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Abstract

This technical note reports on some of the experience gained with analyzing some of the
flight test data of the BO105 Helicopter. This data was supplied by J. Kaletka of the DLR
Braunschweig and served as a benchmark example in the AGARD Working group WG-18.
The results reported here show that the MOESP ! approach allows 6o reliably detect the order
and structure of the underlying linear state space model, to concatenate different individually
collected data sets and to accurately reconstruct the output sequences using the identified
model.

1. Remarks on the data acquisition and commonly used identification approaches.

The data analyzed in this brief technical note corresponds to some of flight test data used as a
benchmark example in the AGARD Working Group WG-18. The purpose of this WG was to
evaluate and compare the at that time current state of the art identification tools in identifving
Rotorcraft systems, such as helicopters. In this brief note, we restrict to the flight test data
that was kindly supplied by Mr. J. Kaletka of the DLR. in Braunschweig and that was recorded
during flight tests with the BO105 helicopter. The data set included 2 sets of four data files.
Fach set corresponds to a particular type of input excitation used, namely frequency sweep
inputs and the 3211 DLR Braunschweig input [J. Kaletka, 1991). Each set then further consists
of four data files, each characterizing the excitation of one particular control input. An overview
of the available data is given in Table 1.

TYPE OF INPUT Excrrep CORTROL INFUT
longitudinal stick
Set 1 lateral stick
frequency sweep input pedal
collective

longitudinal stick

Set 2 lateral stick
3211 DLR Braunschweig input pedal
collective

Table 1: Overview of the different analyzed data sets.

Of the recorded data sequences all four input quantities were selected as inpnt of the system to
be identified, but we only selected the gnantities listed in Table 2 as output quantities.

About the recorded output quantities we remark that the airspeed components used in the
identification process were not those obtained by direct measurement but those reconstrncted
from inertial data [J. Kaletka, 1991].

For an extensive discussion of the features characterizing this data, we refer to [J. Kaletka, 1991].
Here we only restrict attention to the following three features, which are relevant to our present
study:

1. Accuracy of the measurements: It was indicated in [J. Kaletka, 1991}, that “accurate mea-

1The abbreviation MOESP stands for Multivariable Output-Error State sPace Subspace Model Identifica-
tion approach and was originally developed in [Verhaegen and Dewilde, 1992a, Verhaegen and Dewilde, 1992b,
Verhaegen, 1993a, Verhaegen, 1993c] and [Verhaegen, 1994a).
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QUANTITY SYMBOL | UNIT
Longitudinal component of the airspeed | u m/s
Lateral compenent of the airspeed v m/s
Vertical component of the airspeed w m/s
Roll angle i rad
Pitch angle e rad
Roll rate p rad/s
Pitch rate q rad/s
Yaw rate T rad/s

Table 2: List of the output quantities used in the idenfitication runs.

surements are an indispensable prerequisite for reliable system identification”. Inspection
of the input data sequences gives the impression that some of the sequences are heavily
corrupted by uoise, probably due to the vibration of the helicopter. We illustrate this
assertion with a plot of the input data records present in set 2 — longitudinal input {see
Table 1) in figure 1. Especially for the pedal and collective input the records look extre-
mely noisy. When these quantities do not correspond to the actual system input, but need
to be considered as measurement errors we have the so-called errors-in-variables problem
in system identification. This type of problem generally results in biased estimates in
most commonly used identification schemes when no special pre-cautions are taken into
account. These pre-cautions generally require the assumption that the errors are white
noise sequences of known variance.

2. Multiple or concatenated data sequences: Due to the helicopter instabilities it is typical

that the length of a single data run is limited. As a consequence, the data set does only
contain a short period of oscillatory modes which have long time constants, such as e.g.
the phugoid mode. Therefore, it was indicated in [J. Kaletka, 1991] that the identification
method should be able to identify a single model from different test runs. This is known as
multiple or concatenated data sequernce analysis. However, when applying well established
parameter optimization schemes, such as those described in [AGARD LS-178], to these
concatenated data sets, care needs to be taken such that all data sets have practically the
same initial flight test condition and helicopter and instrumentation status.

3. Decreasing the sample rate: Even when limiting the number of inputs to 4 and the num-

ber of outputs to 8, as indicated in table 2. the number of measurements is extre-
mely large. Therefore, in order to allow the data to be incorporated within MATLAB
[Moler et al, 1987], even when using a powerful workstation, the number of data points
need to be reduced. This is achieved by lowering the sample rate to 0, 05 seconds instead of
the sampling rate of 0.01 seconds used during the collection of the data. For this sampling
period, it was assumed that the direct feedthrough matrix of the quadruple of system
matrices is equal to zero.

In [AGARD LS-178], a number of critical problems that may occur in the analysis of the helic-
opter data have been listed. Of these problems, we draw attention to the following two:

1. Treatment of linear time-invariant {LT1) models: Though the coupled six degree of fre-
edom rigid body model of the helicopter is inherently non-linear, most of the methods
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Figure 1: Input data records belonging to set 2 — longitudinal excitation (see Table 1).

analyzed in [AGARD LS-178] treated the LTT identification problem. This restriction will
also be imposed in the present note.

. The model structure: The methods evaluated in [AGARD LS-178| belong to the class of

parametric model identification (PMI) schemes. The main feature characterizing this class
of identification methods is that they optimize a performance index, generally a suitable
chosen norm of the residuals, with respect to a priori selected parameters in a particular
model. A selected set of parameters is called the model structure. That this is not a trivial
problem at all was clearly pointed out in [[J. Kaletka, 1991], p. 9-7.]. The main problem is
that one can not identify all the parameters in a (continuous) state representation of fixed
(a priori selected) order. Therefore, a decision needs to be made on which parameters
should be fixed and at what value. The latter values may be either zero or the magnitudes
determined for example during wind tunnel measurements. However, that this is a very
delicate problem is illustrated by the large variations of the number of parameters that
were estimated by the different teams cooperation in the AGARD WG-18. More precisely
the number varied from 58 to 30. Tt is remarked that since on the one hand this structure
selection process consumes a significant part of the total analysis time of the identification
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problem and on the other hand critically may influence the outcome of the identification
process, the proposal of a simple and robust way to select the model structure will be a
great asset to the (aeronautical) identification community.

2. Basic aspects of the MOESP class of SMI schemes.

The goal of the present study is to apply the recently developed class of MOESP Subspace Model
Identification (SMI) schemes to the data sets described in the previous section. Before doing
that, we first recall and extend the main features of one variant of the MOESP class, namely the
so-called PO scheme. This abbreviation stands for the ordinary MOESP scheme extended with
instrumental variables constructed from Past Qutput quantities. The scheme was originally
proposed in [Verhaegen, 1994a] and we refer the interested reader to this publication for a
derivation of this scheme and an analysis of the consistency in identifying state space models
given in so-called innovation form. In this brief note, we restrict to recalling the following
features of this schemes:

o the model structure selection

the key theorem describing the operation of the PO scheme

the calculation of the pair [A, ] of the quadruple of system matrices [A4, B,C, D] of a
discrete LTT state space model

the calculation of the pair [B, D]

Concatenating data sets and dealing with non-zero initial conditions

an alternative way to compute the pain [B, D].
In the following subsections, we will subsequently treat these items.

