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In partial fulfillment
of the requirements for the master in

MASTER IN TELECOMMUNICATIONS ENGINEERING

Supervisors
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Abstract

Satellite-based IoT networks demand efficient and robust short-packet detection tech-
niques, particularly in Low Earth Orbit (LEO) scenarios where devices operate with low
power and transmit sporadically. This thesis explores and compares two approaches to ad-
dress these challenges under realistic channel conditions. The first approach employs a tra-
ditional correlation-based detection method, widely regarded as optimal in noise-limited
environments but subject to performance degradation under heavier traffic loads, colli-
sions, and channel impairments. The second approach uses a supervised learning scheme
based on convolutional neural networks (CNNs), designed to handle low signal-to-noise
ratio (SNR) and diverse channel impairments.

Initially, both methods are evaluated under ideal, noise-limited conditions, revealing sim-
ilar detection rates. However, when multiple users transmit simultaneously and ran-
dom phase shifts or Doppler effects arise, the CNN consistently outperforms correlation,
demonstrating greater resilience. Correlation remains attractive due to its simplicity and
lower computational overhead; it also offers an inherent Doppler estimation capability
when implemented as a bank of correlators. By contrast, the CNN adapts more effec-
tively to varying channel loads and unknown scenarios, maintaining good performance in
general even under severe impairments.

These results underscore the potential of machine learning for next-generation packet de-
tection in satellite networks. Future work involves extending the CNN to estimate Doppler
shifts, integrating detection and frequency estimation in a single neural framework, and
further exploring hybrid solutions that combine neural networks and traditional methods
for improved performance.
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Recayte and Andrea Munari, and UPC Professor Giuseppe Cocco for their support, help
and advice during the project study.

I extend my thankfulness to the German Aerospace Center (DLR), which has allowed me
to experience a mobility stay that has enriched me both personally and academically.

Finally, I want to thank my family and friends for their unconditional support.

8



Revision history and approval record

Revision Date Purpose
0 13/11/2024 Document creation
1 17/12/2024 Document revision
2 12/01/2025 Document revision
3 20/01/2025 Document approval

DOCUMENT DISTRIBUTION LIST

Name e-mail
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1 Introduction

1.1 Problem Description

The rapid growth of satellite-based systems and Internet of Things (IoT) networks has
underscored the need for efficient and reliable packet detection. Many devices operate
under low-power constraints and transmit data sporadically, posing significant challenges
to conventional approaches. These challenges are particularly relevant in the context of
massive machine-type communications (mMTC), one of the three core 5G service areas,
where a vast number of devices send small data packets simultaneously. mMTC supports
various IoT applications by collecting data from sensors that help reduce energy con-
sumption, increase operational efficiency, or enhance overall quality of life. For instance,
in a logistics setting, each shipping container might sporadically send tiny status and lo-
cation updates, while in agriculture or environmental monitoring, sensors in remote fields
or wildlife areas periodically send soil moisture or wildlife-tracking data, consisting each
transmission of just a few bytes. Given the unpredictable and uncoordinated nature of
this scenario, enabling the receiver to locate and identify the packets within the received
signal—i.e., packet detection—becomes a critical aspect.

This thesis addresses the previous challenges by investigating machine learning (ML)-
based detection techniques, and evaluating their performance under realistic satellite
channel conditions. Specifically, the thesis aims to:

1. Analyze the limitations of traditional correlation-based detection method in low
Earth orbit (LEO) satellite scenarios.

2. Design and implement a machine learning-driven packet detection scheme capable
of handling low signal-to-noise (SNR) ratios and channel impairments.

3. Evaluate the proposed ML-based solution in comparison to existing methods by
conducting simulations under various channel impairments and traffic conditions.

In order to accomplish the thesis objectives, several key requirements and specifications
have been established:

1. Scalability: The proposed detection algorithm must accommodate a large number
of devices transmitting intermittently, common in IoT scenarios.

2. Low-Power Operation: Since many IoT devices have severe power constraints, the
proposed detection scheme must minimize energy consumption and computational
overhead on the device side.

3. Robustness to Channel Impairments: The algorithm should be resistant to low-SNR
environments and impairments typical of LEO satellite links.

This thesis has been carried out at Deutsches Zentrum für Luft- und Raumfahrt (German
Aerospace Center), in the Institute for Communications and Navigation, Communications
division. It was inspired by the previous work done in [1]. The results were replicated to
become familiar with the code and challenges related to packet detection in an impairment-
free scenario. Then, further explorations were conducted to gain deeper insights into the
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performance of the detection algorithms, improving the initial ML approach by making
it effective in harsh scenarios.

This thesis is organized as follows. Section 2 outlines current approaches to packet detec-
tion and introduces machine learning techniques for signal processing. Section 3 describes
the system model, while Section 4 presents the initial setup and baseline results. Section 5
discusses the results obtained under various impairments, and Section 6 concludes with
the final remarks.

1.2 Gantt Diagram

Figure 1 illustrates the project timeline followed throughout the thesis. In the first month,
research on the topic was conducted, and the results from prior work were successfully
replicated. Once this milestone was reached, along with a deeper understanding of the
baseline results, various channel impairments were introduced to evaluate their impact
on detection performance. Simultaneously, the network architecture and parameters were
optimized to maximize the results. The documentation phase also constituted a significant
portion of the project’s duration.

Thanks to prior experience in machine learning and programming, the planned timeline
fulfilled without any significant delays.

Phases of the Project

2024

September October November

2-6 9-13 16-20 23-27 30-4 7-11 14-18 21-25 28-1 4-8 11-15 18-22 25-29

100% completeResearch

100% completeReplicate results

100% completeArchitectures study

100% completePhase offset

100% completeNN optimization

100% completeDoppler

100% completePower distr.

100% completeDocumentation
2024 2025

December January February

2-6 9-13 16-20 23-27 30-3 6-10 13-17 20-24 27-31 3-7 10-14 17-21 24-28

100% completePower distr.

100% completeDocumentation

100% completePresentation

Figure 1: Gantt diagram of the project
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2 State of the Art

This section provides an overview of the state-of-the-art techniques and advancements
relevant to packet detection and machine learning, with a focus on their application in
satellite communications.

2.1 Packet Detection

Packet detection is a fundamental process in digital communication systems, where the
goal is to identify the presence of data packets in a received signal. It is a critical step
in ensuring reliable communication, particularly in wireless and satellite communication
systems, where signals are susceptible to noise, interference, and other impairments.

A packet is a formatted unit of data that is transmitted across a communication channel.
It typically consists of a preamble, which is a known sequence of bits or symbols used
for synchronization and detection, followed by a payload, which actually contains the
information. The preamble acts as a unique identifier, helping the receiver detect the
beginning of a packet and synchronize its processing to the incoming data.

Packet detection involves determining whether a received signal contains a packet and, if
so, identifying the start of the packet. This task is complicated by several factors:

• Noise: The presence of random noise in the communication channel can obscure
the packet signal.

• Interference: Signals from other users or sources can overlap with the packet,
making detection challenging.

• Channel impairments: Fading, Doppler shifts, and other effects can alter the
signal’s characteristics, complicating its detection.

2.1.1 Packet Detection in Satellite Communications

In IoT satellite communications, packet detection becomes a key task as it ensures reliable
and efficient identification of short, sporadic data transmissions from a vast number of
devices, even in challenging conditions such as low signal-to-noise ratios, high mobility, and
interference, which are inherent to satellite networks. In these scenarios, low-complexity
devices transmit in an uncoordinated manner, often following grant-free random access
protocols like ALOHA [2]. While this approach reduces complexity at the transmitter
side allowing low-power devices to “wake up” intermittently and send data, the burden
of accurately detecting bursts in real time shifts to the receiver [1].

A significant difficulty in LEO-based systems is the presence of considerable Doppler shifts
due to high satellite speeds, which can severely degrade detection performance if not prop-
erly mitigated. One possible strategy is to pre-compensate for the expected Doppler at
the transmitter, but this often requires precise orbital and timing information not always
available to power-limited IoT devices [3], [4]. As a result, satellite receivers commonly
rely on burst detection techniques that simultaneously handle timing and frequency un-
certainties.
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A widespread strategy for burst detection uses short preambles inserted at the begin-
ning of each transmitted packet [5]. The receiver correlates the incoming signal with the
known preamble, then applies a threshold to decide whether a packet is present. This “one
shot” correlation-based approach simplifies implementation and can be very effective in
moderate signal-to-noise ratio conditions [6], [7]. However, in the low-SNR regimes typi-
cal of satellite IoT applications, threshold selection becomes challenging: a low threshold
leads to high false alarm rates, whereas a high threshold risks missing legitimate packets.
Additionally, when multiple users collide or when transmissions suffer from intersymbol
interference (ISI) due to imperfect filtering, correlation-based detection may lose accuracy
[8].

An alternative line of research employs hypothesis-testing detectors derived or approxi-
mated from optimal likelihood methods [9], [10], [11], [12]. These detectors compare a test
statistic against a threshold to declare the presence of a preamble. While some of these
methods offer near-optimal performance at moderate SNR, recent studies emphasize that
the very low SNR conditions in satellite IoT can significantly degrade their performance
[3]. Furthermore, satellite links often suffer from channel impairments such as fading and
large attenuation due to the long travel distances, adding another layer of complexity to
synchronization and detection.

Despite the challenges, correlation-based and likelihood-based detection strategies remain
the cornerstone of burst-mode satellite receivers. They strike a balance between prac-
tical implementation requirements and acceptable performance. Indeed, standardization
efforts and industrial implementations continue to refine these methods, focusing on adap-
tive thresholding, more robust Doppler correction, and improved frame synchronization
procedures. By systematically addressing the unique constraints of satellite channels (long
propagation delays, high Doppler shifts, bursty traffic, and low SNR), ongoing research
and development aim to ensure that packet detection in LEO constellations can keep pace
with the growing demands of global IoT services.

2.2 Machine Learning

Machine learning (ML) is a field of artificial intelligence that enables computational sys-
tems to learn from data, identify patterns, and make decisions with minimal human
intervention. Traditional ML algorithms include methods such as linear regression, de-
cision trees, and support vector machines (SVM), which can be used in various tasks
ranging from classification and regression to clustering and outlier detection [13], [14].
Over the past decade, the explosion of available data and advances in computing hard-
ware have paved the way for deep learning (DL), a subfield of ML centered on artificial
neural networks with many layers. These deep architectures shine at automatically ex-
tracting complex features from raw data, making them exceptionally powerful for a range
of applications [15].

The branch of ML more suitable is often determined by the nature of the problem tackled,
as different approaches work better for different goals. ML tasks are commonly divided
into supervised learning, unsupervised learning, and reinforcement learning.
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• Supervised Learning: In supervised learning, each training sample comes with a
corresponding label or target value. The algorithm’s goal is to learn a function that
maps inputs to outputs accurately. Typical supervised tasks are classification (where
the model predicts discrete labels, such as whether a packet is present in a burst) and
regression (where the model outputs continuous values, such as predicting channel
quality indicators). The performance of supervised methods usually depends on the
size and representativeness of the labeled dataset.

• Unsupervised Learning: Unsupervised learning deals with unlabeled data and
seeks to uncover underlying structure or patterns within it. Clustering is a prime
example in signal processing, where the objective might be to group similar signal
characteristics without any prior labels. Techniques such as dimensionality reduc-
tion can also be applied to high-dimensional waveform data, simplifying subsequent
processing steps or highlighting notable features.

• Reinforcement Learning: Reinforcement learning differs significantly from the
above paradigms. Here, an agent interacts with an environment by performing ac-
tions, and it learns an optimal policy by maximizing a reward function. In communi-
cation networks, reinforcement learning can be used for dynamic resource allocation
or adaptive beamforming, where the system continually adjusts its parameters in
response to feedback about network performance [14].

2.2.1 Neural networks

Deep learning involves neural networks composed of multiple layers capable of learning
intricate representations of data. Each layer typically applies a linear transformation to
its inputs, followed by a nonlinear activation function (e.g., ReLU, sigmoid). By stacking
many such layers, these networks can capture highly complex, hierarchical patterns and
have thus become state-of-the-art in numerous domains [15]. Figure 2 depicts a basic
architecture of a neural network.

