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Abstract. We propose numerically reliable state space algorithms for computing
the following rational stable coprime factorizations of rational matrices: 1) factorizations
with least order stable denominators; 2) factorizations with inner and J-inner denomi-
nators; and 3) factorizations with proper stable factors. The new algorithms are based
on a recursive generalized Schur algorithm for pole assignment. They are generally ap-
plicable regardless the original descriptor state space representation is minimal or not, or
is stabilizable/detectable or not. The proposed algorithms are useful in solving various
computational problems for both standard and descriptor system representations.
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1 Introduction

Let G(s) or G(z) be a given p x m rational transfer-function matriz (TFM) of a linear
time-invariant continuous-time or discrete-time descriptor system, respectively, and let
(E, A, B,C, D) an equivalent nth order regulur descriptor representation satisfying G(A) =
C(AE — A)™'B+ D, where ) is either the complex variable s or z, depending on the type
of the system. The regularity assumption means that det(AF — A) # 0. If the TFM G
is not proper then the matrix E is singular and let r = rank(F). We say that G is stable
if all its finite poles are in €, where €~ denotes the stability region of the complex
plane € and is either the left open complex half-plane for a continuous-time system or
the interior of the unit circle for a discrete-time system. The instability region €7 is the
complement of €~ with respect to €. If the state space realization (E, A, B,C,D) is
minimal, then the poles of G (finite and infinite) are the generalized eigenvalues of the
pair (E, A) denoted as A(A, E).

A proper and stable TFM G is innerif G*G = I, where G*(s) = G*(—3) in continuous-
time and G*(z) = G"(1/2) in discrete-time. Consider the inertia matrix J = diag(Z,,,, —Im,)
with my + my = m. A TFM G is J-inner if G*JG = J. A fractional representation of
G in the form G = NM ! with N and M stable rational matrices, is called a right
coprime factorization (RCF) if there exist stable rational matrices U and V such that
UN + VM = I. Analogously, a fractional representation of G in the form G = M~IN
with V and M stable rational matrices, is called a left coprime factorization (LCF) if
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there exist stable rational matrices I/ and V such that NU + MV = I. Several special
factorizations could be of interest in particular applications.

The simplest factorization to obtain is when M is proper and N is proper or improper
depending on if the original G is proper or not. This factorization, with M having possibly
least order, is useful as a preliminary or as a final step in computing some other facto-
rizations. A particular case of this factorization is when M is snner. This factorization
has several important applications in evaluating norms of TFMs or in computing spectral
factors of TFMs. Provided G is square {p = m), coprime factorizations of its inverse
! are useful to compute alternative factorizations of rational TFMs, as for instance
factorizations with minimum-phase factors or inner-outer factorizations. Factorizations
in which both N and M are proper rational matrices can be viewed as alternative repre-
sentations of rational matrices. Factorizations in which both N and M are polynomial
matrices or both are proper rational matrices can be viewed as alternative representations
of rational matrices. This factorization is potentially useful in performing order reduction
of descriptor systems by using the coprime factors reduction approach analogously as in
case of standard systems [4], [15]. Moreover, this factorization can ben used to compute
factorizations in which both factors are polynomial matrices.

In this paper we propose numerically reliable algorithms for computing three of the
above mentioned RCFs of rational TFMs, namely the factorizations with M proper ha-
ving least order, the factorization with M inner and the factorization with both M and ~V
proper. The same algorithms can be also used to compute LCFs by applying them to the
dual TFM G”T. The proposed algorithms represent generalizations of similar algorithms
for standard systems [15], [16] and are based on a recursive generalized Schur technique

H

for pole assignment of descriptor systems [18]. The new procedures are generally appli-
cable regardless the original descriptor state space representation is minimal or not, or is
stabilizable/detectable. They are well suited for robust software implementations. The
presented techniques can be also seen as extensions of the general recursive factorization
approach introduced by Van Dooren {10].

2 Fractional representations: basic facts

The factorization algorithms proposed in this paper rely on simple facts concerning frac-
tional representations.

Fact 1. Any rational matric G with a stabilizable state-space realization (E, A, B, C, D)
has a RCF given by the following choice of the factors [19]

N = (E, A+ BF, BW, C + DF, DW) X
M = (E, A+ BF, BW, F, W) (1)

where F 1s chosen such that all finite eigenvalues of the pair (E, A+ BF) (at most ) are
stable, the pencil A+ BF — AF is reqular and W is an arbitrary invertible matriz.
Particular factorizations with special properties, as for instance with inner denomina-
tor or with proper factors, can be determined by suitably choosing the matrix pair (F, W).
In some factorizations W can be simply chosen as W = I. If necessary, M = M~ can be
explicitly evaluated as .
M=(E, A B, -W'F, w1
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The pair {F,G) can be viewed as the free parameters which determines a particular
factorization. The algorithms proposed in this paper use implicitly the more general
expressions for the factors

N = (UEV,U(A+ BF)V, UBW, (C + DF)V, DW)
M = (UEV,U(A+ BF)V,UBW, FV, W)

.—-\
[
—

where U and V are orthogonal transformation matrices (usually not accumulated). Alt-
hough general, non-gingular matrices I/ and V could be also considered as additional
free parameters of RCFs, their role in the proposed algorithms is only to allow to obtain
the resulting matrices in particular condensed forms or to preserve convenient condensed
forms of matrices which lead to efficient implementation of the algorithms.

