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Abstract As climate models become increasingly complex, there is a growing need to
comprehensively and systematically assess model performance with respect to observations. Given the
increasing number and diversity of climate model simulations in use, the community has moved beyond
simple model intercomparison and toward developing methods capable of benchmarking a large number of
simulations against a suite of climate metrics. Here, we present a detailed review of evaluation and
benchmarking methods and approaches developed in the last decade, focusing primarily on scientific
implications for Coupled Model Intercomparison Project (CMIP) simulations and CMIP6 results that
contributed to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).
Based on this review, we explain the resulting contemporary philosophy of model benchmarking, and
provide clear distinctions and definitions of the terms model verification, process validation, evaluation,
and benchmarking. While significant progress has been made in model development based on systematic
evaluation and benchmarking efforts, some climate system biases still remain. The development of open‐
source community software packages has played a fundamental role in identifying areas of significant
model improvement and bias reduction. We review the key features of several software packages that
have been commonly used over the past decade to evaluate and benchmark global and regional climate
models. Additionally, we discuss best practices for the selection of evaluation and benchmarking metrics
and for interpreting the obtained results, the importance of selecting suitable sources of reference data and
accurate uncertainty quantification.

Plain Language Summary Global and regional climate models are increasingly becoming more
advanced and complex. Observational data used to assess the ability of models to reproduce realistic climate is
becoming more diverse and available over longer time spans. Both of these factors make the comparison of
observations with model data a complex task. Analysis methods or diagnostics are developed to evaluate and
benchmark model data both with and without observations. These diagnostics have shown many improvements
in the abilities of the current generation of models to reproduce the current climate, but some problems remain in
which model output and observations do not agree well. In order to identify these areas of model‐observation
disagreement more efficiently, scientists have developed software packages that are freely available to the
global community. The characteristics of some of the most commonly used packages are described here in
addition to best practices on how to interpret the results obtained. We explain why the choice of observations
and the selection of appropriate diagnostics is vital to obtain meaningful results. Climate models are constantly
evolving and improving; therefore, it is critical that evaluation frameworks also continue to advance
concurrently.
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1. Introduction
Earth's climate is the result of intricate and rich interactions between the system's realms: atmosphere, biosphere,
ice, land, and ocean. One cannot fully understand the physical and biogeochemical dynamics that give rise to the
mean‐state climate, its temporal and spatial variability, and its response to past, present, and future perturbations
without considering the system in its entirety. The rise in atmospheric greenhouse gas concentrations, land‐use
change, and changes in atmospheric aerosols associated with post‐1850 global industrialization represent a
significant perturbation to Earth's climate system. The vast scale and coupled nature of Earth's climate means that
the full impact of such anthropogenic perturbations cannot be studied by traditional laboratory methods but must
be studied using tools that encompass the full system. Developing a detailed understanding of how climate change
is evolving and will evolve throughout the rest of the 21st century and beyond is vital to societal decision‐making,
including the development of appropriate climate adaptation and mitigation strategies.

General CirculationModels developed in the late 1960s (Edwards, 2011; Manabe & Bryan, 1969; S. H. Schneider
& Dickinson, 1974) provide the tools necessary to probe climate dynamics and the climate system response to
various perturbations. These numerical simulations, known as climate models, are rooted in fundamental sci-
entific principles that represent the physical processes and exchanges of energy and matter between the atmo-
sphere, sea ice, land and ocean. While these “physical” (“physics‐based”) climate models provide the means to
understand the physics of the system, over the past several decades as the field of climate modeling has advanced,
more comprehensive configurations, known as Earth System Models (ESMs) have been adopted by climate
modeling centers. In addition to representing the physical climate system (being “physics‐based”), ESMs include
additional processes such as interactive atmospheric composition, biogeochemistry and carbon exchange between
Earth system components. Both physical and ESM‐based climate models provide the virtual infrastructure to
develop a comprehensive understanding of climate dynamics, serving as the primary tools for understanding the
climate system, its variability, and its response to anthropogenic forcing. In this manuscript we focus our dis-
cussions on climate models used for the World Climate Research Programme's (WCRP) Coupled Model Inter-
comparison Project (CMIP; Meehl et al., 1997). These include both physical climate models and climate models
based upon ESMs. For easier understanding we will refer to both model types as “climate models” from hereon.

Output from climate models has become central to the Intergovernmental Panel on Climate Change (IPCC)
assessment reports, and model‐derived future projections form the backbone for the development of climate
adaptation and mitigation policies. Given their role in political and societal decision‐making, the need to sys-
tematically assess the simulation realism of climate models is paramount. As climate science and the field of
climate modeling advanced, recognition of this need led to the development of CMIP; providing the framework
necessary for systematic evaluation and comparison of model simulations, ushering in a new era in climate change
research (Meehl et al., 2023). Initiated in 1995, and now entering its seventh phase (CMIP7; Dunne et al., 2025),
the results from CMIP have become inextricably linked to the IPCC assessment reports (Meehl, 2023) and have
led to significant advancements in climate science.

CMIP has evolved from a single experiment performed by 21 global climate models in CMIP1 (Lambert &
Boer, 2001; Meehl et al., 1997), to an enormous coordinated international effort involving over 100 different
climate models, hundreds of experiments, and the public archiving of over 15 petabytes of model output (Eyring
et al., 2021; Eyring, Gleckler, et al., 2016). The “historical” experiment introduced in CMIP5‐6 (Eyring, Bony,
et al., 2016; Taylor et al., 2012), in CMIP3 known as “climate of the 20th Century experiment (20C3M)” (Meehl
et al., 2023), provides the framework necessary to appropriately assess model performance relative to the real
world given that the prescribed forcing is designed to be as consistent as possible with observed atmospheric
composition changes and time‐evolving land cover (in CMIP5 & beyond). Small differences in external forcings
can have a considerable impact on climate model simulations (e.g., Holland et al., 2024) and thus the specifi-
cations of prescribed forcing in the historical simulations are critical when evaluating model fidelity across
multiple models. For a more detailed description of CMIP history see Durack et al. (2025).

The historical simulation is one of the common experiments that must be completed as part of the “entry card” for
models to participate in CMIP6 or other organized Model Intercomparison Projects (MIP) endorsed by CMIP
(CMIP‐Endorsed MIPs; Eyring, Bony, et al., 2016), e.g. the Aerosols and Chemistry Model Intercomparison
Project (AerChemMIP, Collins et al., 2017), the Detection and Attribution Model Intercomparison Project
(DAMIP, Gillett et al., 2016) and the Cloud Feedback Model Intercomparison Project (CFMIP, Webb
et al., 2017). The historical simulation is also critical as it provides the branch point for additional experiments
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aimed to provide projections of future climate throughout the 21st century and beyond based on scenarios of
future energy consumption and carbon emissions associated with societal change (ScenarioMIP; O’Neill
et al., 2016). The other experiments required for entry into CMIP6 are known collectively as the Diagnostic,
Evaluation and Characterization of Klima (DECK) experiments. These include idealized experiments, such as an
instantaneous step to four times pre‐industrial CO2 levels and a transient increase of 1% CO2 per year, that are
designed to understand the system response to external forcings, rather than to reproduce observed changes in
climate.

Leveraging output from historical (or 20th Century) CMIP simulations, climate model evaluation and bench-
marking, originally undertaken “in‐house” at individual modeling centers, has evolved into an important field of
its own involving international coordination, thousands of scientific publications, and has driven the development
of new research centers, software capabilities, and infrastructure to facilitate rapid assessment of model per-
formance (Eyring et al., 2019; Eyring, Bony, et al., 2016; Eyring, Gleckler, et al., 2016; Gleckler et al., 2016;
Neelin et al., 2023; Waliser et al., 2020). Such efforts are driven by the need to document and understand sys-
tematic biases present in model simulations in order to steer model development efforts toward improved sim-
ulations and increase confidence in model results, particularly increase confidence in model‐derived future
projections. The topic of climate model evaluation has also become a prominent feature of IPCC reports (Flato
et al., 2013) given the focus on climate projections providing estimates of near‐ and long‐term climate change.
Such projections are subsequently used to understand potential climate change impacts at both global and regional
scales.

In order for the user community to make efficient use of the large number of model simulations available within
CMIP, there is a need for benchmarking of model outputs to understand the relative strengths and weaknesses of
the available simulations. This benchmarking is not about ranking models or finding the “best” model, but about
ensuring that consistent information is available, allowing users to make informed decisions about which model‐
derived products they should use and for what purpose. Such an approach recognizes the fact that the suitability of
a model simulation is very much dependent on the purpose that one intends to use it for—including the regions
and variables of interest and the specific question(s) that the user is trying to address.