2.1. Model structure selection.
Given the linear state space model:
Thyr = Azgp + Buy with 2z eR™, up e R™ (1}
yp = Czy+ Duy  with y, € R ¢ (2)
and the input-output (i/o) data records:
{wj wigr - wpenaa} oy Yign o Yiavoa) = {m

the following structured relationship holds between the block-Hankel matrices Ujswand Y, n
constructed from the i/o data:

Yien =L X8 + H U s v (3)



In this equation, the following quantities are defined:

¥ Ujer vrr UjEN-T
Ui+l Uiz 0 UjEN
Uisw = .
Ujps—1 Ujtrs 7 Uj4N4s-2

(and a similar definition of the block-Hankel matrix ¥;, ~),

5D oo c
e cA
H, = CAB CB D 0 T, =
: AR A1
CASIB - D
and the state sequence ( i Tip1 o TjLN-1 ) The triple of indices (7,s, V) of the Hankel

matrices determine their size and what part of the i/o sequences is stored in them. More
precisely, the first index j refers to the time index of the first element of the ifo record, the
second index determines the number of block rows of the Hankel matrix and the third index is
the number of columns.

Eq. (3)is a model representation in the true sense of relating input and output sequences. Thelo-
cal state space model (1-2) is implicitly contained in this global model representation. The struc-
ture of this global model, referred to as the data equation in [Verhaegen and Dewilde, 1992a],
is determined by only two parameters:

1. the Hankel matrix dimension parameter s, briefly indicated by the SMI dimensioning
parameter. When the length of the ifo record is fixed, it fully determines the size (i.e.
number of rows and columns) of the Hankel matrices.

2. the order n of the state space model. This parameter determines the number of columns
of the extended observability matrix I'; (and hence also the number of rows of the state
sequence X ;).

Given a particular i{/o sequence, the model structure selection problem for the SMI schemes
analyzed in this note corresponds to a selection of an appropriate pair (s, 7). In Theorem 1, it is
clarified that essentially only one parameter needs to be specified by the user, namely the SMI
dimensioning parameter s. A selection of this parameter only requires a rough estimate of the
underlying system order.

2.2, The Basic Theorem of the ro scheme,
The Po scheme addresses the identification of MIMO state space models given in the so-called
innovation form:
Tk+1 = Az + Bug + wy (4)
zp = Curg+ Dug + v

where the process noise wy and measurement noise vy are zero-mean white noise sequences,
which are statistically independent from the deterministic input uj and have the covariance
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matrix:

E[(”‘j:)(w’f oh)] = (SQT }U for k= j
=0 for k3

For this class of systems, we have the following Theorem. The Theorem was stated in [Verhaegen, 1994a]
and we refer the reader interested in its proof to consult this publication.

Theorem 1 Lef the process noise wy and the measurement noise vy of the system () be discrete
zero-mean white notse, independent of the inpul u; for all k,j and of the initial state xq, let
the input uy to the system (1-2) be sufficienily persistently exciting * and let the following RQ
factorization be given:

Us-i-l,s,N Rﬁ O-riV
Zy o N RY R, R Q;,:
Zipro N Ry RE RE Ry o
then
. 1 T . N\T
o =1 X, 6
?\}I—Irnoc \/KZ-‘H-I SN(QiZ) Ninm\/— %4 +1, N(O ) ( )
. 1 NAT . NAT
1 P = —F—L1lgNg; 7 7
A]f_l—Irnoo '\/FZS—I-I!HN(QS ) ]\ll—ﬁnoo \/Fth +1,‘V(Q3 ) ( )
- 1 7 N T ' T 1 “V
: — X ——H (R 8
,\},I_Irnoo i;\!r‘él,s,N(Ql ) N]}—I»noo(\/ffr 1N(Ql ) \/W ( 21)) ( )
1 .
li *ZSIrONT: r.X Ty —H,(RY 9
N_inmﬁ 1,s8(0%) N—~oo(\/_ s Ve (R32)) (9)

I&E‘IIOO\/_ 3+1,5,N(in) = hm (\/—I‘ XS-H N(QN) \/—H (R )) (10)

0

The matrices Z;, x in the RQ factorization are the Hankel-matrices constructed from the out-
puts z; of the model (4).

From this Theorem the equations to compute (estimate) the quadruple of system matrices
[4, B,C, D] (up to a similarity transformation T') have been derived in [Verhaegen, 1994a]. A
summary of these equations is given in the next two subsections.

2.3. Computing the pair [4, C]p.

Let us consider the SVD of the compound matrix [ RY, RY }, ie.

: n o fs—n .
\/Lﬁ{ RY, RY | :“( b Tl ) (‘%T%—) ( ((121)2 ) (1)

*The notion of persistency of excitation in the context of SMI is defined in [Verhaegen and Dewilde, 1992a)].

Roughly speaking it states that the inpnt has properly excited the controllable and observable modes of the
system.




then Egs. (6-7) of Theorem 1 show that when the input is sufficiently persistently exciting,
which guarantees the matrix X,y v [ (szy)T (Q;)T ] to be of rank n, and when

557) (12)

the column space of the matrix ¥/, is a consistent estimate of that of I';. The constraint in
Eq. (12) indicates that s can be specified based on a rough estimate of n. When s is properly
selected, the extended observability matrix has rank n, and as a consequence their will be »
non-zero singular values in the SVD in Eq. (11) when ¥ — oc. This shows that once s is
specified by the user, the algorithm supplies him with information on the selection of the order
of the underlying system.

The knowledge of the column space of the extended observability matrix T'; allows to compute
the system matrices A7 and Cr exploiting the shift structure of this matrix as follows:

Un(1:8(s=1),)Ar = Un(£ +1: €s,7) (13)
Cr=Un(1:4,:) (14)
Tn these two equations we have adopted the standard MATLAB ® notation to select a subpart
of a matrix [Moler et al, 1987].
2.4. Computing the pair [Br, D].

Using the corresponding matrices in the R-factor of the RQ factorization in Theorem 1, the Eqgs.
(8-10) of Theorem 1 are denoted compactly as:

1 ,, , 1 .
7 { RY RY RY } = Tsﬁ { Xin@Q@T X n(@)) Xep n(QY)T
1 .
FH RN RY RN | +0n(e) (15)

where On(€) is a matrix of appropriate dimensions and of e-norm for finite ¥ and vanishing
when N — oc.