Deep learning models can include a wide range of layer types, each designed to handle
different aspects of the learning process. Although the appropriated choice can vary de-
pending on the task (computer vision, natural language processing, etc.), the following
layer types are among the most commonly used in modern deep learning architectures:

• Fully connected layers connect each neuron in one layer to every neuron in the
next layer, offering a straightforward way to learn mappings but quickly becoming
computationally expensive for large input spaces.

• Convolutional layers (used in convolutional neural networks, CNNs) apply local
filters to extract localized features, making them well-suited for images, spectro-
grams, or short-time segments of signals [16].

• Recurrent layers such as Long Short-Term Memory (LSTM) cells maintain hidden
states to process sequential or streaming data, enabling the network to capture
temporal dependencies [17].

• Transformer layers have recently gained attention for their attention-based mech-
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Figure 2: Example of a neural network architecture with n input features, 3 hidden layers of m
elements, and l outputs.

anism, which models relationships across long input sequences efficiently and is in-
creasingly investigated for signal processing tasks involving time-series or spectral
data [18].

Deep networks typically undergo a training phase during which labeled data are passed
through the network, producing predictions compared against ground truth labels via a
loss function. The parameters are iteratively updated through backpropagation and opti-
mizers like stochastic gradient descent or Adam. Once trained, the network moves to an
inference phase, where weights remain fixed, and the system processes new input samples
to generate predictions as classification scores, regression values, or any other learned
output. This ability to learn features directly from data has proven especially beneficial
in complex, high-dimensional domains, ranging from computer vision to communications.

2.2.2 Machine Learning in Signal Processing

Machine learning techniques are increasingly adopted in signal processing and satellite
communications for tasks like signal detection, classification, interference mitigation, and
channel estimation. The general application of ML in signal processing can be attributed
to its ability to model complex, non-linear patterns and adaptively learn from data, which
is particularly valuable in the dynamic and noisy environments encountered in satellite
communications. Some of these applications are:

• Channel Estimation: In satellite communications, channel conditions can vary sig-
nificantly due to Doppler effects, atmospheric disturbances, and multipath fading.
Deep neural networks such as LSTM networks can adaptively estimate the chan-
nel state information (CSI) by learning from historical and real-time data. These
techniques often outperform traditional estimation approaches, especially in highly
dynamic or unknown channels [19], [20].
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• Resource Allocation: ML algorithms, particularly reinforcement learning, have
been adopted to optimize resource allocation, such as power and bandwidth man-
agement, in satellite networks [21]. By learning from past allocation strategies and
network states, these algorithms can help maximize spectral efficiency and minimize
interference across multiple satellite beams.

• Interference Detection: Detecting interference in satellite communication sys-
tems is traditionally performed using rule-based algorithms and spectrum analysis
tools. These methods often result in high false detection rates due to dynamic en-
vironments and overlapping signals. ML models analyze spectrum usage and signal
anomalies to identify and classify interference patterns. Techniques like CNNs and
SVMs are typically used. [22] showed that ML-based interference detector decreases
the false detection probability by 44%, highlighting its superior performance in dif-
ferentiating between genuine interference and benign signal variations.

• Flexible Payload Configuration: Configuring satellite payloads is often done
statically, based on anticipated demand. This can lead to unmet capacity in high-
demand areas or underutilized resources in low-demand areas. ML enables dynamic
optimization of payload resources using real-time traffic data and historical trends.
Reinforcement Learning models, for example, can adaptively allocate resources to
meet changing demands [22], [23].

• Congestion Prediction: Predicting network congestion in satellite systems is com-
plex due to dynamic traffic patterns, weather impacts, and the mobility of satellite
beams. Traditional statistical models struggle to account for these variations. ML
models, particularly time-series approaches like LSTM networks, predict congestion
more accurately by analyzing historical and real-time traffic data [22].

Machine Learning in Packet Detection

Among the various ML applications in the field of signal processing, we are going to focus
on packet detection. Limitations of traditional methods have driven research into ML-
based solutions, which offer robustness and adaptability through data-driven approaches.

Neural networks, particularly CNNs, have been a focal point in this field. By learning
patterns from raw signal data, neural networks have demonstrated improved detection
accuracy compared to traditional methods, especially in scenarios involving interference
and fading. For instance, in asynchronous grant-free random access systems, NN-based
methods significantly outperform correlators by adapting to variable arrival times and
channel conditions [24].

Another significant innovation is the use of neural networks for blind coherent combin-
ing. This technique aggregates signals from multiple antennas, maximizing SNR without
requiring channel state information—a critical advantage in initial access phases of satel-
lite communications [25]. Additionally, hybrid approaches that combine ML with classical
methods, such as preprocessing with complex power delay profiles, have enhanced detec-
tion reliability under noisy conditions [26].

Applications of ML-based packet detection span satellite communications and massive
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machine-type communications. These systems benefit from the robustness and low com-
putational complexity of ML solutions, which handle sporadic and uncoordinated trans-
missions with high accuracy [24], [27].

While promising, challenges persist. Effective training requires large datasets, and en-
suring consistent performance across diverse conditions and hardware platforms remains
an area for further research. Nonetheless, ML’s ability to surpass traditional methods
positions it as a cornerstone for future advancements in packet detection.
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3 Scenario and System Model

This section provides a detailed description of the scenarios addressed in this thesis, along
with the methodology used to generate the various datasets. Additionally, it outlines the
system model, its architecture, and the training parameters employed.

3.1 Scenario Description

In the context of small data networks as a solution for IoT communications via LEO satel-
lite constellations, data are generated by a vast population of terminals that transmit in a
fully asynchronous and uncoordinated manner, sporadically and unpredictably. Typically,
satellite beams cover a large number of users, but only a small fraction of them transmit
at any given time, sending short packets with little information. Because each transmis-
sion is short, the network must be optimized for low overhead, robust coverage, and the
ability to support a massive number of endpoints, rather than maximizing throughput or
handling large file transfers.

With these considerations in mind, let us focus on a scenario where medium access is
governed by an ALOHA policy. The packet structure employed in this thesis is illustrated
in Figure 3.

p

preamble data
16 bits 240 bits

Figure 3: Packet structure considered.

Packets in our scheme are considered to be N = 256 bits long, with the first L = 16 bits
reserved to a preamble (syncword) with the form

p = [1110 1011 1001 0000]. (1)

The sequence in (1) was originally proposed by the Consultative Committee for Space
Data Systems (CCSDS), and specifically designed to perform well in the detection of
short packets thanks to good auto-correlation properties [29].

These packets are then binary phase shift key (BPSK) modulated and sent through a
channel with additive white Gaussian noise (AWGN). For simplicity, users are assumed to
be symbol-synchronous, i.e., no timing offsets are considered [1]. Two pertinent scenarios
are examined to evaluate the capabilities of detection algorithms:

• Interference-free scenario: On the one hand, the scenario depicted in Figure 4a
is considered, in which one single node sends information and there is no overlapping
packets. Thus, in this case the receiver has to deal with noise and channel impair-
ments, but not with interference. This setup serves as a benchmark for assessing
achievable performance and provides valuable insights into the behavior of various
detection methods. Due to the lack of interference, this scenario will also be referred
as single user.
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Figure 4: Scenarios contemplated: (a) interference-free scenario with non-overlapping packets
and (b) interference scenario with overlapping packets.

• Interference scenario: On the other hand, the scenario illustrated in Figure 4b
is also considered. In this case, simultaneous transmissions can occur, leading to a
received signal that is affected by both noise and interference, making the detection
process significantly more challenging. Different channel loads will be studied as
well to examine various interference intensities. This scenario will be referred to as
multi-user.

3.1.1 Channel Impairments

Let us define the received baseband signal as follows:

zn = h · xn · ejϕn + wn

where zn ∈ C is the complex sample seen at the receiver, xn = An is the transmitted
BPSK signal with An ∈ {−1, 1}, h and ϕn are, respectively, any amplitude and phase
variations introduced by the channel, and wn ∼ CN (0, σ2) denotes the additive Gaussian
noise.

In the absence of any other distortion apart from the AWGN noise, assuming ideal timing,
phase, and frequency synchronization, the amplitude variation would be h = 1 and the
phase shift ϕn = 0, and the received baseband signal could be described as

zn = xn + wn.

However, this simplified representation deviates significantly from real-world scenarios.
In practical communication systems, signals are subject to a variety of impairments that
introduce additional complexity.

A. Random phase offset

A phase offset can result from various reasons such as carrier frequency offset (CFO), ini-
tial phase mismatches due to imperfect synchronization, polarization mismatches, or hard-
ware imperfections. Static phase offsets do not degrade the correlation peak in correlation-
based detection, as they only introduce a phase shift without reducing the peak magnitude.
However, such offsets may affect machine learning-based detection algorithms differently,
depending on how the model processes the phase information or relies on phase-sensitive
features.
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In this work, we will consider a phase offset that is constant through the whole packet
(ϕn = θ), leading to a received signal in the form

zn = xn · ejθ + wn,

with θ ∼ Uniform(−π, π). Notice that this added phase offset has no effect at all on the
amplitude, and h remains unitary. A graphical representation of the effect of the consid-
ered random phase offset can be appreciated in Figure 5. The assumption of a constant
phase offset is meaningful in this setting because it simplifies the signal model while still
capturing key practical impairments. In many communication scenarios, particularly with
slow-varying channels or relatively short packet durations, the phase offset introduced by
the channel or hardware remains approximately constant over the observation window.
This assumption allows the system to model and address phase distortions effectively
without introducing unnecessary complexity.

R

I

−1 1

(a)

R

I

−1 1

θ

(b)

Figure 5: Comparison of a signal (a) without phase offset and (b) with an added random phase
offset θ.

B. Doppler shift

The Doppler effect is a phenomenon observed when there is relative radial motion between
a wave source and an observer, leading to a perceived change in the wave’s frequency.
When the source and observer move closer to each other, the frequency appears higher,
and when they move apart, the frequency appears lower. In telecommunications and
satellite communications, the Doppler effect significantly impacts signal reception, as the
relative motion between satellites and ground users can cause frequency shifts, affecting
synchronization and system performance. This effect is particularly pronounced in LEO
satellite systems, where satellites move at high speeds relative to the Earth’s surface. A
more detailed discussion on the impact of the Doppler effect can be found in Section 5.2.

This Doppler frequency shift can be calculated as follows:

fd =
∆v

c
fc
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Figure 6: Representation of the Doppler effect.

being c the speed of light, fc the carrier frequency, and ∆v = −(vr − vs) the opposite of
the relative radial speed of the receiver with respect to the source; it is positive when the
source and the receiver are moving towards each other. This effect is shown in Figure 6.

When the received signal at the satellite is downconverted to baseband, this offset intro-
duces a phase rotation that is cumulative across symbols:

zn = xn · ej2π
fd
B

n + wn [6],

being B the bandwidth of the signal. As a result, each symbol experiences a slightly
different phase shift relative to the previous one, which means the phase of each symbol is
incrementally rotated over the packet’s duration. Although the Doppler shift causes this
gradual phase rotation, the Doppler frequency is assumed to remain constant throughout
the packet duration.

C. Free Space Path Loss

In satellite communication, free space path loss (FSPL) is a fundamental concept that
describes the reduction in power density of an electromagnetic wave as it propagates
through free space. It is influenced by two primary factors: the distance between the
transmitter and the receiver, and the signal’s frequency. Transmitted signals may come
from different users spread over the satellite beam’s coverage area, leading to varying
distances from the satellite. As a result, FSPL is not uniform across the beam; users
closer to the satellite experience lower losses, while those at the edges of the beam or
farther away experience significantly higher losses. The formula to calculate this loss is
given by

FSPL =
PT

PR

=

(
4π · d
λ

)2

=

(
4π · d · f

c

)2

where PT and PR are the transmitted and received power, respectively, λ is the signal
wavelength, d the distance between transmitter and receiver, f the frequency, and c the
speed of light. Therefore, with this loss, the received signal becomes

zn =
λ

4π · d · xn + wn

This non-uniform FSPL has a direct impact on the received signal strength, affecting the
quality and reliability of communication. For instance, users at the edge of the beam may
require higher transmit power or more sensitive receivers to maintain a reliable link.
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3.1.2 Link Budget

In this section, the link budget for the application scenario is analyzed. A link budget is
a fundamental tool in telecommunications that calculates the balance of power in a com-
munication link, accounting for all gains and losses from the transmitter to the receiver.
It provides a detailed understanding of whether a system can achieve reliable communi-
cation under given conditions, ensuring the received signal is strong enough for proper
detection and decoding.