As CMIP rapidly grew from CMIP5 into CMIP6—both in the complexity and number of participating models and
experiments, and in the volume of model output made available for community distribution—the urgent need to
develop a framework to allowmodel evaluation and benchmarking to be performed more efficiently and routinely
(Eyring, Gleckler, et al., 2016) was recognized. It was noted that there must be efforts to transition from individual
ad‐hoc (and often “in‐house”) model evaluation efforts to a more community‐coordinated approach leveraging
available computational hardware already integrated into the CMIP workflow (i.e., the Earth System Grid
Federation (ESGF) system; D. Williams, 2015; Petrie et al., 2021). The community was encouraged to contribute
diagnostic codes, observations, and observation‐based products to on‐going efforts including CREATE‐IP (Potter
et al. (2018), previously ana4MIPs) and obs4MIPs (Teixeira et al., 2014), which could aid in routine and rapid
model evaluation, all while leveraging existing ESGF‐node infrastructure. The exact details of the vision pre-
sented in Eyring et al. (2019) (referred to hereafter as EY19) was successful in many parts but ultimately was not
realized in the complete manner originally outlined. The development of individual evaluation and benchmarking
tools progressed tremendously from CMIP5 to CMIP6, more contributions from those tools were included in the
latest IPCC report: a code repository for IPCC figures was created (IPCC‐WG1, 2023) and also code quality
controls were put in place. However, the ability to process model output automatically alongside ESGF to rapidly
and routinely evaluate CMIP6 output as the simulations came online could not be fully accomplished. This quasi‐
operational evaluation framework fell short not due to technical plausibility, but due to complexities associated
with the data quality of the submitted simulations. Deviations from the pre‐defined, strict structure of file format
and metadata information, even apparently trivial ones, meant that implementation of fully automated and rapid
evaluation directly after data publication was not possible for CMIP6. Furthermore, although all modeling centers
had agreed on providing their simulations in this pre‐defined format, they were not all able to do so. While the
exact implementation did not pan out, the EY19 vision ushered in dedicated efforts and increased motivation to
develop community‐oriented diagnostic tools to aid in rapid and routine model evaluation efforts. EY19's call to
action to start the transition from individual ad hoc efforts to community‐driven, community‐oriented, and open‐
source model evaluation tools, was realized.
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This paper provides a current and retrospective overview of the state‐of‐play for climate model evaluation and
benchmarking efforts, the application of such efforts to the scientific and broader community, and a discussion on
the advances and growing challenges. Additionally, a number of open‐source evaluation and benchmarking tools
that were used for the evaluation of CMIP6 simulations are described and characterized. Many of the tools
described here have been developed and significantly advanced since EY19, indicating the recognition by the
community of the need for realizing the goal of routine, rapid, and robust climate model evaluation. We do not
provide a detailed follow‐on vision to EY19 here but instead provide a comprehensive retrospective overview of
evaluation and benchmarking efforts which are now available to be leveraged. We first present a discussion of the
terminology and philosophy of model evaluation and benchmarking (Section 2) before following with a
comprehensive overview of available tools and community‐driven efforts (Section 3). Applications of model
benchmarking as part of the model development process and within the growing community of external end users
are discussed (Section 4). Improvements in reducing long‐standing model biases have been achieved by sys-
tematically evaluating models for different model generations (see Section 5). However, some of the long‐
standing model biases persist even though the community has worked on reducing them. Examples of these
persisting biases are given in Section 6. In Section 7 the prerequisites of observations and their uncertainties are
briefly outlined since they play a very important role in every evaluation and benchmarking effort. Finally, in
Section 8 we summarize the provided definitions, tool characteristics and availabilities, possible applications, and
indicate where the advancements of model evaluation and benchmarking could aid rapid model evaluation efforts
in CMIP7.

2. Philosophy of Model Evaluation and Benchmarking
Traditionally, approaches for evaluation, benchmarking and assessment of Earth system models have centered on
fidelity to observed phenomena or comparative performance in their ability to accurately model physical pro-
cesses (i.e., a model accurately captures modes of variability). Broadly speaking, model evaluation approaches
are designed to help us understand qualitatively, or more often quantitatively, uncertainty in model simulations
related to the following aspects:

• Internal Variability: the climate system's internal fluctuations, reflecting the fact that the modeled system is
intrinsically chaotic.

• Model Structure: different model formulations (process‐representation in and structure of the model) arising
due to factors including but not limited to different grid resolutions, vertical coordinates or parameterization
choices, different levels of interactivity for specific modules (e.g., fixed or interactive ice sheets, aerosols,
etc.), and perturbations of parameters that go on to determine differences in model behavior.

• Boundary Conditions: uncertainties in the external data used to drive the models such as forcings or
orography.

• Future Projections: specification of scenarios for the future including future forcings, emissions and socio‐
economic pathways will always be a key source of uncertainty (Lehner et al., 2020).

Here, we attempt to define key terms relating to climate model output analysis and climate model evaluation by
systematically framing the purpose, outcomes and limitations of such analyses. It should be noted that these terms
are not universally applicable across the atmospheric sciences. There are different terminologies in use for nu-
merical weather predictions or decadal predictions that do not fully conform with the definitions introduced here.
Additionally, the definitions below are not entirely exclusive, but can overlap with some aspects of one of the
other terms (see e.g. the definition of “Benchmarking”). However, all four key terms are important enough for
climate model analyses and assessments that they deserve their own definition:

• Model Verification: the process of assessing model consistency in terms of correct implementation of the
included processes as articulated in the model and experimental design. This is a basic first step to ensure code
translates correctly to simulations by adhering to the basic physical, chemical, and biological principles such
as Newton's laws or the laws of thermodynamics (in both atmosphere and ocean). Sometimes, model veri-
fication is performed as the model simulations are being produced (such as monitoring the conservation of
total energy, total atmospheric mass, etc.), and the focus is often on the artifacts introduced by the numerical
discretization scheme (e.g., Lauritzen et al., 2022) or by changes to software or hardware used for the sim-
ulations (e.g., the Ensemble Consistency Test in A. H. Baker et al. (2015) and the Time Step Consistency Test
in Wan et al. (2017));
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• Process Validation: the process of determining how well a model represents processes in the real world,
particularly for the intended uses of the model. Process Validation therefore goes beyond Model Verification
where the focus is to check if a model captures (e.g., the physical or biogeochemical) processes as we encode
them, but not necessarily as they are in the real world. Process validation can include a broad range of aspects
from ensuring correct units and sign of the data produced, to the interactions between model components or
variables and process representations, and may or may not include observations.

• Evaluation: the process of assessing simulations against one or more observational data sets. The necessity for
observations means evaluation can only be done for the historical period, and only for variables or processes
for which observations or reanalysis data are available. Model evaluation can be done for a single model or in a
multi‐model context. Incomplete observational records, including limited time series length, unobserved
variables, biases due to specific instruments, and uncertainties in spatial and temporal coverage can make
evaluation challenging for certain processes and realms of the climate system that are under‐observed.

• Benchmarking: the process where model simulations are evaluated with observations, reanalysis data or with
other models often resulting in a statement made about the “goodness” of the simulation or model based on a
predetermined set of standards or criteria (e.g., observations or other standards).The evaluation process
normally occurs whenever new schemes are added to the model, but model benchmarking occurs only after all
the pieces are assembled and climate simulations are produced.

Note that the term “assessment” is used in this manuscript from time to time. It describes mostly more generally
the activities of Process Validation, Evaluation and Benchmarking, that is the process of looking at a model
simulation in more detail to be able to decide if it is suitable for the intended purpose (“performance assessment”).
An assessment can therefore include one or more of the aforementioned activities.

Since the terms validation, evaluation and benchmarking are used most often, and probably also most easily,
confused in their usage, we provide characteristics of these terms in Table 1. This overview aims to clarify
differences in their characteristics.

Our definitions, schematically shown and explained in Figure 1, are similar in some respects but also differ
slightly from prevailing terminology for model evaluation and benchmarking (Best et al., 2015; Grewe
et al., 2012; Luo et al., 2012), notably in the inclusion of observations for assessing simulations. However, we note
that even if a model performs credibly when compared to observations, it may not provide reliable future pro-
jections (McAvaney et al., 2001; Notz, 2015). We also need to ensure that the model's response to perturbations
remains credible, therefore comparisons with observations need to be made in the context of internal variability

Table 1
Characteristics of Validation, Evaluation and Benchmarking of Climate Model Simulations

Feature Process validation Evaluation Benchmarking

Can it be quantitative? Yes Yes Yes

Can it be qualitative? Yes Yes Yes

Can it include observations? Maybe Yes Yes

Must it include observations? No Mostly No

Can it determine fitness for a purpose? Yes Yes Yes

Can it be used for future simulations? Yes No No

Is it scale dependent (global, regional etc.)? No No No

Can it be used in a multi‐model context? No Yes Yes

Is it realm‐specific? No No No

Is it experiment‐dependent? No Yes Maybe

Is it suitable for monitoring during model development? Yes Yes No

Is it used for impacts assessments or policy formulation? No Maybe Yes

Can it involve more than one model components or domains? Yes Yes Mostly not

Can it include performance metrics? No Maybe Yes

Can it be used for process diagnostics? Yes Yes Indirectly
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and observational uncertainty. Furthermore, a model that performs better on a specific metric or process, may
underperform with other metrics. The inferred model skill, and ultimately the determined rank, is highly variable
and uncertain, and depends not just on the chosen metric or evaluated realm, but also very strongly on the chosen
observational data set (Schwalm et al. (2013); see more details about the importance of observations in model
evaluation and benchmarking in Section 7). No individual evaluation technique or performance measure can
therefore be considered superior. It is rather the combined use of many techniques, performance measures and
observations that provides a comprehensive overview of model performance (Flato et al., 2013).

This implies that even scores obtained through benchmarking models have to be correctly interpreted (Knutti &
Rugenstein, 2015) and that peculiarities of individual model uncertainties must be addressed. Compensating
errors must also be taken into account since they can be masking issues specific to individual processes. The
analysis of model performance should be guided by the intended purpose, as exemplified in the treatment of
uncertainty on Equilibrium Climate Sensitivity discussed in Chapter 4 of the IPCC 6th Assessment Report (J.‐Y.
Lee et al., 2021). We envisage that Table 1 will serve as a guide that enables model developers, end users and the
wider scientific community to understand the advantages and limitations of these methods and make the best
choice for their desired objectives.

Based on the above discussion, we recommend that model evaluation and benchmarking efforts or frameworks
include but are not limited to the following:

1. An evaluation of key variables simulated by models with standardized observations and reanalysis data or
previous model runs (e.g., CMIP6). This involves community participation in identifying such key variables.

2. An evaluation of whether fundamental processes in the Earth System are adequately represented in models,
that is, represented well enough that the resulting simulations can be trusted as being realistic and “fit for
purpose.” This involves both identifying the processes of interest and developing metrics that appropriately
assess their representation.

3. A standard set of performance metrics and diagnostics to facilitate (1) and (2).

Figure 1. Schematic definition of the terms Model Verification, Process Validation, Evaluation and Benchmarking for use in
the climate model context. Note that although some form of ranking can be performed during benchmarking, based on the
chosen metric and selected observations, this ranking is generally not valid for all metrics, all realms and all possible
observational references. Thus, it is important to realize that a “high” ranking of one model for a given comparison does not
mean that this model performs well in other climate realms (Hassler et al., 2025).
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4. Observational, reanalyses, satellite or experimental data products to facilitate (1) and (2).
5. Appropriate software, hardware and data infrastructure specifications to facilitate (1) and (2). This will require
addressing issues related to hardware (such as memory capacity, GPU capabilities, speed, and disk storage
requirements), software (such as handling unstructured grids, licensing restrictions for evaluation tools), data
(such as licensing, documentation, missing data or uncertainties in measured quantities).

