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1. Balancing and Model Reduction of Stable State-Space Systems

The subroutines of this chapter can be used to compute reduced order
models of stable state-space systems. Both additive and relative
model reduction methods are provided. All implemented methods are
based on the square-root accuracy enhancing technique. For several
methods, the implemented versions are alsc balancing-free methods.
All routines can be used for computing reduced models of both
continuous-time and discrete-time systems. Morecover, all routines

can be used to reliably compute minimal state-space realizations from
given non-minimal models.

1. Additive model reduction methods

If G and G, are the transfer-function matrices of the original and
reduced order systems, respectively, then the additive methods try
to compute G, such that the norm of the additive modelling error

A, = G-G,

is minimized. The implemented methods are square-root versions of the
Balance and Truncate (B & T) method /1/, Singular Perturbation
Approximation {SPA) method /2/ and the Hankel-Norm Approximation
(HNA) method /3/. For the B & T and SPA methods, balancing-free
versions, based on algorithms proposed in /4/ and /5/, are also
provided. All methods possess the same infinity-norm errcr bounds

for an r-th order reduced order model (G, of an n-th order system (:

n
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where oy, ¢ = 1, 2, ..., n are the Hankel-singular values of the
system. The Hankel-singular values are the positive square-rocots
of the eigenvalues of the product of systems gramians.

The following routines are available for additive model reduction:

RPMRIB  computes a reduced order model by using the square-root
version of the B & T method /6/. This subroutine can alsc be
used for computing balanced minimal state-space realizations
of continuous-time or discrete-time systems.

RPMRBT  computes a reduced order model by using the square-root and
balancing-free version of the B & T method /4/.



RPMRSP computes a reduced order model by using the square-root and
balancing-free version of the SPA method /5/.

RPMROH computes a reduced order model by using the optimal HNA
method of /3/ based on the square-root balancing method.

2. Relative model reduction methods

If G and (G, are the transfer-function matrices of the original and of
the reduced order systems, respectively, then the relative methods
try to compute (4, such that the norm of the relative modelling error
A, defined by the expression

Gr = G(I—Af)

is minimized. The implemented method is a square-root version of the
Balanced Stochastic Truncation (BST) method /8/. A balancing-free
version of this method, based on the algorithm proposed in /9/,

is also provided. The BST method possesses the following bound for
the relative error for an r-th order reduced order model (G, of an
n-th order system G:

n
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where o;, ¢t = 1, 2, ..., n are the Hankel-singular values of an

all-pass phase matrix.
The following routines are available for relative model reduction:

RPMRSE  computes a reduced order model by using the square-root
version of the BST method /8/. This subroutine can also be
used for computing stochastically balanced minimal
state-space realizations of continucus-time or discrete-time
systens.

RPMRST computes a reduced order model by using the square-rcot and
balancing-free version of the BST method /9/.

For both subroutines, a parameter a can be used as a weight
between the absolute and relative errors. For a« > 0, the BST
method is performed on a modified system with the transfer-function
matrix [ oIl. A zero value of « means a pure relative error
minimization. Large positive values of a produce approximations
which minimize the absolute approximation error. When «a tends to
infinite, the BST method produces identical results with the B & T
method. -



3. Auxiliary tools

Two subroutines are provided to be used in conjunction with the model
reduction subroutines for stable systems:

RPMRSR  computes a reduced order model by using state residualization
(singular perturbation) formulas. The reduced model has the
same steady-state gain as the original system.

RPMRDC performs a multivariable two-parameters bilinear transform.
This routine is mainly used for continuous-to-discrete or
discrete-to-continuous mapping of linear systems.

Literature:
/1/ Moore B.C.
Principal Component Analysis in Linear Systems: Controllability,
Observability, and Model Reduction.
IEEE Trans. Autom. Control, vol. AC-26, pp. 17-31, 1981.
/2/ Liu Y. and Anderson B.D.OD.
Singular Perturbation Approximation of Balanced Systems,
Int. J. Control, Vol. 50, pp. 1379-1405, 1989,
/3/ Glover, K.
All Optimal Hankel Norm Approximation of Linear Multivariable
Systems and Their L-Infinity Error Bounds,
Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
/4/ Varga A.
Efficient Minimal Realization Procedure Based on Balancing.
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 7-10, 1991,
Eds. A. El Moudui, P. Borne, S.G. Tzafestas, Vol. 2, pp. 42-46.
/5/ Varga A.
Balancing-Free Square-Root Algorithm for Computing Singular
Perturbation Approximations. Proc. 30-th IEEE CDC, Brighton,
Dec. 11-13, 1991, Vol. 2, pp. 1062-1065.
/6/ Tombs M.S. and Postlethwaite I.
Truncated Balanced Realization of Stable, Non-minimal
State-Space Systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
/7/ Desai U.B. and Pal D.
A Transformation Approach to Stochastic Model Reduction.
IEEE Trans. Autom. Control, vol. AC-29, pp. 1097-1100, 1984.
/8/ Safonov M.G. and Chiang R.Y.
Model Reduction for Robust Control: a Schur Relative-Error
Methed.
Tnt. J. Adapt. Contr. & Sign. Proc., vol.2, PP-259-272, 1988.
/9/ Varga A. and Fasol K.H.
A New Square-Root Balancing-Free Stochastic Truncatiom Model
Reduction Algorithm.
Prepr. 12th IFAC Congress, Sydney, vol. 7, pp. 153-156, 1993.



SUBROUTINE RPMRIB

Square-root Balance & Truncate Model Reduction

Procedure purpose:
Given the matrices A, B and C of an original stable model,
this subroutine computes the corresponding matrices Ar, Br and Cr
of a reduced order model by using the square-root balance and
truncate method of /1/. The routine can be also used for computing
balanced minimal state-space realizations.

Usage:

CALL RPMRIB(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV,

DISCR :

TOL

RWORK, LWORK, *)

IN, OUT, DOUBLE (N,N)

On input : system state matrix A of the original model
(column dense)

On output : the NR#NR matrix Ar of the reduced model

(column dense)

IN, INTEGER :

dimension of state vector

IN, QUT, DOUBLE (N,M)

On input : system input matrix B of the original model
(colunn dense)

On output : the NR*M matrix Br of the reduced model
(column dense)

IN, INTEGER

dimension of input vector

IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(column dense)

On output : the P*NR matrix Cr of the reduced model
(column dense)

IN, INTEGER

dimension of output vector

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

absolute tolerance used for determining the order of the

reduced model (if FIXORD = 0). When TOL .LE. 0, an internally

computed default value TOL = N*EPS*HNORM(A,B,C) is used,

where EPS is the machine precision (see the LAPACK Library

Routine DLAMCH) and HNORM(4,B,C) is the Hankel-norm of the

original model (computed in HSV(1)).



FIXORD:

IN, INTEGER

desired order of the reduced model. If FIXORD > 0, the order
NR is set to FIXORD. If FIXORD = 0, the order NR is chosen in
accordance with the specified tolerance TOL.

NR 0UT, INTEGER
resulted order of the reduced model. If FIXORD > 0, NR is set
equal to FIXORD. If FIXORD = 0, NR is set equal to the number
of Hankel singular values greater than TOL.
HSV OUT, DOUBLE (N)
Hankel singular values of the system (the square roots of
eigenvalues of the product of gramians) ordered decreasingly.
RWORK : OUT, DOUBLE (LWORK)
working array.
LWORK : IN, INTEGER

dimension of working array RWORK.
The value of LWORK must be at least N*(3*xN+MAX{N,M,P)+4).
RETURN 1, target label in case of error (e.g. *1111)

File input/ oulput:

none

Method:

Literature

/1/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems, Int. J. Control, Vol. 46,
pPp. 1319-1330, 1987.

Remarks:

- If HSV{(NR) > HSV(NR+1), the resulting reduced model (Ar,Br,Cr)
is stable and minimal.

- In the continuous-time case, the reduced model is balanced.

- If G and Gr are the transfer-function matrices of the systems
(4,B,C) and (Ar,Br,Cr), respectively, then the approximation error
G-Gr satisfies the inequalities

HSV(NR+1) <= INFNORM{G-Gr) <= 2*( HSV(NR+1) + ... + Hsv(NW) ),

where INFNORM(G) is the infinity-norm of G.

- The reduced model is computed after the system is reduced to
a state coordinate form in which A is in a real Schur form. The
matrices of the reduced model are then computed as

Ar =

Ti*A*T, Br = Ti*B, Cr = C*T,

where T and Ti are N*NR and NR*N projection matrices, respactively.
These matrices are available, in column dense forms, in the working
array RWORK beginning with elements RWORK(1) and RWORK(N#N+1),
respectively.

- The accuracy loss which can be induced in the reduced model by



applying these projections or, if T and Ti are invertible, by
transforming the given system to the balanced coordinate form,
can be estimated by determining the condition numbers of the
projection matrices T and Ti.

Copyright:
1992 - DLR Imstitut fuer Dynamik der Flugsysteme

Life cycle:
1992 MAY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time system (A,B,C) with the following matrices:

( ~.04165 0 4.92 -4.92 0 0 0)

( -5.21 -12.5 0 0 0 0 0)

( 0 3.33 -3.33 0 0 0 0)
A= .545 0 0 0 -.545 0 0 )

( 0 0 0 4.92 -.04165 0 4.92)

( 0 0 0 0 -5.21 -12.5 0)

( 0 0 0 0 0 3.33 -3.33)

( 0 0)

( 12.5 0 )

( 0 0 ) (1 0 0 0 0 0 0)
B = ( 0 0 ) ¢c=(0 0 0 1 0 0 0)

( 0 0 ) (0 0 0 01 0 0)

( 0 12.5)

( 0 0)

a balanced state-space realization can be computed with the following
sequence of statements:

N =7
M =2

P =3

DISCR = .FALSE.
TOL = 0.0D0
FIXORD = 0

LWORK = 4%(N+1)*N

CALL RPMRIB(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV,
* RWORK, LWORK, *1111)



The matrices of balanced system are:

( -.3967 3.02
( -3.0871 -.25
( 0

Ar = ( 0
( -.9800 -.60
( .459%94¢ .41
(

-.9987
-.7254
-1.0591 -1
. 2046 1
-.9716
.5840 -
-.5738 -.

m

H

[}
NN AT T AN AN

(=Y

s

Cr = ( .1612 .4397

79
24
0
0
79
08
0

. 9887
. 7254
.0591
. 2046
.9716
.5840

5738

-.6258

o e NS N N NS NS

-.9922 .6335 -1.0591

0

( .9922 -.6335 -1,0591

The computed Hankel singular

2.5139 2.0846
Error Messages:

-1-

1.9178

o
0

0
0

-1.2046
0

0 .9557
0 -.2601
-.5849 -2.2166
2.2166 -1.8927

0 -1.7248
0 2.1655
1.8629

.8978
-.5253

values are:

0.7666

Invalid parameter value on euntry.

_2-

Reduction of A to RSF form failed.

-3-

The system is not stable.

-4 -

0.5473

Computation of Hankel singular values failed.

_5..

0
0

0

.4547
-.3651

0 -.625

0 -1.862
-1.9937
-13.4977

0 -13.394

.5838 -.5738 )
.0224 0)
-1.2046 -.8978 -.5838 -.5738 )

0.0253 0.0246

Selected order larger than the order of minimal realization.

-6_

Not enough working storage. It should be at least //LENG//.

10
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SUBROUTINE RPMEBT

Square-Root Balancing-Free Balance & Truncate Model Reduction

Procedure purpose:
Given the matrices A, B and C of an original stable model,
this subroutine computes the corresponding matrices Ar, Br and Cr
of a reduced order model by using the square-root balancing-free
version of the balance and truncate (B & T) method /1/.
The routine can be also used for computing minimal realizations of
state-space systems.

Usage:

CALL RPMRBT(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV, RWORK,

DISCR :

TOL

FIXORD:

LWORK, IWORK, *)

IN, OUT, DOUBLE (N,N)

On input : system state matrix A of the original model
(column dense)

On output : the NR#NR matrix Ar of the reduced model
(column dense)

IN, INTEGER

dimension of state vector

IN, OUT, DOUBLE (N,M)

On input : system input matrix B of the original model
(column dense)

On output : the NR*M matrix Br of the reduced model
(column dense)

IN, INTEGER

dimension of input vector

IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(column dense)

On output : the P*NR matrix Cr of the reduced model
(column dense)

IN, INTEGER

dimension of output vector

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

absolute tolerance used for determining the order of the

reduced model (if FIXORD = 0). When TOL .LE. 0, an internally

computed default value TOL = N*EPS*HNORM(A,B,C) is used, where

EPS is the machine precision (see the LAPACK Library Routine

DLAMCH) and HNORM(A,B,C) is the Hankel-norm of the original

model (computed in HSV(1)).

IN, INTEGER
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desired order of the reduced model. If FIXORD > 0, the order
NR is set to FIXORD. If FIXORD = O, the order NR is chosen in
accordance with the specified tolerance TOL.

NR 0uUT, INTEGER
resulted order of the reduced model. If FIXORD > 0, NR is set
equal to FIXORD. If FIXORD = 0, NR is set equal to the number
of Hankel singular values greater than TOL.
HSV OUT, DOUBLE (N)
Hankel singular values of the system (the square roots of
eigenvalues of the product of gramians) ordered decreasingly.
RWORK : OUT, DOUBLE (LWORK)
working array.
LWORK : 1IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least N*(3*xN+MAX(N,M,P)+4).
IWORK : OUT, INTEGER (N)
* RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:

Literature

/1/ Varga A.
Efficient minimal realization procedure based on balancing
Proc. of IMACS/IFAC Symp. MCTS, Lille, Framce, May 7-10, 1991,

Eds.

Remarks:

4. El Moudui, P. Borne, 5.G. Tzafestas, Vol. 2, pp. 42-46,.

- If HSV(NR) > HSV(NR+1), the resulting reduced model (Ar,Br,Cr)
is stable and minimal, but generally not balanced.

- If G and Gr are the transfer-function matrices of the systems
(A,B,C) and (Ar,Br,Cr), respectively, then the approximation error
G-Gr satisfies the inequalities

HSV(NR+1) <= INFNORM(G-Gr) <= 2*( HSV(NR+1) + ... + HSV(N) ),

where INFNORM(G) is the infinity-norm of G.
- The reduced model is computed after the system is reduced to

a state coordinate form in which A is in a real Schur form. The
matrices of the reduced model are then computed as

Ar = Ti*AxT, Br = Ti*B, Cr = CxT,

where T and Ti are N*NR and NR*N projection matrices, respectively.
These matrices are available, in column dense forms, in the working
array RWORK beginning with elements RWORK{(1) and RWORK(N*N+1),
respectively. In the implemented version, T always results with
orthonormal columns.

The accuracy loss which can be induced in the reduced model by
applying these projections can be estimated by determining the



condition number of the projection matrix Ti.

Copyright:
1992 - DLR Inst

Life cycle:
1992 MAY A, V

Libraries required:
RASP, BLAS (1,2

Ezample:
Given the conti

subroutine RPMR

2.5139 2.08

itut fuer Dynamik der Flugsysteme

arga, Ruhr-Universitaet Bochum: coded

,3), LAPACK

nuous-time system example (A4,B,C) used by the

IB, with the Hankel singular values

46 1.9178 0.7666 0.5473 0.0253 0.0246 ,

a fifth order appreximate model can be computed with the following
sequence of statements:

N

M

P
DISCR
TOL
FIXORD
LWORK

H

7

2

3

.FALSE.
0.1D0

0

4% (N+1)*N

CALL RPMRBT(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV,

The matrices of

( 1.3451
( 4.0214
Ar = ( 0
( 0
( -1.2402
( -.3857
( 3.1753
Br = ( .7447
( -3.6872
( -1.8197
( -.6704
Cr = ( .1089
( .6704

RWORK, LWORK, IWORK, *1111)

reduced system are:

-5,0399 0 0 -4.5315 )
-3.6604 0 0 =-.9056 )
0 .5124 -1.7910 0 )
0 4.2167 -2.9900 o)
1,6416 0 0 -.0586)
.3857 )
-3.1753 )
L7447 )
-3.6872 )
1.8157 )
-.1828 .6582 .2222 .0104 )
-.4867 0 0 -.8651)

.1828 .6582 .2222  -.0104 )

13



Error Messages:

-1-

Invalid parameter value on entry.

-2-

Reduction of A to RSF form failed.

-3-

The system is not stable.

_4_

Computation of Hankel singular values failed.
_5_

Selected order larger than the order of minimal realization.

—6_
Not enough working storage. It should be at least //LENG//.

14



SUBROUTINE RPMRESP

Square-Root Balancing-Free Singular Perturbation Approximation

Procedure purpose:
Given the matrices A, B, C and D of an original stable model,
this subroutine computes the corresponding matrices Ar, Br, Cr and Dr
of a reduced order model by using the square-root balancing-free
version of the singular perturbation approximation (SPA) method /1/.

Usage:

CALL RPMRSP(A, N, B, M, C, P, D, DISCR, TOL1, TOL2, FIXORD, BAL, NR,

DISCR :

HSV, RWORK, LWORK, IWORK, *)

IN, OUT, DOUBLE (N,N)

On input : system state matrix A of the original model
(column dense)

On output : the NR*NR matrix Ar of the reduced model
(column dense)

IN, INTEGER

dimension of state vector

IN, OUT, DOUBLE (N,M)

On input : system input matrix B of the original model
(column demnse)

On output : the NR*M matrix Br of the reduced model
(column dense)

IN, INTEGER

dimension of input vector

IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(colunn dense)

On output : the P*NR matrix Cr of the reduced model
(column dense)

IN, INTEGER

dimension of output vector

IN, OUT, DOUBLE (P,M)

On input : system feedthrough matrix D of the original model
(column dense)

On output : the P*M matrix Dr of the reduced model
(column dense)

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

15
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ToL1 : IN, DOUBLE
absolute tolerance used for determining the order of the
reduced model (if FIXORD = 0). When TOL1 .LE. 0, an internally
computed default value TOL1 = SQRT(N*EPS)*HNORM(A,B,C) is used,
where EPS is the machine precision (see the LAPACK Library
Routine DLAMCH) and HNORM(A,B,C) is the Hankel-norm of the
original model (computed in HSV(1)).

TOL2 : 1IN, DOUBLE
absolute tolerance used for determining the order of the
minimal realization. When TOL2 .LE. O, an internally
computed default value TOL2 = N*EPS*HNORM(A,B,C) is used.

FIXORD: IN, INTEGER
desired order of the reduced model. If FIXORD > 0, the order
NR is set to FIXORD. If FIXORD = Q, the order NR is chosen in
accordance with the specified tolerance TOL1.

BAL : IN, LOGICAL, SELECTION PARAMETER
.TRUE. : determine a balanced reduced model
FALSE. : determine an unbalanced reduced model
(recommended option)
NR : 0UT, INTEGER

resulted order of the reduced model. If FIXORD > 0, NR is set
equal to FIXORD. If FIXORD = 0, NR is set equal to the number
of Hankel singular values greater than TOL1.
HSV  : 0UT, DOUBLE (N)
Hankel singular values of the system (the square roots of
eigenvalues of the product of gramians) ordered decreasingly.
RWORK : 0OUT, DOURLE (LWORK)
vorking array.
LWORK : IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least N*(3*N+MAX(N,M,P)+4).
IWORK : 0OUT, INTEGER (M)
vorking array. On normal exit, IWORK(1) contains NMIN, the
order of the computed minimal realization.
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:
Literature
/1/ Varga A.
Balancing-free square-root algorithm for computing singular
perturbation approximations. Proc. 30-th IEEE CDC, Brighton,
Dec. 11-13, 1891, Vol. 2, pp. 1062-1065.

Remarks:

- If HSV(NR) > HSV(NR+1), the resulting reduced model (Ar,Br,Cr,Dr)
is stable, minimal and balanced if BAL = .TRUE. . It has the same
steady-state gain as the original system.

