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Abstract. In this working note we introduce the system theoretical definitions of the control
data objects (CDOs) intended to be implemented in Version 2.0 of ANDECS. Besides the already
supported CDOs: LS - Linear State Space Model, RS - Real Signals and FR - Frequency Responses,
several new CDOs are defined to handle other systems descriptions: S - Generalized Linear State
Space (Descriptor) Model, PM - Polynomial Differential State Space Model, TM - Transfer Matrix
Model. The proposed set of CDDOs for systems representations is considerably more general than
those employed presently, including information on dead-times structures as well on parametric un-
certainty structures modeled by LETs. CDOs subclasses are also defined for particular model types
(as for example models without dead-times) and a standard nomenclature for these subclasses is
introduced. In parallel with the description of the new CDQOs, the necessary model transformations
applicable to each model class or subclass are specified.



1 LS — Linear State Space Model

Definition:
ks kg
Az(t) = D Aple(t—7) + D Bilp)ult—7)
o
y(t) = > Ciplalt—m)+ > Di(pult - )
=0 =0

wherez(f) e R™, u(t) e R™, y(i) E R",pe RY, 7p =0and 7, > 0, i =1, ..., max{ka. kg, ke, kn}.

Notations:
LS, := Linear System with Delays: max{ka, kg, ko, kp} >0
LSy := Linear System without Delays: ka=kp=kc =kp =10
LS, or LS., = Continuous Linear System: Az{t) = &(t)
LSy or LSy, := Discrete Linear System: Az(t) =zt +T) , s = hT (def: T =1).

1.1 General Transformations
o LS, —RS: Simulation for {u(t), t € [to, t5], x(te) = zo, p = po}

e LS. —FR: Frequency response for {w € [Wwnin, Wmazl, P = Po}

(a) LS —FR: Evaluation in s-Domain

ke _ Ea ' -1 kg , Ep .
GQw) = (Z C-ie—f‘”‘) (jwl -3 A,;e’«"’“”i) (Z Bz-e'J“”") + Y Die 7%
=0 =0 =0 =0
(b) LS —FR: Evaluation in z-Domain

-1

ke ka kg kp
G(Z) = (Z Ci,z_h'i) (ZI _ Z Aiz—h«;) (Z Bizh{) + Z D:,;Z_h"i, .= gdwT
i=0 i=0 =0

=0

¢ LS—GS : Transformation to generalized state space (descriptor) form (E = I)

o LS, — LSy : Transformation of discrete systems to representations without delays
Simplified notation:
(a) k1 =ka =k, ko =kp=kp ;
b)0=hy<h < <h.

Resulting system (without delays):

FET+T) = AZ(KT)+ Bu(kT)
y(kT) = CZ(kT)+ Du(kT)

where Z(t) = [z(t) z(t - T) -+ z(t — he, T) u{t = T) --- u{t — h,T)]¥. The matrices of the
extended system are:



[ Ag O AL 0 Ay, 0 B, 0 B, 1 " By ]
0 I, 0 0 0 0 0 0 0 0
0 0 0 0 I, 0 0 0 0 _ 0
A = o o - 0 0 0 0 0 0 0 , B = 0
6o 0 --- 0 0 0 In 0 0 0 0
0 0 0 0 0 0 0 0 Im 0
0 0 0 0 0 0 0 0 0 | | 0 ]
C = [C() o -~ 7 0 -+ Cg, 0 -- Dy 0O --- Dkz], D = [D[)]
1.2 Transformations with Restrictions on Delays
kg
Az(t) = Az(t} + Z Bjult — ;)
i=0
ke ko
y(t) = > Cualt—m)+ Y Dult—7)
=0 =0
e LS. —»TM : Evaluation of the transfer-function matrix
kc kg kD kpkctko i
LS. :G(s) = ZZCJ;(SI—A)’IB@E'S(“"'TJ') +ZD,-6_”‘ = Z Gi(s)e ™
7=0i=0 i=0 i=0
ko kg ko kpkc+kp N .
LS4, :G(z) = ZECj(zI—A}*lB?;z’(h#hf) +ZDiz“h'i = Z Gi(z)z P
7=0 =0 i=0 1=0

e LS. —LS,, : Discretization with a sampling period T

Let h;, 1 =0, 1,..., max(kp. k¢, kp) be positive integers such that , = h,T+ X\, 0 <\, < T
and A; =0fori =0, ...,kc. The last conditions on A; should be satishied by an appropriate
choice of the sampling period T'. The resulting discretized system is

