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Lithium-ion batteries are vital for large-scale industries, especially in transport and renewable energy applica-
tions, due to their high energy density, extended cycle life, and low self-discharge rate as compared to other
battery types. With increasing demand for sustainable and energy-efficient solutions, it is critical to study, un-
derstand, and improve the performance of batteries. Monitoring degradation is important, but acquiring real-
time sensor data over lengthy periods is challenging due to the longer life cycles of batteries. This makes data
collection costly and time-consuming. Cell-based open-source datasets provide a viable alternative, allowing
researchers to estimate the degradation of battery cells without the requirement for constant, real-time testing.
Furthermore, estimating degradation factors is crucial for forecasting Remaining Useful Life and extending
battery lifespan. Methods such as adaptive filtering techniques, machine learning approaches, etc., have
demonstrated reliable solutions in simulating battery degradation. This paper reviews the battery cell degra-
dation mechanisms, followed by the prediction of battery health parameters and relevant degradation modelling
approaches for individual cells. The purpose of this review is to provide a structured analysis of how different
modelling methods capture degradation behavior, to identify their strengths and limitations, and to clarify how
they can be applied for battery health prediction. It also highlights the importance of datasets required for
developing predictive models and summarizes open-source datasets based on the chemistry, cycling process, and
their key features.

1. Introduction immediate applications but also in their ability to force a major transi-

tion towards renewable energy sources. As the world moves away from

The majority of modern electronics are powered by batteries, and
with the rapid increase in the generation of renewable energy, storage
has become increasingly critical [1]. The energy market is undergoing
significant shifts across various sectors as the production of electricity
from variable sources continues to rise quickly. The rapidly growing
demand for energy storage is due to problems in the energy markets of
developing countries and shifts in transportation methodologies. [2].

Lithium-ion batteries (LIBs) have emerged as an essential component
of modern energy storage systems, transforming many industries and
paving the way for a more sustainable future. LIBs have gained popu-
larity over other battery technologies in a variety of applications due to
their extended lifespan, high potential density, lightweight design, and
low self-discharge. Such applications include airplanes, electric vehicles
(EVs), satellites, maritime systems, cellphones, laptops, and other elec-
tronic devices [3]. The significance of LIBs resides not only in their

fossil fuels, LIBs will play an important role in storing energy provided
by intermittent renewable sources, such as solar and wind. In the field of
transportation, LIBs have emerged as a game-changer. Their use in
electric vehicles has resulted in much lower greenhouse gas emissions,
providing a greener and more environmentally friendly alternative to
conventional internal combustion engines. Additionally, LIBs are
increasingly offering fast charging and longer driving ranges, solving
critical issues about EV practicality and convenience.

In addition, LIBs show potential as a vital component of microgrid
systems, allowing distant settlements and islands to switch to renewable
energy sources while reducing their reliance on expensive and polluting
diesel generators [4]. LIBs enable a more stable and resilient energy
supply by storing extra energy during periods of low demand and dis-
charging it when needed, thereby improving energy security and sup-
porting sustainable development. LIBs, which are prevalent in modern
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technology, degrade over time, reducing their performance and dura-
bility. This degradation occurs via a variety of chemical and mechanical
processes. Chemically, the electrolyte can degrade through reactions
with ions and the electrons at the anode surface, leading to the forma-
tion of the SEI layer [5]. Although the SEI layer is crucial for protecting
the electrolyte, its progressive growth during aging can raise the internal
resistance and reduce the capacity retention properties. Moreover,
during the charging phase, lithium plating can cause dendrite formation,
resulting in short circuits and capacity loss, and making the cathode
material structurally weak, which might result in decreased capacity
and voltage instability [6]. These inadvertent side reactions between
electrodes and electrolytes, such as SEI layer formation and lithium
plating, also contribute to capacity loss. Due to the repetitive process of
charging and discharging, the electrode material is subjected to constant
expansion and compression, which results in mechanical stresses, crack
formation, and delamination [7]. These mechanical stresses weaken the
component and result in low electrical contact, which in turn accelerates
the capacity degradation of the battery. Apart from these mechanical
causes, temperature and humidity also accelerate degradation pro-
cesses, creating safety issues and limiting cycle life [8]. Extensive
research exists on the impact of temperature; comparatively less focus
has been given to humidity and saline environments, despite their in-
fluence on battery performance and safety [8]. Understanding and
research on these degradation mechanisms is critical to improving bat-
tery performance and the safety aspect. Furthermore, modelling the
degradation mechanisms of LIBs is important for predicting the
Remaining Useful Life (RUL) [9]. By creating mathematical models and
algorithms based on state of health (SOH) estimations from the Battery
Management System (BMS), we can predict battery life, apply proactive
maintenance techniques, and provide condition-based maintenance.
These predictive capabilities assure optimum asset utilization while
minimizing downtime. Furthermore, understanding SOH and the un-
derlying degradation mechanisms would enable the design of safety
measures and thermal management systems to prevent catastrophic
failures and assure safe battery use. In this context, extensive studies
exist that focus on the management of charging and discharging,
assessment of RUL, and assessment of the performance degradation of
LIBs [9-11].

Lu et al. [12] reviewed the main issues of battery degradation. They
studied the degradation over the entire life cycle of the battery, starting
with reviewing batteries’ internal aging mechanisms and also focused on
factors such as design, production method, and applications. Kabir et al.
[5] did an extensive review emphasizing degradation causes as well as
mechanisms. They concluded the research, mentioning that the
improved understanding of the mechanisms was vital in developing
aging models and, therefore, helping the predictions of the cell EOL
more accurately. Elmahallawy et al. [13] gave a brief review of the EV
batteries’ health status from the point of view of operational safety. They
studied various battery modelling techniques, such as physics models
and data-driven models, where they also focused on the ML algorithms.
Jin et al. [14] gave an overview of ML methods that could be used for the
RUL prediction of the LIBs. They provided a summary and classification
of different RUL estimation methods that had been proposed in the last
few years. After putting forward the methods, they discussed some ML
models and tried to compare the accuracy of the methods against each
other. They concluded their study by claiming that a Deep Neural
Network (DNN) is more viable for the RUL estimations due to the strong
learning ability and understanding of the datasets. These studies lacked
fundamental information about degradation mechanisms and modelling
methods, and focused on lab-scale operating conditions. In the last
decade, machine learning, as well as hybrid data-driven models and new
cell chemistries, were implemented to improve SOH and improve life-
time predictions, and there was a need to address them. Focusing on and
updating the information on new cell chemistries, their dataset avail-
ability, and the feasibility of implementing newer degradation models is
important.
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This review paper provides an overview of LIB degradation mecha-
nisms, their impact on cell performance, and why a few battery health
states, such as State of Charge (SOC), SOH, and RUL, need to be studied.
The paper also explains different modelling techniques that can be
implemented to predict the health states, and dives deep into data-
driven modelling techniques, including adaptive filters, machine
learning, and models such as Bayesian and Time series approaches,
highlighting how they perform and capture different degradation ef-
fects, and help in predicting health states of the battery. Given the dif-
ficulties, such as lack of experimental facilities, safety concerns, and
costs of long-term testing, this review also emphasizes the availability of
open-source battery cell datasets. A few widely used degradation data-
sets from various institutes for modelling purposes are described in
detail. Other datasets are summarized in a table stating Important pa-
rameters that would enable efficient selection for modelling purposes.
The summary table covers diverse cell types, chemistries, and cycling
processes, and provides useful information for developing and vali-
dating data-driven predictive models.

The paper is structured into 4 main chapters, starting with explaining
degradation mechanisms and factors that influence battery life, followed
by the significance of battery health parameters and the respective
modeling approaches. Lastly, it gives a brief description of available
datasets based on the cell cycling process and the key features, which
help in easing the selection process for developing the predictive
models, providing a clear flow from understanding degradation to
selecting methods and datasets for a reliable battery health prediction
model.

2. Battery degradation mechanism

At the battery system level, an understanding of degradation mech-
anisms and appropriate modelling methods is critical, particularly for
predicting performance under varying operating conditions and at
different stages of life, as well as for ensuring safe operations. The ability
to precisely anticipate battery end of life (EOL) or RUL allows the dan-
gers of battery runaway to be reduced [15]. Understanding battery
degradation is crucial for cost-effective decarbonization of both trans-
portation and energy systems [16]

LIBs’ storage capacity decreases with time and use, while their in-
ternal resistance increases as a result of a various degradation mecha-
nisms such as SEI layer growth on the anode, while the internal
resistance increases due to lithium plating and active material loss.
Three major factors affect degradation: temperature and the load profile
as external stressors, and SOC as an internal operating variable that
reflects the combined effect of load history and the initial conditions

| How to design a long life Battery |

Battery
Design
Past: How to estimate
SOH?

Present: How to operate
battery for maximum life
Future: How to predict
RUL of the battery?

Fig. 1. Battery design and management issues based on ageing mechanisms
and life.
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[17]. As shown in Fig. 1, based on [18], battery aging and the influence
of battery degradation should not only be considered during battery
design but also during operation from the perspective of battery man-
agement. These models are crucial for estimating battery health influ-
enced by history, optimizing working conditions in the present, and
predicting future performance.

