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LSRED - Linear Systems REDuction

Chapter purpose:
This chapter decribes monitormodules for order reduction of linear
time-invariant systems. Several basic modules can be used directly
to perform model reduction of stable systems and can serve
occasionally as minimal realization procedures too.
Other modules, used in conjunction with the basic modules,
represent tools which aid in performing more complex model reductions
as for instance the reduction of unstable systems or
the frequency-weighted model reduction.

I. Reduction of Stable Systems

The basic model reduction modules (BTA, SPA, HNA, BST) are based on
numerically reliable accuracy enhancing algorithms for reduction of
stable systems and possess the following special features:

1. They employ exclusively square-root information (Cholesky factors
instead gramians) to compute the reduced order models and therefore
have better accuracy than methods working with full gramians.

2. They compute the reduced models by using projection formulas and
thus are applicable regardless the original system is minimal or
not. Excepting the module HNA, the computation of projections in
all other modules can avoid systems balancing. These latter methods
are called square-root balancing-free methods and have better
accuracy for highly unbalanced systems than the pure square-root
(balancing based) methods.

3. They can be used to reduce both continuous-time and discrete-time
systems.

4. They have an H-infinity approximation error bound. Either the
infinity norm of the absolute error or the relative error of the
reduced order model is bounded by a precomputable positive real
number for all frequency.

Additive Model Reduction Methods

If G and G, are the transfer-function matrices of the original and
reduced order systems, respectively, then the additive methods try
to compute (', such that the norm of the additive modelling error

A, = G-G,

is minimized. Three basic methods are available to do additive error
model reduction:

- Balance & Truncate Approximation (B & T) /1/;

- Singular Perturbation Approximation (SPA) /2/;

- Optimal Hankel-Norm Approximation (HNA) /3/.

Each of the above methods possess the same infinity-norm error bounds
for an r-th order reduced order model (4, of an n-th order system (5:
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where o;, 1 = 1, 2, ..., n are the Hankel-singular values of the
system. The Hankel-singular values are the positive square-roots
of the eigenvalues of the product of systems gramians.

The following modules are available for additive model reduction:

BTA computes a reduced order model by using the square-root or
square-root balancing-free version of the B & T method /4,5/.
This module can also be used for computing balanced minimal
state-space realizations of continuous-time or discrete-time
systems.

SPA computes a reduced order model by using the square-root or
square-root balancing-free version of the SPA method /6/.

HNA computes a reduced order model by using the optimal HNA
method of /3/ based on the square-root balancing method.

Relative Model Reduction Method

If G and G, are the transfer-function matrices of the original and of
the reduced order systems, respectively, then the relative methods
try to compute (7, such that the norm of the relative modelling error
A, defined by the expression

Gr == G(I — AT’)

is minimized. The implemented method is the Balanced Stochastic
Truncation (BST) method /7/. This method possesses the following
bound for the relative error for an r-th order reduced order model
G, of an n-th order system G:
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where o;, = = 1, 2, ..., n are the Hankel-singular values of an

all-pass phase matrix.
The following module is available for relative model reduction:

BST computes a reduced order model by using the square-root or
square-root balancing-free version of the BST method /8,9/.
This module can also be used for computing stochastically
balanced minimal state-space realizations of continuous-time
or discrete-time systems.



In the BST module, a parameter a can be used as a weight

between the absolute and relative errors. For @ > 0, the BST
method is performed on a modified system with the transfer-function
matrix [ «I]. A zero value of « means a pure relative error
minimization. Large positive values of a produce approximations
which minimize the absolute approximation error. When o tends to
infinite, the BST method produces identical results with the B & T
method.

Auxiliary tools

Two modules are provided to be used in conjunction with the model
reduction subroutines for stable systems:

SPF computes a reduced order model by using state residualization
(singular perturbation) formulas. The reduced model has the
same steady-state gain as the original system.

This module can be also used to evaluate the steady-state
gain of a stable system.

BIL performs a multivariable two-parameters bilinear transform.
This module can be used for continuocus-to-discrete or
discrete-to-continuous mapping of linear systems.

II. Order Reduction of Unstable Systems

Two alternative basic approaches can be used for reducing
unstable models:

Reduction of Stable Projections

If (G is the transfer-function matrix of a n-th order (not
necessarily stable) system, then the following procedure can be used
to reduce the order of G:

1) By using the ASD module decompose additively G as

G = G + G,

such that (; has only stable poles and (G, has only unstable
poles.

2) Determine (4,, a reduced order approximation of the stable
part (7, by using any of modules BTA, SPA, HNA or BST.

3) By using the PARALLEL module, assemble the reduced model (G, as

Gr = Glr + G2



Reduction of Stable Coprime Factors /10,11/

The following procedure can be used to compute an r-th order
approximation (G, of an n-th order (mot necessarily stable) system G':

1) By using one of modules LCF or LCFID, compute a left coprime
factorization of the transfer-function matrix (G in the form

G = R'Q,

wvhere R and () are stable transfer-function matrices of degree n.

2) Approximate the transfer-function matrix [(} R] of degree n with
[@. R.] of degree r by using a model reduction method for stable
systems, by using by using any of modules BTA, SPA, HNA or BST.

3) By using the module LCF2LS, form the r-th order approximation of
G as

Gr = R_l Qr-

r

A similar procedure can be given for a right coprime factorization of
G in the form

G = QR

by using the modules RCF or RCFID, and RCF2LS.
III. Frequency-Weighted Order Reduction

If G is a given p x m stable transfer-function matrix of degree m,

and W; and W; are p x p and m x m stable, invertible and minimum-phase
transfer-function matrices of degrees m; and n;, respectively, then

the following procedure can be used to compute an r-th order
approximation G, of (G by employing the frequency-weighting approach
proposed in /12/:

1) By using the module PFWMR, compute (G;, the n~th order stable
projection of (W) 'G(Wy)™!.

2) Determine Gy,, an r-th degree approximation of (/; by using
any of modules BTA, SPA, HNA or BST.

3) By using the module PFWMR, compute (. as the r-th order stable
projection of W[ (G, W .

In the above expressions W* represents either W7 (—s) for a
continuous-time system or WZ(1/z) for a discrete-time system.
The stable projections at step 2 and 3 are computed by using the



explicit formulas derived in /13/.

If the optimal Hankel-norm approximation method (HNA module) is
used at step 2 of the above procedure the optimal weighted
approximation error satisfies

[ (Wl*)_l(G—Gr)(Wf)_luH = Or41 ,

where o,y is the (r + 1)-th Hankel singular values of (i, the
transfer—-function matrix computed at step 1 of the above procedure,
and [|G||g is the Hankel-norm of G.
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MONITORMODULE
BTA - Balanced truncation approximation of stable linear systems

Monitormodule purpose:
Given a linear state-space model (4,B,C,D) of order n,
the balanced truncation approximation (BTA) method is used
to compute a reduced order model (Ar,Br,Cr,D) of order r
by using either:
(1) the square-root BTA methoed /1/, or
(2) the square-root balancing-free BTA method /2/.
The module can be also used for computing balanced minimal order
state-space realizations.

The Hankel singular values and the error bound for the maximum
approximation error can be optionally displayed.

Optional outputs on database are:
- reduced order system (def. output)
- Hankel singular values (def. no output)
- Error bound for the maximum approximation error (def. no output)

The Hankel singular values are the square-roots of eigenvalues of the
product of controllability and observability gramians. The largest
singular value is the Hankel-norm of the system transfer-function
matrix.

If G and Gr are the transfer-function matrices of the systems
(A,B,C,D) and (Ar,Br,Cr,D), respectively, then the approximation error
G-Gr satisfies the inequalities

HSV(r+1) <= INFNORM(G-Gr) <= 2*( HSV(r+1) + ... + HSV(r) ),
vhere HSV(i), i = 1, ..., n are the Hankel-singular values of the n-th
order system (A,B,C,D) and INFNORM(G) is the infinity-norm of G.
The right-hand side above is the optionally computed error bound for

the maximum approximation error.

Optioms:
Next case

Database Structure:

input:

linear system, state space

ocutput:

<Result S-Name>
LS linear system, state space
-MAXERR matrix for error bound
_HSV matrix for Hankel singular values,

Dialog:



------ requested input
LS RS-NAME:
-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select outputs, default is YM
------ end

1. Level commands:

BTA >C>
PARAM : set parameter values for model reduction
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database

COMPUTE : perform model reduction
If one of outputing parameters is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear system appended by _BTA.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
' structure are deleted.
If the resulting reduced system is stored:
—————— requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

BTA_PARAM >P>
BALANCE : 0/1 (INTEGER def: 0)
0 : use the square-root balancing-free BTA method
1 : use the square-root BTA method
ORDER  : desired order of reduced model (INTEGER def: 0)
0 : order chosen in accordance with the value of TOLHSV

10



TOLHSV

k:

desired order of the reduced model (k >= 0)

: tolerance on Hankel singular values (DOUBLE def: 0.0)
If ORDER = 0O and TOLHSV > 0, then the order of the computed
reduced system is equal to the number of Hankel-singular

values less than or equal to TOLHSV.

When TOLHSV .LE. 0, an internally computed default value
TOLHSV = n*EPS*HNORM(A,B,C) is used, where n is the order
of the original system, EPS is the machine precision and

HNORM(A,B,C) is the Hankel-norm of the original model
(largest Hankel singular value)

BTA_PLIST >P>

HSY

MAXERR

BTA_PQUT >P>
REDSYS

HSV

MAXERR

. 0/1

0
1:

: 0/1

0 :
1

(INTEGER def: 0)

: do not list the Hankel singular values

list the Hankel singular values
(INTEGER def: 0)
do not list the maximum approximation error

: 1list the maximum approximation error

(INTEGER def: 1)

: do not store the resulting reduced order system
: store the resulting reduced order system

(INTEGER def: 0)

: do not store the Hankel singular values
: store the Hankel singular values

(INTEGER def: 0)

: do not store the maximum approximation error
: store the maximum approximation error

Monitormodule initialization:

module name

module group
version numb
FORTRAN name

File input/output:

none

Method:
Literature

er

: BTA
: LSRED
: 1.0
: PEBTA

/1/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal

state-space systems, Int. J. Control, Vol. 46,
pp. 1319-1330, 1987.

/2/ Varga A.

Efficient minimal realization procedure based on balancing
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 7-10, 1991,
Eds. A. El Moudui, P. Borme, 5.G. Tzafestas, Vol. 2, pp. 42-46.

Remarks:



- The reduced system is stable and minimal if HSV(r) > HSV(r+1),
where r is the order of the reduced system.

- The reduced system is not balanced if BALANCE is set to 0.