kp kg

(kT +T) = Fa(kl)+ Y Hu(kT —hT)+ Y Hiu(kT —hT - T)
i=0 i=1
ke ke kn
y(kT) = > Cia(kT —hT)+ Y DulkT —hI)+ > Dkl —hT - T)
i=0 i=0 i=ko+1

where

T—X;
F =47, H;=] eMBidt, i=0,... kg
0

A
HQ:/ eA*Bidt, i=1,... kg
0



1.3 Input-Output Equivalence Transformations on Systems without Delays
e L.S5;—LS; : Coordinate transformations
Original system:
Ax(ty = Az(t) + Bu(t)
y(ty = Cz(t) + Dult)
Coordinate transformation: =(¢) = TZ(t), u(t) = Vu(t), y(t) = Wy(i)

Resulting system:

o

t
t

Tty = AF{t)+ Bu(t)

{43
(t) = CE(t)+ Du(t)

=

where o
(A, B, C, D) := (T7'AT, T™'BV, W™ lCT,W~1DV)
- General coordinate transformation

T,V and W general invertible matrices

- General orthogonal coordinate transformation
T,V and W general orthogonal matrices

- Scalling of system matrices
T.V and W diagonal matrices

- Balancing transformation
T non-orthogonal, V =1, W =1
- Reduction of A to block-diagonal form
T non-orthogonal but well conditioned, V =1, W =1

- Reduction of A to Hessenberg form
T orthogonal, V=1, W=1
- Reduction of A to real Schur form or ordered real Schur form
T orthogonal, V=1, W =1
- Reduction of system matrices to controllability or observability forms
T orthogonal, V =1, W =1
e LSy—LS; : Minimal state space realization

Original system of order n:

Resulting system of minimal order n':
AZ(t) = A
y(t) = CZ(t) + Dult)
such that B L
CM-A"'B=C(M-4)"'B

o LS 42LSy : Continuous to discrete and discrete to continuous bilinear transformations

G(2) = G(s)|,_asns

cz+d



1.4 Building an LFT Uncertainty System Model: LS, —LFT

Consider a partitioned rational matrix

My Mg ] :
= = y(pr+p2) =g +g¢2)
M(s) [ My, My | © R(s)

and a rational matrix A € R(s)?*P1 and define the upper linear fractional transformation (LFT)
Fu{M,A) as
Fu(M,A) = My + Moy (I — AMy1) P AMy,.

Any parametric uncertainty in the elements of matrices A, B, C or D of the form p € [pmin, Praz)
can be expressed as a local LFT uncertainty model with constant matrices

[0 s )
=Fu O,
F Q 1 po |
where pg = (Pmin + Pmaz)/2 and sg = (Prmazr — Pmin)/2. 1t is easy to see that p = pg + 5,4 with

|d] € 1. By using elementary coupling operations with LFTs, for each of system matrices, LFT
uncertainty models can be generated in the forms

Ay Agg } ) , ({ By B | )
Alp) = Fu [ A4l, Blp) = & | Ag),
(p) ( ! A21 Aﬂ A ip) u le BU J b B

Cin Ciz ) ([ Dy Dyo )
C = F, AN , D = T4 AN
(p) ([ Co Co } Ag (p) | Do Dy D

where A4, Ap, A¢ and Ap are diagonal matrices having on the diagonal the normalized uncer-
tainty parameters d;, da, ... . Note that Ay, By, Cp and Dy can be viewed as nominal values for
the respective matrices (for all 4; set to zero). The parametric uncertainties at component level
can be transformed to structured uncertainties at the system level by using the properties of LETs.
The LEFT uncertainty system model can be expressed as

Gp(A) = Fu(G(A), 4)

where A = diag(A4,Ap,Ac,Ap) and G(A) is the following partitioned transfer function matrix
with the corresponding state space realization

[ G11(A) Gia(N)

GO L enny Gy
T A7 0 0 0 0 Al
0 By O 0 | By 0
= 0 0 Ch 0 0 — e ()\I#AQ)*l [ Aoy Boyy 0 0 ’ By ]
0 0 0 Dy Dyps 0
L 0 0 Cy Do | Dy Cy

Note that Go(A) = Co(AI — Ag) ' By + Dy is the nominal transfer-function matrix.

