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ABSTRACT
Heterogeneous data and partial participation hinder the ef-
fectiveness of federated learning (FL). To compare client
selection policies under a common yardstick, we adopt
the Federated Learning with Gradient Summaries for Cen-
tralized Client Selection (FL-GSCCS) model, where each
client transmits a lightweight gradient summary for selec-
tion and only chosen clients perform full local training
with sparsified updates. Within this framework, we propose
COSAGE, a hybrid centralized policy that combines Age
of Information (AoI) with gradient dissimilarity computed
from a proxy update via the cos4 metric. Simulation re-
sults show that COSAGE consistently outperforms AoI-
only and dissimilarity-only baselines in non-IID settings,
and approaches the performance of clustering-based upper
bounds without requiring client-to-client coordination or
server access to client statistics.

Index Terms— Federated learning, Client selection, Het-
erogeneous data distribution, Gradient similarity measures.

I. INTRODUCTION
Federated learning (FL) typically has to operate under pro-

nounced data heterogeneity: clients collect data in disparate
contexts, yielding non-IID, imbalanced, and often limited
local datasets [1], [2]. In such settings, naı̈ve aggregation
(e.g., FedAvg [3]) can converge slowly, bias the global
model, and generalize poorly. The challenge is amplified
at scale by partial participation: per-round uplink budgets
force the server to train with only a subset of clients.
When this subset is chosen without regard to statistical
diversity, the aggregated update may under-represent the
population, further degrading convergence. This motivates
investing a small additional uplink cost from all clients to
expose selection-relevant information.

To tackle this problem, we formalize Federated Learning
with Gradient Summaries for Centralized Client Selection
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(FL-GSCCS): in every round, each client transmits a small
gradient summary (typically one real value) that the server
uses for participant selection; only the selected clients then
perform full local training and upload sparsified updates.
This framework provides a clean yardstick to compare
selection policies under the same uplink budget which is
the critical bottleneck for classic FL.
Relevant literature. Client selection has evolved from
availability/throughput heuristics [3], [4] to content-aware
criteria based on losses, norms, cosine similarity, or projec-
tions [5]–[12]. Clustering methods (CFL, FedGroup) [13],
[14] promote diversity but assume stable metadata or server
visibility into client statistics-assumptions that are often
unrealistic and that add maintenance overhead. Joint selec-
tion–communication schemes (e.g., FedCG [15]) can be ef-
fective but are centralized and heavy. In contrast, FL-GSCCS
is cluster-free and lightweight: a tiny per-client summary en-
ables diversity- and fairness-aware selection without client-
to-client coordination or server access to private features.
Contributions. Building on the FL-GSCCS system
model [16], we develop and evaluate COSAGE, a mixed-
policy client selection algorithm for FL. Specifically:
• We instantiate a hybrid centralized policy that combines (i)

participation time-Age of Information (AoI) [17]-to ensure
fairness, with (ii) gradient dissimilarity computed from a
one-epoch proxy update via the cos4 metric to promote
diversity under non-IID data.

• We provide explicit per-round communication accounting
that distinguishes downlink broadcast, per-client summary
overhead, and sparse uplink from selected clients.

• Through experiments on CIFAR-10 with
VGG16/ResNet18 (feature extractors frozen) and top-
k sparsification, we show that COSAGE consistently
outperforms baselines that rely only on AoI or cos4
across heterogeneity levels and uplink budgets, and
approaches the performance of a clustering-based upper
bound-without requiring client-to-client coordination or
server access to client statistics.

Notations: Calligraphic letters denote sets. The set
{0, . . . , n−1} is denoted by [n]. Bold lowercase letters repre-
sent vectors when the dimension is clear. Random variables



are denoted by uppercase letters, and their realizations by
lowercase.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

II-A. System Model
Let us begin by detailing the FL-GSCCS setting. We con-

sider U clients, each with private dataset Du, collaboratively
minimizing a global loss L(w) over model weights w ∈ Rm:

L(w) ≜
1

|D|
∑
u∈[U ]

Lu(Du,w), D ≜
⊎

u∈[U ]

Du. (1)

Each local dataset is composed of S shards. We divide
the training process in four phases, repeated iteratively,
described in the following and summarized in Fig. 1.
Phase 1– Global model update and local training: The
parameter server (PS) distributes a global model update g(t)
to all the local clients. Each local client performs SGD of
the global loss function over the local dataset to obtain a
local model update:

gu(t) ≈ ∇L(Du,w(t)). (2)