- A balanced minimal realization can be computed by setting
BALANCE = 1, ORDER = 0 and TOLHSV = 0.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time system (A,B,C) with the following matrices:

( -.04165 0 4.92 -4.92 0 0 0)

( -5.21 -12.5 0 0 0 0 0 )

( 0 3.33 -3.33 0 0 0 0)
A= ( .545 0 0 0 -.545 0 0 )

( 0 0 0 4.92 -.04165 0 4.92)

( 0 0 0 0 -5.21 -12.5 0)

( 0 0 0 0 0 3.33 -3.33)

( 0 0)

( 12.5 0)

( 0 0 ) (10 0 0 0 0 0)
B = ( 0 0 ) cC=¢(0 0 0 1 0 0 0)

( 0 0) (0 0 0 0 1 0 0)

( 0 12.5)

( 0 0 )

the following balanced state-space realization can be computed by
setting: BALANCE = 1, ORDER = 0, TOLHSY = O:

( -.3967 3.0279 0 0 .9557 .4547 0 )
( -3.0871 -.2524 0 0 -.2601 -.3651 0)
( 0 0 -.5849 -2.2166 0 0 -.6258 )
Ar = ( 0 0 2.2166 -1.8927 0 0 -1.8629 )
( -.9800 -.6079 0 0 -1.7248 -1.9937 0)
( .4594  .4108 0 0 2.1655 -13.4977 o)
( 0 0 -.6258 1.8629 0 0 -13.3940 )
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( -.9987 .9987 )
( -.7254 .7254 )
( -1.0591 -1.0591)
Br = ( 1.2046 1.2046 )
( -.9716 .9716 )
( .5840 -.5840 )
( -.5738 -.5738 )
( -.9922 .6335 -1.0591 -1.2046 .8978 .5838 -.5738 )

Cr = ( .1612 .4997 0 0 -.5253 .(0224 0)
( .9922 -.6335 -1.0591 -1.2046 -.8978 -.5838 -.5738 )

The computed Hankel singular values are:
2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246

The following reduced order system is obtained by setting
BALANCE = 0, ORDER = 0, TOLHSV = 0.1:

( 1.3451 -5.0399 0 0 -4.5315)
( 4.0214 -3.6604 0 0 -.9056 )
At = ( 0 0 .5124 -1.7910 0)
( 0 0 4.2167 =-2.9900 0)
( -1.2402 1.6416 0 0 -.0586)
( -.3857 .3857 )
( 3.1753 -3.1753 )
Br = ( .7447 .7447 )
( -3.6872 -3.6872 )
( -1.8197 1.8197 )
( -.6704 -.1828 .B6582 .2222 .0104 )
Cr = ( .1089 -.4867 0 0 -.8651)

( .6704 .1828 .6582 °  .2222 -.0104 )



MONITORMODULE
SPA - Singular perturbation approximation of stable linear systems

Monitormodule purpose:
Given a linear state-space model (A,B,C,D) of order n, the square-root
balancing-free singular perturbation approximation (SPA) method
is used to compute a reduced order model (Ar,Br,Cr,Dr) of order r /1/.
The module can be also used to compute reduced order balanced
state-space realizatiomns.

The Hankel singular values and the error bound for the maximum
approximation error can be optionally displayed.

Optional outputs on database are:
- reduced order system (def. output)
- Hankel singular values (def. no output)
- Error bound for the maximum approximation error (def. no output)

The Hankel singular values are the square-roots of the eigenvalues of
product of controllability and observability gramians. The largest
singular value is the Hankel-norm of the system transfer-function
matrix.

If G and Gr are the transfer-function matrices of the systems
(A,B,C,D) and (Ar,Br,Cr,D), respectively, then the approximation error
G-Gr satisfies the inequalities

HSV(r+1) <= INFNORM(G-Gr) <= 2*( HSV(r+i) + ... + HSV(n) ),
where H5V(i), i = 1, ..., n are the Hankel-singular values of the
system (4,B,C,D) and INFNORM(G) is the infinity-norm of G.
The right-hand side above is the optionally computed error bound for

the maximum approximation error.

Options:
Next case

Database Structure:

input:

linear system, state space

output:

<Result S-Name>
_LS linear system, state space
-MAXERR matrix for error bound
_HSV matrix for Hankel singular values,

Dialog

------ requested input
LS RS-NAME:
~-> linear system name
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or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN ?
-> select inputs, default is U
OUTPUT SIGNALS ~ YM,YA,ALLOUT ?
-> select outputs, default is YM
------ end

1. Level commands:
SPA >G>
PARAM : set parameter values for model reduction
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database
COMPUTE : perform model reduction
If one of outputing parameters is set then:
—————— requested input
<Result S-NAME> ( <Default S-NAME> ):
-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.
The <Default S-name> is the S-name of the input
linear system appended by _SPA.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the resulting reduced system is stored:
—————— requested input
Text for dataobject LS:
—————— end
------ end
END : terminate module

2. Level Commands:

SPA_PARAM >P>

BALANCE : 0/1 (INTEGER def: 0)
0 : use the square-root balancing-free SPA method
1 : use the square-root SPA method

ORDER : desired order of reduced model (INTEGER def: Q)
0 : order chosen in accordance with the value of TOLHSV
r : desired order of the reduced model (r >= 0)

TOLHSV : tolerance on Hankel singular values (DOQUBLE def: 0.0)
If ORDER = 0 and TOLHSV > 0, then the order of the computed



MRTOL

reduced system is equal to the number of Hankel-singular
values less than or equal to TOLHSV.

When TCLHSV .LE. O, an internally computed default value
TOLHSV = n*EPS*HNORM(A,B,C) is used, where EPS is the
machine precision and HNORM(A,B,C) is the Hankel-norm of
the original model (largest Hankel singular value).

: tolerance for zerc Hankel singular

values (DOUBLE def: 0.0)
This tolerance is used to compute the order of the
minimal realization of the original system.

When MRTOL .LE. 0, an internally computed default value
MRTOL = n*EPS+HNORM(A,B,C) is used.

SPA_PLIST >P>

HSY

MAXERR

SPA_POUT >P>

: 0/1 (INTEGER def: 0)

0 : do not list the Hankel singular values
1 : list the Hankel singular values

: 0/1 (INTEGER def: 0)

0 : do not list the maximum approximation error
1 : list the maximum approximation error

REDSYS : 0/1 (INTEGER def: 1)
0 : do not store the resulting reduced order system
1 : store the resulting reduced order system
HSV : 0/1 (INTEGER def: 0)
0 : do not store the Hankel singular values
1 : store the Hankel singular values
MAXERR : 0/1 (INTEGER def: 0)
0 : do not list the maximum approximation error
1 : list the maximum approximation error
Monitormodule initialization:
module name : SPA
module group : LSRED
version number : 1.0
FORTRAN name : PESPA
File input/output:
none
Method:
Literature
/1/ Varga A.

Balancing-free square-root algorithm for computing singular

perturbat
Dec. 11-1

Remarks:

- The reduce
- The comput

ion approximations. Proc. 30-th IEEE CDC, Brighton,
3, 1991, Vol. 2, pp. 1062-1065.

d model is stable and minimal if HSV(r) > HSV(r+1).
ed 5PA preserves the DC-gain of the original system.

16



- The reduced model is not balanced if BALANCE = 0. Balanced reduced
models can be computed by setting BALANCE = 1.

- If TOLHSV = MRTOL > 0, then the performed reduction is equivalent
to the square-root B & T method, if BALANCE = 1, or to the
balancing-free square root B & T method, if BALANCE = 0.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time system example used by the BTA module,
the following fifth order reduced model is obtained by setting
BALANCE = 0, ORDER = 0, TOLHSV = 0.1, MRTOL = 1.E-14:

( 1.3960 -5.1248 0- 0 -4.4331)
( 4.1411 -3.8605 0 0 ~-.6738)
Ar = ( 0 0 .5847 -1.9230 0)
( 0 0 4.3823 -3.2922 0)
( -1.3261 1.7851 0 0 -.2249 )
( -.2901 .2901 )
( 3.4004 -3.4004)
Br = ( .6379 .6379 )
( -3.9315 -3.9315 )
( -1.9813 1.9813 )
( -.6570 -.2053 .6416 .2526 .0364 )
Cr = ( .1094 -.4875 0 0 -.8641)
( .6570 .2053 .6416 .2526  -.0364 )
( .0498 -.0007 )
Dr = ( .0010 ~-.0010 )
( -.0007 .0498 )

The computed Hankel singular values are:

2.5138 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246



MONITORMODULE
HNA - Hankel-norm approximation of stable linear systems

Monitormodule purpose:
Given an original stable state-space model (4,B,C,D) of order n,
the Hankel-norm approximation (HNA) method is used to compute a
reduced order model (Ar,Br,Cr,Dr) of order r by using the optimal
Hankel-norm approximation method /1/, in cojunction with square-root
balancing /2/.

Optionally displayed results:
- Hankel singular values (def. display)

- Error bound for the maximum approximation error (def. display)

Optional outputs on database are:

- reduced order system (def. output)
- Hankel singular values (def. no output)
- Error bound for the maximum approximation error (def. no output)

The Hankel singular values are the square-roots of the eigenvalues of
product of controllability and observability gramians. The largest
singular value is the Hankel-norm of the system transfer-function
matrix.

If G and Gr are the transfer-function matrices of the systems
(4,B,C,D) and (Ar,Br,Cr,Dr), respectively, then the approximation
error G-Gr satisfies the inequalities

HSV(r+1) <= INFNORM(G-Gr) <= 2*( HSV(r+1) + ... + HSV(n) ),

vhere HsV(i), i = 1, ..., n are the Hankel-singular values of the
system (A,B,C,D) and INFNORM(G) is the infinity-norm of G.

Moreover, the computed reduced model is optimal for the Hankel-norm,
that is, the approximation error G-Gr satisfies HNORM(G-Gr) = HSV(r+1i),
where HNORM(G) is the Hankel-norm of G.

The right-hand side above is the optionally computed error bound for
the maximum approximation error.

Options:
Next case

Database Structure:

lnput:

linear system, state space

output:

<Result S-Name>
-LS linear system, state space
MAXERR matrix for error bound

_Hsv matrix for Hankel singular values,



------ requested input
LS RS-NAME:
=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN ?
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT ?
-> select outputs, default is YM
------ end

1. Level commands:

HNA >C> i
PARAM  : set parameter values for model reduction
PLIST : set parameter values for listing of results
POUT : set parameter values for output om database

COMPUTE : perform model reduction
If one of outputing parameters is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear system appended by _HNA.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
' can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the resulting reduced system is stored:
------ requested input
Text for dataobject LS:

------ end
------ end
END : terminate module
2. Level Commands:
HNA_PARAM >P>
ORDER : desired order of reduced model (INTEGER def: 0)
-1 : order chosen in accordance with the value of TOLHSV
r : desired order of the reduced model (r >= Q).

The resulting order is max(0,r-k+1), where k is the
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multiplicity {r+1)-th Hankel singular value.

TOLHSV : tolerance on Hankel singular values (DOUBLE def: 0.0)
If ORDER = 0 and TOLHSV > 0, then the order of the
computed reduced system is equal to the number of
Hankel-singular values less than or equal to TOLHSV.
When TOLHSV .LE. 0, an internally computed default value
TOLHSV = SQRT{(n*EPS)*HNORM(A,B,C) is used, where EPS is
the machine precision and HNORM(A,B,C) is the Hankel-norm
of the original model (largest Hankel singular value).