Remark. If the TFM G is square, any algorithm to compute RCFs can be used to
compute a LCF G = M 1N in which both factors are minimum-phase. This can be done
by applying the algorithm to the inverse system

4 _{[E 0] [A B] [o] : _— \

d v 4

to compute the RCF G = NM = in the form (1) by using a feedback matrix partitioned
as F=[F, F»]. It easy to verify that the factors of the minimum-phase LCF of G are

N = (E, A B, WYC+F), WHD+F))

‘ E 0 A Bl [0} o _ N
M= ([0 0}’[0 DJ’[IJ’_[W h WIFZ}’Wl)

with both N = N~! and M = ]T/f: having zeros in €~. Note that in some factorizations,
G shonld be expressed as G = MN. In this case we use directly the expression of Af
resulted from (1)

T E 0] A B 0
M(_({U OJ{C-!-E D+F2jl’[uf}ﬂ[F1F2],W>
[

Fact 2. If G = MM ! and Ny = N, M, Y, then G has the fractional representation
G=NM-", where N =N; and M = M, M.

This simple fact allows us to obtain explicit formulas to update partial factorizations
by using simple state space formulas. Let N7 and M; be the factors computed as

N = (E,A—!—BFl, BW], C+DF1,DW1) (4
.LMl == (E‘ A+BF1, BWl, Fl; W'l) : )

and let N; and M; be the factors of &, computed as
Ny = (E, A+ BF, BW, C + DF, DW) 5
JMQ — (E. A-I—BF BLV, FQ, Wg} ( )

where

F= F+ W, Fy 6
W o= W, (6)



It easy to verify that the product M, M, is given by
MM, ={E., A+ BF, BW, F, W} {7

and thus equations (6) serve as explicit updating formulas of fractional representations.
These formulas can be extended in a straightforward way to include arbitrary coordinate
transtormation matrices. If we denote A = A+ BI, B = BW,. C=0C+ DF; and
B = BW,, then the following formulas can be used simultaneously to update A B c
and D: N L B _

A« A+ BF,, B+ BW,, C+« C+DF, D+« DW, (8)
All factorization algorithms presented in the paper rely on the use of such updating
formulas. If W, = I and W; = I, then the updating formulas (6) reduce to a very simple
form

F:F1+F21 (9)

which 1s used in some of proposed algorithms. 0
Fact 3. An tmplicit updating technique of fractional representations is based on the
following evident identities:

G Z\Yl -1 __ r 1;\’72 3 -1
[ I jl [ M-, :I fVI L jw} ﬂ/fz :l \J/fl ‘WQ) (].O)
It b il that the tw -cessi tor fact M 1 and Nz
can be easl y s5€en a e TW0 sUccesslve nulimnerator 1actors Mi | 5 M1 M2

of the extended TFM [ ? ] contain the elements of the successive factorizations G =

N1M[! = Np(M;Ms) L. This implicit updating procedure is especially useful when com-
bining different factorization algorithms because it is applicable even if the factors com-
puted by different algorithms have different orders or if coordinate transformations are
present in the representations of factors. Notice that the use of the updating formulas
(6) requires that the two successive state space representations (4) and (5) have the same
order. Otherwise it is not possible to obtain explicit updating formula as in (6) for the
state feedback matrix. ]

3 RCF with least order denominator

In this section we propose an algorithm to compute a RCF of G with a least order M. The
new algorithm has guaranteed numerical reliability and additionally it can handle even
the case when the original descriptor system representation is not stabilizable. The basis
for our algorithm is a pole assignment procedure described in [13] (see also [18]). This
algorithm has the ability to keep unaltered the stable eigenvalues of the pair (E, A) and
to move only the unstable ones to stable locations by choosing an appropriate feedback
matrix F. An additional useful feature of this algorithm is that simultaneously with the
stabilizing I, it determines the generalized Schur form of the pair (F, A + BF). This
makes possible to extract easily a minimal realization for the denominator factor M.
The main steps of the generalized Schur algorithm are shortly explained below. As-
sume that the pair (F, A) is already in a generalized real Schur form (GRSF), and the



matrices E, A and B are partitioned conformally as

E Eg _ A]l Az . Bl
5 Bl [y 2)e-(g)l e

where the pair (E2s, Asz) has only unstable generalized eigenvalues. By choosing a feed-
back matrix of the form

PN
a

partitioned conformally with the matrices in (11}, we see that

A A+ B

A+ BF = 0 Ay + Byl

and thus the feedback perturbs only the generalized eigenvalues of the pair (Eu, Ag ), the
rest of generalized eigenvalues of the pair (F, A) remaining unperturbed. In particular,
if Fay and Ajo are the last diagonal blocks in the GRSF (of order one or two), then the
pair (E, A+ BF) is still in a GRSF. Provided B, # 0, the generalized eigenvalues of the
pair (Eay, Ass + By F3) can be arbitrarily modified by suitably choosing £5.

