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A B S T R A C T

Lithium-ion batteries are vital for large-scale industries, especially in transport and renewable energy applica
tions, due to their high energy density, extended cycle life, and low self-discharge rate as compared to other 
battery types. With increasing demand for sustainable and energy-efficient solutions, it is critical to study, un
derstand, and improve the performance of batteries. Monitoring degradation is important, but acquiring real- 
time sensor data over lengthy periods is challenging due to the longer life cycles of batteries. This makes data 
collection costly and time-consuming. Cell-based open-source datasets provide a viable alternative, allowing 
researchers to estimate the degradation of battery cells without the requirement for constant, real-time testing. 
Furthermore, estimating degradation factors is crucial for forecasting Remaining Useful Life and extending 
battery lifespan. Methods such as adaptive filtering techniques, machine learning approaches, etc., have 
demonstrated reliable solutions in simulating battery degradation. This paper reviews the battery cell degra
dation mechanisms, followed by the prediction of battery health parameters and relevant degradation modelling 
approaches for individual cells. The purpose of this review is to provide a structured analysis of how different 
modelling methods capture degradation behavior, to identify their strengths and limitations, and to clarify how 
they can be applied for battery health prediction. It also highlights the importance of datasets required for 
developing predictive models and summarizes open-source datasets based on the chemistry, cycling process, and 
their key features.

1. Introduction

The majority of modern electronics are powered by batteries, and 
with the rapid increase in the generation of renewable energy, storage 
has become increasingly critical [1]. The energy market is undergoing 
significant shifts across various sectors as the production of electricity 
from variable sources continues to rise quickly. The rapidly growing 
demand for energy storage is due to problems in the energy markets of 
developing countries and shifts in transportation methodologies. [2].

Lithium-ion batteries (LIBs) have emerged as an essential component 
of modern energy storage systems, transforming many industries and 
paving the way for a more sustainable future. LIBs have gained popu
larity over other battery technologies in a variety of applications due to 
their extended lifespan, high potential density, lightweight design, and 
low self-discharge. Such applications include airplanes, electric vehicles 
(EVs), satellites, maritime systems, cellphones, laptops, and other elec
tronic devices [3]. The significance of LIBs resides not only in their 

immediate applications but also in their ability to force a major transi
tion towards renewable energy sources. As the world moves away from 
fossil fuels, LIBs will play an important role in storing energy provided 
by intermittent renewable sources, such as solar and wind. In the field of 
transportation, LIBs have emerged as a game-changer. Their use in 
electric vehicles has resulted in much lower greenhouse gas emissions, 
providing a greener and more environmentally friendly alternative to 
conventional internal combustion engines. Additionally, LIBs are 
increasingly offering fast charging and longer driving ranges, solving 
critical issues about EV practicality and convenience.

In addition, LIBs show potential as a vital component of microgrid 
systems, allowing distant settlements and islands to switch to renewable 
energy sources while reducing their reliance on expensive and polluting 
diesel generators [4]. LIBs enable a more stable and resilient energy 
supply by storing extra energy during periods of low demand and dis
charging it when needed, thereby improving energy security and sup
porting sustainable development. LIBs, which are prevalent in modern 
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technology, degrade over time, reducing their performance and dura
bility. This degradation occurs via a variety of chemical and mechanical 
processes. Chemically, the electrolyte can degrade through reactions 
with ions and the electrons at the anode surface, leading to the forma
tion of the SEI layer [5]. Although the SEI layer is crucial for protecting 
the electrolyte, its progressive growth during aging can raise the internal 
resistance and reduce the capacity retention properties. Moreover, 
during the charging phase, lithium plating can cause dendrite formation, 
resulting in short circuits and capacity loss, and making the cathode 
material structurally weak, which might result in decreased capacity 
and voltage instability [6]. These inadvertent side reactions between 
electrodes and electrolytes, such as SEI layer formation and lithium 
plating, also contribute to capacity loss. Due to the repetitive process of 
charging and discharging, the electrode material is subjected to constant 
expansion and compression, which results in mechanical stresses, crack 
formation, and delamination [7]. These mechanical stresses weaken the 
component and result in low electrical contact, which in turn accelerates 
the capacity degradation of the battery. Apart from these mechanical 
causes, temperature and humidity also accelerate degradation pro
cesses, creating safety issues and limiting cycle life [8]. Extensive 
research exists on the impact of temperature; comparatively less focus 
has been given to humidity and saline environments, despite their in
fluence on battery performance and safety [8]. Understanding and 
research on these degradation mechanisms is critical to improving bat
tery performance and the safety aspect. Furthermore, modelling the 
degradation mechanisms of LIBs is important for predicting the 
Remaining Useful Life (RUL) [9]. By creating mathematical models and 
algorithms based on state of health (SOH) estimations from the Battery 
Management System (BMS), we can predict battery life, apply proactive 
maintenance techniques, and provide condition-based maintenance. 
These predictive capabilities assure optimum asset utilization while 
minimizing downtime. Furthermore, understanding SOH and the un
derlying degradation mechanisms would enable the design of safety 
measures and thermal management systems to prevent catastrophic 
failures and assure safe battery use. In this context, extensive studies 
exist that focus on the management of charging and discharging, 
assessment of RUL, and assessment of the performance degradation of 
LIBs [9–11].

Lu et al. [12] reviewed the main issues of battery degradation. They 
studied the degradation over the entire life cycle of the battery, starting 
with reviewing batteries’ internal aging mechanisms and also focused on 
factors such as design, production method, and applications. Kabir et al. 
[5] did an extensive review emphasizing degradation causes as well as 
mechanisms. They concluded the research, mentioning that the 
improved understanding of the mechanisms was vital in developing 
aging models and, therefore, helping the predictions of the cell EOL 
more accurately. Elmahallawy et al. [13] gave a brief review of the EV 
batteries’ health status from the point of view of operational safety. They 
studied various battery modelling techniques, such as physics models 
and data-driven models, where they also focused on the ML algorithms. 
Jin et al. [14] gave an overview of ML methods that could be used for the 
RUL prediction of the LIBs. They provided a summary and classification 
of different RUL estimation methods that had been proposed in the last 
few years. After putting forward the methods, they discussed some ML 
models and tried to compare the accuracy of the methods against each 
other. They concluded their study by claiming that a Deep Neural 
Network (DNN) is more viable for the RUL estimations due to the strong 
learning ability and understanding of the datasets. These studies lacked 
fundamental information about degradation mechanisms and modelling 
methods, and focused on lab-scale operating conditions. In the last 
decade, machine learning, as well as hybrid data-driven models and new 
cell chemistries, were implemented to improve SOH and improve life
time predictions, and there was a need to address them. Focusing on and 
updating the information on new cell chemistries, their dataset avail
ability, and the feasibility of implementing newer degradation models is 
important.

This review paper provides an overview of LIB degradation mecha
nisms, their impact on cell performance, and why a few battery health 
states, such as State of Charge (SOC), SOH, and RUL, need to be studied. 
The paper also explains different modelling techniques that can be 
implemented to predict the health states, and dives deep into data- 
driven modelling techniques, including adaptive filters, machine 
learning, and models such as Bayesian and Time series approaches, 
highlighting how they perform and capture different degradation ef
fects, and help in predicting health states of the battery. Given the dif
ficulties, such as lack of experimental facilities, safety concerns, and 
costs of long-term testing, this review also emphasizes the availability of 
open-source battery cell datasets. A few widely used degradation data
sets from various institutes for modelling purposes are described in 
detail. Other datasets are summarized in a table stating Important pa
rameters that would enable efficient selection for modelling purposes. 
The summary table covers diverse cell types, chemistries, and cycling 
processes, and provides useful information for developing and vali
dating data-driven predictive models.

The paper is structured into 4 main chapters, starting with explaining 
degradation mechanisms and factors that influence battery life, followed 
by the significance of battery health parameters and the respective 
modeling approaches. Lastly, it gives a brief description of available 
datasets based on the cell cycling process and the key features, which 
help in easing the selection process for developing the predictive 
models, providing a clear flow from understanding degradation to 
selecting methods and datasets for a reliable battery health prediction 
model.

2. Battery degradation mechanism

At the battery system level, an understanding of degradation mech
anisms and appropriate modelling methods is critical, particularly for 
predicting performance under varying operating conditions and at 
different stages of life, as well as for ensuring safe operations. The ability 
to precisely anticipate battery end of life (EOL) or RUL allows the dan
gers of battery runaway to be reduced [15]. Understanding battery 
degradation is crucial for cost-effective decarbonization of both trans
portation and energy systems [16]

LIBs’ storage capacity decreases with time and use, while their in
ternal resistance increases as a result of a various degradation mecha
nisms such as SEI layer growth on the anode, while the internal 
resistance increases due to lithium plating and active material loss. 
Three major factors affect degradation: temperature and the load profile 
as external stressors, and SOC as an internal operating variable that 
reflects the combined effect of load history and the initial conditions 

Fig. 1. Battery design and management issues based on ageing mechanisms 
and life.
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[17]. As shown in Fig. 1, based on [18], battery aging and the influence 
of battery degradation should not only be considered during battery 
design but also during operation from the perspective of battery man
agement. These models are crucial for estimating battery health influ
enced by history, optimizing working conditions in the present, and 
predicting future performance.

Given the battery’s nonlinear fading characteristics, the usual 
extrapolation method cannot reliably anticipate its remaining life. The 
most apparent signs of battery degradation are capacity and power fade 
[19,20].