MRTOL : tolerance for zero Hankel singular
values (DOUBLE def: 0.0)
This tolerance is used to compute the order of the
minimal realization of the original system.

When MRTOL .LE. 0, an internally computed default value
MRTOL = n+EPS*HNORM(A,B,C) is used.

HNA_PLIST >P>
HSV : 0/1 (INTEGER def: 0)
0 : do not list the Hankel singular values
1 : list the Hankel singular values
MAXERR : 0/1 (INTEGER def: 0)
0 : do not list the maximum approximation error
1 : list the maximum approximation error

HNA_POUT >P>

REDSYS : 0/1 (INTEGER def: 1)
0 : do not store the resulting reduced order system
1 : store the resulting reduced order system

HSv : 0/1 (INTEGER def: 0)
0 : do not store the Hankel singular values
1 : store the Hankel singular values

MAXERR : 0/1 (INTEGER def: 0)
0 : do not list the maximum approximation error
1 : list the maximum approximation error

Monitormodule initialization:

module name : HNA
module group : LSRED
version number : 1.0
FORTRAN name : PEHNA

File input/output:
none

Method:
Literature
/1/ Glover, K.
All optimal Hankel norm approximation of linear multivariable
systems and their L-infinity error bounds,
Int. J. Control, Vol. 36, pp. 1145-1193, 1984.



/2/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems,
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

Remarks:
- The resulting reduced model (Ar,Br,Cr,Dr) is stable and minimal
if HSV(r) > HSV(r+1).

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Exanple:
Given the continuous-time system example used by the BTA module,
the following fifth order reduced model is obtained by setting
ORDER = -1, TOLHSV = 0.1, MRTOL = 1.E-14:

( -.5038 -1.8355 -2.6289 0 o)
( 5.3070 -.5038 3.2250 0 0)
Ar = ( 0 0 -1.5171 - 0 0)
( 0 0 0 -1.2925 9.0718 )
( 0 0 0 -.5047 -1.2925)
( -.3614 .3614 )
( 1.5343 -1.5343 )
Br = ( -1.1096 1.1096 )
( -4.5325 -4.5325 )
( .7396 .7396 )
( -.3055 -1.8971 -2.1124 .4421 2.1023 )
Cr = ( 1.1112 .0394 -.3119 0 0)
( .3055 1.8971 2.1124 .4421 2.1023 )
( .0126 -.0126)
Dr = ( .0005 -.0005 )
( -.0126 0126 )

The computed Hankel singular values are:

2.513% 2.0846 1.9178 0.7666 0.5473 0.0253 0.0248



MONITORMODULE
BST - Balanced stochastic truncation of stable linear systems

Monitormodule purpose:
Given a linear stable state-space model (A,B,C,D) of order n,
the balanced stochastic truncation (BST) method is used
to compute a reduced order model (Ar,Br,Cr,Dr) of order r
by using either:
(1) the square-root BST method /1/, or
(2) the square-root balancing-free BST method /2/.
The module can be also used for computing stochastically balanced
minimal state-space realizations of continuous-time or discrete-
time systems.

For the applicability of the BST method, the given system must have
the number of systems outputs less than or equal to the number of
systems inputs and the transfer-function matrix of the system G,

nust have no zeros on the imaginary axis for a continuous-time system
or on the unit circle for a discrete-time system.

In particular, the feedthrough matrix D must have maximal row rank.
If D has maximal column rank, the BST method can be employed

on the dual system with the transfer-function matrix G’.

A parameter ALPHA can be used as a weight between the absolute and
relative errors. For ALPHA <= 0, the BST method is performed on the
original system. If ALPHA > 0, the BST method is performed on a
modified system with the transfer-function matrix ( G ALPHA#*I ).
This is the recommended approach to be used when the conditions on
the number inputs and outputs and/or on the rank of D are not
fulfilled by a given system.

Optionally displayed results:
~ phase Hankel singular values ' (def. display)

- Error bound for the maximum relative error (def. display)

Opticnal outputs on database are:

- reduced order system (def. output)
- phase Hankel singular values (def. no output)
- Error bound for the maximum relative error (def. no output)

Let G be the transfer-function matrix of the system (4,B,C,D) and
let W be the square minimal-phase stable spectral factor
of G*CONJ(G) satisfying

CONJ(W)*W = G*CONJ(G),

where CONJ(G(s)) = G’(-s) for a continuous-time system and
CONJ(G(z)) = G’(1/z) for a discrete-time system. The system with
the all-pass transfer-function matrix PH = INV(CONJ(W))*G is called
the phase-system associated with G.



The phase Hankel singular values are the square-roots of the
eigenvalues of the product of controllability and observability
gramians of the stable projection of the phase system PH. The
largest singular value is always less than or equal to 1.

If Gr is the transfer-function matrix of the reduced system
(Ar,Br,Cr,Dr), then the relative approximation error satisfies
the inequalities '
n
HSV(r+1) <= INFNORM(relerr) <= 2 * Sum HSV(i)/(1-HSV(i))
i=r+i
where INFNORM(G) is the infinity-norm of G. The relative error
relerr is defined by the expression

Gr = G*(I-relerr).

The right-hand side above is the optionally computed error bound for
the maximum relative approximation error.

Options:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
_LS linear system, state space
_MAXRERR matrix for relative error bound
_PH3V matrix for phase Hankel singular values,
Dialog
------ requested input
LS RS-NAME:

=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> gelect inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select outputs, default is YM
------ end

i. Level commands:

BST >G>
PARAM  : set parameter values for model reduction
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database

COMPUTE : perform model reduction
If one of outputing parameters is set then:
—————— requested input
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END

<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Dtherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear systeﬁ appended by _BST.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result 5-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S5-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the resulting reduced system is stored:
------ requested input
Text for datacbject LS:
------ end
------ end

: terminate module

2. Level Commands:

BST_PARAM >P>

BALANCE :

ORDER

TOLPHSV :

ALPHA

0/1 (INTEGER def: 0)
0 : use the square-root balancing-free BST method
1 : use the square-root BST method

: desired order of reduced model (INTEGER def: 0)

0 : order chosen in accordance with the value of TOLPHSV
k : desired order of the reduced model (k >= 0)

tolerance on Hankel singular values (DOUBLE def: 0.0)

If ORDER = 0 and TOLPHSV > 0, then the order of the
computed reduced system is equal to the number of phase
Hankel singular values less than or equal to TOLPHSV.
When TOLPHSV .LE. 0, an internally computed default value
TOLPHSV = n*EPS is used, where EPS is the machine
precision.

: absolute/relative error weight (DOUBLE def: 0.0)

ALPHA > 0 specifies the absolute/relative error weighting
parameter. A large positive value of ALPHA favours the
minimization of the absolute approximation error, while a
small value of ALPHA is appropriate for the minimization
of the relative error.

ALPHA <= 0 means pure relative error method and can be
used only i1f D has full row rank.

BST_PLIST >P>

PHSV

: 0/1 (INTEGER def: 1)
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BST_POUT >P>
REDSYS : 0/1

PHSV 1 0/1

MAXRERR : 0/1

: do mot list the phase Hankel singular values

list the phase Hankel singular values
(INTEGER def: 1)

: do not list the maximum relative approximation error
: list the maximum relative approximation error

(INTEGER def: 1)

: do not store the resulting reduced order system
: store the resulting reduced order system

(INTEGER def: 0)

: do not store the phase Hankel singular values

store the phase Hankel singular values
(INTEGER def: 0)

: do not list the maximum relative approximation error
: list the maximum relative approximation error

Monitormodule initialization:

module name
module group
version number
FORTRAN name

File input/output:
none

Method:
Literature
/1/ Safonov M.G.

: BST
: LSRED
: 1.0
: PEBST

and Chiang R.Y.

Model reduction for robust control: a Schur relative

error method,

Int. J. Adapt. Contr. & Sign. Proc., vol.2, pp. 259-272, 1988.

/2/ Varga A. and

Fasol K.H.

A New S5quare-Root Balancing-Free Stochastic Truncation Mcdel
Reduction Algorithm,
Prepr. 12th IFAC World Congress, Sydney, vol.7, pp. 153-156, 1993.

Remarks:

- The reduced model is stable and minimal if HSV(r) > HSV(r+1).
- The reduced model is not stochastically balanced if BALANCE

is set to 0.

-~ A stochastically balanced minimal realization can be computed
by setting BALANCE = 1, ORDER = 0 and TOLPHSV = 0.

Life cycle:

1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
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RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time system used by the BTA module, the matrices
corresponding to the stochastically balanced system (G I) computed
by setting BALANCE = 1, ORDER = 0, TOLPHSV = 0, ALPHA = 1 are:

( -.1996 0 -2.8560 0 1.4913 -.5003 0)
( 0 -.2774 0 -2.3059 0 0 -.5931)
( 2.9100 0 -.1252 0 -.0070 -.3191 0)
Ar = ( 0 2.3059 0 -2.0184 0 0 -2.3648 )
( -1.5039 0 .6922 0 -1.9158 2.4031 0)
( -.5023 0 .4349 0 -2.5019 -13.6311 0)
( 0 -.5931 0 2.3648 0 0 -13.5759 )
( .4191 -.4191)
( -.4857 ~-.4857 )
( -.3173 .3173 )
Br = ( .9524 .9524 )
( .8724 -.8724)
( .5402 -.5402)
( -.5320 -.5320)
( 1.8572 -1.7570 .6352 -1.1934 -.9958 .5404 -.5323)
Cr = ( -.1816 0 .8944 0 .4040 .0137 0 )
( -1.8572 -1.7570 -.6352 -1.1934 .9958 -.5404 -.5323 )

The computed singular values are:
.8803 .8506 .8038 .4494 .3973 .0214 .0209

The following reduced order system is obtained by setting
BALANCE = 0, ORDER = 0, TOLPHSV = 0.1, ALPHA = 1:

( 1.2729 0 -6.5947 0 -3.4229)
( 0 .8169 0 2.4821 0)
Ar = ( 2.9889 0 -2.9028 0 .3692 )
( 0 -3.3921 0 -3.1126 0 )
( -1.4767 0 2.0339 0 -.6107 )
( .1331 -.1331)
( -.0862 -.0862 )
Br = ( 2.6777 -2.6777 )
( -3.5767 -3.5767 )
( -2.3033 2.3033 )
( -.6907 -.6882 -.0779 .0958 -.0038 )
Cr = ( .0676 0 -.6532 0 -.7522)
( .6907 -.6882 L0779 .0958 .0038 )



MONITORMODULE
SPF - Singular perturbation formulas for linear systems

Monitormodule purpose: .
Given a linear state-space model (4,B,C,D) with matrices
A, B and C partitioned conformally as

( A11 A12 ) ( B1)
A= ( Y, B=( ), C=(cC1 cC2),
( A21 A22 ) ( B2)

the singular perturbation formulas are used to compute the matrices
of the reduced order system (Ar,Br,Cr,Dr):
-1 -1
A1l + A12+(g*I-A22) =*A21 , Br = Bl + A12x(g*I-A22) =*B2
-1 -1
C1 + C2#(g*I-A22) %421 , Dr = D + C2#(g*I-A22) =*B2

Ar

Cr

where g = 0 for a continous-time system and g = 1 for a
discrete-time system.