(8]



2 GS — Generalized Linear State Space (Descriptor) Model

Definition:
kg ka kg
S Epiait—rn) = Y Adpa(t—n)+ Y Bipult — %)
i=0 i=0 =0
ker kp
y(t) = > Cilpla{t—7)+ > Di(pult — )
i=0 =0
where z(t) ¢ R™, u(t) e R™, y(t) e R",pc Ry, 7p =0and 1 > 0, i =1, ..., max{kg, ka. k5. k¢, kp}-
Notations:
GS, := Generalized Linear System with Delays: max{kg, ka,kp. ke, kp} >0
GSy = Generalized Linear System without Delays: kp=ka=kp=ko=kp =20
GS. or GS.r := Confinuous Generalized Linear System: Az(t) = z(t)
GSg or GSy, = Discrete Generalized Linear System: Ax(ty =z(t+7T), 1= hT

(def: T = 1).

2.1 General Transformations
¢ GS;-—>RS: Simulation for {u(t), t € [t,, t5], x(tg) = xo, p = po}

¢ GS.—FR: Frequency response for {w € [wWmin, Wimexz), P = Po}

{a) GS.+—FR: Evaluation in s-Domain

ke ke ka b kg kp
Gjw) = (2 C.,;e_s'w‘) (Z Eie 79T 4w — Z A,;eﬂ“m) (z Bie_Jw"j + Z D;e 3
=0 =0 =0 i=0

i=0

{b) GS;—FR.: Evaluation in z-Domain

ke kg kg -1 kg kp
G(z) = (Z Cz-z_h‘) (z Bzt Z Aézh") (Z Biz_hi) +z Dz R, 2=eT
1=0 =0 =0 i=0 i=0

* GSy—GS8yp : Transformation of discrete systems to representations without delays
Simplified notation:
(a) ly=ka=kg=kc, kn=kg=kp;
bY0=hy<hy <--<hg.

Resulting system (without delays):

Ei(kT+T) = A#{(kT) + Bu(kT)
y(kT) = CEET)+ Du(kT)

where T(t) = [z(t) 2(t - T) --- z{t —hg,T) u{t = T) -+ u{t — hy,T)]T. The matrices of the
extended system are:



By 0 - B 0 - By 0 - 0]
o I, 0 0 0 ¢ 0
E=114 o 0 0 L, 0 0
L0 0 0 0 0 0 0 |
[ Ag O 4; 0 Ag, 0 By 0 By, | [ Bo ]
0 I, 0 0 0 0 0 0 0 0
. 0 0 0 0 I, © 0 0 0 _ 0
i=1_10 o 0 0 0 0O 0 0 0 B =10
o 0 00 0 In 0 0 0 0
0 0 0 0 0 0 0 O Im 0
0 0 0 0 0 0 0 0 | | 0 ]
5 = [CO o --- Cl o --- Ck1 0 --- Dl o - Dkz]’ jj - [DO]

2.2 Transformations with Restrictions on Delays

kp
EXx(t) = Az(t)+) Bult-7)
=0

ko kp
y(t) = D Caxlt—m)+ Y Dault—m)
=0 i=0

¢ GS, —=TM : Evaluation of the transfer-function matrix

kc kp kp kgko+kp
GS.; :G(s) = Z Z Cj(sE — Ay 1B st 4 ZDie_ST" = Z Gy(s)e™ T
3=0 i=0 =0 i=0
ke kg kp kpkc+kp .
GSy :G(z) = Z Z Ci(zE — A)TL Bz i) Z Dz7h = Z éi(z)z_hi
7=0 =0 i=0 =G

2.3 Input-Output Equivalence Transformations on Systems without Delays
e GS3—GSy : Coordinate transformations
Original system:
Exz{ty = Az(t)+ Bu(?)
y(t) = Cz(t)+ Dult)

Coordinate transformation and left multiplication:
z(t) = ZZ(t), u(t) = Vult), y(t) = Wy(t), left multiplication matrix Q
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Resulting system:
EXF(t) = AZ() + Biu(t)
gt = CE(t)+ Du(t)

where

(E, A, B, C, D):= (QEZ, QAZ, QBV, W™'CZ W~'DV)

- General coordinate transformation
), Z, V and W general invertible matrices

- General orthogonal coordinate transformation
@, Z,V and W general orthogonal mafrices

- Scalling of system matrices
Q, Z. V and W diagonal matrices

- Reduction of pair {(E, 4) to block-diagonal form (two blocks)
(2, Z non-orthogonal but well conditioned, V =T, W =1

