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Abstract

Welding is considered as one of the most efficient and reliable joining technologies in fabrications of metallic components for
aerospace, maritime, and civil engineering applications. However, fatigue associated failures are inevitable in welded joints due to
several aspects, such as local high-stress concentrations, high-residual stresses as well as material and geometry imperfections.
Fatigue strength assessments are often performed experimentally or numerically. However, parameter uncertainties regarding
geometry, experimental conditions and inadequate consideration of imperfections can lead to inaccurate evaluations. Recently,
machine learning (ML) models have been developed for fatigue assessments in terms of computational efficiency for various
engineering tasks. Despite the benefits brought by the ML based fatigue assessments, it is still challenging in prediction models as
it requires large databases of experimental data for training and validation of models for accurate predictions. In this study, a multi-
fidelity (MF) surrogate model which can predict the fatigue life of butt-welded joints is developed and validated. The MF model
takes advantage of high-fidelity models which were developed from the 3D scan data of specimens, and simplified low-fidelity
models for which less computational resources are needed for data generation. Additive-scaling function concept is employed for
MF modelling, and surrogate and discrepancy models are built using Kernal Polynomial Least Square Kriging and eXtreme
Gradient Boosting algorithms. The proposed MF model can provide predictions while keeping the balance between accuracy and
computational efficiency with a small amount of sample points.
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1. Introduction

Welded joints are extensively used in aerospace, maritime, and civil engineering industries for their low
deformation and high stiffness, light weight integration and efficient fabrication of complex components. However,
fatigue damage remains one of the most threatening failures in the design and maintenance of welded components due
to residual stresses induced by welding, stress concentrations at the weld toe, and potential material and geometry
imperfections in combination with cyclic loading. Therefore, accurate fatigue assessments are crucial to ensure the
structural integrity and durability of structural components while minimizing the cost of downtime and repairs.

Several studies have investigated fatigue behavior in welded joints using four different categories: empirical,
theoretical, numerical, and data-driven methods which have been evolved one after another (Wangetal. 2023). To
overcome the limitations in conventional fatigue assessment methods, ML-based approaches become an alternative
solution to handle multivariate data and their correlations. They are shown to be effective when large amount of data
exhibiting considerablestatistical variance is available (Schubnell etal. 2025). In previous studies, different algorithms
such as regression-based, random forest, support vector machine, and neural network-based methods are being used
in predicting stress concentrations and fatigue life of structures.

Among them, artificial neural network (ANN) based-approaches are commonly used as they can provide good
predictions where mathematical models cannot capture the actual behavior, and the datasetis incomplete and noisy. It
has been indicated that good accuracy of fatigue life prediction can be achieved with backpropagation NN-based
methods while capturing important features such as defect size, distance to surface, depth and build orientation (Heng
etal. 2022; Chen etal. 2023). Yet, the ability to predict the values outside of the training datasetand the black box
behind the algorithm are challenges with using ANN models. For this reason, Halamka et al. (2023) proposed a hybrid
Physics-informed NN (PINN) model composed from Gated Recurrent Unit (GRU) and feed -forward NN where the
power law relationship between predicted damage parameter and fatigue life can be established using the physics-
informed model. Although some studies demonstrated conservative predictions from small amount of data using
conventional ML method (Braun and Kellner 2022), the complexity of network increased as the likely accuracy
increases (Lee etal. 1999). Due to lack of full understanding and control behind the algorithms of NN-based
predictions, most scientists prefer supervised ML and explainable ML based assessments (Wang and Braun 2025).

All the above-mentioned studies require significant amount of HF data derived from experiments or simulations
which still demanding financial resources and computational efforts. To address this, surrogate modelling can be
employed as a solution where approximate models are used. Particularly, MF surrogate modellingcombines data from
different fidelity models—high-fidelity (HF) and low-fidelity (LF) data. This approach offers the balance between
computational efficiency and prediction accuracy as the extrapolation of the given data can be performed rather than
predicting the outputbased on statistics and classification of training data. To compare the performance of different
MF surrogate models, Zhangetal. (2021) investigated three different Krigingbased models where the additive scaling
function (ASF) based surrogate models provided the best prediction of chosen fillet welded joints. Zhang et al. (2024)
also claimed that prediction error of no more than 1% is obtained using data driven surrogate models. Reliability of
prediction results and increased computational efficiency are also mentioned by Donget al. (2020) where adaptive
surrogate models are used to replace time-consuming fatigue crack propagation analyses. Furthermore, the benefit of
using MF models in fatigue life prediction was demonstrated by Wanget al. (2025) where LF data grasps the physics-
based weights and the high-fidelity data variance.