- If G and Gr are the transfer-function matrices of the systems



17

(A,B,C,D) and (Ar,Br,Cr,Dr), respectively, then the approximation
error G-Gr satisfies the inequalities

HSV(NR+1) <= INFNORM(G-Gr) <= 2*( HSV(NR+1) + ... + HSV(N) ),

where INFNORM(G) is the infinity-norm of G.

- The reduced medel is computed after the system is reduced to
a state coordinate form in which A is in a real Schur form. The
matrices of a minimal realization are computed as

Am = Ti*A*T, Bm = Ti*B, Cm = C*¥T , (1)

where T and Ti are N*NMIN and NMIN*N projection matrices, respectively.
These matrices are available, in column dense forms, in the working
array RWORK beginning with elements RWORK(1) and RWORK(N#N+1),
respectively, while NMIN is contained in the element IWORK(1).

The matrices of the reduced model are computed from the minimal

system (Am,Bm,Cm,D) by using singular perturbation formulas.

- The accuracy loss which can be induced in the reduced model by
applying the projections (1) can be estimated by determining the
condition numbers of the projection matrices T and Ti.

- By choosing TOL1 = TOL2 > 0, this subroutine can be also used
to compute reduced models by using either the balanced B & T method,
if BAL = .TRUE. , or the balancing-free B & T method, if BAL = .FALSE..

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 MAY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time system example (4,B,C,D) used by the
subroutine RPMRIB (D = 0), with the Hankel singular values

2.5139 2.084s8 1.9178 0.7666 0.5473 0.0253 0.0246

L

a fifth order approximate model can be computed with the following
sequence of statements:

N =7

M =2

P =3
DISCR = .FALSE.
TOL1 = 0.1D0
TOLZ = 1.0D-14
FIXORD = 0

BAL = ,FALSE.



LWORK = 4x(N+1)*N
CALL RPMRSP(4, N, B, M, C, P, D, DISCR, TOL1, TOL2, FIXORD,
% BAL, NR, HSV, RWORK, LWORK, IWORK, *1111)

The matrices of reduced system are:

( 1.3960 -5.1248 0 0 -4.4331 )
( 4.1411 -3.8605 0 0 -.6738 )
Ar = ( 0 0 .5847 -1.9230 0 )
( 0 0 4.3823 -3.2922 0)
( -1.3261 1.7851 0 0 -.2249 )
( -.2901 .2901 )
( 3.4004 -3.4004 )
Br = ( .6379 .6379 )
( -3.9315 -3.9315 )
( -1.9813 1.9813 )
( -.6570 -.2053 .6416 .2526 .0364 )
Cr = ( .1094 =-.4875 0 0 -.8641 )
( .8570 .2053 .6416 .2526 -.0364 )
( .0498 -.0007 )
Dr = ( .0010 -.0010 )
( -.0007 .0498 )
Error Messages:
_1..
Invalid parameter value on entry.
_2_
Reduction of A to RSF form failed.
_3_
The system is not stable.
_4..
Computation of Hankel singular values failed.
-5_

Selected order larger than the order of minimal realization.
—-G=-

Singular matrix in the singular perturbation formulas.

-7~-

Not enough working storage. It should be at least //LENG//.

18
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SUBROUTINE RPMROH

Optimal Hankel-Norm Approximation with Square-Root Balancing

Procedure purpose:
Given the matrices A, B, C and D of an original stable model, this
subroutine computes the corresponding matrices Ar, Br, Cr and Dr of
a reduced order model by using the optimal Hankel-norm approximation
method /1/ in conjunction with square-root balancing /2/.

Usage:

CALL RPMROH(4A, N, B, M, C, P, D, DISCR, TOL1, TOL2, FIXORD, NR, HSV,

DISCR :

TOL1

RWORK, LWORK, IWORK, *)

IN, OUT, DOUBLE (N,N)

On input : system state matrix A of the original medel
(column dense)

On output : the NR*NR matrix Ar of the reduced model.
(column dense)

IN, INTEGER

dimension of state vector

IN, OUT, DOUBLE (N,M)

On input : system input matrix B of the original model
(column dense)

On output : the NR*#M matrix Br of the reduced model
(column dense)

IN, INTEGER

dimensicn of input vector

IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(column dense)

On output : the P*NR matrix Cr of the reduced model
(column dense)

IN, INTEGER

dimension of output vector

IN, OUT, DOUBLE (P,M)

On input : system feedthrough matrix D of the original model
(column dense)

Un output : the P*M matrix Dr of the reduced model
(column dense)

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete~time system, if DISCR = .TRUE.

IN, DOUBLE

absolute tolerance used for determining the order of the

reduced model (if FIXORD < 0). When TOL1 .LE. O, an internally

computed default value TOL1 = SQRT(N*EPS)*HNORM(A,B,C) is used,

vhere EPS is the machine precision (see the LAPACK Library



TOL2

FIXORD:

NR

HSV

RWORK :

LWORK

IWORK :
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Routine DLAMCH) and HNORM(A,B,C) is the Hankel-norm of the
original model (computed in HSV(1)).

IN, DOUBLE

absolute tolerance used for determining the order of the
minimal realization. When TOL2 .LE. 0, an intermally

computed default value TOL2 = N*EPS*HNORM(A,B,C) is used.

IN, INTEGER

desired order of the reduced model. If FIXORD < 0, the order
is chosen in accordance with the specified tolerance TOL1.
OUT, INTEGER

resulted order of the reduced model. If FIXORD >= 0, the order
NR is set to max(0,FIXORD-KR+1), where KR is the multiplicity
of Hankel singular value HSV(FIXORD+1). If FIXORD < 0, the
order NR is set equal to the number of Hankel singular values
greater than TOL1.

OUT, DOUBLE ()

Hankel singular values of the system (the square roots of
eigenvalues of the product of gramians) ordered decreasingly.
OUT, DOUBLE (LWORK)

working array.

: IN, INTEGER

dimension of working array RWORK.

The value of LWORK must be at least N*(3*N+MAX(N,M,P)+4).
QUT, INTEGER (N)

working array. On normal exit, IWORK(1) contains NMIN, the
order of the computed minimal realization.

RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:

Literature

/1/ Glover, K.
All optimal Hankel norm approximation of linear multivariable
systems and their L-infinity error bounds,
Int. J. Control, Vel. 36, pp. 1145-1193, 1984.

/2/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems,
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

Remarks:

~ The resulting reduced model (Ar,Br,Cr,Dr) is stable and minimal.

- If G and Gr are the transfer-function matrices of the systems
(A,B,C,D) and (Ar,Br,Cr,Dr), respectively, then the approximation
error G-Gr satisfies the inequalities

HSV(NR+1) <= INFNORM(G-Gr) <= 2*( HSV(NR+1) + ... + HSV(N) ),

where INFNORM(G) is the infinity-norm of G. Moreover, the computed



reduced system is optimal for the Hankel-norm, that is, the
approximation error G-Gr satisfies

HNORM(G-Gr) = HSV(NR+1),

where HNORM(G) is the Hankel-norm of G.

The reduced model is computed after the system is reduced to

a balanced minimal state-space realization by using the projectien
formulas

Am = Ti#A*T, Bm = Ti*B, Cm = C*T , (1)

where T and Ti are N*NMIN and NMIN*N projection matrices,
respectively. The matrix T is available, in a column dense form,
in the working array RWORK beginning with element RWORK(1),
while NMIN is contained in the element IWORK(1).

The accuracy loss which can be induced in the reduced model by
applying the balancing projections (1) can be estimated by
determining the condition number of the projection matrix T.

By choosing TOL1 = TOL2 > 0, this subroutine can be alsoc used
to compute a balanced minimal realization by using the
square-root B & T method.

Copyright:

1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:

1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:

Given the continuous-time system example (A,B,C,D) used by the
subroutine RPMRIB (D = 0), with the Hankel singular values

2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 ,

a fifth order approximate model can be computed with the following

sequence of statements:

N =7

M = 2

P =3

DISCR = .FALSE.
TOLL = 0.1D0

TOL2 = 1.0D-14
FIXORD = ~1

LWORK = 4*(N+1)*N

CALL RPMROH(A, N, B, M, ¢, P, D, DISCR, TOL1, TOL2, FIXORD,
* NR, HSV, RWORK, LWORK, IWORK, *1111)

21



The matrices of reduced system are:

( -.5038 -1.8355 -2.6289 0 0)
( 5.3070 -.5038 3.2250 0 0)
Ar = ( 0 0 -1.5171 0 0)
( 0 0 0 -1.2925 9.0718 )
( 0 0 0 -.5047 -1.2925)
( -.3614 .3614 )
( 1.5343 -1.5343)
Br = ( -1.1096 1.1096 )
( -4.5325 -4.5325 )
( .7396 7396 )
( -.3055 -1.8971 -2.1124 .4421 2.1023 )
Cr = ( 1.1112 .0394  -.3119 0 0)
( .3055 1.8971 2.1124 .4421 2.1023 )
( .0126 -.0126 )
Dr = ( .0005 ~.0005 )
( -.0126 .0126 )

Error Messages:

-1-

Invalid parameter value on entry.

-2

Reduction of A to RSF form failed.

_3_

The system is not stable.

-4-

Computation of Hankel singular values failed.

-5-

Selected order larger than the order of minimal realization.
-6-

The computation of stable projection failed.

-7-

Not enough working storage. It should be at least //LENG//.



SUBROUTINE RPMRSB
Square-root Balanced Stochastic Truncation Method

Procedure purpose:
Given the matrices A, B, C and D of an original stable model,
this subroutine computes the corresponding matrices Ar, Br, Cr and Dr
of a reduced order model by using the square-root version of the
balanced stochastic truncation (BST) method of /1/.
For the applicability of the BST method, the given system must have
the number of systems cutputs less than or equal to the number of
systems inputs and the transfer-function matrix of the system G,
must have no zeros on the imaginary axis for a continuous-time system
or on the unit circle for a discrete-time system.
In particular, the feedthrough matrix D must have maximal row rank.
If D bas maximal column rank, the BST method can be employed
on the dual system with the transfer-function matrix G’.

A parameter ALPHA can be used as a weight between the absolute and
relative erreors. For ALPHA <= 0, the BST method is performed on the
original system. If ALPHA > 0, the BST method is performed on a
modified system with the transfer-function matrix ( G ALPHA*I ).
This is the recommended approach to be used when the conditions on
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the number inputs and outputs and/or on the rank of D are not fulfilled

by a given system.
Usage:

CALL RPMRSB(A, N, B, M, ¢, P, D, DISCR, ALPHA, TOL, FIXORD,
NR, HSV, RCOND, RWORK, LWORK, IWORK, *)

A : IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the original medel
(column dense)
On output : the NR#NR matrix Ar of the reduced model
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the original model

(column dense)
On output : the NR*M matrix Br of the reduced model
(column dense)

M : IN, IKTEGER
dimension of input vector
C : IN, OUT, DOUBLE (P,N)
On input : system cutput matrix € of the original model

(column dense)
On output : the P*NR matrix Cr of the reduced model
(column dense)



DISCR :

ALPHA :

TOL

FIXORD:

HSV

RCOND :

RWORK :

LWORK :
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IN, INTEGER
dimension of output vector
IN, OUT, DOUBLE (P,M)
On input : system feedthrough matrix D of the original model
{column dense)
On output : the P#M matrix Dr of the reduced model
(column dense)
IN, LOGICAL
specifies the type of the system:
continuous-time system, if DISCR = .FALSE., or
discrete~time system, if DISCR = .TRUE.
IN, DOUBLE, SELECTION PARAMETER
ALPHA > 0O specifies the absolute/relative error weighting
parameter. A large positive value of ALPHA favours the
minimization of the absolute approximation error, while a
small value of ALPHA is appropriate for the minimization
of the relative error.
ALPHA <= 0 means pure relative error method and can be
used only if rank(D) = P and P <= M.
IN, DOUEBLE
absclute tolerance used for determining the order of the
reduced model (if FIXORD = 0). When TOL .LE. O, an intermnally
computed default value TOL = N*EPS is used, where EPS is the
machine precision (see the LAPACK Library Routine DLAMCH).
IN, INTEGER
desired order of the reduced model. If FIXORD > C, the order NR
is set to FIXORD. If FIXORD = 0, the order NR is chosen in
accordance with the specified tolerance TOL.
OUT, INTEGER
resulted order of the reduced model. If FIXORD > 0, NR is set
equal to FIXORD. If FIXORD = 0, NR is set equal to the number
of singular values (HSV(i), i = 1, N) greater than TOL.
OUT, DOUBLE (N)
The Hankel singular values of the systems phase matrix,
ordered decreasingly. The singular values are less than or
equal to 1.
OUT, DOUBLE
indicator of conditioning of the Riccati equation satisfied
by the observability Gramian. A small value of RCOND
(RCOND <= 1.E-7 ) means possible accuracy loss due to an
ill-conditioned Riccati equation. Usually, the conditioning
can be improved by choosing a larger value for ALPHA.
OUT, DCUBLE (LWORK)
working array.
IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least
P+MB + max(MB*P,8+N) + N*(2*MB+P+N+max(N,M,P)+4*max(P,2«N),
where MB = M+P i1f ALPHA > 0 and MB = M otherwise.
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IWORK : OUT, INTEGER (2*N)
working array.
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:
Literature
/1/ Safonov M.G. and Chiang R.Y.
Model reduction for robust control: a Schur relative
error method,
Int. J. Adapt. Contr. & Sign. Proc., vol.2, pp.2b63-272, 1988.

Remarks:

- If HSV(NR) > HSV(NR+1), the resulting reduced model (Ar,Br,Cr,Dr)
is stable and minimal.

- In the continuous-time case, the reduced model is stochastically
balanced.

- If G and Gr are the transfer-function matrices of the systems
(A,B,C,D) and (Ar,Br,Cr,Dr), respectively, then the relative
approximation error satisfies the inequalities

N
HSV(NR+1) <= INFNORM(relerr) <= 2 * Sum HSV(i)/(1-HSV(i))
i=NR+1
where INFNORM(G) is the infinity-norm of G. The relative error
relerr is defined by the expression

Gr = G*{(I-relerr)

- The reduced model is computed after the system is reduced to
a state coordinate form in which A is in a real Schur form. The
matrices of the reduced model are then computed as

Ar = Ti*AxT, Br = Ti*B, Cr = CxT,

where T and Ti are N*NR and NR*N projection matrices, respectively.
These matrices are available, in column dense forms, in the working
array RWORK beginning with elements RWORK(1) and RWORK(N*N+1),
respectively.

- The accuracy loss which can be induced in the reduced medel by
applying these projections or, if T and Ti are invertible, by
transforming the given system to the balanced coordinate form,
can be estimated by determining the condition numbers of the
projection matrices T and Ti.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded



Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time system example (A,B,C,D) used by the
subroutine RPMRIB (D = 0), a stochastically balanced model for the
system (G I) can be computed with the following sequence of
statements:

N =7

M = 2

P =3

DISCR = .FALSE.

TOL = 0.0D0

FIXORD = O

ALPHA = 1.0DO

LWORK = P*(M+P) + N*(10*N+2*M+3*P+8)

CALL RPMRSB(A, N, B, M, C, P, D, DISCR, ALPHA, TOL, FIXORD,
* NR, HSV, RCOND, RWORK, LWORK, IWORK, *1111)

The matrices corresponding to the stochastically balanced system (G I)
are: ~

( -.1996 0 -2.8560 0 1.4913 -.5003 0 )
( 0 -.2774 0 -2.3059 0 0 -.5931)
( 2.9100 0 -.1252 0 -.0070 -.3191 0 )
Ar = ( 0 2.3059 0 -2.0184 0 0 -2.3648 )
{ -1.50338 0 .6922 0 -1.9158 2.4031 0)
( -.58023 0 .4349 0 -2.5019 -13.6311 0)
( 0 -.5931 0 2.3648 0 0 -13.5759 )
( .4191 -.4131)
( -.4857 -.4857 )
( -.3173 .3173 )
Br = ( .9524 .9524 )
( .8724 -.8724)
( .5402 -.5402 )
( -.5320 -.5320 )
( 1.8572 ~1.7570 .6352 =-1.1934 -.9958 .5404 -.6323 )
Cr = ( -.1816 0 .8944 0 .4040 .0137 0)
( -1.8572 -1.7570 -.6352 =-1.1934 .9958 -.5404 -.5323 )

The computed singular values are:
.8803 .8506 .8038 4494 .3973 .0214 .0209

The resulted value of RCOND is 0.51984 .

26
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Error Messages:

_1-

Invalid parameter value on entry.

-

A matrix reduction to RSF form failed.
_3_

The system is not stable.

-4 -

Computation of singular values failed.
-5-

Selected order larger than the order of minimal realization.
-5=

The matrix D has no maximal row rank.

-7-

Failure of eigenvalues reordering of the Hamiltonian matrix.
-8-

The Hamiltonian matrix is not dichotomic.

_9-

Singular matrix during sclution of Riccati equation.

-10-

Not emough working storage. It should be at least //LENG//.



SUBROUTINE RPMRST

Square-Root Balancing-Free Stochastic Truncation Method

Procedure purpose:
Given the matrices A, B, C and D of an original stable model,
this subroutine computes the corresponding matrices Ar, Br, Cr and Dr
of a reduced order model by using the square-root balancing-free
version of the balanced stochastic truncation (BST) method of /1/.
For the applicability of the BST method, the given system must have
the number of systems outputs less than or equal to the number of
systems inputs and the transfer-function matrix of the system G,
must have no zeros on the imaginary axis for a continuous-time system
or on the unit circle for a discrete-time system.
In particular, the feedthrough matrix D must have maximal row rank.
If D has maximal column rank, the BST method can be employed
on the dual system with the transfer-function matrix G’.

A parameter ALPHA can be used as a weight between the absolute and
relative errors. For ALPHA <= 0, the BST method is performed on the
original system. If ALPHA > 0, the BST method is performed on a
modified system with the transfer-function matrix ( G ALPHA*I ).
This is the recommended approach to be used when the conditions on
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the number inputs and outputs and/or on the ramnk of D are not fulfilled

by a given system.
Usage:

CALL RPMRST(A, N, B, M, C, P, D, DISCR, ALPHA, TOL, FIXORD,
NR, HSV, RCOND, RWORK, LWORK, IWORK, *)

A : IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the original model
(column dense)
On output : the NR*NR matrix Ar of the reduced model
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, O0UT, DOUBLE (N,M)
On input : system input matrix B of the original model

(column dense)
On output : the NR#M matrix Br of the reduced model
(column dense)

M : IN, INTEGER
dimension of input vector
C : 1IN, OUT, DOUBLE (P,N)
On input : system output matrix C of the original model

(column dense)

On output : the P*NR matrix Cr of the reduced model
(column dense)



DISCR :

ALPHA :

TOL

FIXORD:

NR

H3Y

RCOND :

RWORK :

LWORK :
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IN, INTEGER
dimension of output vector
IN, OUT, DOUBLE (P,M)
On input : system feedthrough matrix D of the original model
(colunn dense)
On output : the P*M matrix Dr of the reduced model
(column dense)
IN, LOGICAL
specifies the type of the system:
continuous-time system, if DISCR = .FALSE., or
discrete-time system, if DISCR = .TRUE.
IN, DOUBLE, SELECTION PARAMETER
ALPHA > 0 specifies the absolute/relative error weighting
parameter. A large positive value of ALPHA favours the
minimization of the absolute approximation error, while a
small value of ALPHA is appropriate for the minimization
of the relative error.
ALPHA <= 0 means pure relative error method and can be
used only if rank(D) = P and P <= M.
IN, DOUBLE
absolute tolerance used for determining the order of the
reduced model (if FIXORD = Q). When TOL .LE. 0, an internally
computed default value TOL = N*EPS is used, where EPS is the
machine precision {see the LAPACK Library Routine DLAMCH).
IN, INTEGER '
desired order of the reduced model. If FIXORD > 0, the order NR
is set to FIXORD. If FIXORD = 0, the order NR is chosen in
accordance with the specified tolerance TOL.
OUT, INTEGER
resulted order of the reduced model. If FIXORD > 0, NR is set
equal to FIXORD. If FIXORD = 0, NR is set equal to the number
of singular values (HSV(i), i = 1, N) greater than TOL.
OUT, DOUBLE (N)
The Hankel singular values of the systems phase matrix,
ordered decreasingly. The singular values are less than or
equal to 1.
OUT, DOUBLE
indicator of conditioning of the Riccati equation satisfied
by the observability Gramian. A small value of RCOND
(RCOND <= 1.E-7 ) means possible accuracy loss due to an
ill-conditioned Riccati equation. Usually, the conditioning
can be improved by choosing a larger value for ALPHA.
OUT, DOUBLE (LWORK)
working array.
IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least
P+#MB + max (MB#P,8+*N) + N*(2+MB+P+N+max(N,M,P)+4*max(P,2*N),
where MB = M+P if ALPHA > 0 and MB = M otherwise.
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IWORK : 0QUT, INTEGER (2%N)
working array.
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ outpui:
none

Method:
Literature
/1/ Varga A. and Fasol K.H.
A New Square-Root Balancing-Free Stochastic Truncation Model
Reduction Algorithm.
Prepr. 12th IFAC Congress, Sydney, vol. 7, pp. 153-156, 1983.