When the column spaces of the matrix I'; and its orthogonal complement are respectively equal
to that of U, and U, then we can multiply Eq. (15) on the left by (U+)7, and obtain:

1 1
VN VN
Caused by the sufficiently persistence of excitation of the input, the matrix [ RJZ\; R% RrY ]
has a right pseudo-inverse. Multiplying Eq. (16) on the right by this inverse, yields:

1 ; 1
T T

If we denote the left hand side of this equation by = € R¥s=%)Xm1s then this equation can be
written as:

)"

| RN ORY RY | =i H—=[ RY RY RY|+On( (16)

RN R RN DT =T H 4 On(o

E= (UL H, + On(e) (17)

3I\'f[A"I'LAB® is a registered trademark of Mathworks, Inc.



Asindicated in [Verhaegen and Dewilde, 1992a], this is an equation which is linear in the matrix
pair (Br, D) once the columns space of T, is known. To see this, we rewrite this equation as
(see Eq. (45) of [Verhaegen and Dewilde, 1992a]):

fs—n =(:,1:m)
fLs—n Z(5,m+1:2m)

Ls—n =(:,m(s—1)+1:ms)

¢ ¢
U#‘(f(,s—l)+1:€5,:)T Ul(1:4,97

0 U,J;(E(s -1)+1: Es,:)T Uf,f‘(ﬁ-l- 1:2¢, :)T (18)

0 0

0 0 Ud‘(ff(s —1)+1:4s, )"

Un((s—2)+1:(s—1)4,:)| 0

« : | ¢ Br
Un(l:£,0) | 0 b
0 | I

As mentioned in [Verhaegen, 1994a], the number of operations required in constructing this
set of equations is proportional to s. In this technical note, we briefly discuss an alternative
implementation that reduces the computational complexity (of constructing the set of equations
alone) by a factor s. This more efficient implementation is based on the following two ideas:

1. First we compress the matrix [ Ulr(f(s =1+ 1:4s,)7 oo Ur(e+1:26,07 Ur(1:¢,)7
to an upper-trapezoidal matrix by means of orthogonal transformation €. This is denoted
as:
QU U e(s— 1)+ 1:4s,)T -0 TR+ 1:2607 U167 | =
11 Tzt Tk ot Tis
0 rag --- Tk - Ty
0 o 0 7Rr ccr The

where 7;; € R ¢ for i#k and rt; € R g x € with g = ming(£s — n — (k — 1)¢) under the
constraint that (£s — n — (k — 1)£) > 0. This orthogonal transformation can be applied to
all the block-rows of Eg. {18), and reduces the underbraced matrix in that equation to a



matrix of the following form (illustrated for s = 4,k = 3}:

[ 71 712 T13 714 .[
0 22 T3 T24
0 0 | Mgzl raq
0 11 i rizt RSN
0 0 [ rez] 1 ’"231:
0 0 ( I rasl
0 ] T :-Tﬁ:[ (19)
0 0 0 Ta2
0 0 0 0]
0 0 ] T11
0 0 0o 0

L0 0 0 0 |

It is remarked that all the matrices r; have full row rank,

2. Second we compress the matrix in Eq. (19) to an upper triangular matrix (again using
orthogonal transformations). Here we exploit both the already close to upper triangular
structure of this matrix as well as the repetition of the different submatrices. This is again
outlined for the example illustrated in Eq. (19). We first start off to compress the matrices
in the full rectangular boxes to an upper triangular matrix. Since in all three cases, these
matrices are the same, the computations need to be performed only once. Second we
continue with the dashed boxes and finally the dashed-dotted box. This way of operating
on the data both reduces the computational complexity and the storage. The computed
orthogonal transformations need to be applied to the left hand side of Eq. (18).

Apart from efficiently constructing the set of equations (18), the above procedure will also speed
up the actual (least-squares) solution of this set of equations.

2.5, Concatenating data sets and dealing with initial conditions.

From the model representation (3), we immediately conclude that this representation holds for
arbitrary non-zero initial conditions. Therefore, non-zero initial conditions have no effect at all
on the calculations of the quadruple [A, B, C, D]r.

Also concatenating different data sets introduces no additional problems. This is illustrated for
two different data batches, namely:
1 11 2 21V,
{uka yk}k—i—l and {ukv yk}kil
With the first i/o data set, we obtain the data equation:
1 _ 1 rrl
-‘Yl,s,les-}-l - rle,f\ﬁ—.H—l + HSU’[,S,les-i-l
and with the second ifo data set, we have:

2 _ o , 0
}/]‘.,s,Nz—s-H - PSJYI,IV2‘5+1 + IISUl,s,Ngf-s-i-l

The Hankel matrices in these two data equations are non-empty when both N; and N, are

larger then or equal to s (2s for the Po scheme). Both data equations can easily be combined
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as follows:

1 2 _ 1 -2 1 2
}/l_.s,Nl—s-P-l l Yl,s!Ng—s+1 ] - FS [ XI,N1—5+1 |X1,N2-s+1 ] + ‘HS [ Ul,s,Nl—s-!-l ‘ Ul,s,Ng—s+1
The structure of this equation is equal to that of the original data equation (3) apart from the
fact that the concatenated Hankel matrices of the i/o data are no-longer Hankel. However, since
this property is not exploited in the derivation of the ro algorithm, we still can use the main
body of this algorithm when starting with an RQ factorization of the following matrix:

1 2
Us+1,s,N1—2.9+1 \ Us-}—l,s,Ng —2s5+1
1 2
Ul,s,N1 —2s+1 ] Ul,s,N2—23+1
1 2
Y-l,s,Nl —25+1 | 1/1,.s;,.«"v"z—z.s-}-l
Yl ‘ Y-z
s+1.5, Ny —2s+1 s+1,5,Ny —2s+1

2.6. An alternative way to compute the pair [Br, )] and the initial conditions.

It has been observed experimentally [Verhaegen and Babuska, 1394b] that when the first s Mar-
kov parameters of the system to be identified are small in magnitude in combination with the
presence of modes with large time constants, the calculation of the matrix pair [Br, D] may
become sensitive. Such (crifical) condition also hold for the identification problem of the BO105
helicopter. Though the true nature of this problem is not yet fully understood, it was observed
in the experiments performed in [Verhaegen and Bahuska, 1994b] that another way of compu-
ting this pair yields more accurate results under such circumstances. This alternative way is
presented in this section under the assumption that the matrix D equals zero.

Let the ¢, j-th entry of the matrix B be denoted by b;;, then we can rewrite the state equation
(1) as:

—
o O

0 1
Trpr = Azp + | L | ue(L)bi + : ue(Lbor +---+ | . | wr(Dby + -+
0 0 1
0
0
1 (1) by
1

Here u (1) denotes the i-th component of the vector uy.