Although MF models and surrogate models show promising accuracy and efficiency in structural reliability
analyses, their use for fatigue life prediction of welded joints remains limited due to large variance in local weld
geometry-related stress concentration factors (SCF), coupled with a large variance for misalignment-related secondary
bending stresses. This gap highlights the need to develop a robust MF surrogate model for the welded joints that can
integrate the availability of different data sources while balancing computational cost. In this study, HF models are
constructed from fatigue tests of butt-welded joints through reverse engineering approach in order to ensure the
prediction accuracy contributed by HF models. In addition, simplified 2D butt-welded joints are used as sources for
LF data where the models are also validated across HF ones. Fatigue life of HF and LF models are evaluated using
effective notch stress method. The surrogate models are constructed with ASF conceptbased on Kernal Polynomial
Least Square Kriging (KPLSK) (Bouhlel et al. 2016) and e Xtreme Gradient Boosting (XGBoost) (Chen and Guestrin
2016) frameworks using HF and LF models’ data.
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Nomenclature

o flank angle ASF Additive Scaling Function

R weld toe radius XGBoost eXtreme Gradient Boosting

Aoy nominal stress range KPLSK Kernal Polynomial Least Square
Aor reference fatigue strength at 2 x 10 cycles Kriging

AGen effective notch stress range LOO Leave-one-out

f(R) mean stress correction factor GMM Gaussian Mixture Model

2. Preparation of training data
2.1. High-fidelity (HF) model

HF models are constructed based on the fatigue experiments. The dataset consists of 7 butt-welded joints specimens
under different stress ranges with a stressratio of R=0.1. Base plate’s material is S355 ML and filler metal is EN ISO
14171-A: S3Si. Geometric configurations of the HF models are shown in Fig. 1 where flank angle and radius of the
weld are described as a and R. HF models used in this study are constructed using three-dimensional (3D) scan data
of'specimens and the reverse engineering method, whichensures that themodel represent the actual profile and surface
geometry of the welds. The fatigue test and 3D scan data are referred from the work of Shojai et al. (2023).
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Fig. 1 Geometry of butt-welded joint used in fatigue testing (a) top view, (b) profile view.

Reverse engineeringmethod is used to generate a solid model from scannedpoint cloud data. The constructed solid
model based on reverse engineering concept consists of Non-Uniform Rational B-Spline (NURBS) surfaces which
can capture more complex geometric features precisely compared to STL-formatted data. Pre-processing of finite
element (FE) model and FE analysis are then conducted using Ansys 2022 R1. The procedures used from scanning to
pre-processing of FE model are the same as in Shojai et al. (2024). Fig. 2 shows the FE model in which elements for
global region have edge lengths of 2.0 mm while those in the weld zones are 0.4 mm and the non-smooth surface with
0.05 mm. The left end of the specimen has been constrained translational movements in x, y, and z directions, while
the other end has been applied with unit distributed load. Structural steel is assigned as material property for FE
analysis.
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Fig. 2 FE model of Specimen No. 3 with boundary conditions.

The structural analysis using unit load provide the stress distribution including the location of maximum stress
concentration as shown in Fig. 3. The SCF was determined using critical distance approach where the stress was
determined at a fixed distance of 0.1 mm perpendicular to the notch root at the point of maximum stress (typically
maximum principal stress). For fatigue assessments of welded joints with critical distance approach, FAT 160 curve
was employed as a design SN curve as recommended in Baumgartner et al. (2015). The mean stress correction factor,
A(R) was calculated by applying the method proposed by Hensel (2020), using a measured residual stress of 230 MPa
from Shojai et al. (2023). The fatigue life for each specimen was then evaluated using equation (1) and (2), and the
results are shown in Table 1. Except specimen No. 2 with an outlier of fatigue life value given by experiment, the
evaluated solutions using effective notch stress method are in acceptable agreement with the experiments with
percentage differences ranging from 4.15 to 35.78.