In battery system analyses, the capacity and power performance are 
essential and relevant factors, which must be correctly predicted by the 
BMS along with the SOH. Battery life may be divided into two parts: 
calendar life and cycle life. Calendar life refers to battery degradation 
caused by storage without cycling, whereas cycle life considers the 
battery’s degradation caused by charge and discharge cycles. Most EV 
batteries exhibit nonlinear aging characteristics [7,21].

The primary parameters affecting battery life include [6]: 

• High temperature, which accelerates internal side reactions.
• Low temperatures cause a rapid reduction of metal ions. They also 

lead to lithium deposition and can destroy the crystal structure of the 
active material.

• High SOC or overcharge that can lead to electrolyte decomposition, 
trigger side reactions between the electrolyte and the cathode, and 
cause lithium-ion deposition. These effects compromise battery 
integrity and performance, reducing efficiency and increasing safety 
risks.

• Low SOC or Over Discharge.
• The anode copper current collector is susceptible to corrosion, which 

can lead to significant issues in lithium-ion batteries. Corrosion may 
result in the collapse of the crystal structure of the active material, 
adversely affecting battery performance and longevity.

• High Charge and Discharge Rate.

Most commercial LIBs have an operating temperature range of 
15–35◦C and the rate of adverse reactions increases with increasing 
temperature [7]. Furthermore, if the battery surpasses a specific 

temperature, it may initiate self-heating, resulting in battery thermal 
runaway. Moreover, material embrittlement at low temperatures may 
affect battery life. As a result, ensuring that the battery operates within a 
proper temperature interval is the key to improving battery life [6].

Battery SOC also has a substantial impact on battery life. A higher 
value of SOC indicates a higher terminal voltage, implying a lower 
anode potential and a higher cathode potential. For the graphite anode 
with a lower potential, the side reaction rate, such as SEI thickening, will 
be higher, resulting in a faster aging rate, and in the event of aberrant 
charging, such as overcharging or low temperature charging, the anode 
potential may be too low and reach the lithium deposition potential, 
causing the side reaction of lithium deposition to accelerate battery 
aging [5]. Meanwhile, the cathode with a greater potential would un
dergo electrolyte oxidation and breakdown. Lower SOC indicates a 
higher anode potential and a lower cathode potential, which generally 
improves battery life. However, if the battery’s SOC is too low, corrosion 
of the anode copper current collector and cathode active material 
structure would significantly reduce battery life [22]. Fig. 2 shows how 
different parameters change from the first to the last test cycle during 
the discharging phase from the NASA battery dataset (B0005). As the 
cycle number increases, the temperature of the battery rises rapidly and 
in a shorter time period, indicating increased internal resistance and 
heat generation, which contribute to performance loss and signs of 
degradation of electrodes and electrolytes.

The battery current has a clear impact on battery life. On the one 
hand, the current running through the battery generates Joule heat, 
influencing the battery temperature. Large charge and discharge rates, 
in particular, can produce a significant temperature increase, reducing 
battery life [24]. Battery degradation is an important topic to investigate 
since it has a significant and considerable impact on battery perfor
mance, lifespan, and safety. Understanding degradation methods en
ables the design of more lasting and efficient energy storage systems and 
also aids in predicting battery life and maintenance procedures, which 
would result in greater dependability and cost-effectiveness. Lastly, 
recognizing degradation pathways is critical for minimizing the envi
ronmental impact of batteries. Different degradation pathways create 
distinct reaction products, such as lithium salts from electrolyte break
down or transition metal oxides from cathode degradation, which have 

Fig. 2. Comparison of discharge voltage, current, and temperature loss of the first and last cycle of a battery cell from the NASA dataset (B0005) [23].
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implications for disposal and recycling techniques, as well as EOL safety.
The above paragraph explains the internal degradation mechanisms 

that control LIB aging. These processes, both physical and chemical can 
be observed through measurable datasets based on electrochemical re
sponses. A direct connection between degradation modes and their 
diagnostic signatures are fundamental for understanding the degrada
tion mechanisms via the datasets. Table 1 below summarizes these 
connections by providing a systematic mapping.

3. Prediction and modelling of battery health parameters

In the process of studying degradation, understanding battery pa
rameters is crucial. These parameters facilitate understanding and 
streamlining of the degradation study using predefined terminologies 
that can be evaluated based on sensor data. A battery is a non-linear 
system with numerous complications; therefore, the BMS relies on a 
variety of parameters. Precision monitoring and estimation for these 
BMS parameters are computationally intensive. Unquestionably, for 
advanced and futuristic BMS, exact monitoring and prediction are 
essential for some key terminology, which includes SOC, SOH and RUL. 
SOC fluctuates rapidly with LIB usage and can be accurately determined 
through short-term electrical measurements, but it provides no infor
mation about how the battery’s capacity, power capability, or safety 
margins have evolved. In contrast, SOH reflects the cumulative effects of 
aging mechanisms such as loss of active material, lithium inventory 
depletion, and impedance growth, which directly dictate both perfor
mance sustainability and RUL. Consequently, while SOC helps manage 
daily operations, SOH determines the operational lifespan and safety 
envelope of the system. For this reason, SOH estimation is considered 
more critical in advanced BMS and is thus explained in more detail in 
this study.

3.1. SOC estimation

SOC is a fundamental parameter in BMS that represents the real-time 
charge level of the cell. It indicates how much energy remains available 
for use. Accurate and reliable SOC estimation is vital for safe operations 
and extending the lifespan of LIBs. SOC is commonly defined as the ratio 
of remaining charge to its nominal capacity and expressed as a per
centage [27]. 

SOC(t) =
(

Qrem(t)

Qn

)

× 100% Eq. 1 

where Qrem(t) is the remaining charge (Ah) at time t and Qn is the 
nominal or rated capacity of the cell.

Although in practical applications, SOC is generally calculated by 
integrating the current over time as shown in the coulomb-counting 
equation [28]. 

SOC(t) = SOC(t0) −

(
1
Cn

)∫ t

t0
I(τ)dτ Eq. 2 

where SOC(t) is the initial SOC, I(τ) is the current and Cn is the 
nominal capacity.

3.1.1. Methods used to model SOC
The most-used methods for estimating the SOC can be classified as,
Coulomb counting (CC):
CC also known as ampere hour counting, is widely used to estimate 

SOC and is calculated from Eq. 2 The reason for its wide adoption is due 
to its simplicity, low computational demand and compatibility with real- 
time embedment with BMS. Mohammadi et al. [29] proposed an 
improved version of CC algorithm where they incorporated uncertainty 
propagation for the current readings and the integration error. They 
used a 12 V 100Ah lithium pack and tested it over a 10-year projection. 
The model achieved a maximum deviation below 0.3 % demonstrating 
that uncertainty modelling can improve the CC model performance. Zhu 
et al. [30] developed a non-destructive differentiation-based CC model 
for the NMC 18650 cell. Their method combined OCV with empirical 
tuning factors for parameters such as temperature, discharge rate, etc. 
The experiments gave a maximum error of approximately. 3.5 % over 
the traditional OCV-CC models. Lee et al. [31] upgraded the framework 
through an Enhanced CC model that updates the coulombic efficiency 
after each charge-discharge cycle thereby predicting the SOC at each 
step. They used a 3 kW energy storage module and achieved MAE of 
0.05 % and validated the results with real-time BMS. Huang et al. [32]
proposed a fault-diagnosis layer for the CC algorithm to detect the initial 
SOC values. They used a 50Ah pouch cell for the research. Lastly, 
Movassagh et al. [33] performed a theoretical analysis of CC error 
propagation. They derived the parameters from the statistical models of 
current noise and capacity.

Electrochemical Models:
Electrochemical models offer a physics-based route for predicting the 

internal states of LIBs. Hosseininasab et al. [34] developed a fractional 
order reduced model derived from the Pseudo 2D model to estimate the 
cell resistance and achieved high accuracy with minimal parameters and 
computational cost. They also performed experimental validation on an 
aged NMC battery with a nominal capacity of 27 Ah under dynamic 
current and temperature profiles. Xu et al. [35] proposed a hybrid 
minimalist electrochemical–equivalent-circuit framework. The circuit 
model only handled dynamic voltage response while the minimalist 
electrochemical model quantified lithium inventory loss. They used 
NASA’s battery data and achieved errors of about 2 %. Lastly, Wu et al. 
[36] further simplified the Pseudo 2D model using Pade approximation 
and averaging the volume to design a proportional integral and differ
ential observer. The model was capable of jointly estimating SOC and 
anode potential whilst maintaining SOC error below 2 %.

A summary Table 2 comparing CC models and Electrochemical 

Table 1 
Mapping of major internal degradation mechanisms to their corresponding externally measurable diagnostic signatures [15,24–26].

Internal Degradation 
Mechanisms

Cause External noticeable signature Measurement method

Loss of lithium 
inventory

Continuous electrolyte reduction 
and isolation of Li+ ions

Shift of peaks in Incremental Current Analysis (ICA)/Differential 
Voltage Analysis (DVA) because of higher voltage as well as monotonic 
capacity reduction

ICA, DVA, Open Circuit Voltage (OCV) 
curve

Loss of active material Electrode delamination, fracture 
under cycling

Reduction of ICA/DVA peaks and formation of new low-magnitude 
peaks

ICA/DVA, X-ray imaging

SEI layer growth Electrolyte reduction at the anode 
during storage and cycling

Increased overpotential and polarization, columbic efficiency reduction Electrochemical Impedance 
Spectroscopy (EIS), Voltage profile 
analysis

Lithium plating Li metal deposition on graphite or 
overcharging

Formation of a new ICA peak, self-heating of the cell ICA, DVA, OCV, EIS

Electrolyte 
decomposition

Oxidation under high potential 
difference or temperature change

Increase in internal pressure of the cell, impedance increase Pressure mapping, EIS
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models is presented below.