The stabilization of a given system can be performed by iteratively modifying the
generalized eigenvalues of the pair (£, A) as in the following conceptual algorithm:

1. Reduce the system matrices by using orthogonal similarity transformations such
that the pair (E, A) is in an ordered GRSF (11) with the pair (Ej;, A2) having
only unstable generalized eigenvalues and the pair (E1;, A1;) having only stable or
infinite generalized eigenvalues.

2. Determine a stabilizing feedback F' of the form (12) which moves the generalized
eigenvalues of the last diagonal blocks of the pair (¥, A) into stable positions.

3. Update A as A+ BF'; by using orthogonal similarity transformations, bring another
pair of diagonal blocks with unstable eigenvalues in the last diagonal position of the
pair (F, A) and resume the previous step.

To ensure complete generality, a defiation mechanism can be included into the facto-
rization algorithm to remove automatically the unstabilizable part of the system. Such
deflation is possible by observing that if the generalized eigenvalues corresponding to the
last diagonal blocks Ey; and Apy are not controllable, then the corresponding B, should
be zero. If we partition C accordingly with the matrices in (11) as

C: {Cl Cg]

then we can replace the original system (E, A, B, C, D) with an input-output equivalent
realization of lower order (Ey, 41, By, Cy, D) by simply deleting the rows and colurans
in matrices E, A, B and C which corresponds to the unstabilizable part. In this case the
resulting coprime factorization has order less than n.

The following implementable state space algorithm to compute a RCF of a rational
TFM G materialises the above ideas.



GRCF Algorithm.
1. Reduce the pair (£, A) by an orthogonal similarity transformation, to the ordered GRSF

[6], [9] . A An ]
oo _ ‘11 12 s _ 11 12 |
_QEZ_[ o Eﬁ}jA_QAZW[ 0 g |

where E;, A;; € R™Y, (¢ and Z are orthogonal matrices, A(All E;) c € U{oco} and
A(Agy, Eos) C €. Compute B = QB, C = CZ and set F' = 0.

(13)

2.1f ¢ =n, go to &

3.Let o and & be the & x k last diagonal blocks of A and E respectively, and let 3 the
k x m matrix formed from the last k rows of B. If ||13]] < € (a given tolerance), then
n 4+ n—k and go to 2

4. Choose a k x k matrix v such that A(y}) C €~ and compute ¢ = 51 (dv — a).
5. Compute A+ A+ B[0g], F + F+[0¢].

6. Compute the orthogonal similarity transformation matrices é and Z which move the
last k x & blocks of A and E to positions (¢ + 1,¢ + 1) by interchanging the diagonal
blocks_of the GRSF; apply the transformations: E « QEZ A+« @Eé B « @E,
C+—CZ F«FZ.

7.Put ¢ +— g+ % and go to 2.
8.Put N=(E.A,B,C+DF.D),M =(E,A, B.F.I).

The resulting pair (E, E} is in a GRSF. If the original system is stabilizable, then E
and A contain the matrices UEV and U{A+ BF)V, respectively, where U and V are the
accumulated orthogonal transformations performed at steps 1 and 6 of the algorithm, and
F is the stabilizing feedback matrix FV7. If the original system is not stabilizable, then
the unstabilizable blocks are detected at step 3 and the corresponding unstabilizable parts
are deflated by simply decreasing the order of system with k. If unstabilizable blocks are
detected by the algorithm then the resulting factors have order less than n.

One of the advantages of the resulting form of matrices of the computed factors is

that a minimal realization of M can be easily determined. The resulting F' has always
the form

— {0 By, (14)

where the number of columns of F equals the number of unstable controllable generalized
eigenvalues of the pair (¥, A). By partitioning accordingly the resulting E, A and B

r — —
B { Eyy §12 (15)

0 Egp

An %12 B Bl
0 Ay |7 B,

then (EZQ,AQQ,EQ,E,I ) is a minimal realization of M. Because EQQ is invertible, the
TFM M is always proper. However generally the factor N is not proper if the system has
impulsive modes.

Remark 1. If in the descriptor representation of G the unstable controllable eigen-
values of the pair (¥, A) are observable, then the order of the minimal realization of M is
simultaneously the least order of all possible proper denominators in a RCF of G. Notice
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however that although the resulting descriptor representation of M is always minimal,
the order of M can be higher then the least possible order if some unstable eigenvalues
of {E, A) are controllable but not observable. For example consider the non-minimal
descriptor representation of the transfer function G{s) =1/(s + 1)

10 ~1 0] 1]
ju = == :[_ —_—
E {01], A [0 1| B Llji, c=[10], D=0

The least order proper denominator of a RCF of G is evidently M = 1. By choosing a

feedback matrix F = [0 - 1] which assigns the eigenvalues of the pair (E, A+ BF) in
{—1, —1}, we obtain the following factors of the RCF of G-

5 g

N(s) = (s+ 1) Mis) = s+1

The increase of the order happens because the chosen feedback makes the modified eigen-
value observable. O

