

Airport CDM: The Contribution of the XMAN Approach Dietmar Böhme

Airport – Bottleneck or Booster for Future ATM

11.–13. Oct. 2005 DLR-Institute of Flight Guidance, Braunschweig, Germany

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide1 > Airport CDM: The Contribution of the XMAN Approach > Dietmar Böhme

Introduction

- □ Many projects have contributed to the CDM concept

 - LEONARDO
 - □ Gate to Gate
 - C-ATM
 - □ Nordic SWIM
 - ...

Eurocontrol CDM Project

- Airport CDM Implementation Manual
- Airport CDM Applications Operational Concept Document
- Airport CDM Applications Level 1, Functional Requirements
- The European CDM Portal on the Internet: http://www.euro-cdm.org

Conclusion

Read these documents carefully and you will know everything about CDM !!!

..., but

... there are still some questions that need further consideration, like

- How to use existing/future decision support systems for collaborative decision making?
- □ How to incorporate preferences of other partners in the decision making process?
- □ How to evaluate an improved predictability of operations, events, necessary resources, etc.?

Intention and Content of Presentation

Intention of the Presentation

- Provide an insight in the coordination of XMAN decision support tools and the resulting contribution to CDM
- □ XMAN: Decision Support Tools based on planning algorithms
 - AMAN (Arrival Manager)
 - DMAN (Departure Manager)
 - SMAN (Surface Manager)
 - TMAN (Turn-around Manager)
 - EMAN (En-route Manager)
 - ADCO (Arrival Departure Coordination Layer)

<u>Content</u>

- □ Brief overview about the CDM-A objectives, partners and elements
- □ Brief overview about the XMAN approach, its objectives and status
- AMAN TMAN DMAN coordination and its contribution to Information Sharing and Collaborative Decision Making
- □ Incorporation of Aircraft Priorities of the Airline/Airport
- **Conclusions**

CDM-A: Objectives, Partners and Elements

Objectives

- □ Increase punctuality (TOBT!)
- □ Increase predictability
- □ Increase efficiency
 - Airport resources
 - Network capacity

Partners

- □ Airport Operators
- □ Aircraft Operators
- Ground Handlers
- □ Air Navigation Service Provider (ATC)
- □ The CFMU
- □ Support services

Elements

- □ Airport CDM Information Sharing
- Airport CDM Turn-round Process (Milestones Approach)
- □ Variable Taxi Time Calculation
- Collaborative Management of Flight Updates CDM-A and CFMU Message Exchange
 - FUM Flight Update Message
 - DPI Message
- Collaborative Pre-departure Sequence
- **CDM** in Adverse Conditions
 - Anticipate delay situation
 - Recovery strategies to facilitate a quick return to normal operations

XMAN Approach

□ XMAN Approach

- □ Use of automated tools to assist controllers in planning and tactical decision making
- □ Part of Eurocontrol's ASA programme (Automated Support to ATS)

Objectives

- □ Increase of efficiency
- □ Increase throughput (utilization of capacity)
- □ Increase predictability
- **Gamma** Reduce environmental impacts
- □ Status of system development, implementation and coordination
 - □ AMAN (fully developed; implemented)
 - **DMAN (fully developed; implemented)**
 - □ SMAN (partly developed)
 - **TMAN (fully developed; implemented)**
 - □ AMAN DMAN (under development)
 - AMAN TMAN DMAN (first considerations)

XMAN Approach

□ Need for coordination is caused

- □ Share of common resource(s)
 - AMAN-DMAN
 - Resource: Runway System
 - AMAN TMAN; TMAN DMAN
 - Resource: Stands & Gates
 - TMAN / (Hub-Control)
 - Various resources of means and personnel
- Persistence of physical objects (aircraft)
 - Arrivals turn into departures in the turn-around process

□ AMAN & SMAN:

only minimal functionality required

□ aman: prediction of landing times

□ sman: prediction of taxi time

□ Optional Systems:

- 🗆 SMAN

(Arrival Departure Coordination)

- Information Exchange
 - Resource Sharing
 - Object Persistence
 - Optional Systems

