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Abstract. The reduction of system pencils to Kronecker-like canonical forms by orthogonal
similarity transformations has many important applications, as for example: in the poles-zeros
analysis of a system; in the structural analysis of a system (controllability, stabilizability, observa-
bility, detectability); in computing inverse systems; in computing minimum-phase factorizations
of transfer-function matrices; in solving constrained matrix Riccati equations; in computing the .
Kronecker’s canonical form of a general pencil. The reduction of system pencils can be performed
by specially tailored 0{n®) complexity numerically stable algorithms. The reduction technique
can be also applied without modification to the more general case of an arbitrary pencil. A
modular collection of LAPACK compatible FORTRAN 77 subroutines to perform the reduction
of system pencil to several Kronecker-like forms is presented. Several lower level subroutines are
useful in solving efficiently the above mentioned applications. A complete set of test programs
together with a collection of test data accompanies the basic computational software.
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1 Introduction

The most general representation of a linear time-invariant system is the generalized state space
or descriptor model
AEz(t) = Az(t) + Bul(t)
_ (1)
y(t) = Cz(t) + Du(t)

where x(t) € IR™ is the descriptor state vector, w(t) € R™ is the input vector and y(t) € R?
is the output vector, and where A € R™", E ¢ R™", B € R¥™, C € RP*", D € RF*™,
Notice that generally A and E are non-square matrices and even if these matrices are square,
E may be singular. In the case of standard systems E is an invertible matrix and in most of
cases ¥ = I, the n-th order identity matrix. The operator A is either the differential operator
Az(t) = dx(t)/dt or the advance operator Az(t) = (t+ 1). We denote alternatively the system
(1) by the quadruple (A — \E, B, C, D).



For this representation one can define the associated systern mairiz of (1) as the linear pencil

B A—)\E]’ (2)

S()\)Z{D C

The Kronecker’s canonical form (KCF) of this pencil [7] can be obtained by applying to S{}A)
suitable invertible left and right transformations U and V/, respectively, to yield a block diagonal
decomposition of the form

US(\V = diag {Le, T — A\ o, Jy — M, LT} (3)

where
(a) L = diag{Le,, .., Le,}, LY = diag{LL,... . LT}, and L; is the i x (i + 1) bidiagonal
pencil
-2 1

L;= . (4)
-A 1

(b) Jo = diag{J,,(0),...,J,,(0)} and J;(0) is the Jordan block of order ¢ corresponding
to the null eigenvalue. Notice that the matrix J is nilpotent.

(c) Jy is a matrix in Jordan canonical form.

The pencils J; — AI and I — AJ contain the finite and infinite eigenvalues, respectively,
and represent together the regular part of S()\). The finite eigenvalues are also called the finite
zeros of 8§(A). To each Jordan block J,,(0) corresponds an infinite elementary divisor of order
v; — 1 in the Schmidt form of the polynomial matrix $(A), and thus the union of the sets of
v; — 1 infinite eigenvalues is also called the infinite zeros of S(A). The blocks L, and L?; contain
the singularity of S{)) and the index sets {e;} and {n;} are the left (or column) and right (or
row) Kronecker indices of S(A), respectively. Notice that zero row or column indices correspond
to null rows or null columns in the KCF of the system pencil, respectively.

The KCF is very useful in the structural analysis of descriptor systems. Particular system
matrices can be used to study the pole-zeros structure or the controllability-observability pro-
perties of a system by computing various type of zeros (poles, input or output decoupling zeros)
[14]. Controllability and observability indices can be easily deduced from the row and column

Kronecker indices of the particular system pencils [ B | A — AE | and [i_c'\—E} The KCF

also provides information on the left and right null-space structure of S(A) and generalized in-
verses of the system pencil can be computed using this information, having as main application
the inversion of rational matrices [23]. The need to determine generalized inverses of rational
matrices arises in some of recently developed algorithms to compute minimum-phase rational
coprime factorizations, as for example the inner-outer factorization [24] or the J-inner-outer fac-
torization [26]. The reduction of special system pencils to KCF can also be used to solve special
classes of constrained Riccati equations [9]. The solution of such non-standard Riccati equations
is the basic computational step in determining inner-outer factorizations with non-square inner
factors [28], [12].

In all above applications the computation of the KCF is in fact not necessary and certainly not
recommendable from numerical point of view. Instead, with the help of orthogonal left and right
transformations, several condensed Kronecker-like forms can be computed which exhibit either
the complete Kronecker structure or only a part of the Kronecker structure of the system pencil.
In the next sections we introduce several Kronecker-like forms which can be computed with the
help of a collection of recently implemented FORTRAN 77 subroutines. For an easy reference,
we shall associate each form with the name of the corresponding subroutine implemented to



compute it. We also indicate the main applicability of each form in solving some of the above
mentioned problerns.

The algorithms to compute various Kronecker-like forms are combinations of several recently
developed numerically stable procedures [2, 20, 21, 14]. All implemented algorithms have 0(n?)
computational complexity and compare favorably in many aspects with existing methods [18,
2, 6.