Remarks:

- If HSV(NR) > HSV(NR+1), the resulting reduced model (Ar,Br,Cr,Dr)
is stable and minimal, but not stochastically balanced.

- If G and Gr are the transfer-function matrices of the systems
(4,B,C,D) and (Ar,Br,Cr,Dr), respectively, then the relative
approximation error satisfies the inequalities

N
HSV(NR+1) <= INFNDRM(relerr) <= 2 * Sum HSV(i)/(1-HSV(i))
i=NR+1
where INFNORM(G) is the infinity-norm of G. The relative error
relerr is defined by the expression

Gr = G*{I-relerr)

- The reduced model 1is computed after the system is reduced to
a state coordinate form in which A is in a real Schur form. The
matrices of the reduced model are then computed as

Ar = Ti*A+T, Br = Ti*B, Cr = C*T,

where T and Ti are N*NR and NR*N projection matrices, respectively.
These matrices are available, in column dense forms, in the working
array RWORK beginning with elements RWORK(1) and RWORK(N*N+1),
respectively. In the implemented version, T always results with
orthonormal columns.

- The accuracy loss which can be induced in the reduced model by
applying these projections can be estimated by determining the
condition number of the projection matrix Ti.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1592 JUNE A. Varga, Ruhr-Universitaet Bochum: coded



Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time system example (A,B,C,D) used by the
subroutine RPMRIB (D = 0), a fifth order BST approximation for the
system (G I) can be computed with the following sequence of
statements:

N =7

M = 2

P =3

DISCR = .FALSE.

TOL = 0.1D0

FIXORD = 0O

ALPHA = 1.0D0

LWORK = P*(M+P) + N*(10*N+2*«M+3*P+8)

CALL RPMRST(A, N, B, M, C, P, D, DISCR, ALPHA, TOL, FIXORD,
* NR, HSV, RCOND, RWORK, LWORK, IWORK, *1111)

The matrices of reduced system are:

( 1.2729 0 -6.5947 0 =-3.4229 )
( 0 .8169 0 2.4821 0)
Ar = ( 2.9889 0 -2.9028 0 .3692 )
( 0 -3.3921 0 -3.1126 0)
( -1.4767 0 2.0339 0 -.6107 )
( .1331 -.1331)
( -.0862 -.0862 )
Br = ( 2.6777 -2.6777 )
( -3.5767 -3.5767 )
( ~2.3033 2.3033)
( -.6907 -.6882 ~.0779 .0958 -.0038 )
Cr = ( .0676 0 -.6532 0 -.7522)
( .6907 -.6882 L0779 .0958 .0038 )

The computed singular values are:
.8803 .8506 .8038 4494 .3873 .0214 .0209

The resulted value of RCOND is 0.51984 .
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Error Messages:

_1_

Invalid parameter value on entry.

_2_

A matrix reduction to RSF form failed.
_3_

The system is not stable.

_4__

Computation of singular values failed.
-5-

Selected order larger than the order of minimal realization.
-5=

The matrix D has no maximal row rank.

- =

Failure of eigenvalues reordering of the Hamiltonian matrix.
-8-

The Hamiltonian matrix is not dichotomic.

_9_

Singular matrix during solution of Riccati equationm.

-10~-

Not enough working storage. It should be at least //LENG//.



33

SUBROUTINE RPMRSR
Singular Perturbation Reduction Formulas
Procedure purpose:

For the stable system (A,B,C,D) with matrices 4, B and C
partitioned as

( A11 A12 ) ( B1)
A= ( ), B=( ), C=(CL C2),
( A21 A22 ) ( B2)

this subroutine computes the matrices of the reduced order system
(Ar,Br,Cr,Dr) by using the singular perturbation approximation
formulas:
-1 -1
A11 + A12x(g*I-A22) #*A21 , Br = Bl + A12%(g*I-A22) #*B2
-1 -1
Cl + C2%(g*I-A22) =*A21 , Dr = D + C2%(g*I-A22) *B2

Ar

Cr

where g = 0 for a continuous-time system and g = 1 for a
discrete-time system.

Usage:
CALL RPMRSR(A, N, B, M, C, P, D, DISCR, NR, IWORK, *)

A : 1IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the original model
(column dense)
On output : the NR*NR matrix Ar of the reduced model
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the original model

(column dense)
On output : the NR*M matrix Br of the reduced model
(column dense)

M : 1IN, INTEGER
dimension of input vector
C : IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(column dense)
OUn output : the P*NR matrix Cr of the reduced model
(column dense)
P : IN, INTEGER -
dimension of output vector

D : 1IN, OUT, DOUBLE (P,M)
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On input : system feedthrough matrix D of the original model
(column dense)
On output : the P#M matrix Dr of the reduced model
(column dense)
DISCR : 1IN, LOGICAL
specifies the type of the system:
continuous-time system, if DISCR = .FALSE., or
discrete-time system, if DISCR = .TRUE.
NR :  IN, INTEGER
desired order of the reduced model.
IWORK : OUT, INTEGER (N-NR)
working array.
* : RETURN 1, target label in case of error (e.g. *1111}

File input/ output:
none

Method:
Literature
/1/ Liu Y. and Anderson B.D.O.
Singular perturbation approximation of balanced systems,
Int. J. Control, Vel. 50, pp. 1379-1405, 1985.

Remarks:
- The resulting system (Ar,Br,Cr,Dr) has the same steady-state
gain as the given full order system.
- This routine usually follows RPMRIB for computing balanced singular
perturbation approximations /1/.
~ Used with NR = 0, this routine evaluates the steady-state gain of a
stable system.

Copyright:
1982 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle: i
1592 MAY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time system (A,B,C,D) with the matrices A, B and
C as in example for the subroutine RPMRIB and D set to a null matrix,
a balanced singular perturbation approximation of order 5 can be
computed with the following sequence of statements:

N =7

M = 2

P =3
DISCR = .FALSE.
TaL = 0.0D0



%x
C

FIXORD
LWORK
NSPA

0

4% (N+1)*N

5

Compute a balanced minimal realization.
CALL RPMRIB(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV,

RWORK,

LWORK, *1111)

Perform a balanced singular perturbation model reduction.
CALL RPMRSR(A, NR, B, M, C, P, D, DISCR, NSPA, IWDRK, *1111)

The matrices of balanced singular perturbation approximation are:

(

(

Ar = (

(

(

(

(

Br = (

(

(

(

Cr = (

(

(

Dr = (

(

Error Me
_1_

-.3813
-3.08986
0

0
-1.0479

-.9780
-.7412
-1.0323
1.2844
-1.0578

-.9723
.1620
L9723

.04398
.0010
-.0007

ssages:

3.0418
-.2635
0
0
~-.6685

.97580
L7412
-1.0323
1.2844
1.0578

.6513
.5004
-.6513

-.0007 )
-.0010 )
. 0498 )

0 0 1.0286 )
0 0 -.3187 )
-.5557 -2.3036 0)
2.3036 -2.1518 0 )
0 0 -2.0447 )
)
)
)
)
)
-1.0323 -1.2844 L9914 )
0 0 -.5217 )
-1.0323 -1.2844 -.9914 )

Invalid parameter value on entry.

-2=-

Matrix A22 is singular.
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SUBROUTINE RPMRD(C
Bilinear Transformation of Transfer-Function Matrices

Procedure purpose:
This subroutine performs a transformation on the parameters (A,B,C,D)
of a system, which is equivalent to a bilinear transformation of the
corresponding transfer function matrix.

For a continuous-time system, the resulting matrices (4,B,C,D)
correspond to the continuous-to-discrete bilinear transformation

beta + s

For a discrete-time system, the resulting matrices (4,B,C,D)
correspond to the discrete-to-continuous bilinear transformation

z + alpha
Usage:

CALL RPMRDC(A, N, B, M, C, P, D, DISCR, ALPHA, BETA,
RWORK, LWORK, IWORK, *)

A : IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the original system
(column dense)
On output : the N*N matrix A of the transformed system
(column dense)

N : IN, INTEGER
dimension of state vector
B : 1IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the original system

{column dense)

On output : the N*M matrix B of the transformed system
{column dense)
If M = 0, this matrix is not referenced.

M : IN, INTEGER
dimension of input vector
C : IN, OUT, DOUBLE (P,N)-
On input : system output matrix C of the original system

(column dense)

On output : the P*N matrix C of the tramnsformed system



DISCR :

ALPHA

BETA

RWORK :

LWORK

IWORK :
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{column dense)

If P = 0, this matrix is not referenced.

IN, INTEGER

dimension of output vector

IN, OUT, DOUBLE (P,M)

On input : system feedthrough matrix D of the original system
(column dense)

On output : the P*M matrix D of the transformed system
(column dense)

If M=0 or P = 0, this matrix is not referenced.

IN, LOGICAL

specifies the type of the original system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE ’

parameter alpha of the bilinear tramsformationm.

It should be non-zero.

IN, DOUBLE

parameter beta of the bilinear transformation.

It should be non-zero.

OUT, DOUBLE (LWORK)

working array.

: IN, INTEGER

dimension of working array RWORK.

The value of LWORK must be at least N.

OUT, INTEGER (N}

working array.

RETURN 1, target label in case of error (e.g. *1111)

File input/ outpui:

none

Method:

Literature

/1/ Al-Saggaf U.M. and Franklin G.F.
Model reduction via balanced realizations: a extension and
frequency weighting techniques, IEEE Trans. Autom. Contr.,
Vol.33, pp. €87-692, 1988.

Remarks:

- For stable systems, the recommended values of the parameters alpha
and beta are: alpha = 1 and beta = 1. By using these values, to
left half-plane poles of continuous-time systems correspond poles
of the resulting discrete-time systems inside the unit circle and
vice versa.

- For an unstable continuous-time system, beta should be not a pole
of the original system.

- For an unstable discrete-time system, -alpha should be not a pole
of the original system.



Copyright:

1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:

1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:

RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the discrete-time system (4,B,C,D) with the following matrices:
( .972774 .049696 .414321 -.485309 .013280 .000135 .002015
( -.293823 .279304 -.077753 .087312 =-.001739 -.000012 -.000211
( -.052626 .155605 .707804 .009770 -.000143 0 -.000013
A= ( .053758 .001022 .011947 .973372 -.053758 -.001022 -.011947
( .013280 .000135 .002015 .485309 .972774 .049696 .414321
( -.001739 -.000012 -.000211 -.087312 -.293823 .279304 -.077753
( -.000143 0 -.000013 -.009770 -.052626 .155605 .707804
( .023476 .000035 )
( .710910 -.000002 )
( .126805 0) (1 0 00 0 0 0) (o ©
B = ( .000344 -.000344 ) c=¢(0 0o 0 1 o 0 0) D=(0 0
( .000035 .023476 ) (0 0 0 0 1 0 0) (o0 o0
( -.000002 .710910 )
( 0 .126805 )
a balanced truncated approximation of order § can be computed with
the following sequence of statements:
N =7
M = 2
P =3
DISCR = .TRUE.
ALPHA = 1.0D0
BETA = 1.0D0
TOL = 0.0D0
FIXORD = 5
LWORK = 4x(N+1)*N
NSPA =5
c Perform the bilinear transformation.
CALL RPMRDC(A, N, B, M, C, P, D, DISCR, ALPHA, BETA,
* RWORK, LWORK, IWORK, *1111)
c Perform model reduction.
CALL RPMRIB(A, N, B, M, C, P, .NOT.DISCR, TOL, FIXORD,
* NR, HSV, RWORK, LWORK, *1111)
C Perform the inverse bilinear transformation.

CALL RPMRDC(A, NR, B, M, C, P, D, .NOT.DISCR, ALPHA,
* BETA, RWORK, LWORK, IWORK, *1111)

N e Nl N Nl S NS
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The matrices of balanced singular perturbation approximation are:

( .s187 -.2877 0 0 .0762 )
( .2939 .9260 0 0 .0408 )
Ar = ( 0 0 .9296 -.1951 0)
( 0 0 .1951 .8060 0 )
( -.0732 .0718 0 0 .8478 )
( -.3325 .3325 )
( .1977 -.1977 )
Br = ( .3436 .3436 )
( -.3293 -.3293 )
( -.2662 .2662 )
( -.3256 -.1731 .3436 .3293 .2465 )
cr = ( .0414 -.1593 0 0 -.1626 )
( .3256 .1731 .3436 .3293 -.2465 )
( -.0166 .0008 )
Dr = ( -.0013 .0013 )
( .o008 -.0166 )

Note that the resulting model is the same as that which would be
obtained by using the balanced singular perturbation approximation
approach on the original discrete systenm.

Error Messages:

-1=-
Invalid parameter value on entry.

The matrix (ALPHA*I + A) is exactly singular.

The matrix (BETA*I - A) is exactly singular.
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2. Order Reduction of Unstable State-Space Systems

The subroutines of this chapter can be used to compute reduced order
approximations of unstable state-space systems. The main intended
application of these subroutines is for controller order reduction.
The provided subroutines represent useful tools by which the powerful
model reduction methods for stable systems can be efficiently employed
to compute reduced order approximations of unstable systems.

All routines can be used for computing reduced models of both
continuous-time and discrete-time systems. Moreover, all routines

can be used to reliably compute minimal state-space realizations from
given non-minimal unstable models.

Two alternative basic approaches can be used for reducing
unstable models:

1. Reduction of stable projections
If (¢ is the transfer-function matrix of a n-th order (not
necessarily stable) system, then the following procedure can be used

to reduce the order of &':

1) Decompose additively G as

G = G + Gy

such that G has only stable poles and (7, has only unstable
poles.

2) Determine (;,, a reduced order approximation of the stable
part G;.

3) Assemble the reduced model (G, as

Gr = Glr + G2

For the model reduction at step 2 any of methods available for stable
systems can be used. The following routines are provided to perform
the computations at steps 1 and 3.
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RPMRSD computes the terms (+;.and (; of an additive spectral
decomposition of a transfer-function matrix (G with respect
to a specified region of the complex plane. (; and Gy are
determined such that (; has only poles in that region and
(2 has exclusively poles outside that region. This subroutine
can be used to compute stable and anti-stable projections or
fast and slow modes decompositions of the given transfer-
function matrix. The computation of additive decompositions
is based on an algorithm explained in /1/.

RPMRAS adds or subtracts two systems in state-space form.
2. Reduction of stable coprime factors

The following procedure can be used to compute an r-th order
approximation (4, of an n-th order (mot necessarily stable) system (':

1) Compute a left coprime factorization of the transfer-function
matrix ¢ in the form

G = R7'Q,

where K and () are stable transfer-function matrices of degree n.

2) Approximate the transfer-function matrix [Q R| of degree n with
[@, R,] of degree r by using a model reduction method for stable
systems.

3) Form the r-th order approximation of G as

G. = R7Q..

A similar procedure can be given for a right coprime factorization of
(G in the form

G = QR

For the model reduction at step 2 any of methods available for stable
systems can be used. The following routines are provided to perform
the computations at steps 1 and 3:

RPMRLF  computes the state-space representations for the factors of
a left coprime factorization of a transfer-function matrix
with prescribed stability degree /2/.

RPMRRF  computes the state-space representations for the factors of
a right coprime factorization of a transfer-function matrix
with prescribed stability degree /2/.
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RPMRLI  computes the state-space representations for the factors of

a left coprime factorization with {co)inner denominator of a
transfer-function matrix /3/.

RPMRRI  computes the state-space representaticns for the factors of

a right coprime factorization with inner denominator of a
transfer-function matrix /3/.

RPMRLB  computes the state-space representation corresponding to a

left coprime factorization of a transfer-function matrix.

RPMRRB computes the state-space representation corresponding to a

right coprime factorization of a transfer-function matrix.

Literature:

/1/

/2/

/3/

Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.
Synthesis of Positive Real Multivariable Feedback Systems,
Int. J. Contrel, Veol. 45, pp. 817-842, 1987.

Varga A.

Coprime Factors Model Reduction Based on Accuracy

Enhancing Techniques,

Systems Analysis, Modelling and Simulation, vol. 11,

PP. 303-311, 1993,

Varga A.

A Schur Method for Computing Coprime Factorizatiomns

with Inner Denominators and Applications in Model Reduction,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1993.



SUBROUTINE RPMRSD
Additive Spectral Decomposition of Linear Systems

Procedure purpose:
For the system G = (A4,B,C,D) with the transfer-function matrix G, a

similarity transformation matrix T is determined such that the
transformed system

- -1 -1

(A,B,C,D) = (T AT, T B, CT, D) 1)
has the state-matrix A in a block diagonal form. If we partition the
transformed systems matrices conformally with the structure of the
state-matrix

B1 _
, C=(c1 c2), (2)

) -
), B=(
) ( B2
then Al has eigenvalues in a region of interest and A2 outside of

that region. The decomposition (2) corresponds to an additive
decomposition of the transfer-function matrix G as

G =Gl + G2

where G1 = (A1,B1,C1,D1) has order N1, G2 = (A2,B2,C2,D2)
has order N2, and D = D1+4D2.

This subroutine can be used to compute stable and antistable
projections in order to perform further order reduction of the
stable part. It can be also used for determining fast and slow modes
decompositions in order to remove the fast modes of a given system.

Usage:

CALL RPMRSD(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, STDOM,
BDIAG, BETA, N1, N2, A2, B2, C2, D2, RWORK, LWORK, *)

A : IN, OUT, DOUBLE (N,N)

On input : system state-matrix A of the original model
(colunmn dense) -

On output : If BDIAG = .TRUE., the N x N state matrix A
in the block diagonal form (2).
(column dense)
The leading N1 x N1 submatrix Al of A has its
eigenvalues in the domain of interest defined
by ALPHA and STDOM, while the trailing N2 x N2
submatrix A2 has its eigenvalues ocutside the
domain of interest.
If BDIAG = .FALSE., the N1 x N1 submatrix Al
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from (2)..
(column dense)
(see the description of parameter STDOM).

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the original model

(column demnse) -
On output : If BDIAG = .TRUE., the N x M input matrix B
of the transformed system (2).
(column dense)
If BDIAG = .FALSE., the N1 x M submatrix Bl
from (2).
(column dense)
If M = 0, this matrix is not referenced.