Given the battery’s nonlinear fading characteristics, the usual
extrapolation method cannot reliably anticipate its remaining life. The
most apparent signs of battery degradation are capacity and power fade
[19,20].

In battery system analyses, the capacity and power performance are
essential and relevant factors, which must be correctly predicted by the
BMS along with the SOH. Battery life may be divided into two parts:
calendar life and cycle life. Calendar life refers to battery degradation
caused by storage without cycling, whereas cycle life considers the
battery’s degradation caused by charge and discharge cycles. Most EV
batteries exhibit nonlinear aging characteristics [7,21].

The primary parameters affecting battery life include [6]:

e High temperature, which accelerates internal side reactions.

Low temperatures cause a rapid reduction of metal ions. They also
lead to lithium deposition and can destroy the crystal structure of the
active material.

High SOC or overcharge that can lead to electrolyte decomposition,
trigger side reactions between the electrolyte and the cathode, and
cause lithium-ion deposition. These effects compromise battery
integrity and performance, reducing efficiency and increasing safety
risks.

Low SOC or Over Discharge.

The anode copper current collector is susceptible to corrosion, which
can lead to significant issues in lithium-ion batteries. Corrosion may
result in the collapse of the crystal structure of the active material,
adversely affecting battery performance and longevity.

e High Charge and Discharge Rate.

Most commercial LIBs have an operating temperature range of
15-35°C and the rate of adverse reactions increases with increasing
temperature [7]. Furthermore, if the battery surpasses a specific
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temperature, it may initiate self-heating, resulting in battery thermal
runaway. Moreover, material embrittlement at low temperatures may
affect battery life. As a result, ensuring that the battery operates within a
proper temperature interval is the key to improving battery life [6].

Battery SOC also has a substantial impact on battery life. A higher
value of SOC indicates a higher terminal voltage, implying a lower
anode potential and a higher cathode potential. For the graphite anode
with a lower potential, the side reaction rate, such as SEI thickening, will
be higher, resulting in a faster aging rate, and in the event of aberrant
charging, such as overcharging or low temperature charging, the anode
potential may be too low and reach the lithium deposition potential,
causing the side reaction of lithium deposition to accelerate battery
aging [5]. Meanwhile, the cathode with a greater potential would un-
dergo electrolyte oxidation and breakdown. Lower SOC indicates a
higher anode potential and a lower cathode potential, which generally
improves battery life. However, if the battery’s SOC is too low, corrosion
of the anode copper current collector and cathode active material
structure would significantly reduce battery life [22]. Fig. 2 shows how
different parameters change from the first to the last test cycle during
the discharging phase from the NASA battery dataset (BO005). As the
cycle number increases, the temperature of the battery rises rapidly and
in a shorter time period, indicating increased internal resistance and
heat generation, which contribute to performance loss and signs of
degradation of electrodes and electrolytes.

The battery current has a clear impact on battery life. On the one
hand, the current running through the battery generates Joule heat,
influencing the battery temperature. Large charge and discharge rates,
in particular, can produce a significant temperature increase, reducing
battery life [24]. Battery degradation is an important topic to investigate
since it has a significant and considerable impact on battery perfor-
mance, lifespan, and safety. Understanding degradation methods en-
ables the design of more lasting and efficient energy storage systems and
also aids in predicting battery life and maintenance procedures, which
would result in greater dependability and cost-effectiveness. Lastly,
recognizing degradation pathways is critical for minimizing the envi-
ronmental impact of batteries. Different degradation pathways create
distinct reaction products, such as lithium salts from electrolyte break-
down or transition metal oxides from cathode degradation, which have
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implications for disposal and recycling techniques, as well as EOL safety.

The above paragraph explains the internal degradation mechanisms
that control LIB aging. These processes, both physical and chemical can
be observed through measurable datasets based on electrochemical re-
sponses. A direct connection between degradation modes and their
diagnostic signatures are fundamental for understanding the degrada-
tion mechanisms via the datasets. Table 1 below summarizes these
connections by providing a systematic mapping.

3. Prediction and modelling of battery health parameters

In the process of studying degradation, understanding battery pa-
rameters is crucial. These parameters facilitate understanding and
streamlining of the degradation study using predefined terminologies
that can be evaluated based on sensor data. A battery is a non-linear
system with numerous complications; therefore, the BMS relies on a
variety of parameters. Precision monitoring and estimation for these
BMS parameters are computationally intensive. Unquestionably, for
advanced and futuristic BMS, exact monitoring and prediction are
essential for some key terminology, which includes SOC, SOH and RUL.
SOC fluctuates rapidly with LIB usage and can be accurately determined
through short-term electrical measurements, but it provides no infor-
mation about how the battery’s capacity, power capability, or safety
margins have evolved. In contrast, SOH reflects the cumulative effects of
aging mechanisms such as loss of active material, lithium inventory
depletion, and impedance growth, which directly dictate both perfor-
mance sustainability and RUL. Consequently, while SOC helps manage
daily operations, SOH determines the operational lifespan and safety
envelope of the system. For this reason, SOH estimation is considered
more critical in advanced BMS and is thus explained in more detail in
this study.

3.1. SOC estimation

SOC is a fundamental parameter in BMS that represents the real-time
charge level of the cell. It indicates how much energy remains available
for use. Accurate and reliable SOC estimation is vital for safe operations
and extending the lifespan of LIBs. SOC is commonly defined as the ratio
of remaining charge to its nominal capacity and expressed as a per-
centage [27].

S0C(t) = (%) x 100% Eq. 1

where Qrem() is the remaining charge (Ah) at time t and Q, is the
nominal or rated capacity of the cell.

Although in practical applications, SOC is generally calculated by
integrating the current over time as shown in the coulomb-counting

equation [28].

Table 1
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1 t
SOC(t) = SOC(to) — <5> / I(7)de Eq. 2
n to
where SOC(t) is the initial SOC, I(r)
nominal capacity.

is the current and C, is the

3.1.1. Methods used to model SOC

The most-used methods for estimating the SOC can be classified as,

Coulomb counting (CC):

CC also known as ampere hour counting, is widely used to estimate
SOC and is calculated from Eq. 2 The reason for its wide adoption is due
to its simplicity, low computational demand and compatibility with real-
time embedment with BMS. Mohammadi et al. [29] proposed an
improved version of CC algorithm where they incorporated uncertainty
propagation for the current readings and the integration error. They
used a 12 V 100Ah lithium pack and tested it over a 10-year projection.
The model achieved a maximum deviation below 0.3 % demonstrating
that uncertainty modelling can improve the CC model performance. Zhu
et al. [30] developed a non-destructive differentiation-based CC model
for the NMC 18650 cell. Their method combined OCV with empirical
tuning factors for parameters such as temperature, discharge rate, etc.
The experiments gave a maximum error of approximately. 3.5 % over
the traditional OCV-CC models. Lee et al. [31] upgraded the framework
through an Enhanced CC model that updates the coulombic efficiency
after each charge-discharge cycle thereby predicting the SOC at each
step. They used a 3 kW energy storage module and achieved MAE of
0.05 % and validated the results with real-time BMS. Huang et al. [32]
proposed a fault-diagnosis layer for the CC algorithm to detect the initial
SOC values. They used a 50Ah pouch cell for the research. Lastly,
Movassagh et al. [33] performed a theoretical analysis of CC error
propagation. They derived the parameters from the statistical models of
current noise and capacity.

Electrochemical Models:

Electrochemical models offer a physics-based route for predicting the
internal states of LIBs. Hosseininasab et al. [34] developed a fractional
order reduced model derived from the Pseudo 2D model to estimate the
cell resistance and achieved high accuracy with minimal parameters and
computational cost. They also performed experimental validation on an
aged NMC battery with a nominal capacity of 27 Ah under dynamic
current and temperature profiles. Xu et al. [35] proposed a hybrid
minimalist electrochemical-equivalent-circuit framework. The circuit
model only handled dynamic voltage response while the minimalist
electrochemical model quantified lithium inventory loss. They used
NASA'’s battery data and achieved errors of about 2 %. Lastly, Wu et al.
[36] further simplified the Pseudo 2D model using Pade approximation
and averaging the volume to design a proportional integral and differ-
ential observer. The model was capable of jointly estimating SOC and
anode potential whilst maintaining SOC error below 2 %.

A summary Table 2 comparing CC models and Electrochemical

Mapping of major internal degradation mechanisms to their corresponding externally measurable diagnostic signatures [15,24-26].

Internal Degradation Cause

Mechanisms

External noticeable signature

Measurement method

Loss of lithium
inventory

Continuous electrolyte reduction
and isolation of Li+ ions

capacity reduction
Loss of active material Electrode delamination, fracture
under cycling peaks
Electrolyte reduction at the anode
during storage and cycling

SEI layer growth

Lithium plating Li metal deposition on graphite or
overcharging
Oxidation under high potential

difference or temperature change

Electrolyte
decomposition

Shift of peaks in Incremental Current Analysis (ICA)/Differential
Voltage Analysis (DVA) because of higher voltage as well as monotonic ~ curve

Reduction of ICA/DVA peaks and formation of new low-magnitude

Increased overpotential and polarization, columbic efficiency reduction

Formation of a new ICA peak, self-heating of the cell

Increase in internal pressure of the cell, impedance increase

ICA, DVA, Open Circuit Voltage (OCV)

ICA/DVA, X-ray imaging

Electrochemical Impedance
Spectroscopy (EIS), Voltage profile
analysis

ICA, DVA, OCV, EIS

Pressure mapping, EIS




K. Patel et al.

Table 2

Summary Table comparing Coulomb Counting and Electrochemical Model.