Remark 2. The above remark leads us to a very simple procedure to determine a
factorization with an arbitrary order greater than the least possible order. First we apply
Algorithm GRCF till completion but without performing its last step (step 8) which
assembles the elements of the resulting factors. Assume that the minimal realization
of the denominator which would result has the least possible order. (This is always
possible to arrange by removing before applying Algorithm GRCF, all unobservable finite
eigenvalues. A very eflicient numerically stable procedure proposed in [14] can be used
for this purpose) Instead performing the last step of Algorithm GRCF, we replace the

o~ e

system (E A, B,C, D) by the following system of order increased by one having the same

TEFM: N T v
(HBFEHECD)
0 1]°[0 0 |8

The unstable eigenvalue in origin is not observable, but is controllable provided we choose
a non-zero last row 3. We replace F by [F 0] and perform again steps 3-7 of Algorithm
GRCF. The resulting M after this computation has now the order increased by one.
By repeating several times this procedure, we can determine the denominator with any
desired order. 0O

Remark 3. The choice of eigenvalues to be assigned at step 4 can be performed
in several ways. A convenient choice for software implementations is to ensure for the
resulting factors a prescribed stability degree. For instance, in the continuous-time case a
stability degree 4 < 0 can be ensured by moving all eigenvalues lying outside the stability
region €~ to positions with real parts equal to 4 and unmodified imaginary parts. In
the discrete-time case, a stability degree &, with 0 < § < 1, can be ensured by assigning
the unstable eigenvalues to values with moduli equal to 6. The algorithm can be also
implemented to factorize a given rational matrix with respect to an arbitrary symmetric
region of the complex plan. This is always possible because of the freedom offered by the
pole assignment technique in moving the controllable eigenvalues to arbitrary locations
in the complex plane. O

Remark 4. The GRCF Algorithm is based on a generalization of a pole assignment
algorithm for standard systems [11]. The roundoff error analysis of that algorithm [12]
revealed that if each partial feedback matrix of the form K = [0 ¢], computed at step 5



satisfies the condition | K| < [|A]|/|/B|], ther the pole assignment algorithm is numerically
backward stable. This condition is also applicable in our case, because it is independent
of the presence of the E matrix. We note however that unfortunately this condition can
not be always fulfilled if large gains are necessary to stabilize the system. This can arise
either if the unstable poles are too "far” from the stable region or if these poles are weekly
controllable. 0

4 RCF with inner denominator

We assume in this section that & has no poles on the imaginary axis in continuous-
time case or on the unit circle in the discrete-time case. The algorithm to compute the
right coprime factorization with inner denominator (RCFID) of a rational TFM G use
recursively the following formulas to compute the RCFID of a particular class of systems.

Fact 4. Let G = (E. A, B.C. D) a controllable descriptor representation with E non-
singular and A(E,A) € €7. Then M = (E, A+ BF, BW, F, W) is inner by choosing F
and W as:

F = #BT(YET)—I.F W= [ ' |
AYE" + EYAT — BBT =0 (continuous — time)

F= BT"(EYET { BBT)"'4
W = (I + BT (EYET)"'B)~1/? (discrete — time)
AY AT - BBT = EYET

The above expressions represent straightforward transcriptions of analogous formulas for
standard systems [16]. In the following algorithm, we use these formuias {at step 4) to
compute inner denominators for simple systems of orders at most two.

GRCFID Algorithm.

1. Find orthogonal matrices @ and Z to reduce the pair (E, A) to the ordered GRSF (13),
where E11, A;y € R™?, () and Z are orthogonal matrices, A(Ay;, £11) € €~ U{oco} and
A{Agg, FE3) C €. Compute B=QB,C=CZ. Set F =0, W =1.

2Ifg=n,goto 7.

3. Let (8, @) be the last diagonal blocks of (E, A) of order k and let 3 be the k x m matrix

formed from the last k rows of B. If ||3|| < e (a given tolerance), then n < n — k and
go to 2.

4. For the system (8, a, 3, =, *) compute ¢ and V such that (3, o+ By, BV, @, V) is inner.
Set K ={0¢].

5. Compute A E+§K F<—f’+ﬁf{ W« WV,
6. Compute the orthogonal matrices @ and Z to move the last blocks of (E, A) to positions

{g+1 g+ 1) by interchanging the diagonal blocks of the GRSF. Compute E+ QEZ,
A<—QAZ B<—QB C’<—CZ F+ FZ. Putq(—qukandgotOZ
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A minimal realization for the inner factor M is given by ( E’QQ, Ezg, §2W, ﬁz, W) and can
be determined from the partitioning (14) and (15) of the resulting F, E, 4 and B.

The above algorithm relies exclusively on reliable numerical techniques. It can be
viewed as a pole assignment algorithm which assigns the unstable poles in symmetrical
positions with respect to the imaginary axis in the continuous-time case or the unit circle
in the discrete-time case. Because practically there is no freedom in assigning the poles,
it is to be expected that the algorithm perform in a numerically stable way only if the
norms of the elementary feedback matrices K computed at step 4 are not too high.

