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1 Introduction

1.1 Background and Motivation

Classical magnetometers are widely used in many devices and applications, serving as
essential tools in many critical areas. However, with advances in quantum technology,
quantum-based magnetometers are now emerging as a viable alternative. These sensors
are evolving rapidly, particularly with advances in quantum engineering and miniaturization,
allowing the transition from large laboratory setups to compact, portable devices that are be-
ginning to become commercially available. A variety of applications are of interest for these
new types of sensors, particularly in the fields of medical applications [1], geomagnetism
and space applications [2]. One particularly interesting application is a navigation system
that uses magnetic field maps to aid navigation.

Currently, we rely heavily on Global Navigation Satellite System (GNSS) for positioning and
navigation on the Earth’s surface. The fusion of Inertial Navigation System (INS) position
estimates with time signals from multiple GNSS satellites helps correct the accumulating
errors in the INS position. However, GNSS signals are increasingly vulnerable to jamming
and spoofing, which is the active transmission of signals to prevent or manipulate position
[3]. This is particularly true in conflict areas of the world where these strategies are used
for war tactics [4]. This vulnerability is due to the weak signals emitted by satellites [5] and
highlights the need for a reliable and robust navigation system that can act as a backup in
such regions or further in regions where GNSS is not available.

There are several approaches that exploit the concept of using geophysical maps and mea-
surements to correct for accumulated position errors in INS, creating an unspoofable and
unjammable navigation system. This is achieved through the self-sufficient architecture
of the navigation system, which uses information from pre-recorded maps and on-board
measurements of observable features from the same map, resulting in a navigation system
that does not rely on signals from satellites. This includes, in particular, the use of terrain
contours in navigation applications, also known as Terrain Referenced Navigation (TRN)
[6]. Other approaches include the use of gravitational anomaly maps [7] and geomagnetic
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1 Introduction

anomaly maps for navigation [8]. In particular, the development of quantum-based magne-
tometers with their promising absolute accuracy and high sensitivity [9] has the potential to
significantly improve magnetic field-aided navigation as these promise to reliably measure
small field deviations, which are needed for accurate position estimates. This makes them
ideal candidates to make magnetic fields a viable option for reliable navigation. Some re-
search has been done on navigation systems that use magnetic fields. Research in this area
falls into two main categories: simulations and real-world implementations of this navigation
method. This thesis presents both simulation studies and a real-world laboratory experiment
on magnetic field-aided navigation. So the following highlights some key work in this area.

The work of Wang et al. (2023) [10] on Quantum Diamond Magnetometry for Navigation in
GNSS-Denied Environments implements simulations using the noise characteristics of Ni-
trogen Vacancy (NV) diamond magnetometers. It introduces a novel approach to overcome
the map matching problem and address the positional ambiguity caused by locations with
similar magnetic measurements on the map. The fusion of position estimates is performed
using an advanced Unscented Kalman Filter (UKF) with forward and backward filtering.
The study demonstrates that the iterative forward and backward filtering approach achieves
divergence-free navigation by using Monte Carlo simulations on their specified simulated
flight path.

Further simulation studies using pre-recorded magnetic anomaly maps have been con-
ducted by Canciani (2016) [8]. His work focuses on the use of anomaly maps of the Earth’s
magnetic field and includes flight simulations. However, instead of using a Kalman Filter
(KF) for navigation, he implements a particle filter. In addition, Canciani conducted real ex-
periments using actual flight data, incorporating a Optically Pumped Magnetometer (OPM)
to make scalar intensity measurements of the Earth’s magnetic field. The data obtained
during the flight was fed into his implemented magnetic field-aided navigation algorithm.
Canciani demonstrated navigation accuracy to within a few tens of meters at low altitudes
using real flight data and a high-quality magnetic anomaly map that he had pre-recorded.
He identified altitude and map quality as the two most critical factors affecting navigation
accuracy. In addition, his study showed navigation accuracies within a few kilometers during
a cross-country flight simulation at an altitude of 3km across North America.