Aspect Coulomb-Counting (CC) Electrochemical-Model
Methods (EM) Methods
Fundamental Integrates measured current Solves simplified
Principle over time to estimate charge  electrochemical equations

Typical Datasets

Model Complexity

Computational
Demand

Accuracy based on
cited references

Strengths

Limitations

variation; SOC is derived
from current, time, and
nominal capacity.

Structured laboratory or
BMS test profiles with
precise current and voltage
measurements (e.g., 100 Ah
pack, 18650 cells, NEDC
cycles).

Low; algebraic integration or
simple correction factors
(temperature, aging,
coulombic efficiency).

Very low; ideal for
embedded real-time BMS.

0.3 - 3 % SOC error; SOH
MAE =~ 0.06 % in enhanced
forms.

Simple implementation, low
sensor and compute
requirements, easily
deployed in existing BMS
hardware.

Sensitive to current-sensor
bias, cumulative drift, and
capacity uncertainty; poor
under irregular load or
missing calibration.

(from P2D or SPM)
describing Li-ion transport,
reaction kinetics, and
potential distribution.
Physics-based experiments or
simulation-validated data
(NASA RW profiles, dynamic
cycling, COMSOL co-
simulation).

Moderate to high; reduced-
order fractional, minimalist,
or simplified P2D models
requiring parameter
identification.

Moderate; feasible only after
model-order reduction or
hybridization.

Typically, < 2 % SOC error;
SOH or internal-state
estimation errors < 0.1 %.
Physically interpretable,
captures degradation and
internal electrochemical
dynamics, enables safety-
oriented state observation.
Requires accurate
parameterization, often
assumes isothermal or
uniform conditions; higher
computational cost.

models is presented below.

3.2. SOH and RUL estimation

SOH and RUL are inherently correlated as SOH quantifies the overall
condition of the battery relative to its initial and nominal state, while the
RUL projects the time or number of cycles remaining until it reaches its

end-of-life threshold.

SOH is the ability of the battery to store and deliver energy compared
to the performance when the battery was new [37]. SOH can be
expressed as the ratio of current usable capacity to nominal capacity at
the beginning of life and is given by,

C
SOH(t) = <ﬂ> x 100% Eq. 3

Cnominal

Where, Cycnaly) is the measured capacity at time t and Cpomina is the rated
capacity.

The prognostic element of Prognostic Health Management (PHM) is
commonly defined as estimating a system’s RUL based on the informa-
tion provided. Estimating the RUL has been regarded as one of the most
important components of PHM along with SOH prediction. RUL repre-
sents the expected number of cycles or operating time remaining before
the battery reaches its EOL criterion (Sbarufatti). RUL can be predicted
using,

RUL(t) = f(SOH(t), operating conditions) Eq. 4

The calculation of the RUL of components, subsystems, and systems
has typically relied on data analysis that includes failure mode signa-
tures gathered throughout a system’s life. Reliability-based RUL calcu-
lation is based on analyzing the asset’s failure characteristics and
determining what can be done to mitigate the impact of the failure.
Statistical analysis frequently ignores or assumes only one failure

Future Batteries 8 (2025) 100124

mechanism, which is not the case in many complicated engineering
systems, leading to component replacement at a predetermined time. In
contrast, a prognostic approach seeks to anticipate failure based on in-
dividual component state estimation, using either failure physics, data,
or fusion degradation models.

The SOH and RUL prognostics methods are classified into four cat-
egories based on their essential principles and procedures: physics
model-based techniques, statistics model-based techniques, Al tech-
niques, and hybrid techniques. Fig. 3 depicts the several categories of
prediction methodologies. In general, the prognostic approach consists
of three steps: feature selection, health evaluation, detection, and pre-
diction triggering [38]. Several types of sensors can be used to collect
data from the monitored device. Using this data, specific criteria can be
used to determine the real fitness status. A degradation replica is typi-
cally linked to failure time by combining historical data and the failure
occurrence. The degradation process and RUL are strongly related. The
first step in RUL prediction is to study the degradation procedure using
SOH.

3.2.1. Data-driven methods used to model SOH and RUL

Data-driven models are advantageous for RUL and SOH estimations
due to their adaptability and usage of real-world sensor data, allowing
them to capture patterns and trends from the datasets without needing
detailed domain-specific parameter values. Unlike physics-based
models, they do not need extensive strong knowledge of the entire
system, making them comparatively easier to implement. They also
possess the ability to continuously learn from new sensor data, allowing
the models to adapt to varying conditions. This ability improves their
accuracy over time. However, they require an extensive number of
initial datasets for training, but the subsequent benefits in terms of
reliable predictions and ease of implementation make them a better
option for practical understanding and industries. A few commonly used
data-driven RUL estimation along with SOH estimation methods are
shown in Fig. 4 below and are explained in the next subchapter.

3.2.1.1. Adaptive filter methods. Parameter estimation approaches
based on similar circuit models were utilized as well to measure Li-ion
battery degradation. As a classic technique, the adaptive filter algo-
rithm is often used to predict a battery’s SOH and RUL. The following are
some adaptive filter approaches used in the RUL prognosis of Li-ion
cells.

A.1 Kalman filter (KF): The KF is an adaptive method that is broadly
used for parameter estimation. It employs a sequence of measurements
taken over time to estimate the more exact output variables. When

Physics
Based
Methods

Computational
Intelligence Based
Methods

Fusion Of Data Driven
Methods

RUL
Prediction
Methods

Data
Driven

Al Based

Methods

Methods

Fusion Of Model Based

Experience Based Methods And Data

Methods

Statistical
Based Driven Methods

Methods

Fig. 3. RUL Prediction Approaches.
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Data-Driven
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Adaptive Filter

S Fods ML methods

Kalman Filter Neural Networks

Unscented Particle
Filter

Support Vector
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Relevance Vector
Machine

Extended Kalman
Filter
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Other methods

Time Series

Bayesian method Methods

Auto Regressive
Auto Regressive
Moving Average

Auto Regressive
Integrated Moving

Seasonal Auto Average

Regressive Integrated
Moving Average

Fig. 4. Data-Driven RUL Estimation Methods.

utilizing a KF, two procedures must be followed. First, a prediction state
is required, during which the filter estimates the current output variable.
In the second stage, the estimation is revised to produce a more accurate
result, increasing the estimation’s confidence. It necessitates the use of
recursive equations, which may be used when the system’s discrete
model is known in state space form. This happens because the current
state of the system is the result of the effect of all the inputs in already
past states. The general equations are as follows.

Firstly, the method starts with a time update state known as the
prediction state equation, followed by Kalman gain calculation, and
finally the updated state estimation.

Xpred = F ® Xprey + B o u Eq. 5
K = PyeqoH o (H o Pyea o H + R)71 Eq. 6
Xupd = Xpred + Ko (Z — He xpred) Eq 7

Here, x,.q represents the predicted state estimate, X,., is the previous
state estimate, F is the state transition model, B & u are the control
input models, K is the Kalman gain factor, which determines the pre-
diction adjustment, P4 is the predicted covariance estimate, H shows
the measurement model and finally z is the observation (measurement).

Ahwiadi et al. [39] proposed an enhanced Kalman filter framework
for SOH and RUL prediction to overcome sample degeneracy and lack of
measurements during prognosis. They integrated the model with an
evolving fuzzy predictor to adapt to the posterior distribution and
forecast degradation when data is not available anymore. They imple-
mented this logic on the NASA dataset and achieved very low RMSE
values. They concluded that KF models with add-ons improve both SOH
and RUL estimations.

A.2 Extended Kalman Filter (EKF): The KF is only relevant to linear
systems, which do not typically include battery models. Because of this
constraint, modifications and extensions have been created within the
KF. The EKF is a nonlinear variation of the KF. The EKF is commonly
utilized in the development of battery models. Many publications utilize
the EKF to estimate the SOC [28,40,41] and have shown several ad-
vantages, and hence prove to be a good model for battery parameter
estimations. EKF models also demonstrated that the acquired results are
quite accurate, the technique to implement is simpler compared to other
nonlinear estimation methods, such as UKF or even NNs, allowing it to
be performed in a real-world application with ease, and the produced

model exhibits a linear association with the cell’s dynamics. The filter is
based on a basic concept consisting of a voltage source and internal
resistance. Jiang et. al [42] offer an improved closed-loop estimator
based on the EKF. The suggested model has been validated using
experimental findings derived from various circumstances. It was
proved that the augmented model reduces estimation error by roughly
half when compared to an estimator that ignores the hysteresis effect.
Meng et. al [27] conceptualized a methodology by combining the EIS
Internal Impedance Approach with the EKF to estimate SOH values. The
general equations for EKFs are as follows:

Xpred = f (xprew ll) Eq 8
K =PygoH e (H e Py e H + R)il Eq. 9
Xupd = Xpred + Ke (Z - h(xpred)) Eq 10

Where, f (xprew
Jacobian matrix of the partial derivatives and h(xp,ed) represents the

u) is the nonlinear state transition function, H is the

nonlinear measurement function that relates the predicted state to the
measurements.