Based on this full representation, we define the following subsystems:

0

SCE_H = AIL’—}- ; 1 Hk(_’])
0

y = Cej

The output of these subsystems can be computed (assuming zero initial conditions) once the
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pair (A,C) is known. The relationship between these outputs and the output of the original

state space model (1-2) is:

k— n T4
:CA I;UO—I- yilrl ygl -yll | yf} ykz ‘

Again we observe that the entries of the matrix B and the initial conditions appear linear in this
equation. Therefore, they can be estimated by solving a linear least squares problem. Three
remarks are in place here:

3.

1. Solving for the unknown elements of the B-matrix via the above outlined least-squares

problems will yield consistent estimates when the true pair (A, C')is used in the calculations
for the case the underlying system is in state space innovation form. When we know this
pair up to a similarity transformation then the result also holds for the entries of a matrix
By for the same similarity transformation.

. The simple formulation of estimating the entries of B via the solution of a linear least

squares problem allows to incorporate numerical reliable column pivoting strategies to
improve the condition number of the least squares and therefore also of the solution of
that problem.

. The above results can be extended to cope with concatenated data sets. Of course in that

case we have to take possibly different initial conditions into account.

Some experimental results.

The PO scheme discussed in the previous section is applied to the data sets described in section
1. The only data pre-processing performed on the data is detrending, that is to remove the
non-zero mean from all the data records. The results discussed are:

3.1.

. The selection of the model structure.

. The reconstruction of the output sequences using the estimated state space quadruple

[4, B,C,0]r and the recorded input quantities.

. The translation of the estimated discrete time model to the continuous time case with the

physically defined quantities as state variables.

Structure selection.

The selection of the SMI dimensioning parameter s is based on the inequality listed in Eq. (12).
For the present example a good indication of the order of the underlying system can be derived
from “first principles”. Based on these principles, the six degrees of freedom motion of the
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helicopter can be described by an 8-th order (continuous) state space model. From this rough
estimate of the order, the SMI dimensioning parameter was set to:

s = 15

The second parameter determining the model structure is the order of the (discrete) state space
model. As outlined in Theorem 1, in the limit N — oo, the order of the underlying system
is equal to the number of non-zero singular values in the SVD (11) when only process and
measurement noise are present. However for the helicopter their is great evidence that just
more than that is present, for we have:

1. the high order dynamics of the vibration modes and

2. the non-linear dynamics.

When both phenomena are (statistically) independent from the input signals they will disappear
in the Hmit in the same way the process noise and measurement noise disappear [Verhaegen, 1994a).
However, as we have mentioned in section 1, see figure 1, the input records are contaminated by
high frequency components which are probably due to these high order vibration modes of the
helicopter. Furthermore, it is also not realistic to assume independency between the non-linear
dynamics and the input sigﬁals.

Therefore, we conclude that both conditions violate the assumptions stipulated in the derivation
of the PO scheme, Therefore, we conclude that the helicopter data serves as a good test example
to verify the robustness of this scheme.

To demonstrate the capabilities of the MOESP approach in handling concatenated data sets, we
process all the available data batches listed in Table 1. This is done one after the other and the
obtained singular values are plotted in Figures 2 and 3. More precisely, in Figure 2 we plot:

1. X - points: The singular values obtained after processing the data records in Set 1 —
longitudinal of Table 1.

2. o - points: The singular values obtained after processing the data records in Set 1 —
longitudinal and lateral of Table 1.

3. + - points: The singular values obtained after processing the data records in Set 1 —
longitudinal, lateral and pedal of Table 1.

In Figure 3, we display the singular values obtained after processing of all the available data
records.

From these figures we make the following observation:

1. When only processing the data records in Set 1 — longitudinal of Table 1, we do not
observe a clear gap between the 8-th and 9-th singular value. See Figure 2 (x - points).
From this batch alone we would probably set the order equal to 4 or 5.

2. From the curve indicated by the +’s in Figure 2, we begin to observe a ciear gap between
the 8 and 9 singular value, a possible indication that the data “contains” an 8-th order
hinear system.
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3. When processing all the available data batches, the gap between the 8-th and 9-th singular

value has even become more transparent.
Based on these observations we may conclude that:

1. The Po scheme is robust with respect to the presence of (weak) non-linear and high order
dynamics. This fact reflects the dominant mode extraction capabilities of the MOESP class
of identification schemes, already highlighted in [Verhaegen and Dewilde, 1992a].

2. The Po scheme allows to detect the correct order of the six degree of freedom (rigid body)
model of the helicopter. In addition it shows that the used input sequences are adequate
(maybe not optimal) to identify this part of the underlying system.

3. The concatenation of data batches is necessary to identify the six degree of freedom model.

Order detection

10 . T  —
+
o 4
10°F  x o + 5=15 4
0
%
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o]
x
5
1 x * +
10 ¢ o E
o » Q + ]
x o}
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100:— 0 : Set 1 - longitudinal and lateral x R g T
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r + :Set1 - longitudinal, lateral and pedal 3
L
10’1 3 I
0 5 10 15

Number of singular values

Figure 2: Singular values computed by the PO scheme applied to three sets of concatenated data
records belonging to the set with frequency sweep type of inputs.

3.2, Model estimation and preliminary model validation.

By concatenating all available data records, we approximated the extended observability matrix
I'ys as was indicated in Eq. (11). From this approximated column space, we compute the pair
(A,C)r by solving the equations Eqs. (13- 14).

When using the procedure described in section 2.4 to compute the By mafirix, the restruction of
the output using the estimated quadrupie [4, B, C, 0]7 showed a too high system gain. However,
when using the alternative scheme described in section 2.6, far more accurate reconstructed
outputs could be obtained. Since, the computational burden of the present MATLAB routine
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Qrder detection --- all data files included
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Figure 3: Singular values computed by the po scheme applied to a concatenation of all available
data records listed in Table 1.

IC, that implements this alternative way of estimating the Hy matrix and the initial conditions,
is extremely high in comparison with the other calculations, we restrict the demonstration of this
assertion using only a very small part of the available data sets. The selected part corresponds to
the first 30s of the frequency sweep input to the pedals. This part was selected because it shows
an excitation of all the input quantities, a necessary requirement when we want to estimate the
whole B matrix.

It should be remarked that also for this way of computing the B-matrix more than a single
data batch should be considered. This would certainly improve the condition number of the
least squares problem formulated in section 2.6. For the present case this condition number was
of the order 10°. This in addition to the incorporation of numerically reliable rank revealing
QR factorization schemes [Golub and Van Loan, 1989] will certainly improve the estimated B-
matrix (and initial conditions).