6. Flexibility to incorporate new scientific targets easily, for example evaluate Machine Learning (ML)/Artificial
Intelligence (AI) based model development or analyzing tipping points or overshoot scenarios.

7. Capability to address differences in simulations such as forced versus unforced simulations and prescribed
versus concentration/emission‐driven simulations.

Figure 2 shows different approaches that are commonly used for evaluating and benchmarking climate model
simulations. Each approach represents an overarching evaluation topic (e.g., evaluation metrics) and can often be
applied to all different realms of a climate model (e.g., atmospheric parameters, land parameters, etc.) and on
global and regional scales.

Figure 2. Different approaches that are most commonly used for the evaluation and benchmarking of climate models. Most of
the approaches can be applied to different realms (e.g., atmosphere, ocean, land and land ice, ocean and sea ice), and each
approach can include more than one diagnostic or metric. Approach 1 uses the so‐called Portrait Diagram to simultaneously
display several performance metrics (see Section 2), which is very versatile in its application across different domains,
analyzed variables and number of included observations or time periods. Approach 2 represents all diagnostics that are based
on analyses of biases and variability. Approach 3 includes all diagnostics that focus on spatial analyses, for example spatial
correlations or physical connections between neighboring regions/realms. Approach 4 includes any budget assessments.
These diagnostics are commonly applied globally, but can also be applied regionally if boundary conditions and fluxes across
boundaries are clearly defined. Approach 5 represents all other statistical approaches for model evaluation, for example the
analyses of distributions. Approach 6 finally includes all diagnostics that aim for describing Earth system and its
interconnections and changes as a whole, for example emergent constraints or equilibrium climate sensitivity (ECS) (Lembo
et al., 2024).
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Portrait Diagrams (see Approach 1 in Figure 2), often also referred to as performance metric plots, condense the
evaluation of different variables down to a few numbers displayed as colored squares or triangles. They are
metrics used to provide information about relative performance of different models and were originally applied to
atmospheric variables only (Gleckler et al., 2008). Since their beginnings Portrait Diagrams have become a
popular visualization for different realms and are included in many evaluation studies and evaluation and
benchmarking tools (e.g., Bock et al., 2020; Collier et al., 2018; Eyring et al., 2021; J. Lee et al., 2024). Portrait
Diagrams usually show the Root Mean Square Error (RMSE) calculated for different variables in comparison to
observational data sets. The RMSE is normalized by the median of all models, and the magnitude of the RMSE is
indicated by the color in the plot (see Figure 3a). Each triangle can then represent the RMSE based on different
observational data sets or different seasons of the same variable and observation pairing.

Approach 2 in Figure 2 represents a wide variety of metrics and diagnostics that are based on first‐order char-
acteristics of variables, like their means (e.g., Stevenson et al., 2020; Tsujino et al., 2020), climatologies (e.g.,
Eman et al., 2024; Huang et al., 2020), variabilities and biases (e.g., J. C. A. Baker & Spracklen, 2022; Cesana
et al., 2023; Donohoe et al., 2024; Hsu et al., 2021; Stevenson et al., 2020; Q. Zhang et al., 2023). We think of
them as first‐order since right after the general overview of a Portrait Diagram, these would be the analyses that
are performed to understand the characteristics of simulations. The metrics and diagnostics of this approach are
very versatile in their application and can help evaluate variables of different realms and also cover global or
regional scales. An example of a global bias analysis is shown in Figure 3b.

For some variables, their spatial distribution or spatial connections are very important characteristics. This has
been recognized by the evaluation community by introducing metrics and diagnostics that specifically analyze
whether climate models can reproduce these spatial characteristics, for example, through pattern correlations
(e.g., Bjarke et al., 2023; Bock et al., 2020; Fasullo, 2020; Wu et al., 2020). Figure 3c shows an example of a

Figure 3. Examples of metrics and diagnostics for different evaluation and benchmarking approaches. (a) Example of a
Portrait Diagram (Approach 1 in Figure 2), (b) example of a bias analysis (Approach 2 in Figure 2), (c) example of a pattern
correlation analysis (Approach 3 in Figure 2), and (d) example of a distribution (Approach 5 in Figure 2). Examples
generated using PCMDI Metrics Package (a) and ESMValTool (b–d), see Table A1 (Hassler, 2025).
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pattern correlation analysis for different variables. Thick horizontal lines represent the multi‐model mean for that
variable, the thinner lines represent the individual models. The whole group of spatial pattern metrics and di-
agnostics that are again very versatile in their application regarding realm and spatial scale, are summarized in
Figure 2 as Approach 3.

Another very important and well‐used diagnostic approach are budget assessments (Approach 4 in Figure 2).
While traditionally many budget assessments in the atmospheric realm were focused on energy budgets at the top
of the atmosphere (Lembo et al., 2019), often considering the influence of clouds (e.g., Dolinar et al., 2015; D. Li
et al., 2023; Mayer et al., 2016), or energy budgets at the surface (e.g., D. Li et al., 2023; Wild et al., 2015), other
budget. also moved into the focus of the scientific community, such as the evaluation of hydrological budgets
(e.g., Freedman et al., 2014), land surface fluxes (e.g., J. Li et al., 2021), sea ice mass (e.g., Keen et al., 2021; S. Li
et al., 2021) or sea ice concentration budgets (e.g., Nie et al., 2023).

Statistical analyses take a further step in the depth of model evaluation and benchmarking. These analyses
quantify emergent relationships in the simulated output using statistical methods (including ML/AI approaches).
Like the other approaches of Figure 2, statistical analysis can be applied globally or regionally. Taking precip-
itation as our example, there are many analyses that focus on global metrics, like globally distributed trends (e.g.,
Vicente‐Serrano et al., 2022), but there are also many studies focusing on specific regional trends (e.g., J. Li
et al., 2019; L.‐L. Li et al., 2022; Peña‐Angulo et al., 2020; Rivera & Arnould, 2020; Xin et al., 2020). A common
characteristic of statistical approaches is their emphasis on distributions/histograms (e.g., Ahn et al., 2023;
Ebtehaj & Bonakdari, 2023), probability density functions (e.g., Almazroui et al., 2021; Jönsson et al., 2023;
Martinez‐Villalobos et al., 2022; Sharma et al., 2022; Song et al., 2021), and cumulative distribution functions
(e.g., Yang et al., 2018). Selective sampling of parts of these distributions are used for quantifying and evaluating
extremes (e.g., John et al., 2022; Srivastava et al., 2020). Spectral analysis is another common approach, espe-
cially to evaluate variability in simulations (e.g., Ahn et al., 2022; Holt et al., 2022). One example for a diagnostic
of this approach is shown in Figure 3d where histograms of one variable for two different models are shown.

”Earth SystemMetrics” include metrics and diagnostics that describe the behavior of the whole Earth system with
all connected subsystems. A typical metric example is the equilibrium climate sensitivity (ECS) that describes the
long‐term temperature rise that is expected to result from a doubling of atmospheric CO2 concentration (Knutti &
Hegerl, 2008). It is an established metric that can quantify the joint effect of forcing and feedback, and is
calculated regularly with newly available simulations (e.g., Meehl et al., 2020; Nijsse et al., 2020; Schlund, Lauer,
et al., 2020). Other examples for Earth System Metrics are the transient climate response (TCR) and the transient
climate response to cumulative emissions of carbon dioxide (TCRE). Both these metrics also describe the
sensitivity of a given model to increases in CO2 and are therefore used as metrics for characterizing how well the
different parts of models are connected (e.g., Jones & Friedlingstein, 2020; Meehl et al., 2020; Spafford &
MacDougall, 2020; Tokarska et al., 2020; R. G. Williams et al., 2020). These examples of Earth System Metrics
are based on the Earth energy budget and demonstrate how the approaches of Figure 2 are often closely connected
to each other. They do not apply to a specific realm or region. Another example of Earth System Metrics are
emergent constraints with which a quantity related to the future climate is put in perspective with an observable
quantity in the past or present‐day climate (e.g., Allen & Ingram, 2002). Besides being applicable to global
quantities, emergent constraint metrics can also be used to describe regional phenomena (e.g., P. Dai et al., 2024;
Simpson et al., 2021).

The six approaches presented in Figure 2 are only separated to aid in explaining their general characteristics. In
reality, most evaluation or benchmarking studies apply metrics and diagnostics from several of the approaches to
diagnose the simulations and variables of interest, for example the diurnal cycle of precipitation (Covey
et al., 2016), or the progress of model development over different phases of CMIP (Bock et al., 2020).

The growing prevalence and availability of ML/AI tools has led to a number of applications for model evaluation
and benchmarking. Many of the tasks within evaluation and benchmarking (Figure 3) lend themselves to the
strengths of ML techniques, namely classification and regression. Examples include regression algorithms that
better handle outliers and collinearity than ordinary least squares, such as ridge regression (e.g., Ceppi &
Nowack, 2021). Similar approaches can be extended to understand causal inference and constraining un-
certainties in climate projections (e.g., Nowack et al., 2020). Classification approaches are also common in model
evaluation by, for example, defining observed regimes and quantifying the ability of models to capture the
observed regimes. This can be done with clustering methods, as has been shown for cloud regimes (e.g., I. Davis
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& Medeiros, 2024; Tselioudis et al., 2021), or with more sophisticated ML methods like self‐organizing maps
(e.g., Gibson et al., 2017; Nigro et al., 2011).

3. Tools for Monitoring Climate Simulations
Ahead of evaluation and benchmarking, the verification and validation of the numerical implementation of
climate models entails a multi‐faceted approach. As noted in Section 2, verification attempts to ensure that the
model is implemented correctly. While some verification can be accomplished by considering basic character-
istics of the simulation (e.g., energy conservation), subtle changes during model development or in the
computational environment can be difficult to detect.