3.2. SOH and RUL estimation

SOH and RUL are inherently correlated as SOH quantifies the overall 
condition of the battery relative to its initial and nominal state, while the 
RUL projects the time or number of cycles remaining until it reaches its 
end-of-life threshold.

SOH is the ability of the battery to store and deliver energy compared 
to the performance when the battery was new [37]. SOH can be 
expressed as the ratio of current usable capacity to nominal capacity at 
the beginning of life and is given by, 

SOH(t) =

(
Cactual(t)

Cnominal

)

× 100% Eq. 3 

Where, Cactual(t) is the measured capacity at time t and Cnominal is the rated 
capacity.

The prognostic element of Prognostic Health Management (PHM) is 
commonly defined as estimating a system’s RUL based on the informa
tion provided. Estimating the RUL has been regarded as one of the most 
important components of PHM along with SOH prediction. RUL repre
sents the expected number of cycles or operating time remaining before 
the battery reaches its EOL criterion (Sbarufatti). RUL can be predicted 
using, 

RUL(t) = f(SOH(t), operating conditions) Eq. 4 

The calculation of the RUL of components, subsystems, and systems 
has typically relied on data analysis that includes failure mode signa
tures gathered throughout a system’s life. Reliability-based RUL calcu
lation is based on analyzing the asset’s failure characteristics and 
determining what can be done to mitigate the impact of the failure. 
Statistical analysis frequently ignores or assumes only one failure 

mechanism, which is not the case in many complicated engineering 
systems, leading to component replacement at a predetermined time. In 
contrast, a prognostic approach seeks to anticipate failure based on in
dividual component state estimation, using either failure physics, data, 
or fusion degradation models.

The SOH and RUL prognostics methods are classified into four cat
egories based on their essential principles and procedures: physics 
model-based techniques, statistics model-based techniques, AI tech
niques, and hybrid techniques. Fig. 3 depicts the several categories of 
prediction methodologies. In general, the prognostic approach consists 
of three steps: feature selection, health evaluation, detection, and pre
diction triggering [38]. Several types of sensors can be used to collect 
data from the monitored device. Using this data, specific criteria can be 
used to determine the real fitness status. A degradation replica is typi
cally linked to failure time by combining historical data and the failure 
occurrence. The degradation process and RUL are strongly related. The 
first step in RUL prediction is to study the degradation procedure using 
SOH.

3.2.1. Data-driven methods used to model SOH and RUL
Data-driven models are advantageous for RUL and SOH estimations 

due to their adaptability and usage of real-world sensor data, allowing 
them to capture patterns and trends from the datasets without needing 
detailed domain-specific parameter values. Unlike physics-based 
models, they do not need extensive strong knowledge of the entire 
system, making them comparatively easier to implement. They also 
possess the ability to continuously learn from new sensor data, allowing 
the models to adapt to varying conditions. This ability improves their 
accuracy over time. However, they require an extensive number of 
initial datasets for training, but the subsequent benefits in terms of 
reliable predictions and ease of implementation make them a better 
option for practical understanding and industries. A few commonly used 
data-driven RUL estimation along with SOH estimation methods are 
shown in Fig. 4 below and are explained in the next subchapter.

3.2.1.1. Adaptive filter methods. Parameter estimation approaches 
based on similar circuit models were utilized as well to measure Li-ion 
battery degradation. As a classic technique, the adaptive filter algo
rithm is often used to predict a battery’s SOH and RUL. The following are 
some adaptive filter approaches used in the RUL prognosis of Li-ion 
cells.

A.1 Kalman filter (KF): The KF is an adaptive method that is broadly 
used for parameter estimation. It employs a sequence of measurements 
taken over time to estimate the more exact output variables. When 

Table 2 
Summary Table comparing Coulomb Counting and Electrochemical Model.

Aspect Coulomb-Counting (CC) 
Methods

Electrochemical-Model 
(EM) Methods

Fundamental 
Principle

Integrates measured current 
over time to estimate charge 
variation; SOC is derived 
from current, time, and 
nominal capacity.

Solves simplified 
electrochemical equations 
(from P2D or SPM) 
describing Li-ion transport, 
reaction kinetics, and 
potential distribution.

Typical Datasets Structured laboratory or 
BMS test profiles with 
precise current and voltage 
measurements (e.g., 100 Ah 
pack, 18650 cells, NEDC 
cycles).

Physics-based experiments or 
simulation-validated data 
(NASA RW profiles, dynamic 
cycling, COMSOL co- 
simulation).

Model Complexity Low; algebraic integration or 
simple correction factors 
(temperature, aging, 
coulombic efficiency).

Moderate to high; reduced- 
order fractional, minimalist, 
or simplified P2D models 
requiring parameter 
identification.

Computational 
Demand

Very low; ideal for 
embedded real-time BMS.

Moderate; feasible only after 
model-order reduction or 
hybridization.

Accuracy based on 
cited references

0.3 – 3 % SOC error; SOH 
MAE ≈ 0.06 % in enhanced 
forms.

Typically, < 2 % SOC error; 
SOH or internal-state 
estimation errors < 0.1 %.

Strengths Simple implementation, low 
sensor and compute 
requirements, easily 
deployed in existing BMS 
hardware.

Physically interpretable, 
captures degradation and 
internal electrochemical 
dynamics, enables safety- 
oriented state observation.

Limitations Sensitive to current-sensor 
bias, cumulative drift, and 
capacity uncertainty; poor 
under irregular load or 
missing calibration.

Requires accurate 
parameterization, often 
assumes isothermal or 
uniform conditions; higher 
computational cost.

Fig. 3. RUL Prediction Approaches.
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utilizing a KF, two procedures must be followed. First, a prediction state 
is required, during which the filter estimates the current output variable. 
In the second stage, the estimation is revised to produce a more accurate 
result, increasing the estimation’s confidence. It necessitates the use of 
recursive equations, which may be used when the system’s discrete 
model is known in state space form. This happens because the current 
state of the system is the result of the effect of all the inputs in already 
past states. The general equations are as follows.

Firstly, the method starts with a time update state known as the 
prediction state equation, followed by Kalman gain calculation, and 
finally the updated state estimation. 

xpred = F • xprev + B • u Eq. 5 

K = Ppred • H •
(
H • Ppred • Hʹ + R

)− 1 Eq. 6 

xupd = xpred + K •
(
z − H • xpred

)
Eq. 7 

Here, xpred represents the predicted state estimate, xprev is the previous 
state estimate, F is the state transition model, B & u are the control 
input models, K is the Kalman gain factor, which determines the pre
diction adjustment, Ppred is the predicted covariance estimate, H shows 
the measurement model and finally z is the observation (measurement).

Ahwiadi et al. [39] proposed an enhanced Kalman filter framework 
for SOH and RUL prediction to overcome sample degeneracy and lack of 
measurements during prognosis. They integrated the model with an 
evolving fuzzy predictor to adapt to the posterior distribution and 
forecast degradation when data is not available anymore. They imple
mented this logic on the NASA dataset and achieved very low RMSE 
values. They concluded that KF models with add-ons improve both SOH 
and RUL estimations.

A.2 Extended Kalman Filter (EKF): The KF is only relevant to linear 
systems, which do not typically include battery models. Because of this 
constraint, modifications and extensions have been created within the 
KF. The EKF is a nonlinear variation of the KF. The EKF is commonly 
utilized in the development of battery models. Many publications utilize 
the EKF to estimate the SOC [28,40,41] and have shown several ad
vantages, and hence prove to be a good model for battery parameter 
estimations. EKF models also demonstrated that the acquired results are 
quite accurate, the technique to implement is simpler compared to other 
nonlinear estimation methods, such as UKF or even NNs, allowing it to 
be performed in a real-world application with ease, and the produced 

model exhibits a linear association with the cell’s dynamics. The filter is 
based on a basic concept consisting of a voltage source and internal 
resistance. Jiang et. al [42] offer an improved closed-loop estimator 
based on the EKF. The suggested model has been validated using 
experimental findings derived from various circumstances. It was 
proved that the augmented model reduces estimation error by roughly 
half when compared to an estimator that ignores the hysteresis effect. 
Meng et. al [27] conceptualized a methodology by combining the EIS 
Internal Impedance Approach with the EKF to estimate SOH values. The 
general equations for EKFs are as follows: 

xpred = f
(
xprev, u

)
Eq. 8 

K = Ppred • Hʹ •
(
H • Ppred • Hʹ + R

)− 1 Eq. 9 

xupd = xpred + K •
(
z − h

(
xpred

))
Eq. 10 

Where, f
(
xprev, u

)
is the nonlinear state transition function, H is the 

Jacobian matrix of the partial derivatives and h
(
xpred

)
represents the 

nonlinear measurement function that relates the predicted state to the 
measurements.

