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1 Introduction

The frequency—weighted model reduction (FWMR)
approach is primarily intended to enhance the ap-
proximation properties of existing powerful model
reduction methods in specified frequency ranges. As
pointed out in [1], controller reductions in feedback
loops can be also viewed as a special class of FWMR
problems. Several FWMR methodologies have been
proposed in the literature. Enns [2] proposed a
FWMR approach based on the balenced truncation
approzimation (BTA) method of Moore [3], but until
now no Lao—norm bound for the corresponding ap-
proximation error is known. An alternative FWMR
methodology was proposed by Latham and Ander-
son [4] in conjunction with the Hankel-norm ap-
prozimation (HNA) method of [5]. Upper bounds on
the Loo—worm of the approximation error for this
method have been derived in [6] and [7].

This paper focuses on the computational aspects
of the FWMR methodology of [4] (for more details
see also [7]). Besides the solution of a standard
model reduction problem, the underlying computa-
tions also consists of several "simple" manipulations
of the transfer function matrices of the given system
and of the given frequency—weighting functions,
implying systems conjugations, inversions and casca-
ding. A brute force implementation of this methodo-
logy (as that available in a recently developed
MATLAB Toolbox [8]) is highly inefficient with
respect to both storage requirements and computa-
tional effort.

In this paper we derive explicit formulas for
implementing efficiently the FWMR approach for
both continuous—time and discrete—time systems.
New state—space formulas are derived for computing
various stable projections. The use of these formulas

circumvents the need to form explicitly conjugated
or inverse systems, or to manipulate higher order
systems resulting from systems cascading. A detailed
implementable algorithm is presented for conti-
nucus—time systems and a similar procedure is
discussed for discrete—time systems. The formulas
derived for discrete—time systems are seemingly new,
allowing the implementation of the FWMR metho-
dology with the same numerical performances as in
the continuous—time case. Robust implementations
of the presented computational approaches are avail-
able in a recently developed software library for
model reduction [9].

2 Frequency—weighted model reduction

Let G(A) be a pxm transfer—function matriz (TFM)
of a stable system, where A is either the complex
variable s appearing in the Laplace—transform for a
continuons—time system or the complex variable zin
the Z—transform for a discrete—time system. Let
(A,B,C,D) be an equivalent n—th order state—space
representation of G. We denote the given system as
G = (A,B,C,D) which expresses the identity G(A) =
C(AI—A) 1B+ D. Let W1()) and Wo(A) be pxp and
mxm stable, invertible and minimumn—phase TFMs,
representing respectively the output and the input
frequency weights, and let (A1,B1,C1,D1) and
{A2,B2,C2,D9) be corresponding state—space realiza-

. . *
tions of orders ny and ng, respectively. Wi (i=1, 2)
represents the conjugate of the system Wj having

the TFM WT(—S) for a continuous—time system or

1WT(I /z) for a discrete—time system.

The following FWMR problem is considered in
this paper: Given the stable system G with order =
and the frequency—weights Wy and W3, determine
an r—th order stable approximation G; of G which

minimizes "WT-l(G—Gr)W;-le, the Lo-norm of



the frequency—weighted approximation error. A
general procedure to compute an approximate solu-
tion of this problem is the following one [7]:

1. Compute G1, the n—th order stable projection of
witews ™.

2. Determine Gqp, an r—th order approximation of
G1 by using a model reduction method suitable
for stable systems (for example the HNA or the
BTA method).

3. Compute Gp, the r—th order stable projection of

WIGLHWS.

In the next sections we derive explicit state-
space formulas to compute the stable projections at
steps 1 and 3 of this procedure for both continuous-
time and discrete—time systems. The derived for-
mulas allow an efficient implementation of the
FWMR approach.

3 Projection formulas

Let us assume that Wi = (Aq,B1,C1,D1) and
W9 = (A9,B2,C9,D9) are such that A has no com-
mon eigenvalues with either Aj or As. We can easily
construct the system

leW2 = (A-WJBW:CWJDW)

where
A; B1C BiDCy B1DD2
Ag=1|0 A BGCy |, By= BDs
0 0 A9 By

Cy= [C1 DiC DiDC2] , Dy =DiDD2 .

Let T and T°1 be the transformation matrix and its
inverse respectively, defined by

—X 1 XY 01Y
T = 10-Y|,T1l=|1X0
00 1 001

where X and Y satisfy the Sylvester equations
—A1X+ XA+ BIC=0
—AY 4+ YAs 4+ BCo = 0.