Opticnal output on database is:
- reduced order systen — (def. output)

Options:
Next case

Database Structure:

input:
linear system, state space
ocutput:
<Result S-Name>
LS linear system, state space
Dialog

------ requested input
LS RS-NAME:
=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select outputs, default is YM
------ end

1. Level commands:

SPF >C>

PARAM  : set parameter value for model reduction
POUT : set parameter value for output on database



COMPUTE : perform model reduction
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):
=> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored.
The <Default S-name> is the S-name of the input
system appended by _SPF.index, where index is the
next free value., If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the resulting reduced system is stored:
------ requested input
Text for dataobject LS:
—————— end
------ end
END : terminate module

2. Level Commands:

SPF_PARAM >P>
ORDER : desired order of reduced model (INTEGER def: 0)
0 : order chosen in accordance with the value of TOLHSV
r : desired order of the reduced model (r >= 0)

SPF_POUT >P>

REDSYS : 0/1 (INTEGER def: 1)
0 : do not store the resulting reduced order system
1 : store the resulting reduced order system

Monitormodule initialization:

module name : SPF
module group : LSRED
version number : 1.0
FORTRAN name : PESPF

File input/output:
none

Method:
Literature
/1/ Liu Y. and Anderson B.D.O.
Singular perturbation approximation of balanced systems,
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Int. J. Control, Vol. 50, pp. 1379-1405, 1989.

Remarks:
- For a stable system (4,B,C,D), the resulting reduced system
(Ar,Br,Cr,Dr) has the same steady-state gain as the given
full order system.
- If for a stable system (A,B,C,D), the order of the reduced model
is set to r = 0, the resulting Dr is the steady-state gain matrix
of the given system.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the balanced continuous-time system resulted by using the
BTA module, the following fifth order reduced model represents
its balanced singular perturbation approximation /1/:

( -.3813 3.0418 0 0 1.0286 )
( -3.0996 -.2635 0 0 -.3187 )
Ar = ( 0 0 -.5557 -2.3036 0)
( 0 0 2.3036 -2.1518 0)
( -1.0479 -.6685 0 0 -2.0447 )
( =-.9790 .9790 )
( =-.7412 L7412 )
Br = ( -1.0323 -1.0323)
( 1.2844 1.2844 )
( -1.0578 1.0578 )
( ~.9723 .6513 -1.0323 -1.2844 .9914 )
Cr = ( .1620 .5004 0 0 -.5217 )
( .9723 -.6513 =-1.0323 -1.2844 -.9914 )
( .0498 -.0007 )
Dr = ( .0010 -.0010)

N

-.0007 .0498 )



MONITORMODULE
BIL - Bilinear transformation of linear systems

Monitormodule purpose:
Given a linear state-space model (A,B,C,D), a transformation on
the parameters of the system is performed which is equivalent to
a bilinear transformation of the corresponding transfer function
matrix /1/.

For a continuous-time system, the resulting matrices correspond to the
continuous-to-discrete bilinear transformation

For a discrete-time system, the resulting matrices correspond to the
discrete-to-continuous bilinear transformation

z + alpha

Optional output on database is:
- transformed system (def. output)

Optiomns:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
LS linear system, state space
Dialog

------ requested input
LS RS-NAME:
-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
~> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select outputs, default is YM
------ end

1. Level conmmands:

BIL >C>
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PARAM : set parameter values for model reduction
POUT : set parameter value for output on database
COMPUTE : perform model reduction
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):
-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored.
The <Default S-nmame> is the S-name of the input
linear system appended by _BIL.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the resulting transformed system is stored:
—————— requested input
Text for dataobject LS:
------ end
—————— end
END : terminate module

2. Level Commands:

BIL_PARAM >P>
ALPHA : parameter of bilinear transformation (DOUBLE def: 1.0)
Specifies a non-zero value for parameter alpha.
BETA : parameter of bilinear transformation (DOUBLE def: 1.0)
Specifies a non-zero value for parameter beta.

BIL_POUT >P>
TRSYS : 0/1 (INTEGER def: 1)
0 : do not store the resulting transformed system
1 : store the resulting transformed system

Menitormodule initialization:

module name : BIL
module group : LSRED
versicn number : 1.0
FORTRAN name : PEBIL

File input/ocutput:
none

Method:
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Literature

/1/ Al-Saggaf U.M. and Franklin G.F.
Model reduction via balanced realizations: a extension and
frequency weighting techniques, IEEE Trans. Autom. Contr.,
Vol.33, pp. 687-692, 1988.

Remarks:

- For stable systems, the recommended values of the bilinear
transformation parameters are: alpha = 1 and beta = 1.
By using these values, to left half-plane poles of continuous-time
systems correspond poles of the resulting discrete-time systems
inside the unit circle and vice versa.

- For an unstable continuous-time system, beta should be not a pole
of the original system.

- For an unstable discrete-time system, -alpha should be not a pole
of the original system.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
none



MONITORMODULE
ASD - Additive spectral decomposition of linear systems

Monitormodule purpose:
Given a state-space model (4,B,C,D) corresponding to a transfer-function
matrix G, an additive spectral decomposition of G is computed as

G =Gl + G2

where G1 is the stable projection of G having only poles in a stability
region and G2 is the unstable projection of G having only poles

outside of this region. The stability region is defined by a parameter
ALPHA specifying its boundary. For continuocus-time systems the
stability region is the open left half plane Real(s) < ALPHA, while

for discrete-time systems the stability region is the interior of the
circle in origine of radius ALPHA ( abs(z) < ALPHA ).

The state-space representations of G1 and G2 are computed as

Gi = (A1,B1,C1,D1) , G2 = (A2,B2,C2,D2),

where Al has only eigenvalues in.the stability region and A2 has only
eigenvalues ouside of this region. The feedtrough matrices D1 and D2
can be computed as D1 = BETA*D and D2 = (1-BETA)*D, where BETA

can be arbitrarily chosen.

This module can be used to compute stable and antistable projectioms
in order to perform further order reduction of the stable part. It can
be also used for determining fast and slow modes decompositions in
order to remove the fast modes of a given system.

Optional outputs on database are:

- stable projection (def. output)
- unstable projection (def. output)
Options:

Next case

Database Structure:

input:

linear system, state space

output:

<Result S-Name>
_STABLE_LS linear system, state space
_UNSTABLE_LS linear system, state space

Dialog
------ requested input
LS RS-NAME:

-> linear system name
or carriage return to end the module



INPUT SIGNALS - U,V,ALLIN ?

-> select inputs, default is U

OUTPUT SIGNALS - YM,YA,ALLOUT 7

-> select outputs, default is YM
—————— end

1. Level commands:

ASD >C> ‘
PARAM  : set parameter values for model reduction
POUT : set parameter values for output on database

COMPUTE : compute the additive decomposition
If one of outputing parameters is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear system appended by _ASD.index, where index
is the next free value. If one does not use the
<Default S5-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the stable projection is stored:
------ requested input '
Text for dataobject LS:
—————— end
If the unstable projection is stored:
------ requested input
Text for dataobject LS:
------ end
—————— end
END : terminate module

2. Level Commands:

ASD_PARAM >P>
UNSTABLE : 0/1 _ (INTEGER def: 0)
0 : the poles of G1 belong to the stable region
1 : the poles of Gl belong to the unstable region
UNSTABLE = 1 can be used to compute conveniently a
slow/fast decomposition of the given G. In this case
the unstable region corresponds to the domain of
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dominant system poles.
ALPHA : boundary of stability region (DOUBLE def: stpar)
Specifies the boundary of the stabilty regiom for
the eigenvalues of A:
- for continuous-time systems ALPHA represents the maximum
admissible value for the real parts of the eigenvalues.
Default value of stpar is 0.
- for discrete-time systems ALPHA represents the maximum
admissible value for the moduli of the eigenvalues.
Default value of stpar is 1.0.
BETA : splitting coefficient for D matrix (DOUBLE def: 1.0)
The matrices D1 and D2 satisfy D = D1 + D2, and are
computed as D1 = BETA#D and D2 = (1-BETA)*D.

ASD_POUT >P> :
SYs1 : 0/1 (INTEGER def: 1)
0 : do not store the projection Gi
1 : store the projection G1
SYs2 : 0/1 (INTEGER def: 1)
0 : do not store the projection G2
1 : store the projection G2

Monitormodule initialization:

module name : ASD
module group : LSRED
version number : 1.0
FORTRAN name : PEASD

File input/output:
none

Method:
A similarity transformation matrix T is computed such
that the transformed system
- - - - -1 -1
(A,B,C,D) = (T AT, T B, CT, D) (1)

has the state-matrizx A in a block diagomal form. If we partition the
transformed systems matrices conformally with the structure of the
state-matrix

_ (a1 0) - (B1) -
A= ), B=( Yy, ¢c=(c1 ¢c2), (2)
(0 A2 ) ( B2 )

then Al has eigenvalues in a region of interest and A2 outside of
that region. The region of interest is the stability regiomn if
UNSTABLE = O and the instability region if UNSTABLE = 1.

The decomposition (2) is used to define the additive
decomposition of the transfer-function matrix G as



G = Gl + G2

vhere G1

= (A1,B1,C1,D1) and G2 = (A2,B2,C2,D2).

Literature
/1/ Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.
Synthesis of positive real multivariable feedback systems,

Int. J. Control, Vol. 45, pp. 817-842, 1987.

