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Abstract—Non-terrestrial networks (NTN) are key to the 6G-
Internet of Things (IoT) ecosystem, providing broader coverage
and reliable connectivity. As IoT adoption grows, the demand for
scalable communication solutions increases. IoT communications,
relying on grant-free random access protocols, face challenges in
packet detection due to uncoordinated transmissions. Traditional
detection methods struggle in NTN environments, especially
due to interference and Doppler shifts. This paper proposes a
convolutional neural network for efficient packet detection in IoT-
NTN scenarios. The method outperforms a traditional correlator-
based approach, showing superior detection performance under
harsh conditions. Our results highlight the potential of machine
learning for enhancing IoT connectivity over NTN.

I. INTRODUCTION

Non-terrestrial networks (NTN) are a fundamental compo-
nent of the emerging 6G-Internet of Things (IoT) ecosystem,
enabling ubiquitous connectivity, broader coverage and im-
proved service reliability. In view of their strategic signifi-
cance, NTN have been incorporated into the third-generation
partnership project (3GPP) standards starting from Release 17.
In parallel to this, the widespread adoption of IoT connectivity
across a broad range of industrial, commercial, and consumer
applications calls for seamless, reliable, and scalable commu-
nication solutions.

IoT communications are primarily characterized by sporadic
transmissions of short packets, typically occurring in a grant-
free manner relying to random access protocols based on
variations of the plain ALOHA policy [1] at the link layer.
This implies that each device transmits independently and in
an uncoordinated fashion, without relying on a centralized
scheduling approach. While appealing to support potentially
massive population of devices falling within the coverage area
and that transmit in unpredictable fashion, random access
poses intrinsic challenges. In this respect, for instance, the
receiver is not aware of when incoming data will arrive, and
packet detection algorithms become paramount to properly
trigger the subsequent steps in the decoding chain [2].

Detection is typically performed by pre-pending a preamble
to each transmitted packet. The sequence of symbols is known
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also at the receiver, and can be used to identify the start of an
incoming message. This is commonly achieved by performing
simple correlation algorithms, which offer generally reason-
able performance. The task becomes hovever much more
challenging when supporting IoT traffic via NTN low Earth
orbit (LEO) satellites due to interference among users as well
as to potentially large and non-precompensated Doppler shifts,
e.g., in the presence of terminals that have no or limited GNSS
capabilities or that are not provided with accurate satellite
ephemerides. From this standpoint, the definition of efficient
packet detection techniques becomes pivotal towards truly
enabling IoT connectivity via NTN, and machine learning
(ML) based schemes appear promising. Indeed, the problem at
hand can be cast in terms of classification, aiming to determine
whether the samples falling within the window of interest
correspond to a preamble or not.

Taking the lead from these findings, this work investigates
ML solution based on a convolutional neural network (CNN)
tuned for the detection of short packets in NTN. The proposed
detector is evaluated under LEO link conditions, including
Doppler shifts and interference representative of narrowband
IoT transmissions. A bank of correlators is used as a bench-
mark to assess performance in terms of detection and false-
alarm probabilities.

Results show that the CNN consistently outperforms tra-
ditional correlation-based methods, maintaining reliable de-
tection even under high interference and low SNR. More-
over, the CNN can distinguish packets affected by different
interference levels, providing useful side information to op-
timize subsequent decoding stages. These results confirm the
strong potential of ML-based detection for enhancing grant-
free IoT access over NTN and motivate further research in
this direction. The novelty of this study lies in demonstrating
that a lightweight CNN, adapted to the unique Doppler and
interference characteristics of NTN, can achieve robust packet
detection where classical methods fail.

A. Related Works

Machine learning has been explored for packet detection
in grant-free access scenarios as alternative to conventional
correlators [3]. In [4], neural networks and random forests
were used to detect short packets, showing the potential of ML
in multi-user settings. However, the simplified model adopted
does not consider NTN impairments, such as Doppler shifts
and phase rotations.



Deep learning has also been applied to preamble detection in
asynchronous random access scenarios, particularly in terres-
trial networks. In [5], a CNN-based detector achieved superior
accuracy compared to traditional correlator-based methods.
The approach remains tailored to terrestrial environments,
where Doppler shifts and severe path loss are less critical.
Similarly, [6] proposed deep learning-based algorithms for
device activity detection in grant-free random access, showing
that Zadoff–Chu sequences outperform random preambles
and that ML can achieve competitive performance with low
complexity.