A.3 Unscented Kalman Filter (UKF): The UKF is an algorithm that 
employs a sequence of observations over time to provide the most ac
curate results. It anticipates that the results from several unknown 
variables will be more exact than those based on a single measurement. 
It is also used to calculate the SOC, capacity, and internal resistance. 
Alexprabu et al. [43] propose a novel BMS combining a lossless 
charge-balancer, a MIMO-Bi-LSTM unit for per-cell SOH estimation, and 
a UK-ANFI network optimized by Grey Wolf Optimizer for simultaneous 
SOH and RUL prediction. They tested their model on an EV battery pack. 
The approach achieved SOH and RUL RMSEs of approximately 0.8 % 
and 1.8 % respectively, concluding that the integrated balancing and 
UKF prediction framework significantly enhances lifetime prognosis 
while lowering prediction latency. Zhu et al. [44] proposed a hybrid 
framework with a three-dimensional UKF to estimate the SOH of 
lithium-ion batteries by tracking SOC via UKF and internal resistance. 
The experimental validation demonstrated markedly improved conver
gence speed and accuracy with SOH estimation errors consistently 
below 3 % in cycling tests. This enables selective estimation of param
eters, reducing computational effort and time.

The UKF model is represented as follows: 

Fig. 4. Data-Driven RUL Estimation Methods.
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xpred =
∑(

Wmi • Xpredi

)
Eq. 11 

Ppred =
∑(

Wci •
(
Xpredi − xpred

)
•
(
Xpredi − xpred

)́
+Q

)
Eq. 12 

K = Pxz • P− 1
zz Eq. 13 

xupd = xpred + K •
(
z − zpred

)
Eq. 14 

Pupd = Ppred − K • Pzz • Kʹ Eq. 15 

Where, Xpredi is the Sigma points passed through the nonlinear state 
transition function, Wmi and Wci is the Weights for the mean and 
covariance, respectively. Pxz Cross-covariance between state and mea
surement, Pzz is the measurement’s covariance and z is the 
measurement.

In summary, the KF is a recursive algorithm that estimates a system’s 
internal state using noisy observations. In battery RUL prediction, KF 
assumes a linear connection between state and measurements, making it 
appropriate for basic deterioration models. However, real-world battery 
depletion is frequently nonlinear, which reduces its accuracy. The EKF 
solves this problem by linearizing the nonlinear dynamics around the 
current estimate with a first-order Taylor expansion. This enables it to 
handle nonlinear battery models better than KF, although its perfor
mance suffers when the system displays severe nonlinearity. The UKF, 
on the other hand, employs a collection of deterministic sample points 
(sigma points) to better capture the system’s nonlinearities while 
avoiding linearization. This improves UKF’s accuracy and robustness for 
complicated, nonlinear battery deterioration models, resulting in better 
RUL prediction under these situations [45].

3.2.1.2. Machine learning methods. One of the primary advantages of 
data-driven models (DDMs), clubbed with Machine Learning approaches 
for Li-ion battery degradation model development and parameter esti
mation, is their ability to achieve high accuracy by learning battery 
behavior based on monitored data. Thus, they do not require battery 
chemical modeling or knowledge. DDMs are also used to simulate the 
interaction of battery health, performance, and environmental condi
tions during operation [46]. DDMs use historical data to estimate the 
SOH and try to model the relationship between degradation, health in
dicators, and SOH. These methods include ML approaches such as an 
artificial neural network (ANN), support vector machine (SVM), and 
Relevance Vector Machine (RVM), as well as other intelligent algo
rithms, to extrapolate the estimated SOH and map the relationship be
tween battery degradation, health indicators, and battery SOH using a 
historical database [47]. The SOH is estimated using machine learning 
approaches with features sensitive to battery degradation. While all 
DDMs necessitate data collection and analysis during battery operation, 
ML approaches have the advantage of learning complex patterns in the 
data, eliminating the need for extensive predefined battery behavior 
tests and simulations in most cases, allowing for greater adaptability to 
different features and battery types.

Fig. 5 shows the workflow for battery degradation and SOH predic
tion models using ML techniques inspired by the work of Rauf et. al [48].

To forecast RUL, ML approaches frequently use estimated or 
measured SOH information, such as capacity values, as inputs [49]. An 
accurate and reliable machine learning-based approach to exact battery 
degradation modeling and RUL prediction is critical for advanced bat
tery management [50]. The ultimate purpose of battery health man
agement is to anticipate a battery’s RUL and identify potential 
unforeseen circumstances caused by battery aging.

Neural networks (NNs) are one of the industry-leading machine 
learning approach that achieves high levels of accuracy. NNs are 
frequently utilized in self-learning and adaptation because they are not 
dependent on the electrochemical situations that occur within the bat
tery. Neural networks are used to map the relationship between 
distinctive parameters and the lifetime of Li-ion battery degradation. 
NNs, including architectures such as Feed Forward (FF), Recurrent (R), 
and Convolutional Neural Networks (CNN), have a powerful algorithm 
that properly calculates SOH/SOC/RUL across a wide range of battery 
states, dynamic loads, and temperatures [51]. Their strength lies in 
modelling complex nonlinear relationships, adapting to diverse data, 
and effectively handling multiple input features to provide reliable 
predictions under varying operating conditions.

Recent studies [52–55] have investigated various forms of neural 
networks for RUL estimation. including FFNNs, RNNs, and CNNs. NNs 
have demonstrated a broad range of applications in battery degradation 
modeling and SOH estimation. Two forms of NNs, RNN and FFNN, have 
been primarily used for SOH estimation. FFNN and RNN are potential 
approaches for representing input-output correlations in battery aging 
data. The battery degradation process often consists of multiple cycles, 
and the degradation information between these cycles is highly depen
dent and interrelated. Thus, deriving these dependencies and correla
tions is essential to ensure reliable estimates.

RNNs are used to process sequential data in artificial intelligence 
applications and are one of the most promising methods for predicting 
battery health. The SOH/RUL estimation is based on a gradual battery 
degradation mechanism that uses dynamic battery data. As a result, 
employing an RNN to estimate SOH/RUL is an inherent technique. The 
RNN’s key inputs are often the associative memory function, voltage, 
current, temperature, and time-delayed voltage and current. The RNNs 
are trained and tested using cell temperature, current, SOC fluctuation, 
previous time step capacity, and resistance. Teixeira et al. [56] devel
oped a RNN framework using a Gated Recurrent Unit (GRU) model to 
predict SOH. They implemented the model on LCO cells of 5000mAh 
which were subjected to various cycling conditions ranging from 1 to 
3 A until end of first life. The GRU achieved great prediction accuracy 
and was effective in capturing the nonlinear degradation pattern. They 
also proved that data data-driven RNN model can reliably estimate SOH 
even from a limited dataset.

Long short-term memory (LSTM) is a subset of RNN architecture 
designed to address the RNN’s long-term reliance. Unlike FFNNs, LSTMs 
include feedback connections, while RNNs lack their input, forget, and 

Fig. 5. Workflow for battery degradation and SOH prediction models using ML techniques.
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output gates. LSTM has been used in a variety of studies to estimate and 
predict SOH. All Neural Network approaches have the advantage of 
being able to quickly adjust to nonlinear battery data, and they do not 
require physics-based models of batteries. They must, however, be 
trained over a significant number of cycles. Chinomona et al. [54] used 
RNN-LSTM to study battery degradation and compute RUL based on 
aging parameters collected from voltage, current, and temperature. 
Chen et al. [55] employed LSTM networks to create a prediction model 
that estimated RUL accurately with an RMSE of less than 4 %. Bharath 
et al. [57] presented a SOH estimation method using a cascaded 
LSTM-RNN model. The model was trained on multiple battery param
eters, such as voltage, current, temperature, etc., which were collected 
under diverse real-time conditions. Unlike other models requiring 
continuous data input, their model estimates SOH once per 
discharge-charge cycle, which helps in reducing memory and compu
tational load on the BMS.

3.2.1.3. Bayesian method. Bayesian linear regression is a statistical 
analysis method that treats a linear regression model’s parameters as 
random variables with prior distributions rather than fixed but unknown 
values [58]. Bayesian linear regression comprises four key phases and 
parts: the likelihood function, posterior distribution, prediction, and 
prior distribution. The prior distribution is a previous estimate on the 
parameters recorded in a previous probability distribution that occurred 
before any data observation and is often expressed as, 

p(θ|X, y) ∝ p(y | X, θ) p(θ) Eq. 16 

Where, p(θ| X, y) is the posterior distribution of the parameters θ given 
the data X and responses y, (y | X, θ) is the likelihood function. The 
likelihood function represents the chance of observing the data given 
each of the provided parameters. To obtain posterior parameters, the 
Bayes’ theorem updates the prior using the likelihood function. The 
posterior distribution captures the uncertainty in parameter estimates 
following data observation. The posterior predictive distribution is used 
to provide predictions for fresh input values by integrating the param
eters across it.

In cases of continuous discharge, the Bayesian technique can be used 
to approximate the RUL in the absence of accurate operating parameter 
values. A study comparing several methodologies demonstrates that 
prognostic results are more accurate and robust than Support Vector 
Machine models. Dong et. al [59] proposes a probabilistic method for 
health prediction and degradation of battery modeling based on 
charging process data that uses a dynamic Bayesian network.