- Reduction of the pair (E, A) to generalized Hessenberg form
Q, Z orthogonal, V =1, W=1T

- Reduction of pair (E, A) to generalized real Schur form or ordered generalized real Schur
form

Q. Z orthogonal, V =1, W=1T

- Reduction of system matrices to controllability or observability forms
Q. Z orthogonal, V =1, W=1T

e GS;—GS; : Minimal state space realization

Original system of order n:

Resulting system of minimal order n':

EXZ(t) = AZ(t)+ Bult)
y(t) = Ci(t) + Du(t)
such that
COAE—-A) 'B=COE—A)'B

¢ GSg—LSy : Reduction to standard state-space representation
Condition to be fulfilled: number of finite poles equals rank(E).



2.4 Building an LFT Uncertainty System Model: GS;—LFT

Consider the LE'T uncertainty models of the system matrices

r . .
, o E}z W AR

B B
fu(,: 321 BU :l :AB)7

Vo
=
I
H‘i
Mo I
Moe
>
S W
=
=,
vy
=
Il

Ciy Crz

D11 Dya
C(p) = }—u([cm Co !

',AC)? D(p) = '?:U{|: D21 DG ] JAD)

[ F———

where Ag, Ay, Ap, Ac and Ap are diagonal matrices having on the diagonal the normalized
uncertainty parameters d1, do, ... . Note that Ey, Ag, By, Cp and Dy can be viewed as nominal
values for the respective matrices (for all é; set to zero). The parametric uncertainties at component
fevel can be transformed to structured uncertainties at the system level by using the properties of
LFTs. The LFT uncertainty system model can be expressed as

Gy(N) = FulGNV, A)

where A = diag{Ag, A4, Ag,Ac,Ap) and G(A) is the following partitioned transfer function
matrix with the corresponding state space realization

_ [ Guly) Gia(N) ]
G = 1en Goly |
[Bnp 0 0 0 0|07 [AEgz]
0 Ay 0 0 0|0 Arn
0O 0 By, 0 0 |B 0 ]
B 51 Cii 0 012 o (AEy — Ao) ' [Fzn Az B 0 0]Bo]
0 0 0 0 Dy D 0
| 0 0 0 Gy Da| Dy | &C‘OJ

Note that Gg(A) = Cy(AEy — Ag) 1By + Dy is the nominal transfer-function matrix.

<o



3 PM — Polynomial Differential State Space Model

Definition:
kp kg
S P{xp)zt—n) = > QiAipult — 1)
=0 i=0
ky ko
y(t) = D Viluplalt—m) + > Wildiplu(t — 7)
i—0 i=0

wherez(t) e R™* u(t) e R™, y{t) e R",p e R, g =0andr; >0, i =1, ..., max{kp, kg, kv, kw}
P(yp) € RMMA), QA p) € RM™AL V(A p) € R™™[A], W(A;p) € R™*™[] are polynomial ma-
trices.

Notations for polynomial model representation:

PMU™(X) = Polynomial Model in Matriz Polynomzal Representation tn A
Zi(N) = Y 0 Zy(p)N for Z=P, Q, V, W,

PM™) (AN :=  Polynomial Model in Matriz Polynomial Representation in A~
Zi(A—l) B Z]ii] le(p))\~g forZ="° Q, V., W

PME(A) = Polynomial Model with Coefficient Representation of Polynomials in A

Zyp(A) = [zk;,(/\)J for Z =P, Q. V, W, where each z:i"/\) has the form
a(p 4+ ...+ a(P)A+ alp).

PM (AN = Polynomial Model with Coefficient Representation of Polynomials in At
Zy(A ) = ILz:‘J(A_I)] for Z =P, Q, V, W, where each z,i-()\_l) has the form
@A+ alpA T + ol

PMUI()) = Polynomial Model with Factored Representation of Polynomials in X
Zi(A) = [zf;,()\)] for 2 =P, Q, V., W, where each zf}()\) has the form
g(A —ri(p)) ... (A = ri(p)).

PMO(A~Y) =  Polynomial Model with Factored Representation of Polynomials in A~}
Zr(W Y =[5 (A for Z =P, Q, V, W, where each z5;(A71) has the form
g =P (AT —nlp)).

Notations for polynormial model classes:

PM, := Polynomial Model with Delays: max{kp, kg, kv, kw} > 0

PM; = Polynomial Model without Delays: kp=kg=hky =kw =0

PM or PM,.. = Continuous Polynomial Model: Az(t) = 2(t), for z = 2, u, y.