A similar algorithm can be devised to compute a RCF with J-inner denominator, a
generalization of the RCFID. Let

J=

be an innertia matrix such that my + me = m. We have the following fact generalizing
the results of Fact 4.

Fact 5. Lel G = (E, A, B,C, D) a controllable descriptor representation with E non-
singular and A(E,A) € CT. Then M = (E, A+ BF, BW, F, W) is J-inner by choosing
F and W as:

F= JBUENT, W=1 (continuous — time)
AYE" + EYAT - BJBT =0, Y >¢ | conmuensmmme

F= JBYEYET + BIBTY 1A
WT(J+ BYEYETY 'B)W = J (discrete — time}
AYAT - BJBT = EYET, Y >0

These formulas can be used at step 4 of the GRCFID Algorithm to compute the RCF with
J-inner denominator of a TFM. Notice that at each iteration, the positive definiteness
of the solution Y of above Lyapunov equation should be additionally checked. If the
positivity check fails, then the given TFM has no RCF with J-inner denominator. For
the discrete-time case the matrix W can be computed in the form

w=| "W

ii

0 Wiy |

L Wi |

where with X = (EYET) " and B=[ B, B,

VVH —_ (I“‘B;FXBI)_%
Wo = (I-BIXBy+ BIXBWEBTXB,) s
Wi, = —WJjBI XBWy,

Remark. If the TFM & is square and stable, the GRCFID Algorithm can be used
to compute an inner-outer (J-inner-outer) factorization G = M N, where M is inner (J-
inner) and N is outer (minimum-phase and stable). This can be done by applying the
algorithm to the inverse system (3). This algorithm can be also used in the case of a
rectangular G to compute the inner (J-inner) denominator factor M of a suitable left or
right inverse of G and then to compute the outer factor N as N = M~'G. The method
is described in details in a forthcoming paper [17] ]
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5 RCF with proper factors

If the given system (E, A, B,C, D) has impulsive modes, that is, the finite generalized
eigenvalues are fewer than r = rank(E), then the N factor resuiting from the GRCF
Algorithm has impulsive modes too and therefore is not proper. A trivial example is
when G is a polynomial matrix in which case the factors are simply N = G and M = I.
If however G is impulse free, the numerator factor N computed by the GRCF Algorithm is
also impulse free. This observation leads to the following conceptual approach to compute
a proper right comprime factorization (PRCF), that is a factorization in which both factors
are proper and stable:

1. Compute a factorization of G in the form G = N M; ', where both factors are
proper but possibly unstable.

2. Compute a RCF of [ M, in the form M, }

Algorithm and define ¥ = N and M = M.

f Ny
e

M, by using the GRCT

!
L

It is easy to see that G = NM ! is the desired PRCF.

The above two steps can be related to the two main steps of an S-stabilization (strong-
stabilization) algorithm proposed recently in [18]. Assume for the moment that the given
descriptor representation of G is strongly stabilizable, that is, rank([A\E — A B]) = n for
all finite A € €7 and rank([E AS,, B]) = n, where the columns of S, span the null
space of E. In the mentioned algorithm a preliminaryv state feedback Fj is determined to
move all impulsive modes to finite locations. Then a second partial feedback F5 is used
to perform the stabilization of perturbed system. These partial feedback matrices can be
used then to define the PRCF of G according to (2).

We gketch shortly the procedure to compute £ which defines the factors N; and M, at
the first step. We can assume that the given system has no uncontrollable infinite poles,
that is, rank([E B]) = n. If this condition is not fulfilled, then the given descriptor
representation of the TFM G is not minimal and contains uncontrollable infinite poles.
These poles can be removed by using the Algorithm 1 presented in the Appendix. The
computation of a preliminarv feedback F; which moves the impulsive modes to finite
locatlons is based on reducing the system matrices £, A and B to special condensed
forms by using transformations of the form E = UEV, A = UAV, B = UB with U and
V orthogonal matrices. Specifically, U and V can be determined such that the matrices
of the transformed system have the forms

B Eny 00 _ [ An A 1413-1 By
E=UEV=| 0 00|, A=UAV=| Ay Ay Ap |, B=UB=| B,
0 0 0 | 4, 0 o0 J B,

a6)

where E1; € R™ is non-singular, ! gQ } has maximal row rank, and A4,; is also non-
[ 3

singular. This reduction is always possible if the condition rank(| £ B]) = n is fulfilled,

that is the system is controllable at infinity. The state feedback matrix F} can be compu-

ted as 7 = [0 0 F13]VT, where Fy3 is chosen such that the matrix BsFy3 is non-singular.

We have immediately the condition rank([ £ (A + BF1)S.]) = n, satisfied and thus the

16



system (E, A+ BFy, B) is regular and has r finite and n — » infinite poles [1].

PGRCF Algorithm.
1. Find orthogonal matrices U; and V) such that

I
E(*LTIE‘G::!—-E&]' g:}.