2 The SPRED Form

The SPRED subroutine determines, by applying left and right orthogonal transformations, the
following Kronecker-like form of the system pencil

[ B, A, -AE. * * * * T
O| 0  Aw-IEo + s ;
- ol o o D .
— 0F — i
SN=Q@8NZ=1 51 o o 0 A;-rE; « |0 O
ol o ) 0 0 A )E
o7 o 0 0 0 ¢

where

(a) B, € R**™ A, € R"*", and E, € R" ™ is invertible and upper-triangular; the
pencil [ B, A, — AE, ] contains the right Kronecker structure of S(A); the pair (B,, A, — AE,)
is controllable and the pencil [ B, A, — AFE, ] is in the controllability staircase form

11| Al — AEL Al —AB . Al AE[, ]
0 2.2 ah-1— AES L AL AEG,
[B.1A,—)\E,]=| O o : : , (6)
: : A;~1,k—1 Ai—l,k - )‘E};_Lk
L O o O ko J

with the diagonal matrices A ; € R™*7~1 having full row rank 7; (with 7 = m, and 7 = 0), and
the upper diagonal matrices E7;,; € IR™*% being invertible and upper-triangular; moreover,
each A7; has the form A}, =[O ﬁ:l | with E:t invertible and upper-triangular.

(b) Aee € R™=""= ig invertible and upper-triangular, E, € IR™**™>= is nilpotent and
upper-triangular, and I}; € IR™ " is invertible and upper-triangular; the regular pencil A, —

AE o together with D; contain the infinity Kronecker structure of S(A}; the pencil A, — AE
is in the special form

O 22 AT 1 — AED, AZS — AESS,

Aoo - )\Eoo - o0 O -, : (7)
: 5 ' AR h ApZ 1 —AERL 1,
6] ') 0 hoh -

with the diagonal matrices A7 € R* *#4 invertible and upper-triangular, and the upper diagonal

matrices E77, 1 € RA P4 having full column rank.
(c) Ay € R/ and By € R™*" is invertible and upper-triangular; the regular pencil
Af— MAEy contains the finite Kronecker structure of S(\).



(d) C; € RP*™M, A; € RY*™ and E; € R™*™ is invertible and upper-triangular; the

pencil [ A E,?EI } contains the left Kronecker structure of S(A); the pair (C;, 4; — AE}) is
observable and the pencil [ A E,JAE* ] is in the observability staircase form
Al ! ! ! ! ! !
Az Agi1 = M Aiz =M Air = A
0 A 1i-1 e A9 —AES 15 A1 —AE;_1
A — AE, i . : 3
T =1 O 0O i : : . (8)
: : - Al AL —AEY
L O 9] o 9] Al

with the diagonal matrices Aﬁvi € R*-1*% haying full column rank g; (with gy = pr and

g = 0), and the upper diagonal matrices B! |, € R#*#i being invertible and upper-triangular;

+1,3

~1

~t . .
moreover each Aﬂ,i has the form A:’i,i = AOH with A, ; invertible and upper-triangular.

Excepting the finite eigenvalues structure, the SPRED form contains identical structural in-
formation as the KCF. The index sets {7;}, {p:}, {ui} determine the minimal indices and the
infinite structure of the system pencil §(A) as follows [18]:

Lemma 1 From the structure of the pencil [ B, A, — AE, | in (6), there are ¢; = 7.1 — 7
Kronecker column indices of size (i — 1}, (i =1,...,k), where g =m, and 7, =0 .

Lemma 2 From the structure of the pencil Ay — ANEo in (7}, there are d; = p; — p;11 infinidte
elementary divisors of degree i, (i = 1,...,h), where ppq = 0.

Lemma 3 From the structure of the pencil [Al E?Ei } in (8), there are r; = fiy — p;

Kronecker row indices of size (1 — 1), (i =1,...,7), where py =p; end p; = 0.

In what follows we discuss two interesting applications of the SPRED form.

2.1 Inversion of Rational Matrices.

Let G(\) be an p x m rational matrix for which we want to compute a generalized inverse G(A)"
satisfying

GGG = G

GGt = Gt (9)

In the nomenclature of [3], G(A)™" is called an (1,2)-generalized inverse of G()). Such compu-
tation is a necessary first step in the recently developed algorithms to compute the inner-outer
factorization [24] or the J-inner-outer factorization [26] of an arbitrary rational matrix.

G(X) can be assimilated with the transfer-function matriz (TFM) of a regular descriptor
system (A — AE, B,C, D) (det(A — AE) £ 0), satisfying

G\ =C(OAE-A)"'B+D. (10)

If the descriptor representation of G(A) is srreducible (controllable and observable), it was shown
in [27], that much of the structure of G()) can be retrieved in that of (1), as for example the

zero structure of G(A), and also the left and right nuil-space structures of G{A) and S(}) are
the same.



The generalized inverse G(A)™ of G(\) can be computed by using the formula [23]

GO =10 In] SOV [ g’ ] . (1)
With the partitioning of S(A) in (5) as
s | SN | Si(y)
ﬁ”_[ 0 l&ﬂﬂ} 12

it follows that for almost all A, rank §(A) = rank Si2(}), and thus a generalized (1,2})-inverse of
S(A) can be computed as [3]

(@) O
glg(k)—l (8]

It is easy to verify that G(A)" in (11) is indeed an {1,2)-generalized inverse of G()).
To compute a descriptor representation of the generalized inverse G(\)", it is not necessary
to explicitly evaluate S12(A) L. If we denote

ﬂn+=2[ QT. (13)

- - ~ - T r B - =

A — 2B = 800, B:QT{ i } = [ 'S ] C=[(01,1Z=[C1Cy], (14)
2

where B and € are partitioned analogously with the column and row partition of S (A) in (12),

respectively, then the corresponding G(A)* is given by
G\ = Ca(A1 — A\E)'By (15)

and thus (ﬁm — )\E‘m,ﬁl, —62,0) is a descriptor representation of G{\)*. The compnted
generalized inverse has minimal order only if G'()) is invertible. The compntation of lower order
inverses is addressed in [23].

