Introduction

- Many projects have contributed to the CDM concept
 - DAVINCI
 - LEONARDO
 - Gate to Gate
 - C-ATM
 - Nordic SWIM
 - ...
- Eurocontrol CDM Project
 - Airport CDM Implementation Manual
 - Airport CDM Applications – Operational Concept Document
 - Airport CDM Applications – Level 1, Functional Requirements
 - The European CDM Portal on the Internet: http://www.euro-cdm.org
Conclusion
Read these documents carefully and you will know everything about CDM !!!

..., but

... there are still some questions that need further consideration, like

- How to use existing/future decision support systems for collaborative decision making?
- How to incorporate preferences of other partners in the decision making process?
- How to evaluate an improved predictability of operations, events, necessary resources, etc.?
Intention and Content of Presentation

Intention of the Presentation

- Provide an insight in the coordination of XMAN decision support tools and the resulting contribution to CDM
- **XMAN: Decision Support Tools based on planning algorithms**
 - AMAN (Arrival Manager)
 - DMAN (Departure Manager)
 - SMAN (Surface Manager)
 - TMAN (Turn-around Manager)
 - EMAN (En-route Manager)
 - ADCO (Arrival Departure Coordination Layer)

Content

- Brief overview about the CDM-A objectives, partners and elements
- Brief overview about the XMAN approach, its objectives and status
- **AMAN – TMAN – DMAN coordination and its contribution to Information Sharing and Collaborative Decision Making**
- Incorporation of Aircraft Priorities of the Airline/Airport
- Conclusions
CDM-A: Objectives, Partners and Elements

Objectives

- Increase punctuality (TOBT!)
- Increase predictability
- Increase efficiency
 - Airport resources
 - Network capacity

Partners

- Airport Operators
- Aircraft Operators
- Ground Handlers
- Air Navigation Service Provider (ATC)
- The CFMU
- Support services

Elements

- Airport CDM Information Sharing
- Airport CDM Turn-round Process (Milestones Approach)
- Variable Taxi Time Calculation
- Collaborative Management of Flight Updates
 - CDM-A and CFMU Message Exchange
 - FUM Flight Update Message
 - DPI Message
- Collaborative Pre-departure Sequence
- CDM in Adverse Conditions
 - Anticipate delay situation
 - Recovery strategies to facilitate a quick return to normal operations
XMAN Approach

- **XMAN Approach**
 - Use of automated tools to assist controllers in planning and tactical decision making
 - Part of Eurocontrol’s ASA programme (Automated Support to ATS)

- **Objectives**
 - Increase of efficiency
 - Increase throughput (utilization of capacity)
 - Increase predictability
 - Reduce environmental impacts

- **Status of system development, implementation and coordination**
 - AMAN (fully developed; implemented)
 - DMAN (fully developed; implemented)
 - SMAN (partly developed)
 - TMAN (fully developed; implemented)
 - AMAN – DMAN (under development)
 - AMAN – TMAN – DMAN (first considerations)
XMAN Approach

- Need for coordination is caused
 - Share of common resource(s)
 - AMAN-DMAN
 - Resource: Runway System
 - AMAN – TMAN; TMAN – DMAN
 - Resource: Stands & Gates
 - TMAN I (Hub-Control)
 - Various resources of means and personnel
 - Persistence of physical objects (aircraft)
 - Arrivals turn into departures in the turn-around process
- AMAN & SMAN:
 - only minimal functionality required
 - aman: prediction of landing times
 - sman: prediction of taxi time
- Optional Systems:
 - SMAN
 - ADCO (Arrival Departure Coordination)
AMAN-TMAN-DMAN Coordination and its Contribution to Information Sharing and Collaborative Decision Making

Principles / facts to be taken into account

- Planning and/or forecast information are functions of time
 - continuously varying (sliding / shifting)
 - discontinuously changing
 - events
 - sequence changes
- In principle, accuracy/predictability can be estimated with the help of statistical analysis based on normalized times (actual times)
 - accuracy/predictability itself is time-dependent
 - can be used in off-line analysis
 - e.g.: “10 minutes before landing, i.e. ELDT=NOW+10
 the 90% confidence interval for ELDT is [NOW+9 NOW+12], i.e. NOW+9<= ELDT<= NOW+12
 (95% confidence interval: [NOW+8 NOW+14])”
 - might be used in on-line quality assessments
 - e.g.: “When TTOT is NOW+10min, with a 90% confidence then ATOT will be in the range of [NOW+9 NOW+12].”
AMAN-TMAN-DMAN Coordination and its Contribution to Information Sharing and Collaborative Decision Making

Principles / facts to be taken into account

- Use of the latest information
 - requires either
 - broadcast of information (subscribing mechanism) and / or
 - persistence of information (DBMS)

- Substitution of information
 (more precise information replaces less precise information)
 - information is generated by a sequence of information sources
 - as a consequence thereof the accuracy of information is increasing steadily
 - e.g. TTOT
 - flight plan
 - pre-tactical departure planning
 - tactical departure planning
 - tendentious increase of accuracy
 - discontinuous changes of level of accuracy

Planning / Forecast Information provided by source A (e.g. ETOT according filed Flight Plan, CDM)
Planning / Forecast Information provided by source B (e.g. TTOT according DMAN)
Time determination of events

- **In-Block; EIBT; AIBT**
 - \(EIBT = SLDT \text{ (CDM)} + EXIT \text{ (CDM)} \)
 - \(EIBT = SIBT \text{ (CDM)} \)
 - \(EIBT = ELDT \text{ (AMAN)} + EXIT \text{ (SMAN)} \)
 - \(EIBT = ALDT \text{ (CDM)} + EXIT \text{ (SMAN)} \)

- **Estimated / First Off-Block; (EOBT, SOBT)**
 - \(EOBT = SIBT \text{ (CDM)} + ETTT \text{ (CDM)} \)
 - \(EOBT = SOBT \text{ (CDM)} \)
 - \(EOBT = EIBT \text{ (CDM)} + ETTT \text{ (TMAN)} \)
 - \(EOBT \geq SOBT \text{ (by definition)} \)
 - \(TOBT: \) The time that an aircraft operator / handling agent estimates that an aircraft will be ready, all doors closed, ...