M : IN, INTEGER
dimension of input vector
c : IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the original model
(column démse) _
On output : If BDIAG = .TRUE., the P x N output matrix C
of the transformed system (2).
(column dense)
If BDIAG = .FALSE., the P x N1 submatrix C1
from (2).
On output : the P x N1 submatrix C1 from (2)
(column dense)
If P =0, this matrix is not referenced.

P : 1IN, INTEGER
dimension of output vector
D : 1IN, OUT, DOUBLE (P,M)

On input : If WITHD = .TRUE., the P*M system feedthrough
matrix D of the original system.
(column dense)
On output : If WITHD = .TRUE. and BDIAG = .FALSE.,
the matrix BETAxD.
(column dense)
If WITHD = .FALSE, or BDIAG = .TRUE., or M = 0, or P = 0,
D is not referenced.
WITHD : 1IN, LOGICAL
specifies whether or not a given feedthrough matrix D is used
in computing the additive decomposition:
WITHD = .TRUE. means a given feedthrough matrix D is used in
determining G1 and G2.
WITHD = .FALSE. means D is assumed a null matrix.
DISCR : 1IN, LDGICAL
specifies the type of the system:
continuous-time system, if DISCR = .FALSE., or
discrete-time system, if DISCR = .TRUE.
ALPHA : 1IN, DOUBLE
specifies the boundary parameter for the domain of interest



STDOM -

BDIAG :

BETA

N1

N2

A2

B2

c2

D2

for eigenvalues (see the description of parameter STDOM).
IN, LOGICAL

specifies whether the domain of interest is of stability
type (left half plane or inside of a circle) or of

instability type (right half plane or outside of a circle).

STDOM and ALPHA define the domain of interest for

lambda(A), the eigenvalues of A, as follows:

For a continuous-time system (DISCR =.FALSE.)
Real{lambda{A)) < ALPHA if STDOM =.TRUE. ;
Real(lambda(A)) >= ALPHA if STDOM =.FALSE.;

For a discrete-time system (DISCR =.TRUE.)
Abs(lambda(A)) < ALPHA if STDOM =.TRUE. ;
Abs(lambda(A)) >= ALPHA if STDOM =.FALSE..

IN, LOGICAL

specifies whether the block diagonal decomposition (2) or

the additive spectral decomposition is to be computed:

BDIAG = .TRUE., the block diagonal decomposition (2) is

to be computed

BDIAG = .FALSE., the matrices of the additive spectral

decomposition G = G1 + G2 resulting from
(2) are to be computed.

IN, DOUBLE

The scaling factor used to compute D1 and D2.

OUT, INTEGER.

number of eigenvalues of the matrix A lying inside of

the domain of interest. N1 is also the dimension of

the invariant subspace of A corresponding to the eigenvalues

of Al.

OUT, INTEGER.

number of eigenvalues of the matrix A lying outside of

the domain of interest. N2 is alsc the dimension of the

reducing subspace of A corresponding to the eigenvalues

of A2. Notice that N = N1 + N2,

0UT, DQUBLE (N2,N2)

If BDIAG = .FALSE., the N2 x N2 matrix A2 from (2).

(column dense)

This matrix has its eigenvalues outside of the domain of

interest defined by ALPHA and STDOM.

(see the description of parameter STDOM).

If BDIAG = .TRUE., this matrix is not referenced.

0UT, DOUBLE (N2,M)

the N2 x M matrix B2 from (2).

(column dense)

If BDIAG = .TRUE. or M = 0, this matrix is not referenced.

OUT, DOUBLE (P,N2)

the P x N2 matrix C2 from (2)

(column dense)

If BDIAG = .TRUE. or P = 0, this matrix is not referenced.

Note: If A2, B2 and C2 are not of interest, then these
arrays can overlap the working array RWORK.

0UT, DOUBLE
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the P x M matrix D2 = (1-BETA)=*D.

(column dense)

This matrix is not referenced if D is not referenced.
RWORK : OUT, DOUBLE (LWORK).

working array. On normal return, the leading N x N part of

RWORK, contains the transformation matrix T used in (1)

to reduce the state-matrix A to the block-diagonal form (2).
LWORK : 1IN, INTEGER.

dimension of working array RWORK.

The value of LWORK must be at least N*(N+5).
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:
Literature
/1/ Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.
Synthesis of positive real multivariable feedback systems,
Int. J. Control, Vol. 45, pp. 817-842, 1987.

Remarks:
- The accuracy loss which can be induced in the decomposed model by
applying the transformation (1) can be estimated by determining the
condition number of the transformation matrix T, returned in RWORK.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the unstable continuous-time system (A,B,C) with the following
matrices:

( -.04165 0 4.92 .492 0 0 0)
( -5.21 -12.5 0 0 0 0 0)
( 0 3.33 -3.33 0 0 0 0)
A=( .545 0 0 0 .0545 0 0)
( 0 0 0 -.492 .004165 0 4.92)
( 0 0 0 0 .521 -12.5 0)
( 0 0 0 0 0 3.33 -3.33)
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a slow/fast decomposition can be computed in order to directly remove
the fast modes from the system. The following sequence of statements
can be used to separate the modes with respect to the boundary value
-4 for the real parts of eigenvalues:

N

M

P
DISCR
ALPHA
STDOM
BDIAG
WITHD
BETA
LWORK

7
2

= 3
= ,FALSE.

-4.0D0

= _FALSE.
= ,FALSE.
= .FALSE.
= 1.0D0

N*x(N+5)

CALL RPMRSD(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, STDOM,
BDIAG, BETA, Ni, N2, A2, B2, C2, D, RWORK, LWORK,

*1111)

The matrices of the slow subsystem are:

(
(
Al = (
(
(
(
(
Bl = (
(
(
(
C1 = (
(

-1.4178
.9109

0

0

0

2.8453
2.9533
-.3203
-1.0775
.0089

-.8659
0797
-.0165

~-5.1682
-1.4178
0
0
0

.0351 )
.0993 )
1.6526 )
-.1609 )
-4.7125 )

L2787
-.3951
-.0645

.5481
.1460
.1605
.0474

0

-.0185
-.0427
-.98356

2.5944
.4718
-.4948
.1605
0

~.2005
-.9141
.0732

.0695 )
.3044 )
.7654 )
.3769 )
.5957 )

.0002 )
.0068 )
.0376 )



The matrices of the fast subsystem are:

A2 = ( -13.1627 0) B2 = ( -11.4205 ~-.0015 )
( 0 -12.4245 ) ( -.0020 12.4858 )
( -.1245 o)

c2 = ( .0052 -.0006 )

( .0002 .1472 )

The slow subsystem of order N1 = 5 can be used as a dominant modes
approximation of the original system.

Error Messages:

_1-

Invalid parameter value on entry.

_2_

The reduction of A to the real Schur form failed.

-3-

The reordering of eigenvalues failed.

-4

Separation failure due to very close eigenvalues.

-5-

Not enough working storage. It should be at least //LENG//.
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SUBROUTINE RPMRAS

Sum or Difference of Two Systems in State-5pace Form

Procedure purpose:
If (A1,B1,C1,D1) and (A2,B2,C2,D2) are the state-space models
of the given two systems having the transfer-function matrices
Gl and G2, respectively, this subroutine constructs the
state-space model (4,B,C,D) which corresponds to the transfer-
function matrix G = Gil + G2 or G = G1 - G2.

Usage:

CALL RPMRAS(A1, NI, Bi, M, Ci, P, Di, OP, A2, N2, B2, C2, D2,

Al

N1

Bl

Cc1

D1

opP

A2

N2

B2

A’ N) B! C, D) *)

IN, DOUBLE (Ni,N1)

system state-matrix Al of the first system
(column dense)

If N1 = 0, this matrix is not referenced.
IN, INTEGER

dimension of state vector of first system
IN, DOUBLE (N1i,M)

system input matrix Bl of the first systenm
(column dense)

If N1 = 0, this matrix is not referenced.
IN, INTEGER

dimension of the common input vector of both systems
IN, DOUBLE (P,N1) ,

system output matrix Cl1 of the first system
(column dense)

If N1 = 0, this matrix is not referenced.
IN, INTEGER

dimension of ocutput vector

IN, DOUBLE (P,M)

system feedthrough matrix D1 of the first system
(column dense)

IN, INTEGER, SELECTION PARAMETER

specifies the operation to be performed.

If OP > 0, the sum of systems is computed.
IF QP < 0, the difference of systems is computed.
IN, DOUBLE (N2,N2)

system state-matrix A2 of the second system
(column dense)

If N2 = 0, this matrix is not referenced.
IN, INTEGER

dimension of state vector of second system
IN, DOUBLE (N2,M)

system input matrix B2 of the second system
(column dense)
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c2

D2

If N2 = 0, this matrix is not referenced.

IN, DOUBLE (P,N2)

system output matrix C2 of the second system

{(column dense)

If N2 = 0, this matrix is not referenced.

IN, DOUBLE (P,M)

system feedthrough matrix D2 of the second system
(column dense)

QUT, DOUBLE (N,N)

the N x N state matrix A of the resulting system.
(column dense)

This matrix matrix can be overwritten on Al, if Al provides
sufficient storage space.

If N =0, this matrix is not referenced.

0UT, INTEGER

set to N1 + N2, the dimension of state vector of the
resulting system

QUT, DOUBLE (N,M)

the N x M input matrix B of the resulting system.
(column dense)

This matrix matrix can be overwrittenm on B1l, if Bl provides
sufficient storage space.

If N = 0, this matrix is not referenced.

0OUT, DOUBLE (P,N)

the P x N output matrix C of the resulting system
(column dense)

This matrix matrix can be overwritten on C1, if Cl provides
sufficient storage space.

If N =0, this matrix is not referenced.

OUT, DOUBLE (P,M).

the P x M feedthrough matrix D of the resulting system
(column dense)

This matrix matrix can be overwritten on D1.

RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

nolne

Method:

The matrices of the resulting systems are determined as:

(@]
[}

where

Al 0 ) ( B1)

), B=( )

0 A2 ) (B2)
(C1 S%C2 ) , D = D1 + S*D2

= 1 if OP > 0 and S = -1 if OP < 0.
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Remarks:
none

Copyright: :
1992 ~ DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezxample:
The difference of two systems (A1,B1,C1,D1) and (A2,B2,C2,D2) can be
computed in the place of the first system, with the following
sequence of statements:

op = -1
CALL RPMRAS(A1, N1, B1, M, C1, P, D1, OP, A2, N2, B2, C2, D2,
* Al, N, B1, C1, D1, *1111)

Error Messages:

_1_
Invalid parameter value on entry.
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SUBROUTINE RFMRLF

Left Coprime Factorization with Prescribed Stability Degree

Procedure purpose:
Given the matrices A, B, C and D of a state-space representation of
a transfer-function matrix G, this subroutine computes the matrices
AQR, BQR, CQR, DQR of a state-space representation of the

-1

transfer-function matrix ( Q R-) such that G =R * @ is a stable
rational left coprime factorization of G. The state matrix AQR
can be determined such that its eigenvalues are inside a specified
stability region of the complex plane. The computation of the
factorization is based on a pole assignment method described in /1/.

Usage:

CALL RPMRLF(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, BETA, TOL,
NQ, NR, RWORK, LWORK, *)

A : 1IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the given state-space
representation of G
(column dense)
On output : the NQ*NQ state matrix AQR in real Schur form of
the resulting state-space representation of

(QR).
(column dense)
N : IN, INTEGER '
dimension of state vector
B : IN, OUT, DOUBLE (N,M+P)

OUn input : the N*M system input matrix B of the given
state-space representation of G
(column dense)

On output : the NQ*(M+P) input matrix BQR of the resulting
state-space representation of ( QR ).
(column dense)

M : IN, INTEGER
dimension of input vector
C : IN, OUT, DOUBLE (P,N)

On input : the P*N system output matrix C of the given
state-space representation of G
(column dense)

On output : the P*NQ output matrix CQR of the resulting
state-space representation of ( QR ).
(column dense)

P : IN, INTEGER
dimension of output vector

D : 1IN, OUT, DOUBLE (P,M+P)



WITHD :

DISCR :

ALPHA :

BETA

TOL

NQ

On input : If WITHD = .TRUE., the P*M system feedthrough
matrix D of the given state-space representation
of G. If WITHD = .FALSE, D is implicitly assumed
a P x M null matrix in computing the matrices
of the left coprime factorization.

(column dense)

On output : the P*(M+P) feedthrough matrix DQR of the
resulting state-space representation of ( Q R ).
(column dense)

IN, LOGICAL

specifies whether or not a given feedthrough matrix D is used

in computing the factor  of the coprime factorization:

WITHD = .TRUE. means a given feedthrough matrix D is used in

determining Q.
WITHD = .FALSE. means D is assumed a null matrix in
determining Q.

IN, LOGICAL ’

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

specifies the boundary of the stability region for the

eigenvalues of A. For a continuous-time sysiem

(DISCR = .FALSE.), ALPHA is the maximum adnmissible value

for the real parts of eigenvalues, while for a discrete-

time system (DISCR = .TRUE.), ALPHA represents the

maximum admissible value for the moduli of eigenvalues.

The eigenvalues inside the stability regiom will not be

modified by the pole assignment algorithm.

ALPHA >= 0 if DISCR = .TRUE.

IN, DOUBLE

specifies the desired stability degree to be assigned for

the eigenvalues of A outside the stability region defined

by ALPHA. The eigenvalues outside the stability region

will be assigned to have the real parts equal to BETA

and unmodified imaginary parts for a continuous-time

system (DISCR = .FALSE.) or moduli equal to BETA for

a discrete-time system (DISCR = .TRUE.).

IN, DOUBLE :

absolute tolerance level below which the elements of

C are considered zero (used for observability tests).

Recommended value is TOL = N #* EPS * NORM(C), where

NORM(C) denotes the infinity-norm of C and EPS is the machine

precision (see LAPACK Library Routine DLAMCH).

QUT, INTEGER

the order of the resulting factors Q and R.

Generally NQ = N - N5, where NS is the number of

undetectable eigenvalues outside the stability region.
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o4

NR : 0UT, INTEGER
the order of the minimal realization of the factor R.
Generally NR is the number of observable eigenvalues
of A outside the stability region (the number of modified
eigenvalues) .
RWORK : 0OUT, DOUBLE (LWORK)
working array.
LWORK : IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least
max (N*M, N*P, M*P, (N*#N + 4%P + max(6%N,4*M,4%P)) ).
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:
The state-space representations of the factors § and R are
constructed in the forms

(Z'*(A+H*C)*Z, Z**(B+H*D), C*Z, D)

£
"

and
R

(Z'*(A+H*B) *Z, Z’*H, C*Z, I)

where Z is an N x NQ matrix with orthonormal columns and H is an N x P
output injection matrix assigning the eigenvalues of A in the specified
stability region. If the given state-space representation is
detectable, the order NQ of the resulting state-space representation

of ( Q R) is equal to N. If the given state-space representation is
not detectable, the undetectable part of the original system

is automatically deflated and the resulting NQ is less than N.

The matrices AQR, BQR, CQR and DQR are computed as:

AQR
CQR

Z'»(A+H*C)*Z , BQR
C*Z , DQR

( Z'+«B+Z’xH*D Z’#*H ),
(DI).

The comprime factorization can be computed with (WITHD = .TRUE.) or
without (WITHD = .FALSE.) an explicitly given feedthrough matrix D.
In the second case, D = 0 is used for constructing the above matrices.

Literature

/1/ Varga A.
Coprime Factors Model Reduction Based on Accuracy
Enhancing Techniques,
Systems Analysis, Modelling and Simulation, vol. 11,
Pp. 303-311, 1993.

Hemarks:
- An NR order minimal state-space representation (AR,BR,CR,DR) of the
factor R can be recovered from the computed matrices AQR, BQR, CQR
and DQR as follows:



AR is the NR x NR submatrix formed by the rows 1, ..., NR and
the columns 1, ..., NR of AQR (contained in A);

BR is the NR x M submatrix formed by the rows 1, ..., NR and
columns M+1, ..., M+P of BQR (contained in B);

a3

CR is the P x NR submatrix formed from the colummns 1, ..., NR of

CQR (contained in C);
DR is the P x P submatrix formed from the columns M+1, ..., M+P
DQR (contained in D).

of

This routine is usually followed by one of the routines provided

for performing model reduction of the stable systems. The resulting
reduced model of the original system can be computed by using the

subroutine RPMRLB to compute the transfer-function matrix
corresponding to a left coprime factorization.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JUNE A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:

Given the continuous-time unstable system example (A,B,C,D) used by
the subroutine RPMRSD (D = 0), a stable left coprime factorization

can be computed with the following sequence of statements:

N =7

M =2

P =3

WITHD = .FALSE.

DISCR = .FALSE.

ALPHA = 0.0D0O

BETA = -1.0D0

TOL = 1.0D-10

LWORK = N*N+4*P+6*N

CALL RPMRLF(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, BETA,
* TOL, NQ, NR, RWORK, LWORK, *11i1)

The matrices of the computed left coprime factorization are:

( ~1.0000 -.4465 4.8212 .2260 .0062 -.1813 -.
( .0526 -1.0000 -.3364 -.0166 4199 -.2408 -1
( 0 0 -3.5957 -3.5463 -.0163 .0175

AQR = ( 0 0 0 -12.4245 .0004 -.0344 -
( 0 0 -0 0 -13.1627 1.9835 3.
( 0 0 0 0 0 -1.4178 5
( 0 0 0 0 0 -.8374 -1

0895 )

J7274 )
.0592 )
.0180 )

6182 )

.6218 )
4178 )



( .0631 -.5122 .0155 ,0753
( 1.1544 .0159 .2623 1.1297
( -.047s6 .3029 0 0
BOR = ( .0130 12.4858 0 0
( -11.7198 .0038 0 0
( -2.8173 .0308 0 0
( 3.1018 -.0009 0 v
( -.0132 -.2238 .0079 -.0026
CQR = ( -.0643 -.9639 .0040  -.0009
( -.9962 .0660 .0377  -.0419
(0 0 1 0 0)
DR = (0 0 0 1 0)
(o 0 0 0 1)

For this example N = 7 and NR = 2.
Error Messages:

_1_

Invalid parameter value on entry.

-2-

Reduction of A to RSF form failed.

-3-

The ordering of the real Schur failed.

1.1676
-.0763

-.1279
-.0305
0

o O O o O

R = T W N

.8797
-.2562
.0022

.3994 )
.0122 )
-.0017 )
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SUBROUTINE RPMRRF

Right Coprime Factorization with Prescribed Stability Degree

Procedure purpose:
Given the matrices A, B, C and D of a state-space representation of
a transfer-function matrix G, this subroutine computes the matrices
AQR, BQR, CQR, DOR of a state-space representation of the

Q) -1

transfer-function matrix ( R ) such that G =Q * R is a stable
rational right coprime factorization of G. The state matrix AQR
can be determined such that its eigenvalues are inside a specified
stability region of the complex plane. The computation of the
factorization is based on a pole assignment method described in /1/.

Usage:

CALL RPMRRF(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, BETA, TOL,
NQ, NR, RWORK, LWORK, *)

A : 1IN, OUT, DOUBLE (N,N)~

On input : system state matrix A of the given state-space
representation of G
(column dense)

On output : the NQ*NQ state matrix AQR in real Schur form of

Q)

the resulting state-space representation of ( R ).
(colunn dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the given state-space

representation of G
(column dense)
On output : the NQ*M input matrix BQR of the resulting
cQo
state-space representation of ( R ).
(column dense)

M : IN, INTEGER .
dimension of input vector
C : IN, OUT, DOUBLE (P+M,N)

On input : the P*N system output matrix C of the given
state-space representation of G
(column dense)

On output : the (P+M)*NQ output matrix CQR of the resulting

Q)
state-space representation of ( R ).
(column dense)
P : IN, INTEGER
dimension of output vector



WITHD :

DISCR :

ALPHA :

BETA

TOL

NQ

NR

o8

IN, QUT, DOUBLE (P+M,M)

On input : If WITHD = .TRUE., the P*M system feedthrough
matrix D of the given state-space representation
of G. If WITHD = .FALSE, D is implicitly assumed
a P x M null matrix in computing the matrices
of the right coprime factorization.
(column dense}

On output : the (P+M)*M feedthrough matrix DQR of the

: cQ)
resulting state-space representation of ( R ).
(column dense)

IN, LOGICAL

specifies whether or not a given feedthrough matrix D is used

in computing the factor  of the coprime factorizatiomn:

WITHD = .TRUE. means a given feedthrough matrix D is used in

determining (.