PMy or PMy, := Discrete Polynomial Model: Az(t)=z(t+T), for z =z, w, y; ; = AT
(def: T'=1).

3.1 General Transformations
e PM,.™ & PM,(© &3 PM.M) ¢ PM, (™
o PM, )()) & PMg (A, 2=m, ¢ T,

» PM;—FR: Frequency response for {w € [wmin, Wmaz], P = Po}

3
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3.2

(a) PM,.,—FR: Evaluation in s-Domain

—i

by kp » kg \ kw ]
Gw) = (Z W(jW)e_j“’”) (Z Pz(jw)e‘j“’”) (Z Q,;(jw)ej‘”ﬂ) + 3 Wijuw)e Iem
=0 =0 =0

/ =0

(b) PMg,—FR: Evaluation in z-Domain

ky kp -1 /&g kv .
1=0 i=0 i=0 y =0

PMg. —PMys : Transformation of discrete systems to representations without delays
Let i = max;{h;} and define

kp kg kv kw
P(zy =Y P2)2"™, Qz) =D Qi) ™, V(z) =D Vilz)s" T, W(z) =) Wilz)z"
i=0 i=0 1=0 i=0

Resulting system:

Pz)3(kT) = Q(2)u(kT)
y(kT) = V(2)3(kT) + W(2)u(kT)

where Z(t) = [v(t) z(t)]7 and the matrices of the system without delays are:

~ _Vv‘(z)

. Q)= = ] Vi)=[1 0], W) =0

P =] 7 T
T e B A | ;

2)

Input-Output Equivalent Transformations on Systems without Delays

PM;—GS; : Minimal state space realization

Original polynomial system of order n:

Pz(t) = Qu(t)
u(t) = VNa(t) = WA

Resulting generalized state space system of minimal order »':

EME(t) = AZ(t) + Bult)
y(t) = Cz({t)+ Du(?)
such that
CAE—A)'B4+ D =V(M)PW QN+ W)

PM—LS; : Reduction to standard state-space representation

Condition to be fulfilled: number of finite poles equals rank(F).



3.3 Building an LFT Uncertainty System Model: PM;—LFT

Parametric uncertainties in the coefficients or roots of polynomials in the systern matrices can be
expressed as LFT uncertainty models of the forms
Qu Quz(A) ] )
Fu Ag |,
" ﬂ Qu  Qo(y) |'7¢

Vii Via(A) | ) \ [ Wi Wia(A) )
Vidp) — J—'u( _ Av), Wap = F VL Aw
(A.p \[ Vor  VolA) J v A P) | War WolA) ] "

where Ap, Ap, Ay and Aw are diagonal matrices having on the diagonal the normalized uncer-
tainty parameters 8y, Js, ... . Note that Py{A), Qp(A), Vo(A) and Wy(A) can be viewed as nominal
valies for the respective matrices (for all §; set to zero). The parametric uncertainties at component
level can be transformed to structured uncertainties at the system level by using the properties of
LFTs. The LFT uncertainty system model can be expressed as

e = 7 ([ R0 Lan), i)

!
w

Gp(A) = FulG(A), A)

where A = diag(Ap, Ag, Ay, Aw) and G(X) is the following partitioned transfer function matrix
with the corresponding state space realization

Gu{h) Gi(A) ]
G = {Gzl(A) Go(N)
[Pu 0 0 0 0 Pis(N)
P 0 Qu D D | Qu2(N) 0
= 0 0 Vi 0 0 — L VA [P Y [P Qa0 0] Qo(N) ]
0 0 Vai Wa | Wo(N) U Vo)

Note that Gg(A) = Va(MPy(A)LQa(A) + Wp(X) is the nominal transfer-function matrix.



4 TM — Transfer Matrix Model

Definition of continuous-time transfer matrix model:

where Y (s) and U(s) are the Laplace-transforms of y(t) € IR" and u(f) € IR™, respectively, p € RY,
70 = 0 and G;(s;p) € R"7*™(s),i=0,..., ke are rational matrices.

Definition of discrete-time transfer matrix model:

=G

Y(2) = G(=p)U) = Y Gilzip)z MU(2)

=0

where Y'(z) and U(z) are the Z-transforms of y(t) € R™ and u(t) € R™, respectively, p € RY,
ho =0 and G;(z:p) € R"*™(z), i = 0,..., kg are rational matrices.