Remarks:
none

Life cycle:
1983 Aug A. Varga DLR FF-DF: coded

Packages required:

none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Given the unstable continuous-time system (4,B,C,D) with the following

Example:
matrices:
( -.
(
(
A= (
(
(
(
(
( 12,
(
B = (
(
(
(

04165 0 4.92 .492 0 0 0)
-5.21 -12.5 0 0 0 0 0)
0 3.33 -3.33 0 0 0 0 )
.545 0 0 0  .0545 0 0 )
0 0 0 -.492 .004165 0 4.92)
0 0 0 0 .621 -12.5 0 )
0 0 0 0 0 3.33 -3.33)
0 0 )
5 0)
0 0 ) (1 0 0 0 0 0 0)
0 0) C=(0 0 0 1 0 0 0) D=0
0 0) (0 0 0 01 0 0)
0 12.5)
0 0)

a slow/fast decomposition can be computed which can serve

as basis to compute a modal approximation of the original system.
By setting UNSTABLE = 1 and BETA = 1, the matrices of the slow
subsystem G1 and of the fast subsystem G2 are:

( -1.4178
( .9109
Al = ( 0
( 0
( 0

=-5.1682
-1.4178
0
0
0

.5481 2.594

.1460 .471

.1605 -.494

.0474 .160
0

4
8
8
5
0

.0695 )
.3044 )
4.7654 )
-.3769 )
-3.5957 )
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( 2.8493 .0351 )
( 2.9533 .0993 )
Bl = ( -.3203 1.6526 )
( -1.0775 -.1609 )
( .0089 -4.7125)
( -.8659 .2787 -.0185 -.2005 -.0002 )
cLt =( .0797 ~-.3951 -.0427 -.9141 .0068 )
( -.0165 -.0645 -.9935 .0732 .0376 )
A2 = ( -13.1627 0) B2 = ( -11.4205 =-.0015 )
( 0 -12.4245 ) ( -.0020 12.4858 )
( -.1245 0 )
c2 = ( .0052 ~-.0006 )
( .0002 .1472 )

The slow subsystem of order can be used as a dominant modes
approzimation of the original system.
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MONITORMODULE
LCF - Left coprime factorization of transfer-function matrices

Monitormodule purpose:

Given an n-th order state-space model (A,B,C,D) corresponding to

a pxm transfer-function matrix G, a state-space representation

(AQR, BQR, CQR, DQR) of the augmented transfer-function matrix ( Q R )
-1

is computed defining a left coprime factorization (LCF) G =R *

The state matrix AQR can be determined such that its eigenvalues

are inside a specified stability region of the complex plane.

The computation of the factorization is based on a pole assignment

method described in /1/.

Optional outputs on database are:
- left coprime factorization (in augmented form) (def. output)

The g-th order state-space representations of the factors  and R are
constructed in the forms

(Z'*(A+H*C)*Z, Z'*(B+H*D), C*Z, D)

)
It

and
R

(Z**(A+H*B)*Z, Z'*H, C*Z, I)

wvhere Z is an n x q matrix with orthonormal columns and H is an n x p
output injection matrix assigning the eigenvalues of A in the specified
stability region. If the given state-space representation is
detectable, the order q of the resulting state-space representation

of ( QR ) is equal to n. If the given state-space representation is
not detectable, the undetectable part of the original system

is automatically deflated and the resulting q is less than n.

The matrices AQR, BQR, CQR and DQR are computed as:

AQR = Z’'*(A+H*C)#Z , BQR = ( Z’*B+Z’*H*D Z’*H ),

CQR = C*zZ , DQR= (D 1I).
Options:

Next case
Database Structure:

input:

linear system, state space

output:

<Result S-Name>

LS linear system, state space

Dialog

—————— requested input
LS RS-NAME:
=> linear system name



or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT ?
-> select outputs, default i1s YM
------ end

1. Level commands:

LCF >C>
PARAM : set parameter values for model reduction
POUT : set parameter values for output on database

COMPUTE : compute the factorization
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear system appended by _LCF.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>. Then the
action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
—————— requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

LCF_PARAM >P>
ALPHA : boundary of stability region (DOUBLE def: stpar)

Specifies the boundary of the stabilty regiom for

the eigenvalues of A:

- for continuous-time systems ALPHA represents the maximum
admissible value for the real parts of the eigenvalues.
Default value of stpar is 0.

- for discrete-time systemy ALPHA represents the maximum
admissible value for the moduli of the eigenvalues.
Default value of stpar is 1.0.

39



40

The eigenvalues lying inside the stability region will be
not modified.

STABDEG : desired stability degree (DOUBLE def: sdpar)
The eigenvalues of A, lying outside the stability region
defined by ALPHA, will be moved to locations corresponding
to a stability degree STABDEG, namely:

- for a continuous-time system, the modified eigenvalues
will have real parts equal to STABDEG and unmodified
imaginary parts. Default value of sdpar is -0.2.

- for a discrete-time system, the modified eigenvalues
will have moduli equal to STABDEG.

Default value of sdpar is 0.8.

TOL : tolerance for observability tests  (DOUBLE def: tolpar)
Specifies the absolute tolerance level below which the
elements of C are considered zero.

Default value of TOL is tolpar = n*EPS*NORM(C),

where NORM(C) denotes the infinity-norm of C and

EPS is the machine precision.

LCF_POUT >P>
LCF : 0/1 (INTEGER def: 1)
0 : do not store the augmented LCF
1 : store the augmented LCF

Monitormodule initialization:

module name : LCF
module group : LSRED
version number : 1.0
FORTRAN name : PELCF

File input/output:
none

Method:
Literature
/1/ Varga A.

Coprime Factors Model Reduction Method based on Square-Root
Balancing-Free Techniques,

Proc. 4-th IMACS Symp. on Systems Analysis and Simulation,
Berlin, Aug. 25-28, 1992.

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:



RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time unstable system example (A,B,C,D) used by
the ASD module (D = 0), the matrices of the left coprime factorization
computed with ALPHA = 0, STABDEG = -1, TOL = 1.0D-10 are:

( -1.0000 -.4465 4.8212 .2260 .0062 -.1813 -.0895
( .0526 -1.0000 -.3364 -.0166 .4199  -.2408 -1.7274
( 0 0 -3.5957 -3.5463 -.0163 .0175 .0692
AQR = ( 0 0 0 -12.4245 .0004 -.0344 -.0180
( 0 0 0 0 -13.1627 1.9835 3.6182
( 0 0 0 0 0 -1.4178 §5.6218
( 0 0 0 0 0 -.8374 -1.4178
( .0631 -.5122 .0155 .0753 1.1676 )
( 1.1544 L0159 .2623 1.1297 -.0763 )
( -.0476 .3029 0 0 0 )
BQR = ( .0130 12.4858 0 0 0)
( -11.7198 .0038 0 0 0 )
( -2.8173 .0308 0 0 0)
( 3.1018 -.0009 0 0 0)
( -.0132 -.2238 .0079  -.0026 -.1279 .8797 .3994 )
CQR = ( -.0643 -.9639 .0040 -.0009 -.0305 ~-.2562 .0122 )
( -.9962 .0660 .0377  -.0419 0 .0022 -.0017 )
(0 01 0 0)
DQR=(0 0 0 1 0)
(0 0 0 0 1)
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MONITORMODULE
RCF - Right coprime factorization of transfer-function matrices

Monitormodule purpose:
Given an n~th order state-space model (4,B,C,D) corresponding to
a pxm transfer-function matrix G, a state-space representation
(AQR, BQR, CQR, DQR) of the augmented transfer-function matrix
Q)
(R) -1
is computed defining a right coprime factorization (RCF) G = Q * R
The state matrix AQR can be determined such that its eigenvalues
are inside a specified stability region of the complex plane.
The computation of the factorization is based on a pole assignment
method described in /1/.

Optional output on database is:
- right coprime factorization (in augmented form)  (def. output)

The g-th order state-space representations of the factors  and R are
constructed in the forms

Pm]
[}

(Z'*(A+B*F)*Z, Z’*B, (C+D*F)*Z, D)
and

R = (Z'*(A+B*F)*Z, Z'*B, FxZ, I)

where Z is an n x q matrix with orthomnormal columns and F is an m x n
state-feedback matrix assigning the eigenvalues of A in a specified
stability region. If the given state-space representation is
stabilizable, then q = n. If the given state-space representation is
not stabilizable, then the unstabilizable part of the original system
is automatically deflated and the resulting q is less than n.

The matrices AQR, BQR, CQR and DQR of augmented RCF are computed as:

{ CxZ+D*F*Z ) {D)
AQR = Z’*(A+B*F)*Z, BQR = Z’*B, CQR = ( F¥*Z ), DQR = (I ).
Optiomns:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
LS linear system, state space
Dialog

------ requested input
LS RS-NAME:
-> linear system name



or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select ocutputs, default is YM
------ end

1. Level commands:

RCF >C>
PARAM : set parameter values for model reduction
POUT : set parameter value for output on database

COMPUTE : compute the factorization
If the outputing parameter is set then:
------ requested input
<Result S~NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored.

The <Default S-name> is the S-name of the input
linear system appended by _RCF.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S-Name>., Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
------ requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:
RCF_PARAM >P>
ALPHA  : boundary of stability region (DOUBLE def: stpar)
Specifies the boundary of the stabilty region for
the eigenvalues of A:
- for continuous-time systems ALPHA represents the maximum
admissible value for the real parts of the eigenvalues.
Default value of stpar is 0.
- for discrete-time systemy ALPHA represents the maximum
admissible value for the moduli of the eigenvalues.
Default value of stpar is 1.0.
The eigenvalues lying inside the stability region will be
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not modified.

STABDEG : desired stability degree (DOUBLE def: sdpar)
The eigenvalues of A, lying outside the stability region
defined by ALPHA, will be moved to locations corresponding
to a stability degree STABDEG, namely:

- for a ‘continucus-time system, the modified eigenvalues
will have real parts equal to STABDEG and unmodified
imaginary parts. Default value of sdpar is -0.2.

- for a discrete-time system, the modified eigenvalues
will have moduli equal to STABDEG.

Default value of sdpar is 0.8.

TOL : tolerance for controllability tests (DOUBLE def: tolpar)
Specifies the absolute tolerance level below which the
elements of B are considered zero.

Default value of TOL is tolpar = n*EPS*NORM(B),

where NORM(B) denotes the 1-norm of B and EPS is the
machine precision.

RCF_POUT >P>

RCF : 0/1 (INTEGER def: 1)
0 : do not store the augmented RCF
1 : store the augmented RCF

Monitormodule initialization:

nodule name : RCF
medule group : LSRED
version number : 1.0
FORTRAN name : PERCF

File input/output:
none

Method:
Literature
/1/ Varga A.
Coprime Factors Model Reduction Based on Accuracy
Enhancing Techniques,
Syst. Anal. Model. Simul., vol. 11, Pp. 303-311, 1993.

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)



Example:

Given the continuous-time unstable system example (A,B,C,D) used by
the ASD module (D = 0), the matrices of the right coprime factorization
computed with ALPHA = 0, STABDEG = -1, TOL = 1.0D-10 are:

(
(
(
AQR = (
(
(
(
(
(
(
BGR = (
(
(
(
(
(
CQR = (
(
(
DOR

n
TN S N

-1.4178 -5.1682 3.2450
.9109 -1.4178 -2.1262
0 0 -13.1627
0 0 0
0 0 0
0 0 0
0 0 0
5.0302 -.0063 )
L7078 -.0409 )
-11.3663 .0051 )
-.0375 -11.6309 )
-.1740 3.7681 )
-1.1040 ~-.1956 )
-.0472 -2.5948 )
-.8659 L2787  -.3432
.0797 -.3951 .0976
-.0165 ~-.0645 .0097
0 0 0
0 0 0
0 0)
o 0)
0 0)
1 0)
o 1)

L0241

-.118
-.001

-12.4245

-.0007
.0045
-.1341
0

0

8
1

0
0
0

.2232
-.0867
-.0646
3.3373

-3.5967
0
0

-.0019
.0295
-.8080
0

0

5.4114
.5383
-6.8045

-33.5354

10.6960
-1.0000
-7.7653

-.2335
-.9043
-.0599

.4915
2.8707

.0201
.2376
.0315
-6.4031
6.6253
.0030
-1.0000

.0152 )
.0968 )
-.5666 )
-.0036 )
.4690 )



MONITORMODULE
LCFID - Left coprime factorization with inner demominator

Monitormodule purpose:
Given an n-th order state-space model (4,B,C,D) corresponding to
a pxm transfer-function matrix G, a state-space representation
(AQR, BQR, CQR, DQR) of the augmented transfer-function matrix ( Q R )
is computed defining a left coprime factorization with inner
-1
denominator (LCFID) G =R x*x Q.
G must not have poles on the imaginary axis for a continuous-time
system or on the unit circle for a discrete-time system.
The computation of the factorization is based on the method described
in /1/.