As is common in many satellite communications studies, we focus exclusively on the line
of sight (LoS) component and do not consider fading, which simplifies the analysis while
still providing meaningful insights into system performance. The received power at the
receiver for each link is computed as follows:

PR = PT
GTGR

L

(
λ

4π · d

)2

,

where GT and GR are the gains of the transmitter and receiver antennas respectively, L
accounts for other losses discussed shortly, λ is the wavelength, and d is the distance of
the link. In Table 1 the values of the different parameters are specified, which represent a
typical link budget configuration for a LEO satellite designed to provide connectivity to
IoT devices. These devices typically require low data rates and operate under constraints
of low power and cost, where the focus is on energy-efficient communication rather than
high throughput.

The antenna radiation patterns are assumed to be pointing upwards and downwards, for
the users and the satellite respectively. Best case scenario refers to a user at the center
at the beam, i.e., satellite is right on top of the user and the distance separating that

Table 1: Parameters for the link budget study.

Parameter Description Value

PT Transmitters power 0 dBW
GTmax Best case transmitter antenna directivity 5.2 dB
GTmin Worst case transmitter antenna directivity -0.6 dB
LTrad

Transmitter antenna radiation loss 0.5 dB
GRmax Best case receiver antenna directivity 12 dB
GRmin Worst case receiver antenna directivity 9 dB
LRrad

Receiver antenna radiation loss 0.5 dB
LRpol

Receiver polarization loss 1.5 dB

LRfeeder
Receiver feeder loss 0.35 dB

T Receiver noise temperature 438.93 K
Lother Additional losses (implementation, atmospheric...) 0.2 dB
fc Carrier frequency 2400 MHz

dmin Minimum range, i.e. satellite height 600 km
dmax Maximum slant range 1000 km
B Signal bandwidth 100 kHz
vs Satellite speed 7.5 km/s
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user and the satellite is directly the satellite height. On the other hand, the worst case
scenario refers to users allocated at the border of the beam. For the rest of radial distances
along the satellite beam’s coverage area, a linear interpolation between the best and worst
values has been carried out to determine the antenna gains at each specific position.

The losses represent typical real-world factors affecting the performance of satellite com-
munication systems. Transmitter and receiver antenna radiation losses account for ineffi-
ciencies in the antennas, such as imperfections in material or design, which result in some
energy not being effectively radiated or captured. Additionally, receiver polarization loss
reflects the mismatch between the polarization of the received signal and the receiver’s
antenna, which can lead to partial rejection of the signal.

Further, receiver feeder loss arises from energy dissipation in the cables and connectors
that transmit the signal from the antenna to the receiver, while additional losses provide
a general estimate for other factors like atmospheric attenuation, minor implementation
inefficiencies, or other signal degradation mechanisms.

Once all these parameters are considered, the received power can be calculated with
respect to the distance among the satellite and the users. This is shown in Figure 7.

After obtaining the received power, the noise power can be also computed, yielding the
signal to noise ratio (SNR):

SNR =
PR

σ2
=

PR

K · T ·B
where K is the Boltzmann’s constant, T is the receiver noise temperature, and B the
signal bandwidth. With all these parameters, the SNR values range from -2.5 dB for users
at the edge of the beam’s coverage area to 10 dB for users at the center of the beam.

For simplicity, the satellite’s coverage range has been calculated using a flat Earth assump-
tion. Specifically, the Pythagorean theorem was applied with a 600 km satellite altitude

Figure 7: Link budget analysis of the scenario.
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(a) SNR = -1.84 dB, θ = 3.01 rad,
fd = −3.2 kHz

(b) SNR = 6.32 dB, θ = −1.20 rad,
fd = 18.44 kHz

Figure 8: First four symbols of two preambles affected by different channel impairments. Green,
blue, orange and red dots indicate the first, second, third and fourth symbols, respectively.

and a 1000 km maximum slant range, providing a radius of 800 km. Calculations accord-
ing to [30] considering Earth’s curvature can be found in the Appendix A, but it should
be remarked that such an assumption does not impact significantly the results.

With this link budget and the impairments considered all together, the complete received
signal is defined as:

zn =
λ

4π · d · xn · ej
(
2π

fd
B

n + θ
)
+ wn

Taking the satellite velocity vs from Table 1 into account, the maximum Doppler expe-
rienced by any user in the covered area is ±48 kHz (calculations in Section 5.2), nearly
spanning the entire signal bandwidth. This substantial Doppler shift, relative to the band-
width, greatly impacts the transmitted packet symbols.

To see how all these variations can differently affect the BPSK symbols, Figure 8 depicts
the first four BPSK symbols of the preamble sequences (1, 1, 1, -1) of two different packets,
seen on the received complex plane. Specifically, 8a illustrates a case with lower SNR and
moderate Doppler, while 8b highlights a higher SNR but also with a higher Doppler
offset. As a result, the symbol points in the complex plane deviate significantly from their
nominal positions, illustrating that even a high SNR cannot preserve symbol coherence
when accompanied by a large Doppler shift as in the second plot.

3.2 Detection Algorithms

This section introduces two distinct algorithms for performance evaluation: a correlation-
based method and a deep learning-based approach, utilizing a convolutional neural net-
work (CNN) to perform preamble detection directly from raw received samples at the
satellite.
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3.2.1 Correlation

By comparing the received signal with the known preamble sequence, correlation iden-
tifies the presence of the preamble through a distinctive peak in the correlation output,
indicating alignment. This process is computationally efficient, making it suitable for real-
time applications in resource-constrained environments. Moreover, correlation has been
demonstrated to be optimal for preamble detection in scenarios where false alarms are
dominated by noise [31].

The receiver operates via a sliding window of length L, equal to the preamble length.
At each position, the correlation output is calculated by taking the dot product of the
windowed segment and the preamble sequence. Mathematically, the correlation at position
n can be expressed as

cn =

∣∣∣∣∣
L−1∑
i=0

y∗i+n · pi
∣∣∣∣∣ (2)

where cn is the correlation output, y∗j is the conjugated received j-th sample and pi is
the i-th symbol of the preamble sequence defined in (1). These values are then compared
against a predetermined threshold µ as visualized in Figure 9; if cn exceeds the threshold, it
indicates the likely presence of the preamble at that position. The choice of this threshold
dictates the trade-off between detection probability and false alarm rate.

Figure 9: Correlation output of a received signal with a packet at the first position, exceeding
the threshold µ.

3.2.2 Convolutional Neural Network

The detection of preambles can be effectively approached as a classification problem from
a machine learning perspective. After experimenting with several neural network architec-
tures, the final model chosen for this task is a CNN. The architecture, originally inspired
by [1], consists of two 1D-convolutional layers with 48 filters of dimension 7 each, which are
responsible for extracting features from the real and imaginary parts separately [24], [28].
These layers are followed by two fully connected (FC) layers of 325 and 320 neurons with
dropout regularization, which ensure robust learning while mitigating overfitting. All lay-
ers employ the ReLU activation function, which introduces non-linearity and accelerates
convergence during training. The described architecture is depicted in Figure 10.

Although the final layer contains four neurons corresponding to four output classes, the
predictions are post-processed in a binary way: the probabilities of neurons 2, 3, and 4 are
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Figure 10: A schematic representation of the architecture of the proposed CNN, where the size
of each layer is specified.

summed together and compared against the probability of neuron 1 (see Section 3.3). This
procedure allows to mirror the threshold-based approach used in the correlation method
by applying a threshold to the confidence score to determine how certain the network
must be to classify an output as 0 (no preamble) or 1 (preamble).

The neural network models were trained with varying sizes of training datasets, specifically
2 · 105, 106, and 5 · 106 samples, and tested also on specific test datasets of 5 · 105 samples
that matched the conditions of the training. Further results on Section 4.1 show that
while increasing the training dataset size beyond 106 provided marginal improvements
in detection performance, it significantly increased training time, making it less efficient
without notable benefits.

A grid search was conducted to optimize the hyperparameters of the CNN model, ensuring
the best performance for preamble detection. The search evaluated various combinations of
parameters, ultimately identifying a learning rate of 0.001 and a weight decay of 0.001 for
the Adam optimizer, a batch size of 512, 100 training epochs, and a dropout probability of
0.1 as the optimal configuration. The models were trained using Python 3.12 and PyTorch
2.4. All experiments were conducted on a system equipped with one Intel Core i9-13950HX
processor, an NVIDIA RTX 3500 Ada Generation Laptop GPU, and 64 GB of memory.

3.2.3 Performance metrics

To evaluate and compare the performance of the correlation-based and CNN-based detec-
tion algorithms, two key metrics will be used: detection probability (Pd) and false alarm
probability (Pfa). To define these metrics the indicator function 1 will be used. This in-
dicator function 1(condition) equals 1 if the condition is true and 0 otherwise, and it is
used to count only the samples that satisfy certain requirements.

1(condition) :=

{
1, if condition is satisfied,

0, if condition is not satisfied.
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Detection probability measures the algorithm’s ability to correctly identify the presence
of a preamble, reflecting its sensitivity and effectiveness in detecting valid signals. It is
defined as the ratio of correctly detected preambles (true positives) to the total number of
transmitted preambles (true positives + false negatives). Taking kj = 1 as the true label
of sample xj indicating that it contains a preamble and yj the output of the detection
algorithm, the detection probability can be estimated over a set of s samples as

Pd =

∑s
j=1 1{yj = 1, kj = 1}∑s

j=1 1{kj = 1} .

False alarm probability, on the other hand, quantifies the rate at which the algorithm
incorrectly identifies a preamble when none exists, representing the likelihood of false
positives. This is calculated as the ratio of false detections (false positives) to the total
number of observations that do not represent the start of a preamble (true negatives +
false positives). Mathematically, it can be expressed as

Pfa =

∑s
j=1 1{yj = 1, kj ̸= 1}∑s

j=1 1{kj ̸= 1} .

To visualize and analyze the trade-offs between these metrics, receiver operating char-
acteristic (ROC) curves will be used. The ROC curve plots Pd against Pfa for varying
thresholds, providing a comprehensive view of the detection algorithm’s performance. By
comparing the ROC curves for both approaches, one can assess their relative strengths
and weaknesses across different operating conditions.

An effective way to quantitatively compare the performance of different ROC curves is
through the area under the curve (AUC) metric. The AUC provides a single scalar value
that summarizes the overall performance of a detection algorithm, capturing its ability
to balance detection and false alarm probabilities across all thresholds. A higher AUC
indicates a better-performing algorithm, as it reflects a ROC curve that stays closer to
the top-left corner, where detection is maximized, and false alarm is minimized. The ideal
algorithm with ideals false alarm and detection rates would reach an AUC of 1 as depicted
in Figure 11.

AUC = 1.0

Pfa

Pd

AUC = 0.75

Pfa

Pd

AUC = 0.5

Pfa

Pd

Figure 11: Representation of the AUC metric for (from left to right) perfect, sub-optimal, and
random algorithms.
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By leveraging the AUC, one can objectively rank and compare detection approaches while
retaining the insights provided by the full ROC curve. The AUC is typically calculated
using the trapezoidal rule, which provides an estimation of the integral under the ROC
curve:

AUC ≈
P∑
i=1

Pd, i + Pd, i−1

2
(Pfa, i − Pfa, i−1) [32] (3)

where P is the total number of points of the ROC curve, each of them with their corre-
sponding detection and false alarm rates.

3.3 Dataset Generation

A key objective of this thesis is to analyze and evaluate the impact of various impairments
on the algorithms’ ability to detect preambles. To achieve this, datasets are generated
to provide insights into the effects of individual impairments as well as their combined
influence. To assess detection performance across diverse scenarios, distinct training and
testing datasets are created, tailored to the specific conditions of each scenario. This
approach enables the development of ad-hoc ML models optimized for each scenario.
Below, the process, key algorithms, and considerations involved are outlined.

To generate the dataset, the process described in Algorithm 1 was followed. All the pa-
rameters for the dataset generation are listed in Table 2.