2.2 Computation of Stable Generalized Inverses

The finite pole structure of the generalized inverse G computed with (15) results from the
SPRED form (5) of the system pencil S()) used to compute it. Thus, the finite poles of G are
the union of generalized eigenvalnes of the pair (A, Ef) called also the zeros of G and and of
the generalized eigenvalues of the pairs (A,, E,) and (A, E;). Notice that the zeros of G are
always present among the poles of any of its generalized inverses. Even if the zeros are stable,
that is the descriptor system is minirmum-phase, it is still possible that the generalized inverse
computed with {15) has unstable poles because of possible unstable eigenvalues appearing in
the pairs (A., E,) and (A;, E}). The spectrums of these pairs can be arbitrarily modified by
applying suitable left and right non-orthogonal transformations U and V to the SPRED form (5).
By choosing U and V of the special forms

Iﬂr +Noe+ns +nf 0 O Imr F 0
U= 0O I, K|, VvV=| O I, O (16)
O O Ipz O O Iﬂm+ns+nf+nl
we obtain for S(A) = US(\)V
[ B, |A. + B.F — \E, * * ® * i
O O Ay —MAE, * * *
= O O 0O D; * *
SN=1 o o O O A;-)\E R (17)
O (@) O O (@ A+ KC; - \E,
| O o 0O O 0 Cy i




which has the same structure as §()\) in (12). Because the pair (B, A, —AE,) is controllable and
the pair (C), A; — AE,) is observable, we can arbitrarily assign the spectrum of the pairs (A, +
B,.F.E,) and (A;4+KC,, E;) by choosing suitable state-feedback and output-injection matrices
F and K, respectively. These matrices can be efficiently computed by nsing either direct
stabilization methods or pole assigniment techniques for descriptor systems as those proposed in
[25].

The generalized inverse G can be compnted similarly as in (13)

0 O

S(,)\)+:ZV [ §12(A)a1 O

] UQr, (18)

where S13(\) is the submatrix of S()\) corresponding to Sj2(\) in (12). Further

G\ = Cy(Ay; — \Ey,) 1By, (19)
where
B,

B,

‘:112 - /\E]g = glz(A), E = UQT [ 'g’ :( — [

}, C=[01,]ZV=[C,Cs] (20

Thus (ﬁlg — )\E‘lg,ﬁl,—ég,O) is a descriptor representation of G{A\}*. It is clear that in
general, the only unstable poles of the generalized inverse (19) are the unstable zeros of G.
Thus G(A)*t is stable if the the given G is minimum-phase.

3 The SLRRED Form

The SLRRED subroutine determines, by applying left and right orthogonal transformations, the
following Kronecker-like form of the system pencil

A, - ME, = * *
N O D; * *
SN =QTs(\Z = 0 O A;—)\E; * , (21)
8] 0 0 A — \E;
0 (0] 0 C,

where

(a) Ar — AE, bas full row rank and contains the right and infinite Kronecker structure of
S(A); the pencil A, — AE, is in the staircase form

[ AT Al —AEl, - Al — AET; Al —AE ]
O A3 e Agp g —AEL Az — ABY,
A, —\B,=| O o) : : ;o (22)
: : : Az—l,k—l Ai_l,k - ’\E};—l,k
L 0 o U O }:-.,k i

with the diagonal matrices A7, € R7**% having full row rank 7; and the upper diagonal matrices
E7; ., € R%™F having full column rank.

(b) D; € R™*™ is invertible and upper-triangular;

(c) Ay € R™*™, and E; € R™*™ is invertible and upper-triangular; the regular pencil
Ay — AE; contains the finite Kronecker structure of S(\).



(d) C; e BRP*™ | A; € R™*™, and E; € R™*™ is invertible and upper-triangular; the pencil
[ A= AL | contains the left Kronecker structure of S (A); the pair (Cy, A; — AE;) is observable

C,
A — AE,;
C

Af;’,; € R#-1*# having full column rank p; {with gy = p; and p; = 0), and the upper diagonal

and the pencil [ ] is in the observability staircase form (8) with the diagonal matrices

matrices B +1.; € R¥H being invertible and upper-triangular; moreover each Aim has the form
~1
~1 . .
Ai,z- = [ Aot',i ] with A, ; invertible and upper-triangular.

Excepting the finite eigenvalues structure, the SLRRED form (21) contains identical structural
information as the KCF. The index sets {7}, {ii:}, {4:} determine the minimal indices and the
infinite structure of the system pencil S(A) as follows [18]:

Lemma 4 From the structure of the pencil A, — AE, in (22), there are ¢; = [i; —7; Kronecker
column indices of size (i —1), (1 =1,...,k) and di = T — fi1 infinite elementary divisors of
degree 4, (1 =1,..., k), where Gp41 = 0.

Lemma 5 From the structure of the pencil A E,;\Ef ] in (8), there are r; = i1 — M

Kronecker row indices of size (i — 1), (1t =1,...,7), where yg=p; and p; = 0.