Optional outputs on database are:
~ left coprime factorization (in augmented form) (def. output)

The g-th order state-space representations of the factors (] and R are
constructed in the forms

(Z'*(A+H*C)*Z, Z’*(B+H*D), V*C*Z, VD)

Fm)
1}

and

R = (Z’*(A+H*B)*Z, Z’*H, V*C*Z, V)

where Z 1s an n x q matrix with orthonormal colums, H is ann x p
output injection matrix reflecting the unstable eigenvalues of A in
the stability region, and V is a p x p gain matrix. The resulting R
is generally non-minimal and co-inner, that is R(s)*R’(-s) = I in the
continuous-time case or R(z)*R’(1/z) = I in the discrete-time case.
If the given state-space representation is detectable, the order

q of the resulting state-space representation of ( Q R ) is equal to
n. If the given state-space representation is not detectable, the
undetectable part of the original system is automatically deflated and
the resulting q is less than n. The matrices AQR, BQR, CQR and DQR

of augmented LCFID are computed as:

AQR = Z’*(A+H*C)=*Z , BQR = ( Z’*B+Z'#HxD Z’=*H ),
CQR = V*C*xZ , DQR = ( V¥D V ).
Options:

Next case

Database Structure:
input:
linear system, state space
output:
<Result S5-Name>

LS linear system, state space
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------ requested input
LS RS-NAME:
-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> gelect inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT ?
-> select outputs, default is YM
------ end

1. Level commands:

LCFID >C>
PARAM : set parameter values for model reduction
POUT : set parameter values for output on database

COMPUTE : compute the factorization
If the outputing parameter is set then:
—————— requested input
<Result S-NAME> ( <Default S-NAME> ):

-=> If a blank is input, the <Default S-Name> is used.
Dtherwise the user must input a new S5-Name under
which the result will be stored according to the
parameters selected through PDUT.

The <Default S-name> is the S-name of the imput
linear system appended by _LCFID.index, where
index is the next free value. If one does not use
the <Default S-Name>, there could already exist
other objects under the chosen < Result S-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
—————— requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

LCFID_PARAM >P>
TOL : tolerance for observability tests (DOUBLE def: tolpar)
Specifies the absolute tolerance level below which the
elements of C are considered zero.
Default value of TOL is tolpar = n*EPS*NORM(C),
where NORM(C) denotes the infinity-norm of C and
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EPS is the machine precision.

LCFID_POUT >P>
LCFID : 0/1 (INTEGER def: 1)

0 : do not store the augmented LCFID
1 : store the augmented LCFID

Monitormodule initialization:

module name : LCFID
module group : LSRED
version number : 1.0

FORTRAN name : PELCFI

File input/output:
none

Method:
Literature
/1/ Varga A.
A Schur method for computing coprime factorizations
with inner denominators and applications in model reduction,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1983.

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time unstable system example (A,B,C,D) used by
the ASD module (D = 0), the matrices of the left coprime factorization
computed with TOL = 1.0D-10 are:

( -.1605 -.4489 4.2621 .2229 -.2394 -.0491 .8740 )

( .0523 -.1605 2.2250 .1217 .4166 -.2518 -1.6140 )

( 0 0 -3.5957 -3.5463 -.0163 .0175 .0592 )
AQR = ( 0 0 0 -12.4245 L0004 -.0344 -.0180 )

( 0 0 0 0 -13.1627 1.9835 3.6182 )

( 0 0 0 0 0 -1.4178 5.6218 )

( 0 0 0 0 0 -.8374 -1.4178 )

( ~-.5523 -.4443 -.0306 ~-.1281 .4984 )

( 1.0157 -.2554 .0158 .0692 .1688 )

( -.047s .3029 0 0 0)



49

BQR = ( .0130 12.4858 0 0 0)
( -11.7198 .0038 0 0 0 )
( -2.8173 .0308 0 0 0 )
( 3.1018 -.0009 0 0 0)
( .1063 ~-.1975 .0079 -.0028 -.1279 .8797 .3994 )
CQR = ( .4513 -.8541 .0040 -.0009 -.0305 ~-.2562 .0122 )
( -.8826 -.4668 .0377  -.0419 0 .0022 -.0017 )
(o 0o 1 0)
DGR=(0 0 0 1 0)
(o 0 o0 1)

The minimal state-space realization of the inner denominator R has
the following matrices:

AR = (-.1605 -.4439 ) BR = ( -.0306 ~-.1281 .4984 )
( .0523 -.1605 ) ( .o1s58 .0692 .1688 )
( .1063 -.1975) (1 0)

CR = ( .4513 -.8541) DR = ( 1 0)
( -.8826 ~-.4668 ) (o 0o 1)
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MONITORMODULE
RCFID - Right coprime factorization with inner denominator

Monitormodule purpose:
Given an n-th order state-space model (A,B,C,D) corresponding to
a pxm transfer-function matrix G, a state-space representation
(AQR, BQR, CQR, DQR) of the augmented transfer-function matrix
Q)
(R) _
is computed defining a right coprime factorization with inner
-1
denominator (RCFID) G = Q * R
G must not have poles on the imaginary axis for a continuous-time
system or on the unit circle for a discrete-time system.
The computation of the factorization is based on the method described

in /1/.

Optional ocutputs on database are:
- right coprime factorization (in augmented form)  (def. output)

The gq-th order state-space representations of the factors Q and R are
constructed in the forms

Q = (Z’%(A+B*F)*Z, Z'*B%V, (C+D¥F)*Z, D*V)

and
R

(Z’*(A+B*F)*Z, Z'*B*V, F*Z, V)

where Z is an n x q matrix with orthonormal columns, F is an m x n
state-feedback matrix reflecting the unstable eigenvalues of A in the
stability region and V is a p x p gain matrix. The resulting R
is inner, that is R’{-s)*R(s) = I in the continuous-time case or
R'(1/z)*R(z) = I in the discrete-time case.
If the given state-space representation is stabilizable, the order g
of the resulting state-space representation

(Q)
of ( R) is equal to n. If the given state-space representation is
not stabilizable, the unstabilizable part of the original system is
automatically deflated and +the resulting q is less than n.
The matrices AQR, BQR, CQR and DQR of augmented RCFID are computed as:

( C*Z+D*F*Z ) { Dxv )
AQR = Z’*(A+B*F)*Z, BQR = Z’*B*V, CQR = ( F*Z2 ), DQr = ( Vv ).

Options:
Next case

Database Structure:
input:
linear system, state space
output:



<Result S-Name>

_Ls linear system, state space
Dialog
------ requested input
LS RS-NAME:

-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-=> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
~> select outputs, default is YM
------ end

1. Level commands:

RCFID >C>
PARAM : set parameter values for model reduction
POUT : set parameter values for output on database

COMPUTE : compute the factorization
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POQUT.

The <Default S-name> is the S-name of the input
linear system appended by _RCFID.index, where
index is the next free value. If one does not use
the <Defaunlt S-Name>, there could already exist
other objects under the chosen < Result S-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
' can be or not deleted. If objects
shonld be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
------ requested input
Text for dataobject LS:
------ end
—————— end
END : terminate module

2. Level Commands:

RCFID_PARAM >P>

TOL : tolerance for controllability tests  (DOUBLE def: tolpar)
Specifies the absoclute tolerance level below which the



52

elements of B are considered zero.

Default value of TOL is tolpar = n*EPS*NORM(B),
where NORM(B) denotes the 1-norm of B and EPS is the
machine precision.

RCFID_POUT >P>
RCFI : 0/1 (INTEGER def: 1)

0 : do not store the augmented RCFID
1 : store the augmented RCFID

Monitormodule initialization:

module name : RCFID
module group : LSRED
version number : 1.0

FORTRAN name : PERCFI

File input/output:
none

Method:
Literature
/1/ Varga A. :
A Schur method for computing coprime factorizations
with inner denominators and applications in model reduction,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1993.

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continuous-time unstable system example (A,B,C,D) used by
the ASD module (D = 0), the matrices of the right coprime
factorization computed with TOL = 1.0D-10 are:

( -1.4178 -5.1682  3,2450 .0241 .2232 4.1066 -.2336 )
( .9109 -1.4178 -2.1262 -.1188 ~.0867 .4816 .2196 )
( 0 0 -13.1627 -.0011 -.0646 -3.8320 .3429 )
AQR = ( 0 0 0 -12.4245 3.3373 -.2642 -2.6816 )
( 0 0 0 0 -3.5957 .1871  5.4221 )
( 0 0 0 0 0 -.1605 L0772 )
( 0 0 0 0 0 -.3040 -.1605 )



EQR

COR

DQR

The

AR

CR

5.0302
L7078
~-11.3663
.0375
-.1740
-1.1050
.0066

"
P e W S W NP NP
]

-.8659
L0797
~-.0165
0

0

(]
N N S

i
NPT TN N ™
O = O O O
= O O O O
et Mt Nt Nt N

~.0063
-.0409
.0051
-11.6309
3.7681
-.3215
-2.5822

L2787
-.3951
-.0645

0
0

L . A S N S

.3432
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-.0019
.0295
-.8080
0

0

.2325
.8985
.0874
.2288
.0070

.0265 )
.1406 )
-.5630 )
-.0259 )
.1497 )

minimal state-space realization of the inner denominator R has
the following matrices:

( -.1605
( -.3040

( .2288
( .0070

0772 )
-.1605 )

-.0259 )
.1497 )

ER

DR

( -1.1050
( .0066
(1 0)
(o 1)

-.3215)
-2.5822 )
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MONITORMODULE
LCF2LS - Left coprime factorization to linear system transformation

Monitormodule purpose:
Computes the state-space representation of the system G = (A,B,C,D)
from the factors Q = (AQR,BQ,CQR,DQ) and R = (AQR,BR,CQR,DR) of
its left coprime factorization
-1
G=R *(Q,

where G, { and R are the corresponding transfer-function matrices.

The matrices of the state-space representations of [ and R should be
contained in a state-space representation of the augmented system

( QR ) in the form (AQR, ( BQ BR ), CQR, ( DQ DR )) (as computed for
example by the LCF or LCFID modules).

LCF2LS is used as a post-processing module in the coprime factors
model reduction method /1/ in conjunction with the left coprime
factorizations modules LCF or LCFID and the model reduction modules
for stable systems.