For a recognized data sample, Bayesian learning may be expressed 
as, 

p(θ | Dnew,Dold) ∝ p(Dnew | θ) p(θ | Dold) Eq. 17 

Where, D is the data and θ is the model parameter. In his latest work, 
Dong et al. [60] proposed a co-estimation approach for SOH and SOC 
prediction using Bayesian inference. This co-estimation approach 
included a Fractional-Order Model, a Bayesian Optimization algorithm, 
and a Gaussian-sum PF. They were able to effectively optimize the 
battery characteristics based on their physical relevance by conducting 
20 tests before adopting the co-estimation technique to determine a 
suitable numerical range for the parameters. The dataset from CALCE 
[61] was utilized for their co-estimation scheme. Through their model, it 
was proved that the Bayesian Optimization algorithm-based parameter 
identification process had faster convergence speed, resulting in 
improved model flexibility and time efficiency for complex objective 
functions. The results from this method showed that monitoring the 
predicted SOC achieved an average RMSE of 1.84 %. In another research 
by Hu et al. [62], a temperature-dependent SOH estimating framework 
was established using a sparse Bayesian Predictive Modeling technique. 
An SVM method was also implemented to compare the computational 
complexity and performance. For model training, validation, and 

verification, experimental datasets from LIB cells evaluated at 10◦C, 22 
◦C, and 35◦C were used. The model showed that the predicted SOH 
values were accurate and had an average error of less than 1.2 % at each 
temperature value.

3.2.1.4. Time series methods. Time series data forecasting can be tricky 
because various statistical techniques and prediction methodologies 
may produce different results, making it difficult to choose which model 
to implement. In general, time series models may be categorized by 
looking at trends, seasonality, and the impact of outside factors [63]. 
The models discussed include ARMA, ARIMA, SARIMA, ARIMAX, and 
SARIMAX.

The autoregressive (AR) and moving average (MA) models are 
combined in the ARMA approach. The deterministic portion, known as 
the AR, is calculated by regressing the value from its prior p values. 
Comparably, MA describes the stationary series using residuals or dis
turbances. The moving average order q, the error term, affects the time 
series values. It is usually applied to data that exhibits neither season
ality nor a trend. Eq. 18 depicts the AR portion of the model with order p. 

xt = c + Σ(ϕi⋅xt− i) + ϵt , for i = 1 to p Eq. 18 

The value of the time series at t is denoted by xt, the lag is represented 
by xt− i, the autocorrelation coefficient of the time series data at point p is 
represented by ϕi, i, and c are constants. The residual, or the white noise, 
or the error, is denoted by ϵt.

Wei et al. [64] proposed a joint SOC-SOH estimation technique using 
an AR data-driven model. Based on the SOC-SOH conditions, they 
identified the battery parameters and extracted the features from the 
charging process of the battery. These features were used as the inputs 
and established a feature-SOH mapping, resulting in accurate pre
dictions of SOH. Their model was later validated via the University of 
Michigan Battery Laboratory and McMaster University Hamilton 
datasets.

The ARIMA model is a method for time series forecasting that does 
not account for the effects of seasonality or external factors on the data. 
ARIMA or autoregressive integrated moving average models are loaded 
with time series data for estimating future points in the series or to 
characterize the data better than ARMA [65]. It is a method that allows 
both AR with parameter p and MA with parameter q. It explicitly in
cludes a preprocessing step with parameter d (The degree of differencing 
to make the series stationary) in the formulation of the model, which 
indicates the number of transformations required to make the data 
stationary. In simple terms, an ARIMA model is just an ARMA model 
applied to a modified time series. The ARIMA model general form is 
expressed as, 

Δdxt = c + Σ(ϕi ⋅ xt− i) + Σ
(
θj ⋅ ϵt− j

)
+ ϵt Eq. 19 

here, Δdxt is the differenced series of xt (the integrated part) applied 
d times to make the series stationary, c is the intercept term, Σ(ϕi⋅ xt− i)

represent the summation of past values (p) weighted by the coefficients 
ϕi which is the AR part and Σ

(
θj⋅ ϵt− j

)
is the summation of q past error 

terms, weighted by the coefficients θj (the MA part). As the ARIMA 
model excludes external variables, sometimes depending on the dataset, 
it is difficult to assess the impact of external characteristics and their link 
to dependent features, such as capacity degradation. To address this, an 
extended version, ARIMAX can be implemented and is represented by 
Eq. 20. 

Δdxt = c + Σ(ϕi ⋅ xt− i) + Σ
(
θj ⋅ ϵt− j

)
+ Σ(βk ⋅ Zt− k) + ϵt Eq. 20 

Where the additional terms compared to the previous equation are the 
summation of k past values of exogenous variables Z at time t − k 
denoted by Σ(βk⋅ Zt− k). It also considers the effect of external factors 
weighted by the coefficients βk.

Shen et al. [66] implemented the ARIMA model to predict the 
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lifecycle of second-use EV batteries. Their study utilized historical per
formance data of LIBs. This statistical approach was chosen due to its 
effectiveness in handling time series data. They tried different 
training-testing ratios for the dataset at two different temperatures 
(25◦C and 50◦C) and compared the predicted values with the experi
mental values using RMSE, and achieved an error of less than 3 %.

The Seasonal-ARIMA (SARIMA) model contains seasonal factors in 
its formulation [84]. It is more successful since it considers seasonal 
variations in data. SARIMA parameters include p, d, and q, as well as P, 
D, Q, and S. The nonseasonal parameters are p, d, and q, whereas the 
seasonal parameters are P, Q, D. SARIMA equations are given as: 

Δdxt = c + Σ(ϕi ⋅ xt− i) + Σ
(
θj⋅ ϵt− j

)
+ Σ(Φm ⋅ xt− m) + Σ(Θm ⋅ ϵt− m)

+ ϵt

Eq. 21 

The two new terms, Σ(Φm⋅ xt− m) and Σ(Θm⋅ ϵt− m) represent the sum
mation of P seasonal past values, Q, which is the seasonal past error at 
seasonal lags m weighted by coefficients Φm (AR Part) and Θm (Seasonal 
MA part) respectively. The SARIMA model combines seasonal and non- 
seasonal AR, differencing, and moving average components, allowing it 
to effectively describe time series data with seasonal patterns as well as 
underlying trends.

Lastly, by incorporating seasonality into SARIMAX ((p, q, d), (P, D, 
Q, S), r) model, it provides a deeper understanding of predictable pat
terns or fluctuations that occur at specific intervals within a time series, 
into the ARIMAX (p, q, d, r) model. SARIMAX (Seasonal Autoregressive 
Integrated Moving Average with Exogenous Inputs) models are widely 
applied in statistical analysis and demonstrate excellent forecasting 
performance, and are represented as, 

Δdxt = c + Σ(ϕi ⋅ xt− i) + Σ
(
θj ⋅ ϵt− j

)
+ Σ(Φm ⋅ xt− m) + Σ(Θm ⋅ ϵt− m)

+ Σ(βk ⋅ Zt− k) + ϵt

Eq. 22 

Where the additional term Σ(βk⋅ Zt− k) is the summation of k past values 
of exogenous variables Z at time t − k, weighted by the coefficients βk 
(the effect of external factors). Hu et al. [67] proposed a novel SARIMA 
prediction model that consisted of a periodic parameter optimization to 
fit the nonlinear characteristics of the dataset. It included maximum 
likelihood estimation and the Akaike information criterion to filter the 
parameters. To establish model accuracy, extensive sequence testing for 
tuning parameters was simulated with the help of autocorrelation and 
partial autocorrelation functions. The model was then tested under four 
operating conditions, including high and low charge-discharge rates. 
Their model achieved a maximum prediction error of 4.62 %, showing a 
2.25 % improvement in RUL predictions.

To summarize, AR models evaluate time series data by regressing the 
present value against previous values, thereby capturing internal de
pendencies. The ARIMA model extends AR by using differencing to 

achieve stationarity, allowing for the modeling of non-stationary time 
series. ARIMAX enhances this paradigm by incorporating exogenous 
factors that can alter the target time series, allowing for the inclusion of 
external features. SARIMA addresses seasonal trends by incorporating 
seasonal differencing and seasonal components into the ARIMA frame
work, allowing it to be used with data that has periodic swings. Finally, 
SARIMAX combines SARIMA’s properties with exogenous variables to 
allow for thorough modeling of seasonal time series while accounting for 
external impacts.

Fig. 6 shows the different time series models and their particular 
features. Together, these models provide a powerful toolset for evalu
ating and predicting complicated time series data, with each model 
adapted to the precise properties of the data under consideration.

To evaluate the effectiveness of different modelling approaches for 
battery health estimation, several recent studies were reviewed. Table 3
summarizes their work, highlighting the estimation method categories, 
datasets used, and their reported accuracies.

3.3. Summary of health state estimation methods

While Table 3 compares estimation accuracy for a particular dataset 
with varying estimation methods across a few recent studies, accuracy 
alone does not determine a model’s suitability for deployment within a 
practical BMS. For real-time applications, particularly in automotive 
and maritime systems, factors such as model interpretability, compu
tational efficiency, and data dependency play equally critical roles. To 
address these aspects, Table 4 provides a systematic benchmark of 
mainstream health state estimation model categories, evaluating their 
physical interpretability, complexity, data requirements, and computa
tional feasibility for embedded BMS implementation.

4. Open-source battery cell datasets

Numerous data sets have been produced throughout the years as a 
result of increased study into battery technology, particularly Li-ion 
batteries. These data sets are available online, and most are free to use 
for research purposes. These battery data sets are based on a variety of 
battery models and can be used to estimate a variety of battery states, 
SOH, SOC, RUL etc., under a variety of conditions [75]. In this chapter, a 
few commonly used degradation datasets are explained, and a summary 
table consisting of degradation as well as performance datasets based on 
cell chemistry and other parameters is presented.

