden Störungen, die die numerische Dispersion verursacht. Der relative Phasenfehler nach einem Zeitschritt beträgt:

$$\Phi = \frac{\arctan \left(-\frac{C \sin \Theta}{1 - C + C \cos \Theta} \right)}{\Phi_c}$$

(E-18)

Abb. E-2: Relativer Phasenfehler aufgetragen als Funktion des Winkels $\Theta=(2\pi/\lambda)\Delta z$ für die Courant-Zahlen 0,25; 0,50 und 0,75. Die Abbildung gilt für das FTBS-Schema von Gleichung (D-3).
Aus dieser Darstellung kann man folgende Informationen ablesen: Das relative Phasenverhältnis ist gleich eins, d. h. der Phasenfehler ist gleich Null für eine Courant-Zahl gleich 0,5. Für Störungen mit großer Wellenlänge gegenüber der Diskretisierungslänge, also für kleine Winkel Θ, ist der Phasenfehler auch für Courant-Zahlen ungleich 0,5 sehr klein. Dagegen wird er für größere Winkel, also für Störungen mit kleinerer Wellenlänge größer: Für Courant-Zahlen kleiner als 0,5 ist das relative Phasenverhältnis kleiner eins. Das bedeutet, der Phasenwinkel Φ ist kleiner als der exakte Phasenwinkel Φ_e, was mit der Aussage gleichbedeutend ist, dass die Ausbreitungsgeschwindigkeit einer Welle kleiner als die exakte Ausbreitungsgeschwindigkeit ist. Für Courant-Zahlen größer als 0,5 ist der Phasenwinkel Φ größer als der exakte Phasenwinkel Φ_e, was bedeutet, dass Wellen der eigentlichen Welle vorauseilen.

Für das vorgestellte explizite Rückwärtsdifferenzen-Schema (FTBS) ist für eine minimale numerische Dissipation also eine Courant-Zahl nahe eins anzustreben, während für minimale numerische Dispersion eine Courant-Zahl von 0,5 erforderlich ist.
F Klassendiagramme

Für die in Modelica erstellte Bibliothek wurde in Anlehnung an die Notation von /Booch 1994/ Klassendiagramme gezeichnet. Sie sind auf den folgenden Seiten abgebildet. In den Diagrammen sind die Beziehungen zwischen den Klassen dargestellt. Außerdem sind die Namen der Schnittstellen (Connectoren) und die zu übergebenden Schnittstellengrößen eingetragen. Klassen, in denen eine Kausalität vorgegeben ist (Input-Output-Block), sind mit dem Hinweis „block“ versehen. Basisklassen, die nur als Elternklassen dienen, aber selbst nicht Objekte bilden können, sind mit einem „B“ versehen, das von einem Dreieck umgeben ist. Es sind zwei Diagramme angehängt:

- Das erste Diagramm zeigt die Klassen des Absorberrohrmodells für die Direktverdampfung in Parabolrinnen.
- Das zweite Diagramm zeigt die Klassen der Modelle der Peripheriekomponenten.