Optional outputs on database are:
- left coprime factorization (in augmented form) (def. output)

The matrices of the state-space representation G = (4,B,C,D) are
computed by using the formulas:
-1 -1

A =AQR - BR * DR *= CQR, B = BQ - BR * DR =* D,
-1 -1
C =DR =* CQR, D = DR = DQ.
Options:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
LS linear system, state space
Dialog

—————— requested input
LS RS-NAME:
-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select ocutputs, default is YM



LCF2L5 >C>
POUT : set parameter values for output on database
COMPUTE : compute the factorization
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):
=> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored.
The <Default S-name> is the S-name of the input
linear system appended by _LCF2LS.index, where
index is the next free value. If one does not use
the <Default S-Name>, there could already exist
other objects under the chosen < Result S-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
------ requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

LCF2LS_POUT >P>
SYSTEM : 0/1 (INTEGER def: 1)
0 : do not store the computed state-space representation
1 : store the computed state-space representation

Monitormodule initialization:

module name : LCF2LS
module group : LSRED
version number : 1.0
FORTRAN name : PEBLCF

File input/output:
none

Method:
Literature
/1/ Varga A.
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Coprime Factors Model Reduction Based on Accuracy
Enhancing Techniques,
Syst. Anal. Model. Simul., vol. 11, pp. 303-311, 1993.

Remarks:
none

Life cycle: _
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
none
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MONITORMODULE
RCF2LS - Right coprime factorization to linear system transformation

Monitormodule purpose:
Computes the state-space representation of the system G = (4,B,C,D)
from the factors Q = (AQR,BQR,CQ,DQ) and R = (4AQR,BQR,CR,DR)
of its right coprime factorization
-1
G=Q=+*R ,

where G, § and R are the corresponding transfer-function matrices.
The matrices of the state-space representations of Q and R should be
contained in a state-space representation of the augmented system
Q) (cq) (DQ)

( R) in the form (AQR, BQR, ( CR ), ( DR )) (as computed for
example by the RCF or RCFID modules).

RCF2LS is used as a post-processing module in the coprime factors
model reduction methoed /1/ in conjunction with the right coprime
factorizations modules RCF or RCFID and the model reduction modules
for stable systems.

Optional cutput on database are:
- right coprime factorization (in augmented form) (def. output)

The matrices of the state-space representation G = (A4,B,C,D} are
computed by using the formulas:
-1 -1
AQR - BQR * DR * CR, B = BQR * DR
-1 -1
CQ -DQ * DR * CR, D = DQ * DR

A

2

Q
]

Optioms:
Next case

Database Structure:
input:
linear system, state space
output:
<Result S-Name>

_Ls linear system, state space

------ requested input
LS RS-NAME:
-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN ?
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7



-> select outputs, default is YM
------ end )

1. Level commands:
RCF2LS >C>
POUT : set parameter value for output on database
COMPUTE : compute the factorization
If the outputing parameter is set themn:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):
-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored.
The <Default S-name> is the S-name of the input
linear system appended by _RCFZLS.index, where
index is the next free value. If one does not use
the <Default 5-Name>, there could already exist
other objects under the chosen < Result S5-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
If the augmented factorization is stored:
------ requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

RCF2LS_POUT >P>

SYSTEM : 0/1 (INTEGER def: 1)
0 : do not store the computed state-space representation
1 : store the computed state-space representation

Monitormodule initialization:

module name : RCF2LS
module group : LSRED
version number : 1.0

FORTRAN name : PEBRCF

File input/output:
none

Method:
Literature



/1/ Varga A.
Coprime Factors Model Reduction Based on Accuracy
Enhancing Techniques,
Syst. Anal. Model. Simul., veol. 11, pp. 303-311, 1993.

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
none
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MONITORMODULE
PFWMR - Projections for frequency-weighted model reduction

Monitormodule purpose:

Constructs a state-space representation (AS,BS,CS,DS) of the

* -1 * -1 * *
stable projection of either (W1 ) *G*(W2 ) or W1 *G*W2
from the state-space representations (A,B,C,D), (AW1,BW1,CW1,DW1)
and (AW2,BW2,CW2,DW2) of the transfer-function matrices G, Wi and W2,
respectively. G, W1, W2 should be stable, W1 and W2 should be
invertible and minimum-phase. In the discrete-time case W1 and W2
should have no poles in the origine.

*

Note. W denotes the conjugate of W given by either W’ (-s) for a
continuous-time system or W’(1/z) for a discrete-time system.

Optional output on database is:
- computed system projection (def. output)

The matrices of the stable projection are computed using the
explicit formulas established in /1/.

Opticns:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
LS linear system, state space
Dialog

------ requested input
LS RS-NAME:
=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLQUT 7
-> select outputs, default is YM
------ end

1. Level commands:

PFWMR >C>
WEIGHTS : set option parameters for weights
If the input weighting parameter is set then:

------ requested input
LS RS-NAME:
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-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN ?
-> select inputs, default is U
QUTPUT SIGNALS - YM,YA,ALLOUT 7?
-> select outputs, default is YM

------ end
If the output weighting parameter is set then:
------ requested input
LS RS-NAME:

-> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN ?
~> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT ?
-> select outputs, default is YM
------ end
POUT : set parameter value for output on database
COMPUTE : compute the stable projection
If the outputing parameter is set then:
----- - requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S5-Name under
vhich the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input
linear system appended by _PFWMR.index, where index
is the next free value. If one does not use the
<Default S-Name>, there could already exist other
objects under the chosen < Result S5-Name>. Then
the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
' structure are deleted.
If the resulting reduced system is stored:
------ requested input
Text for dataobject LS:
------ end
------ end
END : terminate module

2. Level Commands:

PFWMR_WEIGHTS >P>
OUTPUT : 0/1 (INTEGER def: 1)
0 : output weight is not used
1 : output weight is used
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INPUT : 0/1 (INTEGER def: 0)
0 : input weight is not used
1 : input weight is used
INVERSE : 0/1 (INTEGER def: 1)
0 : conjugated weights are used
1 : inverses of conjugated weights are used
WITHD : 0/1 ' (INTEGER def: 0)
0 : the feedthrough matrix D is not used in computing
the stable projection
1 : the feedthrough matrix D is used in computing
the stable projection

PFWMR_POUT >P>
PRSYS : 0/1 (INTEGER def: 1)
0 : do not store the computed projection
1 : store the computed projectiomn

Monitormodule initialization:

module name : PFWMR
module group : LSRED
version number : 1.0

FORTRAN name : PEFWR

File input/output:
none

Method:
Literature
/1/ Varga A.
Explicit formulas for an efficient implementation of the
frequency-weighting model reduction approach,
Proc. 1993 ECC, Groningen NL, pp. 693-696, 1993.

Remarks:
- No explicit singularity checks are performed in order to verify
the conditions to be fulfilled by the matrices of the weights
Wl and W2. Error messages are issued only if exact singularity is
detected. If the respective matrices are nearly singular, the
computed results may be inaccurate.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)
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Example:

Given the continuous-time system (A4,B,C,D) with the following matrices:

and

AWl

the
the

are:

( -3.8637 -7.4641 -9.1416 -7.4641 -3.8637 -1 )
( 1 0 0 0 0 0)
( 0 1 0 0 0 0)
( 0 0 1 0 0 0)
( 0 0 0 1 0 0)
( 0 0 0 0 1 0)

(o 0 ¢ 0 0 1), D=0

FTNETN N TN TN T

the output frequency-weighting W1 with the matrices:

= (-2 -1) BW1 = (1) CWi=(-1.8 0)
(1 0) (0)
* =1
matrices of the stable projection of (W1 ) =*G comp
parameter setting OUTPUT = 1, INPUT = O, INVERSE =

( -.2588 1.1498 -.4160 .4591 1.7533 -7.
( -.8114 -.2588 -.0281 .3703 -.5606 1
AS = ( 0 0 -.7071 =-.5287 -.8349 2
( 0 0 .9457 =-.7071 -2.6789 9
( 0 0 0 0 -.9659 6
( 0 0 0 0 -.0096 -
( -.5286 )
( .0829 )
BS = ( .1458 )
( .6908 )
( .4464 )
( -.1263 )
s = ( 1.8545 .2907 -.9917 1.5564 2.0202
DS =0

DW1 =

uted with
1, WITHD =

7212 )

.1293 )
.0301 )
.9802 )
.9494 )
.9659 )

8.0920 )

O O O O O K
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MONITORMODULE
HANKNORM - Hankel-norm of a transfer function matrix

Monitormodule purpose:
Computes the Hankel-norm and the Hankel-singular values of the stable
projection of the transfer-function matrix of a linear state-space
model (4,B,C,D).

Optionally displayed results:

- Computed Hankel norm (def. display)
- Computed Hankel singular values (def. display)
- Order of an approximate reduced model

corresponding to a specified absolute error {def. display)
= Error bound for the maximum absolute

approximation error {def. display)

Optional outputs on database are:
- Computed Hankel norm (def. output)

- Computed Hankel singular values {def. no output)

= Order of an approximate reduced model

corresponding to a specified absolute error (def. no output)

- Error bound for the maximum absolute

approximation error (def. no output)

If the transfer-function matrix G is unstable, then the stable
projection Gl of G is first computed from the additive
stable/unstable decompesition of G

G =Gl + G2

where Gl is the stable projection and G2 is defined as G2 = G - G1.
If G is stable, then G1 = G and G2 = 0.

The computation of the stable projection is based on the

algorithm presented in /1/.

Let (A1,B1,C1) be the state-spacé representation of Gi. Then,
the Hankel-norm of G is computed as the maximum Hankel singular
value of the system (A1,B1,C1,0). The computation of the Hankel
singular values is performed by using the square-root method

of /2/.

Options:
Next case

Database Structure:
input:
linear system, state space
output:
<Result S-Name>
_HANKNORM value of Hankel-norn
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_HSV matrix for Hankel singular values
_ORDER value for the determined approximation order
_MAXRERR maximum absolute approximation error

------ requested input
LS RS-NAME:
=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOQUT 7
-> select outputs, default is YM
—————— end

1. Level commands:

HANKNORM >C>
PARAM : set parameter value for order estimation
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database

COMPUTE : compute Hankel norm and Hankel-singular values
If one of outputing parameters is set then:
—————— requested input
<Result S-NAME> ( <Default S-NAME> ):
=> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.
The <Default S-name> is the S-name of the input
linear system appended by _HANKNORM.index, where
index is the next free value. If one does not use
the <Default S-Name>, there could already exist
other objects under the chosen < Result S-Name>.
Then the action taken depends on a status variable:
/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.
/SDENOVER is set: All objects under the given
structure are deleted.
------ end
END : terminate module

2. Level Commands:

HANKNORM_PARAM >P>
ABSERR : addmissible absolute approximation error (DOUBLE def: 0.0)

HANKNORM_PLIST >P>
HANKNORM : 0/1 (INTEGER def: 1)

65



0 : do not list the value of the Hankel norm
1 : list the value of the Hankel norm

HSV : 0/1 (INTEGER def:

0 : do not list the Hankel singular values
1 : list the Hankel singular values

ORDER : 0/1 (INTEGER def:

0 : do not list the determined order
1 : list the determined order

MAXRERR : 0/1 (INTEGER def:

1

1

1

0 : do not list the maximum absolute approximation error

1 : list the maximum absolute approximation error

HANKNORM_POUT >P>

HANKNORM : 0/1 (INTEGER def:

0 : do not store the value of the Hankel norm
1 : store the value of the Hankel norm

HSV : 0/1 (INTEGER def:

0 : do not store the Hankel singular values
1 : store the Hankel singular values

ORDER : 0/1 (INTEGER def:

0 : do not store the determined order
1 : store the determined order

MAXRERR : 0/1 (INTEGER def:

1

0)

0)

0)

0 : do not store the maximum absoclute approximation error

1 : store the maximum absolute approximation error

Monitormodule initialization:

module name : HANKNORM
module group : LSRED
version number : 1.0
FORTRAN name : PEHNEM

File input/output:
none

Method:
Literature

/1/ Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.