The procedure consists of a while loop that does not stop until reaching the desired number
of samples. In each iteration of the loop, the create scenario function is responsible for
generating the simulated received signal and metadata for a specific scenario. Its operation
involves the following steps:

• Initialization: A vector is initialized, representing the simulation timeline. The

Algorithm 1 Dataset Generation for Multi/Single User Scenarios

Require: Parameters: total samples, scenario slots, num pkts, sample length, packet length
1: Initialize:
2: samples← []
3: labels← []
4: while len(samples) < total samples do
5: (scenario, packet positions)← create scenario(num pkts, snr level)
6: no packet positions← random.choice(scenario ⊔ packet positions) ▷ Randomly

sample positions that do not contain the start of a packet
7: chosen positions← packet positions ∪ no packet positions
8: for all pos ∈ chosen positions do
9: (input vector, label)← get vector and label(pos, packet positions, scenario)

10: Append input vector to samples
11: Append label to labels
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Table 2: Parameters for the datasets generation.

Parameter Description Value
packet length Length of the packets 256 bits
scenario slots Length of the simulated sequence timeline measured in slots 60
num pkts Number of packets allocated in the sequence {18, 30, 45, 54, 72}*

sample length Number of signal samples for each generated input vector 16
snr level Tested SNR values previous to apply Rx power distribution {-3, 0, 3, 8} dB

*By varying the number of packets, different channel occupancies were tested.

vector is initially filled with zeros and its length depends on the scenario slots pa-
rameter, having each slot a length equivalent to a packet.

• Packet Generation and Allocation: Packets are generated by concatenating the
preamble sequence with N −L random bits. The configuration of the target dataset
dictates the specific impairments applied to the packets during their generation.
When generating a new packet, a user position is randomly chosen according to
a uniform distribution of the users within the beam coverage area. This uniform
distribution is achieved by selecting a random angle and radius as follows:

– user angle = Uniform(0, 2π)

– user radius = beam radius ·
√
Uniform(0, 1).

This user position is used for calculating the Doppler shift and/or received power
distribution of the specific packet if these impairments are included in the dataset.
Then, each packet is randomly allocated into the vector until reaching the desired
channel load specified with the parameter num pkts.

• Overlap Control: Depending on the scenario’s configuration, the function deter-
mines whether packet overlaps are allowed. If allowed, packets may occupy the same
or overlapping positions, simulating interference.

• Noise Addition: After allocating all packets with their corresponding impairments,
AWGN with appropriate noise power (according to the parameter snr level) is
added to the sequence.

• Output: The function returns the sequence containing the generated signal and a
list with the packet starting indexes.

Continuing with the loop iteration, once the scenario is generated, the list of starting
indexes where packets have been placed is extended with additional randomly selected
positions that do not correspond to the start of a preamble. This ensures that the dataset
includes samples from different classes, as required for training the classification model.
The number of these non-preamble positions can be adjusted to achieve the desired class
proportions.

Finally, the function get vector and label is called for each chosen position. This function
simply generates the input sample that will be fed to the network together with its
corresponding label. The vector is extracted from the noisy scenario starting at the specific
position and extending up to the defined sample length parameter, which has been set

29



to 16, matching the length of the preamble sequence. The real and imaginary parts of
the vector are extracted and processed separately. Each part is extended by appending
the sum of squares of its values, which provides additional feature information about the
signal’s power. This decision is motivated by the fact that portions of the signal containing
packets are more likely to exhibit a higher mean power compared to segments dominated
by noise. By including this feature, the model is given a simple yet effective metric to help
distinguish between signal and noise, improving its ability to identify patterns relevant
for classification. The processed real and imaginary components are stacked along a new
dimension, creating a dual-channel vector format and thus leading to 17x2-component
input vectors for the ML algorithms

xi =

[
ri, ri+1, . . . , ri+L−1,

∑L−1
k=0 r

2
i+k

ji, ji+1, . . . , ji+L−1,
∑L−1

k=0 j
2
i+k

]
.

Since the neural network aim is to detect the initial point of the preambles, a packet is
considered to have interference if and only if the interference is present during its preamble
sequence. With this in mind, the labels for the classification system are the followings:

• Label 0: The position does not contain the start of any preamble.

• Label 1: The position contains the start of a preamble, and no other packets overlap
or interfere with this preamble.

• Label 2: The position contains the start of a complete preamble, but exactly one
other packet overlaps with it, causing interference.

• Label 3: The position contains the start of a complete preamble, but two or more
other packets overlap with it, causing significant interference.

With this labeling system, it is worth noticing that in the interference-free scenario all the
labels will be either 0 or 1. On the other hand, in the interference scenario there will also be
samples labeled with classes 2 and 3. Moreover, it has been tested that the trained models
in the interference scenario performed better with this labeling system rather than with a
binary labeling system that did not account for interference (0 no preamble, 1 preamble).
However, as explained in the previous section, the predictions of the multi-classification
neural networks are indeed post-processed in a binary manner, accounting for classes 1,
2, and 3 all as one (i.e., preamble) versus the class 0 (no preamble).

Apart from generating the datasets for training and testing, the create scenario function
was also used to generate the ROC plots in a fair and consistent way. After generating
a large number of scenarios, the sliding window approach was applied over the received
signal to compute correlation outputs for the correlator. Simultaneously, these windowed
segments of the signal were stored and formatted to generate the input features required
for the neural network. These inputs were then fed into the trained neural network models
to obtain predictions. By simulating distinct scenarios and repeating this process for both
algorithms, the ROC curves were constructed with the exact same cases, enabling a direct
comparison of their performance across various thresholds and operating conditions.
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4 Initial Setup and Validation

In this section, the tuning process of the model is detailed as well as the baseline per-
formance of the packet detection system under ideal conditions. The primary objective
is to understand the fundamental limits of detection performance for both single and
multi-user cases under varying SNR and channel utilization conditions.

In the initial validation, system performance is examined under different channel loads and
SNR levels without including any channel impairments. However, during model tuning,
these impairments were incorporated to ensure that the solution remained robust under
more realistic conditions.

4.1 Model tuning

During model optimization, various training configurations were tested to refine the ar-
chitecture. As previously mentioned, this tuning process includes Doppler shift and phase
offset to ensure resilience in impaired scenarios. This approach prevents a situation where
the model is optimized in an impairment-free environment only to become suboptimal
once realistic conditions are considered.

Besides, the tuning has been performed using a single set of parameters: multi-user sce-
nario with an SNR of 3 dB and a channel load of 1.2.

4.1.1 Network architecture

The initial architecture of the network was based on the design used in [1]. This foun-
dational model (referred as “2 FC”) consisted on two fully connected layers of 325 and
320 neurons respectively and served as a starting point for further experimentation and
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Figure 12: Learning curves with (a) the training and validation losses (cross-entropy) and (b)
the AUC of the ROC curves versus the epochs of the algorithms varying their architectures.
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optimization. To explore alternative architectures, another network with one additional
fully connected layer of 300 neurons was incorporated to the study (referred as “3 FC”).
Inspired by other designs of the literature [24], [28], [27], two 1D-convolutional layers were
also introduced to the original model to enhance feature extraction capabilities (referred
as “CNN”).

Figure 12 presents the metrics recorded during the training process for the various ar-
chitectures. Rather than displaying the commonly used accuracy metric, the AUC of the
ROC curves is calculated with (3) and plotted, as it provides greater relevance in the
context of evaluating probabilities of detection and false alarm. Cross-entropy loss was
used during the training phase, as it is particularly useful in multi-classification tasks
because it directly measures how well the predicted probability distribution matches the
true distribution across all classes. By penalizing low probabilities assigned to the correct
class, it drives the model to learn more accurate class probabilities.

These two metrics are displayed for both training and validation sets. The validation set
serves as an independent checkpoint for assessing a model’s performance on data not
used for training. It helps detect overfitting, guides hyperparameter tuning, and ensures
that improvements seen during training translate into real predictive power rather than
merely memorizing the training data. The model may actually perform slightly better on
the validation set because dropout is only active during training, and is disabled during
validation.

It can be observed that both metrics stabilize around 80-100 epochs, with minor improve-
ments. Although the three tested architectures offer nice results, incorporating convolu-
tional layers enhances the AUC further (reaching up to 0.95) with compared to the 0.93
or 0.94 AUCs offered by the networks composed only of fully connected layers, though
with a slight increase in model size.

4.1.2 Convolutional layer

The effectiveness of convolutional layers is largely influenced by two key parameters: the
kernel size (k) and the number of feature maps (Nf ). The kernel size determines the spatial
or temporal extent of the receptive field, dictating how much local context the layer can
capture. Meanwhile, the number of feature maps controls the diversity of features that
the layer can learn, directly affecting the model’s representational capacity.

To determine the optimal parameters for the convolutional layers, various kernel sizes
and numbers of feature maps have been tested. First, Figures 13a and 13b were used to
determine the optimal size of the kernel filters, setting Nf = 32 as a starting reference.
Later, Figures 13c and 13d were obtained fixing the optimal kernel size obtained previously
and varying the number of feature maps. These tests show that the optimal configuration
of the convolutional layers is 48 feature maps with of dimension 7.

Pooling layers are commonly applied after convolutional layers to reduce spatial dimen-
sions and enhance computational efficiency. This approach was evaluated, but the results
shown a slight decline in performance, obtaining a test AUC of 0.9382 with the pooling
layer versus 0.9456 without it. Given that the network is relatively small and model size
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Figure 13: Learning curves with the training and validation losses and the AUC of the ROC
curves versus the epochs of the algorithms varying the convolutional layer parameters.

is not a limiting factor, it was decided not to include a pooling layer in the architecture.

Additionally, the impact of doubling the sizes of the fully connected layers following
the feature extraction by the optimized convolutional layers was explored. While this
adjustment offered an AUC of 0.9464 and did not degrade the model’s performance, it
did not yield a noticeable improvement either. Consequently, the original fully connected
layer sizes of 325 and 320 were maintained for simplicity and efficiency.

4.1.3 Dataset proportions

In signal processing real-world scenarios, the occurrence of non-preamble starting points
far outweighs the positions containing the starting points of preambles. This imbalance
reflects the natural distribution of signal data, where preamble segments represent only a
small fraction of the total data. To better understand how this imbalance affects model
performance, tests were conducted using varying proportions of the dataset, adjusting the
ratio of preamble samples to non-preamble samples.

Figure 14 show the results obtained trying different proportions of preamble and non-
preamble samples. When it comes to the loss, training with only 25% may seem the best
option. Nonetheless, when looking at the AUC plots it can be appreciated that training
with equally proportioned classes still offers a higher result than the other imbalanced
options. This indicates that the model may prioritize minimizing the loss by confidently
predicting the majority class, thereby reducing the overall loss. However, this approach
can compromise its ability to accurately identify preamble samples, leading to lower per-
formance in terms of AUC, which reflects the trade-off.

Another effect of training with differently balanced datasets was the significant bias in
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Figure 14: Learning curves with (a) the training and validation losses and (b) the AUC of the
ROC curves versus the epochs of the algorithms varying training classes proportions.

Percentages of preamble class are indicated.

threshold values, despite producing similar ROC curves and AUC values. For example,
when training with balanced classes, a threshold of 0.5 resulted in a detection of 0.86 and
a false alarm of 0.13. In contrast, training with 25% of preambles led to a detection of
0.69 and a false alarm of 0.05 for the same threshold.

4.1.4 Dataset sizes

In this analysis, three different dataset sizes were evaluated: 2 · 105, 106, and 5 · 106. The
results, as illustrated in Figure 15, show that the smaller dataset appears to achieve a
competitive performance margin, particularly during the earlier epochs. However, further
testing for 600 epochs revealed that while the training metrics continued to improve, the
test AUC remained constant around 93–93.5%. This indicates that the smaller dataset
size limits the model’s ability to generalize effectively.

On the other hand, for the larger datasets the test AUC consistently reached around
94.5%, closely aligning with the training metrics. This suggests that these larger datasets
provided sufficient diversity and examples to improve the model’s generalization to unseen
data.

An interesting observation is that, in the smallest dataset size case, the validation results
closely followed the training trends, even though the validation dataset is distinct and not
used during training. This behavior is unexpected because the validation dataset should
serve as an indicator of generalization, similar to the test set. A possible explanation could
be that the smaller dataset size led to overfitting or specific patterns being learned that
align closely with both the training and validation datasets.
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Figure 15: Learning curves with (a) the training and validation losses and (b) the AUC of the
ROC curves versus the epochs of the algorithms varying training dataset sizes, specified along

with the curves.