Such promising results lead to consider machine learn-
ing techniques in the context of existing cellular network
standards, including 4G LTE, 5G NR, and Narrowband IoT
(NB-IoT) [7]–[10] . These studies primarily focus on the
PRACH, a crucial mechanism for enabling devices to initiate
communication with the network. In [8] a neural network
combined with logistic regression was developed to detect
orthogonal preambles and their multiplicity in LTE. The use of
preamble multiplicity for classifying the number of colliding
users and estimating their time of arrival in the initial step of
PRACH for NB-IoT using neural networks is also addressed in
[10]. Unlike prior works restricted to terrestrial IoT channels,
this study is the first to evaluate ML-based packet detection in
a NTN environment characterized by LEO-induced Doppler
up to ±48 kHz, grant-free access, and large SNR variability.
These impairments fundamentally alter the signal and cannot
be addressed by existing detectors trained on terrestrial data.

II. SYSTEM MODEL

We consider a LEO satellite receiving messages sent by
fixed ground terminals spread over its beam coverage. Model-
ing IoT applications, the potentially large terminal population
access the shared uplink channel of bandwidth B to transmit
short packets in a sporadic and uncoordinated fashion, fol-
lowing a plain ALOHA policy [1]. Binary phase shift keying
(BPSK) modulation is used, and each sent packet is composed
of a preamble of nP symbols, followed by nD symbols of data
payload. We denote the whole packet length as N = nP + nD.

Assuming symbol-level synchronization,1 the baseband,
discrete-time signal model at the satellite receiver for a packet
transmitted by a node with slant range d is given by

yn =
√
g(d)xne

jϕn + wn. (1)

for n ∈ {1, . . . ,N}. In (1), wn ∼ CN (0, 2σ2) is additive
white Gaussian noise with power σ2 per complex component,
whereas g(d) captures the incoming signal power, considering
attenuation due to path loss and other factors. Specifically,

g(d) =
PTGTGR

ℓ

(
c

4πd f0

)2

(2)

1This simplifying assumption is used to isolate the impact of other impair-
ments such as Doppler shift. The non-timing-synchronous model is currently
under study. This approach is adopted to decouple the timing synchronization
problem from the Doppler and interference mitigation challenges, which are
the primary focus in this NTN study. The results thus provide a fundamental
benchmark of the CNN’s robustness to uncompensated frequency offsets.

TABLE I
REFERENCE PARAMETERS

PARAMETER VALUE

satellite altitude, h 600 [km]
satellite speed, ∥v∥ 7.5 [km/s]
carrier frequency, f0 2.4 [GHz]

bandwidth, B 100 [kHz]
transmit power, PT 0 [dBW]

transmit antenna gain, GT [−0.6, 5.2] [dB]
receive antenna gain, GR [9, 12] [dB]

additional losses, ℓ 2.55 [dB]
receiver noise temperature, T 438.93 [K]

where c is the speed of light, f0 is the carrier frequency, PT is
the transmit power, GT and GR are the transmit and receive
antenna gains, respectively, and ℓ accounts for other losses.
Accordingly, the signal to noise ratio (SNR) for a transmitter
at distance d from the satellite is Γ(d) = g(d)/(2σ2).

Besides attenuation, the signal model in (1) encompasses a
phase factor ϕn, defined as

ϕn = θ +
2πnfD
B

. (3)

The term θ in (3) captures a uniformly distributed offset, i.e.,
θ ∼ U [−π, π), which is constant throughout the duration of a
packet. In turn, the second term introduces a phase rotation that
changes across subsequent symbols, due to the Doppler shift
fD. The shift depends on the radial component of the relative
velocity of the satellite with respect to the transmitter, and
is computed neglecting for simplicity the Earth curvature. To
this aim, let r = (x, y) be the planar coordinates of a terminal
within the satellite beam, such that the nadir corresponds with
the center of the coordinate system (0, 0), and let ∥r∥ = r =√
x2 + y2. Denote further by h the satellite altitude, and by

v = (vx, vy) its velocity components along the x and y axes.
We then have

fD =
veff f0

c
, with veff = (vx cos ζ + vy sin ζ) cos ε

where veff is the effective satellite velocity along the line of
sight direction, ε = arctan(h/r) is the elevation angle and
ζ = arctan(y/x) is the azimuth angle.