The chaotic nature of the climate system poses challenges for verification of software and hardware changes. As is
well understood, small changes in the initial conditions may introduce perturbations that grow in time and may
influence the numerical solution that can appear as a difference in the time‐averaged behavior of the system (i.e.,
the “climate”) that persist for a substantial amount of simulated time. Similarly, changing computational envi-
ronments may introduce unexpected changes, and ruling out significant differences may require very long
simulations (Guarino et al., 2020). The use of ensembles of simulations helps to characterize this variability.
Similar perturbations can be introduced by software changes (e.g., a compiler version change) or hardware (e.g.,
running the model on a different HPC system). While these changes sometimes expose errors or technical issues
in a model, it is difficult to ascertain whether differences from a “baseline” simulation are statistically significant
or not. One tool that has been developed to address this issue is the Ensemble Consistency Test (A. H. Baker
et al., 2015). In this approach, a series of short simulations are produced to generate a distribution of geophysical
quantities that are then statistically compared with a reference distribution; statistically significant changes in the
distribution indicate that the change has shifted the simulated climate and, therefore, flag the change as needing
additional attention. The recent development of the Ensemble Consistency Test approach suggests that many
climate‐changing software or hardware changes can be detected in only a few time steps (Milroy et al., 2018). An
alternative approach, known as the Time Step Consistency test, compares the time step sensitivity of a known
model configuration to some change to evaluate whether the prognostic variables show a significant deviation by
measuring the deviation between a 2 s time step and a 1 s time step (Wan et al., 2017). Having objective tests that
measure whether changes are significant is crucial when moving complex climate model codes to new compu-
tational systems and architectures, and also for evaluation of code modifications that do not replicate the reference
case bit‐for‐bit but nevertheless are not expected to modify the simulated climate (i.e., refactoring).

4. Implementations of Model Evaluation and Benchmarking
4.1. Climate Model Development Community

As was noted above, and illustrated in Figure 1, climate models (and their individual component models) undergo
verification and validation processes during development and tuning. There are different practices across
modeling centers, but some commonalities naturally emerge. For example, it is typical for components of a model
(e.g., an individual parametrization) to be developed separately from other components, and possibly even
separately from a climate model altogether, and later be implemented, evaluated, and possibly adopted. An
example of this is the Gent‐McWilliams parametrization of mesoscale mixing in the ocean, as recounted by
Gent (2011): the parametrization was first developed from theoretical considerations (Gent & McWil-
liams, 1990), and afterward implemented into the GFDL ocean model by Danabasoglu et al. (1994), and later was
incorporated into the first version of the Community Climate System Model (Boville & Gent, 1998). Other parts
of climate models are developed in situ, so to speak, always being part of a particular model. For example, the
turbulence parametrization used in ECHAM was developed within that model in the 1990s (Brinkop &
Roeckner, 1995) and has been used in all subsequent versions (Stevens et al., 2013). Evaluations occur throughout
the process, but evaluating new approaches should be thought of as distinct from later model benchmarking
activities which occur only when all the pieces are assembled and climate simulations are produced.

Once a model is developed to the point of producing climate simulations, a great deal of evaluation is undertaken.
A key component of that evaluation takes place during the model “tuning” process. Model tuning is effectively the
process of “calibrating” the model's climate by parameter estimation to targets which can be observed or modeled
quantities or for some condition to be met (Schmidt et al., 2017). Hourdin et al. (2017) provided background on
the concept, including providing some perspective on methodologies and challenges. Mauritsen et al. (2012)
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shows examples of alternative tuning of one climate model that is particularly instructive. Using a variety of
global annual‐mean diagnostics, several different tunings of their model produce a relatively narrow range of
climates that all appear equally plausible. They show, however, that regional differences emerge between their
different tunings, the representation of tropical intra‐seasonal variability is sensitive to the tuning choices, and the
climate sensitivity to increased CO2 varies by more than 0.5 K. Recently, Duffy et al. (2024) used a perturbed
physics ensemble of another model to show that cloud feedback (and thereby climate sensitivity) can vary widely
within a climate model depending on parameter settings. Elsaesser et al. (2025) used a similar perturbed physics
ensemble to train a neural network‐based emulator to calibrate the model parameters to match a set of obser-
vational references and generate a second “calibrated physics ensemble.” This work illustrates how model tuning
is evolving toward more systematic and objective methods that might produce simulations in better agreement
with observations, and provides an example of how ML approaches can be incorporated into the model devel-
opment cycle. The tuning process, therefore, plays a decisive role in determining the climate of a model, and
methods of evaluation are key factors during this stage of development.

Critically evaluating the simulated climate's fidelity is, as we have just established, a crucially important step in
the model development cycle, and indeed model evaluation is essential for climate models to make accurate and
trustworthy climate predictions (T. Schneider et al., 2024). As discussed by Hourdin et al. (2017) and others
though, it is infeasible to evaluate every aspect of a climate model, and the many different valid ways how amodel
can be successfully tuned (e.g., Mauritsen et al., 2012) makes such an endeavor very difficult. So it falls upon the
modeling centers and the broader community to find meaningful methods that are broadly applicable for eval-
uating the simulated climate as well as more nuanced and specialized diagnosis of regions and phenomena of
interest. In doing so, sometimes it has become useful to differentiate between metrics and diagnostics. Gleckler
et al. (2008) provided one approach to this, defining metrics as scalar quantities that represent the distance be-
tween model results and observations (or any other reference), as shown in approach 1 of Figure 2. Diagnostics,
on the other hand, encompass a much broader array of evaluations that can be judged qualitatively or quantita-
tively, as illustrated by the other approaches of Figure 2. Recently a lot of attention has been devoted toward
developing “process‐oriented diagnostics” that aim to guide model development by quantifying errors in process
representations within the models (as opposed to broad geographic biases, e.g.) (Neelin et al., 2023) or even
special observational data sets for “process‐oriented” evaluation (e.g., Kaps et al., 2023). These generally fall into
the statistical analyses of Figure 2, though sometimes the methods are not strictly statistical.

4.2. Open‐Source Evaluation and Benchmarking Tools

The introduction of consolidated software packages that calculate and visualize climate model metrics and di-
agnostics has provided modeling centers and individual researchers access to powerful evaluation tools at a
relatively minimal cost. Leveraging these tools during model development helps to guide decision‐making. This
is highly practical as the evaluation/benchmarking tools can be applied to different versions/variants of a model
during its development cycle or in the tuning process. Having “off the shelf” (and independent) evaluation tools
provides the advantage of examining a model's performance more comprehensively than otherwise might be
practical. Some evaluation packages provide holistic assessments as output (e.g., Gleckler et al., 2008; Reichler &
Kim, 2008; Taylor, 2001). For example, as introduced by Gleckler et al. (2008), Waugh and Eyring (2008), and
Pincus et al. (2008), diagnostic outputs such as Portrait Diagrams can bring many metrics together, sometimes
using multiple observational baselines, in a concise display of model skill. Similarly, Taylor diagrams (Tay-
lor, 2001) provide a compact display of the pattern correlation and bias of particular fields. The normalized mean
squared error provides similar information as a Taylor diagram and can be visualized as a bar chart (e.g., Simpson
et al., 2020). Along with these concise displays of metrics, many of these benchmarking tools provide a browsable
catalog of diagnostics that range from maps and time series of basic fields (e.g., long‐term mean, global mean) to
climate indices to more elaborate process‐oriented diagnostics (see e.g. ESMValTool gallery (ESMValTool
Development Team, 2025), PMP mean climate result browser (PCMDI Metrics Package, 2025), ILAMB land
comparison (ILAMB 2.6, 2025)).

There has been increasing interest in bringing different tools together to make model evaluation and inter‐
comparison more accessible and leverage the tools more efficiently. One example is ESMValTool (Eyring
et al., 2020; Eyring, Righi, et al., 2016; Righi et al., 2020) which includes comprehensive metrics and diagnostics
to evaluate model performances against observed quantities or other reference values (e.g., Bock & Lauer, 2024;
Bock et al., 2020; Gier et al., 2020, 2024; Lauer et al., 2017, 2023) or conservation properties and theoretical
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considerations about the intrinsic nature of the climate system (e.g., Lembo et al., 2019; Mauritsen et al., 2012).
Recently, also more modern approaches like emergent constraint analyses (e.g., Schlund, Lauer, et al., 2020;
Zechlau et al., 2022), causal model evaluation (e.g., Galytska et al., 2023; Karmouche et al., 2023), extreme event
analyses (e.g., Malinina & Gillett, 2024; Paçal et al., 2023), and machine learning methods (e.g., Schlund, Eyring,
et al., 2020; Swaminathan et al., 2024) have either been implemented in ESMValTool and successfully used for
model evaluation or data have been processed by EMSValTool to facilitate further analyses outside the ESM-
ValTool framework. ESMValTool also has been used in several chapters of IPCC AR6 (e.g., Eyring et al., 2021).
Most importantly, ESMValTool is constantly updated and improved to meet the upcoming challenges of multi‐
model evaluation and benchmarking, for example, the next phase of CMIP with a huge expected data volume
(Lauer et al., 2025; Schlund et al., 2023, 2025), and therefore meets the criteria for a model benchmarking
framework as listed in Section 2.

Another example is the PCMDI Metrics Package (PMP) (J. Lee et al., 2024) which focuses on delivering and
expanding a diverse suite of performance metrics of the physical climate. It includes model performance
assessment accessible via interactive visualization capabilities and a public archive of the summary statistics.
Metrics from the PMP have been used to document the model performance of the E3SM and GFDL models
(Smith et al., 2024; Zhao et al., 2018). PMP's metrics for extra‐tropical modes of variability have been leveraged
during the evaluation of models during their development cycle and/or inter‐comparison with other CMIP models
(e.g., J. Lee et al., 2019; Orbe et al., 2020; Smith et al., 2024; Sung et al., 2021). The CLIVAR ENSOmetrics that
were incorporated into the PMP workflow have been used to show the performance evolution of IPSL models
between its CMIP5 and CMIP6 versions (Boucher et al., 2020; Planton et al., 2021).