The reconstructed output sequences (and the corresponding true measurements) are plotted in
Figures 4 and 5. We observe that despite the use of only a small part of the observation sequence
and the relatively high condition number of the least squares problem very accurate estimates
of the outputs were obtained.

3.3. The estimated model parameters.

The PO scheme estimates a discrete time state space model. The particular basis in the state
space is arbitrary. However, since the physically relevant state is equal to the measured output,
we can easily transform the obtained state space model into this physically relevant coordinates.
When the obtained state space estimate is denoted by [Ar, Br, Cr, 0], the physically relevant but
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similarly equivalent state space model representation is given by [CrA7Cr ! CyBr,I,0]. Here
we remark that the matrix Cr was very well conditioned, namely it had a condition number of
35.

Finally, we used the matlab command d2c¢ to transform the physically relevant, discrete state
space model estimate to the continuous time domain. The corresponding A. and B, matrices
have the following values:

Ac =
Columns 1 through 7
u v W phi theta P q

-0.0296 0.0125 0.0715 0.5763 -10.2842 -0.2656 -0.8977
-0.0052 -0.0601 0.0111 8.5690 -0.5112 -0.7831 -3.2469
-0.1871 -0.1157 -0.5901 1.4572 -4.0770 1.1626 47.1939
-0.0032 -0.0074 -0.0009 -0.0627 0.0691 0.9055 .2750
-0.0023 -0.0042 -0.0041 0.0175 -0.0055 -0.0269 . 3489
0.0065 ©.0023 -0.0173 -0.3900 0.2117 -0.5453 .5529
0.0041 0.0022 -0.0160 0.1739 -0.0256 -0.2537 L4117
-0.0046 0.0327 -0.0444 0.2049 0.2536 -1.6949 .1423

W o O = O

Column 8

0.5735
-40.1725
-2.4611
=0.1477
0.0198
1.6211
-0.6387
-0.5875

Be =
long lat pedal col

0.5479 0.4782 0.0025 0.1231
0.4952 0.1200 0.0262 1.0185
-0.4401 -1.4928 0.0615 -1.9804
0.0041 -0.0138 -0.0146  -0.0292
-0.0157 -0.0044 0.0028 -0.0607
-0.0018 0.0358 0.0059 -0.0701



-0.0015 -0.0139 0.0068 -0.0117
-0.0200 -0.0473 0.0479 -0.0719

4. Concluding remarks.

The overall conclusion of this preliminary identification study with the BO105 flight test data
using the MOESP class of identification schemes is that this type of identification schemes give
very promising results. This is because the method has demonstrated to deal in a robust manner
with the practical difficulties of:

» high order flexible (vibration) modes.

s non-lnear phenomena.

Here it is remarked that the first effect may be further reduced when an input can be applied
to the system that it is not affected by these high order modes. This might e.g. be the case
when applying a computer generated input to the test vehicle. Whether this is feasible with
future test vehicles and whether this leads to improved identification results still needs to be
demonstrated.

The main advantage of this SMI scheme is its very simple and robust way of detecting the
‘correct’ model structure and the non-iterative operation of the calculations. Looking at the
preliminary reconstructions obtained with the estimated model, these attractive properties in
no way seem to reduce the accuracy of the obtained estimate.

The tests described in this paper, have been performed with the m-files listed in Appendix 1.
In these implementations no attention has been put on the efficiency of implementation. In
this way, these routines are not very friendly to use. However, recently we have started to
incorporate some of these tools within the ANDECS 4 Computer Aided Control Environment.
For an overview of the capabilities that will soon come available, we refer to Appendices 2 and
3. Making these tools available within ANDECS with special care of the numerical robustness,
efficiency in computation and memory use, will make the full potential of new and promising
SMI approach available to the (flight test) identification community.

® . .
*ANDECS ™ (ANalysis & DEsign of Controlled Systems) is a registrated trademark of DLR
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Figure 4: Reconstruction (— — —) and measurements (—) of the first four outputs (listed in
Table 2) for the first 30s of the pedal frequency sweep input.
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Figure 5: Reconstruction (— — —) and measurements (—) of the last four outputs (listed in
Table 2) for the first 30s of the pedal frequency sweep input.
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Appendix 1: m-files implementing the ro scheme.

In this appendix, the m-files are listed that were used in the analysis of the BO105 flight test
experiments. Four m-files are listed:

I. The PO_ORDER scheme, which performs the RQ factorization in Eq. (5) with the possibility
to concatenate data sets. In addition it supplies the user with information on the order of
the underlying system via the singular values in the vector Sn. These correspond to the
singular values computed in Eq. (11).

2. The PO_MOD scheme, which calculates the system quadruple [A4, B, C, D] from the infor-
mation supplied by the PO_ORDER scheme. The algorithms used are described in sections
2.3 and 2.4.

3. The PO_TST routine, which shows an example of how to use both the PO_ORDER and PO_MOD
routines.

4. The IC routine. This routine computes the initial conditions and the matrix By as descri-
bed in section 2.4.

A.1. The PO_ORDER scheme.

function [R1C,R2C,Un,Sn,r]=PO_ORDER(u,y,dead_time,s,T);

% PO_ORDER delivers information about the order of the LTI
pA state space model and acts as a pre-processor for
A PO_MOD. The latter computes the actual

% state space quadruple estimate.

h

% model structure when dead_time=0

b x(k+1) = Ax(k) + Bu(k) + w(k)

% y(k) = Cx(k) + Du(k) + v(k)

[/ when dead_time>=1

% x(k+1) = Ax(k) + Bu(k-dead_time+1) + w(k)

4 y(k} = Cx(k) + v(k)

% where w{(k),v(k) is zero-mean white noise sequences,
% independent of the noise-free input u(k)

h

% [R1C,R2C,Un,Sn]=PO_ORDER(u,y,dead_time,s);

h

% On input,

% u,y are the input- and output data sequences, given

A as column vectors, u=[ul u2 ... um! and

% y=[yt y2 ... yL]

h  dead_time the estimated dead-time in the system

s the dimension parameter that determines the number
% of block rows in the processed Hankel matrices
oo contains the lower triangular compression from

% previously processed input-output (i/o) data records.
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% When no previous i/oc records have been processed, it

A is not specified.

¥ On return,

4 R1C,

% R2C,Un relevant data for the PO_MOD algorithm,

4 Sn singular values bearing information on the order

% of the system

hooT contains the lower triangular compression based on

% the previously and currently processed i/o data records.

% The PD_ORDER (PO_MOD) routine corresponds to the PO scheme

% derived and analyzed in VERHAEGEN: "Identification the

% deterministic part of MIMO state space models given in innovations
% form from input-output data, Automatica, 1993.