Ao
= 6 __\-m
Ny =2x10 (AO'R) (1)

A0en = (dop X SCF)/f(R) 2

Table 1 Predicted fatigue life for HF models using effective notch stress method.

Specimen No. Peak stress location Stress range SCF Fatigue life Fatigue life

Flank Angle Radius (MPa) (Experiment) (Predicted by FEM)
(degree) (mm) (cycles) (cycles)

1 22 54 297 215.63 2527 169,360 200,705

2 16.86 1.59 206.25 1.9766 1,711,744 479,447

3 18.53 1.46 225.00 1.855 487,616 447,147

4 2303 130 243.75 1.858 365,274 349,766

5 3027 137 309.38 1.772 149,586 197,233

6 21.76 2.42 262.50 2.344 206,491 139,468

7 4274 0.66 281.25 1.981 203,244 187,822
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Fig. 3 Maximum principal stress distribution of HF model (Specimen No. 3) with location of peak stress.

2.2. Low-fidelity (LF) model

Although the number of initial sample points from HF and LF models influence the performance of MF surrogate
model, there is no consensus regarding the selection of the number of initial sample points. Based on the previous
studies, the recommendations are made in terms of computational resources, fidelity gap, and value of information.
Some suggestions mention a typical ratio of 1 HF sample point per 3-10 LF pointsin Zhou (2023). The number of LF
sample points in this study are chosen to be 42 which represents 1 HF per 6 LF points.
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Fig. 4 Parameter distributions of scanned data from HF models.

The LF models are simplified and more computationally efficient ones compared to HF models. In this work, 2D
FE models for butt-welded joints are used as LF model. To determine the geometry of these models, scanned data of
HF models are firstly investigated to understand the parameter distributions. The scan data consists of flank angles
and radii values on left and right sidesnoted by 1 and 2 in Fig. 4 from cut slices of 1789-1852 for each specimen. Tri-
normal and bi-normal distributions are observed from the scanned flank angles and radius values of all specimens
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whose components are analyzed using Gaussian Mixture Model (GMM). The distribution parameters, means, standard
deviations, and weights, are then defined in Monte Carlo simulations to generate random geometric parameters of LF
models. The distributions shown in Fig. 4 are for weld-seams on the bottom surface, and same procedure is followed
for the top surface. A total of 21 LF-FE models are then created using these generated parameters. 42 LF sample
points are extracted from these 21 FE models which have combinations of flank angle and radius for top and bottom
surfaces.

2D-FE models are created and the simplified geometry of butt-welded joint follows the work of Braun (2021) as
shown in Fig. 5. FE models consist of quadratic elements with edge length 0£0.04 mm in the weld toe region, and 0.4
mm globally (Fig. 5(b)). Symmetric boundary condition is applied on the left side of the model and unit distributed
load on the other end. Same material properties are used as in HF models. The results obtained for specimen No. 1
can be seen in Fig. 5(b) with peak stress location on bottom surface. Fatigue life evaluations are carried out for both
top and bottom surface of LF models following the procedures in Section 2.1. The results obtained by finite element
method (FEM) are shown in Fig. 7 in comparison with predictions by ML approaches. The geometrical data, SCF,
and fatigue life values from both LF and HF models are then used to train the surrogate models in Section 3.
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Fig. 5 Maximum principal stress distribution of LF model (Model No. 1).