4.2 AWGN scenario

After showing the optimization process of the model, let us now proceed to analyze the
baseline results under no impairments at all. Firstly, the results of the interference-free
case are discussed, i.e., when AWGN noise is the only thing disrupting the signal. As
there is also no phase offset, this baseline setup employs a simple real-valued BPSK
modulation and the transmitted symbols are directly mapped to +1 and −1, resulting in
a straightforward signal structure.

The noise affecting the signal has a total power of σ2 calculated according to each SNR
value. Since the noise is complex, it consists of two components (i.e. real and imaginary)
each with a noise power of σ2/2. This ensures that the noise power is evenly distributed
across both dimensions of the signal constellation. Figure 16 shows the I-Q planes with
received packet symbols for the single user case.

Because this scenario involves only one user and no interference, the concept of channel
load — which typically describes the number of simultaneous users or overall traffic— isn’t
applicable. Instead, we focus on the generation rate λr [pkt/pkt duration], representing
how quickly a single user produces and transmits packets, with λr ≤ 1.

Figures 17a and 17b show the ROC curves in this setting for generation rates of λr = 0.3
and λr = 0.5 [pkt/pkt duration], respectively. Each point of the correlation curves was
obtained by varying the threshold value used to declare the presence of a preamble. This
threshold was compared with the output of the correlation operation, highlighting the
trade-off between detection and false alarms. Similarly, the points of the neural network
curves were obtained by varying the confidence threshold for accepting the presence of a
preamble. A lower confidence threshold increases the detection probability but also raises
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(a) (b)

Figure 16: Visualization of received signal symbols in the I-Q plane for the single user case and
SNR values of (a) 3 dB and (b) 8 dB, respectively.

the likelihood of false alarms.

Starting first with a generation rate of λr = 0.3, the performance of correlation-based
detection and neural networks shows distinct differences between varying SNR levels. No-
tice that only an expanded region of the ROC curve is shown, with detection probabilities
above 0.9 and false alarm probabilities below 0.1, focusing on practically relevant values.
The most significant difference between both algorithms is observed at -3 dB SNR, where
the correlation approach is the most affected and struggles to achieve a detection proba-
bility above 0.9 without tolerating higher false alarm probabilities of around 0.03 or 0.04,
while the CNN is able to provide detection probabilities above 0.9 with false alarm rates
below 0.01. At higher SNR values, the CNN achieves nearly perfect detection while main-
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(a) Generation rate λr = 0.3 pkt/pkt duration
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Figure 17: Detection probability as a function of the false alarm considering AWGN scenario
and no impairments for SNR = −3, 0, 3, 8 dB. Dashed and dotted curves represent the results

obtained by correlation and neural network, respectively.
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taining minimal false alarm rates, showcasing their superiority in both low and high-SNR
conditions. Correlation performs robustly, achieving near-perfect performance with just 8
dB SNR. Recall that correlation is considered optimal for detecting preambles when false
alarms are primarily caused by noise, which occurs under low channel occupancy (i.e.,
few packets). However, as the packet count increases (adding also more payloads to the
signal), false alarms are no longer noise-dominated but rather triggered by these payloads.
Even so, the correlator’s performance degradation remains moderate, and its simplicity
counterbalances this drawback.

In the generation rate λr = 0.5 graphic, a deterioration in the performance of the correla-
tion is observed. In contrast, the CNN maintains the same results as with lower generation
rate. This behavior could be explained by the increased number of packets, which may
result in sequences within the packet payloads resembling the preamble more closely,
leading to more frequent peaks in the correlation output. It is important to note that the
correlation method is limited to detecting the specific structure of the signal and is not
designed to generalize or learn patterns. Conversely, the consistency of the CNN’s results
as the generation rate increases suggests that the network is robust in scenarios where
noise is the only issue (without multi-user interference) and its performance is robust with
respect to the generation rate. Table 3 offers a comparison of the performance for this
specific generation rate.

Table 3: Detection probabilities for varying false alarm probabilities for the single user scenario
and a generation rate of λr = 0.5 pkt/pkt duration.

Correlator CNN
SNR (dB) Pfa = 0.005 Pfa = 0.01 Pfa = 0.02 Pfa = 0.005 Pfa = 0.01 Pfa = 0.02

-3 0.6125 0.7234 0.8270 0.86 0.9196 0.9601
0 0.8902 0.9518 0.9789 0.9955 0.9983 0.9994
3 0.9904 0.9980 0.9997 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0 1.0 1.0

4.3 Interference scenario

We now turn our attention to a scenario of practical significance for small data packet
transmission in mMTC applications, where multiple users simultaneously contend for
the channel. In this case, the uncoordinated nature of the access protocol policy leads
to potential collisions, making the detection of packets affected by interference notably
more challenging. This scenario is depicted in Figure 18, showing the performance of the
detection algorithms under channel loads of 0.3, 0.75, 0.9, and 1.2 [pkt/pkt duration].
Notice that now the plots comprise the detection rates above 0.8 and false alarm rates
below 0.2.

As anticipated, all methods experience a decline in performance due to the lower signal-
to-interference-plus-noise ratio (SINR) at the receiver. For instance, examining the -3 dB
curves under a channel occupancy of 0.3 (where multi-user interference is relatively low)
shows that even this moderate interference is enough to reduce the detection rate of both
methods by 0.02 points at a false alarm level of 0.04. This deterioration becomes more
noticeable as the channel load increases, since more collisions take place and interference
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(b) Channel load G = 0.75 pkt/pkt duration
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(c) Channel load G = 0.9 pkt/pkt duration
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(d) Channel load G = 1.2 pkt/pkt duration

Figure 18: Detection probability as a function of the false alarm considering interference
scenario for SNR = −3, 0, 3, 8 dB. Dashed and dotted curves represent the results obtained by

correlation and neural network, respectively, for different channel loads.

increases. This effect is visualized in Figure 19, which shows the preambles class distribu-
tion for the different channel loads. Higher channel loads lead to an increase in preambles
with one or multiple interferers. For instance, with a channel load of G = 0.3, almost
80% of the preambles have no interference, as the overlapping likelihood is low. On the
other hand, for a channel load of G = 1.2 more than 70% of the preambles have at least
1 interferer.

Going back to the ROC plots, the more pronounced the curves are (resembling a knee
shape), the easier it becomes to identify the optimal point (the one closest to the upper
left corner). Nonetheless, as the curves become smoother, determining an optimal point
becomes more challenging. For this reason, to compare the algorithms, a maximum toler-
able false alarm probability has been defined, and the detection performance achievable
without exceeding this false alarm level has been evaluated. In this scenario, a maximum
tolerable false alarm has been determined of Pfa = 0.05. Table 4 presents the detection
probabilities for different channel loads and SNR values, comparing the performance of
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Figure 19: Impact of channel load on interference. Labels indicate: (p) preamble, (p+1)
preamble with one interferer, (p+m) preamble with multi-interferers.

both algorithms under the fixed false alarm rate.

For the correlator, detection probability decreases consistently as the channel load in-
creases, with the most significant degradation occurring at -3 dB. For instance, at G = 0.3,
the detection probability is 0.9131, whereas at G = 1.2, it drops to 0.7534, highlighting
the correlator’s sensitivity to interference and increasing load. This trend persists across
all SNR levels, though the impact is less pronounced at higher SNRs. At 8 dB, the corre-
lator achieves nearly perfect detection at low channel loads, but the performance declines
modestly at higher loads.

The CNN, in contrast, demonstrates superior robustness to increasing channel load. While
a slight reduction in detection probability is observed at higher loads, the degradation is
far less pronounced compared to the correlator. At -3 dB, the CNN maintains a detection
probability of 0.9718 at G = 0.3, which only reduces to 0.8805 at G = 1.2. Similarly,
at higher SNR values, the CNN consistently outperforms the correlator, with detection
probabilities remaining above 0.9444 even at the highest channel load.

These results underscore the resilience of the CNN to interference and its ability to adapt
to challenging multi-user scenarios, particularly at low SNR levels. In contrast, the correla-
tor’s performance is more significantly impacted by increasing channel loads, highlighting
its limitations in environments with higher levels of interference.

These results set a strong foundation for exploring more realistic scenarios, where ad-
ditional impairments are introduced. The following chapter delves into these scenarios,
evaluating the impact of these impairments on detection performance and further com-
paring the effectiveness of the proposed algorithms.

Table 4: Detection probabilities for varying channel loads and a false alarm rate of Pfa = 0.05
for the multi user scenario.

Correlator CNN
SNR (dB) G = 0.3 G = 0.75 G = 0.9 G = 1.2 G = 0.3 G = 0.75 G = 0.9 G = 1.2

-3 0.9131 0.8361 0.8074 0.7534 0.9718 0.9345 0.9125 0.8805
0 0.9853 0.9372 0.9150 0.8641 0.9976 0.9811 0.9704 0.9447
3 0.9944 0.9637 0.9461 0.9048 0.9996 0.9940 0.9888 0.9757
8 0.9970 0.9736 0.9611 0.9265 0.9998 0.9965 0.9945 0.9851
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5 Results with Channel Impairments

Building upon the baseline evaluations and model refinements described in the previous
chapter, this chapter focuses on assessing the performance of the detection algorithms
under progressively more realistic and challenging channel conditions. Until now, we have
explored idealized scenarios, starting from simple AWGN environments without interfer-
ence and then introducing multi-user overlapping signals. However, as real-world commu-
nication systems rarely operate under such controlled conditions, it is essential to extend
the analysis to more adverse scenarios that better reflect practical deployments.

In this chapter, a comprehensive set of results obtained from simulations that incorpo-
rate various channel impairments is presented. Each of these impairments poses unique
challenges to both classical and machine learning-based detection approaches.

5.1 Phase offset

We now introduce a random constant phase offset into the system. In this scenario, the
transmitted symbols, still employing a simple real-valued BPSK modulation scheme, are
directly mapped to +1 and –1 at the transmitter. However, upon reception, each packet is
affected by a constant, yet randomly selected phase offset. The assumption of a constant
phase offset for each received packet is justified by the nature of short packets and their
limited time on air (tair = N · Tsym = N · 1

B
= 2.56 ms).

The noise model remains unchanged from the baseline case, with complex noise of total
power σ2 applied to the signal at a given SNR. As before, this noise is split equally
between the real and imaginary components, ensuring a uniform distribution across both
dimensions of the signal constellation. Due to the imposed phase offset, the received
symbols will now appear rotated in the I-Q plane, as depicted in Figure 20.

Comparing these figures to the previous ones without phase offset from Figure 16 high-

(a) (b)

Figure 20: Visualization of received signal symbols in the I-Q plane for the single user case,
added random phase offset and SNR values of (a) 3 dB and (b) 8 dB, respectively.
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lights the significant impact of introducing a random constant phase offset. In the non-
offset case, the BPSK symbols are primarily spread along the real axis, forming two
distinct clusters centered around +1 and –1, with the noise scattering them slightly into
the imaginary dimension. As a result, the received constellations without phase offset
visibly resemble two fairly well-defined clouds.

In contrast, once a random constant phase is introduced, these two clusters become ef-
fectively rotated in the I-Q plane. Since the phase offset is constant for each packet but
varies randomly from one packet to another, the aggregate effect when visualizing multi-
ple preambles is that the points are no longer aligned along the real axis. Instead, they
become distributed around the entire I-Q plane, forming more circular or ring-shaped
patterns, whose diameter and thickness depend on the noise level.

A. Interference-free scenario

Following the previous procedure, first the single-user case will be studied, where no inter-
ference from other transmitters occurs. In this setting, the introduction of a random phase
offset has distinct consequences for the two detection methods, reflected in Figure 21. In
general, both algorithms maintain excellent performance, achieving detection rates above
0.98 and false alarm rates below 0.02 at all but the lowest SNR.