Y TESTFILE: the PO_ORDER and PO_MOD routines are
% tested in the m-file PO_TST.n

% Michel Verhaegen June 1992
% Modification June 1994
% copyright (c) 1992 Verhaegen Michel

if nargin < 5, r = []; end
[N,m]=size(u);
[N,L]=size(y);

N=N-2%s5+1;

if (dead_time==0),
¥Y=[1;Up=[1;Uf=01;
Up=u(1:N,:);
Uf=u(s+1:N+s,:);
for i=(2:8)
Up=[Up u(i:N+i-1,:)];
Uf=[Uf u(i+s:N+i+s-1,:)];
end
Y=y(1:N,:);
for i=(2:2%s5)
Y=[Y y(i:N+i-1,:)];
end,
end,
if (dead_time>=1),
N=N-dead_time+1;
Y=[1;Up=[1,;Uf=01;
Up=u(1i:N,:);
Uf=u(s+1:N+s,:);
for i=(2:8)
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Up=[Up u(i:N+i-1,:)];
Uf=[Uf u(i+s:N+i+s-1,:)];
end,
Y=y(dead_time:N+dead_time-1,:);
for 1=(2:2%s)},
Y=[Y y(dead_time+i-1:N+dead_time+i-2,:)];
end,
end,
r=triu{qr([r’;[Uf Up YJ1));r=r(1:2%(m+L)*s,1:2*{m+L)*s)’;
Ril=r(1l:m*s,1:m*s);
R21=r(m*s+1:2%m*s,1:m*s);
R22=r (mks+1:2*m*s ,Mks+1:2+m*s) ;
R31=r(2*m#s+1: (2*m+L) *s,1 :m*s5) ;
R32=r(2*m*s+1: (2¥m+L)*s,mks+1:24%m*s) ;
R41=r{{2*m+L)*s+1:2%(m+L) *s,1:m#*s);
R42=r ({2*km+L) *s+1: 2% (m+L) *s ,mks+1:2%m*s)} ;
R43=r ((2#*m+L) *s+1 : 2% (m+L) s, 2¥m*kg+1 : {2*km+L) *s) ;
[Un,Sn,Vnl=svd{[R42 R43]);
Sn = diag(Sn);
Ri1C=[R21 R22 R11];
R2C=[R31 R32 R41];
h
% END OF THE CALCULATIONS

A.2, The PO_MOD scheme.

function [4,B,C,D]=PD_MOD{RiC,R2C,Un,dead_time,n,L,m,s,stb);

% PO_MOD estimates the quadruple of system matrices
A of a LTI state space model

A using the output of the PD_DRDER routine

h

% model structure when dead_time=0

% x(k+1) = Ax(k) + Bu(k) + wik)
% y(k) = Cx(k) + Du(k) + v(k)

h when dead_time>=1

% x(k+1) = Ax(k) + Bu(k-dead_time+1) + w(k)
% vk = Cx(k) + v(k)

v where w(k),v(k) is zero-mean white noise sequences,
h independent of the noise-free input u{k)

% [A,B,C,D]=PO_MOD(R1C,R2C,Un,dead_time,n,L,m,s);

% On input,

Y RiC,
% R2C,Un data computed by the PO_DRDER routine
h dead_time the dead-time of the state space model
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4 n the order of the state space model

% L the number of outputs

4 m the number of inputs

4 s dimension parameter in PO_ORDER routine
A of block rows in the matrices RI1C, etc.
h

% On return,

% [A,B]

% [c,D] the estimated state space quadruple

h

% The PO_MOD routine corresponds to the PO scheme

% derived and analyzed in VERHAEGEN: "Identification the

% deterministic part of MIMD state space models given in innovations
% form from input-output data, Automatica, 1993.

% TESTFILE: the PD_ORDER and PO_MOD routines are
Y tested in the m-file PO_TST

h Michel Verhaegen June 1992
4 copyright (c) 1992 Verhaegen Michel

fprintf(’Calculating the A and C matrix \n’)
for i=1:s,

Un{(i-1)*L+1:ixL,:)=Un((i-1)*L+1:i*L,:)*stb~(i-1);
end
unl=Un(1:(s-1)*L,1:n);
un2=Un(L+1:s*L,1:n);
A=uni\un2;
C=uni(1:L,:);
A
fprintf(’Calculating the B and D matrix \n’)
u2=Un(:,n+1:5%L);
K = u2'*R2C/R1C;
Kexpand = K(:,1:m);
for i=(2:s8),

Kexpand = [Kexpand;K(:,(i-1)*m+1:i*m)];
end
% Kexpand is an [(Ls-n)s x m] - matrix
Q= u2’;
for i=(2:s),

Q=[0; [u2(L*(i-1)+1:L*s,:)* zeros(L*s-n, (i-1)*L)]1];
end
4 0 is an [(Ls-n)s x Ls] - matrix
if (dead_time==0),

IG = [eye(L) zeros(L,n);zeros((s-1)*L,L) unil;
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% IG is an [(L+(Ls-n) x L+n] - matrix
% solving for the pair [B,D] in total least squares sense:
[U,S,V]=svd([Q*IG Kexpand]) ;
DB = V(:,n+L+1:n+L+m);
DB = -DB{1:n+L, :)*inv(DB(n+L+1:n+L+m,:));
% or in least squares sense: DB = (Q*IG)\Kexpand;
% DB = (Q*IG)\Kexpand;
D = DB(1:L,:);
B = DB(L+1:L+n,:);
end,
if (dead_time>=1},
Q@ = Q¢:,L+1:L*s)*uni;
% solving for the matrix B in total least squares sense:
[U,S,V]=3vd{([Q Kexpand],0);
DB = V(:,n+1:n+m);
% or in least squares sense: B= Q\Kexpand;
B - DB(1:n, :)*inv{DB{n+1:n+tm,:));
D zeros(L,m);
end
4
% END OF THE CALCULATIONS

A.3. The PO_TST routine,

4

% PO_TST testfile for PO_ORDER and PO_MOD

4

a=[1 -1.5 0.7];b=[0 1 0.5];

u=randn(200,1) ;y=filter(b,a,u);

% processing the first batch of data
[R1C,R2C,Un,Sn,r1]=P0_ORDER(u,y,1,10);
u=rand(300,1);y=filter(b,a,u);

% processing the second batch of data
[RlC,RZC,Un,Sn,rQ]=P0_URDER(u,y,1,10,r1);
[A,B,C,D]=PO_MOD(R1¢,R2C,Un,1,2,1,1,10);
plot([dimpulse(4,B,C,D,1,20) dimpulse(b,a,20)])
/

pause,

b=[1 1 0.5];y=filter(b,a,u};
[RiC,RQC,Un,Sn]=PD_URDER(u,y,O,10);
[A,B,C,D]=PU_MGD(R1C,R2C,UD,O,2,1,1,10);
plot([dimpulse(4,B,C,D,1,20) dimpulse(b,a,20}])

A.4. The IC rouiine.

function [ye,x0,B]l= IC(4A,C,u,y);

h IC estimates the initial conditions and the input matrix B
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A of the quadruple of system matrices [A,B,C,D] using

A the knowledge of the pair (A,C).
%

% [ye,x0,B]1=IC(A,C,u,y);

A

% On input,
%“ (A,C) the estimated (A,C) pair of the quadruple of system matrices

hoou,y the input respectively output data of the system to be

A identified.