4.1. Fast-charging optimization dataset from MIT and Stanford 
University

In their combined research [50], the authors implemented 
data-driven models that accurately forecast the cycle life of industrial 
lithium ferrous phosphate (LFP)/graphite cells. A dataset of 124 cells 

Fig. 6. Time Series Models and Features.
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with cycle lifetimes that vary from 150 to 2300 was created using 72 
distinct fast-charging settings. Their feature-based models were able to 
obtain prediction errors of 9.1 % utilizing data from the first 100 cycles, 
indicating the ability to forecast behavior far into the future. Besides, 
using data from the first 5 cycles, labeling into low- and high-lifetime 
groups was accomplished with a misclassification test error of 4.9 %. 
These findings demonstrated the usefulness of integrating data pro
duction and data-driven modeling.

The study systematically varied charging circumstances to record a 
wide variety of cycle lives, from about 150–2300 cycles. Despite limiting 
the enclosure temperature, cell temperatures fluctuated by up to 10 ◦C 
every cycle due to the substantial heat generated throughout charge and 
discharge. The collection included roughly 96,700 cycles, making it one 
of the biggest publicly available dataset.

Data can be accessed at: https://data.matr.io

4.2. Fixed current and arbitrary used profile battery degradation dataset

A type of nominally identical high-energy 18650 LIBs manufactured 

by LISHEN was employed as the experimental subject. The rated ca
pacity was 2.4 Ah, the nominal voltage was 3.7 V, and the lower and 
upper cut-off voltages were 3.0 V and 4.2 V, respectively. A total of 77 
batteries were cycled for degradation tests. During stage 1, 20 initial 
cycles were applied for simulating the battery application to observe the 
initial prediction of battery RUL. Each preliminary cycle consisted of 
0.5 C constant-current-constant voltage (CC-CV) charging and 2 C con
stant current discharging. In stage 2, to examine the degradation prop
erties under varying operating conditions, the 77 batteries were 
classified into two groups, I and II, for supplementary cyclic degradation 
experiments. Each working condition included a charge load at a 
random constant charge current (randomly every 5 cycles) that followed 
a uniform distribution among three distinct selections of 1 C, 2 C, and 
3 C, and a discharge load profile at a stated discharge current of 3 C 
[76].

Data can be accessed at FCA Battery Degradation Dataset

Table 3 
Comparison of battery state estimation methods, datasets, and performance grouped based on estimation method and common dataset.

Dataset Used Estimation 
Method

Reported Accuracy Methodology References

NASA Battery 
Aging Dataset

Adaptive Filter RMSE 
≈ 0.0653–3.5 %

Developed an adaptive dual Kalman filter to jointly estimate battery health states. [68]

RMSE ≈ 0.03–0.07 
Ah

Proposed an improved particle filter optimized by a genetic algorithm to estimate the SOH across 
normal degradation and capacity-regeneration stages of lithium-ion batteries

[69]

Machine 
Learning

RMSE 
≈ 0.147–0.724 Ah

Conducted a comparative analysis of nine machine-learning and data-driven algorithms for RUL 
and SOH estimation of LIB, benchmarking error rates and processing times.

[70]

RMSE ≈ 0.741–1.4 
Ah

performed a comparative study of machine-learning techniques for SOH estimation using SVR, 
FNN, CNN, LSTM models

[71]

Bayesian + ML 
Hybrid

RMSE ≈ 0.8 % Integrates Bayesian inference with ML for robust estimation. [72]
RMSE ≈ 2 % Joint estimation framework for SOH and RUL in LIB by extracting health-indicators, decomposing 

them via variational mode decomposition (VMD) and using a model-integration scheme 
combining feature processing with an optimized support vector machine variant.

[73]

Time-Series 
Model

RMSE 
≈ 0.01–0.0.35 Ah

Developed AR, ARIMA, SARIMA models for a comparative study [74]

Table 4 
Systematic benchmarking of mainstream health state estimation model categories.

Model Category Physical Interpretability Modeling Complexity Dependency on 
Dataset Size / Quality

Computational 
Overhead for Real-Time 
BMS

Remarks / Typical Use 
Case

Physics-Based 
Models

Very High; parameters 
correspond directly to 
electrochemical processes and 
failure mechanisms.

High; requires detailed 
electrochemical equations, 
parameter identification, and 
calibration.

Low; can function with 
minimal historical data.

High; numerically 
intensive; difficult for 
embedded BMS 
implementation.

Best suited for laboratory 
diagnostics and mechanism 
understanding.

Statistical / 
Empirical Models

Moderate; interpretable trend 
coefficients but lack physical 
linkage.

Low to Moderate; simple 
regression or curve-fitting 
equations.

Moderate; relies on 
historical performance 
data.

Low; lightweight 
implementation possible.

Suitable for fleet-level 
degradation trend 
monitoring.

Adaptive Filter 
Methods (KF, 
EKF, UKF)

Moderate to High; uses 
simplified equivalent circuit 
parameters tied to physical 
states.

Moderate; recursive 
formulations; extensions 
increase complexity.

Low to Moderate; small 
calibration datasets 
suffice.

Moderate; feasible for real- 
time BMS with proper 
tuning.

Ideal for on-board SOC-SOH 
estimation in EVs.

Machine Learning 
Models (ANN, 
RNN, LSTM, CNN)

Low; acts as a black-box; 
limited physical transparency.

High, deep architectures and 
hyperparameter tuning are 
required.

Very High; performance 
heavily depends on 
large, high-quality 
datasets.

Moderate to High; 
inference faster than 
training but still memory- 
intensive.

Suitable for predictive 
analytics and pattern 
recognition in large datasets.

Bayesian / 
Probabilistic 
Models

Moderate; probabilistic 
inference allows uncertainty 
interpretation.

Moderate to High; requires 
distribution modelling and 
parameter sampling.

Moderate; can combine 
small data with prior 
knowledge.

Moderate; acceptable for 
online updating if 
simplified.

Effective when uncertainty 
quantification is critical.

Time-Series Models 
(ARIMA, 
SARIMA, 
ARIMAX)

Low to Moderate; statistically 
interpretable but lacks 
physical linkage.

Low; simple to implement 
and tune.

Moderate; dependent 
on data stationarity and 
noise.

Low; minimal 
computational cost; ideal 
for embedded systems.

Useful for short-term cycle 
prediction and second-life 
analysis.

Hybrid Physics- ML 
Models

High; combines physical 
insights with data-driven 
adaptability.

High; requires coupling of 
models and cross-validation.

Moderate to High; 
depends on both prior 
knowledge and data 
volume.

Moderate; optimized 
variants suitable for BMS 
deployment.

Emerging optimal trade-off 
between accuracy, 
interpretability, and real- 
time capability.
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4.3. Deep discharge aging dataset from NASA

NASA published two high-throughput capability battery degradation 
datasets available on its website, totaling 62 cells. The first of these 
datasets, ’Battery Data Set’, includes information about 34 Li-ion 18650 
cells having a nominal capacity of 2 Ah. This set of data was the first 
publicly accessible battery dataset, and it had a tremendous influence on 
the field, offering insight into its value. Cells were cycled at a variety of 
ambient temperatures (4◦C, 24◦C, and 43◦C), charged using a standard 
CC-CV methodology, and discharged using various methods. The dataset 
comprises readings of terminal current, voltage, and cell temperature 
during the cycle, as well as discharge capacity measurements between 
cycles and EIS impedance measurements.

NASA’s second dataset, the ’Randomized Battery Usage Data Set’ 
[23], includes data for 28 LCO (lithium cobalt oxide) 18650 cells that 
have a nominal capacity of around 2.2 Ah. The dataset is made up of 
seven distinct sets of four cells, each cycled at a specific ambient tem
perature (room temperature, 40◦C); for five of these groups, the cells 
were CCCV charged and then discharged using currents drawn at 
random from the group’s discharge distribution table [23,24,77].

Data can be accessed at Li-ion Battery Aging Datasets | NASA Open 
Data Portal

4.4. Pulse cycling, capacity fade, storage aging dataset from centre for 
advanced life cycle engineering (CALCE)

The CALCE battery group conducted extensive cycling testing on a 
wide range of LCO/graphite cells. The CALCE dataset contains data on 
15 LCO prismatic CS2 cells categorized by experimental circumstances 
as ’Type-1′ to ’Type-6′. ’Type-1′ and ’Type-2′ accompany one document 
[78], and ’Type-3′ to ’Type-6′ another [79]. Type-1′ has four 0.9 Ah cells, 
’Type-2′ has four 1.1 Ah cells, and ’Type-3′ through ’Type-6′ each have 
one to two 1.1 Ah cells.

The degradation data was logged until the batteries had at least 
reached their EOL, or 80 % SOH, having fewer than 200 cycles collected 
data for the ’Type-1′ batteries and roughly 800 cycles for the remaining 
cells. CALCE tested the second set of cells, which were twelve LCO 
prismatic CX2 cells having an approved capacity rating of 1.35 Ah. 
Which, like the CS2 cells, are classified as ’Type-1′ to ’Type-6′. ’Type-1′ 
and ’Type-2′ (a total of four cells each) have been cycled identically as 
’Type-1′ of CS2 cells [80]. The other four groups each feature a single 
cell that has been cycled using a variety of charge/discharge techniques; 
one of the cells was cycled at different temperatures (25 ◦C, 35 ◦C, 45 ◦C, 
55 ◦C).

In further battery studies [81], the researchers evaluated the influ
ence of varying depths of discharge, or DOD, and discharging current 
stressors on the ageing of pouch cells. Battery group tested around 16 
LCO 1.5 Ah pouch cells in a ’semi-temperature controlled’ room (25 
± 2◦C). It contains cycler voltage, current, and charging and discharging 
capacity data for 400–800 ’equivalent cycles’ [61].