3.1 Inner-QOuter Factorization of Rational Matrices.

Let G(A) be a p x m rational matrix and let (A — AFE, B, C, D) be a corresponding regular
descriptor system representation satisfying (10). We assume that G is stable, that is all its
finite poles are in the stability region €~ of the complex plane €. €~ is either the left open
complex half-plane for a continuocus-time system or the interior of the nnit circle for a discrete-
time system. Then G(A) has an inner-outer factorization G = G;G,, where G; is a square
inner factor and G, is an outer factor. Recall that G; is inner means G;G; = I, where
G:(s) = GT(—s) in continuous-time and G}{z) = G7(1/z) in discrete-time, and G, is outer
means G, has a stable generalized inverse. The main computational steps to determine the
inner and outer factors of G are [24]:

1. Compute a generalized inverse G of G such that the unstable poles of G are exactly
the unstable zeros of G

2. Compute the right coprime factorization with minimal order inner denominator of G+ as
G"=N G, ! where N and G are stable TFMs with G inner (the order of G; equals
the number of unstable zeros of G).

3. Compute G, = G; 'G.

At step 1 of the above procedure the generalized inverse G with the required properties can be
computed by using the method presented in the subsection 2.2. At step 2 we have to compute a
right coprime factorization of G* with minimal order inner denominator. For this purpose the
recursive algorithm proposed in [22] is best suited. The inner denominator can be determined
by applying this algorithm to the descriptor representation of G(A)™* given by (19).

The algorithm of [22] determines the matrices of the descriptor representation of the factors
N and G; in the form

N | _ Ay —AE; Ap—AE: B, C, C; 0
G; | 0 Ags —AEy |7| Ba |’ 0 Fy |’ I,



and a minimal realization for the inner factor G; is given by
G; = (A — AEq, By, Fo, 1),

where Fj» is invertible and upper-triangular and the resulting pair (Asq, E22) is in a generalized
real Schur form (GRSF) having as eigenvalues the reflected stable eigenvalues corresponding
to the unstable zeros of the given system. Thus, the order of the inner factor is precisely the
number of unstable zeros of G

In computing G; the output matrix C,in (19) plays no role and thus the right transformation
matrices Z and V used in (18) to determine S{A)T are not necessary to be computed. Thus
instead of using the SPRED form to compute an appropriate G(A)t, we can use the simpler
SLRRED form, which provides all necessary information to compute G;. A detailed description
of the resulting algorithm is presented in [24]. A similar technique can be used to compute
J-inner-outer factorizations [26].

4 The SRLRED Form

The SRLRED subroutine determines, by applying left and right orthogonal transformations, the
following Kronecker-like form of the system pencil

B, A, - \E, * * «

= O (@) Ar—AE * ®

SWn=QTsnz = P = d D, . : (23)
o O O O A, — \E;

where

(a) B, ¢ R, A, € R™*™ and E, € R™*"™ is invertible and upper-triangular; the
pencil { B, A. — AE, | contains the right Kronecker structure of S(A); the pair (B, A, — AE,)
is controllable and the pencil { B, A, — AE, | is in the controllability staircase form (6) with
the diagonal matrices A}; € R™*™~! having full row rank 7 (with 7p = m, and 7, = 0), and
the upper diagonal matrices Ef,,; € R™*™ being invertible and upper-triangular; moreover,
each A, has the form A7; =[O _:1:’1- ] with ;1:1 invertible and upper-triangular.

(b) Ay € R™ >, and E; € R™ ™ is invertible and upper-triangular; the regular pencil
Ar — AE ¢ contains the finite Kronecker structure of S(A).

(¢) D; € R™*™ is invertible and upper-triangular;

(d) A; — AE; has full column rank and contains the left and infinite Kronecker structure of
&(A); the pencil A; — AE; is in the staircase form

(AL AL =B Aly, - 2B, AL —AEL T
0 Aji—l,j—l A_‘;'—l,z - )‘Efiﬁlﬁ A§—1,1 - )‘E_{f—l,l
A—AE =) O 0 : : , (24)
: : A, ALy - 2B,
e 0 0 AL

with the diagonal matrices Ai‘i € R™*# having full column rank p; and the upper diagonal
matrices E! 114 € RAX741 haying full row rank.
Excepting the finite eigenvalues structure, the SRLRED form contains identical structural

information as the KCF. The index sets {7;}, {7}, {u:} determine the minimal indices and the
infinite structure of the system pencil S(A) as follows [18]:



Lemma 6 From the structure of the pencil [ B, A, — AE,; ] in (6), there are ¢; = Ti_1 — 75
Kronecker column indices of size (1 — 1), (i=1,...,k), where o =m, and 7, =0 .

Lemma 7 From the structure of the pencil Ay — AE in (24}, there are r; = 7; — p; Kronecker
row indices of size (i — 1), (i =1,...,7) and d; = p; — Tiy1 infinite elementary divisors of degree
i, (i=1,...,7), where Tj41 =0,

4.1 Computation of Maximal Proper Stable Deflating Subspaces

Let M — AN be an arbitrary pencil with M, N € R™™9, let €~ be the stability region of € and
let C* be the complement of € in €. The following particular reducing subspace introduced
in [10] has important applications in solving various nonstandard Riccati equations.

Definition 1 A subspace V C IRY of dimension p is called a proper stable deflating subspace of
M — AN to the right if NV = MV S and MV is monic, where V € RY*? is any basis matriz
for V and § € RP*? is an adequate matriz having all its eigenvalues in C~.