Notations for transfer matrix model representation:

TM)(X) =

TME (A1) =

TMU)(A)

TM" (A1)

Transfer Matriz Model with Coefficient Representation of Polynomials in X
Gr(A) == quj()\)/tf}(}\)} vErhere each qu()\) and tfj(,\) has the form

c(p)A + ...+ er(pid + colp)-

Transfer Matriz Model with Coefficient Representation of Polynomials in A}
Gr(A 1) = [q%(/\_l)/tf}(,\"l}] where each qu(,\*lj and tfj(,\_l) has the form
alpA T+ a@A T+ alp).

Transfer Matriz Model with Factored Representation of Polynomials in A
Gr(N) = [q,i;(.\)/rfg(/\)] where each qif?()\)/t;(,\) has the form

GO = 1)) . = @)/ = 21(8)) - - (A — 20(p))]

Transfer Matriz Model with Foctored Representation of Polynomials in X7}
Gr(A™1) = (g5 (A1) [t (A1) | where each ¢f(A~1)/tf;(A~") has the form
gt =) T =)/ I =2 (T = ()]

Notations for transfer matrix model classes:

M,
TM,
TMCO or TMCT
TMdg or TMd,,—

= Transfer Matriz Model with Delays: kg >0
:= Transfer Matriz Model without Delays: kg =0
= Continuous Transfer Matriz Model

= Discrete Transfer Matriz Model .

4.1 General Transformations

TMdT(C)(,\‘l) — RS : Time response of discrete filters

TM, 9 & TM, ) ¢ TM, ™
TMg(A) ¢ TMg (A1), z = ¢, 1.

TM,—FR: Frequency response for {w € [wmin, Wmaz), P = Do}
{a) TM.,—FR: Evaluation in s-Domain

kg
Gljw) =Y Gijw)e 7
i=0



(b) TM,4,—FR.: Evaluation in z-Domain
[ e ]
G(z) =) Gi(2)e ™, z=¢eT
=0

TM, ., —TMyy : Discretization of continuous transfer matrix models
Restriction: proper systemns

TM,..—+TM : Transformation of continuous-time systems to representations without delays

Method: Approximating the irrational terms with Padé rational approximations, as for in-
stance

_1—s7/2

Tl —s1y/2

Pt

TM;,—TMy : Transformation of discrete-time systems to representations without delays

TM,—GS; : Minimal generalized state space realization

Resulting generalized state space system of minimal order:
Exz(t) = Axit)+ Z Bu(t — )
=0
ko
y(t) = Cz(®)+ ) Du(t— =)
=0

such that
Gi(N=COE-A)'Bi+ Dy, i=1,... ke

TM,—LS: : Minimal standard state space realization

Restriction: Proper systems

Resulting state space system of minimal order:
kg
Az(t) = Az(t)+ ) Bult—m)
=0

ke
y(t) = Cx(t)+ ) Dul(t—m)
i=()

such that
G:A=CM-A ' B+D;,i=1,... kg

TM & TMyy - Continuous to discrete and discrete to continuous bilinear transformations

Glz) = Gs)l,_arzs

cz+d
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4.2 Building an LFT Uncertainty System Model: TM;—LFT

Parametric uncertainties in the coeflicients or roots of numerator and denominator polynomials in
the transfer matrix can be expressed as an LET uncertainty model of the form

Gri{A) G\ .
{ . — LY/ L\
cin = Ad| gi) G | )
where A = diag(dy, 0z, ...,8;:) and Go{}) is the nominal transfer matrix.



5 FR - Frequency Responses

Definition:
{(Gywy), i=1,...,N}

where G; € U™,

Notations for frequency responses:

FRBeI™) .= Real and Imaginary Part Representation of Complexr Matrices
FR4-#) = Amplitude-Phase Representation of Complex Matrices

Notations for frequency response classes:
FR. := Laplace Transform Frequency Response: G; = Gi(w;)
FR,; := Z-Transform Frequency Response: G = Gi(e?T)
5.1 Transformations

¢ FR—RS : Inverse fast Fourier transform

s FR(ReImM)  PRUAY) Real-Tmaginary to Amplitude-Phase transformation



6 RS - Real Signals

Definition:
where Y; € IR".

6.1 Transformations

* RS—TR : Fast Fourler transform

¢ RS—LS or GS : Time Domaln Identification