Slide7 > Airport CDM: The Contribution of the XMAN Approach > Dietmar Böhme

AMAN-TMAN-DMAN Coordination and its Contribution to Information Sharing and Collaborative Decision Making

Principles / facts to be taken into account

- Planning and/or forecast information are functions of time
 - continuously varying (sliding / shifting)
 - discontinuously changing
 - events
 - sequence changes
- In principle, accuracy/predictability can be estimated with the help of statistical analysis based on normalized times (actual times)
 - accuracy/predictability itself is time-dependent
 - can be used in off-line analysis
 - e.g.: "10 minutes before landing, i.e. ELDT=NOW+10 the 90% confidence interval for ELDT is [NOW+9 NOW+12], i .e. NOW+9<= ELDT<= NOW+12 (95% confidence interval: [now+8 now+14])
 - might be used in on-line quality assessments
 - e.g.: "When TTOT is NOW+10min, with a 90% confidence then ATOT will be in the range of [NOW+9 NOW+12]."

Deutsches Zentrum
 für Luft- und Raumfahrt e.V.
 in der Helmholtz-Gemeinschaft

AMAN-TMAN-DMAN Coordination and its Contribution to Information Sharing and Collaborative Decision Making

Principles / facts to be taken into account

Use of the latest information

- requires either
 - broadcast of information (subscribing mechanism) and / or
 - persistence of information (DBMS)
- Substitution of information (more precise information replaces less precise information)
 - information is generated by a sequence of information sources
 - as a consequence thereof the accuracy of information is increasing steadily
 - e.g. TTOT
 - flight plan
 - pre-tactical departure planning
 - tactical departure planning
 - tendentious increase of accuracy
 - discontinuous changes of level of accuracy

(e.g. ETOT according filed Flight Plan, CDM) Planning / Forecast Information provided by source B (e.g. TTOT according DMAN)

AMAN-TMAN-DMAN Coordination and its Contribution to Information Sharing and Collaborative Decision Making

Time determination of events

□ In-Block; EIBT; AIBT

- EIBT = SLDT (CDM) + EXIT (CDM)
 - = SIBT (CDM)
- EIBT = ELDT (AMAN) + EXIT (SMAN)
- EIBT = ALDT (CDM) + EXIT (SMAN)

□ Estimated / First Off-Block; (EOBT, SOBT)

- EOBT = SIBT (CDM) + ETTT (CDM)
 = SOBT (CDM)
- EOBT = EIBT (CDM) + ETTT (TMAN)
- EOBT >= SOBT (by definition)
- TOBT: The time that an aircraft operator / handling agent <u>estimates</u> that an aircraft will be ready, all doors closed, ...

□ Target Off-Block Time (TOBT)

- TOBT = TTOT (DMAN) EXOT (DMAN/SMAN)
- TTOT >= EOBT (TMAN) + EXOT (DMAN/SMAN)
- ⇒

TOBT >= EOBT

Remarks

- General principle for planning of consecutive operations
 - Backward propagation of target times
 - Forward estimation of first (earliest) times of events
 - Every planned Target Time shall be never smaller (earlier) than the corresponding predicted Earliest Time!

□ Use of TOBT >= EOBT information

- Will cause savings for airlines !
 - Avoidance of the use of additional resources
 - May allow the boarding of late passengers
 - May improve connectivity
- May shorten the ETTT of other flights !
 - More appropriate usage of resources according to actual needs and acuteness

Slide10 > Airport CDM: The Contribution of the XMAN Approach > Dietmar Böhme

Incorporation of Aircraft Priorities of the Airline/Airport

- □ Airline/airport preferences for departure service are often unknown to ATC
- □ The preferences reflect specific interests, objectives and problems of these CDM partners, e.g.
 - to assure a high extend of punctuality and passenger connectivity for their customers
 - □ to avoid resource conflicts (stands, personnel, ...)
- **D** Preferences might be expressed
 - a) through a preferred departure sequence (respectively sub-sequence of their own flights), i.e. technically expressed by "sequence constraints" (e.g. "aircraft A should depart before aircraft B" (A ≺ B)
 - b) through aircraft importance factors w (e.g. aircraft A is twice as important as aircraft B" $w_A=2w_B$)
- □ Both methods require "rules"/regulations
 - expressing the conditions for "Who can induce constraints and when?"
 - □ in order to assure fairness between competitive airlines operating at this airport