- **Target Off-Block Time (TOBT)**
 - \(TOBT = TTOT \text{ (DMAN)} - EXOT \text{ (DMAN/SMAN)} \)
 - \(TTOT \geq EOBT \text{ (TMAN)} + EXOT \text{ (DMAN/SMAN)} \)
 - \(\Rightarrow \)
 - \(TOBT \geq EOBT \)

Remarks

- **General principle for planning of consecutive operations**
 - Backward propagation of target times
 - Forward estimation of first (earliest) times of events
 - Every planned Target Time shall be never smaller (earlier) than the corresponding predicted Earliest Time!

- **Use of TOBT \(\geq \) EOBT information**
 - Will cause savings for airlines!
 - Avoidance of the use of additional resources
 - May allow the boarding of late passengers
 - May improve connectivity
 - May shorten the ETTT of other flights!
 - More appropriate usage of resources according to actual needs and acuteness
Incorporation of Aircraft Priorities of the Airline/Airport

- Airline/airport preferences for departure service are often unknown to ATC
- The preferences reflect specific interests, objectives and problems of these CDM partners, e.g.
 - to assure a high extend of punctuality and passenger connectivity for their customers
 - to avoid resource conflicts (stands, personnel, ...)
- Preferences might be expressed
 a) through a preferred departure sequence (respectively sub-sequence of their own flights), i.e. technically expressed by “sequence constraints” (e.g. “aircraft A should depart before aircraft B” (A < B))
 b) through aircraft importance factors w (e.g. aircraft A is twice as important as aircraft B” w_A=2w_B)
- Both methods require “rules”/regulations
 - expressing the conditions for “Who can induce constraints and when?”
 - in order to assure fairness between competitive airlines operating at this airport
Incorporation of Aircraft Priorities of the Airline/Airport

Pros and Cons of these methods

a) preferences expressed by sequence constraints
 + appropriate method for hard constraint conditions (“A must be pushed before B)
 + may end in a pre-departure sequence $A < B < C \Rightarrow A-B-C$
 - may become inconsistent especially when several partners/instances induce such constraints
 (e.g. $A < B$ and $B < C$ and $C < A$)
 - $A < B$ does not express the relations to other flights
 ($A < B \Rightarrow A-B-C-D$ or $C-D-A-B$ or $A-C-D-B$)
 - may be unacceptable/disadvantageous for ATC with respect to throughput, control effort etc.
 - number of constraints could become greater than number of departures

b) preferences expressed by priority importance factors $w_A, w_B, ...$
 + this method never causes inconsistency
 + does express the relations to other flights (standard: $w=1$)
 + might not have negative impact on ATC (further investigations needed)
 + priorities can be treated easily as additional flight plan information (TMAN)
 + different priorities of airline, airport and ATC can be combined through mathematical functions
 (e.g.: $w_A = w_{A,Airline} + w_{A,Airport}$)
 - does not guarantee that A departs before B when $w_A > w_B$
 - may have unexpected impacts on other flights
Aircraft Priorities of Airlines and DMAN (ATC) Departure Scheduling

Rules of the “Game”

Basic

- Airline (participating in CDM) owns a number of “weight points” proportional to the number of owned flights (e.g. 10 points per flight \(w=1 \))
- Standard is \(w=1 \) (if no other information given)
- For every flight the number of assigned points can be changed by the airline according to its preference
- The total sum of assigned points remains constant, i.e. an increase of the importance of one flight necessarily requires a decrease of other importance weights

Additional rules to avoid instability and outwitting

- Changes of weights not later than ...
- Re-changes of weights cause a decrease of the total sum of weight points owned

Example (from RTS1 traffic scenario)

- Scandinavian Airlines induce: \(w_{SAS589} = 2.5; w_{SAS172} = w_{SAS637} = w_{SAS555} = 0.5 \)
Conclusions

- CDM and XMAN are not competitive but mutual supporting concepts, i.e.
 - “better” plans based on more reliable, consistent and complete information
 - more reliable information replacing the estimates (what a partner can do) by optimal targets/plans (what the partner should do)

- The XMAN planning tools can provide quantitative measures for accuracy (predictability, reliability) as on-time information based on
 - recorded data
 (planning and estimates as functions of time, in dependence on events / milestones)
 - built-in statistical analysis methods

- More reliable, more actual planning information provided in combination with quantitative measures for accuracy will support both
 - Intra Airport CDM
 - Inter Airport CDM
 - CFMU (DPI messages)
 - peer-to-peer CDM-A coordination
Conclusions

- Coordinated Planning Tools, have the potential to provide techniques, with whose help airline/airport preferences can be taken into account softly without disadvantageous side-effects such as
 - the need of additional communication
 - the risk of inconsistent constraints
 - the risk of a substantial loss of overall efficiency
 - disturbances and complication of the management tasks of ATC

What needs to be done?

- XMAN: Extension of tactical planning horizon (pre-tactical planning) in order to
 - increase the effectuality of plan based (time based) operations
 - allow tool supported what-if-considerations by human decision makers
- TOP: Extended CDM at major airports (i.e. several CDM partners, competitive airlines) may need Total Operations Planning and an Airport Control Centre
- CDM: Extend and adapt the CDM concept with thorough consideration of the incorporation of XMAN

BECAUSE THESE TOOLS ALREADY EXIST!