The reference parameters considered in our study are sum-
marized in Tab. I, and are representative of a LEO satellite
providing service to IoT terminals, with minimum elevation
angle of ∼ 36◦ and a beam radius of 800 km. In this setting,
the SNR ranges between −3 and 10 dB, whereas a Doppler
shift up to ±48 kHz can be experienced. We remark that the
latter value is particularly challenging, as the receiver has to
cope with frequency offsets of up to half the signal bandwidth.

As discussed, terminal follows a random-access ALOHA
policy. This results in packets potentially overlapping at the
receiver, generating uncoordinated interference. The overall
signal at any time takes thus the form of a sum of a random
number of signals, each affected by independent path loss,
phase rotation and Doppler plus noise. We consider symbol-
level alignment, yet messages of different users can start at
different times and thus overlap only partially (if at all).



Fig. 1. Architecture of CNN proposed for packet detection.

Performance Metrics: For the system at study, we are
interested in evaluating the ability of the receiver to detect
the start of an incoming packet, considering either a correlator
based approach or a machine-learning solution. In both cases,
the detection algorithm is fed with a sequence of np complex
symbols, and outputs a prediction on whether the sequence
corresponds to a preamble or not. Let us denote as si the
event of the i-th input sequence indeed being a preamble, and
by s̄i its complement. Similarly, indicate by oi the event of the
algorithm evaluating the i-th input as a preamble, and by ōi
the complementary event. Leaning on this notation, we define
the detection probability as

Pd =

∑
i 1{si, oi}∑
i 1{si}

(4)

where 1{·} is the indicator function. The quantity captures
the fraction of correctly detected preambles (true positives)
over the whole set of inputs which contained a preamble (true
positives and false negatives). On the other hand, we also
gauge the false alarm probability, computed as

Pfa =

∑
i 1{s̄i, oi}∑
i 1{s̄i}

and capturing the fraction of times in which the algorithm
erroneously notifies of a preamble (false positives) over all the
cases in which the input does not contain a preamble (false
positives and true negatives) [5].

To visualize and analyze the trade-offs between these
metrics, receiver operating characteristic (ROC) curves will
be used. In this respect, a compact way to quantitatively
compare different algorithms is through the area under the
ROC curve, denoted as AUC metric. Through a single scalar
value, between 0.5 and 1, the AUC captures the ability to
balance detection and false alarm probabilities, with higher
values indicating a better-performing algorithm, i.e., closer to
the ideal ROC curve (AUC equal to 1) [11].

III. PREAMBLE DETECTION PROCEDURES

A. Bank of Correlators

As reference benchmark for the performance of detection
schemes, we consider a correlation-based approach. The pur-
pose of the correlator is to compare the incoming signal with
the known preamble to identify a match. This is achieved by
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Fig. 2. Learning curves with the training and validation losses as function of
epochs for different being the number of features Nf and kernel size k.

computing the inner product between the two sequences of nP
symbols, which outputs a peak indicating the start of a packet.
In other words, the output of the correlator is compared with a
predefined threshold γ, and the start of a preamble is declared
each time that the correlation exceeds this threshold [2].

To improve performance in the presence of uncompensated
Doppler shift, we consider a bank of M parallel correlators,
each operating at a different center frequency. Specifically,
denoting by fmax

D the maximum Doppler shift experienced by
users in the beam, the center frequency fi of each correlator
is given by

fi = −fmax
D + i

2 fmax
D

M − 1
with i ∈ {0, ...,M − 1}.

The start of a packet is declared when one of them outputs a
correlation value above γ.

B. Convolutional Neural Network

Preamble detection can be formulated as an ML classifica-
tion problem [4] where the goal is to identify whether a set
of nP incoming symbols represents the start of a packet. In
this work, a supervised approach is adopted, which involves
training a neural network using a labeled dataset. Each training
sample consists of a fragment of an input signal paired
with a label indicating its corresponding class. During the
training, the network learns to extract features that distinguish
among different signal classes. Once trained, it can perform
online inference to determine whether an incoming stream
corresponds to the start of a packet.