Phase 2– Gradient summary transmission: Each local
client transmits a gradient summary to the PS, following
the idea of lightweight feedback in [16]. Specifically, each
client reports a scalar

qu(t) = fq(g(t− 1),gu(t)), (3)

where fq(·) is a summary function that the current local gra-
dient update and the previous global update to a single real-
valued score. This summary is orders of magnitude smaller
than gu(t), so its overhead is negligible. We denote by
q(t) = [q0(t) . . . qU−1(t)] the vector of gradient summaries
transmitted by all the users to the PS.
Phase 3– Client selection: The PS selects a subset S(t) of
clients, following policy

S(t) = π(q(t)) (4)

with ∥S(t)∥ = S and broadcasts the selected client IDs in
the downlink.
Phase 4– Gradient transmission and global model up-
date: Clients in the set S(t) transmit their full gradient to
the PS. The PS then produces a global model update as

g(t+ 1) =
∑

u∈S(t)

gu(t). (5)

II-B. Problem Formulation
Given a per-round client budget S, e.g., driven by the

amount of available uplink resources, we consider the prob-
lem of choosing the gradient summarization function fq and
the client selection policy π that maximizes the learning per-
formance. We focus specifically on the practically relevant

case of fq and π not being time dependent. Conceptually,
one may seek to minimize the deviation of the global model
from the ideal trajectory:

min
fq,π

∑
t

∆t, ∆t = Lk − E[L(t,wt)] . (6)

Rather than attempting to solve (6) explicitly, in the remain-
der of this work we focus on a specific, practically motivated
instantiation of fq and π, and evaluate its impact on the
learning trajectory empirically.

Note that a more complete model as in [16] would
consider a given size of the gradient summary, say R and
consider the objective function in (6) as a function of R.
For simplicity, we consider here only the case of scalar
summaries, i.e. R = 1.

III. PROPOSED SOLUTION: COSAGE

We now introduce COSAGE, a hybrid centralized policy
for client selection in the FL-GSCCS framework. The key
idea is to balance two complementary criteria: temporal
fairness and update diversity.
Age of Information. Each client u maintains an age counter
au(t), which is increased by 1 every round in which the
client is not selected by PS. The counter is akin to AoI [18],
[19]. To prevent repeatedly sampling recently active clients,
we implement a cooldown via a silent ratio ρ ∈ [0, 1]: the
youngest ρU clients are excluded from the candidate pool
at round t.
Gradient dissimilarity. For each eligible client, the server
requests a proxy update obtained from a short local training
phase, yielding a proxy gradient ∇w̃u(t). This proxy is
summarized into a scalar quantity

fq
(
∇w(t−1),∇w̃u(t)

) ∆
= cos4

(
∇w(t−1),∇w̃u(t)

)
, (7)

where ∇w(t− 1) denotes the previous global gradient. The
cos4 similarity is defined as

cos4(gu,gv) =
⟨gu,gv⟩4
∥gu∥4 ∥gv∥4

, (8)

⟨u,v⟩4 = 1
4 (∥u+ v∥4 − ∥u− v∥4) , (9)

with ∥x∥4 ≜
(∑

i |xi|4
)1/4

. Unlike standard cosine similar-
ity, cos4 emphasizes dominant gradient components, making
it effective for identifying informative and dissimilar updates
under non-IID data [16].
Hybrid selection. At each round, the server ranks clients by
their dissimilarity scores, partitions them into S bins, and
from each bin selects the client with the largest AoI. This
ensures that the selected set combines both fresh participants
and diverse updates.
Training and aggregation. Selected clients perform E
epochs of local SGD, sparsify their gradients via top-k selec-
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Fig. 1. Workflow phases for Federated Learning with Gradient Summaries for Centralized Client Selection (FL-GSCCS).

tion, and transmit them to the server. The server aggregates
the received gradients as

w(t) ← w(t−1) +
1

S

∑
u∈S(t)

Sparse
(
∇w̃u(t)

)
. (10)

For a gradient vector g ∈ Rm, the operator Sparse(g) retains
the k entries of g with the largest absolute values and sets
the remaining m− k entries to zero:

Sparse(g)i =

{
gi, i ∈ Top-k(|g|),
0, otherwise.

Conceptually, the cos4 metric accentuates dominant gradi-
ent directions, making it well-suited for capturing subtle but
significant changes in client updates. Also, clients that pass
the cool-down filter and exhibit high gradient dissimilarity
are prioritized. This hybrid strategy balances the need to
incorporate both fresh clients and diverse information.

IV. SIMULATION RESULTS AND DISCUSSIONS
We evaluate the proposed solution in two FL scenarios

(targeting smaller and larger populations, respectively), on
the CIFAR-10 dataset using a parameter-server architecture.
All models are initialized with ImageNet-pretrained weights
[20], and only the classifier heads are updated during train-
ing; the convolutional backbones remain frozen.