Quintas et al. (2018) [11] explored geomagnetic navigation using submerged magnetome-
ters for Autonomous Underwater Vehicle (AUV) navigation. Two Overhauser magnetome-
ters, spaced 1.5m apart, were used to measure the magnetic field. A magnetic field map
was pre-recorded over the area of interest, showing a variability of about 4nT within an area
of 600m× 600m. Three trajectories were used to compare the INS position estimation with
a magnetic field-aiding algorithm. Results showed that the magnetic field-assisted solution
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1 Introduction

had a positioning error within 10m, compared to around 40m for the INS solution in two of
the three trajectories. While errors in the aiding algorithm increased in areas with low mag-
netic field variability, they recovered in areas with more spatial information, demonstrating
its ability to limit position error, unlike INS solutions, which accumulate errors over time.

This thesis aims to take the first steps toward developing and implementing a magnetic field-
based navigation system by combining simulation-based approaches with a real-world labo-
ratory experiment. To achieve this, a laboratory experiment was planned and implemented.
Prior to conducting the experiment, a simulation of the laboratory setup was created. Addi-
tionally, flight path simulations, similar to those by Wang et al. (2023) [10], were carried out
using a similar approach for the magnetic field-aided navigation algorithm.

1.2 Thesis Overview

This thesis begins by presenting the theoretical background necessary for this work. It
introduces the basic principles of magnetism and then briefly outlines selected principles
of classical and quantum-based magnetic field sensing. Further, the operating principles
of the Inertial Measurement Unit (IMU) are explained, followed by the derivation of position
estimation based on the sensed measurements. The associated sources of error are also
discussed. The sensor fusion process using the UKF is described in detail. In addition, the
method of map interpolation using the Kriging algorithm is briefly introduced. The thesis
also includes a brief introduction to sensor quantification and performance metrics, followed
by a definition of the specific performance metrics used in this thesis.

The third chapter presents the methodology and setup of the work carried out in this thesis.
It explains in detail the implemented magnetic field-aided navigation algorithm and describes
the two simulation scenarios carried out in this work. It also describes the data acquisition
process, the map generation scheme, and the laboratory experiment in which magnetic
field-aided navigation is implemented in a real-world setting.

Chapter four presents and discusses the results. First, the results of the simulation ap-
proaches are presented, including both the laboratory experiment and the real-life simula-
tions. For the lab experiment, the sensors used are first quantified in terms of drift and noise.
The generated maps are then presented and the results of the real-life implementation of
the lab experiment are discussed.

The final chapter, chapter five, summarizes the findings of this thesis and provides an out-
look on potential future work.

3



2 Theoretical Background

This chapter presents the theoretical background necessary for this thesis, beginning with an
introduction to the basic theory of magnetism and magnetic fields, followed by an overview
of classical and quantum-based magnetic field sensing principles.
It then covers the Earth’s magnetic field, including its origin, composition, and characteris-
tics. The chapter proceeds to discuss the fundamentals of inertial navigation sensors and
how position can be derived from them.
Following this, a brief explanation is provided on how measurements from multiple sensors
can be integrated. Specifically, the UKF is introduced as a key component in the navigation
aiding algorithm, enabling the combination of position estimates from different sensors to
improve accuracy.
An introduction to the Kriging interpolation algorithm, used for constructing magnetic field
maps in navigation aiding, is then presented.
The chapter concludes with fundamental definitions of sensor metrics, errors, and noise, as
well as methods for quantifying them, followed by the definition of performance metrics for
evaluating navigation accuracy.

