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Consider the linear discrete-time periodic system of the form

Tyl = Ak$k+Bkuk (1)
ye = Crap + Dyug

where the matrices Ay, € R™" By € R™™ (C, € RF*™ and D, € RP*™ are periodic
with period K > 1. In the last few years there has been a constantly increasing interest
for the development of numerical algorithms for the analysis and design of linear periodic
control systems [2, 8, 6]. Of particular interest in many applications is the efficient and
numerically reliable solution of various types of periodic Lyapunov and Sylvester matrix
equations. Several applications are mentioned in [8, 9].

The reachability gramian of an exponentially stable time-varying system of the form (1) is
defined as P, = Y% ' ®(k,i + 1)B;BT®T(k,i + 1), where ®(5,7) 1= A; 1A;_5--- A; for

7 >4 and ®(4,1) := I is the so-called monodromy matriz of (1). It can be shown that for the
periodic system (1) Py satisfies the forward-time periodic Lyapunov equation

Poyn = 4P AT +ByBY, k=1,....K; Pxna=nh (2)

and the system (1) is uniformly controllable iff P, > 0 for £ = 1,..., K [4]. Similarly, the

observability gramian defined as Qr = > 0o, ®(4, k)TCTC;®(i, k), satisfies the reverse-time
periodic Lyapunov equation

Qr= A QA +CiCr k=1,....K; Qru=Q (3)

and the system (1) is uniformly observable iff Q > 0 for &k = 1,..., K [4]. A particular
feature of equations (2) and (3) for exponentially stable periodic systems is that the non-
negative definite gramians can be determined directly in terms of their Cholesky factors,
ie. P, = SIS, and Qr = R} Ry. These factors are useful for instance in determining the
Hankel-singular values and the Hankel-norm of the given periodic system [4]. They can be
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further used to compute balancing Lyapunov transformation matrices [9]. Forward- and
reverse-time Lyapunov equations are also encountered in solving periodic Riccati equations
by a Newton-type iterative technique [2], in stabilizing periodic systems or in evaluating
gradients for optimal parametric output feedback control of periodic systems [10]. A closely
related computational problem is the solution of various types of forward- or reverse-time
Sylvester equations as for instance the forward-time Sylvester equation

FyPop1+ PGr=H, k=1,....K; Pga=0n (4)

which arises in computing additive spectral decompositions of linear periodic systems by
simultaneously block-diagonalizing all component matrices of the monodromy matrix [9]. A
similar equation also appears in the periodic observer design [8).

One class of existing numerical methods to solve periodic Lyapunov and Sylvester equations
[2, 8] is based on reducing these problems to a single Lyapunov or Sylvester equation to
compute a periodic generator, say P;. The rest of solution is computed by forward or
reverse recursion. The main drawback of such methods is the need to form explicitly matrix
products and sums of matrix products. An alternative approach discussed also in [8] is
to solve the periodic Lyapunov equations as particular periodic Riccati equations. In this
approach the construction of products is avoided but the method has a substantially increased
computational complexity, much greater than usually necessary to solve such a problem.

In this paper we propose for the numerical solution of periodic Lyapunov and Sylvester
equations a set of new methods, which essentially parallel the methods available for standard
systems [1, 7, 3]. The key role in all these methods plays the recent discovery of the so-called
periodic Schur decomposition (PSD) of a cyclic matrix product and of the corresponding
algorithms for its computation [3, 6]. To illustrate the proposed solution techniques we
discuss the main aspects of solving the forward-time periodic Lyapunov equation

.Pk+1 = AkPkA{ + M, k=1,....K; P](+1 P (5)

By using the PSD algorithm, we can determine the orthogonal matrices Z;, k =1,..., K to
reduce the matrix product A = A;Ay--- Ag to the periodic Schur form A= AlAg AK,
where Ak Z AL Zk g, Al is in real Schur form (RSF) and A for £ > 1 is upper triangular.
Note that by deﬁn1t10n Zgt1 = Zy. By premultiplying the k-th equation in (5) with ZF
from left and with Z; from right, one obtains

ﬁk_J,.l :‘Ekﬁk‘;f{-Fﬁk, k: 1,,_[(, ﬁ]{+1:ﬁ1 (6)

where P, = Z;f_lPka_l and 7\2’; = Z{ M. Zy. Notice that by this transformation the resulted
transformed equations (6) have exactly the same form as the original ones in (5). After
solving the transformed equations for the matrices P, the solution of (3) results as P, =
Ze\PZT fork=1,...,K.



Thus, by using the PSD we reduced the original problem to an equivalent one with all
coefficient matrices in upper triangular form excepting A; which is in a RSF. Notice that
for the computation of controllability and observability gramians satisfying the forward- and
reverse-time Lyapunov equations (2) and (3), respectively, the computation of a single P5D is
sufficient. To simplify the notations, in what follows we assume that the coefficient matrices
of the original equations (5) are already in the reduced forms corresponding to the PSD.

Let us partition the matrix Ay and the symmetric matrices P and M} according to the RSF
structure of the matrix A,

SRR (R [
0 A"’ - A% P“ NN MP M MY
Ak = . .21‘» , P = . 2 p My = :21 . . 2
00 Al b Y el i A e

The (r,1)-th blocks Pr(l"c )of P, k=1,...,K satisfy the simultaneous equations

T
ADPID DT P <y - v

. k=1,... Kk, pP¥D=ph

T

where .
k k) k) 4k k) plk 3%
=3 (3 AT ) o (30 a0 A
i=r =41 j=r—+1
By starting from the bottom-right corner, we can compute P, & = 1,..., K column by

column by solving repeatedly periodic discrete Sylvester equations of the form
ERXx®pET _ x k) gl g1k, XED = x O

where F®) ¢ Rmxm plk) ¢ Rraxna gnd G € RM*"2 with n; and n, at most 2.

Several methods to solve the above low order equations can be devised. By rewriting these
equations with the help of Kronecker products one obtains a set of nyn; K simultaneous
linear equations. Even for moderate values of K, say K = 20, this technique leads to rather
expensive computations because for each second order block we have to solve a system
of 80 linear equations. A solution method based on a specialized block LU decomposition
algorithm which fully exploits the sparse cyclic structure of the coefficient matrix is described
in [9]. Alternatively the method of periodic generators [2, 8] can be employed to solve the low
order equations, but the construction of products can lead to severe accuracy losses. Thus
this approach is effective only when used in conjunction with iterative refinement techniques.
Such an approach is particularly helpful in solving non-negative definite periodic Lyapunov

equations [9]. The two techniques can be combined in order to exploit the advantages of
both methods.



The proposed technique can be readily adapted to solve any other type of Lyapunov equati-

ons,

as for instance the reverse-time equation (3) or the transposed variants of equations (2)

and (3). Similarly, the method can be employed to solve the non-negative definite periodic
Lyapunov equations as well the periodic Sylvester equations. For details see [9].

A set of LAPACK based computational routines have been implemented to compute the
PSD and to solve four types of periodic Lyapunov equations. The implemented software is
available on request from the author for testing purposes. It was successfully used to evaluate
gradients of linear-quadratic functionals for optimal periodic output feedback control [10].
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