Here the term proper restricts the definition of reducing subspaces introduced in [19] to the finite
eigenvalue structure of the pencil M — ANV, ruling out basically the structure corresponding to
infinite eigenvalues. Similar definition can be given for proper stable deflating subspaces to the
left.

Let n; be the number of stable generalized eigenvalues of the pair (A¢, Ef) in the SRLRED
form of the pencil M — AN (viewed as a particular system pencil) and let n, the dimension
of the A, — AE, block. The following result [10] characterizes the existence of a stable proper
deflating subspace of maximal dimension.

Theorem 1 The pencil M — AN has a stable proper deflating subspace to the right if and only
if N + ny > 0. Moreover, the mazimal dimenston of a stable proper deflating subspace to the
right is n,. + ny.

For the computation of a stable proper deflating subspace of maximal dimension the SRLRED
form of the pencil M — AN can be used as the starting form for further reductions. Notice that
generally the accumulation of left transformations is not necessary in this case. The procedure
to compute the basis matrix V for a proper deflating subspace of maximal dimension of M —AN
has the following main steps [16]:

1. Compute the orthogonal matrices Q and Z to reduce the pencil M — AN to the SRLRED
form (23).

2. Apply the pole assignment algorithm of [25] to determine the orthogonal matrices @, and
Z, and the feedback matrix F such that A(QT (A, + B,F)Z,Q1 E.Z,) C € and the
pair (@1 (A, + B,F)Z,,QTE,Z)) is in a GRSF.

3. Compute the orthogonal matrices @1, and Z» to reduce the pair (A, E) to the ordered

GRSF
Al Al E{, E{
T _ T
A7, = 11 12 , E:7Z0 = 11 12 . 2
Q‘”‘f‘?[OA{Q} Q2f2[0E§2‘ (25)
where Af, E{, ¢ R*7*"7 A(A{,E]) c € and A(AL,, EL) c C*.
4. Compute V as
F O
B Z, O
V=2Z|% g (26)
0O O



Notice that in the above procedure, the left transformations should be not accumulated. It is
easy to verify that NV = MV S holds with MV monic,

o { Z{E;' (A, + B.F)Z, *

" , (27)
0 (Ef)tAf

and A(S)C €.

The reduction to the ordered GRSF at step 3 can be performed by using the well-know QZ
algorithm of [15] followed by the recently developed numerically stable algorithms to reorder the
GRSF [13].

4.2 Solving Nonstandard Continuous-Time Riccati Equations

We discuss in this subsection the computation of the symmetric solution X of the following
nonstandard so-called constrained continuous-time algebraic Riccati equation (CCTARE)

ATX t XA-(XB+L)RE'(B"™X + LY +Q=0

ker R C ker{X B + L) (28)

where A € R™™, B € R™™, Q € R™” with @ = QT, R € R™™ with R = R”, and
L € R*™™. A solution to CCTARE is called stabilizing if the pair (A+ BFy, By) is stabilizable,
where Fg := —RT (BT X 4+ LT) and where By is any basis matrix for Im B Nker R. Notice that
no other assumptions than symmetry are made on matrices @ and R.
If R is invertible, then the second equation in (28) is trivially satisfied and the first equation
becomes
ATX + XA (XB+ L R'BTX+LT)+Q=0. (29)

This equation is called the the continuous-time algebraic Riccati equation (CTARE).

In his most general form, the CCTARE appears in computing inner-outer factorizations with
non-square inner factors [5, 28]. The CTARE appears in solving various H ., synthesis problems
and in computing spectral and J-spectral factorizations.

For the solution of CTARE and CCTARE consider the extended Hamiltonian pencil (EHP)

B A-) o
M-AN:=| -L —-@Q@ -AT I (30)
R LT BT

and let V e RPZ"™)%? 3 basis matrix for the maximal proper stable deflating subspace of the
pencil (30} partitioned compatibly
Vi
V=|V, {31)
Vs

The following theorems [10] establish necessary and sufficient conditions for the existence of
stabilizing solutions of CTARE and CCTARE.

Theorem 2 The CTARE has a stabilizing solution X if and only if the EHP (30) is regular and
has a mazimal n dimensional stable proper deflating subspace to the right V =Im 'V with V3 in

(31) invertible. Moreover, if such solution ezists it is unique and X = V;;Vz_:L and F = Vle_1
makes A + BF stable,

Theorem 3 The CCTARE has a stabilizing solution X if and only if the EHP (30) has a
mazimal n dimensional stable proper deflating subspace to the right V =ImV with Vy in (31)
invertible. Moreover, if such solution exists it is unique and X = V3V§1 and F = V1V2_1
makes A+ BF stable.

10



The EHP (30) has the form of a system matrix of a 2n standard system. Thus the com-
putation of the solution of either CTARE or CCTARE can be accomplished by computing the
maximal proper stable deflatiug subspace of this pencil using the method of previous subsection
and verifying if this subspace has dimension n with V', invertible.

4.3 Solving Nonstandard Discrete-Time Riccati Equations

We discuss in this subsection the computation of the symmetric solution X of the following
nonstandard so-called constrained discrete-time algebraic Riccati equation (CDTARE)

ATXA-X - (ATXB+L)R+B'XB*(BTXA+LT)+Q=0
ker (R+ BTXB) C ker (ATXB+ L)

where 4, B, Q, R and L are as in the previous subsection. A solution to CDTARE is called
stabilizing if the pair (A+BFy, Bo) is stabilizable, where Fy := —(R+B7 X B)"(BTX A+ L")
and where By is any basis matrix for Im B Nker (R + BT X B).