A further example tool is the International Land Model Benchmarking (ILAMB) package (Collier et al., 2018),
which offers a comprehensive assessment of models including land surface carbon cycle components by eval-
uating hydrological and biogeochemical variables and their relationships with driving variables. ILAMB is an
open source package developed with significant input gathered through community workshops (Hoffman
et al., 2017; Luo et al., 2012). Employing a suite of in situ, remote sensing, synthesis, and reanalysis data, ILAMB
produces a hierarchical set of web pages containing statistical analyses and figures designed to provide insights
into the strengths and weaknesses of models spatially and through time. For every variable, ILAMB generates
graphical diagnostics (spatial contour maps, time series line plots, and Taylor diagrams; Taylor, 2001) and de-
termines model performance for the time period mean, bias, RMSE, spatial distribution, interannual coefficient of
variation, seasonal cycle, and long‐term trend. Model performance scores are calculated for each metric and
variable and are scaled based on the degree of certainty of the observational data set, the scale appropriateness,
and the overall importance of the constraint or process to model predictions, following a customizable weighting
rubric. Scores are aggregated across metrics and data sets to produce a single score for each variable for every
model or model version. ILAMB checks functional relationships between prognostic variables and one or more
driver variables through variable‐to‐variable comparisons (e.g., gross primary production vs. precipitation) and
scores model performance in capturing these emergent relationships. The International Ocean Model Bench-
marking (IOMB) package (Fu et al., 2022), which employs the same code base as ILAMB, provides diagnostics to
evaluate ocean physical and marine biogeochemical fields and produces a similar hierarchy of web pages con-
taining statistical analyses and figures. ILAMB and IOMB were used to benchmark CMIP5 and CMIP6 models,
as well as the mean of the CMIP5 and CMIP6 models. This combined analysis was illustrated in Chapter 5 of the
Sixth Assessment Report (Canadell et al., 2021).

The growth in the number of different diagnostic tools and the diversity of implemented metrics has led the
community to seek methods for combining the resulting workflows and diagnostics for comprehensive analysis
capabilities. To execute this myriad of heterogeneous tools, users must manually coordinate model output data
and run each tool in turn. A fully automatic evaluation can be challenging in such a setup. While various tools
have been developed, the CoordinatedModel Evaluation Capabilities (CMEC) is an effort that was initiated in the
United States to unify the user interface and operation of various analysis packages for more efficient systematic
evaluation of climate models. A key goal for CMEC is to achieve (a) interoperability through a generally robust
and lightweight wrapper, (b) workflow standards that provide a common syntax for executing tools, and (c) bring
diagnostic outputs together in an integrated visualization interface. Several tools that were developed mainly in
the United States including PMP, ILAMB, and the NOAA Model Diagnostics Task Force (NOAA MDTF) suite
of packages have become compliant with the CMEC by adopting the interface standard.
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As part of their mandate, the CMIP Model Benchmarking Task Team (WCRP CMIP, 2025a), that was created
during the CMIP reorganization in preparation for their next phase (CMIP7), has collected and collated infor-
mation about different open‐source evaluation and benchmarking tools that have been used in the community for
analyses of CMIP6 simulations. The list as it stands is now available via the CMIP website (WCRP
CMIP, 2025b), and can easily be extended with additional tools that are not yet listed. Figure 4 illustrates many of

Figure 4. Schematic of different community open‐source evaluation and benchmarking tools with their respective
characteristics (Swaminathan et al., 2025).
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these open‐source evaluation and benchmarking tools, including ESMValTool, PMP, ILAMB and IOMB that
were described earlier. More details about these software packages can also be found in Table A1 in Appendix A.

Even as software tools are developed and established for systematic, comprehensive model evaluation, it is
necessary to continue to devise novel approaches to confront climate models with observations. One reason this is
imperative is to continually check that the models have not been “overfit” to any particular time period or
observational target. Updating the observational baselines provides one way to keep such overfitting in check, but
takes time. Applying additional constraints by clever uses of observations provides more opportunity to expose
model deficiencies. There are a myriad of examples from the literature that have demonstrated potential appli-
cability of various metrics, and often have been applied as methods for model inter‐comparison. A few examples
are provided here:

• [Tropical cyclone representation] Roberts et al. (2020) used Tropical Cyclone tracking methods to verify the
role of horizontal resolution in determining Tropical Cyclone representation in GCMs.

• [Arctic sea ice projections] Massonnet et al. (2012) used benchmarking of CMIP5 sea ice model simulations
to constrain Arctic sea ice projections through a process of model selection. This model subset was subse-
quently used in IPCC AR5, and other model development and evaluation activities.

• [Arctic sea ice loss] Notz and Community (2020) used benchmarking of CMIP6 simulations to produce a
“plausible subset” of CMIP6 models, considering the rate of Arctic sea ice loss per degree of global warming
alongside standard sea ice metrics.

• [Climate extreme indices] Kim et al. (2020) evaluated CMIP6 GCMs in terms of their performance in
simulating the standard climate extreme indices defined by the Expert Team on Climate Change Detection and
Indices (ETCCDI).

• [Extreme precipitation] Scoccimarro and Gualdi (2020) provided an assessment of the CMIP6 extreme
precipitation historical representation, following the same approach previously applied to CMIP5 defined in
Scoccimarro et al. (2013) consolidating the usage of different metrics used to investigate the shape of the
extreme wet end of the precipitation distribution under different climate conditions.

• [Heatwave characteristics] Hirsch et al. (2021), provided the first global evaluation of CMIP6 models in
representing heatwave characteristics between 1950 and 2014, also applying the same methodology to CMIP5
models for comparison.

Despite efforts to mitigate overfitting, either by using multiple metrics, considering the physical process repre-
sentation or structural uncertainties comprised in observations, there is still a risk of overfitting, and so scientists
should be aware of this when interpreting results from model evaluation and benchmarking activities.

A crucial aspect of model evaluation regards the implementation of a weighting scheme for the performance
metrics of a multi‐model ensemble, taking into account the ability of models to reproduce current climate (Knutti
et al., 2017), as well as analogies between ensemble members pertaining to the same “model family” (Sanderson
et al., 2015). From a statistical point of view, while the conventional weighting scheme is applied to mean/
variance of relevant observables (e.g., Knutti, 2010), recent approaches have involved weighting of models by
combining performance and independence (Brunner et al., 2020), or comparing all moments of the distributions,
as in the case of approaches using the Wasserstein distance (e.g., Vissio et al., 2020).

The approaches mentioned above provide new insights and additional facets to model evaluation that go well
beyond the mean state climate. In particular, as climate models have advanced, the ability to capture climate
variability, trends in climate variables, and climate extremes have emerged as key indicators of model fidelity.
The first promising results from individual and large ensembles of climate models that show skill in producing
regional climate features and extremes (e.g., Deser et al. (2020) or Das and Ganguly (2025)), and a thorough
discussion on model skills in reproducing observed trends (Simpson et al., 2025), demonstrate significant ad-
vances in climate modeling capabilities over the years.

It should also be noted, that retrospective evaluations of climate projections by earlier generations of models—for
example, how well climate models “predicted” or “projected” changes in a given climate metric against what
actually occurred in the observed climate system—are also useful measures of model performance. For example,
Stouffer and Manabe (2017) and Hausfather et al. (2020) provide examples of evaluations of the skill of early
climate models (developed in the 1970s—early 2000s) in predicting the patterns and rates of changes in global
temperature in response to rising atmospheric CO2.
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4.3. End Users

The applications for global climate model benchmarking methods and information have grown beyond climate
scientists and model developers. Demand for reliable information about current and possible future climate
conditions continues to grow as policymakers, governments, and industries increasingly evaluate exposure to
climate‐related risks. Global climate models remain a commonly used tool that these climate data consumers look
to for climate information. Often with an eye toward reducing uncertainty about climate projections (Hawkins &
Sutton, 2009), many of these users have turned to climate model benchmarking/evaluation efforts to guide their
refinement of information from global climate models to better reflect their specific needs or requirements. Some
specific examples of the use of model benchmarking methods outside the global climate modeling development
community include:

• [Reducing uncertainties] Selecting specific global climate models for use in climate assessments, other than
IPCC reports, based on their benchmarked performance for specific aspects of the climate in a particular
region (sometimes referred to as model “culling” or “subsetting”) (e.g., Brekke et al., 2008; Infanti et al., 2020;
Massonnet et al., 2012; Pierce et al., 2009).

• [Reducing uncertainties] Weighting climate model projections with benchmarking results to produce a
multi‐model estimate with potentially lower uncertainty about a target metric (e.g., Knutti et al., 2017).

• [Regional impacts] Benchmarking results and methods used to determine which climate model outputs to use
as inputs for user‐specific impact models, and evaluate the output of those models (e.g., Wagener et al., 2022).

• [Regional impacts] Benchmarking outputs from lower‐resolution global models used in combination with
storyline‐like high‐resolution global or regional simulations to provide useful information for adapting and
responding to extreme climate/weather events (De Dominicis et al., 2020).

• [Input for AI/ML applications] Benchmarking techniques used to evaluate sources of training data or
compare output from reduced complexity or data‐driven (AI‐ or ML‐based) climate models (e.g., Nicholls
et al., 2021; Ullrich et al., 2025; Watson‐Parris et al., 2022).

• [Constraining future projections] Benchmarking results used to constrain future projections of key envi-
ronmental quantities via the application of emergent constraints (e.g., Brient, 2020; Cox et al., 2018).

• [Constraining future projections] Benchmarking results from climate models used to develop climate model
weighting schemes and screening methods to constrain future hydrology and inform water resource planning
in the Colorado River Basin in the Western U.S. (Lukas et al., 2020).

Notably, in many documented uses of model benchmarking methods or data, the specific benchmarking data used
are computed specifically by the user for their application, instead of relying on a common repository of model
benchmarking results. The use of these derived benchmarking data sets can make it difficult to compare results
from different studies and requires additional effort from model developers. This presents an opportunity for a
coordinated model benchmarking effort that targets common use cases of benchmarking methods and data. For
instance, given the regional scope for many climate benchmarking consumers, there is an opportunity to develop a
common framework of regionally‐based benchmarking results for global climate simulations addressing
commonly‐used climate variables. There is also a high demand for benchmarks that categorize the performance of
climate models with respect to extreme events when using climate model data to evaluate climate exposure and
risk. The ease of availability and endorsement of such benchmarking results by the climate modeling community
will likely encourage a broad set of consumers of climate change information to use this benchmarking data and
also encourage the interplay between climate modeling, adaptation, and mitigation activities (Lu, 2024).