It is easy to verify that

A0 0 BD2+YBy
TIAGT = | 0 A % |, TIBy= *
00 As By

CwT =[D1C—CiX Cy *],

where the stars (*) denote matrices whose express-
ions are not important for what follows. The form of
the matrix T"1AyT allows to decompose W{GWs
additively as

WiGWy = Gt + Gy

where Gq and (g are given by
Gt = (A, BDa+YBg, DiC—CiX, D1DDs)

aa=([3 5] [5] ter10.

The expressions for the state—space matrices of
G are used in the nexi section to deduce the
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expressions for the stable projections of W1GWg

awd wilowht,

4 Contimuous—time FWMR procedure

By taking into account that in the continuous—time
case

* T T T . T .

we obtain the following state—space representation

of the stable projection of WTGW;‘
T
WiGW3] = (ABD3+YC3,D1C+B1X,D1 DD3)

ATX + XA 4+ CTC =0

AY + YAT + BB} =0,
In order to compute the stable projection of
WT_IGW;:_I, the same equations are used with Wy

and W2 replaced by their inverses WII and WEI,
respectively, where fori =1, 2
-1 -1 -1 -1 -1
Wi = (Ai—BiDi Cj, —BiD; , Di Ci, Di )
Note that W1 and W2 are stable and minimum—

phase TFMs and therefore Wi, Wa, Wi, W3t
are completely unstable. Thus the conditions for the
solvability of the corresponding Sylvester equations
are fulfilled.

For the solution of the Sylvester equations either
the Schur method [10] or the Hessenberg—Schur
method [11] can be used. The Schur method is based
on a preliminary reduction of the state matrices A,

A? and Arg to an upper quasi—triangular form, the
so—called rea! Schur form (RSF), with the help of
orthogonal similarity transformations. By using the
Hessenberg—Schur method, it is possible to solve the

Sylvester equations by reducing only A? and A’E to
the RSF and the matrix A (usually of higher order)
to the Hessenberg form. Thus, the Hessenberg—
Schur method is usually more efficient than the
Schur method. Both algorithms are numerically
stable and can be safely used in solving Sylvester
equations. For the purpose of the FWMR. used in
conjunction with a balancing related model reduec-



tion method (for instance the BTA or the HNA
methods), the following procedure seems to be the
most efficient with respect to both the storage
requirements and the necessary computational effort.

FWMR Algorithm for continuous—time systems.

1. Compute an orthogonal transformation matrix Q
to reduce A to the RSF and put

A—QTaqQ, B«—QTB, C—cCqQ.

2. For i = 1,2 compute the orthogonal matrices Q; to
reduce (Aj—B iDEICi)T to the RSF and put
Ai=QI(Ar-BiDI'Ci) Qi , Bi = Q1 (-BiDT)

Ci = (D7'CpQ;, Dy = D7 .

3. By using the Schur method, solve the Sylvester
eqnations

AiX +}_(A+6¥C =0
AY + YAg + BBS = 0.
4. Compute an r—th order approximation
G1r = (Ay, Biy, Cir, Diy) of the system
G1= (A, BD34YC3, D1C+B X, D1DD3).
5. Compute an orthogonal transformation matrix Z
to reduce Ay to the Hessenberg form and put
Ap +— ZTAI-Z, Bir +— ZTBH, Cir +— CqrZ.
6. For i = 1,2 compute the orthogonal matrices Zj to

reduce AII‘ to the RSF and put
Y T,T ~ T ot
Ai=ZjAjZ;, Bi=ZiBj, Ci=CiQi.
7. By using the Hessenberg—Schur method, sclve the
Sylvester equations

Ali + }EAI- + ("J}‘Cu- =0
Ari’ + ?Az + B1r]§’5 =0.
8. Compute the r~—th order reduced model
Gr= (Ar;Blrﬁrg-i-{’érg,ﬁ}‘Clr+ﬁ?i,ﬁ?D1rf”E)-

Remarks. 1. At step 3 of the algorithm it is
advantageous to use the Schur method to solve the
Sylvester equations because the reduction of A to the
RSF is usually necessary also at step 4 if a balancing
related method is used for model reduction. In this
way, the costly reduction of A to the RSF is no more
hecessary at step 4, A being already in this form
from the previous step. At step 7, the Hessenberg—
Schur method is the recommendable choice to be
used to solve the Sylvester equations because of its
increased computational efficiency.