A.3 Unscented Kalman Filter (UKF): The UKF is an algorithm that
employs a sequence of observations over time to provide the most ac-
curate results. It anticipates that the results from several unknown
variables will be more exact than those based on a single measurement.
It is also used to calculate the SOC, capacity, and internal resistance.
Alexprabu et al. [43] propose a novel BMS combining a lossless
charge-balancer, a MIMO-Bi-LSTM unit for per-cell SOH estimation, and
a UK-ANFI network optimized by Grey Wolf Optimizer for simultaneous
SOH and RUL prediction. They tested their model on an EV battery pack.
The approach achieved SOH and RUL RMSEs of approximately 0.8 %
and 1.8 % respectively, concluding that the integrated balancing and
UKF prediction framework significantly enhances lifetime prognosis
while lowering prediction latency. Zhu et al. [44] proposed a hybrid
framework with a three-dimensional UKF to estimate the SOH of
lithium-ion batteries by tracking SOC via UKF and internal resistance.
The experimental validation demonstrated markedly improved conver-
gence speed and accuracy with SOH estimation errors consistently
below 3 % in cycling tests. This enables selective estimation of param-
eters, reducing computational effort and time.

The UKF model is represented as follows:
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Xoed = 3 (Wi © Xpreq)) Eq. 11
Poea = D (Wei ® (Xpred, — Xprea) ® (Xpred, — Xprea) + Q) Eq. 12
K =P, o P Eq. 13
Xipd = Xprea + K ® (2 — Zpreq) Eq. 14
Ppi = Py — Ko P, o K Eq. 15

Where, X, is the Sigma points passed through the nonlinear state
transition function, Wm; and Wc; is the Weights for the mean and
covariance, respectively. Py, Cross-covariance between state and mea-
surement, P,, is the measurement’s covariance and gz is the
measurement.

In summary, the KF is a recursive algorithm that estimates a system’s
internal state using noisy observations. In battery RUL prediction, KF
assumes a linear connection between state and measurements, making it
appropriate for basic deterioration models. However, real-world battery
depletion is frequently nonlinear, which reduces its accuracy. The EKF
solves this problem by linearizing the nonlinear dynamics around the
current estimate with a first-order Taylor expansion. This enables it to
handle nonlinear battery models better than KF, although its perfor-
mance suffers when the system displays severe nonlinearity. The UKF,
on the other hand, employs a collection of deterministic sample points
(sigma points) to better capture the system’s nonlinearities while
avoiding linearization. This improves UKF’s accuracy and robustness for
complicated, nonlinear battery deterioration models, resulting in better
RUL prediction under these situations [45].

3.2.1.2. Machine learning methods. One of the primary advantages of
data-driven models (DDMs), clubbed with Machine Learning approaches
for Li-ion battery degradation model development and parameter esti-
mation, is their ability to achieve high accuracy by learning battery
behavior based on monitored data. Thus, they do not require battery
chemical modeling or knowledge. DDMs are also used to simulate the
interaction of battery health, performance, and environmental condi-
tions during operation [46]. DDMs use historical data to estimate the
SOH and try to model the relationship between degradation, health in-
dicators, and SOH. These methods include ML approaches such as an
artificial neural network (ANN), support vector machine (SVM), and
Relevance Vector Machine (RVM), as well as other intelligent algo-
rithms, to extrapolate the estimated SOH and map the relationship be-
tween battery degradation, health indicators, and battery SOH using a
historical database [47]. The SOH is estimated using machine learning
approaches with features sensitive to battery degradation. While all
DDMs necessitate data collection and analysis during battery operation,
ML approaches have the advantage of learning complex patterns in the
data, eliminating the need for extensive predefined battery behavior
tests and simulations in most cases, allowing for greater adaptability to
different features and battery types.
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Fig. 5 shows the workflow for battery degradation and SOH predic-
tion models using ML techniques inspired by the work of Rauf et. al [48].

To forecast RUL, ML approaches frequently use estimated or
measured SOH information, such as capacity values, as inputs [49]. An
accurate and reliable machine learning-based approach to exact battery
degradation modeling and RUL prediction is critical for advanced bat-
tery management [50]. The ultimate purpose of battery health man-
agement is to anticipate a battery’s RUL and identify potential
unforeseen circumstances caused by battery aging.

Neural networks (NNs) are one of the industry-leading machine
learning approach that achieves high levels of accuracy. NNs are
frequently utilized in self-learning and adaptation because they are not
dependent on the electrochemical situations that occur within the bat-
tery. Neural networks are used to map the relationship between
distinctive parameters and the lifetime of Li-ion battery degradation.
NNs, including architectures such as Feed Forward (FF), Recurrent (R),
and Convolutional Neural Networks (CNN), have a powerful algorithm
that properly calculates SOH/SOC/RUL across a wide range of battery
states, dynamic loads, and temperatures [51]. Their strength lies in
modelling complex nonlinear relationships, adapting to diverse data,
and effectively handling multiple input features to provide reliable
predictions under varying operating conditions.

Recent studies [52-55] have investigated various forms of neural
networks for RUL estimation. including FFNNs, RNNs, and CNNs. NNs
have demonstrated a broad range of applications in battery degradation
modeling and SOH estimation. Two forms of NNs, RNN and FFNN, have
been primarily used for SOH estimation. FFNN and RNN are potential
approaches for representing input-output correlations in battery aging
data. The battery degradation process often consists of multiple cycles,
and the degradation information between these cycles is highly depen-
dent and interrelated. Thus, deriving these dependencies and correla-
tions is essential to ensure reliable estimates.

RNNs are used to process sequential data in artificial intelligence
applications and are one of the most promising methods for predicting
battery health. The SOH/RUL estimation is based on a gradual battery
degradation mechanism that uses dynamic battery data. As a result,
employing an RNN to estimate SOH/RUL is an inherent technique. The
RNN’s key inputs are often the associative memory function, voltage,
current, temperature, and time-delayed voltage and current. The RNNs
are trained and tested using cell temperature, current, SOC fluctuation,
previous time step capacity, and resistance. Teixeira et al. [56] devel-
oped a RNN framework using a Gated Recurrent Unit (GRU) model to
predict SOH. They implemented the model on LCO cells of 5000mAh
which were subjected to various cycling conditions ranging from 1 to
3 A until end of first life. The GRU achieved great prediction accuracy
and was effective in capturing the nonlinear degradation pattern. They
also proved that data data-driven RNN model can reliably estimate SOH
even from a limited dataset.

Long short-term memory (LSTM) is a subset of RNN architecture
designed to address the RNN’s long-term reliance. Unlike FFNNs, LSTMs
include feedback connections, while RNNs lack their input, forget, and

Ll Uelllly ML SOH Feature
Feature Input- : . 2
- Algorithm Estimation
Space Output Pairs
Data Collection Data Pre- Predictive Model Development Predictive
* Historical Processing *Model Creation Analytics for SOH
Databases « Data Cleaning * Parameter Tuning « System Integration
* Data Collection SEETTe * Model Validation
from Sensors Extraction

Fig. 5. Workflow for battery degradation and SOH prediction models using ML techniques.
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output gates. LSTM has been used in a variety of studies to estimate and
predict SOH. All Neural Network approaches have the advantage of
being able to quickly adjust to nonlinear battery data, and they do not
require physics-based models of batteries. They must, however, be
trained over a significant number of cycles. Chinomona et al. [54] used
RNN-LSTM to study battery degradation and compute RUL based on
aging parameters collected from voltage, current, and temperature.
Chen et al. [55] employed LSTM networks to create a prediction model
that estimated RUL accurately with an RMSE of less than 4 %. Bharath
et al. [57] presented a SOH estimation method using a cascaded
LSTM-RNN model. The model was trained on multiple battery param-
eters, such as voltage, current, temperature, etc., which were collected
under diverse real-time conditions. Unlike other models requiring
continuous data input, their model estimates SOH once per
discharge-charge cycle, which helps in reducing memory and compu-
tational load on the BMS.

3.2.1.3. Bayesian method. Bayesian linear regression is a statistical
analysis method that treats a linear regression model’s parameters as
random variables with prior distributions rather than fixed but unknown
values [58]. Bayesian linear regression comprises four key phases and
parts: the likelihood function, posterior distribution, prediction, and
prior distribution. The prior distribution is a previous estimate on the
parameters recorded in a previous probability distribution that occurred
before any data observation and is often expressed as,

pOIX, y) xply| X, 6) p6) Eq. 16

Where, p(0| X,y) is the posterior distribution of the parameters 6 given
the data X and responses y, (y | X, 6) is the likelihood function. The
likelihood function represents the chance of observing the data given
each of the provided parameters. To obtain posterior parameters, the
Bayes’ theorem updates the prior using the likelihood function. The
posterior distribution captures the uncertainty in parameter estimates
following data observation. The posterior predictive distribution is used
to provide predictions for fresh input values by integrating the param-
eters across it.