If R+ BT X B is invertible, then the second equation in (32) is trivially satisfied and the
first equation becomes

ATXA-X - (ATXB+L(R+BTXB)'(BTXA+ LN +Q=0. (33)

(32)

This equation is called the the discrete-time algebraic Riccaty equation (DTARE).
For the solution of DTARE and CDTARE consider the eztended simplectic pencil (ESP)

B A O o1 O
M-M:=|L -Q -I{-X|0 0 -AT (34)
R LT ©O 0 0 -BY

and let V € RE"™)*8 5 hagis matrix for the maximal proper stable deflating subspace of the
pencil {34) partitioned compatibly as in (31). The following theorems [11] establish necessary
and sufficient conditions for the existence of stabilizing solutions of DTARE and CDTARE.

Theorem 4 The DTARFE has a stabilizing solution X if and only if the ESP (34) is regular and
has a mazimal n dimensional stable proper deflating subspace to the right V = Im V wath Vo in
(31) invertible. Moreover, if such solution ezists it is unique and X = V3V and F =V, V!
makes A + BF stable.

Theorem 5 The CDTARE has a stabilizing solution X if and only if the ESP (34) has a
mazimal n dimensional stable proper deflating subspace to the right V =Im'V with V, in (51)
invertible. Moreover, tf such solution exists it is unigue and X = VgV.;l and F = V), Vzﬂl
makes A + BF stable.

The ESP (34) has no longer the form of a standard system matrix as in the continuous-
time case. Nevertheless, we can assimilate this pencil with a particular system pencil of a
system without inputs and without outputs. We can compute the solution of either DTARE or
CDTARE by computing the maximal proper stable deflating subspace of this particular system
pencil using the method of subsection 4.1 and verifying if this subspace has dimension n with
V2 invertible. Other non-standard discrete-time Riccati equations are discussed in [9].

5 Other Condensed Forms

We present in this section several condensed form which are computed during the reduction
of the system pencil to the more complex forms already discussed. These forms are useful in
determining alternative Kronecker-like forms or simply by using in revealing partial structural
information on the system pencil.
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5.1 The SRSET form

This form is the starting form to compute all Kronecker-like forms presented in this paper. By
using suitable left and right transformation matrices U, and V'; respectively, the system matrix
S{A) is reduced to the following equivalent form

S0y = UTS(V, = [%‘Lf(;‘i} (35)

where E is upper-triangular non-singular matrix of order rank (E). Notice that in the case of a
standard systemn U and V can be chosen identity matrices.

5.2 The SRISEP form

The SRISEP form is useful for determining the left and infinity Kronecker structure of the system
pencil. Tt is obtained by further reducing the SRSET form, by applying left and right orthogonal
transformations, to the following particular structure

B, ! A, — \E,

P BT $ommmm oo *

Uls§\WV.=| D, C, (36)

where

(a) D, has full row rank p. and is in an upper-trapezoidal form.

(b) A, E. € R*”*" and E, is upper-triangular and non-singular.

(c) A — AE; has full column rank and contains the left and infinite Kronecker structure of
S(\); the pencil A; — AE; is in the staircase form (24) with the diagonal matrices Aﬁ’i e IR *H
having full column rank y; and the upper diagonal matrices E} 11 € R4 having full row
rank.

The index sets {7;} and {g;} determine the minimal row indices and the infinite structure
of the system pencil S(A) according to lemma 7.

Remark. For a standard system with E = I,,, the reduction to the SRISEP form can be
accomplished such that the resulting E; is an identity matrix.

5.3 The SLISEP form

The SLISEP form is useful for determining the right and infinity Kronecker structure of the
system pencil. It is obtained by further reducing the SRSET form, by applying left and right
orthogonal transformations, to the following particular structure

A, —)\E, | x
A, —\E, (37)

UISNV;3 =

where

(a) A; — AE, has full row rank and contains the right and infinite Kronecker structure of
S(A); the pencil A, — AE, is in the staircase form (22) with the diagonal matrices A7; € IRT>#
having full row rank 7; and the upper diagonal matrices E; , € RX#i+1 having full column
rank.

(b) D has full column rank m, and is in an upper-trapezoidal form.

(c) A, E, ¢ R"”" and E, is upper-triangular and non-singular.

The index sets {7;} and {f;} determine the minimal row indices and the infinite structure
of the system pencil S(A) according to lemma 4.
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Remark. For a standard system with £ = I,,, the reduction to the SLISEP form can be
accomplished such that the resulting E. is an identity matrix.
5.4 The SRISEP-SLISEP and SLISEP-SRISEP forms

These forms are useful for determining the complete Kronecker structure of the system pen-
cil. They can be obtained by calling successively the SRISEP-SLISEP or the SLISEP-SRISEP
subroutines to reduce the SRSET form of the system pencil to the following particular structure

A, — AE,
UTsoywv, = 0

o o | A — \E;

where

(a) A, — AE, has full row rank and contains the right Kronecker structure of S{A), and
in the case of SLISEP-SRISEP form also the infinite Kronecker structure; the pencil A, — AE,
is in the staircase form (22) with the diagonal matrices A]; € R7 ™" having full row rank 7;
and the upper diagonal matrices E7; , € R7*A+1 having full column rank. In the case of
SRISEP-SLISEP form z; = Tj—) fort =2,...,k and 7 = 0.