2. The above algorithm circumvents completely

the need to form explicitly either WT_IGW;—I or

WTGHW; in order to compute their stable projec~
tions from their additive spectral decompositions.
This computation would require the reduction of the
corresponding state matrices to RSF and the reorde-
ring of the diagonal blocks of the RSF in order to
separate the stable and unstable eigenvalues.

3. It is clear from the above remarks that the use
of explicit formulas contributes decisively to enhan-
cing the numerical performances of the overall
FWMR procedure. Moreover, because the handhling
of output and input weights can be done separately
at steps 2, 3, 6, 7 and 8 of the algorithm, a very
efficient modular implementation of the algorithm is
possible. Such implementation is desirable because
frequently only one of the weights is present in the
FWMR problem and in such a case a shorter algo-
rithmic path can be performed. The above algorithm
served as basis to implement the tools for solving
FWMR problems in the recently developed model
reduction package MODRED [9].

5 Discrete—time FWMR procedure

In the discrete—time case we assume additionally
that Wi and W7 have no poles and zeros in the
origin. This assumption allows us to form explicit
standard state—space representations for the dis-
crete—time conjugate systems. By using the follo-
wing state—space representations of the conjugate
systems (i = 1,2)

* -r,-r.&vr _T,-T T _T,-T.T
Wi=(Ai,Ai Ci,—BjAi ,Di-BjAi Ci)
we obtain after straightforward formula manipula-
tions the following state—space representation of the

stable projection of WiGW3
[WIGW3]_ = (A, B, G, D)
where
B = BD3-BB3A3 C3+YA7LCY
C=Di1C-BIATTCTC+BT AT X
D = (D1—B1Ai C1)D(DI—BF 43TCh)
and X and Y satisfy the Sylvester equations
—AT X + XA + ATTCIC =0
—AY + YA;T —BBIA;T = 0.
By replacing AITX and YAET obtained from these
equations in the expressions of C and B respectively,

we obtain the equivalent simpler expressions

B = BD3+AYCj

C=DIC+BIXA.
and thus



wicwi] = (A, BDI+AYCE, DIC+BIXA, D)

It is easy to observe that X and Y satisfy the equiva-
lent, discrete—type Sylvester equations

ATxa +cTc=x
AYAY +BBT =Y.
In order to compute the stable projection of

WT-IGW;"I, the same equations are used with Wy
and Wy replaced by their inverses.

The procedure for the FWMR of discrete—time
systems is analogous with the FWMR algorithm
presented in the previous section for continuous—
time systems, with obvious modifications in the
expressions of matrices and in solving discrete—type
Sylvester equations insiead continuous—type ones.
For solving discrete—type Sylvester equations, a
Schur method was proposed in [12]. A Hessenberg-
Schur variant of this algorithm can also be easily
devised along the lines of techniques described in
[11]. The overall numerical performances (storage
requirements, number of operations, roundoff errors)
of the discrete—time procedure are basically the
same as for its continuous—ime counterpart.

Remark. In deducing the expressions for the state

. s e * *
space matrices of the stable projection of W{GWa
we used the assumptions that both Ay and Ag are
non—singular. These assumptions are no more ne-

cessary if the matrix D is not included in the ex-

pression of the stable projection [WTGW‘;]_ or if the
original system G is strictly proper (D =0). The

expressions of B and C are still valid even if Aj or
Ao are singular and the matrices X and Y satisfy the
same discrete—type Sylvester equations, The deduc-
tion of the respective formulas can be done by wor-
king with equivalent descriptor systems representa-

. . *
tions of the conjugated systems WT and Wa.

6 Conclusions

Explicit formulas for computing stable projections in
the FWMR approach have been derived. The new
formulas allow an efficient and modular implementa-
tion of the FWMR procedure for both continuous-
time and discrete—time systems. Robust implemen-
tations of the proposed computational approach are
already available in a recently developed model
reduction Fortran library called MODRED [9]. This
library is primarily intended to be used for solving
large order model reduction problems on high perfor-
mance compufers. It is worth to mention that
MODRED is one of the first available applications
libraries based on the new, de faclo standard, linear

algebra package LAPACK [13].
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