In cases of continuous discharge, the Bayesian technique can be used
to approximate the RUL in the absence of accurate operating parameter
values. A study comparing several methodologies demonstrates that
prognostic results are more accurate and robust than Support Vector
Machine models. Dong et. al [59] proposes a probabilistic method for
health prediction and degradation of battery modeling based on
charging process data that uses a dynamic Bayesian network.

For a recognized data sample, Bayesian learning may be expressed
as,

P(0 | Duew, Dota) o p(Drew | ) (0 | Dota) Eq. 17

Where, D is the data and 6 is the model parameter. In his latest work,
Dong et al. [60] proposed a co-estimation approach for SOH and SOC
prediction using Bayesian inference. This co-estimation approach
included a Fractional-Order Model, a Bayesian Optimization algorithm,
and a Gaussian-sum PF. They were able to effectively optimize the
battery characteristics based on their physical relevance by conducting
20 tests before adopting the co-estimation technique to determine a
suitable numerical range for the parameters. The dataset from CALCE
[61] was utilized for their co-estimation scheme. Through their model, it
was proved that the Bayesian Optimization algorithm-based parameter
identification process had faster convergence speed, resulting in
improved model flexibility and time efficiency for complex objective
functions. The results from this method showed that monitoring the
predicted SOC achieved an average RMSE of 1.84 %. In another research
by Hu et al. [62], a temperature-dependent SOH estimating framework
was established using a sparse Bayesian Predictive Modeling technique.
An SVM method was also implemented to compare the computational
complexity and performance. For model training, validation, and
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verification, experimental datasets from LIB cells evaluated at 10°C, 22
°C, and 35°C were used. The model showed that the predicted SOH
values were accurate and had an average error of less than 1.2 % at each
temperature value.

3.2.1.4. Time series methods. Time series data forecasting can be tricky
because various statistical techniques and prediction methodologies
may produce different results, making it difficult to choose which model
to implement. In general, time series models may be categorized by
looking at trends, seasonality, and the impact of outside factors [63].
The models discussed include ARMA, ARIMA, SARIMA, ARIMAX, and
SARIMAX.

The autoregressive (AR) and moving average (MA) models are
combined in the ARMA approach. The deterministic portion, known as
the AR, is calculated by regressing the value from its prior p values.
Comparably, MA describes the stationary series using residuals or dis-
turbances. The moving average order g, the error term, affects the time
series values. It is usually applied to data that exhibits neither season-
ality nor a trend. Eq. 18 depicts the AR portion of the model with order p.

Xy = ¢ +2(pyxe—i) + €, fori = 1top Eq. 18

The value of the time series at t is denoted by x;, the lag is represented
by x,_;, the autocorrelation coefficient of the time series data at point p is
represented by ¢,, i, and c are constants. The residual, or the white noise,
or the error, is denoted by e;.

Wei et al. [64] proposed a joint SOC-SOH estimation technique using
an AR data-driven model. Based on the SOC-SOH conditions, they
identified the battery parameters and extracted the features from the
charging process of the battery. These features were used as the inputs
and established a feature-SOH mapping, resulting in accurate pre-
dictions of SOH. Their model was later validated via the University of
Michigan Battery Laboratory and McMaster University Hamilton
datasets.

The ARIMA model is a method for time series forecasting that does
not account for the effects of seasonality or external factors on the data.
ARIMA or autoregressive integrated moving average models are loaded
with time series data for estimating future points in the series or to
characterize the data better than ARMA [65]. It is a method that allows
both AR with parameter p and MA with parameter q. It explicitly in-
cludes a preprocessing step with parameter d (The degree of differencing
to make the series stationary) in the formulation of the model, which
indicates the number of transformations required to make the data
stationary. In simple terms, an ARIMA model is just an ARMA model
applied to a modified time series. The ARIMA model general form is
expressed as,

A% = ¢ + Xy xei) + 2(6; - €j) + €& Eq. 19
here, A%, is the differenced series of x; (the integrated part) applied
d times to make the series stationary, c is the intercept term, Z(¢; X;—;)
represent the summation of past values (p) weighted by the coefficients
¢; which is the AR part and X(6;- ¢;;) is the summation of q past error
terms, weighted by the coefficients §; (the MA part). As the ARIMA
model excludes external variables, sometimes depending on the dataset,
it is difficult to assess the impact of external characteristics and their link
to dependent features, such as capacity degradation. To address this, an
extended version, ARIMAX can be implemented and is represented by
Eq. 20.

A% = ¢ +Z(d; xei) + Z(; - ey) + Z(Be - Zek) + & Eq. 20
Where the additional terms compared to the previous equation are the
summation of k past values of exogenous variables Z at time t—k
denoted by X(B,- Z; k). It also considers the effect of external factors
weighted by the coefficients f;.

Shen et al. [66] implemented the ARIMA model to predict the
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lifecycle of second-use EV batteries. Their study utilized historical per-
formance data of LIBs. This statistical approach was chosen due to its
effectiveness in handling time series data. They tried different
training-testing ratios for the dataset at two different temperatures
(25°C and 50°C) and compared the predicted values with the experi-
mental values using RMSE, and achieved an error of less than 3 %.
The Seasonal-ARIMA (SARIMA) model contains seasonal factors in
its formulation [84]. It is more successful since it considers seasonal
variations in data. SARIMA parameters include p, d, and q, as well as P,
D, Q, and S. The nonseasonal parameters are p, d, and g, whereas the
seasonal parameters are P, Q, D. SARIMA equations are given as:

A% = ¢ +Z(d; xei) + Z(0; €y) + Z(Pm - Xeem) + Z(Om - €em)
+ €
Eq. 21

The two new terms, X(®Pm- X;—m) and XZ(Om- €;-m) represent the sum-
mation of P seasonal past values, Q, which is the seasonal past error at
seasonal lags m weighted by coefficients @,, (AR Part) and ©,, (Seasonal
MA part) respectively. The SARIMA model combines seasonal and non-
seasonal AR, differencing, and moving average components, allowing it
to effectively describe time series data with seasonal patterns as well as
underlying trends.

Lastly, by incorporating seasonality into SARIMAX ((p, q, d), (P, D,
Q, S), r) model, it provides a deeper understanding of predictable pat-
terns or fluctuations that occur at specific intervals within a time series,
into the ARIMAX (p, g, d, r) model. SARIMAX (Seasonal Autoregressive
Integrated Moving Average with Exogenous Inputs) models are widely
applied in statistical analysis and demonstrate excellent forecasting
performance, and are represented as,

A% = ¢ + Z(d; - xei) + Z(0) - €j) + Z(Po - Xem) + Z(Op - €m)
+ 2Py Zik) + €
Eq. 22

Where the additional term X(f;- Z,_) is the summation of k past values
of exogenous variables Z at time t — k, weighted by the coefficients f;
(the effect of external factors). Hu et al. [67] proposed a novel SARIMA
prediction model that consisted of a periodic parameter optimization to
fit the nonlinear characteristics of the dataset. It included maximum
likelihood estimation and the Akaike information criterion to filter the
parameters. To establish model accuracy, extensive sequence testing for
tuning parameters was simulated with the help of autocorrelation and
partial autocorrelation functions. The model was then tested under four
operating conditions, including high and low charge-discharge rates.
Their model achieved a maximum prediction error of 4.62 %, showing a
2.25 % improvement in RUL predictions.

To summarize, AR models evaluate time series data by regressing the
present value against previous values, thereby capturing internal de-
pendencies. The ARIMA model extends AR by using differencing to
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achieve stationarity, allowing for the modeling of non-stationary time
series. ARIMAX enhances this paradigm by incorporating exogenous
factors that can alter the target time series, allowing for the inclusion of
external features. SARIMA addresses seasonal trends by incorporating
seasonal differencing and seasonal components into the ARIMA frame-
work, allowing it to be used with data that has periodic swings. Finally,
SARIMAX combines SARIMA’s properties with exogenous variables to
allow for thorough modeling of seasonal time series while accounting for
external impacts.

Fig. 6 shows the different time series models and their particular
features. Together, these models provide a powerful toolset for evalu-
ating and predicting complicated time series data, with each model
adapted to the precise properties of the data under consideration.

To evaluate the effectiveness of different modelling approaches for
battery health estimation, several recent studies were reviewed. Table 3
summarizes their work, highlighting the estimation method categories,
datasets used, and their reported accuracies.

3.3. Summary of health state estimation methods

While Table 3 compares estimation accuracy for a particular dataset
with varying estimation methods across a few recent studies, accuracy
alone does not determine a model’s suitability for deployment within a
practical BMS. For real-time applications, particularly in automotive
and maritime systems, factors such as model interpretability, compu-
tational efficiency, and data dependency play equally critical roles. To
address these aspects, Table 4 provides a systematic benchmark of
mainstream health state estimation model categories, evaluating their
physical interpretability, complexity, data requirements, and computa-
tional feasibility for embedded BMS implementation.