L

where E]; € R™" is non-singular and upper-triangular, and set

1 1
‘411 A12

AU AV = [ AL AL

1
},Bems:[%j,cecw

2.If B} has no full row rank, perform Algorithm 1 (from Appendix) on the system
(E, A, B,C, D} and determine a reduced order system controllable at infinity with the
matrices having the same form as at step 1.

A%, Al

3. Find orthogonal matrices Uy and V, such that Uy A,V = [ 0 0

]: where A2, is
non-singular, and set

Efy 0 Al Al AR

0 r r
E=| 0 00]. A« %S}A{ESEF A5 A% A% |,
0 00 g 2 2 A2 0 0
BQ
L 0 _{% L 0
selb e8|, coct o]

L B
4. Determine Fy = [0 0 Fi3] such that B2F}; is non-singular and set

[ A3, Ar’{z A3+ BiFy,
A+~ A+ BF = | Agl A%E ./‘1%3 -+ B%Flg
| 42, 0 B2Fi;

5. Apply the GRCF Algorithm to Mo E, A B ¢+ DR D to
M ’ ’ F) 1 : I

compute the factors

I =
Ml _ (55 1C
[JMQj' _(E: ‘4: B; [ i

i
[

6.Put N=(E, A, B, C, Dyand M = (E, A. B, F, ).

The algorithm uses at steps 1 and 2 exclusively orthogonal transformations. The
details of step 1 are discussed in the Appendix. The row compressions at step 3 can be
performed by using the rank revealing QR-decomposition [2].

The procedure is intended for an efficient modularized implementation. Many algo-
rithmic details, as for example exploiting and preserving particular {triangular) shapes of
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various submatrices can improve suplimentary the efficiency of computations. For exam-
ple, before performing step 5, it is possible to reduce first the pencil AE — A to a biock
upper triangular form by annihilating the submatrices A%, and A2, of A and by preserving
simultaneously the upper triangular shape of £. This form allows to extract immediately
the non-dynamic part of the system by including it into an appropriate feedthrough ma-
trix. Step 3 can be then performed on a descriptor representation of smaller order. This
approach can be particularly useful when the computed PRCF is intended to be used for
coprime factors model reduction [4].

Remark. From the matrices computed by the PRCF Algorithm it is not possible to
extract immediately a least order minimal realization for M. If such a factorization is
of interest, then an alternative procedure is more appropriate. We sketch only the main
steps of this procedure.

1. Apply Algorithm 2 {see Appendix 2) to reduce the pair (£, A) by using the ortho-
gonal transformation matrices @ and Z. to the block upper triangular form

= . B Epp T [ A Ap j!
E=QF7 = A=QAZ =
[ O Egz jl ! i U AQQ

where the pair (E), A;;) has only finite generalized eigenvalues and the pair (E3;, Aag)
has only infinite generalized eigenvalues. Compute B = QB = B }., C=CZ=

e ol

B,

2. Compute Fj such that the pair (Ess, Ass + BoFy) has rank(FEa) stable finite eigen-
values and the pencil Ay + BoFy — AEg, is regular. (This is always possible if the
descriptor system is strongly stabilizable.)

3. Apply the GRCF Algorithm to the deseriptor system
[ Ell Elz All A12+ B1F2 -5 [ Bl Cl Cg +DF2 D
l 0 Exn|’'| O A22+BQF~2_E’[BQ 0 3 I
to compute the factors

f JNQ __ - g =
'LMJ—(E’ 4, 5,

4. Put N=(E, A, B,C,D)and M = (E, A, B, F, I).

This algorithm is less efficient than the PRCF Algorithm. However the computed
form of matrices is appropriate to obtain a minimal realization of a least order factor M.

6 Conclusions

Efficient numerically reliable algorithms for computing several RCFs have been proposed.
They are well suited for robust and modular software implementations. The algorithms

—
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are based on a recursive generalized Schur technique for pole assignment by using pro-
portional state-feedback. This technique can be extended in a straightforward way to use
derivative state-feedback too, leading to alternative algorithms for computing RCFs. The
derivative feedback also allows to compute other useful factorizations as for instance RCFs
with polynomial factors. It is still an open question the existence of general recursive al-
gorithms for computing other factorizations as for example the inner—outer factorization
for non-square systems, the normalized coprime factorization, the spectral and J-lossless
factorizations.

Appendix 1.

Let (E, A B,C,D) be a given n-th order regular descriptor system with the system
matrices &, A and B having the conformally partitioned forms

Eyn 0 A Ap B, -I
E = , A= ., B= i,
[0 0]' [Am A22} [Bzi

4

where E1; € R7™ is non-singular and upper-triangular. The following algorithm deter-
mines a reduced n'-th order descriptor representation (¥, 4 B C, D) with the same TFM

as the given system, with no uncontrollable infinite poles. The matrices E A and B have
the following conformally partitioned forms

E:[Eu U}; ;l':i :11 %12 . B=
0 0 | An AzzJ

where Eu c R _is non- smgular and upper-triangular and Bg has full row rank. We
have that rank([E B]) = #/, that is, the resulting system is controllable at infinity.

Algorithm 1.

1. Set up the system matrices as

_|EL 0 _ [ A Al _| B
E._[ . 0}? A.[A%l a | B Bl .