Despite adding the random rotation, the correlation-based detector remains largely un-
affected because, by its definition in (2), it computes the cross-correlation between the
known preamble and the received signal, taking the magnitude of the correlation output.
As a result, the correlation peak is invariant to constant phase rotations, causing the
method’s performance to remain virtually unchanged compared to the no-offset scenario.
Even with rotated preambles, the measured detection probability and false alarm prob-
ability show minimal deviation, reinforcing the robustness of correlation in single-user
scenarios dominated by noise.
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(a) Generation rate λr = 0.3 pkt/pkt duration
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(b) Generation rate λr = 0.5 pkt/pkt duration

Figure 21: Detection probability as a function of the false alarm considering single-user
scenario and random phase offset for SNR = −3, 0, 3, 8 dB and generation rates λr of (a) 0.3

and (b) 0.5.
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Table 5: Detection probabilities for varying false alarm probabilities for the single user
scenario, random phase offset and a generation rate of λr = 0.5 pkt/pkt duration.

Correlator CNN
SNR (dB) Pfa = 0.005 Pfa = 0.01 Pfa = 0.02 Pfa = 0.005 Pfa = 0.01 Pfa = 0.02

-3 0.6161 0.7262 0.8223 0.6964 0.7856 0.8618
0 0.8912 0.9486 0.9799 0.9686 0.9859 0.9938
3 0.9904 0.9979 0.9997 0.9999 1.0 1.0
8 1.0 1.0 1.0 1.0 1.0 1.0

On the other hand, the CNN-based detector, although being trained including randomly
rotated preambles, shows a slight degradation compared to the scenario without phase
offset. This performance gap can be attributed to the added complexity of learning a
broader distribution of signal orientations in the I-Q plane, whereas the no-offset model
dealt with a more uniform pattern. Nevertheless, the CNN continues to outperform the
correlation method at all SNR levels, demonstrating that even with random phase offsets
the network maintains a strong detection capability.

At higher generation rates, the correlation detector experiences some deterioration similar
to the no-phase-offset case. This effect can be attributed to the increase in the total number
of packets, since the payloads are generated randomly, and sending more packets raises
the chance that parts of the payload will resemble the preamble. As a result, there are
more peaks in the correlation output, which inflates the false alarm rate and degrades
overall performance. However, the additional random phase does not magnify this issue
with respect the no-phase-offset case, reflecting correlation insensitivity to constant phase
offsets.

Despite being the CNN the one more affected by the random phase offset, this algorithm
still demonstrates a more consistent performance across different generation rates. While
there is a modest drop due to phase rotation, it does not worsen as much as the correlation
when the generation rate increases, as can be appreciated by the increased gap between
the curves of both algorithms when changing from λr = 0.3 to λr = 0.5. Specific detection
rates with generation rate λr = 0.5 of both algorithms are displayed in Table 5. Correlation
results mirror the non-offset ones from Table 3, whereas the CNN outcomes reveal the
phase offset impact predominantly at lower SNRs.

B. Interference scenario

Let us now study the interference scenario. Again, results for the different channel loads
are shown in Figure 22, which captures the increasing effect of the interferences as the
channel load augments. At first sight, one can see that at the lower SNR values of –3 and
0 dB, both detectors produce ROC curves that are nearly overlapping, reflecting similar
detection performance under these harsher conditions. In particular, for lower false alarm
rates, the neural network curves sit slightly above the correlation ones, suggesting the NN
retains a small advantage in rejecting false detections at these thresholds. Beyond that
lower false alarm region, their performance becomes more aligned, indicating that once
the false alarm tolerance is relaxed, both methods converge to a comparable detection
capability.
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(a) Channel load G = 0.3 pkt/pkt duration
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(b) Channel load G = 0.75 pkt/pkt duration
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(c) Channel load G = 0.9 pkt/pkt duration
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(d) Channel load G = 1.2 pkt/pkt duration

Figure 22: Detection probability as a function of the false alarm considering interference
scenario and random phase offset for SNR = −3, 0, 3, 8 dB and different channel loads.

For ease of comparison between both algorithms and with the non-offset case, the maxi-
mum tolerable false alarm has been set to Pfa = 0.05 and specific detection probabilities
for this false alarm rate are presented in Table 6. Across all SNRs and channel loads, the
correlation consistently benefits from introducing random phase offsets, because the phase
diversity breaks the coherence of overlapping packets and reduces interference power.
Compared to non-offset results from Table 4, an improvement appears for every combina-
tion of SNR and channel load. This improvement becomes more noticeable as the channel
load increases, as more overlapping situations happen. For instance, at -3 dB and channel
load of 0.3, the correlation passes from a detection rate of 0.9131 in the non-offset case
to 0.9276 when random rotation is present, but for the same SNR and a channel load of
1.2, the improvement is more appreciable going from 0.7534 to 0.8045.

By contrast, the CNN exhibits a more differentiated behavior. At low SNR values (-3 and
0 dB), adding random phase rotations poses an additional challenge for the network, so
its performance declines relative to the no-offset scenario. Taking a look at the -3 dB and
G = 0.3, the CNN detection changes from 0.9718 in the non-offset case to 0.9192 when
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Table 6: Detection probabilities for varying channel loads and a false alarm rate of Pfa = 0.05
for the multi user scenario with random phase offset.

Correlator CNN
SNR (dB) G = 0.3 G = 0.75 G = 0.9 G = 1.2 G = 0.3 G = 0.75 G = 0.9 G = 1.2

-3 0.9276 0.8673 0.8467 0.8045 0.9192 0.8753 0.8520 0.8139
0 0.9936 0.9685 0.9552 0.9245 0.9932 0.9725 0.9577 0.9353
3 0.9982 0.9875 0.9808 0.9626 0.9988 0.9956 0.9905 0.9790
8 0.9992 0.9925 0.9890 0.9774 0.9996 0.9980 0.9971 0.9934

phase offset is introduced. Here, the noise component still dominates, and any diversity
advantage from randomly rotated interference does not translate into a meaningful gain.
However, at higher SNRs (3 and 8 dB), once the desired signal becomes clearer and the
channel load increases (leading to more overlapping packets), the same random phase
diversity actually assists the CNN in distinguishing desired preambles from interference.
Consequently, for higher SNR and heavier interference, the CNN slightly outperforms its
no-offset counterpart, underscoring that the helpfulness of phase diversity grows as noise
becomes less of a factor and multi-user collisions become more prevalent.

Overall, random phase offsets benefit the correlation-based detection as it has a negligible
effect in the single user case and improves the multi-user case. Contrarily, this phase offset
has a double impact on the CNN, deteriorating its performance in the single-user scenario
and low SNR multi-user scenarios, but assisting in high SNR multi-user scenarios. It could
be stated that even random phase offset equalizes the performance of both algorithms,
the neural network continues to maintain a little advantage in terms of detection and false
alarm trade-offs.

5.2 Doppler Shift

Let us now consider a time-varying mismatch scenario caused by Doppler shift. Given a
2D coordinate (x, y) of a user on the ground plane within the satellite beam’s coverage
area, the procedure to calculate the Doppler is the following:

• Calculate the ground distance from the beam center via the Euclidean norm, r =√
x2 + y2.

• Calculate the elevation angle ϵ = arctan
(
satellite height

r

)
• Calculate the azimuth angle ϕ = arctan

(
y
x

)
, giving the horizontal orientation of the

user relative to the beam center.

• Calculate the effective velocity along the line of sight by projecting the satellite’s
velocity vectors (vsx , vsy) onto the user’s line of sight:

veff = (vsx cos(ϕ) + vsy sin(ϕ)) cos(ϵ)

• Compute the Doppler shift fd =
veff
c
· fc

Figure 23a illustrates how Doppler frequencies can vary across the satellite beam’s cover-
age area, with values spanning approximately ± 48 kHz depending on the user’s position.
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Figure 23: (a) Doppler shift along the satellite beam’s coverage area and (b) probability
density function of the Doppler shift.

These maximum value correspond to users at the edge of the beam and at the satellite
direction. In this depicted case, the satellite is assumed to be moving towards the positive
x-axis. However, varying the direction of the satellite would not have any impact due to
the symmetry of the distribution of the Doppler shift given uniformly allocated users.
Considering the channel bandwidth is only 100 kHz, the Doppler effect spans nearly the
entire spectrum, creating significant challenges for accurate detection and synchroniza-
tion. Meanwhile, Figure 23b presents a probability density function (PDF) of the observed
Doppler shifts for a user spread uniformly within the coverage beam. Although the dis-
tribution is symmetric with 0 mean, it has slightly heavier tails toward the extremes,
indicating that users are likely to experience more pronounced Doppler variations. This
arises primarily from geometry: users near the coverage boundary experience more motion
relative to the satellite’s velocity vector, leading to higher Doppler shifts. Consequently,
while the distribution remains centered at zero, the denser outer regions of the beam
provoke these heavier tails.

Plotting various received preambles in the I-Q plane with the Doppler effect would gener-
ate graphics with similar shapes to Figure 20. Therefore, in this case it is more interesting
to visualize one individual preamble for each case, as depicted in Figure 24. SNR level
has been set to 20 dB to minimize the noise effect and appreciate better the differences.

When only a random phase offset is present (Figure 24a), all symbols in the same preamble
are consistently aligned to the randomly chosen phase offset, with the primary distortion
arising from noise. This consistency within the preamble explains why correlation-based
detection remains unaffected in the single-user case, as the correlation inherently handles
such constant rotations. However, the CNN struggles slightly, as it must learn to generalize
across a broader range of inter-packet phase rotations.

In contrast, the Doppler shift introduces a more complex distortion (Figure 24b). Here,
symbols within the same preamble can experience different orientations due to the con-
tinuous symbol rotation caused by the frequency offset. This intra-packet symbol phase
inconsistency makes detection more challenging as not only does the inter-packet vari-
ability remain, but symbol-to-symbol misalignment within a single packet becomes a
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(a) θ = 2.03 rad (b) fd = 33.08 kHz

Figure 24: Comparison between (a) random phase offset and (b) Doppler shift on a single
preamble. Green and red dots indicate the first and last symbol of the preamble, respectively.

significant factor as well. Such intra-packet phase rotation can reduce or even negate cor-
relation peaks among the preamble symbols, making a single correlator at the central
frequency less effective. The CNN, on the other hand, must adapt to this added layer of
complexity, attempting to learn both the broader inter-packet and intra-packet patterns,
which substantially increases the learning difficulty.

5.2.1 Bank of Correlators

Since a single correlator may be inadequate for proper detection when large frequency
offsets are present within the same packet (as demonstrated later in Figure 26), we are
going to use a bank of correlators to address this issue and fairly compare both detection
algorithms.
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Figure 25: Block diagram of the bank of correlators used
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A bank of correlators, as visualized in Figure 25, is a set of multiple correlators, each
tuned to detect the preamble at a different frequency offset fi = −fd,max + i

2fd,max

M−1
, with

i going from 0 to M − 1 and being M the total number of correlators. By processing the
received signal in parallel across all correlators and selecting the one with the strongest
correlation peak, the system can detect the preamble with higher accuracy, and at the same
time provide an estimate of the undergone Doppler shift at the expense of an additional
computational complexity.

To make this concept intuitive, one can think of the correlator bank as a “tuner” scanning
multiple radio frequencies. Just as a tuner must adjust to the correct frequency to receive a
desired station, the bank of correlators simultaneously “listens” to all possible frequencies
and selects the one that best matches the desired signal. This parallel processing ensures
robust detection even in the presence of challenging Doppler effects.

A. Interference-free scenario

Once more, the single-user case will be studied first. Figure 26 shows the results of this
scenario, where the faded solid curves represent the correlation performance when using
just M = 1 correlator at reception, confirming the poor behavior of this algorithm in
presence of the Doppler effect. In addition, the colorful solid lines display the performance
of the correlator bank with M = 15 correlators. Further experiments in Section 5.4 will
show the impact of varying this parameter M .

In order to obtain more complete results, random phase offset was also added to the
Doppler shift. The effects of the random phase offset discussed in Section 5.1 are mostly
mitigated when combined with Doppler shift, as the latter naturally introduces a phase
rotation that accumulates over time. This means that even without an extra random
phase offset, the phases of the symbols are already randomized by the Doppler-induced
rotation. Because the phase is already non-coherent due to Doppler, adding a separate
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Figure 26: Detection probability as a function of the false alarm considering single-user
scenario with both Doppler and random phase offset for SNR = −3, 0, 3, 8 dB and generation

rates λr of (a) 0.3 and (b) 0.5.
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random phase offset does not significantly further decorrelate the interfering packets. In
fact, when Doppler is present, the extra random phase offset has no impact at all on the
correlation results, and the CNN’s performance experiences only a minor decrease.