4. Open-source battery cell datasets

Numerous data sets have been produced throughout the years as a
result of increased study into battery technology, particularly Li-ion
batteries. These data sets are available online, and most are free to use
for research purposes. These battery data sets are based on a variety of
battery models and can be used to estimate a variety of battery states,
SOH, SOC, RUL etc., under a variety of conditions [75]. In this chapter, a
few commonly used degradation datasets are explained, and a summary
table consisting of degradation as well as performance datasets based on
cell chemistry and other parameters is presented.

4.1. Fast-charging optimization dataset from MIT and Stanford
University

In their combined research [50], the authors implemented
data-driven models that accurately forecast the cycle life of industrial
lithium ferrous phosphate (LFP)/graphite cells. A dataset of 124 cells
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Fig. 6. Time Series Models and Features.
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Table 3
Comparison of battery state estimation methods, datasets, and performance grouped based on estimation method and common dataset.
Dataset Used Estimation Reported Accuracy  Methodology References
Method
NASA Battery Adaptive Filter RMSE Developed an adaptive dual Kalman filter to jointly estimate battery health states. [68]
Aging Dataset ~ 0.0653-3.5 %
RMSE ~ 0.03-0.07 Proposed an improved particle filter optimized by a genetic algorithm to estimate the SOH across [69]
Ah normal degradation and capacity-regeneration stages of lithium-ion batteries
Machine RMSE Conducted a comparative analysis of nine machine-learning and data-driven algorithms for RUL  [70]
Learning ~ 0.147-0.724 Ah and SOH estimation of LIB, benchmarking error rates and processing times.
RMSE ~ 0.741-1.4 performed a comparative study of machine-learning techniques for SOH estimation using SVR, [71]
Ah FNN, CNN, LSTM models
Bayesian + ML RMSE =~ 0.8 % Integrates Bayesian inference with ML for robust estimation. [72]
Hybrid RMSE ~ 2 % Joint estimation framework for SOH and RUL in LIB by extracting health-indicators, decomposing ~ [73]
them via variational mode decomposition (VMD) and using a model-integration scheme
combining feature processing with an optimized support vector machine variant.
Time-Series RMSE Developed AR, ARIMA, SARIMA models for a comparative study [74]
Model ~ 0.01-0.0.35 Ah
Table 4
Systematic benchmarking of mainstream health state estimation model categories.
Model Category Physical Interpretability Modeling Complexity Dependency on Computational Remarks / Typical Use

Dataset Size / Quality

Overhead for Real-Time
BMS

Case

Physics-Based
Models

Statistical /
Empirical Models

Adaptive Filter
Methods (KF,
EKF, UKF)

Machine Learning
Models (ANN,
RNN, LSTM, CNN)

Bayesian /
Probabilistic
Models

Time-Series Models
(ARIMA,
SARIMA,
ARIMAX)

Hybrid Physics- ML
Models

Very High; parameters
correspond directly to
electrochemical processes and
failure mechanisms.
Moderate; interpretable trend
coefficients but lack physical
linkage.

Moderate to High; uses
simplified equivalent circuit
parameters tied to physical
states.

Low; acts as a black-box;
limited physical transparency.

Moderate; probabilistic
inference allows uncertainty
interpretation.

Low to Moderate; statistically
interpretable but lacks
physical linkage.

High; combines physical
insights with data-driven
adaptability.

High; requires detailed
electrochemical equations,
parameter identification, and
calibration.

Low to Moderate; simple
regression or curve-fitting
equations.

Moderate; recursive
formulations; extensions
increase complexity.

High, deep architectures and
hyperparameter tuning are
required.

Moderate to High; requires
distribution modelling and
parameter sampling.

Low; simple to implement

and tune.

High; requires coupling of
models and cross-validation.

Low; can function with
minimal historical data.

Moderate; relies on
historical performance
data.

Low to Moderate; small
calibration datasets
suffice.

Very High; performance
heavily depends on
large, high-quality
datasets.

Moderate; can combine
small data with prior
knowledge.

Moderate; dependent
on data stationarity and
noise.

Moderate to High;
depends on both prior
knowledge and data
volume.

High; numerically
intensive; difficult for
embedded BMS
implementation.

Low; lightweight
implementation possible.

Moderate; feasible for real-
time BMS with proper
tuning.

Moderate to High;
inference faster than
training but still memory-
intensive.

Moderate; acceptable for
online updating if
simplified.

Low; minimal
computational cost; ideal
for embedded systems.

Moderate; optimized
variants suitable for BMS
deployment.

Best suited for laboratory
diagnostics and mechanism
understanding.

Suitable for fleet-level
degradation trend
monitoring.

Ideal for on-board SOC-SOH
estimation in EVs.

Suitable for predictive
analytics and pattern
recognition in large datasets.

Effective when uncertainty
quantification is critical.

Useful for short-term cycle
prediction and second-life
analysis.

Emerging optimal trade-off
between accuracy,
interpretability, and real-
time capability.

with cycle lifetimes that vary from 150 to 2300 was created using 72
distinct fast-charging settings. Their feature-based models were able to
obtain prediction errors of 9.1 % utilizing data from the first 100 cycles,
indicating the ability to forecast behavior far into the future. Besides,
using data from the first 5 cycles, labeling into low- and high-lifetime
groups was accomplished with a misclassification test error of 4.9 %.
These findings demonstrated the usefulness of integrating data pro-
duction and data-driven modeling.

The study systematically varied charging circumstances to record a
wide variety of cycle lives, from about 150-2300 cycles. Despite limiting
the enclosure temperature, cell temperatures fluctuated by up to 10 °C
every cycle due to the substantial heat generated throughout charge and
discharge. The collection included roughly 96,700 cycles, making it one
of the biggest publicly available dataset.

Data can be accessed at: https://data.matr.io

4.2. Fixed current and arbitrary used profile battery degradation dataset

A type of nominally identical high-energy 18650 LIBs manufactured

by LISHEN was employed as the experimental subject. The rated ca-
pacity was 2.4 Ah, the nominal voltage was 3.7 V, and the lower and
upper cut-off voltages were 3.0 V and 4.2 V, respectively. A total of 77
batteries were cycled for degradation tests. During stage 1, 20 initial
cycles were applied for simulating the battery application to observe the
initial prediction of battery RUL. Each preliminary cycle consisted of
0.5 C constant-current-constant voltage (CC-CV) charging and 2 C con-
stant current discharging. In stage 2, to examine the degradation prop-
erties under varying operating conditions, the 77 batteries were
classified into two groups, I and II, for supplementary cyclic degradation
experiments. Each working condition included a charge load at a
random constant charge current (randomly every 5 cycles) that followed
a uniform distribution among three distinct selections of 1 C, 2 C, and
3 C, and a discharge load profile at a stated discharge current of 3 C
[76].
Data can be accessed at FCA Battery Degradation Dataset
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4.3. Deep discharge aging dataset from NASA

NASA published two high-throughput capability battery degradation
datasets available on its website, totaling 62 cells. The first of these
datasets, "Battery Data Set’, includes information about 34 Li-ion 18650
cells having a nominal capacity of 2 Ah. This set of data was the first
publicly accessible battery dataset, and it had a tremendous influence on
the field, offering insight into its value. Cells were cycled at a variety of
ambient temperatures (4°C, 24°C, and 43°C), charged using a standard
CC-CV methodology, and discharged using various methods. The dataset
comprises readings of terminal current, voltage, and cell temperature
during the cycle, as well as discharge capacity measurements between
cycles and EIS impedance measurements.

NASA’s second dataset, the ’Randomized Battery Usage Data Set’
[23], includes data for 28 LCO (lithium cobalt oxide) 18650 cells that
have a nominal capacity of around 2.2 Ah. The dataset is made up of
seven distinct sets of four cells, each cycled at a specific ambient tem-
perature (room temperature, 40°C); for five of these groups, the cells
were CCCV charged and then discharged using currents drawn at
random from the group’s discharge distribution table [23,24,77].

Data can be accessed at Li-ion Battery Aging Datasets | NASA Open
Data Portal

4.4. Pulse cycling, capacity fade, storage aging dataset from centre for
advanced life cycle engineering (CALCE)

The CALCE battery group conducted extensive cycling testing on a
wide range of LCO/graphite cells. The CALCE dataset contains data on
15 LCO prismatic CS2 cells categorized by experimental circumstances
as 'Type-1" to "Type-6'. "Type-1" and ’Type-2 accompany one document
[78], and *Type-3' to *Type-6' another [79]. Type-1' has four 0.9 Ah cells,
"Type-2' has four 1.1 Ah cells, and 'Type-3' through *Type-6’ each have
one to two 1.1 Ah cells.

The degradation data was logged until the batteries had at least
reached their EOL, or 80 % SOH, having fewer than 200 cycles collected
data for the *Type-1’ batteries and roughly 800 cycles for the remaining
cells. CALCE tested the second set of cells, which were twelve LCO
prismatic CX2 cells having an approved capacity rating of 1.35 Ah.
Which, like the CS2 cells, are classified as "Type-1' to *Type-6'. "Type-1'
and "Type-2' (a total of four cells each) have been cycled identically as
"Type-1" of CS2 cells [80]. The other four groups each feature a single
cell that has been cycled using a variety of charge/discharge techniques;
one of the cells was cycled at different temperatures (25 °C, 35 °C, 45 °C,
55 °C).