Synthesis of positive real multivariable feedback systems,
Int. J. Control, Vol. 45, pp. 817-842, 1987.

/2/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems, Int. J. Control, Vol. 46,
pp- 1318-1330, 1987.

Remarks:

- The Hankel-norm is only a seminorm when the transfer-function
matrix is not strictly proper or not causal.

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded
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Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
Given the continucus-time unstable system (4,B,C,D) used by the
module ASD, (the stable projection has order s = 5), the computed
Hankel-norm and Hankel-singular values are:
- the Hankel-norm of the stable projection:
HANORM(G) = 1.8198

- the Hankel-singular values of the stable projection:

1.8198 . 8047 . 7382 .0242 .0238



MONITORMODULE
L2NORM - L2-norm of a transfer function matrix

Monitormodule purpose:

68

Computes the L2- or the 12-norm of the transfer-function matrix of a
linear state-space model (4,B,C,D). For a continuous-time system, the

feedtrough matrix D is assumed to be null.

Optionally displayed result:

- Computed L2~ or 12-norm (def.

Optional output on database:

- Computed L2- or l2-norm (def.

Options:
Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name> .
_L2NORM value of L2- or 12-norm
Dialog
------ requested input
LS RS-NAME:

=> linear system name
or carriage return to end the module
INPUT SIGNALS - U,V,ALLIN 7
-> select inputs, default is U
OUTPUT SIGNALS - YM,YA,ALLOUT 7
-> select outputs, default is YM
------ end

1. Level commands:

L2NORM >C>
PARAM : set parameter value for norm computation
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database

GLOBAL : output the L2- or 12-morm as a global variable
—————— requested input
Global variable name?
-> name for the global variable

COMPUTE : compute the L2- or 12-norm
If the outputing parameter is set then:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

display)

output)



-> If a blank is input, the <Default S-Name> is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input

linear system appended by _L2NORM.index, where

index is the next free value. If one does not use

the <Default S-Name>, there could already exist

other objects under the chosen < Result S-Name>.

Then the action taken depends on a status variable:

/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.

/SDENOVER is set: All objects under the given
structure are deleted.

------ end
END : terminate module

2. Level Commands:

L2NORM_PARAM >P>
TOL : tolerance for controllability tests  (DOUBLE def: tolpar)
Specifies the absolute tolerance level below which the
elements of B are considered zero.
Default value of TOL is tolpar = n*EPS*NORM(B),
where NORM(B) denotes the 1-norm of B and EPS is the
machine precision.

L2NORM_PLIST >P>
L2NORM : 0/1 (INTEGER def: 1)
0 : do not list the value of the L2- or 12-norm
1 : list the value of the L2- or 12-norm

LZNORM_POUT >P>
L2NORM : 0/1 (INTEGER def: 1)
0 : do not store the value of the L2- or 12-norm
1 : store the value of the L2- or 1l2-norm

Monitormodule initialization:

module name : L2NORM
module group : LSRED
version number : 1.0
FORTRAN name : PEL2NM

File input/output:
none

Method:
The module is based on the algorithms proposed in /1/ and /2/.
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If the given transfer-function matrix G is unstable, then
a right coprime factorization with inner denominator of G
is first computed
-1
G = Q*R

where  and R are stable transfer-function matrices and R is
inner. If G is stable, then Q = Gand R = I.
Let (AQ,BQ,CQ,DQ) be the resulting state-space representation of Q.

For a continuous-time system the L2-norm of G is computed as
NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ’*X*BQ))
where X satisfies the continuous-time Lyapunov equation
AQ’xX + X*AQ + CQ’*CQ = 0.
For a discrete-time system the 12-norm of G is computed as
NORM2{G) = NORM2{Q) = SQRT(TRACE(BQ’#*X*BQ+DQ’*DQ))
where X satisfies the discrete-time Lyapunov equation
AQ *X*AQ - X + CO’*CQ = 0.
Literature
/1/ Varga A.,
On computing 2-norms of transfer-function matrices,
Proc. 1992 American Control Conference, Chicago, June 1992.
/2/ Varga A.
A Schur method for computing coprime factorizations

with inner denominators and applications in model reductionm,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1993,

Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
For the stable continuous-time system (A,B,C,D) used by the module
BTA the computed L2-norm is 3.8474,



For the unstable continuous-time system (A,B,C,D) used by the
module ASD the computed L2-norm is 7.9395.
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MONITORMODULE
LINFNORM - L-infinity norm of a transfer-function matrix

Monitormodule purpose:
Computes the L-infinity norm of the transfer-function matrix G of a
linear state-space model (4,B,C,D) by using the bisection method
propesed in /1/ or /2/ with optional extrapolation.

Optionally displayed results:
~ Computed L-infinity norm (def. display)
- Frequency where the L-infinity norm is attained (def. display)
- Statistical information on: relative and absolute
accuracy attained; number of performed iterations (def. display)

Upticnal outputs on database are:

- Computed L-infinity norm (def. output)
- Frequency where the L-infinity norm is attained (def. output)
Options:

Next case

Database Structure:

input:
linear system, state space
output:
<Result S-Name>
-LINFNORM value of L-infinity norm
-FREQ frequency where the L-infinity norm is attained
Dialeg

------ requested input

LS RS-NAME:

=> linear system name

or carriage return to end the module

INPUT SIGNALS - U,V,ALLIN 7

-> select inputs, default is U

OUTPUT SIGNALS - YM,YA,ALLOUT 7

-> select outputs, default is YM
—————— end

1. Level commands:

LINFNORM >C>

PARAM  : set options and accuracy parameter for norm computation
PLIST : set parameter values for listing of results
POUT : set parameter values for output on database

GLOBAL : output the L-infinity norm as a global variable
—————— requested input
Global variable name?
-> name for the global variable



COMPUTE : compute the L-infinity norm
If one of outputing parameters is set themn:
------ requested input
<Result S-NAME> ( <Default S-NAME> ):

-> If a blank is input, the <Default S5-Name> 1is used.
Otherwise the user must input a new S-Name under
which the result will be stored according to the
parameters selected through POUT.

The <Default S-name> is the S-name of the input

linear system appended by _LINFNORM.index, where

index is the next free value. If one does not use

the <Default S-Name>, there could already exist

other objects under the chosen < Result S-Name>.

Then the action taken depends on a status variable:

/SDEVERIF is set: It is asked whether all objects
can be or not deleted. If objects
should be not deleted, then a new
<Result S-Name> is asked for.

/SDENOVER is set: All objects under the given
structure are deleted.

------ end
END : terminate module

2. Level Commands:
LINFNORM_PARAM >P>
EXTRAPOL : 0/1 (INTEGER def: 0)
0 : use bisection without extrapolation
1 : use bisection with extrapolation
FACTOR : 0/1 (INTEGER def: 1)
: apply bisection on the original system
1 : apply bisection on the denominator factor of a left
coprime factorization with inner denominator of G
(necessary if the original system is unstable)
ACCURACY : desired relative accuracy (DOUBLE def: 1.0D-5)

LINFNORM_PLIST >P>
LINFNORM : 0/1 (INTEGER def: 1)
0 : do not list the value of the L-infinity norm
1 : list the value of the L-infinity norm
FREQ. : 0/1 (INTEGER def: 1)
0 : do not list the value of frequency at L-infinity norm
1 : list the value of frequency at L-infinity norm
STATINF : 0/1 (INTEGER def: 1)
0 : do not list statistical information
1 : list statistical information on: relative and absolute
accuracy attained; number of performed iteratioms.

LINFNORM_POUT >P>
LINFNORM : 0/1 (INTEGER def: 1)



0 : do not store the L-infinity norm
1 : store the the L-infinity norm
FREQ. 1 0/1 ‘ (INTEGER def: 1)
0 : do not store the value of frequency at L-infinity norm
1 : store the value of frequency at L-infinity norm

Monitormodule initialization:

module name ¢ LINFORM
module group : LSRED
versioh number : 1.0
FORTRAN name : PELINM

File input/output:
none

Method:
If the given transfer-function matrix G is unstable, then
a left coprime factorization with inner denominator of G
is first computed
-1
G =R =*{

where Q and R are stable transfer-function matrices and R is
inner. If G is stable, then = G and R = I.

Thus, the L-infinity norm of G equals H-infinity norm of Q.
The factorization is performed only if FACTOR is set to 1. The
algorithm to compute the factorization was proposed in /3/.

The calculation of the H-infinity norm of Q requires repeated checking
for pure imaginary eigenvalues of a Hamiltonian matrix H(q) depending
on a real parameter q. Successive values of q approach the H-infinity
norm of J and lie always between a lower and upper bounds on the
H-infinity norm. The bounds are updated after each iteration

by bisection. The iteration stops when

(the current upper bound) <= (1 + tol)*(the current lower bound)

where tol is the desired accuracy specified through the ACCURACY
parameter.

The bisection with extrapolation is quadratically convergent

and is usually faster than the simple bisection. The updating

of lower and upper bound is however more involved. It requires
additionally the evaluation, for each pair of imaginary eigenvalues,
of the maximal singular value of the transfer function matrix
evaluated at one of that eigenvalues. Two pairs of imaginary
eigenvalues which produce the two largest maximum singular values,
are used to update the lower and upper bounds for the next
bisection step.

For a discrete-time system the same method is used after applying to
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Q a bilinear transformation which preserves its H-infinity norm /4/.
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Remarks:
none

Life cycle:
1993 Aug A. Varga DLR FF-DF: coded

Packages required:
none

Libraries required:
RASP, LAPACK, BLAS (1,2,3)

Example:
For the stable continuous-time system (A,B,C,D) used by the module
BTA the computed infinity-norm is 4.2333 attained at frequency 3.093.

For the unstable continuous-time system (A,B,C,D) used by the module
ASD the computed infinity-norm is 20.06 attained at frequency 0.16.