These updated ROC curves indicate a clear degradation in both algorithms’ performance
for the single-user scenario. Although detection results are lower across all SNR values,
3 and 8 dB still achieve detection probabilities above 0.9 for false alarm rates under 0.1.
However, at 0 dB and especially at -3 dB detection rates decrease sharply, making reliable
detection increasingly challenging. For instance, maintaining a detection rate above 0.8
at -3 dB requires tolerating a false alarm rate of about 0.4 (this is an extreme operating
point, given that the Doppler shift is approximately half the bandwidth and the signal
level is well below the noise floor).

Table 7 reinforces these findings by comparing both algorithms at multiple false alarm
thresholds. Previously, with only random phase offsets, detection rates above 0.8 were
feasible at -3 dB with a false alarm probability below 0.02. Yet, once Doppler is introduced,
at -3 dB and a 0.1 false alarm rate, the correlator and CNN only reach about 0.5 and 0.6
detection probability, respectively.

Table 7: Detection probabilities for varying false alarm probabilities for the single user
scenario, Doppler, random phase offset and a generation rate of λr = 0.5 pkt/pkt duration.

Correlator CNN
SNR (dB) Pfa = 0.02 Pfa = 0.05 Pfa = 0.1 Pfa = 0.02 Pfa = 0.05 Pfa = 0.1

-3 0.2827 0.4036 0.5174 0.3546 0.4813 0.5904
0 0.5452 0.6721 0.7706 0.7672 0.8620 0.9197
3 0.7606 0.8527 0.9157 0.9895 0.9974 0.9995
8 0.9126 0.9673 0.9906 1.0 1.0 1.0

B. Interference scenario

Changing now to the multi-user scenario shown in Figure 27, it can be sensed that as
the channel load rises the interference from multiple users becomes more pronounced,
which visibly pushes the detection curves downward compared to the single-user case. At
a channel load of G = 0.3, the interference is limited and both the correlator and CNN
exhibit relatively high detection probabilities even at modest false-alarm rates. However,
these curves degrade significantly as more users join the channel. The SNR remains a key
factor in the performance. For instance, the CNN at higher SNR values like 3 or 8 dB
yield detection probabilities approaching or even exceeding 0.8 when the false-alarm rate
is below 0.1, despite the additional multi-user interference. At lower SNR, especially -3
dB, these ROCs bend sharply downward, requiring a much higher false-alarm probability
to reach the same detection thresholds.

Table 8 provides discrete data points at Pfa = 0.1, confirming the trends visible in the
plots. For an SNR of -3 dB and G = 0.3, the correlator achieves a detection probability
of about 0.6039, while the CNN slightly outperforms it at 0.6263. As the channel load
moves to 1.2, both algorithms see their detection rates drop by roughly 20 percentage
points or more. At 0 dB, the correlator’s detection probability slides from about 0.8438
at G = 0.3 down to 0.5298 at G = 1.2, whereas the CNN declines from approximately
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(c) Channel load G = 0.9 pkt/pkt duration
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(d) Channel load G = 1.2 pkt/pkt duration

Figure 27: Detection probability as a function of the false alarm considering interference
scenario with both Doppler and random phase offset for SNR = −3, 0, 3, 8 dB and different

channel loads.

0.9106 to 0.6435 for the same change in load. Meanwhile, for 3 and 8 dB, both methods
sustain stronger detection performance across all channel loads, although the correlator’s
detection probability dips more severely than the CNN’s.

Summarizing, these results extend the single-user findings into the multi-user domain,
showing that Doppler randomizes the phase sufficiently to dominate any additional static
random phase offset. The CNN consistently outperforms or matches the correlator method
even when multiple correlators (M = 15) are used in parallel. Both algorithms see a sharp
drop in detection probability due to the severe interference. Therefore, in the presence of
Doppler and random phase, channel load and SNR become the dominant factors influ-
encing detection performance in the multi-user setting, and the CNN approach continues
to prove more resilient to deal with interference than the correlator.
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Table 8: Detection probabilities for varying channel loads and a false alarm rate of Pfa = 0.1
for the multi user scenario with Doppler and random phase offset.

Correlator CNN
SNR (dB) G = 0.3 G = 0.75 G = 0.9 G = 1.2 G = 0.3 G = 0.75 G = 0.9 G = 1.2

-3 0.6039 0.4867 0.4534 0.4020 0.6263 0.5003 0.4640 0.4012
0 0.8438 0.6644 0.6153 0.5298 0.9106 0.7725 0.7208 0.6435
3 0.9469 0.7852 0.7307 0.6270 0.9906 0.9034 0.8653 0.7860
8 0.9926 0.8726 0.8140 0.7067 0.9987 0.9710 0.9412 0.8667

5.3 Received Power Distribution

When we introduce varying received power based on user positioning, we effectively model
a scenario closer to reality, where each user’s signal experiences a different path loss
and antenna gain within the satellite beam coverage. This variation does not introduce
any additional distortion beyond basic attenuation, but it does lead to a non-uniform
distribution of SNR among users. As shown in Figure 28, the probability density function
of SNR now skews toward lower values, reflecting how path loss increases near the beam
edges while the antennas’ gains decrease due to lower elevation angles. The vertical blue
line indicates the mean SNR, which is around 2 dB. Additionally, these results incorporate
the same random phase offset and Doppler shift discussed earlier, so that the overall setup
reflects a comprehensive and realistic channel condition.

Figure 28: (a) SNR along the satellite beam’s coverage area and (b) probability density
function of the SNR.

With this setup, we train new NN models to cover the full range of SNR values rather
than focusing on specific SNR targets. This choice reflects real-world conditions, where the
satellite’s detection algorithm cannot predict whether an incoming signal comes from a
high- or low-SNR user, and the final NN model must therefore handle any SNR scenario.
The same procedure as for the Doppler case is followed: each newly generated packet
is assigned a random position (uniformly distributed within the coverage beam), which
determines the Doppler shift and corresponding SNR for that user. However, the channel
occupancy remains trained ad hoc, meaning each load or generation rate still has its own
dedicated model.
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A. Interference-free scenario

Because the average SNR is about 2 dB, one could imagine that the resulting detection
performance would be contained between the curves for 0 and 3 dB obtained in earlier
experiments. Figure 29 compares these distributed-power results (thick purple lines) with
those from the single-SNR values (thin, faded lines).

Looking first at the CNN curves, notice that at -3 dB the CNN’s performance now falls
below that of the correlator, unlike in the single-SNR models presented earlier. This drop
arises because the new model must accommodate the entire SNR range simultaneously,
rather than being trained strictly for -3 dB. Consequently, its performance at any indi-
vidual SNR may not match that of an ad-hoc model specialized for a single SNR level.
Still, at both generation rates, the CNN trained under received power distribution re-
mains bounded by the 0 and 3 dB curves (cyan and magenta dashed lines), indicating
it adapts across the distribution although with some trade-off in performance at specific
SNR values.

By contrast, the correlator bank with M = 15 correlators does not behave as accurately.
Its performance under path-loss variation falls between -3 and 0 dB results, instead of
between 0 and 3 dB. A likely reason is that the correlator’s average detection probability
becomes dominated by the lower-SNR tail of the distribution rather than the mean. Each
packet is processed independently, and without an adaptive mechanism to exploit higher-
SNR signals, weaker users drag down the correlator’s overall performance. Meanwhile,
although the CNN’s performance declines at -3 dB, its stronger detection rates at higher
SNR levels (particularly in the low false alarm region) compensate for this drop and keep
the overall distribution bounded by the 0 dB and 3 dB curves.
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Figure 29: Detection probability as a function of the false alarm considering single-user
scenario with both Doppler and random phase offset with received power distribution for and

generation rates λr of (a) 0.3 and (b) 0.5.
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B. Interference scenario

In the multi-user scenario, the same pattern emerges as in the single-user case. Figure 30
shows that overall detection performance declines with increasing channel load under
interference, as expected. The dashed purple curve of the CNN still falls between the 0
and 3 dB references, whereas the solid purple curve of the correlation remains bounded by
the -3 and 0 dB lines. This aligns with the idea that the correlator’s detection does not scale
linearly with SNR, and packets at lower SNR drag down the mean detection probability
with more strength than the smaller number of higher-SNR packets can compensate.

Another notable point is that the correlator experiences added difficulty in the lower-
false-alarm region. Past a false alarm probability of about 0.4, both methods converge to
comparable detection rates. However, at a more practical threshold of Pfa = 0.1, the CNN
is able to achieve detection probabilities close to 0.7 at the highest channel load, whereas
the correlator struggles to exceed 0.5 whenever the interference becomes significant (that

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm probability, Pfa

D
et
ec
ti
o
n
p
ro
b
a
b
il
it
y,

P
d

D.P. NN D.P. corr

-3 dB NN -3 dB corr

0 dB NN 0 dB corr

3 dB NN 3 dB corr

8 dB NN 8 dB corr

(a) Channel load G = 0.3 pkt/pkt duration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm probability, Pfa

D
et
ec
ti
o
n
p
ro
b
a
b
il
it
y,

P
d

D.P. NN D.P. corr

-3 dB NN -3 dB corr

0 dB NN 0 dB corr

3 dB NN 3 dB corr

8 dB NN 8 dB corr

(b) Channel load G = 0.75 pkt/pkt duration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm probability, Pfa

D
et
ec
ti
o
n
p
ro
b
a
b
il
it
y,

P
d

D.P. NN D.P. corr

-3 dB NN -3 dB corr

0 dB NN 0 dB corr

3 dB NN 3 dB corr

8 dB NN 8 dB corr
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Figure 30: Detection probability as a function of the false alarm considering interference
scenario with both Doppler and random phase offset with received power distribution for

different channel loads.
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is, for channel loads of around 0.75 or more). This difference arises because the correlator
relies entirely on detecting peaks in the correlation output, which are heavily distorted
under high-interference conditions due to overlapping signals and noise. With its fixed
approach, the correlator finds it difficult to distinguish preambles from interference at
demanding false-alarm values. In contrast, the CNN learns complex patterns from the
data, enabling it to recognize partial or noisy preamble structures and leverage stronger
SNR signals, even in challenging interference scenarios. This adaptive capability allows the
CNN to maintain higher detection rates at Pfa = 0.1, despite the increased channel load.
Beyond Pfa = 0.4, the thresholds for both methods become more permissive, reducing
the performance gap.

5.4 Final Results

In addition to building models that can handle a range of SNR values, it is essential to
develop models that can adapt to varying channel occupancies. In a practical system the
channel load can fluctuate significantly over time as the satellite passes over regions with
differing numbers of active users. For instance, densely populated areas may experience
higher channel loads, leading to increased interference, while sparsely populated areas
may have lighter loads with minimal interference. To ensure robust performance across
these scenarios, the NN model must be trained to handle a broad spectrum of channel
conditions, from low to high occupancy, rather than being optimized for a fixed load.

Although the previous section already introduced models trained with a random received
power distribution, each was still related to a specific channel load. The goal here is
to examine the performance of a single, more general model, representing the kind of
detection algorithm a satellite might use in practice without prior knowledge of channel
usage.

This generalized model uses the dataset described in Figure 31, which aggregates samples
from all the generation rates and channel loads covered in the thesis, totaling about one
million samples. The expectation is that this wider training scope will yield a slightly lower
performance than the specialized models, which were each tailored to a single channel
occupancy scenario.

A. Interference-free scenario

All the CNN results from now on are obtained with the same single generic model, trained
to handle all SNR and channel occupancy scenarios. Focusing first on the interference-
free scenario, Figure 32 presents the results for generation rates λr = 0.3 and λr = 0.5.
The CNN’s overall performance (thick, dashed, purple line) remains bounded by the 0

105 samples

single-user
λr = 0.3

105 samples

single-user
λr = 0.5

2 · 105 samples

multi-user
G = 0.3

2 · 105 samples

multi-user
G = 0.75

2 · 105 samples

multi-user
G = 0.9

2 · 105 samples

multi-user
G = 1.2

Figure 31: Dataset used to train a generic CNN able to perform under any condition.
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Figure 32: Detection probability as a function of the false alarm of the final model considering
single-user scenario with both Doppler and random phase offset with received power

distribution for and generation rates λr of (a) 0.3 and (b) 0.5.

dB and 3 dB curves, though it now leans slightly closer to the 0 dB cyan curve. In
contrast, the correlation method’s performance remains unchanged, staying below the 0
dB curve. Table 9 provides detailed values for the λr = 0.5 case, comparing the correlation
approach and two CNN models. The “Ad-hoc CNN” columns refer to the previous neural
network trained specifically for the single-user case with received power distribution and
a generation rate of 0.5, with its results shown in Figure 29b. Meanwhile, the “Final
CNN” represents the newly obtained model trained across various single- and multi-user
scenarios.