5. Model Improvements Demonstrated by Systematic Evaluation and Benchmarking
The expanded and systematic application of model‐observation intercomparison strategies has revealed notable
improvements in the fidelity of today's climate models and a reduction of long‐standing cross‐generational biases.
Continued evaluation efforts across model generations also provides reminders of biases that have not been
eliminated or that may recur and helps modeling centers to identify processes to prioritize in future model
development. In this section, we describe a few examples of model performance benchmarking between different
CMIP generations (i.e., CMIP5 and CMIP6), using some of the evaluation tools discussed in this paper and
review specific model biases that have been reduced as a result of benchmarking.

To illustrate the use of evaluation/benchmarking methods to assess cross‐generational bias reduction, here we
apply the PCMDI Metrics Package to check the performance of a suite of CMIP5 models alongside the
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corresponding CMIP6 models from the same modeling centers. The Portrait Diagram summarizing various at-
mospheric performance metrics (Figure 5), indicates an overall improvement in the seasonal climatology in
general. In many cases, the CMIP6 models' Root Mean Squared Errors (RMSE) are smaller than those from the
CMIP5 models in most cases in this example (colors shifting from warmer hues for CMIP5 to cooler hues for
CMIP6). However, it should be noted that the evolution of such statistics can be sensitive to the selection of
reference data sets, analysis period, ensemble member, and subset of models. Similarly, most CMIP6 land carbon
cycle models exhibited improvement over their CMIP5 counterparts as shown in an overview calculated with the
ILAMB package (Figure 6). The CMIP5 multi‐model‐mean performs better across all the variables with regard to
the metrics than any single CMIP5 model. Likewise, the CMIP6 multi‐model‐mean performs better than any
single CMIP6 model across all the variables. However, there are a few variables for which a single model may
outperform the mean of CMIP5 or CMIP6 models (e.g., CMIP5 biomass, CMIP6 carbon dioxide, CMIP5/6 soil
carbon, CMIP6 global net ecosystem carbon balance, CMIP5 runoff, and CMIP6 terrestrial water storage). The
multi‐model mean of the CMIP6 suite of models performs better, for nearly every carbon cycle variable
considered in Figure 6, than any single model considered and better than the multi‐model mean of the CMIP5
suite of models. Another way of quantifying performance progress between different CMIP model generations is
to look at the pattern correlation for different variables. In these diagnostics, calculated with ESMValTool, the
closer the correlation value is to 1 the better the performance. Focusing on a subset of atmospheric variables,
Figure 7 shows the progress between CMIP5 (blue lines) and CMIP6 (red lines). For most variables shown, the
CMIP6 multi‐model‐mean has a higher correlation coefficient than the CMIP5 multi‐model‐mean, and very often
the spread between the correlation coefficients is reduced from CMIP5 and CMIP6. This is a clear indication that
the models reproduce a more realistic climate for these variables (closer to the observational reference data set)
than the model generation before.

For some variables the alternative observational data sets (marked as gray circles in Figure 7) show a weaker
correlation than some of the individual models (marked as thin horizontal lines), for example Northward Wind at
850 hPa. This is noteworthy since it indicates that some models represent “reality” better than actual observations.
For all shown variables the analyzed time period for both model simulations and observations are identical which
makes it unlikely that internal variability is the cause for this phenomenon. Also, the used versions of the
observational data sets are not too far out‐of‐date to explain the weaker correlation. The most likely explanation
for this phenomenon is that there are uncertainties connected to the observations that are not taken into account

Figure 5. Overview scores for CMIP5 (left‐hand side) and CMIP6 (right‐hand side) models generated by the PCMDIMetrics
Package, for the seasonal climatology of multiple atmospheric variables evaluated against observational data sets over the
period of 1981–2005. Included here are a subset of models from institutions that participated in both CMIP5 and CMIP6
historical experiments, in order to trace changes from one multi‐model ensemble to the next. CMIP5 models are labeled in
blue and CMIP6 in red. Root Mean Squared Error (RMSE) values are calculated against reference data sets for each season
and normalized by the median value of each row. Thus the normalized RMSE value indicates performance relative to other
models within a given row, with negative values indicating a better agreement with observations. Detailed analysis
information can be found in J. Lee et al. (2024) (J. Lee, 2025).
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when the spatial patterns of the climatologies of the variables are evaluated. For a more in‐depth discussion about
the importance of carefully choosing observations for evaluation and benchmarking activities and an appropriate
treatment of observational uncertainties can be found in Section 7.

5.1. Reductions in Specific Model Biases

Here, we describe a few examples of specific model biases that have largely improved in climate models
following routine quantitative assessments over the past decade.

5.1.1. Vegetation Phenology

Early work in evaluating and intercomparing land carbon cycle models identified persistent biases in the timing of
the seasonal variation of vegetation growth with respect to satellite‐derived leaf area index (LAI) (Randerson
et al., 2009, Figure 1). Through comparison with the observational data set fromMODIS LAI, the authors showed
that the timing of maximum leaf area lagged behind observations by one to 2 months. Since the regional timing

Figure 6. Overview scores for CMIP5 (left‐hand side of table) and CMIP6 (right‐hand side of table) climate model land
models generated by ILAMB for multiple metrics against different observational reference data sets. The evaluation time
period depends upon the time period available for each of the observational data sets that contributes to the aggregate score
for each variable. Scores are relative to other models within each row, with positive scores (blue to purple) indicating a better
agreement with observations and negative scores (yellow to brown) indicating a worse agreement with observations. Models
included are only those from institutions that participated in both CMIP5 and CMIP6 carbon cycle experiments, in order to
trace changes from one ensemble to the next. CMIP5 models are labeled in blue and CMIP6 in red at the top of the table
(Hoffman, Collier, et al., 2025).
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delays were systematic in both of the land carbon models being studied, the authors identified the likely cause as
an underestimate of the carbohydrate pools carried over from one growing season to the next. Subsequent
modifications to the phenology scheme in the Community Land Model ‐ Carbon‐Nitrogen (CLM‐CN) model
significantly improved the timing of maximum LAI.

5.1.2. Biomass in the Amazon Basin

In the same study as discussed above, both of the land models substantially overestimated aboveground live
biomass in the Amazon Basin compared to estimates from satellite observations (Randerson et al., 2009, Figure
5). While both models predicted too much biomass, they adequately reproduced the observed spatial patterns of
aboveground live biomass in the basin. Part of the magnitude bias was attributed to the use of a preindustrial land
cover map with higher forest cover fractions in the southern border of the Amazon Basin, but the authors
attributed most of the bias to low autotrophic respiration in one of the models and excessive allocation of net
primary production to wood in both models. Improvements in model predictions of respiration and carbon
allocation in tropical trees have yielded reductions in the bias of aboveground live biomass in the Amazon Basin.

5.1.3. East Asian Summer Monsoon

The East Asian summer monsoon (EASM) is an important component of the Asian climate system, carrying
moisture from the Indian and Pacific Oceans to East Asia, and exhibits intense interannual variability, resulting in
severe droughts and floods (Yihui & Chan, 2005). Several studies and multi‐model benchmarking efforts have
focused on model reproduction of the EASM (Boo et al., 2011; Kang et al., 2002). The common biases said to
influence this variability are a weakened western North Pacific anticyclone and the Meiyu‐Baiu‐Changma
rainband. Yu et al. (2023) used atmospheric variables from ERA5 (Hersbach et al., 2020), precipitation from
the Climate Prediction Center Merged Analysis of Precipitation (Xie et al., 2007) and monthly Sea Surface
Temperature data from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) data set (Rayner
et al., 2003) to show that, relative to CMIP5, CMIP6 models have stronger westerly winds over the Indo‐China
peninsula and reduced biases in the western Pacific subtropical high as well as the Meiyu‐Baiu‐Changma rain
belt. Such improvements led to a better simulation of the EASM dynamics in CMIP6 models.

Figure 7. Pattern correlation for different atmospheric variables for CMIP5 (blue colors) and CMIP6 (red colors) models
generated by ESMValTool, based on the period 1985–2004. Thick horizontal lines show the correlation with the multi‐model
mean and the thinner lines indicate the correlations for each individual model. Gray circles indicate a second observational
data set. Models included are only those from institutions that participated in both CMIP5 and CMIP6 historical experiments,
in order to trace changes from one ensemble to the next (Hassler & Bock, 2025).
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5.1.4. Cloud and Water Vapor Processes

Representation of cloud processes and water vapor in climate models plays an important role in accurately
modeling the surface warming response due to global warming. Evaluation studies (Dolinar et al., 2015) per-
formed on CMIP5 models have helped identify key sources of errors and uncertainties in these processes such as
cloud vertical distribution and overlap (Stephens et al., 2002), effects of over‐tuning cloud processes to obser-
vations (Lauer & Hamilton, 2013) and interactions between large‐scale circulation and clouds (Su et al., 2014).
More recent studies highlight changes made within the CMIP6 suite of models, leading to improvements in the
representation of these processes (Bock et al., 2020; Jiang et al., 2021; Schlund, Lauer, et al., 2020).

6. Remaining Biases in Climate Model Simulations
A variety of biases exhibited by many or most climate models have been difficult to reduce or completely
eliminate despite frequent model evaluation and bias characterization. Sources of such long‐standing biases
remain difficult to identify, and model developers often perform model tuning exercises or apply bias removal
techniques to reduce their impacts on simulations of contemporary climate and future projections under different
greenhouse gas emissions scenarios. Some examples include:

• Precipitation: Biases in precipitation in climate models vary widely and are sensitive to the representation of
clouds, radiation, surface processes, and multi‐scale circulation (e.g., Ahn et al., 2023; A. Dai, 2006). In
monsoon regions, biases in the location, timing, and spatial and seasonal distributions have significant im-
plications for understanding impacts of climate change and potential mitigation strategies (Hegerl et al., 2015;
Pathak et al., 2019; Pincus et al., 2008). Despite efforts to improve the representation of linked processes,
regional biases in the strength and timing of precipitation remain in current generation models.