The data can be accessed at CALCE Battery Datasets

4.5. Long-term battery degradation dataset from sandia national labs

The Sandia National Laboratories has completed experimenting with 
3 different 18650 cells: 

• A123 Systems - LFP (APR18650M1A, 1.1 Ah),
• Panasonic NCA (NCR18650B, 3.2 Ah), and
• LG Chem NMC (18650HG2, 3 Ah)

In total, it includes 86 cells (30 LFP, 24 NCA, and 32 NMC). The cells 
were cycled at a variety of temperatures (15 ◦C, 25 ◦C, and 35 ◦C) with 
varying DODs (0–100 %, 20–80 %, and 40–60 %) and discharge cur
rents (0.5 C, 1 C, 2 C, and 3 C); at least two cells from every group were 
cycled for each combination of temperature, DOD, and discharge 

current (12 groups), except for the 3 C discharge for the NCA cells. All 
cells have been charged at a constant rate of 0.5 C. Periodically (about 
every 3 % capacity loss), measurements using the EIS were made to 
determine the cell’s entire capacity. All of the information is provided in 
the ’.csv’ format [82,83].

The data can be accessed at R&D Data Repository – DOE Office of 
Electricity Energy Storage Program

4.6. Battery degradation data from Oxford University

The dataset’s parts are as follows: Parts one, two, and three [84]. One 
of these is the ’Path dependence battery degradation dataset’, which 
consists of three sections. The three-year experiment [85], running from 
2017 to 2020, investigated the ’path dependence’ of Li-ion cells by 
subjecting them to a series of combination load profiles that included 
defined periods of calendar and cyclic aging.

The study looked at 28 industrial 3 Ah 18650 NCA/graphite cells 
(NCR18650BD). The dataset is divided into three sections (Sections 1, 2, 
and 3), with 28 cells divided into 10 groups (9 that consist of three cells 
and 1 group of one cell), all of which were evaluated at 24◦C [86]. The 
data provided included fundamental metrics such as time, current, 
voltage, capacity, and temperature. Groups 1–4, each containing three 
cells, were aged by cycling at half or quarter C rates after about one week 
of calendar aging per 48 cycles.

’Part 1′ presents the first 18 months of experimental data [25], 
whereas ’Part 2′ presents months 19–36 [87]. In addition to cell Groups 
1–4, Part 2 has Groups 5 and 6, which serve as controls. Group 5 cells are 
subjected to continuous C/2 cycling, but Group 6 cells are only exposed 
to calendar degradation (at 90 % SOC). Group 7–10 is presented in the 
dataset’s ’Part 3′ and corresponds to Group 1–4. Every group undergoes 
cycling with CC-CV profiles, followed by 5 or 10 days of calendar ageing. 
Reference performance tests (RPT) along with EIS tests are utilized 
regularly to characterize the cells and distinguish the effects of different 
storage durations and C-rates on battery degradation.

Data can be accessed here: Oxford Battery Degradation Dataset 1

4.7. EVERLASTING project battery dataset

A recent project [88] ‘Electric Vehicle Enhanced Range, Lifetime and 
Safety Through INGenious battery management’ (EVERLASTING) fun
ded by the European Commission, has published some battery-related 
datasets on the ’4TU.ResearchData’ website [88,89]. The report in
vestigates 3 datasets for ageing from three perspectives: drive cycle, 
calendar, and CC-CV ageing at various temperatures.

One of these datasets was used in an experiment called ’Lifecycle 
ageing’ to study the connections between temperature, charge/ 
discharge C-rates, and capacity loss. These experiments were carried out 
on 28 Li ion 18650 3.5 Ah commercial cells at various temperatures 
(0◦C, 10◦C, 25◦C, and 45◦C), discharge rates (0.5 C, 3 C), and charge 
rates (0.5 C, 1 C). Two cells were tested for each possible combination of 
temperature/charge rate as well as temperature/discharge rates (except 
for 0◦C discharge). All ’charge’ (’discharge’) studies followed a similar 
discharge (charge) profile. The data is stored separately by temperature 
(0◦C and 10◦C) and (25◦C and 45◦C) [90,91].

Data can be accessed here: EVERLASTING Project

4.8. Summary of open-source battery datasets

Table 5 shows a comprehensive collection of LIB datasets that cover 
topics such as cathode types (LFP, LCO, NMC, etc., various cycling 
processes, applications, key features, and details on the institute 
responsible for hosting and managing them.

To complement the dataset overview, Table 6 summarizes some 
representative studies that have employed these open-source datasets. 
This comparison underlines how model accuracy and generalizability 
are strongly influenced by the dataset choice, preprocessing quality, and 
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experimental context.

5. Discussion

The rapid advancement and extensive usage of LIBs have emphasized 
the critical need for a strong understanding of their degradation mech
anisms to avoid accidents. Due to their high energy density and long 
cycle life, they make them ideal for a bunch of small and large-scale 
applications, but performance reliability and loss over time remain a 
concern. In this discussion chapter, modelling techniques, their broader 
implications, as well as the challenges and opportunities that remain for 
future research in this evolving field, are discussed.

Accurate and reliable battery health parameter predictions depend 
heavily on the understanding of degradation mechanisms in LIBs. The 
importance of estimating SOH, SOC, and RUL has therefore become 
important as these parameters directly determine performance, safety, 
degradation mechanisms and lifecycle costs. The estimation methodol
ogies reflect the multifaceted nature of degradation, where no single 
model type universally applies across all battery chemistries, use cases, 
or degradation patterns.

In recent years, research into LIB health prediction and modelling 
has exponentially accelerated due to the availability of open-source 
battery cell degradation datasets repositories from institutes such as 
the Toyota Research Institute, Mendeley Data, NASA, CALCE, Sandia 

Table 5 
Summary of available battery degradation dataset based on cathode material, and cycling process.

Dataset Name Institute Cathode Cycling Process Intended 
Application

Key Features References

Fast-Charging 
Optimization 
Dataset

MIT, Stanford 
University

LFP 150–2300 cycles, 72 distinct fast 
charging settings

EV Fast-charging strategies, voltage/ 
current/temp

[92]

Accelerated Cycle Life 
and Capacity 
Degradation

University of 
Maryland

LCO Testing under various 
temperatures and current cycles

Capacity fade 
modeling

Capacity vs cycle degradation under 
multiple stress profiles

[93]

Fixed Current Profiles 
& Arbitrary Used 
Profiles

MIT, Beijing 
Institute of 
Technology

LCO Complete cycle testing under 
various temperature and current 
conditions

Capacity fade 
modeling

Capacity vs cycle degradation under 
multiple stress profiles

[94]

Deep Discharge Aging 
Dataset

NASA LCO Discharge was carried out at CC 
level of 2 A until the voltage 
drops to 2.7, 2.5, 2 V

- Charge/Discharge, EIS cycles to 
induce deep discharge aging effects

[95]

Pulse Cycling CS2 
Series Dataset

CALCE LCO CCCV charge (0.5 C), discharge 
0.5–1 C, pulsed load protocols

Consumer 
electronics/aging 
studies

Multiple discharge modes, pulsed 
cycling

[96]

Capacity Fade and 
Variable DOD 
Cycling Dataset

LCO Full CCCV cycles at 0.5 C, partial 
SOC cycles (20–80 %, 40–60 %) 
at 0.5 C & 2 C

SOC-range cycling 
impact

Comparison of partial vs full DOD 
cycling, Capacity fade

Storage Aging Dataset LCO, LFP, 
NMC

Calendar aging (storage at 0, 50, 
100 % SOC) with periodic 
measurement

Calendar aging & 
reliability

SOC & temperature effects on 
calendar fade

Long-Term 
Degradation Study

Sandia National 
Laboratories

NCA, 
NMC, LFP

Sequential rounds of cycling: 
capacity checks (0–100 %) at 
0.5 C + conditioning cycles (C- 
rate, temperature, DoD)

Lifetime degradation 
modeling

Evaluates effects of temperature, 
DoD & discharge rate across 
chemistries; capacity fade vs cycle; 
EIS-based impedance growth data

[97]

NCA Battery 
Degradation Dataset

University of 
Oxford

NCA Drive cycle, characterization EV / Consumer 
Electronics

Voltage/current/temp 
measurements

[98]

Life Cycle Aging 
Dataset

EVERLASTING 
project

NMC Long-term cycling EV Emphasis on longevity and 
degradation

[88,89]

Second Life Battery 
Diagnostics 
PulseBat Dataset

N/A NMC, 
LFP, LMO

Pulse Charge/Discharge Cycles EV, second-life Second-life diagnostics, voltage & 
temp response

[99]

Large Scale EV Battery 
Dataset

N/A — Real-world driving cycles EV Charging records, health & capacity 
estimation

[100]

Battery Relaxation 
Dataset

Hawaii Natural 
Energy Institute 
(HNEI)

NMC, LFP Relaxation studies (charge & 
discharge)

EV / Research Focus on relaxation phenomena [101]

Intrinsic Variability 
Dataset

Hawaii Natural 
Energy Institute 
(HNEI)

NMC, 
LCO

Periodic Reference Performance 
Tests, then CC-CV charge (0.5 C) 
and CC discharge (1.5 C) for 
aging

SOH degradation 
modeling & 
variability analysis

Focus on cell-to-cell degradation 
variability under identical cycling 
conditions and temp

[26]