As observed, the new model even exceeds the ad-hoc model in nearly all cases, though the
gap is not huge. This little improvement likely comes from the final model’s exposure to
additional scenarios; even though it only includes 105 samples specifically for the single-
user, λr = 0.5 setup, it also benefits from training data covering various other conditions.
Consequently, it can adapt more effectively and learn more robust, generalized decision
boundaries. Focusing on the distributed SNR row underscores the correlator’s weakness
at lower false-alarm rates: for a false-alarm probability of 0.1, the correlator reaches only
0.6021 detection, whereas the final model achieves 0.9278.

Table 9: Detection probabilities for varying false alarm probabilities for the single user scenario
and the final model with received power distribution, Doppler shift, random phase offset and a

generation rate of λr = 0.5.

Correlator Ad-hoc CNN Final CNN
SNR (dB) Pfa = 0.05 Pfa = 0.1 Pfa = 0.05 Pfa = 0.1 Pfa = 0.05 Pfa = 0.1

-3 0.4022 0.5155 0.4069 0.5165 0.4024 0.5569
0 0.6694 0.7691 0.8244 0.8877 0.8682 0.9220
3 0.8530 0.9155 0.9967 0.9990 0.9994 0.9999
8 0.9681 0.9910 1.0 1.0 1.0 1.0

Distributed 0.4591 0.6021 0.8800 0.9136 0.9045 0.9278
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(a) Channel load G = 0.3 pkt/pkt duration
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(b) Channel load G = 0.75 pkt/pkt duration
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(c) Channel load G = 0.9 pkt/pkt duration
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(d) Channel load G = 1.2 pkt/pkt duration

Figure 33: Detection probability as a function of the false alarm of the final model considering
interference scenario with both Doppler and random phase offset with received power

distribution for different channel loads.

B. Interference scenario

For the last time, let us study again the interference case. ROC curves for the different
channel loads are plotted in Figure 33. The curves show that the CNN consistently out-
performs the correlator across all channel loads. At low channel loads, the CNN achieves
rather good performance, with steep curves indicating high detection probabilities above
0.8 even at low false alarm rates below 0.1 (it is important to recall the fully uncoordi-
nated access protocol we are working with). As the channel load increases, interference
impacts all methods, but the CNN maintains a clear advantage, with its curves remaining
higher and closer to ideal performance compared to the flatter correlator curves.

Table 10 highlights that the Final CNN achieves superior detection probabilities across
practically all SNR levels and channel loads. For a low channel load of G = 0.3, at -3
dB, the Final CNN reaches 0.5352, slightly below the correlator (0.6039) but above the
Ad-hoc CNN (0.4421). As the SNR increases, the Final CNN shows significant improve-
ment, reaching 0.8620 at 0 dB, 0.9825 at 3 dB, and an almost perfect 0.9989 at 8 dB,
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Table 10: Detection probabilities for channel loads of 0.3 and 1.2 and a false alarm rate of
Pfa = 0.1 for the multi user scenario and the final model with received power distribution,

Doppler shift, random phase offset.

Correlator Ad-hoc CNN Final CNN
SNR (dB) G = 0.3 G = 1.2 G = 0.3 G = 1.2 G = 0.3 G = 1.2

-3 0.6039 0.4020 0.4421 0.3811 0.5352 0.4022
0 0.8438 0.5298 0.7828 0.5929 0.8620 0.6311
3 0.9469 0.6270 0.9798 0.7299 0.9825 0.7719
8 0.9926 0.7067 0.9916 0.8073 0.9989 0.8494

Distributed 0.7595 0.4392 0.8906 0.6684 0.9079 0.6866

outperforming both methods.

For the highest channel load, all methods show a performance drop due to increased
interference. However, at 3 and 8 dB, the Final CNN remains dominant, achieving 0.7719
and 0.8494, respectively, compared to the correlator’s lower values of 0.6270 and 0.7067.

The distributed detection probabilities reinforce this trend, as the Final CNN achieves
0.9079 for G = 0.3 and 0.6866 for G = 1.2, outperforming the correlator and the Ad-
hoc CNN . This demonstrates the Final CNN’s robustness and consistent performance,
particularly at higher SNR levels and under heavy interference conditions.

As a final step, the algorithms were evaluated with a dataset encompassing all studied
combinations of SNR and channel loads, as well as single and multi-user cases, to obtain
a global mean performance. This testing dataset was half the size of the training dataset
described in Figure 31, but maintaining the proportions of each scenario. All the packets
of the dataset were generated with the same procedure of picking a user in a random
position uniformly spread in the beam, and then determining its path loss and Doppler
shift, as well as adding the random phase offset. The results of this comprehensive setup
are shown in Figure 34.
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Figure 34: Performance of the detection algorithms in front of an unknown varying scenario.
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Table 11: Detection probabilities and AUC metrics for the different setups of the bank of
correlators.

M Pd AUC
15 0.5278 0.8513
25 0.5695 0.8726
35 0.576 0.8749

In this scenario, three configurations of the correlator bank were tested: M = 15, 25, 35.
While it might seem intuitive that increasing the number of correlators would improve
performance towards an optimal level, the plots indicate that even with a higher number
of correlators, the performance gains are limited. In fact, Table 11 confirms this minimal
gain in terms of detection rate and AUC when going from 25 to 35 correlators. Further
analysis revealed that increasing the number of correlators while taking the maximum
value across them at each position causes the correlator output’s mean to increase. This
higher mean is more likely to trigger false detections, leading to a degradation in the
overall ROC curve, as shown in Figure 35. To examine this effect, a single packet with a
maximum Doppler shift was placed at position 0 with an SNR of -3 dB. Detection was
performed using a single perfectly matched correlator at that Doppler shift (Figure 35a)
and with a bank of M = 35 correlators (Figure 35b). As illustrated in the figures, the
final correlation output from the bank shows higher values, making it challenging to set
an appropriate decision threshold. Consequently, the trade-off between detection and false
alarms deteriorates notably.

(a) (b)

Figure 35: Correlation comparison between (a) a perfectly Doppler-matched single correlator
and (b) a bank of M = 35 correlators and selecting the maximum correlator at each position.

The results presented in this chapter highlight the challenges and trade-offs in designing
robust detection algorithms for satellite communication scenarios. While increasing the
number of correlators in the detection bank allows for improved Doppler resolution, our
analysis reveals that this approach has a performance ceiling. Beyond a certain point,
adding more correlators does not continuously enhance detection performance, as it cannot
completely mitigate the effects of Doppler shift.

On the other hand, the proposed generic CNN model demonstrates significant adaptability
and robustness across a wide range of SNR levels, channel loads, and interference scenar-
ios. By training on a diverse dataset covering both single-user and multi-user cases, the
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model achieves superior detection probabilities compared to traditional correlation-based
methods. Notably, the final CNN excels in scenarios with higher interference and varying
conditions, achieving a more balanced trade-off between detection and false alarms.
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6 Conclusions and future development

In this thesis we demonstrated the effectiveness of supervised learning techniques for
short packet detection in satellite communications. Beginning by reproducing previous
results in the literature [1], we saw that in an impairment-free channel affected only by
AWGN noise, both the traditional correlation-based method and the CNN achieve high
detection rates, exceeding 0.9 for false alarms below 0.05 in the single-user case. However,
the multi-user case (where packet collisions occur) shows a performance decline due to
reduced SINR. Despite this, CNN results consistently outperforme traditional correlation.
Additionally, the correlation algorithm exhibits higher sensitivity to channel load, while
the CNN maintains robust performance as channel load increases.

The analysis of channel impairments began with the impact of a random constant phase
shift. In the single-user scenario, correlation remains unaffected due to its reliance on the
magnitude of the correlation output, whereas the CNN experiences slight degradation
due to the broader distribution of signal orientations in the I-Q plane. In the multi-user
case, correlation benefits from the random phase shift as it introduced phase diversity
and non-coherent interference, with the improvement more pronounced at higher channel
loads. While the CNN struggles under low SNRs in this scenario, it leverages random
phase diversity at higher SNRs, maintaining a slight performance advantage overall.

The introduction of Doppler shift neutralizes the effects of the random phase shift, as
Doppler inherently randomizes symbol phases. Significant Doppler shifts causes intra-
packet symbol misalignment, making a single correlator ineffective and requiring the use of
a bank of correlators. Comparing the CNN with a 15-correlator bank, similar performance
is observed at -3 dB SNR in both single- and multi-user scenarios. However, at higher
SNRs, the CNN significantly outperformes the correlation approach, especially in the low-
SNR region. Under the maximum channel load (G = 1.2) and tolerating a false alarm rate
of 0.1, both algorithms obtain a detection rate of 0.4 at -3 dB, while at 8 dB detection
rates of 0.7067 and 0.8667 are observed for correlation and CNN, respectively.

Adding received power distribution among users introduces attenuation effects, leading to
a non-uniform SNR distribution. This causes the correlation method to perform worse in
low-SNR regions with many low-SNR users. Conversely, the CNN effectively compensates
by leveraging high-SNR frames, maintaining its advantage in both single- and multi-user
cases. The most significant differences between the two methods are observed again in the
low-SNR regions of the ROC plots.

When considering a completely unknown scenario with varying channel loads and using
a definitive CNN trained on diverse channel conditions, the CNN demonstrates superior
adaptability, achieving a detection rate of 0.8 compared to 0.5 for correlation when ac-
cepting a false alarm rate of 0.1. Increasing the number of correlators in the bank does
not effectively mitigate the Doppler effect, as the selection of maximum correlation out-
puts introduces larger correlation side lobes, degrading performance in low-SNR regions
and distorting the ROC curve. However, the bank of correlators offers the advantage of
providing an estimate of the Doppler shift for detected packets.

Future work could focus on designing neural networks capable of not only detecting pack-
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ets but also estimating the Doppler frequency of detected frames, potentially mimicking
the mentioned advantage of the correlator bank. This approach could integrate Doppler
estimation into the detection process, improving efficiency and reducing computational
overhead. Moreover, extending the dataset to include more diverse scenarios, such as addi-
tional channel impairments or non-symbol-synchronous scenarios, would enhance the gen-
eralizability of the proposed methods. Finally, exploring hybrid approaches that combine
neural networks with traditional methods could further improve detection performance.
Relevant future development also involves a comparison with reference benchmarks that
go beyond the correlation-based approach.
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Appendices

A Satellite geometry calculations
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Figure 36: Satellite geometry.

The basic geometry between a satellite and ground station or user is depicted in Figure 36.
Two sides of the red triangle are usually known (the distance from the user to the Earth’s
center, RE = 6378 km, and the distance from the satellite to the Earth’s center, taking
into account the satellite height). There are four variables in this triangle: the elevation
angle ϵ0, the nadir angle α0, the central angle β0 and the slant range d. As soon as two
quantities are known, the others can be found with the following equations:

ϵ0 + α0 + β0 = 90

d cos ϵ0 = r sin β0

d sinα0 = RE sin β0

Applying cosines law for the triangle in the figure, we can reach an expression of the slant
range as a function of elevation angle ϵ0.

d(ϵ0) = RE

√(
h+RE

RE

)2

− cos 2ϵ0 − sin ϵ0

 ,

where h is the satellite height above Earth’s surface. Since the maximum slant range in
our scenario is known, which is 1000 km, the elevation angle can be calculated as well
as all the other parameters. In Table 12 a comparison of the values obtained with and
without Earth’s curvature is provided.
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Table 12: Comparison flat Earth model vs curved Earth model.

Parameter Curved Earth Flat Earth
ϵ0 33.35° 36.87°
α0 49.77° 53.13°

Coverage area’s radius 766 km 800 km
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