3. Results and discussion
3.1. Construction of MF surrogate models

The MF-surrogate models are built using ASF method, and the Kriging models are constructed with KPLSK and
XGBoost techniques. For surrogate modelling and high-dimensional inputs, KPLSK (Bouhlel et al. 2016) is one of
the common choices due to its optimization ability, uncertainty quantification, and good prediction accuracy with
small datasets. However, XGBoost model (Chen and Guestrin2016) is also included as a reference of regression-
based ML model to compare the prediction ability and computational efficiency of KPLSK. The sample data for LF
and HF models are prepared as described in Section 2. The Leave-one-out (LOO) method is used for training the
model at each step which is a typical choice to validate the Kriging models with limited dataset. The flow chart for
each surrogate model used in predictions are shown in Fig. 6.
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Fig. 6 Flow chart of construction of surrogate models used in this study. (a) KPLSK-based MF surrogate model, (b) KPLSK-LF kriging model,
and (c) XGBoost-based MF model.

3.2. Prediction of fatigue life

In this section, the prediction of fatigue life given by different MF surrogate models are discussed. 7 HF samples
and 42 LF samples are used as sample data using 4 features: stress range, flank angle, radius, and SCF at critical
distance. Since thereis an outlierin HF sample (specimen No. 2), predictions are made with and without specimen
No. 2 toinvestigate the effect of outlier on theresults (see Fig. 7(a) and (b)). The parity plots include prediction results
obtained by KPLSK-based MF surrogate model, KPLSK-based LF surrogate model, and XGBoost-based MF model
against the experiment values. The Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Root Mean
Squared Logarithmic Error (RMSLE) are provided to compare the performance of each model. In addition to that, the
fatigue life values obtained by finite element method (FEM) are also included to assess the accuracy of the output
data.

As can be seen in the figure, all the predictions lie within the scatter band of 1:4 with most of themin 1:2. It is
surprising to see the LF kriging model performing better than MF model. This phenomenon could happen when the
data correlations between HF and LF are weak, leading to MF model not being able to outperform the LF model. This
could also be because the LF data already have good accuracy compared to true values, and LF model capturing the
trend well enough. In addition, LF model prediction and FEM predictions give almost the same values of MAE,
RMSE, and RMSLE. The number of HF samples not being enough could also be another underlying solution for
fatigue life prediction. Overall, XGBoost modelis the worst performer among three models which was expected as it
is mainly designed for handling large datasets and relies on decision trees and boosting. Another aspectis that
XGBoost model do not provide prediction intervals and uncertainty estimates which are important of optimization
tasks especially with small scale of dataset.
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Fig. 7 Comparison of predicted fatigue life using different surrogate models. (a) With an outlier in the HF sample, (b) without outlier.
4. Conclusion

In this work, the purpose is to predict the fatigue life of butt-welded joints using MF surrogate modelling approach
which can provide good accuracy with small amount of sample points of HF. The HF models are created based on the
scanned data and reverse engineering method so that the results calculated by FEM could represent all the geometric
features of the specimensused in the experiment. The LF models are then generated with the geometric parameters
from distribution analysis of scanned profiles and Monte Carlo simulations. The LF models are simplified 2D FE
models of butt-welded joints to facilitate the dataset for MF surrogate with less computational efficiency. Using these
HF and LF dataset as samples, the MF surrogate models are developed with ASF approach where two different ML
algorithms, KPLSK and XGBoost, are employed. The findings from this work are described as follows:

1) The HF-models based on reverse engineering method shows acceptable estimation of fatigue life using
FEM.

2) The simplified LF models provide sufficient accuracy to be used as samples in MF surrogate model, and
2D FE models can estimate the fatigue life as good as HF models.

3) The MF surrogate models rely highly on data quality of HF samples rather than the number. When there
is a good data correlation and continuity between HF and LF data, the MF surrogate performs with high
accuracy.

4) The XGBoost-MF models show acceptable prediction accuracy compared to kriging-based MF surrogate
models although only a small number of datasets was used for training and validation.

The results of this study indicate that the proposed MF surrogate modeling approach is effective for estimating the
fatigue life of butt-welded joints. However, future investigations should focus on improving HF model accuracy
through more precise calibration to experimental conditions and enhancing the LF modeling framework to better
capture complex weld geometries. Additionally, further studies with different samples are needed to confirm the
effectiveness of XGBoost as a surrogate model. These will contribute to further improving and extending the
applicability of the proposed methodology.
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