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Abstract

A computational approach based on a gradient se-
arch method is proposed to determine a minimum
norm periodic state feedback assigning a specified
set of eigenvalues. An explicit expression of the
gradieni is derived by using a periodic Sylvester
equation based parametrization of the periodic pole
assignment problem. The numerical evaluation of
gradient is based on efficient numerically stable
procedures.

1. Introduction

Consider the linear discrete-time periodic system
of the form

Tpy1 = Agzy + Brug, (1)

where the matrices 4; € R™™" and B, ¢ R**™
are periodic with period K > 1. We consider
the following periodic eigenvalue assignment pro-
blem (PEAP): given the uniformly controllable pe-
riodic matrix pair (A, By), determine the peri-
odic feedback matrix Fy € R™*® such that the
eigenvalues of the closed-loop monodromy matrix
®a+pr(K,0) = (Axa+Bra Freq) - (Ao + BoFy)
are at desired locations I' = {A;,...,A,} in the
complex plane. We assume that ' is symmetric
with respect to the real axis. This assumption gu-
arantees that the resulting periodic matrix £} is
real,

In the multi-input case or when X > 1, the PEAP
has nonunique solutions. So it is tempting to try to
exploit the nonunicity by imposing additional con-
ditions. One aspect which is desirable from both

practical as well as numerical point of view is to
determine feedback matrices with as small norm as
possible. In this paper we address the problem to
determine the minimum Frobenius-norm periodic
state feedback which solves the PAEP. For stan-
dard systems the minimization of the norm of the
feedback matrix assigning a set of eigenvalues has
been considered in [1], where an explicit gradient
search is performed. This approach has been im-~
proved in [2], by eliminating artificial constraints
on the problemn and by improving tremendously the
computational efficiency. Alternative approaches
based on search algorithms have been proposed in
[2] and [3] in conjunction with parametric variants
of the pole asignment algorithms of [4] and [5], re-
spectively.

The proposed computational approach extends the
method proposed in [1], by bringing all improve-
ments of that method proposed in [2] into the pe-
riodic pole assignment. Explicit expression of the
gradient is derived by using a convenient parame-
trization of the PEAP. The evaluation of the gradi-
ent involves the solution of two periodic Sylvester
equations. An efficient algorithm based on the use
of the periodic Schur form can be employed to solve
these equations.

Notation and notational conventions. For
a square time-varying matrix 4z, & = 0,1,...,
we denote ©4(7,i) = A1 4;9--A; for § > i
and ®4(i,9) := I. If A is periodic with pe-
riod K, then the monedromy matriz of the sy-
stem (1) at time 7 is @4 (7 + K, 7). Its eigeuvalues
are independent of 7 and are called characteristic
maultipliers. For an arbitrary periodic matrix X
of period K we use alternatively the script not-



ation X which associates the block-diagonal ma-
trix X = diag (X, X1,..., Xk 1) to the cyclic se-
quence of matrices X, ¥ =0,..., K—1. This not-
ation is consistent with the standard matrix ope-
rations. For example the operations with block-
diagonal matrices X + ¥, XY, X7, or X! can
be used to express the addition, multiplication,
transposing, and inversion, respectively, performed
simultaneously with all individual terms in a se-
quence of K matrices. We denote with o&" the
K-cyclic shift ¢ X = diag (X4,...,Xx—1,X0) ap-
plied to the cyclic sequence Xi, k =0,..., K—1.
The notation X,; is used to refer simultaneously
to all (4,7) elements or all (i, ) blocks in the cy-
clic sequence Xy, k = 0,..., K—1. This notation
also applies in the case of matrix partitioning. For
instance the partitioning

A1 A
X =
[ Ao Az }

refers to the same partitioning of all matrices of the
cyclic sequence Xi, £ =0,..., K—1.

2. Computation of Minimum Norm
Feedback

We describe a gradient search based approach to
compute a minimum Frobenius-norm periodic feed-
back F) to assign a set of characteristic values I'
for the closed-loop monodromy matrix. The pro-
posed approach parallels that described in [1] for
standard systems. Several enhancements of this
method proposed in [2) for the standard case are
also extended to the periodic case.