WITHD = .FALSE. means D is assumed a null matrix in

determining Q.

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

specifies the boundary of the stability region for the

eigenvalues of A. For a continucus-time system

(DISCR = .FALSE.), ALPHA is the maximum admissible value

for the real parts of eigenvalues, while for a discrete-

time system (DISCR = .TRUE.), ALPHA represents the
maximum admissible value for the moduli of eigenvalues.

The eigenvalues inside the stability region will not be

modified by the pole assignment algorithm.

ALPHA >= 0 if DISCR = .TRUE.

IN, DOUELE

specifies the desired stability degree to be assigned for

the eigenvalues of A outside the stability region defined

by ALPHA. The eigenvalues outside the stability region
will be assigned to have the real parts equal to BETA

and unmodified imaginary parts for a continuocus-time

system (DISCR = .FALSE.) or moduli equal to BETA for

a discrete-time system (DISCR = .TRUE.).

IN, DOUBLE

absolute tolerance level below which the elements of

B are considered zero (used for controllability tests).

Recommended value is TOL = N * EPS ¥ NORM(B), where

NORM(B) denotes the l-norm of B and EPS is the machine

precision (see LAPACK-Library Routine DLAMCH).

OUT, INTEGER

the order of the resulting factors Q and R.

Generally NQ = N - NS, where NS is the number of

uncontrollable eigenvalues outside the stability region.

0UT, INTEGER



the order of the minimal realization of the factor R.
Generally NR is the number of controllable eigenvalues
of A outside the stability region (the number of modified
eigenvalues).

RWORK : OUT, DOUBLE (LWORK)
working array.

LWORK : IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least
N*N+4*M+max (6+N,4+%M, 4*P) .

* : RETURN 1, target label in case of error (e.g. *1111)

File input! oulput:
none

Method:
The state-space representations of the factors  and R are
constructed in the forms

(Z’*(A+B*F)xZ, Z’%B, (C+D*F)*Z, D)

fm]
L}

and

R = (Z’*(A+B+F)*Z, Z’*B, FxZ, I)

where Z is an N x NQ matrix with orthonormal columns and F is an M x N

state-feedback matrix assigning the eigenvalues of A in the specified

stability region. If the given state-space representation is

stabilizable, the order NQ of the resulting state-space representation
Q)

of ( R ) is equal to N. If the given state-space representation is

not stabilizable, the unstabilizable part of the original system

is automatically deflated and the resulting NQ is less than N.

The matrices AQR, BQR, CQR and DQR are computed as:

( C*Z+D*F*Z ) D)
AQR = Z’*(A+B*F)*Z, BQR = Z’*B, CQR = ( F*Z ), DQr= (I).
The comprime factorization can be computed with (WITHD = .TRUE.) or
without (WITHD = .FALSE.) an explicitly given feedthrough matrix D.
In the second case, D = 0 is used for constructing the above matrices.

Literature

/1/ Varga A.
Coprime Factors Model Reduction Based on Accuracy
Enhancing Techniques,
Systems Analysis, Modelling and Simulation, vol. 11,
pp- 303-311, 1993.

Remarks:
- An NR order minimal state-space representation (AR,BR,CR,DR) of the

factor R can be recovered from the computed matrices AQR, BQR, CQR
and DQR as follows:



AR is the NR x NR submatrix formed by the rows NQ-NR+1, ...
...,.NQ of AQR (contained in A);
BR is the NR x M submatrix formed by the rows NQ-NR+1, ..

the columns NQ-NR+1,

of BQR (contained in B);
CR is the M x NR submatrix formed from the rows P+1,

the columns NQ-NR+1.

DR is the M x M submatrix formed from the rows P+1,

(contained in D).
- This routine is usually followed by one of the routines provided
for performing model reduction of the stable systems. The resulting
reduced model of the original system can be computed by using the
subroutine RPMRRB to compute the transfer-function matrix
corresponding to a right coprime factorization.

Copyright:

A

., NQ of CQR (contained in C);

1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JUNE

A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:

. P

, NQ and

., NQ

P+M and

+M of DQR

Given the continuous-time unstable system example (A,B,C,D) used by
the subroutine RPMRSD (D = 0), a right stable coprime factorization
can be computed with the following sequence of statements:

N

M

P
WITHD
DISCR
ALPHA
BETA
TOL
LWORK

7
2

=3

.FALSE.
.FALSE,
0.0D0
-1.0D0

= 1.0D-10

Nk N+4*M+6xN

CALL RPMRRF(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, BETA,
TOL, NQ, NR, RWORK, LWORK, *1111)

The matrices of the computed right coprime factorization are:

( -1.4178
(  .9109
( 0
AQR = ( 0
( 4]
( 4]
( 0

-5.1682  3.2450 .0241
-1.4178 -2.1262 -.1188
0 -13.1627 -.0011
0 0 -12.4245
0 0 0
0 0 0
0 0 0

.4114

.5383

.2232 b
-.0867
-.0646 -6
3.3373 -33.

-3.5857 10,
o -1,
0o -7.

.8045

5354
6960
0000
7653

.0201 )
.2376 )
.0315 )
-6.4031 )
6.6253 )
.0030 )
-1.0000 )
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( 5.0302 ~-.0063)
( .7078  -.0409 )
( -11.3663 .0051 )
BQR = ( -.0375 -11.6309 )
( -.1740 3.7681)
( -1.1040 -.1956 )
( =-.0472 -2.5948 )
( -.8659 ,2787 -.3432 -.0007
( .0797 -.3951 .0976 .0045
CQR = ( ~.0165 -.0645 .0097 -.1341
( 0 0 0 0
( 0 0 0 0
(o 0)
(0 0)
DGR = (0 0 )
(1 0)
(0 1)

For this example NQ = 7 and NR = 2.
Error Messages:

_1_
Invalid parameter value on entry.
-2=-
Reduction of A to RSF form failed.
-3~

The ordering of the real Schur failed.

-.0019
.0295
-.8080

.2335
.9043
.0599
.4915
L8707

.0152
.0968
-.5666
-.0036
.4690

L T T



SUBROUTINE RPMRLI

Left Coprime Factorization with Inner Denominator

Procedure purpose:
Given the matrices A, B, C and D of a state-space representation of
a transfer-function matrix G, this subroutine computes the matrices
AQR, BQR, CQR, DQR of a state-space representation of the

-1

transfer-function matrix ( Q R ) such that G =R *  is a stable
rational left coprime factorization of G with a co-inner denominator
R. The computation of the factorization is based on a dual version of
the method proposed in /1/. G must not have poles on the imaginary
axis for a continuous-time system or on the unit circle for a
discrete-time system.

Usage:

CALL RPMRLI(A, N, B, M, C, P, D, WITHD, DISCR, TOL, NQ, NR,
RWORK, LWORK, *)

A : IN, DUT, DOUBLE (N,N)

Dn input : system state matrix A of the given state-space
representation of G. A must not have controllable
eigenvalues on the imaginary axis if DISCR =
.FALSE. or on the unit circle if DISCR = .TRUE..
(column dense)

On output : the NQ*NQ state matrix AQR in real Schur form of
the resulting state-space representation of

(QR).
(column dense)
N :  IN, INTEGER
dimension of state vector
B : 1IN, OUT, DOUBLE (N,M+P)

On input : the N*M system input matrix B of the given
state-space representation of G
(column dense)

On output : the NQ*(M+P) input matrix BQR of the resulting
state-space representation of ( Q R ).
{(column dense)

M : IN, INTEGER
dimension of input vector
c : IN, OUT, DOUBLE (P,N)

On input : the P*N system output matrix C of the given
state-space representation of G
(column dense)
On output : the P#NQ output matrix CQR of the resulting
state-space representation of ( Q R ).
(column dense)
P : IN, INTEGER :



WITHD :

DISCR :

TOL

NQ

NR

RWORK :

LWORK

dimension of output vector

IN, OUT, DOUBLE (P,M+P)

On input : If WITHD = .TRUE., the P*M system feedthrough
matrix D of the given state-space representation
of G. If WITHD = .FALSE, D is implicitly assumed
a P x M null matrix in computing the matrices
of the left coprime factorization.

(column dense)

On output : the P*(M+P) feedthrough matrix DQR of the
resulting state-space representation of ( Q R ).
{column dense)

IN, LOGICAL

specifies whether or not a given feedthrough matrix D is used

in computing the factor Q of the coprime factorizatiom:

WITHD = .TRUE. means a given feedthrough matrix D is used in

determining Q.
WITHD = .FALSE. means D is assumed a null matrix in
determining Q.

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

absolute tolerance level below which the elements of

C are considered zero (used for observability tests).

Recommended value is TOL = N * EPS * NORM(C), where

NORM(C) denotes the infinity-norm of C and EPS is the machine

precision (see LAPACK Library Routine DLAMCH).

OUT, INTEGER

the order of the resulting factors Q and R.

Generally NQ = N -~ NS, where NS is the number of

undetectable eigenvalues outside the stability region.

OUT, INTEGER

the order of the minimal realization of the factor R.

Generally NR is the number of observable eigenvalues

of A outside the stable region (the number of modified

eigenvalues) .

OUT, DOUBLE {(LWORK)

working array.

: IN, INTEGER

dimension of working array RWORK.

The value of LWORK must be at least

max (N+M, N*P, M*P, (N*N + P*(P+2) + max{(6%N,4*M,4%P)) ).
RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:

The state-space representations of the factors Q and R are
constructed in the forms
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(Z'*(A+H*C)*Z, Z'#*(B+H*D), V*CxZ, V*D)

Q

and
R

(Z'*(A+H*B)*Z, Z’*H, V*C*xZ, V)

where Z is an N x NQ matrix with orthonormal columns, H is an N x P
output injection matrix reflecting the unstable eigenvalues of A in
the stability region, and V is a P x P gain matrix. The resulting R
is generally non-minimal and co-inner, that is R(s)*R’(-s) = I in the
continuous-time case or R(z)*R’(1/z) = I in the discrete-time case.
If the given state-space representation is detectable, the order

NQ of the resulting state-space representation of ( Q R ) is equal to
N. If the given state-space representation is not detectable, the
undetectable part of the original system is automatically deflated and
the resulting NQ is less than N. The matrices AQR, BQR, CQR and DQR
are computed as:

AQR
CQR

Z2*(A+H*C)=*Z , BQR
V*CxZ , DQR

( Z’*B+Z’*H*D Z’xH ),
(v+D V).

The comprime factorization can be computed with (WITHD = .TRUE.) or
without (WITHD = .FALSE.) an explicitly given feedthrough matrix D.
In the second case, D = 0 is used for constructing the above matrices.

Literature

/1/ Varga A.
A Schur method for computing coprime factorizations
with inner denominators and applications in model reduction,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1993.

Remarks:

- No explicit checks are performed to detect eigenvalues of A which
are near to the imaginary axis if DISCR = .FALSE. or to the unit
circle if DISCR = .TRUE.. For such systems, the problem is ill-
conditioned and the computed results may be inaccurate.

- An NR order minimal state-space representation (AR,BR,CR,DR) of the
factor R which is simultaneously inner and co-inner can be recovered
from the computed matrices AQR, BQR, CQR and D(QR as follows:

AR is the NR x NR submatrix formed by the rows 1, ..., NR and
the columns 1, ..., NR of AQR (contained in A);
BR is the NR x M submatrix formed by the rows 1, ..., NR and

columns M+1, ..., M+P of BQR (contained in B);

CR is the P x NR submatrix formed from the columns 1, .» NR of
CQR (contained in C);
DR is the P x P submatrix formed from the columns M+1, .» M+P of

DQR (contained in D).

- This routine is usually followed by one of the routines provided
for performing model reduction of the stable systems. The resulting
reduced model of the original system can be computed by using the
subroutine RPMRLB to compute the transfer-function matrix
corresponding to a left coprime factorization.
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- The (co)innerness property of the denominator is preserved when
using either the Balance & Truncate, or the Singular Perturbation
Approximation, or the Balanced Stochastic Truncation methods, to
compute a reduced order approximation of the factors of a coprime

factorization with inner denominator of a continuous transfer-

function matrix /1/. In the discrete-time case, the (co)innerness of

the denominator is preserved only by the Singular Perturbatiomn

Approximation method /1/.

Copyright:

1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:

1992 JULY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Erample:

Given the continuous-time unstable system example (A,B,C,D) used by
the subroutine RPMRSD (D = 0), a stable left coprime factorization
with inner denominator can be computed with the following sequence

of statements:

CALL RPMRLI(A, N, B, M, C, P, D, WITHD, DISCR, TOL, NG, NR,

N =7

M =2

P =3

WITHD = .FALSE.

DISCR = .FALSE.

TOL = 1.0D-10

LWORK = N*N+P*(P+2)+6%N

* RWORK, LWORK, *1111)

The matrices of the computed left coprime factorization are:

( ~.1605 -.4489 4.262
( .0523 -.1605 2.225
( 0 0 -3.595
AQR = (
(
(
(

QO OO
Q O Q O

1 L2229 -.2394
0 L1217 .4166
7 -3.5463 -.0163
0 -12.4245 .0004
0 0 -13.1627
0 0 0
0 0 0

.0491
.2b18
.0175
.0344
.9835
.4178
.8374

.8740
.6140
.0592
.0180
.6182
.6218
.4178

Nt N N N NS N NS



( -.5523
( 1.0157
(  -.0476
BQR = ( L0130
( -11.7198
( -2.8173
( 3.1018
( .1063
CQR = ( .4513
( -.8826
(o o0
DQR = (0 0
(o o

The minimal state-space

-.4443 -.0306

-.2554 .0158

.3029 0
12.4858 0

.0038 0

.0308 0
-.0009 0
1975 .0079
.8541 .0040
.4668 .0377

0 0)

1 0)

0 1)

the following matrices:

AR = ( -.1605
( .0523
( .1063
CR = ( .4513
( -.8826

Error Messages:

-1-

Invalid parameter value on entry.

-2~

.4489 ) BR
.1605 )
.1975 )
.8541 ) DR
.4668 )

Reduction of A to RSF form failed,

-.1281
.0692

-.0026
-.0008
-.0419

-.0306
.0158

-

The ordering of the real Schur failed.

The system (A,B,C,D) is not factorable.

o O O O 0O

.4984 )

.1688 )

o)

o)

0)

0)

0 )
-.1279 .8797 .3994 )
-.0305 -.2562 L0122 )
0 .0022 -.0017 )

realization of the inner denominator R has

-.1281 .4984 )

.0692 .1688 )
0)
0)
1)
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SUBROUTINE RPMRRI
Right Coprime Factorization with Inner Denominator

Procedure purpose: :
Given the matrices A, B, C and D of a state-space representation of
a transfer-function matrix G, this subroutine computes the matrices
AQR, BQR, CQR, DQR of a state-space representation of the

(Q) -1

transfer-function matriz ( R ) such that G =0Q * R is a stable
rational right coprime factorization with inner denominator of G.
The computation of the factorization is based on the method described
in /1/. G must not have poles on the imaginary axis for a continuous-
time system or on the unit circle for a discrete-time system.

Usage:

CALL RPMRRI(A, N, B, M, C, P, D, WITHD, DISCR, TOL, NQ, NR,
RWORK, LWORK, *)

A : IN, OUT, DOUBLE (N,N)

On input : system state matrix A of the given state-space
representation of G. A must not have controllable
eigenvalues on the imaginary axis if DISCR =
.FALSE. or on the unit circle if DISCR = .TRUE..
(column dense)

On output : the NQ*NQ state matrix AQR in real Schur form of

cQ)
the resulting state-space representation of ( R ).
(column dense)

N : 1IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)

On input : the N*M system input matrix B of the given state-
space representation of G
(column dense)
On output : the NQ*#M input matrix BQR of the resulting
Q)
state-space representation of ( R ).
(column dense)

M : IN, INTEGER
dimension of input vector
C : 1IN, OUT, DOUBLE (P+M,N)

On input : the P*N system output matrix C of the given
state-space representation of G
(column dense)
On output : the (P+M)*NQ output matrix CQR of the resulting
(Q)
state-space representation of ( R ).
(column dense)



WITHD :

DISCR :

TOL

NQ

NR

RWORK :

LWORK
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IN, INTEGER

dimension of output vector

IN, OUT, DODUBLE (P+M,M)

On input : If WITHD = .TRUE., the P*M system feedthrough
matrix D of the given state-space representation
of G. If WITHD = .FALSE, D is implicitly assumed
a P x M null matrix in computing the matrices
of the right coprime factorizationm.

(column dense)
On output : the (P+M)*M feedthrough matrix DQR of the
¢q)
resulting state-space representation of ( R ).
(column dense)

IN, LOGICAL

specifies whether or mot a given feedthrough matrix D is used

in computing the factor Q of the coprime factorization:

WITHD = .TRUE. means a given feedthrough matrix D is used in

determining Q.
WITHD = .FALSE. means D is assumed a null matrix in
determining Q.

IN, LOGICAL

specifies the type of the system:

continuocus-time system, if DISCR = .FALSE., or

discrete-time system, if DISCR = .TRUE.

IN, DOUBLE

absolute tolerance level below which the elements of

B are considered zero (used for controllability tests).

Recommended value is TOL = N % EPS * NORM(B), where

NORM(B) denotes the 1-norm of B and EPS is the machine

precision (see LAPACK Library Routine DLAMCH).

0UT, INTEGER

the order of the resulting factors { and R.

Generally NQ = N - NS, where NS is the number of

uncontrollable eigenvalues outside the stability region.

OUT, INTEGER

the order of the minimal realization of the factor R.

Generally NR is the number of controllable eigenvalues

of A outside the stable region (the number of modified

eigenvalues).

OUT, DOUBLE (LWORK)

working array.

: IN, INTEGER

dimension of working array RWORK.

The value of LWORK must be at least

N*N+M* (M+2) +max (6*N, 4%M,4*P) .

RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:



The state-space representations of the factors Q and R are
constructed in the forms

Fw
|

= (Z?*(A+B*F)*Z, Z’'*BxV, (C+D*F)*Z, D*V)
and

R = (Z°*(A+B*F)*Z, Z'*BxV, F*Z, V)
where Z is an N x NQ matrix with orthonormal columns, F is an M x N
state-feedback matrix reflecting the unstable eigenvalues of A in the
stability region and V is a P x P gain matrix. The resulting R
is inner, that is R’{-s)*R(s) = I in the continuous-time case or
R?’(1/z)*R(z) = I in the discrete-time case.
If the given state-space representation is stabilizable, the order NQ
of the resulting state-space representation

Q)
of ( R ) is equal to N. If the given state-space representation is
not stabilizable, the unstabilizable part of the original system
is automatically deflated and "the resulting NQ is less than N.
The matrices AQR, BQR, CQR and DQR are computed as:

( C*Z+D*F*Z ) ( DxV )
AQR = Z’*(A+B*F)*Z, BQR = Z’*B*V, CQR = ( F*Z ), DQr = ( V ).

The comprime factorization can be computed with (WITHD = .TRUE.) or
without (WITHD = .FALSE.) an explicitly given feedthrough matrix D.

In the second case, D = 0 is used for constructing the above matrices.