Incorporation of Aircraft Priorities of the Airline/Airport

Pros and Cons of these methods

- a) preferences expressed by sequence constraints
 - + appropriate method for hard constraint conditions ("A must ! be pushed before B)
 - + may end in a pre-departure sequence $A \prec B \prec C \Rightarrow A-B-C$
 - may become inconsistent especially when several partners/instances induce such constraints (e.g. A \prec B and B \prec C and C \prec A)
 - $A \prec B$ does not express the relations to other flights ($A \prec B \Rightarrow A$ -B-C-D or \Rightarrow C-D-A-B or \Rightarrow A-C-D-B)
 - may be unacceptable/ disadvantageous for ATC with respect to throughput, control effort etc.
 - number of constraints could become greater than number of departures
- b) preferences expressed by priority importance factors w_A, w_{B...}
 - + this method never causes inconsistency
 - + does express the relations to other flights (standard: w=1)
 - + might not have negative impact on ATC (further investigations needed)
 - + priorities can be treated easily as additional flight plan information (TMAN)
 - + different priorities of airline, airport and ATC can be combined through mathematical functions (e.g.: w_A=w_{A,Airline}* w_{A,Airport})
 - does not guarantee that A departs before B when w_A > w_B
 - may have unexpected impacts on other flights

Aircraft Priorities of Airlines and DMAN (ATC) Departure Scheduling

Rules of the "Game"

Basic

- Airline (participating in CDM) owns a number of "weight points" proportional to the number of owned flights (e.g. 10 points per flight ⇒ w=1)
- Standard is w=1 (if no other information given)
- For every flight the number of assigned points can be changed by the airline according to its preference
- The total sum of assigned points remains constant, i.e. an increase of the importance of one flight necessarily requires a decrease of other importance weights

Additional rules to avoid instability and outwitting

- Changes of weights not later than ...
- Re-changes of weights cause a decrease of the total sum of weight points owned

Example (from RTS1 traffic scenario)

 Scandinavian Airlines induce: w_{SAS589} = 2.5; w_{SAS172} = w_{SAS637} = w_{SAS555} = 0.5

SIMULATION MODE

2.5

0.5

1.0

1.0

1.0

1.0

0.5

0.5

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

12:18:00

Conclusions

CDM and XMAN are not competitive but mutual supporting concepts, i.e.

- □ "better" plans based on more reliable, consistent and complete information
- more reliable information replacing the estimates (what a partner can do) by optimal targets/plans (what the partner should do)
- □ The XMAN planning tools can provide quantitative measures for accuracy (predictability, reliability) as on-time information based on
 - recorded data
 (planning and estimates as functions of time, in dependence on events / milestones)
 - built-in statistical analysis methods
- More reliable, more actual planning information provided in combination with quantitative measures for accuracy will support both
 - Intra Airport CDM
 - □ Inter Airport CDM
 - CFMU (DPI messages)
 - peer-to-peer CDM-A coordination

Conclusions

Coordinated Planning Tools, have the potential to provide techniques, with whose help airline/airport preferences can be taken into account <u>softly</u> without disadvantageous side-effects such as

- □ the need of additional communication
- **u** the risk of inconsistent constraints
- □ the risk of a substantial loss of overall efficiency
- disturbances and complication of the management tasks of ATC

What needs to be done?

□ XMAN: Extension of tactical planning horizon (pre-tactical planning) in order to

- increase the effectuality of plan based (time based) operations
- **allow tool supported what-if-considerations by human decision makers**
- □ TOP: Extended CDM at major airports (i.e. several CDM partners, competitive airlines) may need Total Operations Planning and an Airport Control Centre
- CDM: Extend and adapt the CDM concept with thorough consideration of the incorporation of XMAN

BECAUSE THESE TOOLS ALREADY EXIST!