To implement this, we propose a CNN architecture inspired
by the promising results reported in [5], [6] for terrestrial
scenarios. The structure of the CNN is shown in Fig. 1 and
consists of two 1D convolutional layers, each with 48 filters
of dimension 7, designed to extract features separately for the
real and imaginary components of the signal. These parameters
were determined after analyzing various combinations to refine
the configuration and obtain the best results. This architecture
is intentionally compact to adhere to LEO resource constraints.
The convolutional layers are followed by two fully connected
layers with 325 and 320 neurons, respectively, and include



dropout regularization to promote robust learning and reduce
overfitting. All layers utilize a ReLu activation function, which
introduces non-linearity and accelerates convergence during
training. The final layer consists of four neurons, each cor-
responding to one of the four classification classes,i.e. (i) no
preamble start (np), (ii) preamble start with no interference
(p), (iii) preamble start with exactly one interferer (p+1), and
(iv) preamble start with multiple interferers (p+m). In turn,
the probability of detection in (4) results from summing, in
the numerator, all the events with (p), (p+1) and (p+m). The
process used to generate the training dataset will be detailed
in the next section.

The effectiveness of the CNN is primarily influenced by two
key parameters: the kernel size k, and the number of feature
maps Nf . The kernel size defines the portion of the input
the layer processes at a time, determining how much local
information is captured. In contrast, the number of features
controls the range of patterns that the network can learn.
Taking this into account, the network was trained using the
cross-entropy loss function [12] and optimized with the Adam
optimizer [13], testing different values of the kernel size and
number of feature maps. The impact of these parameters on
the learning process is illustrated in Fig. 2, which shows the
learning curves for different architectural configurations. The
most favorable performance was achieved with Nf = 48 and
kernel size k = 7, which will be used in the rest of our study.

In the next section, we will report results in terms of ROC
curves. For the CNN, these are obtained by comparing the
sum of the probabilities given by neurons in the output layer
which denote the presence of a preamble against a threshold.
A detection is thus declared when the threshold is exceeded.
By varying the threshold, the trade-off between false alarm
and correct detection can be explored.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Dataset Generation

The datasets used for training and testing were generated by
simulating packet transmissions across a certain time window
(also referred to as frame). Each dataset is populated with mul-
tiple frames, generated via simulation, based on the specific
scenario under consideration. In each simulation run, packets
are placed uniformly at random within the time window, and
the noise is added accordingly. For each packet inserted, the
two-dimensional sequence of np complex symbols containing
the entire preamble is stored as a sample, along with a label
indicating that it is the start of the packet. Additionally,
each sample includes a feature representing the per-dimension
power of the symbol sequence. This feature provides the
model with a simple yet effective metric to differentiate
signals from noise, thus enhancing its ability to recognize
relevant patterns. The dataset is further populated with random
sequences extracted from the transmission frame that do not
include the start of a packet, labeled as non-preamble (np)
starts. Frames are simulated until the desired number of
samples is collected, maintaining a balanced distribution of
50% of preamble samples and 50% of non preamble samples
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Fig. 3. ROC for single user scenario and channel occupancy 0.3.

to support effective model training and evaluation. In our
results, we consider datasets of 2 · 105 samples.

B. Numerical Results

The superior detection performance and significant Pfa

reduction justify the CNN’s complexity, making its feasibility
the primary demonstration. Computational optimization is
relegated to future study. To gain preliminary insights on the
performance of the different detection methods, we focus on
a simple single-user setting. Specifically, each frame in the
dataset generation contains packets from a given transmitter,
randomly placed within the satellite coverage beam and af-
fected by the corresponding uncompensated Doppler shift. To
isolate the effect of the impairment, the SNR of the user was
kept constant irrespective of its position. The ROC curves for
this study are reported in Fig. 3, considering an overall channel
occupancy of 0.3 [pkt/pkt duration], i.e., packets of the user are
placed uniformly at random so that 30% of the frame duration
is covered by its transmissions. In the plot, solid curves denote
the performance of the CNN, whereas dashed lines refer to
a single correlator centered at the carrier frequency, and to
a bank of M = 15 correlators uniformly spaced to cover
the whole available bandwidth, respectively. We show trends
considering three different SNR values, representative of the
conditions experienced at beam edge (−3 dB), close to beam
center (8 dB), as well as of an intermediate situation (0 dB).
In all cases, the CNN was specifically trained with samples
generated with the same SNR used for testing.