Literature

/1/ Varga A.
A Schur method for computing coprime factorizations
with inner denominators and applications in model reduction,
Proc. 1983 ACC, San Francisco, CA, pp. 2130-2131, 1993.

Remarks:

- No explicit checks are performed to detect eigenvalues of A which
are near to the imaginary axis if DISCR = .FALSE. or to the unit
circle if DISCR = .TRUE.. For such systems, the problem is ill-
conditioned and the computed results may be inaccurate.

- An NR order minimal state-space representation (4R,BR,CR,DR) of the
factor R can be recovered from the computed matrices AQR, BQR, CQR
and DQR as follows:

AR is the NR x NR submatrix formed by the rows NQ-NR+1, ..., NQ and
the columns NQ-NR+1, ..., NQ of AQR (contained in A);

BR is the NR x M submatrix formed by the rows NQ-NR+1, ..., NQ
of BQR (contained in B);

CR is the M x NR submatrix formed from the rows P+1i, ..., P+M and
the columns NQ-NR+1. ..., NQ of CQR (contained in C);
DR is the M x M submatrix formed from the rows P+1, ..., P+M of DQR

(contained in D).

- This routine is usually followed by one of the routines provided
for performing model reduction of the stable systems. The resulting
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reduced model of the original system can be computed by using the
subroutine RPMERB to compute the transfer-function matrix
corresponding to a right coprime factorization.

- The innerness property of the denominator is preserved when
using either the Balance & Truncate, or the Singular Perturbation
Approximation, or the Balanced Stochastic Truncation methods, to
compute a reduced order approximation of the factors of a coprime
factorization with inner demominator of a continuous transfer-
function matrix /1/. In the discrete-time case, the innerness of
the denominator is preserved omnly by the Singular Perturbatiomn
Approximation method /1/.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JULY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time unstable system example (A4,B,C,D) used by
the subroutine RPMRSD (D = 0), a right stable coprime factorization
can be computed with the following sequence of statements:

N =7

M = 2

P =3

WITHD = .FALSE,

DISCR = .FALSE,

TOL = 1.0D-10

LWORK = N*N+M+*(M+4)+6*N

CALL RPMRRI(A, N, B, M, C, P, D, WITHD, DISCR, TOL, NQ, NR,
* RWORK, LWORK, *1111)

The matrices of the computed right coprime factorizatiom are:

( -1.4178 -5.1682 3.2450 .0241 .2232  4.1066 -.2336 )
( .9109 -1.4178 -2.1262 -.1188 ~-.0867 .4816 .2196 )
( 0 0 -13.1627 -.0011 -.0646 =-3.8320 .3429 )
AQR = ( 0 0 . 0 -12.4245 3.3373 -.2642 -2.6816 )
( 0 0 0 0 -3.5957 .1871 5.4221 )
( 0 0 0 0 0 -.1605 L0772 )
( 0 0 0 0 0 -.3040 -.1605 )



( 5.0302 -.0063)
( L7078  -.0409 )
( -11.3663 .0051 )
BQR = ( -.0375 -11.6309 )
( ~-.1740 3.7681 )
( -1.1050 -.3215)
( .0066 -2.5822 )
( -.8659 .2787 -.3432 -,0007
( .0797 -.3951 .0976 .0045
CQR = ( -.0165 -.0645 .0097 -.1341
( 0 0 0 0
( 0 0 0 0
(0 0)
(o0 0)
DR = ( 0 0 )
(1 0)
(o0 1)

-.0019 -,23256
.0286 -.8985
-.8080 -.0874
0 .2288

0 .0070

.0265 )
.1406 )
-.5630 )
~.0259 )
.1497 )

The minimal state-space realization of the inner denominator R has

the following matrices:

AR = ( -.1605 L0772 ) BR = ( -1.1050
( -.3040 -.1605 ) ( .0066
CR= ( .2288 -.0259 ) DR=(C1 0)
( .0070  .1497 ) (o 1)

Error Messages:

_1_

Invalid parameter value on entry.

_2_

Reduction of A to RSF form failed.

_3_

The ordering of the real Schur failed.
_4_

The system (A,B,C,D) is not factorable.

-.3215 )
-2.5822 )
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SUBROUTINE RPMRLB
State-Space Representation of a Left Coprime Factorization

Procedure purpose:
Constructs the state-space representation for the system
G = (A,B,C,D) from the factors Q = (AQR,BQ,CQR,DQ) and
R = (AQR,BR,CQR,DR) of its left coprime factorization
-1
G=R *(Q

where G, Q and R are the corresponding transfer-function matrices.
Usage:
CALL RPMRLB(A, N, B, M, C, P, D, IWORK, *)

A : 1IN, OUT, DOUBLE (N,N)
On input : the N*N state matrix AQR of the state-space
representation of ( QR ).
(column dense)
On output : the state matrix A of the state-space
representation of G
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M+P)

On input : the N*(M+P) input matrix ( BQ BR ) of the
state-space representation of ( Q R ).
(column dense)

On output : the N*M input matrix B of the state-space
representation of G
(column dense)

M : IN, INTEGER .
dimension of input vector
c : 1IN, OUT, DOUBLE (P,N)

On input : the P*N output matrix ( CQR ) of the state-space
representation of ( Q R )
(column dense)

On output : the P*N output matrix C of the state-space
representation of G
(column dense)

P : IN, INTEGER
dimension of output vector
D : 1IN, OUT, DOUBLE (P,M+P)

On ipput : the P*(M+P) feedthrough matrix ( DQ DR ) of the
state-space representation of ( Q R )
(column dense)

On output : the P*M output matrix D of the state-space
representation of G
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(column dense)
IWORK : OUT, INTEGER (P)
working array.
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:

The subroutine computes the matrices of the state-space
representation G = (A,B,C,D) by using the formulas:

-1 -1
A =AQR - BR * DR * CQR, B = BQ - BR * DR * DQ,
-1 -1
C =DR * CQR, D =DR = DQ.
Literature
/1/ Varga A.
Coprime Factors Model Reduction Method based on Square-Root
Balancing-Free Techniques,
Proc. 4-th IMACS Symp. on Systems Analysis and Simulation,
Berlin, Aug. 25-28, 1992,
Remarks:

- This routine is thought to be used in conjunction with one of the
routines for computing left coprime factorizations of transfer-
function matrices and therefore, the input matrices of this
subroutine have identical structures with the structures of the
matrices resulting from the factorization routines.

Copyright:
1982 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1892 JULY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample: :
Given the continuous-time unstable system example (A,B,C,D) used by
the subroutine RPMRSD (D = 0), a fifth order approximate model can be
computed with the following sequence of statements implementing the

coprime factors model reduction approach based on the square-root
balancing-free B & T method:

=7
= 2
=3
= FALSE.

o v I -
[

5



DISCR = .FALSE.
ALPHA = 0.0DO
BETA = -1.0D0
TOL = 1.0D-10
LWORK = MAX(N*N+4*M+6+N, 4%(N+1)*N)
c Compute the left coprime factorizatiom of G.
CALL RPMRLF(A, N, B, M, C, P, D, WITHD, DISCR, ALPHA, BETA,
* TOL, NQ, NR, RWORK, LWORK, *1111)
C Compute the reduced order approximation of the coprime factors.
TOL = 0.0D0
FIXORD = 5
CALL RPMRBT(A, NQ, B, M, C, P+M, DISCR, TOL, FIXORD, NR, HSV,
* RWORK, LWORK, IWORK, *1111)
c Compute the reduced order approximation of G.

CALL RPMRLB(A, NR, B, M, C, P, D, IWORK, *1111)

The matrices AQR, BQR, CQR and DQR of the computed left coprime
factorization ( § R ) are those computed in the example presented for
the subroutine RPMRLF.

The matrices AQRr, BQRr and CQRr of the reduced order approximation
( Qr Rr ) of ( Q R ) computed with the subroutine RPMRBT are:

( -.2054 -.1837 -.0522 -.9910 .4825 )
( .0475 .5169 1.8402 -.2473 -.2658 )
AQRr = ( .0197 -4.0359 -3.2528 .8956 .8612 )
( 1.5121 -.55156 -.4983 -2.4071 1.2362 )
( -1.2927 -.4066 -.5290 1.3998 -1.9715)
( .0704 2.1238 .0072 .0237 -.9778 )
( .9558 .0428 -.0845 -.3647 -.0567 )
BQRr = ( 5.3424 .2182 .0351 .1518 .0544 )
( .7745 -4.2105 -.1703 -.7373 -.4817 )
( .5534 3.8290 -.1925 -.8260 L4379 )
( -.0555 .9341 -.2686 -.0784 ~-.0500 )
CQRr = ( -.0096 L1070 -.1771 .6179 .6916 )
( .8856 .0512 -.0368 .3138 -.2840 )

The Hankel singular values of the system ( Q R ) are:

2.8349 1.9641 L7710 .5583 .4518 . 0237 .0201
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The matrices Ar, Br and Cr of the reduced order approximation of
the original system are:

( .6612 -.1428 -.0821 -.6983 .1887 )
( .0895 .6377 1.7508 -.0108 -.0339 )
Ar = ( -.02561 -4.0878 -3.2145 .7875 L7736 )
( 1.9222 -.2888 -.6924 -1.8137 1.6008 )
( -1.6991 -.1609 ~-.7109 1.7577 =-1.2855)
( .0704 2.1236 )
( .9558 .0428 )
Br = ( 5.3424 .2182 )
( .7745 -4.2105 )
( .5534 3.8290 )
( -.0556 .9341 -.2686 -.0784 -.0500 )
Cr = ( -.0096 L1070 -.1771 .6179 .6916 )
( .8856 .0512 -.0368 .3138  -.2840 )

Error Messages:

_1-.

Invalid parameter value on entry.

-9=

Singular dencminator feedthrough matrix.

15
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SUBROUTINE RPMRRB
State-Space Representation of a Right Coprime Factorization

Procedure purpose:
Constructs the state-space representation for the system
G = (A,B,C,D) from the factors Q = (AQR,BQR,CQ,DQ) and
R = (AQR,BQR,CR,DR) of its right coprime factorization
-1
G=0Q =R

where G, § and R are the corresponding transfer-function matrices.
Usage:
CALL RPMRRB(A, N, B, M, C, P, D, RWORK, LWORK, IWORK, *)

A : IN, OUT, DOUBLE (N,N)
On input : the N*N state matrix AQR of the state-space
Q)

representation of (R ).
(column dense)

On output : the N+*N state matrix A of the state-space
representation of G
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : the N*M input matrix BQR of the state-space

Q)
representation of ( R ).
(column dense)
On output : the N*M input matrix B of the state-space
representation of G
(column dense)

M : IN, INTEGER
dimension of input vector
c : IN, OUT, DOUBLE (P+M,N)
: (cq)
On input : the (P+M)#*N output matrix ( CR ) of the state-space

(Q)

representation of ( R )
(column dense)

On output : the P*N output matrix C of the state-space
representation of G
(column dense)

P : IN, INTEGER
dimension of output vector

D : IN, OUT, DOUBLE (P+M,M)



RWORK :

LWORK

IWORK :

On input

On output

: the (P+M)*M feedthrough matrix

77

state-space representation of
(column dense)

: the P*M ocutput matrix D of the state-space

representation of G
(column dense)

OUT, DOUBLE (LWORK)
working array.

: IN, INTEGER

dimension of working array RWORK.

The value of LWORK must be at least M.

QUT, INTEGER (M)

working array.

RETURN 1, target label in case of error (e.g. *1111)

File input/ output:

none

Method:
The subroutine computes the matrices of the state-space
representation G = (A,B,C,D) by using the formulas:

Libraries required:
RASP, BLAS (1,2,3), LAPACK

-1 -1

A =AQR - BQR * DR * CR, B = BQR * DR ,

-1 -1

C=cQ -DQ*DR *CR, D=DQ*DR

Literature

/1/ Varga A.

Coprime Factors Model Reduction Method based on Square-Root
Balancing-Free Techniques,
Proc. 4-th IMACS Symp. on Systems Analysis and Simulation,
Berlin, Aug. 25-28, 1992,

Remarks:

- This routine is thought to be used in conjunction with one of the
routines for computing right coprime factorizations of transfer-
function matrices and therefore, the input matrices of this
subroutine have identical structures with the structures of the
matrices resulting from the factorization routines.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme
Life cycle:
1992 JULY A. Varga, Ruhr-Universitaet Bochum: coded



Fzample:
Given the continuous-time unstable system example (A,B,C,D) used by
the subroutine RPMRSD (D = 0), a fifth order approximate model can be
computed with the following sequence of statements implementing the
coprime factors model reduction approach based on the square-root
balancing-free B & T method:

N =7
M =2
P =3
WITHD = .FALSE.
DISCR = .FALSE.
ALPHA = 0.0D0O
BETA = -1.0DO0
TOL = 1.0D-10
LWORK = MAX(N*N+4#M+6*N, 4% (N+1)*N)
C Compute the right coprime factorization of G.
CALL RPMRRF(A, N, B, M, ¢, P, D, WITHD, DISCR, ALPHA, BETA,
* TOL, NQ, NR, RWORK, LWORK, *1111)
c Compute the reduced order approximation of the coprime factors.
TOL = 0.0D0
FIXORD = 5
CALL RPMRBT(A, NQ, B, M, C, P+M, DISCR, TOL, FIXORD, NR, HSV,
* RWORK, LWORK, IWORK, *1111)
c Compute the reduced order approximation of G.

CALL RPMRRB(A, NR, B, M, C, P, D, RWORK, LWORK, IWORK, *1111)

The matrices AQR, BQR, CQR and DQR of the computed right coprime
Q)

factorization ( R ) are those computed in the example presented for

the subroutine RPMRRF.

The matrices AQRr, BQRr and Cqﬁr of the reduced order approximation
( Qr) Q)
( Rr ) of ( R ) computed with the subroutine RPMRET are:

( .4395 -2.1330 .0840 L5701 1.2834 )
( .4486 .0632 -2.6514 4.4916 2.8834 )
AQRr = ( .3124 -2.2932 -2.1209 ~-.6210 -2.2299 )
( .4282 -3.6434 -1.5460 -3.1359 -3.4620 )
( -.1693 -,0617 6.0877 -4.3216 -2.4482 )
( -.1752 .0288 )
( -2.0423 3.3941 )
BQRr = ( -3.1532 .2849 )
( -4.7751 -1.,2608 )
( .5936 -3.8651)
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( .1886 -.6605 .2856 .1344  -.6076 )
( .1436 -.0582 .6008 -.3669 .1148 )
CQRr = ( -.9659 -.1880 .1632 .0212 -.0313 )
( -.0523 .1432 -.1820 .1834 .0739 )
( .0060 .6962 -1.0618 1.1370 .6083 )
Q)
The Hankel singular values of the system ( R ) are:
9.8484 3.1500 L7672 .6939 .4023 .0224 .0194

The matrices Ar, Br and Cr of the reduced order approximation of
the original system are:

( .4302 -2.1280 .0824 .5695 1.2788 )
( .3214 -2.0071 .5469 1.0071 .9696 )
Ar = ( .1457 -2.0399 -2.3952 -.3667 -2.1703)
( .1858 =-2.0817 -3.7413 -.8267 -2.3424)
( -.1151 2.5441 2.1302 -.0358 -.1407 )
( -.1752 .0288 )
( -2.0423 3.3941 )
Br = ( ~3.1532 .2849 )
( -4.7751 -1.2608 )
( .5936 -3.8651 )
( .1886 -.6605 .2856 .1344 -.6076 )
Cr = ( .1436 -.0582 .6008 -.3669 .1148 )
( -.9659 -.1880 .1632 .0212  -.0313 )
Error Messages:
_1_
Invalid parameter value on entry.
_2_

Singular denominator feedthrough matrix.
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3. Frequency-Weighted Order Reduction of Stable State-Space Systems

The subroutines of this chapter can be used to compute reduced order
approximations of stable state-space systems by using the frequency-
weighting approach. The provided subroutines represent tools by which
weighting factors can be added to the given system model or can be
removed from it. The routines can be used for both continuous-time and
discrete-time systems.

If (¢ is a given p x m stable transfer-function matrix of degree mn,

and W) and W; are p x p and m x m stable, invertible and minimum-phase
transfer-function matrices of degrees n; and ny, respectively, then

the following procedure can be used to compute an r-th order
approximation (G, of G by employing the frequency-weighting approach
proposed in /1/:

1) Compute Gp, the n-th order stable projection of (W;) 'G(W;)™'.

2) Determine (3;,, an r-th degree approximation of (7; by using a
model reduction method for stable systems.

3) Compute (4, as the r-th order stable projection of W] G W;.

Note: In the above expressions W* represents either WT(—s) for a
continuous-time system or W7 (1/z) for a discrete-time system.

The frequency-weighting technique was originally proposed to be
used in conjunction with the optimal Hankel-norm approximation method

of /2/. In this case, the optimal weighted approximation error
satisfies

I WG =GYW) e = ori

where 0,4 is the (r+ 1)-th Hankel singular values of (;, the
transfer-function matrix computed at step 1 of the above procedure,
and ||G||g is the Hankel-norm of G.



For the model reduction at step 2, any of methods available for
stable systems can be used. The following routines are provided to
perform the computations at steps 1 and 3:

RPMRFL constructs for either (W) G or WG an n-th order state-
space realization of its stable projection by using the
explicit formulas derived in /3/.

RPMRFR constructs for either G(W)™' or GW} an n-th order state-
space realization of its stable projection by using the
explicit formulas derived in /3/.

Literature: :

/1/ Latham, G.A., Anderson, B.D.O.
Frequency-weighted optimal Hankel-norm approximation of stable
transfer functions,
Systems & Control Letters, Vol. 5, pp. 229-236, 1985.

/2/ Glover, K.
All Optimal Hankel Norm Approximatiom of Linear Multivariable
Systems and Their L-Infinity Error Bounds,
Int. J. Control, Vol. 36, pp. 1145-1193, 1984.

/3/ Varga A.
Explicit formulas for an efficient implementation of the
frequency-weighting model reduction approach,
Proc. 1993 ECC, Groningen, NL, pp. 693-696, 1993.
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SUBROUTINE RPMRFL
Stable Projections for Output Frequency-Weighted Model Reduction

Procedure purpose:
Constructs a state-space representation (AS,BS,CS,DS) of the
* =1 *
stable projection of either (W ) *G or W *G from the state-space
representations (A,B,C,D) and (AW,BW,CW,DW) of the transfer-
function matrices G and W, respectively. G should be stable.
For the premultiplication with the conjugate of W, the
system W used as frequency weight, should be stable and
in the discrete-time case, W should have no poles in the origine.
For the premultiplication with the inverse of the conjugate of W,
the system W should be invertible and minimum-phase, and for the
discrete-time case, W should have no zeros in the origine.
*
W denotes the conjugate of W given by either W’(-s) for a
continuous-time system or W’(1/z) for a discrete-time systen.