[/

% On return,

% ye the reconstructed output based on the estimated quadruple
/ (4,B,C,0]

o x0 the estimated initial condition

“ B the estimated B matrix

% The IC routine is described in: VERHAEGEN, VARGA and GRUEBEL: "Some
% experience with the MOESP class of subspace model identification
% methods in identifying the B0105 Helicopter.

/i Remark: No effort is made to improve the condition number of the
% constructed least-squares problem via e.g. rank revealing QR.

% Michel Verhaegen, June 1994
% copyright (c) 1994 Verhaegen Michel
size(u,2);
size(h,1);
Ext_0 = C;
for i=2:size(y,1),
Ext_0 = [Ext_0;C+A~(i-1)];

=
n

=
[}

end
Yy = [;
for i=1:m,
i,
for j=1:n,
B=zeros(n,1);B(j,1)=1;
yh = dlsim(A,B,C,zeros(size(C,1),1) ,ul:,i));
yy = [1;
for k=1:size(y,1),
vy = Lyy;yh(k,:)'];
end
YY = [YY yy]l;
end
end
yy=L1;



for i=l:size(y,1),

hoooyy = Dyysy(d, ) -ye(d, )],
vy = Lyy;y(i,:)°];

end

cond([Ext_0 YY),

X = [Ext_0 YYI\yy;

x0 = X(1:n,1);

B =[];

for i=1:m,
B = [B X(i*n+1:(i+1)*n,1)];

end

ye = dlsim(A,B,C,zeros(size(C,1),m),u,x0);

% END OF THE CALCULATIONS
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Appendix 2: The documentation of the RASP implementation of the ordinary
MoEsP algorithm,

SUBROUTINE

Ordinary MOESP identification

Procedure purpose:
This subroutine estimates from given input and cutput data sequences,
the order and the matrices of the linear time-invariant discrete-time
state space model

x{k+1) Ax(k) + Bu(k)

y (&) Cx(k) + Du(k) + e(k)

by using the ordinary MOESP algorithm.

Usage:
CALL RPIMOE( U, NSMP, M, Y, L, NOBL, TOL, WITHD, CONCT, LAST,
CTRL, N, A, B, C, D, R, IWORK, RWORK, LRWORK, * )

U : IN, DOUBLE (NSMP,M)
system input data sequence matrix U = [u_1l u_2 ... u_m].
Column j of U contains the NSMP values of the
j-th input component for consecutive time increments.
NSMP : 1IN, INTEGER
number of rows of matrices U and Y (number of samples)
for the current data batch.
For non-sequential processing of the data:
NSMP >= (M+L+1)#NOBL - 1
For sequential processing of several data batches:
NSMP >= NOBL . For LAST = .TRUE., a call with NSMP = 0 is
allowed if the upper triangular
factor of the (R factorization is already
available in the array R, and only the
system matrices are to be computed.
The total number of samples when calling with LAST = .TRUE.
should be at least (M+L+1)*NOBL - 1.

M : 1IN, INTEGER
dimension of system input vector.
Y : IN, DOUBLE (NSMP,L)
system output data sequence matrix Y = [y_1y_2 ... y_17.

Column j of Y contains the NSMP values of the
j-th output component for consecutive time increments.
L : IN, INTEGER
dimension of system output vector.
NOBL : 1IN, INTEGER
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number of block rows in the processed input and ocutput
Hankel matrices. NOBL should be chosen larger than n,
the estimated dimension of state vector.

TOL : 1IN, DOUBLE
absolute tolerance used for determining an estimate of the
system order. If TOL > 0, +the estimate is indicated by the
number of singular values greater tham or equal to TOL.
(Singular values less than TOL are considered =zero.)
If TOL = 0, the internally computed default value
TOL = NOBL*EPS*SV[1] is used, where EPS is the relative
machine precision, and SV[1] is the maximal singular value.
If TOL < O, the estimate is indicated by the index
of the singular value that has the largest legarithmic
gap to its successor. (See Method for the definition of
the singular values.)

WITHD : 1IN, LOGICAL
specifies whether or not a non-zero feedthrough matrix D
to be included in the estimated state space representation:
WITHD = .TRUE. means a possibly non-zero D matrix should be

estimated.

WITHD = .FALSE. means a zero D matrix is assumed.

CONCT : 1IN, LOGICAL
specifies whether or not the successive data batches belong to
a single experiment:

CONCT = .TRUE. means the current data batch is a continuation of
the previous data batch.
CONCT = .FALSE. means there is no connection between the current

data batch and the previous ones.
LAST : IN, LOGICAL
specifies whether or not sequential data processing is
used, and (for sequential processing) whether or not the
current data block is the last one, as follows:
LAST = .TRUE. means non-sequential processing or the last
data block in sequential processing.
LAST = .FALSE. means not the last data block in sequential
processing.
CTRL  : IN, LOGICAL
specifies whether or not the user’s confirmation of the
system order estimate is desired before the computation
of system matrices, as follows:

CTRL = .TRUE. means user’s confirmation is desired.
CTRL = .FALSE. means no confirmation is necessary.
If CTRL = .TRUE., a reverse communication routine