2

2. Find an orthogonal matrix Uy such that U3 B} = [ J?)Z }, where B3 € R¥™ has full

row rank g. If ¢ = n — r, then Stop; else set
B2 0

E .= 0 0

0 0

Af AL, AR

L, 0 )
Ae[ }A:: Ay A |, Bt O]B:: 5
A3 A3 AR “

13



3. Find orthogonal matrices U and Vi such that U,[ A2, A2,]V, = {

A3, € R® non-singular, and set

[ o Af A, Ay AT
ITTL? 0 IT 0 ‘] _ A%l ‘422 ‘423 Aéél
A=y U.;,J!A_o VT AL 0 0 0 E
A0 0 Ay |
Eh 00 0] [ B} ]
1o o000 | B L 0
E=l9 000> 250 | ““Cown
0 00 0] 0

4. Find orthogonal Us and V3 such that [ A3, 00 42,]V3 = [0 0 0 A}, ] with A}, non-
singular and Us[E3, 0 0 0]V = [E4 0 0 0 E},] with EY| non-singular and upper-
triangular. Set

EY 0 0 F4
U 0 Lo oo o
E‘—[o fn_r}EV* 0 00 0 |’
I 0 00 0 |
0 e
4 Us 0 _ | Ay A22 A3 4424 '
A [ 0 1., | = {Agl 0 0 0 |
0 0 0 Ay ]
r
B<—Lb{;3 IHU%}B;: % . C+«CVy=[CtC; O CF)
0
5. Remove the uncontrollable part: n < n — s and set
EhL 00 Al Al Afy By
E=] 0 00|, A==| A} A, AL |. B:=|Bi|, C:=[CicC}cCH
0 0 0 AL 00 0

If n =7+ g then Stop.

6. Find orthogonal matrices {/; and V; such that A}V, = [0 43,] with A3, non-singular
and U, E{,Vy upper triangular. Set

E} E% 00

[y © Vi 0 {0 E)S 00
E<_‘_0 In—f‘ E 0 In—r D 0 O 0 !

0 0 00

0 43 0 0

14



%,

(190

Uy 0 . BQ‘l Vi 0 [ 5 5 5
34—[0 fn_?}B._ EaE cw—c{o In_r}._[01020304].

1o

7. Remove the uncontrollable part: t=n—r— g n+n—1, r < r —1, set

L=

Al | Al Agl | AZS Ag‘i 1
A=larr | = | AnlAn An | B=17p
21 | <493 A5 1 AS A L

31 | ‘433 34

B}
}:: Bi|, Cc=[C"C}
B3 |

L

and go to 2.

The matrices of the reduced order descriptor system (E,ﬁ,ﬁ, C, D) result in the
place of the corresponding matrices of the original system. The dimension n is updated
accordingly. No computational overhead occurs when using Algorithm 1 on a system
with no uncontrollable infinite poles. In such a case, the algorithm exits at step 2 and
determines the system matrices in the required form for Algorithm PGRCF. Note that
Algorithm 1 applied to the system (A4, E, B, C, D) {notice that A and £ are interchanged)
can be used to remove the uncontrollable poles in the origin.

This algorithm uses exclusively orthogonal transformations and therefore is numeri-
cally backward stable. The rank revealing orthogonal decompositions, as for instance the
complete orthogonal decompositions at steps 1 and 3 or the row compression at step 2
can be computed either by using the singular value decomposition or the rank revealing
QR-decomposition |2] combined if necessary with RQ-decomposition. The latter alterna-
tive is substantially cheaper than the first one and usually possesses the same reliability
in determining the ranks of matrices [3]. The special column compressions at step 4 and
6 in which simultaneously the upper triangular shape of F is preserved can be performed
by using a technique similar to that described in detail in [14].

Remark. Algorithm 1 can be thought as a particularization of the procedure proposed
in [5] to compute the zeros of the system matrix

o [A-XE|B
5(’”—[“(:—“9‘]

1

In our case, S(A) has the particular form
SA)=[A-AE|B]

and only the zeros at infinity (the uncontrollable infinite poles) are computed. Additio-
nally to [5], Algorithm 1 applies the performed orthogonal transformation to the matrix
C too. The computational complexity of the algorithm is 0(n®). By specialization of the
algorithm of [5] to the pencil

15



a similar procedure can be developed to remove the unobservable infinite poles. ]

Appendix 2.

Let (E, A, B,C, D) an n-th order descriptor system with the matrices £ and A be
conformally partitioned in the forms

B0l 4=

E=1"9 o]

l. A]l Al?_ :i
| Aon Az

where £y € R™" is non-singular and upper-triangular. We assume that the pencil A —AE
is reqular. The algorithm given below determines the orthogonal transformation matrices
2 and Z such that the orthogonally similar system

{E.A,B,C.D) = {(QEZ QAZ,QB, CZ, D)
has the matrices £ and A in the form

E:{E” ElZ
| 0 £

- Ay -%12 ;
0 Ay

where the pair (Ell, ;{11) has only finite generalized eigenvalues and the pair ( Egg,gzz)
has only infinite generalized eigenvalues.