Usage:
CALL RPMRFL(A, N, B, M, C, P, D, WITHD, DISCR, AW, NW,
* BW, CW, DW, INVW, RWORK, LWORK, IWORK, *)
A : IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the system G

(column dense)
On output : system state-matrix AS of the stable projection
* -1 *
of (W) *G if INVW = .TRUE. or of W *G if
INVW = .FALSE.. The resulting AS is in a real
Schur form.
(column dense)

N : IN, INTEGER, N > 0
dimension of state vector of the system G
B : IN, OUT, DOUBLE (N,M).
On input : system input matrix B of the system G

(column dense)
On output : system input matrix BS of the stable projection
* =1 *
of (W) +*G if INVW = .TRUE. or of W *G if
INVW = .FALSE..
(column dense)

M : IN, INTEGER, M > 0
dimension of input vector of the system G.
C : 1IN, OUT, DOUBLE (P,N)

On input : system output matrix C of the system G
(column dense)
On output : system output matrix CS of the stable projection



WITHD :

DISCR :

AW

NW

BW

CHW

DW

INVW

RWORK :

LWORK

* -1 *
of (W) *G if INVW = .TRUE. or of W *G if
INVW = .FALSE..
(column dense)
IN, INTEGER, P > 0
dimension of output vectors of systems G and W and of the
input vector of the system W.
IN, OUT, DOUBLE (P,M)
On input : if WITHD = .TRUE., the system feedthrough matrix
D of the system G
(column dense)
On output : if WITHD = .TRUE., the system output matrix DS
of the stable projection
* -1 *
of (W) %G if INVW = .TRUE. or of W *G if
INVW = .FALSE..
(column dense)
If WITHD = .FALSE., this matrix is not referenced.
IN, LOGICAL
specifies whether or not the feedthrough matrix D is null:
WITHD = .TRUE., a non-zero D is assumed.
WITHD = .FALSE., a zero D matrix is assumed.
IN, LOGICAL
specifies the type of the systems G and W:
continuous-time systems, if DISCR = .FALSE., or
discrete-time systems, if DISCR = .TRUE.
IN, DOUBLE (NW,NW)
system state-matrix AW of the system W
(column dense)
If NW = 0, this matrix is not referenced.
IN, INTEGER, NW >= 0
dimension of state vector of the system W
IN, DOUELE (NW,P)
system input matrix BW of the system W
(column dense)
If NW = 0, this matriz is not referenced.
IN, DOUBLE (P,NW)
system output matrix CW of the system W
(column dense)
If NW = 0, this matrix is not referenced.
IN, DOUBLE (P,P)
system feedthrough matrix DW of the system W.
(column dense)
IN, LOGICAL .
specifies whether the conjugate or the inverse of the
conjugate of W is used to compute the stable projection:
INVW = .TRUE., the inverse of the conjugate of W is used.
INVW = .FALSE., the conjugate of W is used.
OUT, DOUBLE (LWORK)
working array.

: IN, INTEGER
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dimension of working array RWORK.

The value of LWORK must be at least

max (N, NW)*(max (N,NW)+2) +max (3 ,P) *N+NW* (NW+2*P+3)+P*P,
IWORK : OUT, INTEGER (P)
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:

*

The matrices of the stable projection of W *G are computed
using the explicit formulas established in /1/.

For continucus-time systems, the matrices AS, BS, C5 and DS of
the stable projection are computed as

AS = U’#AxU, BS = U’*B, CS = (BW’*X+DW’*C)*U, DS = DW’=D,

where U is an orthogonal matrix which reduces A to a real Schur
form and X satisfies the continuocus-time Sylvester equation

AW’ *X + XxA + CW'*C = 0.

For discrete-time systems, the matrices AS, BS, CS5 and DS of
the stable projection are computed as

AS
DS

]

U’*A*U, BS = U’*B, CS = (BW’*X*A+DW’*C)*U,
(DW’-BW’*inv (AW’ )*CW’)*D,

where U is an orthogonal matrix which reduces A to a real Schur
form and X satisfies the discrete-time Sylvester equation

AW’ *X*A + CW'*C = X,

* -1

For computing the stable projection of (W ) *G, the same formulas

are used by replacing the system (AW,BW,CW,DW) by its inverse
-1 -1 -1 -1
(AW-BW#DW *CW, ~DW *BW, CW*DW , DW ).

Literature

/1/ Varga A.
Explicit formulas for an efficient implementation of the
frequency-weighting model reduction approach,
Proc. 1993 ECC, Groningen, NL, pp. 693-696, 1993.

Remarks:
- No explicit checks are performed for the singularity of
the matrices to be inverted. The error messages 4, B or 9
are issued only if exact singularity is detected. If the

84



respective matrices are nearly singular, the computed results
may be inaccurate.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JULY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
The fellowing sequence of statements can be used to compute a
frequency-weighted Balance & Truncate approximation of a stable
continuous-time system G = (A,B,C,D) by using W = (AW,BW,CW,DW) as
outputs frequency-weighting factor:

DISCR .FALSE.

WITHD .FALSE.

NA = MAX(N,NW)

LWORK = NA*(NA+2) + MAX(3,P)*N + NW*(NW+P+P+3) + PP
LWORK = MAX(LWORK,4*(N+1)*N)

*-1
C Compute G1, the stable projection of W  *G.

INVW = .TRUE.

CALL RPMRFL(A, N, B, M, C, P, D, WITHD, DISCR, AW, NW,

* BW, CW, DW, INVW, RWORK, LWORK, IWORK, *1111)
C Compute Glr, a Balance & Truncate appreximation of G1.

TOL = 0.1D0

FIXORD = 0

CALL RPMRBT(A, N, B, M, ¢, P, DISCR, TOL, FIXORD, NR, HSV, RWORK,

* LWORK, IWORK, *1111)
C *
Compute Gr, the stable projection of W *Gir.
INVW = .FALSE.
IF (NR.GT.0) CALL RPMRFL(A, NR, B, M, C, P, D, WITHD, DISCR,
* AW, NW, BW, CW, DW, INVW, RWORK, LWORK, IWORK, *1111)

[}

[

By using the above sequence of statements for the system matrices

( -3.8637 -7.4641 -9.1416 -7.4641 =-3.8637 -1 ) ( 1)

( 1 0 0 0 0 0) ( 0 )
A= ( 0 1 0 0 0 0) B=( 0 )

( 0 0 1 0 0 0) ( 0 )

( 0 0 0 1 0 0) ( 0 )

( 0 0 0 0 1 0) ¢ 0 )
c=( 0 0 0 0 0 1)

and the output frequency-weighting matrices



AW = (-2 -1) BW = (1) CWw=o(-1.8 0) DW = 1.
(1 0) (o)
the following results have been obtained:
1) The matrices of resulting G1 = (A1,B1,C1) are:
( -.2588 1.1498 -.4160 .4591 1.7633 =-7.7212 )
( -.8114 -.2588 -.0281 .3703 ~-.5606 1.1293 )
Al = ( 0 0 -.7071 -.5287 -.8349 2.0301 )
( 0 0 .9457 -.7071 -2.6789 9.9802 )
( 0 0 0 0 -.9659 6.9494 )
( 0 0 0 0 -.0096 -.9659 )
( -.5286 )
( .0829 )
Bl = ( .1458 )
( .6908 )
( .4464 )
( -.1263 )
€1 = ( 1.8545 .2907 -.9917 1.5664 2.0202 8.0920 )
The Hankel singular values of this system are:
2.6790 2.1589 .8424 .1929 .0219 .0011

2) The matrices of resulting Gir = (Alr, Bir, Clr), the fourth order
approximation of Gl obtained by using the Balance & Truncate
method are:

I

( .3561 1.1201 -1.5444 2.9212) ( -.2287 )
Alr = ( -.7526 .3622 .8039  -.,4983 ) Bir = ( .0472 )

( -.1178 -.2523 1.6688 =-3.8735) ( .2308)

( -.3645 -.1765 1.9355 -3.7298 ) ( .3288)
Clr = ( -3.1845 3.1611 4.1436 -6.1542 )

3) The matrices of the reduced model Gr = (Ar,Br,Cr), the stable
*

projection of W *Glr, are:

-.2272 -1.2419 1.8147 4.9573 ) ( -.3529 )

(
Ar = ( .7378 -.2272 .7266 1.9178 ) Br = ( -.1511 )
( 0 0 -.4442 -3.8626 ) ( .2441)
( 0 0 .0501 -.4442) ( .0946 )
Cr = ( -.0057 ~-.7088 -.6474 L0717 )



Error Messages:

-1-

Invalid parameter value on entry.

_2-

Reduction of A or AW to RSF form failed.
_3_

The system (A,B,C,D) is not stable.

The system (AW,BW,CW,DW) is not invertible.
The system (AW,BW,CW,DW) is not ﬁinimum-phase.
The system (AW,BW,CW,DW) is not stable.

The solution of the Sylvester equation failed.
The system (AW,BW,CW,DW) has a zero in origine.
The system (AW,BW,CW,DW) has a pole in origine.

_10-
Not enough working storage. It should be at least //LENG//.
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SUBROUTINE RPMRFRa
Stable Projections for Input Frequency-Weighted Model Reduction

Procedure purpose:
Constructs a state-space representation (AS,BS,CS5,DS) of the
* -1 *
stable projection of either G*(W ) or G*¥W from the state-space
representations (A,B,C,D) and (AW,BW,CW,DW) of the transfer-
function matrices G and W, respectively. G should be stable.
For the postmultiplication with the conjugate of W, the
system W used as frequency weight, should be stable and
in the discrete-time case, W should have no poles in the origine.
For the postmultiplication with the inverse of the conjugate of W,
the system W should be invertible and minimum-phase, and for the
discrete-time case, W should have no zeros in the origine.
" :
W denotes the conjugate of W given by either W’(-s) for a
continuous-time system or W’{(1/z) for a discrete-time system.

Usage:

CALL RPMRFR(A, N, B, M, C, P, D, WITHD, DISCR, AW, NW,

* BW, CW, DW, INVW, RWORK, LWORK, IWORK, *)
A : IN, OUT, DOUBLE (N,N)
On input : system state matrix A of the system G

(column dense)
On output : system state-matrix AS of the stable projection
* ~1 *
of G¥(W ) if INVW = .TRUE. or of GxW if
INVW = _FALSE.. AS results in a real Schur form.
(column dense)

N : IN, INTEGER, N > 0
dimension of state vector of the system G
B : 1IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the system G

(column dense)
On output : system input matrix BS of the stable projection
* =1 *
of G¥(W ) if INVW = .TRUE. or of G#W if
INVW = .FALSE..
(column dense)
M : IN, INTEGER, M > 0
dimension of input vectors of systems G and W and of the
output vector of the system W.
C : 1IN, 0UT, DOUBLE (P,N)
On input : system output matrix C of the system G
(column dense)
On output : system output matrix CS of the stable projection



WITHD :

DISCR :

AW

NW

BW

CwW

DW

INVW

RWORK :

LWORK

* -1 *
of G¢«(W ) if INVW = .TRUE. or of G*W if
INVW = .FALSE..
(column dense)
IN, INTEGER, P > O
dimension of output vector of the systems G.
IN, OUT, DOUBLE (P,M)
On input : if WITHD = .TRUE., the system feedthrough matrix
D of the system G
(column dense)
On output : if WITHD = .TRUE., the system output matrix DS
of the stable projection
* -1 *
of G*(W ) if INVW = .TRUE. or of G*W if
INVW = .FALSE..
(column dense)
If WITHD = .FALSE., this matrix is not referenced.
IN, LOGICAL
specifies whether or not the feedthrough matrix D is null:
WITHD = .TRUE., a non-zero D is assumed.
WITHD = .FALSE., a zero D matrix is assumed.
IN, LOGICAL
specifies the type of the systems G and W:
continuous-time systems, if DISCR = .FALSE., or
discrete-time systems, if DISCR = .TRUE.
IN, DOUBLE (NW,NW)
system state-matrix AW of the system W
(column dense)
If NW = 0, this matrix is not referenced.
IN, INTEGER, NW >= 0
dimension of state vector of the system W
IN, DOUBLE (NW,M)
system input matrix BW of the system W
(column dense)
If NW = 0, this matrix is not referenced.
IN, DOUBLE (M,Nw)
system output matrix CW of the system W
(column dense)
If NW = 0, this matrix is not referenced.
IN, DOUBLE (M,M)
system feedthrough matrix DW of the system W.
(column dense)
IN, LOGICAL
specifies whether the conjugate or the inverse of the
conjugate of W is used to compute the stable projection:
INVW = .TRUE., the inverse of the conjugate of W is used.
INVW = .FALSE., the conjugate of W is used.
OUT, DOUBLE (LWORK)
working array.

: IN, INTEGER

dimension of working array RWORK.
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The value of LWORK must be at least

max (N,NW) * (max (N,NW)+2) +max (3, M) *N+NW* (NW+2%M+3) +M*M.
IWORK : OUT, INTEGER (M)
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:
%*

The matrices of the stable projection of G*#W are computed
using the explicit formulas established in /1/.

For continuous-time systems, the matrices A5, BS, C5 and DS of
the stable projection are computed as

AS = U’*AxU, BS = U’*(B+DW’+Y+CW’), CS = C#U, DS = D#DW’,

where U is an orthogonal matrix which reduces A to a real Schur
form and X satisfies the continuous-time Sylvester equation

A*xY + Y*AW’ + B*BW’ = 0.

For discrete-time systems, the matrices AS, BS, CS and DS of
the stable projection are computed as

AS
DS

U’*A*U, BS = U’x(B*DW’+AxY*CW’), CS = CxU,
D* (DW’-BW’*inv (AW’ )*CW’),

where U is an orthogonal matrix which reduces A to a real Schur
form and X satisfies the discrete-time Sylvester equation

A*X*AW’ + B*BW’' = X.

* ~1
For computing the stable projection of G*(W ) , the same formulas
are used by replacing the system (AW,BW,CW,DW) by its inverse
-1 -1 -1 -1
(AW-BW#DW #*CW, -DW *BW, CW*DW , DW ).

Literature

/1/ Varga A.
Explicit formulas for an efficient implementation of the
frequency-weighting model reduction approach,
Proc., 1993 ECC, Groningen, NL, pp. 693-8696, 1993.

Remarks:
- No explicit checks are performed for the singularity of
the matrices to be inverted. The error messages 4, 8 or 9
are issued only if exact singularity is detected. If the
respective matrices are nearly singular, the computed results



may be inaccurate.

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 JULY A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
The following sequence of statements can be used to compute a
frequency-weighted Balance & Truncate approximation of a stable
continuous-time system G = (A,B,C,D) by using W = (AW,BW,CW,DW) as
inputs frequency-weighting factor:

[}

DISCR .FALSE.
WITHD = .FALSE.
NA = MAX(N,NW)

LWORK = NA*(NA+2) + MAX(3,M)*N + NW*(NW+M+M+3) + M=*M
LWORK = MAX(LWORK,4*(N+1)*N)
INVW = .TRUE.
C *=1
C Compute G1, the stable projection of G*W
CALL RPMRFR(A, N, B, M, C, P, D, WITHD, DISCR, AW, NW,
* BW, CW, DW, INVW, RWORK, LWORK, IWORK, *1111)
C Compute Glr, a Balance & Truncate approximation of Gi.
TOL = 0.1D0
FIXORD = 0
CALL RPMRBT(A, N, B, M, C, P, DISCR, TOL, FIXORD, NR, HSV, RWORK,
* LWORK, IWORK, *1111)
C *
C Compute Gr, the stable projection of Glr*W .
INVW = .FALSE. )
IF (NR.GT.0) CALL RPMRFR(A, NR, B, M, C, P, D, WITHD, DISCR,
* AW, NW, BW, CW, DW, INVW, RWORK, LWORK, IWORK, *1111)

By using the above sequence of statements for the system matrices
employed as example by the routine RPMRFL and the input frequency
weighting matrices

AW =(-2 -1) BW = CW=o(-1.98 0) DW = 1.
(1

(
0) (
the following results have been obtained:

1) The matrices of resulting G1 = (A1,B1,C1) are:



2)

3)

( -.2588 1.1498 -.4160 .4591 1.7533 -7.7212 )
( -.8114 -.2588 -.0281 .3703 -.5606 1.1293)
AL = ( 0 0 ~-.7071 -.5287 -.8349 2.0301)
( 0 0 .9457 -.7071 =-2.6789 9.9802 )
( 0 0 0 0 -.9659 6.9494 )
( 0 0 0 0 -.0096 -.9659 )
( .9829)
( -1.2926 )
Bl = ( -.1802)
( -.1386)
{( .8993)
( -.2544)
Cl1 = ( .5286 .0829  -.1458 .6908 -.4464 -.1263 )

The Hankel singular values of this system are:

3.6669 2.7631 .9436 .2203 .0242 .0012

The matrices of resulting Gir = (Alr, Bir, Cir), the fourth order
approximation of G1 obtained by using the Balance & Truncate
method are:

( .0319 L9780 -.3791  1.4260 ) ( .8019)
Alr = ( -1.0820 -.1537 .5603 .1316 ) Bir = ( 2.3139 )

( .0471 .0161 .0203 -.2535) ( -.2167 )

( -.1054 -.1199 1.7048 -1.2521) ( .8140 )
Cir = ( -.5033 .3702 -.1618 -.6910 )

The matrices of the reduced model Gr = (Ar,Br,Cr), the stable
*

projection of Gilr*W , are:

( -.2320 -.8461 1.3981 1.1418 ) ( -.4294 )
Ar = ( 1.087% -.2320 -.3532 .1965 ) Br = ( ~.1232 )

( 0 0 -.4448 -1.8414 ) ( .3549 )

( 0 0 .1086  -.4448 ) ( .2182 )
Cr = ( -.4309 -.4169 -.7204 -.1249 )

92



Error Messages:

_1_

Invalid parameter value on entry.

_2_

Reduction of & or AW to RSF form failed.

The system (4,B,C,D) is not stable.

The system (AW,BW,CW,DW) is not invertible.
The system (AW,BW,CW,DW) is not minimum-phase.
The system (AW,BW,CW,DW) is not stable.

The solution of the Sylvester equation failed.
The system (AW,BW,CW,DW) has a zero in origine.
The system (AW,BW,CW,DW) has a pole in origine.

-10-
Not enough working storage. It should be at least //LENG//.
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4. Evaluation of the Norms of Transfer-Function Matrices

The

functions of this chapter can be used to compute norms of

transfer-function matrices. The main intended applications of these
functions are for the evaluation of the norms of the model reduction
approximation errors. All functions are applicable to both stable

and

unstable, minimal or non-minimal, continucus-time or discrete-

time systems.

The

following subroutines are provided tc compute norms:

RPMRHN computes the Hankel-norm and Hankel-singular values of the

stable projection of a transfer-function matrix by using
the square-root method of /1/ combined with the stable/
antistable projection procedure described in /2/.

RPMEN2 computes the L2 or 12 norm of a transfer-function matrix

by using the algorithms described in /3/ and /4/.

Literature:

/1/

/2/

/3/

/4/

Tombs M.S. and Postlethwaite I.

Truncated Balanced Realization of Stable, Non-minimal
State-Space Systems.

Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.
Synthesis of Positive Real Multivariable Feedback Systems,
Int. J. Control, Vol. 45, pp. 817-842, 1987.

Varga A.

On computing 2-norms of transfer-function matrices.

Proc. of 1992 American Contrecl Conference, Chicago, June 1992.
Varga A.

A Schur methed for computing coprime factorizations

with inner denominators and applications in model reductionm,
Research Report 4.92, Dept. Mech. Eng., Ruhr-Univ. Bochum,
Proc. 1993 ACC, San Francisco, CA, pp. 2130-2131, 1993.
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SUBROUTINE RPMRHN

Hankel-Norm and Hankel-Singular Values of a Transfer-Function Matrix

Procedure purpose:
Given the matrices A, B and C of a state-space model, this
subroutine computes the Hankel-norm and the Hankel-singular values
of the stable projection of the corresponding transfer-function
matrix.

Usage:
CALL RPMRHN(A, N, B, M, C, P, DISCR, HANORM, HSV, NS, RWORK, LWORK, *)

A : IN, OUT, DOUBLE (N,N)

On input : system state matrixzx A of the given model.
(column dense)

On output : the state matrix A in a block diagonal real Schur
form with reordered eigenvalues. The leading
NS x NS part of A has eigenvalues in the
stability domain and the trailing (N-NS) x (N-NS)
part has eigenvalues outside the stability domain.
The stability domain is defined as either the
open left half complex plane for a continuous-
time system (DISCR = .FALSE.) or the interior of
the unit circle for a discrete-time system
(DISCR = .TRUE.).
(column dense)

N : IN, INTEGER
dimension of state vector
B : IN, OUT, DOUBLE (N,M)
On input : system input matrix B of the given model

(column dense)
On output : the input matrix B corresponding to the reduced

form of A
(column dense)
M : IN, INTEGER
dimension of input vector
C : IN, OUT, DOUBLE (P,N).
On input : system output matrix C of the given model

(column dense)
On output : the output matrix C corresponding to the reduced
form of A
(column dense)
P : IN, INTEGER
dimension of output vector
DISCR : 1IN, LOGICAL
specifies the type of the system:
continuous-time system, if DISCR = .FALSE., or
discrete-time system, if DISCR = .TRUE.