routine, IMCORD, is called, and, after inspecting the
singular values and system order estimate, 10, the user
may accept n or set a new value.
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IMCORD is not called by the routine if CTRL = .FALSE..
CTRL = .TRUE. should be used in extreme cases only.
N :  0UT, INTEGER
estimated order of the system.
A : 0UT, DOUBLE (NOBL-1,NOBL-1)
the N*N estimated system state matrix A.
(column dense)
B : OUT, DOUBLE (NOBL-1,M)
the N*M estimated system input matrix B.
(column dense)
C : 0OUT, DOUBLE (L,NOBL-1)
the L*N estimated system output matrix C.
(column dense)
D : OUT, DOUBLE (L,M)
the L*M estimated system fesdthrough matrix D if
WITHD = .TRUE..
D is not referenced if WITHD = .FALSE..
(column dense)
R : 1IN, OUT, DOUBLE {((MxL}*NOBL, (M+L)*NOBL)
On output, if LAST = .FALSE. then R
contains the current upper triamgular factor of the QR
factorization used to compress the data before determining
the singular values in the MOESP algorithm.
The content of R should be preserved between succesive
calls of RPIMDE with LAST = .FALSE..
On first input, the content of R is not meaningfull.
IWORK : OUT, INTEGER(NOBL-1)
working array.
RWORK : OUT, DOUBLE {LRWORK)
working array.
RWORK(1) contains the optimal suggested value of LRWORK;
RWORK(2) contains an estimate of the reciprocal condition
number for the final linear algebraic system solved;
RWORK(3:2+L*NOBL) contain the singular values used for
determining the system order.
On return with error number 4, RWORK(1) contains the
minimum necessary value of LRWORK.
LRWORK : IN, INTEGER
dimension of working array RWORK.
The value of LRWORK should be at least LRWMIN, where
LRWMIN = max ( 2#%(M+L)*NOBL,
2+L*NOBL + max( 4*L*NOBL, 5*L*#NOBL-4 ),
2+L*NOBL +
max( (L*¥NOBL-1)*NOBL, L+NOBL-1+M )*(L+NOBL-1+M) +
max( (NOBL-1)*((NOBL-1)*L+2),
(L*NOBL-1)*MxNOBL, (L*NOBL-1)*(L*NOBL-L),
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4% (L+NOBL~-1+M), 5*(L+NOBL-1+M)-4 ) )
This is an overestimate computed using the largest and
smallest values for n, namely NOBL-1 and 1, respectively
(for positive and negative terms, respectively).
For good performance, LRWORK should be large.
* : RETURN 1, target label in case of error (e.g. *1111)

File input/output:
none

Method:
Let us denote m = M, 1 =L, t = NSPM, s = NOBL.
For non-sequential data acquisition, the t x (m+l)s matrix

[ o Y? B
1,s,t i,s,t

is constructed, where U and Y are Hankel matrices
1,s,t i,8,t

defined in terms of the input and output data /1/.

A QR factorization is used to compress the data, and then a

singular value decomposition (SVD) of the principal submatrix

R_22 := R(ms+1:(m+l)s,ms+1:(m+1)s} of the upper triangular factor

R reveals the order n of the system as the number of "non-zero"

singular values. System matrices are finally computed from the

right singular vectors of R_22 and the submatrices R_11 and

R_12 of R.

For sequential data acquisition, the QR decomposition is done
sequentially, by updating the upper triangular factor R. When
all data have been compressed, the system order and system
matrices are computed as in the previous case.

Literature

/1/ Verhaegen M., and P. Dewilde
Subspace Model Identification. Part 1: The output-error state-
space model identification class of algorithms.
Int. J. Control, 58, pp. 1187-1210, 1992.

/2/ Verhaegen M.
Subspace Model Identification. Part 3: Analysis of the
ordinary output-error state-space model identification
algorithm.
Int. J. Contrel, 58, pp. 555-586, 18993,

30



Remarks:
~ The NSMP argument may vary from a cycle to another in sequential
data acquisition (LAST=.FALSE.), but NOBL, M, and L should be
kept constant. For efficiency, it is advisable to use NSMP as
large as possible. NSMP cannot exceed its initial value, NSMPIN.
- When 100 cycles of sequential data acquisition are completed with
LAST = .FALSE., a warning is issued, to prevent for an infinite loop.

Copyright:
1994 - DLR Institut fuer Robotik und Systemdymamik

Life cycls:
1994 MARCH V. Sima, Institut fuer Informatik, Bukarest: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Example:
Consider the discrete-time system (A,B,C,D) with the following
matrices:
A=(15 -0.7) B=(1) c=(1 0.5) D = 0
(1.0 0.0 ) (0

whose output response to random input signals and zero initial state
was determined by using the subroutine RPIMIU. The following sequence
of statements can be used to estimate the order and the matrices of
the original system

DATA  ISEED/ 1, 2, 3, 6/

NSMP = 120

NOBL = 10

M =1

L =1

TOL = -1.0D0O

WITHD = .FALSE.

LAST = .TRUE.

CONCT = .FALSE.

CTRL = .FALSE.

LRWORK = 8100
C Compute the output response for uniformly distributed
C input sequence.

(1) = 10.0D0

X(2) = 0.0D0

CALL RPIMIU( NSMP, 2, M, L, 0, O, 4, B, E, C, D, F, X, U,

* W, V, ISEED, Y, RWORK, LRWORK, WITHD, ’G’,
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* 'G', 'R’, 'R’, ’R’, 1, *1111 )

C Perform the system identification.
CALL RPIMOE( U, NSMP, M, Y, L, NOBL, TQOL, WITHD, CONCT, LAST,
* CTRL, N, A, B, C, D, R, IWORK, RWORK, LRWODRK,
* *1111 3

The estimated system matrices are:

A= ( .7831 .5808 ) B = ( -3.5468 ) C = ( -.5749 .4382 )
( -.2472 .7169 ) { -2.3707 )

which coincide with the matrices obtained by applying a similarity
transformation to the original system.

sk ok koK
_RASPMODR_CONTROL _IDENT_RPIMDE_MSGE

RPIMOE

_1_

Invalid parameter value on entry.

-2=

Singular value decomposition failed.

-3-

L singular upper triangular matrix was found.

-4 -

Not enough working storage. It should be at least //LENG//.
sk ok KoK
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Appendix 3: Overview of the implementations within ANDECS,.

On the basis of the RASP subroutine RPIMOE, we implemented an ANDECS module SSMOE
which provides the basic functionalities for the subspace identification approach. Given the
input and output trajectories U and Y, this module computes the order and the matrices of the
linear time-invariant discrete-time state space model

Tp = Azp + Bug
yr = Czp + Dug +ex

by using the ordinary MOESP algorithm [Verhaegen and Dewilde, 1992a),

The following subcommands, implemented to support the user’s dialogue in the SSMOE module,
are generic for all similar modules for subspace identification:

PARAM - set the parameters for the system identification
PLIST -~ specify the listing options
POUT - specify the output options

NEWBATCH - add a new data batch to the previously processed data
COMPUTE - compute the system matrices
END - terminate module

The following parameters can be specified by using the PARAM subcommand:

BLOCKS - the number of block rows in the input and output Hankel matrices
Default value: 10

ORDER - the order of system
Default value: O (that means, the order is interactively
determined)

D - specifies whether the feedthrough matrix D in the
state=space model is zero or not

TOLSVD - tolerance on singular values to determine an estimate of
system order
Default value: TOLSVD = 0.0DO (an internally computed value is used)
IF TOLSVD < 0, the estimate is computed by searching for the
maximum gap between two successive order detection singular values

Optionally the order detection singular can be listed by using the PLIST subcommand. By
selecting appropriate options of the subcommand POUT, these singular values can be optionally
stored together with the resulting system matrices.

The subcommand NEWBATCH is necessary if several data batches (U;,Y;), ¢ = 1: IV resulted
from different experiments are to be used in a single processing of data.
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