• Double ITCZ: The double ITCZ (Intertropical Convergence Zone) is characterized by the double zonally
elongated narrow belt of high precipitation in the tropics, which is present in model simulations but not in the
observed world. Tian and Dong (2020) discuss the progress made in the reduction of this continuous source of
bias across generations of models and hypothesize that it may still take decades to completely eliminate this
error in simulations.

• Warming bias in the tropical troposphere: Excessive tropospheric warming in the tropics has been well
documented in climate models (Bengtsson & Hodges, 2011; Douglass et al., 2008; McKitrick et al., 2010).
Updated comparisons with radiosondes and satellites, as well as reanalysis data, show that models continue to
exhibit statistically significant warming trend differences in both the averaged lower and mid‐tropospheric
temperature series, and that such biases are not only restricted to the tropics but appear to be a global phe-
nomenon (Casas et al., 2023; Po‐Chedley et al., 2021).

• Arctic sea ice sensitivity to global warming: Arctic sea ice decline in CMIP models is lower than that observed
in the satellite record. Internal variability is huge in the polar regions and so we would not necessarily expect
the models to match reality (Rosenblum & Eisenman, 2016). However, systematic benchmarking activity has
shown that CMIP models do underestimate the sensitivity of Arctic sea ice to global warming. The reduction
in Arctic sea ice extent per degree of global warming, or cumulative anthropogenic CO2 emissions, is lower in
CMIP historical simulations than observed (Notz & Community, 2020). This underestimation is most likely
caused by deficiencies in Arctic amplification and atmospheric and oceanic northward transport of heat.

The development of additional performance metrics and the collection of new observational data sets are required
to identify and understand the sources of these long‐standing model biases. Furthermore, continued systematic
and increasingly comprehensive assessments of model performance are needed to inform model development
efforts aimed at reducing biases.

7. Reference Data and Uncertainty Quantification
To benchmark a climate model or its components, observational or observationally constrained data are
commonly used and are often considered to be “the absolute truth.” However, these observational data sets are
never free of uncertainties and systematic biases. The sources of the observational inaccuracies are diverse and
include uncertainties in the measuring system, biased sampling schemes, uncertainties introduced by different
processing steps, spanning from the raw measurement (e.g., irradiances) to a gridded and equally temporally
spaced product, and any resampling, regridding, interpolation or homogenization that occurs before a comparison
can be made with model simulations (e.g., Merchant et al., 2017; Von Clarmann et al., 2020; Zumwald
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et al., 2020). Additional sources of uncertainties and difficulties arise as soon as several different observational
sources are combined into one data set, for example, the HadCRUT5 data set (Morice et al., 2021), the HadISST
data set (Rayner et al., 2003), or the SWOOSH data sets (S. M. Davis et al., 2016).

While some information on uncertainties and biases can be found alongside the observational data set or can be
deduced from the corresponding publications or documentations, clearly defined, generally applicable, and
traceable uncertainties are normally not provided with the gridded satellite observations or even with point
measurements such as ground‐based station data. Although not yet adopted as a common practice, the community
has started to use multi‐observational means, calculated from multiple observational data sets that provide
measurements for the same variable, to characterize the observational uncertainties of a specific variable (e.g.,
Lauer et al., 2023; Pathak et al., 2023). Such a method cannot replace a full and statistically rigorous uncertainty
propagation method, but it can help characterize the range of observational uncertainty for a given variable and
indicate when or where model simulations cannot be robustly constrained.

Another type of product commonly used in climate model benchmarking are reanalysis data sets. Examples of the
most commonly used reanalysis data sets in the atmospheric community include the fifth generation ECMWF
reanalysis (ERA5) (Hersbach et al., 2020), the Japanese 55‐year Reanalysis (JRA‐55) (Kobayashi et al., 2015),
and the Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) (Gelaro
et al., 2017). More recently, reanalysis products that focus specifically on atmospheric composition were
developed and are widely used in the community to evaluate model simulations, for example, the Copernicus
Atmosphere Monitoring Service (CAMS) reanalysis (Inness et al., 2019) or the MERRA‐2 Stratospheric
Composition Reanalysis of Aura Microwave Limb Sounder (M2‐SCREAM) (Wargan et al., 2023). Ocean
reanalyses give a four dimensional description of the ocean combining ocean models, atmospheric forcing fluxes
and observations (Storto et al., 2019). Well‐used examples of oceanic reanalysis include the global eddy‐
resolving physical ocean and sea ice reanalysis at 1/12° horizontal resolution (GLORYS12) (Jean‐Michel
et al., 2021) and the Simple Ocean Data Assimilation ocean reanalysis (SODA) (Carton et al., 2018). One of the
largest advantages of reanalyses over many observational data sets is their full spatial coverage, often spanning
the whole globe, and their long temporal coverage. While some reanalyses cover only the period from the 1980s
(e.g., MERRA‐2) or even from the 2000s (e.g., CAMS) to the 2020s, other products cover over half a century
(e.g., ERA5 or JRA‐55). Even if the gridded reanalysis data sets provide an ensemble (e.g., ERA5), commonly
only the ensemble means/medians are used in practice for most evaluations, leading to the omission of the un-
certainty intervals of the benchmark data. A disadvantage of reanalyses is that numerical models are used to
provide continuous space—time coverage, constrained in some but not all regions through various data assim-
ilation methods by actual observations that carry their own uncertainties (e.g., Fujiwara et al., 2017). Additionally
the underlying models are typically structurally similar to the models being benchmarked with those reanalysis
products.

A related challenge is the selection of the most suitable data sets for the evaluation of models. Different kinds of
models are intended to capture different processes at different spatial and temporal scales. Observational data
collected at a single location or at high frequency may not be suitable for comparison with a simulation for a
climate model grid cell because the location may not be representative of that grid cell or the data may contain
variations not intended to be captured by a given model. In addition, analysts may select data sets based on the
convenience of their use, their ease of accessibility, or the format of the data. To assist the research community in
accessing and utilizing a diversity of observational data products for the assessment of models, projects such as
obs4MIPs (Waliser et al., 2020) and CREATE‐IP (Potter et al., 2018) were instituted to adapt observational data
to the well‐established format used by the modeling community and to provide a clearinghouse of the resulting
products through ESGF, which is the same portal used for distribution of CMIP model output. However, the data
produced in projects like obs4MIPs and CREATE‐IP are not exhaustive and suffer from a lack of routine updates.
As a result, the benchmarking community often prioritizes synthesizing their own data sets, which may be
incomplete and less accessible for reuse. Renewed interest and effort in growing the obs4MIPs data collection is
opening up contribution policies so that it can become more useful for benchmarking climate models.

Scientists recognize such data challenges and in recent decades initiatives such as the ESA Climate Change
Initiative (CCI) have been proposed (Plummer et al., 2017). ESA CCI has been conceived to bridge the long-
standing gap between observational and climate modeling communities, still existing, despite being progressively
closed by an increasing number of researchers working at the interface of the two communities (e.g., the Cloud
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Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas‐Salcedo
et al., 2011)). More specifically, the goal of the ESA CCI project is to bring the observational (primarily space‐
borne) and climate research communities together to create reliable and temporally complete data for essential
climate variables. Another example of cross‐fertilization is the creation and regular improvements of the Global
Space‐based Stratospheric Aerosol Climatology (GloSSAC) data set (Kovilakam et al., 2020). While these ini-
tiatives help to create more harmonized data, they are still constrained in time and often limited to certain
observation types (e.g., satellite remote sensing platforms).

All of the issues described above influence the results of different metrics and diagnostics used for model
evaluation and benchmarking. For example, by selecting only one data set as the reference, the results may be
biased and the conclusions about model performance might be drawn without more thorough consideration. It is
therefore necessary to keep the observational data sets used and their uncertainties in mind when interpreting
results of model evaluation analyses. Additionally, it is important to be aware of the fact that each chosen metric
and diagnostic is tailored toward a specific scientific question and that the achieved model scores are only a
representation of the model performance for that specific metric in combination with the chosen observation(s).

8. Discussion/Conclusion
With each successive phase of CMIP comes a wave of analyses of climate model simulations. These analyses
originate from model development activities, model intercomparison studies, and increasingly from studies that
extend beyond the traditional climate modeling activities. This proliferation of investigation has required the
development of software tools tailored toward the purposes of model benchmarking. These tools vary in form and
function, from bespoke analysis for an individual publication to packages used during model development to large
and organized software activities aimed toward streamlined multi‐model comparisons.

There is a large and continuous effort to improve and move the code of evaluation tools toward modern coding
practices. In recent years, it appears that there is an emerging convention to use Python for developing these tools.
The use of Python for model benchmarking has mirrored the larger data science trend toward Python‐based tools
and open‐source software. Although there is momentum behind the adoption of Python as a common language for
climate model analysis, many individual researchers and existing code bases rely on other languages such as R,
NCL and Matlab (among many others). Similarly, while it has become common practice to provide analysis code
that supports individual studies (e.g., using GitHub repositories), not all researchers provide their code openly.
Even when the code is available, there is no assurance of code quality, portability, scalability, or documentation,
all of which can inhibit the use of the code. These impediments often lead to researchers implementing their own
version of particular diagnostics of interest. Without the original code, or at least the numerical results from the
original analysis, it can be difficult to compare new results with old ones.

A number of collaborative community‐driven projects have stepped forward to help alleviate the pressure of
producing and maintaining model benchmarking codes. These open‐source efforts, such as ESMValTool, PMP,
and the MDTF package developed by NOAA collect individual contributions into common frameworks. These
collections allow model development teams and individual researchers the ability to reproduce well‐documented
diagnostics for the various model benchmarking activities we have outlined above. Similarly, communities of
practice have started to emerge to support researchers and promote ecosystems of tools that reinforce the move
toward a common “stack”; the Pangeo community is one influential example.

Even with these projects and resources, there are still bumps in the road for any of the model benchmarking
activities we have described. There is always some resistance in adopting new tools. Sometimes there are
challenges with documentation or software environments, but it can also be a cultural challenge to introduce new
diagnostics that are not familiar to a group. There can also be skepticism around whether new data sets or
diagnostic codes will be maintained moving forward. A key challenge for multi‐model comparisons is to compute
diagnostics for all available models or simulations in a reusable form, especially when this would entail down-
loading large data sets. And while it is already helpful to have the diagnostics code freely available for all
members of the community, unstable internet connections, power outages and just overall fewer large data storage
capabilities put especially members of the Global South community at a clear disadvantage.