HANORM:

HSV

N3

RWORK :

LWORK
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0UT, DOUBLE

the Hankel-norm of the stable projection

QUT, DOUBLE (N)

the leading NS elements contain the Hankel-singular values of
the stable projection ordered decreasingly

OUT, INTEGER

order of the stable projection

OUT, DOUBLE (LWORK)

working array.

: IN, INTEGER

dimension of working array RWORK.
The value of LWORK must be at least N*(N+S+MAX(P,M)).
RETURN 1, target label in case of error (e.g. *1111)

File input/ outpul:

none

Method:

If the transfer-function matrix G is unstable, then the
stable projection Gl of G is first computed from the additive
stable/unstable decomposition of G

G =Gl + G2

where G1 is the stable projection and G2 is defined as G2 = G - G1.
If G is stable, then G1 = G and G2 = 0.

The computation of the stable projection is based on the

algorithm presented in /1/.

Let (A1,B1,C1) be the state-space representation of G1. Then,
the Hankel-norm of G is computed as the maximum Hankel singular
value of the system (A41,B1,C1). The computation of the Hankel
singular values is performed by using the square-root method

of /2/.

Literature
/1/ Safonov, M.G., Jonckheere, E.A., Verma, M. and Limebeer, D.J.
Synthesis of positive real multivariable feedback systems,

Int.

J. Control, Vol. 45, pp. 817-842, 1987.

/2/ Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems, Int. J. Control, Vol. 48,
pPp- 1319-1330, 1987.

Remarks:

- The Hankel-norm is only a seminorm when the transfer-function
matrix is mot strictly proper or not causal.

Copyright:

1992 - DLR Institut fuer Dynamik der Flugsysteme



Life cycle:
1992 AUGUST A. Varga, Ruhr-Universitast Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Ezample:
Given the continuous-time unstable system (A,B,C) used by the
subroutine RPMRSD, the Hankel-norm of its stable projection and the
corresponding Hankel-singular values can be computed with the
following sequence of statements:

N =7

M = 2

P =3

DISCR = .FALSE.

LWORK = N*(N+5+MAX(P,M))

CALL RPMRHN(A, N, B, M, C, P, DISCR, HANORM, HSV, NS,
* RWORK, LWORK, *1111)

The stable projection has order NS = 5.
The computed Hankel-norm of the stable projectionm is
HANORM(G) = 1.8198
The computed Hankel-singular values of the stable projection are:
1.8198 .8047 .7382 .0242 .0238
Error Messages:

-1-

Invalid parameter value on emtry.

-0=

Reduction of A to RSF form failed.

-3-

Reordering of the RSF of A failed.

_4_

Computation of gramians failed.

-5=-

Computation of Hankel singular values failed.
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SUBROUTINE RPMREN?

L,— or l;-Norm of a Transfer-Function Matrix.

Procedure purpose:
Given the matrices A, B, C and D of a state-space model, this
subroutine computes the L2- or the 12-norm of the corresponding
transfer-function matrix.

Usage:

CALL RPMRN2(A, N, B, M, ¢, P, D, WITHD, DISCR, TOL, L2NORM,

WITHD :

DISCR :

RWORK, LWORK, *)

IN, DOUBLE (N,N)

systen state matrix A of the given model. A must not have
eigenvalues on the imaginary axis if DISCR = .FALSE. or
on the unit circle if DISCR = .TRUE.

On exit, the content of A is destroyed.

(column dense)

IN, INTEGER

dimension of state vector

IN, DOUBLE (N,M)

system input matrix B of the given model.

On exit, the content of B is destroyed.

{(column dense)

IN, INTEGER

dimension of input vector

IN, OUT, DOUBLE (P,N)

system output matrix C of the given model.

On exit, the content of C is destroyed.

(column dense)

IN, INTEGER

dimension of output vector

IN, DOUBLE (P,M)

If WITHD = .TRUE., the system feedthrough matrix D of

the given model.

If WITHD = .FALSE, D is assumed a P x M null matrix.
(column dense)

If WITHD = .FALSE. or DISCR = .FALSE., D is not referenced.
IN, LOGICAL

specifies whether or not a given feedthrough matrix D is used
in computing the 12-norm:

WITHD = .TRUE. means a given feedthrough matrix D is used in
computing the 12-norm.

(This choice is permitted only if DISCR = .TRUE.).

WITHD = .FALSE. means D is assumed a null matrix.

IN, LOGICAL

specifies the type of the system:

continuous-time system, if DISCR = .FALSE., or



discrete-time system, if DISCR = .TRUE.
TOL : IN, DOUBLE
absolute tolerance level below which the elements of
B are considered zero (used for controllability tests).
Recommended value is TOL = N * EPS * NORM(B), where
NORM(B) denotes the 1-norm of B and EPS is the machine
precision (see LAPACK Library Routine DLAMCH) .
L2NORM: O0UT, DOUBLE .
the L2-norm if DISCR = .FALSE. or the 12-norm if
DISCR = .TRUE. of the systems transfer-function matrix.
RWORK : OUT, DOUBLE (LWORK)
working array.
LWORK : IN, INTEGER
dimension of working array RWORK.
The value of LWORK must be at least
N*(0+M) + M*{2+M+2) + max(6*N, 4*M, 4*P)
* : RETURN 1, target label in case of error (e.g. *1111)

File input/ output:
none

Method:
The subroutine is based on the algorithms proposed in /1/ and /2/.

If the given transfer-function matrix G is unstable, then
a right coprime factorization with inner denominator of G
is first computed ’
-1
G = Q*R
where  and R are stable transfer-function matrices and R is
inner. If G is stable, then Q = G and R = I.
Let (AQ,BQ,CQ,DQ) be the resulting state-space representation of Q.
If DISCR = .FALSE., then the L2-norm of G is computed as
NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ’*X+*BQ))
where X satisfies the continuous-time Lyapunov equation
AQ7*X + XxAQ + CQ’*CQ = 0.
If DISCR = .TRUE., then the 12-norm of G is computed as
NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ’#*X*BQ+DQ’*DQ))
where X satisfies the discrete-time Lyapunov equation

AQ’*X*AQ - X + CQ’*CQ = 0.

Literature
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Remarks:
none

Copyright:
1992 - DLR Institut fuer Dynamik der Flugsysteme

Life cycle:
1992 AUGUST A. Varga, Ruhr-Universitaet Bochum: coded

Libraries required:
RASP, BLAS (1,2,3), LAPACK

Frample:
Given the continuous-time unstable system (4,B,C) used by the
subroutine RPMRSD, the L2-norm of its transfer-function matrix can
be computed with the following sequence of statements:

N =7

M = 2

P =3
DISCR = .FALSE.
WITHD = .FALSE.
TOL = 1.D-14

LWORK = N#(N+M+6) + Mx(2%M+2)
CALL RPMRN2(A, N, B, M, C, P, D, WITHD, DISCR, TOL, L2NORM,
* RWORK, LWORK, *1111)

The computed L2-norm is L2NORM(G) = 7.9395

Lrror Messages:

-1-

Invalid parameter value om entry.

-2=

Reduction of A to RSF form failed.

-3=

Reordering of the RSF of A failed.

-4-

A has an eigenvalue on the unit circle.
_5_

A has an eigenvalue on the imaginary axis.
_6_

The solution of the Lyapunov equation failed.
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Appendix 1. RASP Driver Routines

Model Reduction Tools for Stable Systems

RPMRIB computes reduced order models using the square-root
Balance & Truncate model reduction method.
RASP interface to the subroutime SRBT.

RPMRBT computes reduced order models using the square-root balancing-
free version of the Balance & Truncate model reduction method.
RASP interface to the subroutine SRBFT.

RPMRSP computes reduced order models using the square-root balancing-
free singular perturbation model reduction method.
RASP interface to the subroutine SRBFSP.

RPMROH computes reduced order models using the optimal Hankel-norm
approximation method based on square-root balancing.
RASP interface to the subroutine OHNAP.

RPMRSE computes reduced order models using the square-root version of
the Balanced Stochastic Truncation model reduction method.
RASP interface to the subroutine SRST.

RPMRST computes reduced order models using the square-root balancing-
free version of the Balanced Stochastic Truncation model
reduction method.

RASP interface to the subroutine SRERFS.

RPMRSR computes reduced order models by using the singular
perturbation approximation formulas.
RASP interface to the subroutine SRESID.

RPMRDC constructs the state-space representation of a system
corresponding to a bilinear transformation of its tramsfer-
function matrix.

RASP interface to the subroutine BILIN.

Model Reduction Tools for Unstable Systems

RPMRSD computes an additive spectral decomposition of the transfer-
function matrix of a systen.
RASP interface to the subroutine SADSDC.

RPMRAS adds or substracts two systems in state-space form.
RASP interface to the subroutine S1PMS2.



RPMRLF

RPMRRF

RPMRLI

RPMRRI

RPMRLB

RPMRRB
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constructs a left coprime factorization of a transfer-
function matrix with rational factors having a prescribed
stability degree.

RASP interface to the subroutine LCFS.

constructs a right coprime factorization of a transfer-
function matrix with rational factors having a prescribed
stability degree.

RASP interface to the subroutine RCFS.

constructs the left coprime factorization with inner
denominator of a transfer-function matrix.
RASP interface to the subroutine LCFID.

constructs the right coprime factorization with inner
denominator of a transfer-function matrix.
RASP interface to the subroutine RCFID.

computes the state-space representation of a transfer-function
matrix from its stable rational left coprime factorization.
RASP interface to the subroutine LCFI.

computes the state-space representation of a transfer-function
matrix from its stable rational right coprime factorization.
RASP interface to the subroutine RCFI.

Frequency-Weighting Model Reduction Tools

RPMRFL

RPMRFR

constructs the stable projections for output frequency-weighted
model reductiom.
RASP interface to the subroutine SFRLW.

constructs the stable projections for input frequency-weighted
model reduction.
RASP interface to the subroutine SFRRNW.

Model Reduction Performance FEvaluation Tools

RPMRHN

RPMRN2

computes the Hankel norm and the Hankel singular values of the
stable projection of a tranfer-function matrix.
RASP interface to the subroutine SHANRM.

compute the L2- or 12-norm of a transfer-function matrix.
RASP interface to the subroutine SL2NRM.
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Appendix 2. SLICOT Compatible Driver Routines

BILIN

LCFI

LCFID

LCFS

OHNAP

RCFI

RCFID

RCFS

S1PMS2

SADSDC

SFRLHW

SFRRW

SHANRM

SL2NRM

SRBFS

SRBFSP

constructs the state-space representation of a system
corresponding to a bilinear transformation of its transfer-
function matrix.

constructs the state-space representation of a system from
the factors of its left coprime factorization.

constructs the left coprime factorization with inner
denominator of a transfer—function matrix.

constructs a left coprime factorization of a transfer-
function matrix with rational factors having a prescribed

stability degree.

computes reduced order models using the optimal Hankel-norm
approximation method based on square-root balancing.

constructs the state-space representation of a system from
the factors of its right coprime factorizationm.

constructs the right coprime factorization with inner
denominator of a transfer-function matrix.

constructs a right coprime factorization of a transfer-
function matrix with rational factors having a prescribed
stability degree.

adds or substracts two systems in state-space form.

computes an additive spectral decomposition of the transfer-
function matrix of a system.

constructs the stable projections for output frequency-weighted
model reduction.

constructs the stable projections for input frequency-weighted
model reduction.

computes the Hankel norm and the Hankel singular values of the
stable projection of a tranfer-function matrix.

compute the L2- or 12-norm of a transfer—function matrix.

computes reduced order models using the square-root balancing-
free Stochastic Balance & Truncate model reduction metheod.

computes reduced order models using the square-root balancing-
free singular perturbation model reduction method.



SRBFT

SRBT

SRESID

SRST
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computes reduced order models using the square-root balancing-
free version of the Balance & Truncate model reduction method.

computes reduced order models using the square-root
Balance & Truncate model reduction method.

computes a reduced order model by using singular perturbation
approximation formulas.

computes reduced order models using the square-root
Stochastic Balance & Truncate model reduction methed.
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Appendix 3. SLICOT Compatible Computational and Auxiliary Routines

DGEES1

DTRSVD

DUTUPD

DHNAP1

PLYAPS

PLYAP1

PLYAP2

computes the eigenvalues, the real Schur form and
the corresponding Schur vectors of a real non-symmetric matrix.
(Short version of the LAPACK driver routine DGEES).

.computes the singular value decomposition of a real upper

triangular matrix.
(Short version of the LAPACK driver routine DGESVD).

performs a rank-one update of the upper-triangular factor of
a Cholesky decomposition.

computes reduced order models using the optimal Hankel-norm
approximation method based on square-root balancing
(computational kernel called only by OHNAP).

solves for X = U’U either the stable non-negative definite
continuous-time Lyapunov equation

A’X + XA = -B'B
or the convergent non-negative definite discrete-time Lyapumnov
equation

A'XA - X = -B’B
where A is an n by n matrix in real Schur form, B is an
m by n matrix and U is an n by n upper-triangular matrix.

solves for X = U’*U either the stable non-negative definite
continuous-time Lyapunov equation

S7*X + X*S = -R’#*R,
or the convergent non-negative definite discrete-time Lyapunov
equation

5'*X*3 - X = -R’*R,
where 5 is a stable or convergent n by n convergent matrix in a
real Schur form, R is an n by n upper triangular matrix and
U is an n by n upper-triangular matrix.

solves for X = U’*U either the continuous-time Lyapunov equation
S’*X + X*5 = -ISGN*R’*R
or the discrete-time Lyapunov equation
S?*Xx5 - X = -ISGN*R’*R,
where S is a two by two matrix with complex conjugate
eigenvalues, R is a two by two upper triangular matrix,
ISGN = -1 or 1, and U is a two by two upper triangular matrix.



PLYAP4

RCFS1

RCFID1

RCFID2

SALDC2

SEIG

SECOR1

SPLITB

SFRLW1

SFRRW1

SRBFP1

SRBFS1
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solves for X either the continuous-time Sylvester equation
S’*xX + X*A = C,
or the discrete-time Sylvester equation
S'*X*¥A - X = C,
where S is an n by n matrix in a real Schur form, A is an
m by m matrix (m = 1 or m = 2) and C is an o by m matrix.
(computational kernel called only by PLYAP1).

constructs the factors of a stable rational right coprime
factorization of a transfer-function matrix. The computed
factors have a prescribed stability degree.
(computational kernmel called omnly by LCFS and RCFS)

constructs the factors of a right coprime factorization with
inner denominator of a transfer-functiom matrix.
(computational kernel called only by LCFID and RCFID)

constructs the inner denominator of a right coprime
factorization for a system of order at most two.

solves an n by n pole placement problem (n = 1 or 2).
computes the eigenvalues of an upper quasi-triangular matrix.

reorders the diagonal blocks of a principal submatrix of an
upper quasi-triangular matrix together with its eigenvalues by
constructing an orthogonal similarity transformation.

computes the eigenvalues of a 2 by 2 diagonal block of an upper
quasi-triangular matrix, reduces it to the standard form and
splits the block in the case of real eigenvalues by constructing
an orthogonal transformation.

constructs the stable projections for input frequency-weighted
model reduction.

(computational kernel called only by SFRLW)

constructs the stable projections for ocutput frequency-weighted
model reduction.
(computational kernel called only by SFRRW)

computes reduced order models using the square-root balancing-
free singular perturbation model reduction method.
(computational kernel called only by SRBFSP)

computes reduced order models using the square-root balancing-
free Stochastic Balance & Truncate model reduction method.
(computational kernel called only by SRBFS)
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SRBFT1 computes reduced order models using the square-rcot balancing-
free version of the Balance & Truncate model reduction method.
(computational kernel called only by SRBFT)

SRBT1  computes reduced order models using the square-root
Balance & Truncate model reduction method.
(computational kernel called only by SRBT)

SRGRO  computes the Cholesky factor R of the observability Gramian
Q = R’*R, satisfying a Riccati equation of the form

(A-BE'O)TQ+Q(A- BE'C)+ CTE'C + QBE'BTQ = 0

SRGRO1 (computational kernel called only by SRGRO)

SRSFDC reduces the state matrix of a system to an upper real Schur
form by using an orthogonal similarity transformation and
applies the accumulated transformation to the systems
input and output matrices.

SRSFOD reduces the state matrix of a system to an upper real Schur
form by using an orthogonal similarity transformation,
reorders the diagonal blocks of the computed real Schur form
and applies the accumulated transformation to the systems
input and output matrices.

SRS5T1  computes reduced order models using the square-root
Stochastic Balance & Truncate model reduction method.
(computational kermel called only by SRST)

SYLVS  solves for the n by m matrix X, the Sylvester matrix equatiomn
in either the continuous-time form
A*X + ISGN*X*B = C
or in the discrete-time form
ISGN*A*xX*B + X = C;
wvhere A and B are respectively n by n and m by m matrices
in real Schur form, C is an n by m matrix and ISGN = 1 or -1.

SYLV2 solves for the n by m matrix X, 1 <= n,m <= 2, either the
continuous-time Sylvster equation
TL*X + ISGN*X*TR = B,
or the discrete-time Sylvester equation
ISGN*TL*X*TR + X = B,
where TL is n by n, TR is m by m, B is n by m and ISGN = 1
or -1.

SYSINV computes the inverse of a given system.
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Auziliary Routines

DCROTG

DMNEG

DMPTR

DMSCAL

DMTRA

HOUSH

PAP

constructs a complex plane rotation.
changes the sign of a two-dimensional matrix.
pertransposes a band of a square two-dimensional matrix.

scales a two-dimensional matrix by using row and/or column
scaling factors.

transposes all or part of a two-dimensional matrix
into another matrix.

applies the Householder reflection computed by the LAPACK
routine DLARFG.

reverses the order of rows and/or columns of a two-dimensional
matrix.
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Appendix 4. Called LAPACK and BLAS Routines
LAPACK Roulines
DBDSQR, DGEBAK, DGEBAL, DGEBD2, DGECON, DGEHD2, DGEHRD, DGELSX, DGEQPF,
DGEQR2, DGEQRF, DGETF2, DGETRF, DGETRI, DGETRS, DHSEQR, DORGZR, DORGER,
DORGHR, DORGLZ2, DORGLY, DORGQR, DORM2R, DRSCL, DTREXC, DTRSYL, DTRTIZ,
DTRTRI, DTZRQF
DLABAD, DLACON, DLACPY, DLADIV, DLAEXC, DLAHQR, DLAHRD, DLAIC1, DLALN2,
DLANGE, DLANHS, DLANV2, DLAPY2, DLAPY3, DLARF, DLARFB, DLARFG, DLARFT,
DLARFX, DLARTG, DLAS2, DLASCL, DLASET, DLASR, DLASS{, DLASV2, DLASWP,
DLASY2, DLATRS, DLATZM, DLAZRO
DLAMC1, DLAMC2, DLAMC3, DLAMC4, DLAMCS,, DLAMCH, ILAENV, LSAME
BLAS 1 Routines
DASUM, DAXPY, DCOPY, DDOT, DNRMZ, DROT, DROTG, DSCAL, DSWAP, IDAMAX
BLAS 2 Routines
DGEMV, DGER, DTRMV, DTRSV, XERBLA

BLAS 3 Routines

DGEMM, DSYRK, DTRMM, DTRSM