The proposed approach relies on a straightfor-
ward parameterization of the PEAP. Let G €
IR™™™ be a given periodic parameter matrix and
let Az € R™ ™ be a periodic matrix such that
A(®4(K,0)) = T. If we determine F; as F =
G X, I where the periodic matrix X, satisfies the
periadic Sylvester equation (PSE)

A X=X 1A+ BiGr =0, k=0,..., K1, (2)

then we have X, '®45r(K,0)Xo = &+(K,0),
and thus, F/y is a periodic matrix which solves
the PEAP. Usual restrictions on choosing Ay and
G, are similar to those in the standard case [1]:
(1) the periodic pair (A, G3) is uniformly obser-
vable; and (2) A(®4(K,0)) N A(®{K,0)) = 0.
If additionally the periodic pair (A, Bi) is uni-
formly controllable, then X, satisfying (2) is gene-
rically nonsingular and for the above F}, we have

Xl (Ax + BeFy) Xy = Ak, Although highly re-
dundant, the above parameterization has the ad-
vantage to allow the use of standard minimization
procedures to compute the minimum norm feedb-
ack.

Consider the performance index

L {EL 1/2
=1 (E ||Fk||%~)
k=0

to be minimized. With the script notation, J can
be expressed alternatively as

7= 1P| = 5t (FTR) 3)

Using the proposed parameterization, F is compu-
ted as

F=gx 1, (4)
where X satisfies the PSE
AX —cXA+ BG=0. (5)

The gradient of J with respect to G can be compu-
ted by employing the following result:

Proposition 1 Let F be the periodic feedback
computed as in (4}, assigning the desired charac-
teristic values T for given A and G. Then, the
gradient of J with respect to G is given by

Ved =HT - BTUT, (6)

where H = X~V F7 and U satisfies the PSE
AU ~ olUha A — aHaF = 0. (7)
Proof. See Appendix A. u

Thus, to compute the function J and its gradient
for a given G, we have to solve two PSEs. Note
that the PSE (7) has essentially the same form as
equation (5).

Having explicit analytical expressions for the func-
tion and its gradient it is easy to employ any gra-
dient based technique to minimize J. However, be-
cause the dimension of the minimization problem
Knm is potentially large, a particularly well sui-
ted class of methods to solve our problem is the
class of unconstrained descent methods, as for in-
stance, the limited memory BFGS method [6] used
in conjunction with a line search procedure with
guaranteed decrease as that described by [7]. Both
methods are implemented within the MINPACK-
2 project (the successor of MINPACK-1 [8]) offe-
ring a convenient reverse communication interface
which allows an easy implementation of function
and gradient computations.



3. Numerical Aspects

To solve the PSEs (5) and (7) we can freely as-
sume that the periodic matrix Avk is in a conden-
sed form, as for instance, in periodic Schur form
(PSF), where Ag; is in real Schur form and the
matrices Ay for k = D,...,A—2 are upper trian-
gular. According to [9], given the periodic ma-
trix Ay, there exists an orthogonal periodic ma-
trix Zi, such that the transformed periodic matrix
A = 2,';{“}1}“2};i is in PSF. By using this transfor-
mation we can simplify the solution of both PSEs.
For instance, we determine first the orthogonal Z
such that A = ¢2T AZ is in PSF. By multiplying
the equation (5) with Z7 from left, one obtains a
reduced PSE

AX —oX¥A+Bg =0, (8)

where ¥ = ZTX and B = ZTB. Notice that by
this transformation the resulted transformed PSE
(8) has exactly the same form as the original one
in (5). After solving this equation for X, the so-
lution of (8) results as X = Z.X. For the solution
of the reduced PSE (8) an efficient method can be
derived along the line of a more general procedure
proposed in [10] (see Appendix B for details). This
procedure requires about Kn® floating-point ope-
rations (flops). The whole computation to solve
the PSE (5) requires about Npgr +3Kn® + Kn®m
flops, where Npgp is the number of flops neces-
sary to determine the PSF and to accumulate the
performed transformations. As a rough estimate
of this value we can take Npgp = 10EKn3. If we
count all necessarv operations, then each evalua-
tion of the the function and gradient {6) requires
about 17TKn®+4Kn?m flops. Note that in all above
evaluations we assumed m & n.