The plot highlights two key take-aways. First, a single
correlator cannot provide reasonable detection, with ROC
curves that lie on the bisector of the Pfa-Pd plane. The
outcome stems from the very high Doppler shift that can be
experienced by users, reaching up to half the bandwidth, and
effectively pinpoints how challenging detection can become
at LEO satellites in the presence of uncompensated frequency
offsets. On the other hand, as expected, performance can be
improved by resorting to a bank of correlators, at the expense
of an increased complexity. Notably, the CNN consistently
outperforms the correlation-based approach even for M = 15
in all considered conditions. Under the most challenging SNR
of −3dB, both solutions struggle, with a detection probability
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of 80% attained only for a false alarm rate of roughly 25%.
In this case, the improvement offered by the CNN solution is
marginal. On the other hand, the gap increases significantly
under more practical SNR: for 0 dB, a reduction in terms of
false alarm rate of more than 25% if provided with respect to
the correlators bank for a target Pd of 90%. Finally, at 8 dB
both solutions offer a nearly ideal detection, with an AUC of
0.99965 for the CNN and of 0.99634 for the correlators.

The potential of ML-aided packet detection is also con-
firmed in a multi-user setting, as reported in Fig. 4a. In this
case, we only report the performance of the CNN solution and
of a bank of M=15 correlators for clarity. Let us define the
load as the average number of aggregate transmitted packets
in the system per packet duration. The results were obtained
for a channel load λ=0.9 [pkt/pkt duration], corresponding
to a random access channel operating in relatively congested
conditions. As such, the study represents IoT systems where
the satellite is covering an area populated by a large number
of active devices. In such case packets can be randomly over-
lapping with each other (ALOHA-like access), and detection
is further hindered by uncoordinated interference.

Once again, both solutions are challenged at SNR=−3 dB,
facing a fundamentally noise-limited, rather than interference-
limited setup. CNN is still outperforming the correlation-based
solution, yet false alarm rates of around 25% have to be
tolerated to reach a detection probability of 0.7. It must be
noted however that such conditions are especially challenging,
with preamble symbols affected by Doppler, interference and a
received useful-signal power well below the noise level. More
robust (e.g., longer) detection sequences might thus be targeted
to improve performance at these SNR. More interestingly, a
significant change can be observed with respect to the single
user case when considering the 0 dB case, with the bank of
correlators suffering a significant degradation. For instance,
targeting a Pfa = 0.05, a detection probability of 0.8 was
attained in the absence of interference, whereas the value
plummets in the multi-user setting to 0.45. The benefits offered
by the CNN become in this case evident, with the ROC curve
improving especially in the more appealing low Pfa region,
e.g., with a 15% higher detection rate for Pfa = 0.05. The
trend becomes even more remarkable at high SNR (8 dB).

TABLE II
CONFUSION MATRICES FOR MULTIUSER SCENARIOS WITH SNR = 8 DB

FOR λ = 0.30 AND λ = 0.90.

Convolutional Neural Network
λ = 0.30 np p p+1 p+m
np 0.9770 0.0010 0.0172 0.0048
p 0 0.9994 0.0006 0
p+1 0.0519 0.0316 0.9048 0.0117
p+m 0.1232 0.0006 0.2114 0.6648
λ = 0.90 np p p+1 p+m
np 0.9300 0.0008 0.0271 0.0421
p 0 0.9995 0.0005 0
p+1 0.1067 0.0307 0.8368 0.0258
p+m 0.2209 0.0004 0.1070 0.6717

In the single user case, the bank of correlators offers nearly
ideal detection with relatively low false alarm. This feature
is disrupted by interference, with Pd = 0.7 for Pfa = 0.05,
and a reliability of at least 90% achieved only for Pfa > 0.15
(area under the curve of ∼ 0.94). The CNN approach reaches
the same detection performance for a false alarm rate as low
as 5%, significantly reducing the number of times further
decoding blocks in the receiver are unnecessarily triggered,
enabling substantial computational and energy savings.

