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Abstract

Crossflow–dominated laminar–turbulent transition in three–dimensional boundary layers is studied
by compressible nonlinear nonlocal theory based on the parabolized stability equations (PSE). The
DLR/FOI NOLOT/PSE code is used. It is demonstrated that the strongly nonlinear stages of the
transition process, i.e. the formation of high–frequency secondary instabilities, their linear and non-
linear growth as well as the subsequent disintegration of the secondary disturbance structures which
is accompanied by a degradation of the stationary crossflow vortices can be modelled by this type
approach provided that sufficiently high resolution in modal space is used. The application of PSE is
limited to convectively unstable flows. However, recent spatial direct numerical simulations (DNS) by
Wassermann & Kloker (2002) clearly demonstrated the convective nature of this type of flow and thus
confirmed corresponding numerical results by Koch (2002) and experimental observations by White
(2000).

Figure 1 shows results for the virtually incompressible DLR swept–flat plate experiment. The ba-
sic flow parameters are identical to those used by Koch et al. (2000). A stationary crossflow vortex
and a travelling crossflow mode were initialised close to branch I. The initial amplitudes were chosen
such that the stationary crossflow vortex starts to saturate at about 60% chord and remains domi-
nant in amplitude at all chord positions. Both initialised modes initially grow in amplitude and thus
nonlinearly generate more and more higher harmonics. Further downstream these higher harmonics
constitute the (high–frequency) secondary instabilities (Hein, 2005). Their typical spatial structure
(see e.g. White (2000); Koch et al. (2000)) is shown in fig.1a. Having reached amplitudes of about one
percent, these secondary instabilities start to disintegrate (fig.1b). This process is accompanied by a
degradation of the stationary crossflow vortices and the appearance of small–scale vortical structures
in the flow field. The travelling disturbances generate vortical structures which are winding around
the primary stationary vortices, similar to the observations made by Kohama & Egami (1999).

Additional results are available e.g. for cases where the stationary crossflow vortices and the ini-
tialised travelling crossflow vortices are comparable in amplitude. A distinction between primary and
secondary disturbances is not possible in this case and hence out of scope of secondary instability
theory. Such a transition scenario was observed in windtunnel experiments at moderate freestream
turbulence levels.
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Figure 1. RMS–isocontours of the uv–velocity component in a wall–normal plane at xc/c = 0.70 (a) and
xc/c = 0.90 (b) plotted on top of the isolines (dashed) of the time–averaged velocity component in xv–direction
for a frequency of 2700 Hz (m=20). The xv–coordinate is locally aligned with the direction of the primary
stationary crossflow vortex axis.
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