We can drastically reduce the cost of gradient eva-
luation by the following observation [2]. The per-
formance index J is invariant to an orthogonal
transformation, that is J = %tr (ﬁT?), where
F = FZ with Z an orthogonal matrix. If F is the
minimum norm feedback for the pair (A, B), then
F is the minimum norm feedback for the trans-
formed pair (A, B) = (62T AZ,02TB). Thus we
can first reduce A to PSF which involves only once
about 10Kn? operations and then evaluate the gra-
dient for the reduced pair (A, B) with A4 in PSF.
In this way, each gradient evaluation involves the
solution of two reduced PSEs and requires roughly
only 3Kn* + 2Kn?m flops.

By this approach we can even remove the restric-
tive condition A(®4(K,0)) NA(P 5(K,0)) =@ and
allow for partial eigenvalue assignment with a sim-
ple computational trick. By using an orthogonal
similarity transformation A = 627 AZ, we can re-
duce the matrix A to an ordered PSF (see {9])

=~ [ A A2
A=l az]

where the characteristic values of .4, are those cor-
responding to satisfactory poles (which will be kept
unmodified), while the characteristic values of Aaq
will be moved to desired values. Let us partition

- B
Ty 1
aZ B—[Bz]

accordingly. Now we can compute by using gradi-
ent search techniques the minimum norm solution
F; of a reduced order PEAP such that the charac-
teristic values of Age + BaFy are assigned to desi-
red locations. The final minimum norm feedback
results as F = [0 Fp 1Z7.

Remark. The achieved minimum norm of F also
depends on the choice of the matrix .A. Thus, in
general there is no guarantee that for arbitrary A,
the resulting minimum norin feedback F has the
least possible norm.

4. Conclusions

A numerical approach to solve the PEAP with mi-
nimum norm periodic state feedback has been pro-
posed. By using a convenient parameterization of
the PEAP, the computational problem has been
formulated as an unconstrained minimization pro-
blem having as cost function the Frobenius-norm
of the periodic state feedback matrix. Explicit ex-
pression for the gradient has been derived and com-
putational issues involved in evaluating the func-
tion and gradient have been thoroughly discussed.
Of independent importance is an efficient algorithm
devised to solve periodic Sylvester equations.
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Appendix A

To prove Proposition 1 we need the following result.

Lemma 1 Let A;, By, Ck, Dy be n x n periodic
matrices of period K > 1. Let X be the solution of
the PSE

AX +0XB =C. (9)

Then
tr[DX] = tr U],

where U satisfles the PSE

BU + gldc A = ¢D. (10)

Proof. To simplify the notation, let take @ = D7,
For an arbitrary periodic matrix Y of period K we
shall also use the notation T to denote

vec (Yo)

|
Il

b

vee (Y )

where the operator vec(-) generates a vector from
the stacked columns of a matrix. By using this
notation we can express the solution of the PSE
(9) as

= PIE,

S|

where, for £ = 3, P has the form

ITeA, Blel 0
P = 0 I®A, BIf®f
Bf®I a I ® Ag

With the above expression for z, we obtain succes-
sively

tr[PX] =tr[QTX)=F 7=0 P 8=7G,
where 7 satisfies PT5 = g. Looking at
IeAT 0 By®l
PT=| Biel IgAl 0
0 By®I T®AT
we observe that P73 = § corresponds to the PSE
VBT + 0 AT0Y =00
or, after transposing,
BYT +o) e A=00Q".
But this is precisely the PSE (10) with the obvious

replacements Y7 = I and Q7 = D. We further
have

tr[DX] =7 & = tr [Y7C] = tr [UC).
m]

Proof of Proposition 1. To deduce the expression of
the gradient, we compute the first order variation



of J in the form AJ = tr[(VgJ)TAG]. From (3)
we have

AT = %tr [(FTAF + AFTF| = tr [FTAF].
From (4) we get
AF = AGX 1 —gxlAxx!
and thus

AJ = wFT(AG — FAX)X 1]
= tr[¥1FT(AG — FAX)]
tr [X 1 FTAG] — tr [X 1 FTFAX)] .