In further battery studies [81], the researchers evaluated the influ-
ence of varying depths of discharge, or DOD, and discharging current
stressors on the ageing of pouch cells. Battery group tested around 16
LCO 1.5 Ah pouch cells in a ’semi-temperature controlled’ room (25
+ 2°C). It contains cycler voltage, current, and charging and discharging
capacity data for 400-800 ’equivalent cycles’ [61].

The data can be accessed at CALCE Battery Datasets

4.5. Long-term battery degradation dataset from sandia national labs

The Sandia National Laboratories has completed experimenting with
3 different 18650 cells:

e A123 Systems - LFP (APR18650M1A, 1.1 Ah),
e Panasonic NCA (NCR18650B, 3.2 Ah), and
e LG Chem NMC (18650HG2, 3 Ah)

In total, it includes 86 cells (30 LFP, 24 NCA, and 32 NMC). The cells
were cycled at a variety of temperatures (15 °C, 25 °C, and 35 °C) with
varying DODs (0-100 %, 20-80 %, and 40-60 %) and discharge cur-
rents (0.5 C, 1 C, 2 C, and 3 C); at least two cells from every group were
cycled for each combination of temperature, DOD, and discharge
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current (12 groups), except for the 3 C discharge for the NCA cells. All
cells have been charged at a constant rate of 0.5 C. Periodically (about
every 3 % capacity loss), measurements using the EIS were made to
determine the cell’s entire capacity. All of the information is provided in
the ’.csv’ format [82,83].

The data can be accessed at R&D Data Repository — DOE Office of
Electricity Energy Storage Program

4.6. Battery degradation data from Oxford University

The dataset’s parts are as follows: Parts one, two, and three [84]. One
of these is the 'Path dependence battery degradation dataset’, which
consists of three sections. The three-year experiment [85], running from
2017 to 2020, investigated the ’path dependence’ of Li-ion cells by
subjecting them to a series of combination load profiles that included
defined periods of calendar and cyclic aging.

The study looked at 28 industrial 3 Ah 18650 NCA/graphite cells
(NCR18650BD). The dataset is divided into three sections (Sections 1, 2,
and 3), with 28 cells divided into 10 groups (9 that consist of three cells
and 1 group of one cell), all of which were evaluated at 24°C [86]. The
data provided included fundamental metrics such as time, current,
voltage, capacity, and temperature. Groups 1-4, each containing three
cells, were aged by cycling at half or quarter C rates after about one week
of calendar aging per 48 cycles.

"Part 1’ presents the first 18 months of experimental data [25],
whereas ’Part 2’ presents months 19-36 [87]. In addition to cell Groups
1-4, Part 2 has Groups 5 and 6, which serve as controls. Group 5 cells are
subjected to continuous C/2 cycling, but Group 6 cells are only exposed
to calendar degradation (at 90 % SOC). Group 7-10 is presented in the
dataset’s Part 3’ and corresponds to Group 1-4. Every group undergoes
cycling with CC-CV profiles, followed by 5 or 10 days of calendar ageing.
Reference performance tests (RPT) along with EIS tests are utilized
regularly to characterize the cells and distinguish the effects of different
storage durations and C-rates on battery degradation.

Data can be accessed here: Oxford Battery Degradation Dataset 1

4.7. EVERLASTING project battery dataset

A recent project [88] ‘Electric Vehicle Enhanced Range, Lifetime and
Safety Through INGenious battery management’ (EVERLASTING) fun-
ded by the European Commission, has published some battery-related
datasets on the '4TU.ResearchData’ website [88,89]. The report in-
vestigates 3 datasets for ageing from three perspectives: drive cycle,
calendar, and CC-CV ageing at various temperatures.

One of these datasets was used in an experiment called ’Lifecycle
ageing’ to study the connections between temperature, charge/
discharge C-rates, and capacity loss. These experiments were carried out
on 28 Li ion 18650 3.5 Ah commercial cells at various temperatures
(0°C, 10°C, 25°C, and 45°C), discharge rates (0.5 C, 3 C), and charge
rates (0.5 C, 1 C). Two cells were tested for each possible combination of
temperature/charge rate as well as temperature/discharge rates (except
for 0°C discharge). All 'charge’ ("discharge’) studies followed a similar
discharge (charge) profile. The data is stored separately by temperature
(0°C and 10°C) and (25°C and 45°C) [90,91].

Data can be accessed here: EVERLASTING Project

4.8. Summary of open-source battery datasets

Table 5 shows a comprehensive collection of LIB datasets that cover
topics such as cathode types (LFP, LCO, NMC, etc., various cycling
processes, applications, key features, and details on the institute
responsible for hosting and managing them.

To complement the dataset overview, Table 6 summarizes some
representative studies that have employed these open-source datasets.
This comparison underlines how model accuracy and generalizability
are strongly influenced by the dataset choice, preprocessing quality, and
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Table 5
Summary of available battery degradation dataset based on cathode material, and cycling process.
Dataset Name Institute Cathode Cycling Process Intended Key Features References
Application
Fast-Charging MIT, Stanford LFP 150-2300 cycles, 72 distinct fast EV Fast-charging strategies, voltage/ [92]
Optimization University charging settings current/temp
Dataset
Accelerated Cycle Life ~ University of LCO Testing under various Capacity fade Capacity vs cycle degradation under [93]
and Capacity Maryland temperatures and current cycles modeling multiple stress profiles
Degradation
Fixed Current Profiles MIT, Beijing LCO Complete cycle testing under Capacity fade Capacity vs cycle degradation under [94]
& Arbitrary Used Institute of various temperature and current modeling multiple stress profiles
Profiles Technology conditions
Deep Discharge Aging ~ NASA LCO Discharge was carried out at CC - Charge/Discharge, EIS cycles to [95]
Dataset level of 2 A until the voltage induce deep discharge aging effects
drops to 2.7, 2.5,2V
Pulse Cycling CS2 CALCE LCO CCCV charge (0.5 C), discharge Consumer Multiple discharge modes, pulsed [96]
Series Dataset 0.5-1 C, pulsed load protocols electronics/aging cycling
studies
Capacity Fade and LCO Full CCCV cycles at 0.5 C, partial ~ SOC-range cycling Comparison of partial vs full DOD
Variable DOD SOC cycles (20-80 %, 40-60 %) impact cycling, Capacity fade
Cycling Dataset at0.5C&2C
Storage Aging Dataset LCO, LFP, Calendar aging (storage at 0, 50, Calendar aging & SOC & temperature effects on
NMC 100 % SOC) with periodic reliability calendar fade
measurement
Long-Term Sandia National NCA, Sequential rounds of cycling: Lifetime degradation Evaluates effects of temperature, [97]
Degradation Study Laboratories NMC, LFP  capacity checks (0-100 %) at modeling DoD & discharge rate across
0.5 C + conditioning cycles (C- chemistries; capacity fade vs cycle;
rate, temperature, DoD) EIS-based impedance growth data
NCA Battery University of NCA Drive cycle, characterization EV / Consumer Voltage/current/temp [98]
Degradation Dataset ~ Oxford Electronics measurements
Life Cycle Aging EVERLASTING NMC Long-term cycling EV Emphasis on longevity and [88,89]
Dataset project degradation
Second Life Battery N/A NMC, Pulse Charge/Discharge Cycles EV, second-life Second-life diagnostics, voltage & [99]
Diagnostics LFP, LMO temp response
PulseBat Dataset
Large Scale EV Battery = N/A — Real-world driving cycles EV Charging records, health & capacity [100]
Dataset estimation
Battery Relaxation Hawaii Natural NMC, LFP  Relaxation studies (charge & EV / Research Focus on relaxation phenomena [101]
Dataset Energy Institute discharge)
(HNEI)
Intrinsic Variability Hawaii Natural NMC, Periodic Reference Performance SOH degradation Focus on cell-to-cell degradation [26]
Dataset Energy Institute LCO Tests, then CC-CV charge (0.5 C) modeling & variability under identical cycling
(HNEI) and CC discharge (1.5 C) for variability analysis conditions and temp
aging
Comprehensive Karlsruhe Institute NMC Cyclic & calendar aging, driving EV 3 + billion data points, raw & results ~ [102]
Battery Aging of Technology cycles data
Dataset
Fast Charging Test N/A NMC, Baseline: CCCV cycling at Fast-charging Multi-mode fast-charge protocols, [103]
Dataset LCO increasing C-rates; protocol optimization  capacity fade under high C-rate
baseline tests to study capacity & aging risk charging
fade assessment
Lithium-Ion Battery N/A LFP Aging under identical profiles General 133 million rows of measurements. [104]
Field Data Iontech
Dataset
Electrochemical University College NMC CC-CV charge (1.5 A to 4.2 V), EV / degradation Full electrochemical cycles + x-ray [105]
cycling dataset London (UCL) CC discharge modelling CT microstructure
(4 A to 2.5 V) - 400 full cycles
NMC Cyclic Aging Politechnika NMC Cycling under varied discharge SOH degradation Study of effects of current, DoD, [106]
Data Poznanska current, temperature, DoD; modeling, temperature on aging and SOH
capacity vs SOH captured at prognostics regression models

intervals

experimental context.