Comprehensive 
Battery Aging 
Dataset

Karlsruhe Institute 
of Technology

NMC Cyclic & calendar aging, driving 
cycles

EV 3 + billion data points, raw & results 
data

[102]

Fast Charging Test 
Dataset

N/A NMC, 
LCO

Baseline: CCCV cycling at 
increasing C-rates; 
baseline tests to study capacity 
fade

Fast-charging 
protocol optimization 
& aging risk 
assessment

Multi-mode fast-charge protocols, 
capacity fade under high C-rate 
charging

[103]

Lithium-Ion Battery 
Field Data Iontech 
Dataset

N/A LFP Aging under identical profiles General 133 million rows of measurements. [104]

Electrochemical 
cycling dataset

University College 
London (UCL)

NMC CC-CV charge (1.5 A to 4.2 V), 
CC discharge 
(4 A to 2.5 V) – 400 full cycles

EV / degradation 
modelling

Full electrochemical cycles + x-ray 
CT microstructure

[105]

NMC Cyclic Aging 
Data

Politechnika 
Poznanska

NMC Cycling under varied discharge 
current, temperature, DoD; 
capacity vs SOH captured at 
intervals

SOH degradation 
modeling, 
prognostics

Study of effects of current, DoD, 
temperature on aging and SOH 
regression models

[106]
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National Laboratories, and Oxford University. Given the cost, safety 
concerns, and time requirements of experimental testing, the availabil
ity of such open-source datasets is particularly important for developing 
predictive models across different chemistries and cycling processes. 
These datasets, however, have some limitations, including different test 
protocols, sensor resolutions, battery chemistries, and testing condi
tions. These limitations lead to challenges in model generalization 
across datasets. For example, models developed and trained on the 
NASA dataset may underperform when tested against datasets from 
Oxford University or CALCE due to variations in the cycling process or 
data recording frequencies that are not represented during training, 
even if they are of the same chemistry and cell type. Transfer learning is 
a viable option to overcome these limitations by utilizing the training 
knowledge learned from these open-source datasets to accelerate model 
adaptation for novel or limited-data batteries through selective re- 
training or fine-tuning of learned parameters. The transfer learning 
approach works by capturing the universal degradation features, such as 
voltage, current and capacity curve learning only for lower layers of the 
neural networks or for hybrid architectures. When implementing on a 
new cell, for example, moving from NMC to LFP cells or from laboratory- 
based testing to actual systems, only the top layers of the model are 
retrained using a comparatively small number of cycles from the target 
dataset. This process reduces the dependency of the new dataset which 
might be unavailable or unreliable due to sensor fault for example, in the 
process the model still retains the high prediction accuracy. This 
methodology enhances model generalization, reduces the time needed 
to develop predictive degradation models for new cell types supporting 
fast-paced deployment in real-life industrial applications. This directly 
improves the industrial efficiency by minimizing the requirement of 
repeated full-cycle age tests which take a lot of time to run.

Moreover, certain datasets may lack metadata or contextual infor
mation, which might be crucial for modeling. Despite these challenges, 
the combined usefulness of these datasets has the potential to serve as 
benchmarks for developing initial degradation models, assuming that 
future efforts focus on standardizing data formats with contextual 
metadata to improve transferability and real-world relevance.

Adaptive filters, ML models, statistical filters, and hybrid methods 
are the most often implemented SOH and RUL modeling approaches to 
incorporate the non-linear battery degradation behavior. Adaptive filter 
methods such as Kalman Filters have proven benefits for real-time bat
tery health estimation. However, the EKF models may not perform well 
in extremely nonlinear or dynamic situations and still rely on the cor
rectness of the underlying battery model. To overcome this shortcoming, 
ML methods such as NN-based approaches exhibit strong degradation 
pattern recognition abilities under dynamic and nonlinear conditions. 
Estimation models demonstrate NNs’ advantage in modeling nonlinear 
degradation but rely on large datasets and may lack physical inter
pretability. Even though NNs are efficient at detecting complex patterns 
and adapting to new data, they require extensive training, and model 

performance increases with increasing training dataset size. On the 
other hand, time series models generally offer statistically dependable 
and easily interpretable frameworks for capturing temporal perfor
mance and degradation trends. In situations where capturing temporal 
dependencies is important, time series models have proven to be effec
tive. The weakness of time series models is that they are less adaptable in 
handling highly nonlinear and large datasets. These disparities highlight 
the growing need for hybrid approaches that can combine the strengths 
of both data-driven and physics-based models to improve battery health 
state prediction accuracy.

Reliable prediction of battery health states and RUL is critical across 
many industries that rely heavily on LIBs. For example, in EVs, RUL 
predictions help optimize battery consumption and schedule mainte
nance proactively. This also helps avoid unexpected failures and reduces 
overall lifecycle costs of the battery as well as the overall system. 
Likewise, in the maritime industry, LIBs are increasingly implemented 
for hybrid propulsion and onboard energy storage.

In addition, upcoming regulatory requirements strengthen the 
importance of such models. The revised EU Battery Regulation 2023/ 
1542 mandates the implementation of a Digital Battery Passport for EVs, 
light transport, and industrial batteries over 2 kWh capacity starting in 
February 2027 [110]. A structured electronic record will be accessible 
via a QR code, which must include detailed information on battery cell 
chemistry, carbon footprint, declared EOL, and performance metrics 
such as SOH, degradation trends, cycle history, and RUL. These regu
latory requirements significantly reinforce the case for developing 
robust predictive models, as they will directly support compliance, 
transparency, and safe second-life applications.

6. Conclusion

To summarize, LIBs have become vital in almost all applications due 
to their high energy density and long cycle life. A recurring challenge 
remains in reliably predicting the degradation, which has a direct in
fluence on system performance and safety. Hence, comprehensive 
degradation studies are required to guarantee the long-term viability of 
the LIBs. However, studying the degradation of batteries is a challenging 
task due to the difficulties associated with the collection of data over 
lengthy time periods, the cost associated with testing facilities, and the 
safety aspect of the experiments.

This paper highlights some open-source degradation datasets that 
are frequently implemented for developing predictive models. This 
database also provides researchers with a time-effective and scalable 
way to investigate battery performance and degradation, allowing them 
to overcome the limitations of prolonged experimental data generation. 
Important parameters such as RUL must be predicted to anticipate when 
batteries would no longer satisfy performance specifications through a 
degradation model. Hence, the accurate estimation of RUL is critical for 
the effective implementation of maintenance strategies and replacement 

Table 6 
Comparative summary of a few studies using common open-source battery datasets for SOC, SOH and RUL Estimation grouped based on the dataset.

Dataset Used Model / Method Reported Accuracy Remarks Study / 
Reference

NASA Battery Aging 
Dataset

Adaptive dual Kalman filter RMSE 
≈ 0.0653–3.5 %

Robust under sparse data and noise [68]

Bayesian inference model RMSE ≈ 0.8 % Fast convergence, accurate tracking [72]
ML Hybrid RMSE ≈ 2 % Effective nonlinear degradation capture [73]

CALCE Dataset Bayesian Inference + G-sum PF RMSE ≈ 1.8 % Stable under multi-temperature conditions [60]
Oxford Path-Dependence 

Dataset
Machine learning Regression Model RMSE ≈ 2.5 % A simple and feasible way to estimate the SOH 

of electric vehicles
[107]

Sandia Dataset Light Gradient Boosting Machine (LightGBM) and 
Long Short-Term Memory (LSTM)

RMSE ≈ 2.3–5 % A novel feature engineering approach with 
purpose-designed features

[108]

MIT–Stanford Fast- 
Charging Dataset

Feature-based ML (Elastic Net + RF) RMSE ≈ 9.1 % test 
error

Life prediction using the first 100 cycles [50]

HNEI Relaxation Dataset Battery-Insight-PSO, using the Extreme Gradient 
Boosting Regression (XGBoost)

RMSE 
≈ 0.251–5.206 %

Accurate SOH mapping under variable loads [109]
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plans in large-scale energy systems, where unexpected breakdowns can 
prove to be costly and have effects on the entire process, which is un
desirable. Equally, SOH and SOC estimation remain central to under
standing battery status and ensuring safe operation, linking degradation 
mechanisms to predictive modelling outcomes.

To improve the predictions, advanced data-driven methodologies 
such as adaptive filters, including KFs, EKFs, and UKFs, provide dynamic 
modeling of battery health states while accounting for nonlinearities and 
uncertainties in the degradation process. Machine learning models can 
evaluate complex degradation patterns and forecast battery perfor
mance under a range of operating conditions and especially with large 
datasets. Recently, researchers have also been exploring hybrid models 
that can integrate the strengths of adaptive filtering and machine 
learning together. These hybrid models have shown considerable good 
results due to their nature of combining physical interpretability with 
data-driven adaptability. Although developing hybrid models requires a 
deep technical understanding of the domain. These hybrid models offer 
the potential to achieve higher accuracy if modelled correctly. Inte
grating open-source data with new computational tools like adaptive 
filtering and machine learning can help create more reliable battery 
degradation models.

Furthermore, the upcoming EU Digital Battery Passport policy makes 
accurate prediction of SOH and RUL not only a research priority but also 
a regulatory requirement. This policy implementation will further 
strengthen the need for precise degradation models for transparent 
tracking of battery health throughout the lifecycle. By linking mecha
nistic understanding, predictive modelling, and standardized datasets, 
these efforts will help enhance the safety and operational efficiency of 
LIBs in large-scale energy and transport systems.
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