Algorithm 2.

1. Set j = 1, Ny =n,nnn=r, Eﬂ) = Ella A{lji) = All; Aglz) = Alg} Agll) = A21; Ag)_) = Agg.
2. Compute the orthogonal matrices ¢}; and Z; such that

(j+1 +1)
Ei\;l) 0] Elj : EE’;J }Tj+1
< { 0 o]% = |0 EZT | Y=
- .0 0 j 0 } 27
" {7+ (3+1) 4 +1
A Ay A A s ] e
; AW 40 Z; = A A 233. }n; — 7
| Aa1 Agy | 0 0 IA%H) by
where BV and AGMY i ' 1)
1 33  are non-singular and upper-triangular and E3}" "’ has full co-
lumn rank.
3. Set

Q: 0 Z; 1 0 0
A,{_ 2 J 7
K IMJ.}A[D w8 {o } el ¥l )



4.Tf p; > 0, then nj4 =nj — py, Tj41 = 15 — Ky, J <= 7+ 1, and go to 2; else, go to 5.
5. Find orthogonal matrices Uy and V; such that [ A%H} A%’;l) ]Vf- = { 0 Ay ]?

- T N 1 Mo~ ~ 1 —~
where A, is non-singular, and Uy | E](JIHJ 0§V = | Ey By i, where Ey is non-
L : 4 L d

singular and upper-triangular. Set

- - _ - -~ —~ q
=~ U 0 Vv 0 E, F
F = f B f = 11 ~12 ,
L 0 In—rj- ] | 0 In—nj ] |: 0 E22 |
/’i‘: [ lﬁf 0 T A ( I/f 0 1 — ;1’11 %12
| 0 Ly ] 0 L [T 00 A |
= _[Us 0 7 - Vi 0
— y i = ) 7
B g- 0 I_. _iB C=0C [ 0 o, |

The reduction to be performed at step 2 can be more easily explained if we introduce
the following notation: £ = B, A= A%, B = A, ¢ = AY). and D = AY). The
descriptor system (£, A, B,C, D) has order r;, and n; — r; inputs and the same number
of outputs. Moreover, the matrix F is non-singular and upper-triangular. The reduction
is performed in two steps. First we determine an orthogonal W to compress the rows of
D such that -

Ct Di} }o

> D1 = ~
W[CD‘ H:Cg ] J }’Tj’

where D; € R#*™ =) has full row rank p;, where p; =n; —r; —7;. If 7, =0, then we
set p; =0, Q; = In;, Z; = I, and we finished. Otherwise, we determine the orthogonal
matrices U and V such that CoV = [0 Cy ], with Cyy € R*™# non-singular, and UEV
ig further upper-triangular. We partition compatibly the transformed matrices as follows

; B By An Aw
UEV = = ., UAV = | 2 -
[ 0 By } [Azl Azz}
| B {01] _[Cn Cu
“B—[BQ]’ Lad‘”'{ 0 Cp |

Notice that Cy; results square because we assumed that the pair (£, A) is regular. With
the matrices computed above we can define the snbmatrices computed at step 2 of the
Algorithm 2 as:

. _ . _ . E . _ T : _
B = By, BYY = By, BYY = | B2 J LAY = Ay, AR = By, AR = Ay,

L Ugyxu;
_ _ a7)
G+ | A; +1) By 1 Ay +1) A
A = [Cu],Ag :[Dl]’ Ag;):[éi], A =G (18)

The transformation matrices 2; and Z; can be assembled as

. L., 0 0
v o Vo0 ik
N B RO | R
0 W |’ J 0 I, A
g 0 I, 0

3
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Algorithm 2 is a more efficient version of computational complexity 0(r?) of an algo-
rithm initially proposed by Van Dooren [8]. The reduction technique is similar to that
used in the recently developed algorithm for computing the zeros of descriptor systems
I5]. If the algorithm stops at step k then at the end of the algorithm the submatrices Fay
and .522 have the following forms

[0 Epsmr - Een | Ape  App o0 Apd
5, = 0 0 Ek(—l,l A= 0 Ak—j;,k—l Ak.—};ﬂ_ ?
6 o - o Lo 0 oAy
where the diagonal mairices 4;; € R*"*, { = 1,...,k are invertible and the principal
superdiagonal matrices E;;,; € R¥**#*+1 ¢ = 1,.. .,k — 1 have full row rank. This last

property can be easily seen by observing that at step (7 -+ 1) the matrix A%H) has the
structure in (18} where D; has full row rank p;. The row compression performed on
Agj;m is simultaneously applied to the matrix E.é“gﬂ} which has the form in (17), where
Foy of order u; is invertible. Thus the matrix | Aiﬁ*” Eé";f” | has full row rank and the
row compression of A%ﬂ} produces a full row rank matrix in the last 7541 rows of the
transformed Egﬂ).

By defining g1 = 0, from the structure of the pencil Asy — AEss we have that [7] the

pencil A — AFE has p; — ;47 inifinite elementary divisors of degree ¢, 1 =1,... k.
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