From (5) follows that AX satisfles the PSE
AAX — sAX A+ BAG = 0.
By using Lemma 1, we can write
tr [ FTFAX)] = tr [UBAG),
where I{ satisfies the PSE
A — oo A —o(X ' FTF) =0,

which, with H = X'FT, is in fact the equation
(7). We further obtain

AJ = tr[(H — UB)AG]

from which the expression of the gradient (6) fol-
lows. |

Appendix B

Let Ar € R™™™, By € R™*™, Cp € R™™™ be pe-
riodic matrices of period K > 1. In this appendix
we consider the solution of PSE of the form

AX + o XB=C, a1

where A is the periodic solution. The solution me-
thod presented here is a direct generalization of the
well-known Bartels-Stewart method [11] and has
been discussed in a more general setting in [10].
The method presented here can be seen as specia-
lization of the procedure of [10], for the case when
both A and B are reduced to PSF. Assume A and
B are already in PSF and partitioned according to
their PSF

-'411 AIQ Tt Alﬁ
0 Az -+ Ass

A= . . . )
0 0 - Aum

0 0 - Bam

Let us partition analogously the matrix A

A1 A - Am

Aoy Ao - Aom
A= ) . )

An1 Anz 0 Aag

From (11) follows that the (r,!)-th block X satis-
fies the PSE

Aer Xy + 0 By = Mgy, (12)

where

A —1
.,M,,-,’_ = C?‘I - Z Ar’:Xi"‘ - ZJXTJBJI
i=r+1 i=1

The above equations can be solved successively for
Xﬁl} Sy X?la Xlly Xﬁ21 ERE Xl?a - Xﬁ?‘!—"u LR
X715 and this leads to the following procedure:

Algorithm: Pericdic Schur method to solve PSE.

Compute the orthogonal 24 and V to reduce A and
B, respectively, to a PSF.

A gt Al B « o VTBY, C « ocldTCV.

forr=n,...,1
M=Cu=5 ) ArXa— 300 0By
Solve A,, X, + c X By = M

end

end
X —Uxvr.

This algorithm allows to overwrite C with the com-
puted solution A". Thus the additional storage ne-
cessary to implement this algorithm is K{n? 4 m?)
locations. If we neglect the effort to solve the low
order PSEs, then the core algorithm performs ab-
out 0.5K (m?n + mn?) flops. The total number of
operations to solve a PSE is about K(10n°+10m*+
2.5n*m + 2.5nm?) flops.

The computation of the solution A, of (12) requi-
res the efficient solution of low order PSEs of the
form

Ek}rfc+Yk+1Fk:Gkak:()e-“aK_l; Y[]:YK



where E, € Rm*™ F, € R™*"2 gnd G €
Rz with 1 < ny,mp < 2. An eflicient method
to solve such equations is discussed in [12]. The
method relies essentially on rewriting the above
equations with the help of Kronecker products as
a system of nyngK simultaneous linear equations
Hy = g, where the coefficient matrix H is a struc-
tured sparse matrix. Ignoring the sparse structure
of H in solving Hy = g leads, even for moderate
values of K, to rather expensive computations. To
exploit the structure of H, we can arrange, by an
appropriate grouping of unknowns in the vector y
and by a suitable ordering of the equations, to ob-
tain the coefficient matrix H in a block-Hessenberg
form. Then a specialized block variant of the Gaus-
sian elimination algorithm is used to solve Hy = g.
For details see [12].