Some of the challenges can be addressed through community‐driven efforts that remove, for example, much of the
computational burden of reproducing diagnostics. There are already some efforts underway to provide online
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tools for accessing pre‐computed metrics across CMIP models using documented benchmark observations,
realized for example, in ILAMB or PMP. Both provide an interactive interface linking performance metrics with
their underlying diagnostics and direct access to the statistics. Another example for addressing some of the
challenges is the automatic download function of ESMValTool that allows the user to specify exactly which data
would be needed for a diagnostic and if they are not available on the local storage system they are automatically
downloaded from the closest (or easiest to access) ESGF node. Additionally, provenance records, including
information about data and software versioning, origin and processing, are now generated with most of the open‐
source evaluation tools to clearly track the used data, their handling, and modification steps.

By providing well‐documented analysis code, pre‐computed results from CMIP, and access to curated obser-
vational data, researchers and model development centers can focus energy on the analysis of new results or
model versions or extending current understanding of the climate system instead of re‐implementing or
re‐computing previous results. The practice of maintaining these code and data repositories, including routinely
updating observations, is a critical issue that must be supported and valued. Developing new diagnostics,
contributing code to these common collections, and maintaining the code should similarly be seen as a foun-
dational contribution to the model benchmarking endeavor. Ideally, there would be regular meetings and dis-
cussions between the different evaluation and benchmarking software providers to coordinate the ongoing and
planned developments. However, there is nothing like this in place yet.

Following these examples and the vision of routine evaluation for new CMIP simulations from EY19, and
recognizing the needs of the community for easy access to CMIP evaluations and benchmarks, the CMIP Panel
followed the suggestion from the CMIP Model Benchmarking Task Team to develop a Rapid Evaluation
Framework (REF) in time for the Assessment Fast Track simulations (Dunne et al., 2025; Hoffman, Hassler,
et al., 2025). The idea is to have the simulations evaluated with publicly available and well‐formatted observa-
tional data (through obs4MIPs; Waliser et al. (2020)) as soon as they are published on ESGF, and the results then
published on a publicly available website for the community to see. Additionally, preprocessed data provided by
the different diagnostics can be downloaded directly from ESGF which will facilitate easier data access for
community members with low internet bandwidth or intermittent internet access. With this the REF contributes to
the CMIP efforts of providing a sustainable structure for regularly updating climate data for a variety of users
(Hewitt et al., 2025). For this framework to be established in a relatively short period of time, it is planned for it to
leverage the ESGF infrastructure for computing and storage capabilities and simulation access, the CMEC
framework for a pre‐defined interface, and the diagnostic calculation capabilities in existing open‐source eval-
uation tools. The exact diagnostic definitions that will be available in the first instance of the REF were finalized
in a community survey (CMIP Model Benchmarking Task Team, 2024). Diagnostics and metrics will only be
based on monthly mean values, and they will be divided in five different thematic groups: atmosphere, ocean and
sea ice, land and land ice, impacts and adaptation, and Earth system. With this it follows the CMIP7 data request
division into exactly the same thematic groups (Dingley et al., 2025; Fox‐Kemper et al., 2025; Y. Li et al., 2025;
McPartland et al., 2025; Ruane et al., 2025). The REF is designed to be modular so that it will be easy to include
additional diagnostics or even additional evaluation tools. To increase its usability in the community, it will also
be available as containerized version so that, for example, modeling centers can use it in their simulation pro-
duction pipeline to assess their simulations before they are even submitted to ESGF. More information about the
REF can be found in the REF GitHub repository (Lewis et al., 2025).

Model evaluation and benchmarking has evolved over time, through the different phases of CMIP, in close
interconnection with the development of climate models. With each newly added model component (e.g., the
capability to calculate emission‐driven rather than concentration‐driven simulations (Sanderson et al., 2024)),
change in resolution (e.g., km‐scale model simulations (Schär et al., 2020)), change in complexity, and change in
general model development technique (e.g., implementation of ML‐based model components (Eyring
et al., 2024)), existing methods of evaluating the models need to be adjusted, new methods need to be invented, or
new observational data sets need to be made available or even created. AI and MLmethods are increasingly being
used in climate modeling is different ways—in specific components, in parameterizations or as hybrid models.
With this novelty in modeling, there is also the accompanying challenge of ensuring robust evaluations around
questions such as whether climate models with AI components continue to adhere to laws of conservation,
simulate long term stability and perhaps most importantly can be explained by our physical understanding of the
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Earth system.We therefore envisage that model evaluation and analysis will play a significant role in our ability to
trust and deploy AI in climate models for variety of end users.

All of the above advances make the need for routinely evaluating simulations, with open‐source and community‐
developed diagnostics more and more relevant and urgent. Many important and pioneering efforts toward this
ambition have been implemented and brought to life already for CMIP6 (e.g.., EY19), and more advances are
planned for the implementation for CMIP7. The open‐source evaluation and benchmarking tools play a very
important role in this endeavor to provide timely and transparent scientific results for the community to assess the
latest available climate simulations.

Appendix A: Open‐Source, Community Evaluation, and Benchmarking Tools
Table A1

Table A1
Open‐Source, Community Evaluation, and Benchmarking Tools That Are Available in the Tool Collection of the CMIP Website

Tool name Primary focus

Functionality
Lead development
institution(s) ReferenceE B

AMET Provides a method for evaluating
meteorological and air quality model
predictions

X EPA (USA) Appel et al. (2011)

ASoP Precipitation X Met Office (UK) Klingaman et al. (2017)

Atmospheric Radiation
Measurement (ARM)‐
DIAGS

Facilitate the use of long‐term high‐
frequency measurements from the
ARM program in evaluating the
simulation of clouds, radiation, and
precipitation

X LLNL (USA) C. Zhang et al. (2021)

Automated Model
Benchmarking R Package
(AMBER)

Land and hydrology X X ECCC (Canada) Seiler et al. (2021)

Coordinated Model Evaluation
Capabilities (CMEC)

Framework for collective operations of
different packages

X LLNL (USA) Ordonez (2023)

CVDP, CVDP‐LE Climate modes of variability X X NCAR (USA) Phillips et al. (2014)

ESMValTool A community diagnostic and
performance metrics tool for
evaluation of Earth system models in
CMIP and other intercomparison
projects

X X DLR (Germany) &
Met Office (UK)

Righi et al. (2020), Eyring
et al. (2020), Lauer
et al. (2020), and Weigel
et al. (2021)

Freva Data search and analysis platform
developed by the atmospheric science
community for the atmospheric
science community.

X X FU Berlin (Germany) Kadow et al. (2021)

GCMeval Tool to help with evaluation of climate
models from the CMIP5 and CMIP6
ensembles

X X Norwegian
Meteorological
Institute (Norway)

Parding et al. (2020)

Integrated Assessment Models
of global climate
change (IAM)

Inter‐linkages between the human and the
natural system

X Potsdam Institute for
Climate Impact
Research
(Germany)

Schwanitz (2013)

International Land Model
Benchmarking package
(ILAMB)

Focusing primarily on biogeochemistry
and hydrology, the package examines
model performance through a variety
of statistical error measures by
comparison with contemporary
observational data and produces a
wide range of graphical output for
exploring model uncertainty

X X ORNL (USA) Collier et al. (2018)
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Table A1
Continued

Tool name Primary focus

Functionality
Lead development
institution(s) ReferenceE B

International Ocean Model
Benchmarking package
(IOMB)

Evaluates the fidelity of ocean
biogeochemistry models and
provides scores and graphical
diagnostics

X X UC Irvine,
ORNL (USA)

Fu et al. (2022)

Model Diagnostics Task Force
(MDTF)—Diagnostics
Package

A portable framework for running
process‐oriented diagnostics (PODs)
on weather and climate model data.
Each POD targets a specific physical
process or emergent behavior, with
the goals of determining how
accurately the model represents that
process

X NOAA (USA) Neelin et al. (2023)

Model Evaluation Tools (MET) Numerical weather forecast verification
and evaluation

X NCAR, NOAA,
USAF (USA)

Brown et al. (2021)

PCMDI Metrics Package (PMP) Evaluate physical climate with focus on
atmosphere, climatology, climate
variability (ENSO, extra‐tropical
modes of variability, monsoon,
MJO), extreme, and cloud feedback

X X LLNL (USA) J. Lee et al. (2024)

RCMES Regional model evaluation tool
developed for the CORDEX
community

X X NASA‐JPL (USA) H. Lee et al. (2018)

SITool Evaluate the model skills in simulating
the bi‐polar sea ice concentration,
extent, edge location, thickness, snow
depth, and sea ice drift

X X Université catholique
de Louvain
(Belgium)

Lin et al. (2021)

TheDiaTo v1.0 A Thermodynamic Diagnostic Tool for
model diagnostics of the
thermodynamics in the climate
systems (energy, water mass,
entropy, enthalpy, energetics)

X X Hamburg University
(Germany)

Lembo et al. (2019)

Note. E, Evaluation; B, Benchmarking.
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Data Availability Statement
All CMIP5 and CMIP6 output used for Figures 3 and 5–7 are available freely and publicly from the Earth System
Grid Federation (ESGF; ESGF Federated Nodes, 2025). More information on the simulations, variables, and
analysis code used to generate the figures can be found in the following Zenodo archives:Hassler (2025) (Figure 3),
J. Lee (2025) (Figure 5),Hoffman,Collier, et al. (2025) (Figure 6),Hassler andBock (2025) (Figure 7). Information
for Table A1 is publicly available in the Tool Table from the CMIP Model Benchmarking Task Team (Model
Benchmarking Task Team, 2025). All tools referenced in Table A1 are open‐source, and publicly available. Please
see the references within Table A1 for each tool's source code. The source code for the software tools (ESM-
ValTool, PMP and ILAMB) that have been used to produce Figures 3 and 5–7 is fully open‐source and is available
in the following Github repositories, respectively: Andela et al. (2025), J. Lee et al. (2025), and Collier (2025).
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