(b} D,. € RP**Pr js upper-triangular and non-singular.

(c) Aye, BE,c € R" ™" and B, is upper-triangular and non-singular.

(d) A; — AE; has full column rank and contains the left Kronecker structure of S(A), and
in the case of SRISEP-SLISEP form also the infinite Kronecker structure; the pencil A; — AK,;
is in the staircase form (24) with the diagonal matrices A,{-,i € R™*# having full colurn rank
ui and the upper diagonal matrices Ei-{—l,i € R¥%*7+1 having full row rank. In the case of
SLISEP-SRISEP form, 7; = ;-1 fori=2,...,7 and u; = 0.

The index sets {7}, {&:}, {7} and {u;} determine the minimal row indices the system pencil
&(A) according to lemmas 4 and 7. The finite eigenvalue structure of S(A) is determined by the
eigenstructure of the matrix pair (Aq. — B.D} C\e, Br).

Remark. For a standard system with E = I,,, the reduction to the SRISEP-SLISEP or
SLISEP-SRISEP forms can be accomplished such that the resulting F,. is an identity matrix.

6 Algorithms

In this section we discuss the computational approaches implemented in the subroutines to
compute the Kronecker-like forms introduced in previous sections. A common characteristics of
all these procedures is that they consist of combinations of several highly specialized structure
revealing subprocedures, as those to separate the left and infinity structures, the right and in-
finity structures, the controllable and uncontrollable or the observable and unobservable parts
of particular system pencils. As an example, we present the main computational steps of the
most complex procedure to compute the SPRED form. We also discuss the computational ingre-
dients which ensure the 0(n?) computational complexity of this procedure. The procedures to
compute other Kronecker-like forms are either parts of the SPRED Procedure or rely on similar
dual algorithms applied to implicitly pertransposed pencils (transposed with respect to the main
antidiagonal). Notice however that all implemented procedures avoid explicit pertransposing.
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SPRED Procedure.

1. Determine orthogonal U; and V' to compute a complete orthogonal decomposition of E
in the form

, O E
UfEV1=[ }

0 O (39)

where E is upper-triangular and non-singular. Compute the SRSET form of & (A) as

Si(\) = ding {UT, I,} S(N) diag (I, V1} 1= H}&i%‘i} ; (40)

and set Q = diag {U1, I}, Z = diag {I, V1}.

2. By using the dual S-REDUCE algorithm of [14], determine orthogonal Uz and V3 to
reduce the system pencil S1(A) to the SLISEP form

A — \B | *
Sa(N) =ULTS(NV,y = o } B, A. - \E, (41)

where D, is upper-trapezoidal and has full column rank, E. is upper-triangular and non-
singular, and A; — AF; has full row rank. Compute Q + QU3, Z « ZV 5.

3. By using the reduction technique of (2, pages 33-34|, determine orthogonal U3 to compress
the rows of the matrix { g“ ] such that

Al — )\El * *
S3(A) = diag {Ia U{}SQ(’\) = O O A, -)\E, |’ (42)
O o Cs

where D; is upper-triangular and non-singular, C5 is the part of C corresponding te the
linearly dependent rows of D., and F5 is upper-triangular and non-singular. Compute
Q « Qdiag{I,U;}.

4. By using the dual of the controllability staircase algorithm of [20], determine orthogonal

I74 and V4 to reduce the sub-pencil { Az E:\EQ ] to the observability staircase form

A;— AFE *
Ay~ \E I 4
UZ[ 20.2 2]V4” o A - \E; |, (43)
o C

where the pair (C, A;— AEj) is observable, and both E ¢ and E; are upper-triangular and
non-singular matrices. Compute

Si(A) = diag {I,U}S3(X) diag {I, V 4} (44)
and Q « Qdiag {I,U,}, Z «+ Zdiag {I, V4}.
5. By using Algorithms 3.3.1 and 3.3.3 in [2], determine orthogonal U'; and V'5 to reduce the
full row rank sub-pencil 4; — AE; to the following form

UT(A] —AE Vs =

B, A, )\E,
* ] (45)

O o A —AE
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where A, — AF,, contains the infinity structure of the system pencil S(A) and the pair
(B,, A, — AE,) is controllable with E, upper-triangular and non-singular. Compute the
final SPRED form

8(N) = dieg (U, I}83() diag {V's, T} (46)

and Q « Qdiag{Us, I}, Z « Zdiag{V5, I'}.

The SRSET, SLISEP and SLRRED forms of the system pencil §(A) are computed at intermediary
steps 1, 2 and 4 as the pencils 8§ (A}, S3()), and S84(A), respectively. For computing the SRISEP
and SRLRED forms the same procedure applied to the pertransposed system pencil S(\)¥ can be
used. However the implemented algorithms to compute these forms avoid explicit pertransposing
by working directly on the original matrices.