In the small-scale setting, we consider U = 10 clients
with 5 shards each, using ResNet50. Two clients are selected
per round. In the large-scale setting, U = 100 clients
have 3 shards each, and VGG16 is used as the backbone,
with 10 clients selected per round. In both cases, updates
are aggregated via gradient averaging. As part of Phase
2 in the FL-GSCCS workflow, each client simulates a
short local update over four mini-batches to generate a
lightweight proxy gradient. This proxy is used to compute
a scalar summary (e.g., gradient dissimilarity) transmitted
to the server for centralized client selection in Phase 3.
If selected, the client proceeds to Phase 4, performs one
full local training epoch, and uploads a sparsified gradient
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Fig. 2. Global accuracy comparison using ResNet50 and 10
clients with 5 shards each.

to contribute to the next global model update. Training is
conducted using SGD with momentum 0.9, a learning rate of
0.01, and batch size 64. We adopt the standard cross-entropy
loss for classification. To reduce communication overhead,
only the top 10% of classifier-head gradients are transmitted.
Results are averaged across 25 random seeds. We compare
the following client selection strategies:
• CosAge (proposed): Clients are ranked by gradient dis-

similarity with respect to the previous global update and
partitioned into bins. From each bin, the client with the
highest AoI is selected.

• AoI-Based Prioritization: Clients with the highest AoI
are selected without considering gradient information,
promoting fairness in participation.

• Dissimilarity-Based Prioritization: Clients with the most
divergent updates (in terms of cos4 distance) are selected,
promoting update diversity but disregarding freshness.
As additional references, we also report the performance

of an all-participating upper bound (gray curves in the
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Fig. 3. Global accuracy comparison for different client
selection strategies using VGG16 and 100 clients.

figures). Furthermore, we include a cluster-based client se-
lection baseline (dashed black lines). In this setting, clients
are first partitioned into clusters based on their local data
distributions, obtained by applying k-means to label his-
tograms. The number of clusters is set equal to the number
of clients selected per round, and one client is selected from
each cluster in a round-robin manner, providing a data-aware
benchmark.

In the small-scale scenario (Fig. 2), all strategies perform
relatively well, including AoI-based selection. This is likely
due to the small population size and the relatively rich local
datasets per client, which reduce both statistical heterogene-
ity and the impact of client selection. Nevertheless, our
method shows smoother convergence and lower variance,
suggesting more stable training under constrained participa-
tion. However, as the network scales up, the advantages of
our method become more apparent. In the large-scale setting
with U = 100 clients the training becomes significantly
more sensitive to client selection (Fig. 3). AoI-only selection
(yellow) quickly loses effectiveness and fails to sustain learn-
ing, while dissimilarity-only selection (green) suffers from
slow convergence due to its lack of participation diversity.
The local loss selection mechanism [7] (pink) also yields
slower progress and lags behind CosAge policy. In contrast,
our hybrid strategy, by combining temporal freshness (AoI)
with gradient diversity (cos4 dissimilarity), maintains steady
improvement and achieves performance close to the cluster-
based oracle (black), despite not using any data distribution
information.

These results demonstrate that our method scales well with
system size and statistical heterogeneity, making it especially
interesting for practical FL deployments. It consistently
outperforms AoI-only and dissimilarity-only baselines and
adapts to challenging conditions without relying on access
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Fig. 4. Performance comparison of CosAge to other client
selections mechanisms.

to client data statistics.
Finally, we examine the performance of different client

selection policies that incorporate similarity-based scoring.
Fig. 4 reports the results using cos4 dissimilarities. The
cyan curve corresponds to a variant where the cooldown
mechanism is enforced: only the top 50% of clients in
terms of AoI are considered, and dissimilarity is evaluated
within this restricted set to discourage repeated participation
of recently active clients. The purple curve illustrates a
probabilistic selection rule, where each candidate is assigned
a weight proportional to its dissimilarity score. Formally,
letting si denote the similarity-based score of client i, we
construct shifted values s̃i ≥ 0 and define the selection
probabilities as

pi =
s̃i∑
j s̃j

. (11)

A fixed number of representatives is then sampled without
replacement according to {pi}. This randomized mapping
favors clients with more diverse gradient summaries while
still allowing occasional exploration of lower-ranked candi-
dates. As a benchmark, we also include an AoI-only policy
(yellow) and an all-participating upper bound (grey). Our
findings suggest that CosAge offers a more sensitive measure
of update diversity in high-dimensional settings.

V. CONCLUSION

We studied client selection in the FL-GSCCS framework
using lightweight gradient summaries. By combining the
Age of Information with update diversity via gradient dis-
similarity, the proposed policy achieves stable convergence,
scales effectively under heterogeneous data and approaches
clustering-based upper bounds without requiring access to
client statistics.
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