To complement these results, we report two confusion matri-
ces obtained for the CNN solution, in Table II for λ = 0.30,
and λ = 0.90, considering an SNR of 8 dB. In each case,
the columns represent the predicted labels, while the rows
correspond to the true labels. Recalling the structure of the
output layer of the CNN described in Sec. III-B, the ML-
based solution estimates whether the provided sample of nP
symbols does not contain a preamble (np), contains a preamble
without interference (p), a preamble superposed to a single
interferer (p+1), or a preamble experiencing more than one
interferer (p+m). Accordingly, the confusion matrix allows
to draw two further insights on the capabilities of the ML-
based approach. On the one hand, it pinpoints how detection
works based on the interference level. Note indeed that the
value of Pd given the number of interferers (0, 1 or more
than 1) is obtained by taking, for the corresponding row, the
sum of the values in the three rightmost columns, as a correct
detection flag is raised whenever any of these three decisions is
made by the CNN. For both channel loads, the detection of an
incoming packet not affected by interference is almost perfect,
with Pd values above 0.999. Notably, excellent performance
is also attained in the presence of a single interferer, with
detection rates as high as 95% for λ = 0.3 and 90% for
λ = 0.9. The slight degradation experienced in the latter
case can be intuitively explained by the higher probability
of having a larger portion of the preamble overlapped by
the interfering signal as channel load increases. Detection
becomes naturally more difficult when multiple interferers
are superimposed to the incoming preamble. Nonetheless,
detection of 88% and 78% can still be granted. In this respect,
it is relevant to remark that such packets are also the ones
which are less likely to be decoded even if detected, so that
the degradation is somewhat less impactful on the overall
system behavior. Along this line, the confusion matrices also
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provide a second interesting take-away, as they reveal the
ability of the ML-based solution to classify the interference
conditions that characterize a detected packet. This feature
can be particularly relevant, as it enables, for instance, the
possibility for the receiver not to trigger the decoder in case of
excessive distortions, or to prioritize decoding of packets with
lower intereference level if successive interference cancellation
is later to be performed. The high values found on the diagonal
of the confusion matrices confirm the potential of the CNN in
allowing such potential advantages.

Further insights on the behavior under interference are
provided in Fig. 4b. Here, we remove the simplification of
having all users received with the same power, and consider
instead that the position of the user determines not only its
Doppler shift, but also its SNR. Specifically, whenever a user
sends a packet, its location is chosen uniformly at random
within the coverage beam, and its path loss is computed via
(2).2 This step leads to a more practical setting, but also poses
an additional challenge for the ML-based approach, as training
and testing are performed with packets that have an additional
degree of freedom on top of what seen so far, being received
with different and unknown power levels. In Fig. 4b we show
the ROC curves for a bank of M = 15 correlators and for the
CNN considering three channel loads, ranging from a lightly
loaded to a highly congested setting. The plot highlights that,
at high loads, the traditional correlation solution may no longer
be practical, failing to provide a detection of at least 80% even
for false alarm rate of 30%. Conversely, the CNN proves to
be much more robust, and also in this case is more capable
of improving performance especially in the leftmost region
of the ROC, starting to provide decent detection already for
low false alarm even in challenging conditions. For example,
more than 70% detection rate is achieved for Pfa as opposed
to the 45% of the correlator case. A similar trend can also be
observed in lightly loaded channel conditions (λ = 0.3), with
a remarkable gap between the two solutions (AOC of 0.967
for the CNN and 0.928 with correlators).

To conclude our discussion, we tackle a final setting in

2In the calculation, we account for the impact of user location on trans-
mission and receive antenna gains. For a given position, the angle of view
between satellite and user is determined, and a linear interpolation of the gains
between the maximum and minimum values reported in Tab. I is performed.

which the network is trained using both multi-user and single-
user data across different traffic load values to achieve gener-
alized performance. This setup is of particular practical rele-
vance, as it is representative of how a system may be trained
and operated in a real scenario, with the LEO satellite passing
over different areas, characterized by distinct (and not known
a priori) levels of traffic. The results of the study are shown in
Fig. 5, where the CNN is compared with banks of correlators
of different sizes, specifically M = 15, 25, and 35. Also in
this case, the generalized CNN model demonstrates a clear
advantage, particularly at operational points with low false
alarm probabilities, achieving an improvement in detection
probability of more than 20%. In turn, the benefits of adding
more correlators becomes progressively marginal.

V. CONCLUSIONS

In this work, we proposed a CNN to address the challenge
of short packet detection in IoT networks. The model was
evaluated in both single-user and multi-user scenarios, taking
into account practical channel impairments such as phase
noise and Doppler shifts. Results demonstrate the CNN’s
robustness and superior detection capabilities compared to
traditional methods. By reliably identifying packet presence
even under interference and harsh channel conditions, the pro-
posed approach contributes to enhancing uplink performance
and scalability in future IoT-NTN environments. The results
also validate the hypothesis that learning-based detectors can
adapt to distortions and Doppler effects that are difficult to
analytically model or compensate.
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