For computing the complete orthogonal decomposition at step 1, any rank revealing de-
composition of E can be used. The most reliable approach is to compute the singular value
decomposition of E and to determine the rank of E on the basis of computed singular values. A
less expensive approach is to use the QR-decomposition with column pivoting of E. Excepting
very special examples (for instance the so-called Kahan-matrices), this decomposition has almost
the same reliability in determining the rank of a matrix as the singular value decomposition [17].
Thus we decided to use it in implementing the SRSET subroutine in combination with the in-
cremental rank estimation technique proposed in [4]. Reliable software for both decompositions
as well as auxiliary routines for the incremental rank estimation, are provided in LAPACK [1].
Notice that in contrast with alternative algorithms [2, 6, 18], a single rank determination is
performed involving E. In all subsequent computations the preservation of the triangular form
and of the full rank structure of intervening “E” matrices are crucial for performing the various
pencil reductions and for ensuring the 0(n?) computational complexity.

The reductions performed at steps 2 and 4 are based on a reduction technique similar to
that introduced in [20] to compute controllability staircase forms of descriptor systems. This
technique was used in conjunction with computing system zeros [21] and is described in detail
in [14]. The rank determinations are based on QR-decompositions with column pivoting. The
main feature of these algorithms is the preservation, during computations of QR-~decompositions,
of the full rank and of the upper-triangular form of the intervening “E” matrices. This feature
leads to two important advantages over existing methods. The first advantage is the computa-
tional complexity 0(n®). In contrast, the algorithms of [6, 18) have computational complexity
0(n*), because singular value decompositions are used instead of QR-decompositions, and thus
the explicit accumulation of left and right transformation matrices is necessary. Notice that
the 0(n*) computational complexity is a generic feature of these algorithms and always occurs
for example for a randomly generated single-input single-output system. The second advan-
tage arises in comparing the reduction algorithm S-REDUCE of [14] and the improved 0(rn?)
complexity Algorithm 3.2.1 of [2]. The main weekness of this latter algorithm is the need to
update during each QR-like reduction step the rank information on “E”. This rank updating is
in fact equivalent with rank decisions based on QR-decompositions without pivoting and thus it
is potentially unreliable. In the S-REDUCE algorithm of [14], “E” having always full rank, no
such updating is necessary. Instead, two QR-decompositions with column pivoting are necessary
to be performed at each step.

c

The row compression of { g } at step 3 is performed in two steps. First the rows of D,
° [+

are compressed to an invertible matrix Iy such that

(47)

wlilD.c.|= { Dy €y ]

0o o,
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Then the rows of [ B. ] are compressed with an appropriate orthogonal matrix W such that

m
[ B. Ac—AE.]_[D;  + 45
W?[Dl ci |70 A-aE | (48)

where the resulting E is upper-triangular and non-singular. The compression method efficiently
combines Given rotations and row permutations and is described in detail in [2, pages 33-34].

To perform the reductions at step 5 the SREDUCE algorithm can be used after cornpressing
E; to a full rank invertible matrix. A more efficient approach is to use the Algorithms 3.3.1 and
3.3.3 proposed in [2] which requires no rank determinations. In computing the SPRED form we
implemented these two algorithims.

7 Software Outline

The following higher level user callable FORTRAN 77 subroutines have been implemented to
compute the Kronecker-like forms described in the previous sections:

s SRSET - to compute the SRSET form of the system pencil S(A) corresponding to a given 3-
tuple (E, A, B, C, D). Particular system pencils corresponding to: D, (E, A), (E, A, B),
(E,A,C), or E =1I can be also handled. :

SLISEP - to reduce a system pencil in SRSET form to the SLISEP form.

SRISEP - to reduce a system pencil in SRSET form to the SRISEP form.

SLRRED - to reduce a system pencil in SRSET form to the SLRRED form.

SRLRED - to reduce a system pencil in SRSET form to the SRLRED forin.
s SPRED - to reduce a general system pencil to the SPRED form.
Several lower level subroutines are called by the above subroutines:

e SCFRED - to reduce a subpencil [ B A — \F ] to the descriptor controlability staircase form

+ SOFRED - to reduce a subpencil [ A E,AE ] to the descriptor observability staircase form

e SLIUTR - to reduce a full row rank subpencil A — AF to a standardized staircase form with
all diagonal blocks in A and all upper diagonal blocks in ¥ triangularized

e SLIRED - to a full row rank subpencil A — AE to a form with separated left and infinite
Kronecker structure

All routines optionally accumulates the left and right orthogonal transformations made during
the reductions.

A prerequisite for the reliable usage of all reduction routines is the assumption of a certain
uniformity in the ranges of elements of the systern matrices. This assumption is necessary be-

cause all rank decissions are taken using only two tolerance parameters, which serve in detecting

B A

negligible elements in the matrices M = D C and E. If the ranges of nonzero elements in

M orin F is too different, usually certain balancing of system data is necessary before calling
the above routines in order to obtain meaningful results. A preconditioning algorithm of system

16



data for computing the zeros of standard systems has been recently proposed in [8]. An exten-
sion of this algorithm is seemingly straightforward for the case of reducing the system pencils
of descriptor systems.

The implementations of all routines rely on LAPACK [1] and BLAS calls. The user interface
conforms with the implementation standards of the SLICOT library [29]. All routines are
extensively commented and in line comments can be used for documentation purposes. As an
example, the complete listing of the source code of the SPRED routines is presented in Appendix
A. The inline comments for all implemented routines are listed in Appendices D-L.

Test programs with files containing test data and test results are available for all user callable
routines. An example of a test program for the subroutine SPRED is presented in Appendix B
and the obtained results are listed in Appendix C. Special routines to evaluate the incurred
rounding errors are called by all test programs.
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