5. Discussion

Accurate and reliable battery health parameter predictions depend

The rapid advancement and extensive usage of LIBs have emphasized
the critical need for a strong understanding of their degradation mech-
anisms to avoid accidents. Due to their high energy density and long
cycle life, they make them ideal for a bunch of small and large-scale
applications, but performance reliability and loss over time remain a
concern. In this discussion chapter, modelling techniques, their broader
implications, as well as the challenges and opportunities that remain for

future research in this evolving field, are discussed.
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heavily on the understanding of degradation mechanisms in LIBs. The
importance of estimating SOH, SOC, and RUL has therefore become
important as these parameters directly determine performance, safety,
degradation mechanisms and lifecycle costs. The estimation methodol-
ogies reflect the multifaceted nature of degradation, where no single
model type universally applies across all battery chemistries, use cases,
or degradation patterns.

In recent years, research into LIB health prediction and modelling
has exponentially accelerated due to the availability of open-source
battery cell degradation datasets repositories from institutes such as
the Toyota Research Institute, Mendeley Data, NASA, CALCE, Sandia
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Table 6
Comparative summary of a few studies using common open-source battery datasets for SOC, SOH and RUL Estimation grouped based on the dataset.
Dataset Used Model / Method Reported Accuracy Remarks Study /
Reference
NASA Battery Aging Adaptive dual Kalman filter RMSE Robust under sparse data and noise [68]
Dataset ~ 0.0653-3.5 %
Bayesian inference model RMSE ~ 0.8 % Fast convergence, accurate tracking [72]
ML Hybrid RMSE ~ 2 % Effective nonlinear degradation capture [73]
CALCE Dataset Bayesian Inference + G-sum PF RMSE ~ 1.8 % Stable under multi-temperature conditions [60]
Oxford Path-Dependence Machine learning Regression Model RMSE ~ 2.5 % A simple and feasible way to estimate the SOH  [107]
Dataset of electric vehicles
Sandia Dataset Light Gradient Boosting Machine (LightGBM) and RMSE =~ 2.3-5 % A novel feature engineering approach with [108]

Long Short-Term Memory (LSTM)

MIT-Stanford Fast- Feature-based ML (Elastic Net + RF)
Charging Dataset

HNEI Relaxation Dataset Battery-Insight-PSO, using the Extreme Gradient

Boosting Regression (XGBoost)

RMSE ~ 9.1 % test

purpose-designed features

Life prediction using the first 100 cycles [50]

error

RMSE

Accurate SOH mapping under variable loads [109]

~ 0.251-5.206 %

National Laboratories, and Oxford University. Given the cost, safety
concerns, and time requirements of experimental testing, the availabil-
ity of such open-source datasets is particularly important for developing
predictive models across different chemistries and cycling processes.
These datasets, however, have some limitations, including different test
protocols, sensor resolutions, battery chemistries, and testing condi-
tions. These limitations lead to challenges in model generalization
across datasets. For example, models developed and trained on the
NASA dataset may underperform when tested against datasets from
Oxford University or CALCE due to variations in the cycling process or
data recording frequencies that are not represented during training,
even if they are of the same chemistry and cell type. Transfer learning is
a viable option to overcome these limitations by utilizing the training
knowledge learned from these open-source datasets to accelerate model
adaptation for novel or limited-data batteries through selective re-
training or fine-tuning of learned parameters. The transfer learning
approach works by capturing the universal degradation features, such as
voltage, current and capacity curve learning only for lower layers of the
neural networks or for hybrid architectures. When implementing on a
new cell, for example, moving from NMC to LFP cells or from laboratory-
based testing to actual systems, only the top layers of the model are
retrained using a comparatively small number of cycles from the target
dataset. This process reduces the dependency of the new dataset which
might be unavailable or unreliable due to sensor fault for example, in the
process the model still retains the high prediction accuracy. This
methodology enhances model generalization, reduces the time needed
to develop predictive degradation models for new cell types supporting
fast-paced deployment in real-life industrial applications. This directly
improves the industrial efficiency by minimizing the requirement of
repeated full-cycle age tests which take a lot of time to run.

Moreover, certain datasets may lack metadata or contextual infor-
mation, which might be crucial for modeling. Despite these challenges,
the combined usefulness of these datasets has the potential to serve as
benchmarks for developing initial degradation models, assuming that
future efforts focus on standardizing data formats with contextual
metadata to improve transferability and real-world relevance.

Adaptive filters, ML models, statistical filters, and hybrid methods
are the most often implemented SOH and RUL modeling approaches to
incorporate the non-linear battery degradation behavior. Adaptive filter
methods such as Kalman Filters have proven benefits for real-time bat-
tery health estimation. However, the EKF models may not perform well
in extremely nonlinear or dynamic situations and still rely on the cor-
rectness of the underlying battery model. To overcome this shortcoming,
ML methods such as NN-based approaches exhibit strong degradation
pattern recognition abilities under dynamic and nonlinear conditions.
Estimation models demonstrate NNs’ advantage in modeling nonlinear
degradation but rely on large datasets and may lack physical inter-
pretability. Even though NNs are efficient at detecting complex patterns
and adapting to new data, they require extensive training, and model
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performance increases with increasing training dataset size. On the
other hand, time series models generally offer statistically dependable
and easily interpretable frameworks for capturing temporal perfor-
mance and degradation trends. In situations where capturing temporal
dependencies is important, time series models have proven to be effec-
tive. The weakness of time series models is that they are less adaptable in
handling highly nonlinear and large datasets. These disparities highlight
the growing need for hybrid approaches that can combine the strengths
of both data-driven and physics-based models to improve battery health
state prediction accuracy.

Reliable prediction of battery health states and RUL is critical across
many industries that rely heavily on LIBs. For example, in EVs, RUL
predictions help optimize battery consumption and schedule mainte-
nance proactively. This also helps avoid unexpected failures and reduces
overall lifecycle costs of the battery as well as the overall system.
Likewise, in the maritime industry, LIBs are increasingly implemented
for hybrid propulsion and onboard energy storage.

In addition, upcoming regulatory requirements strengthen the
importance of such models. The revised EU Battery Regulation 2023/
1542 mandates the implementation of a Digital Battery Passport for EVs,
light transport, and industrial batteries over 2 kWh capacity starting in
February 2027 [110]. A structured electronic record will be accessible
via a QR code, which must include detailed information on battery cell
chemistry, carbon footprint, declared EOL, and performance metrics
such as SOH, degradation trends, cycle history, and RUL. These regu-
latory requirements significantly reinforce the case for developing
robust predictive models, as they will directly support compliance,
transparency, and safe second-life applications.

6. Conclusion

To summarize, LIBs have become vital in almost all applications due
to their high energy density and long cycle life. A recurring challenge
remains in reliably predicting the degradation, which has a direct in-
fluence on system performance and safety. Hence, comprehensive
degradation studies are required to guarantee the long-term viability of
the LIBs. However, studying the degradation of batteries is a challenging
task due to the difficulties associated with the collection of data over
lengthy time periods, the cost associated with testing facilities, and the
safety aspect of the experiments.

This paper highlights some open-source degradation datasets that
are frequently implemented for developing predictive models. This
database also provides researchers with a time-effective and scalable
way to investigate battery performance and degradation, allowing them
to overcome the limitations of prolonged experimental data generation.
Important parameters such as RUL must be predicted to anticipate when
batteries would no longer satisfy performance specifications through a
degradation model. Hence, the accurate estimation of RUL is critical for
the effective implementation of maintenance strategies and replacement
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plans in large-scale energy systems, where unexpected breakdowns can
prove to be costly and have effects on the entire process, which is un-
desirable. Equally, SOH and SOC estimation remain central to under-
standing battery status and ensuring safe operation, linking degradation
mechanisms to predictive modelling outcomes.

To improve the predictions, advanced data-driven methodologies
such as adaptive filters, including KFs, EKFs, and UKFs, provide dynamic
modeling of battery health states while accounting for nonlinearities and
uncertainties in the degradation process. Machine learning models can
evaluate complex degradation patterns and forecast battery perfor-
mance under a range of operating conditions and especially with large
datasets. Recently, researchers have also been exploring hybrid models
that can integrate the strengths of adaptive filtering and machine
learning together. These hybrid models have shown considerable good
results due to their nature of combining physical interpretability with
data-driven adaptability. Although developing hybrid models requires a
deep technical understanding of the domain. These hybrid models offer
the potential to achieve higher accuracy if modelled correctly. Inte-
grating open-source data with new computational tools like adaptive
filtering and machine learning can help create more reliable battery
degradation models.

Furthermore, the upcoming EU Digital Battery Passport policy makes
accurate prediction of SOH and RUL not only a research priority but also
a regulatory requirement. This policy implementation will further
strengthen the need for precise degradation models for transparent
tracking of battery health throughout the lifecycle. By linking mecha-
nistic understanding, predictive modelling, and standardized datasets,
these efforts will help enhance the safety and operational efficiency of
LIBs in large-scale energy and transport systems.
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