2.1 Magnetic Fields and Magnetism

2.1.1 Magnetism in Classical Physics

The magnetic field is a fundamental physical vector field that is present everywhere around
us. It describes the interaction between magnetic materials, moving electric charges, and
electric currents. In the following, key phenomena and properties of magnetism are pre-
sented. This theoretical background is based on the book Magnetism and Magnetic Materi-
als by Coey [12].
A key quantity in magnetism is the magnetic flux density B. Magnetic flux density measures
the line density that crosses a unit surface area and is given in units of Tesla [T]. Another
important measure of the magnetic vector field which is often used interchangeably is the
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2 Theoretical Background

vector field called the magnetic field strength H [A/m]. Both vector fields B and H are
closely related through the following equation:

H =
1

µ0
B −M , (2.1)

where µ0 is the vacuum permeability and M is the magnetization vector of the material.
The magnetization is the resulting net magnetic field of a material exposed to the magnetic
field. The difference between these two vector fields is that the B field accounts for the
magnetization of the medium, whereas the H field does not. In vacuum, both B and H are
proportional to each other as the magnetization M of vacuum is zero.
Although B represents typically the magnetic flux density, in the remainder of this thesis,
the external magnetic field will be denoted as B, since magnetic flux density is often inter-
changeable with the magnetic field’s magnitude.
The magnetic field strength B is proportional to the magnetizing force, which determines
how materials respond to magnetic fields. The force experienced by a moving charge q

within the magnetic field B is known as the Lorentz force F Lor. and is given by:

F Lor. = q (v ×B) , (2.2)

where v is the velocity vector of the moving charge. It can be seen that the force acting on
the charge q is perpendicular to the plane that is spanned by the velocity vector v and the
magnetic field B.

Fundamentals of Magnetic Moment

The simplest magnetic source is a dipole, which is also the basis for the definition of mag-
netization M . A magnetic dipole consists of two poles: a north pole and a south pole. A
schematic of the magnetic dipole and its field is shown in Figure 2.1a. The fact that only
magnetic dipoles exist and not monopoles can be directly derived from the second Maxwell
equation:

∇ ·B = 0 , (2.3)

which states that the divergence of the magnetic field is zero, meaning that the magnetic
vector field is source-free.
The resulting magnetic dipole moment of a current loop I that encloses the surface area A
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m
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Figure 2.1: (a) Magnetic dipole m and its resulting magnetic field. (b) Magnetic moment of
a current loop I.

is given by the following:

m = I ·A , (2.4)

where A is a vector pointing towards the direction orthogonal to the surface A with its length
proportional to the surface area, as illustrated in Figure 2.1b. When a magnetic dipole m is
placed within a magnetic field, it experiences a resulting magnetic torque τ :

τ = m×B , (2.5)

which acts perpendicular to both the magnetic field and the magnetic dipole. The magnetic
field due to a magnetic dipole can be calculated as follows:

B(r) =
µ0
4π

(
(3(r̂ ·m)r̂ −m)

r3

)
, (2.6)

where r̂ is the unit direction vector, r is the position vector of the point to be evaluated, r
is the distance between the dipole and the point to be evaluated. It can be seen, that the
magnetic field strength decreases with r3.

Magnetic Material and their Magnetization

When magnetic materials are exposed to an external magnetic field, they generate their
own magnetic field in response. This process is known as the magnetization M . The
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2 Theoretical Background

magnetization represents the overall effect of the individual magnetic moments m within a
material, and can be calculated as the sum of all the dipole moment vectors:

M =
∑
i

mi . (2.7)

This phenomenon is important to understand the magnetization of the Earth’s crust. Addi-
tionally, a classical type of magnetometer, known as the Fluxgate, utilizes this phenomenon
to measure the strength of the magnetic field.

Materials are mainly subdivided into three groups based on their response to the magnetic
field. These material groups are referred to as: diamagnetic, paramagnetic, and ferromag-
netic. These material responses to the magnetic field can also be quantified by the magni-
tude of proportionality factor called susceptibility χ. Magnetic susceptibility measures how
much a material becomes magnetized by an external magnetic field H :

M = χH (2.8)

In diamagnetic materials, each magnetic moment tend to align opposite to the direction
of the applied magnetic field, producing a net magnetization that counteracts the external
magnetic field, as the vector M points in the opposite direction of the magnetic field B. This
effect is typically very weak, which results in a small, negative susceptibility χdia. < 0. In
addition, diamagnetic materials lose their magnetization once the external magnetic field is
removed.

When the induced magnetization vector aligns with the external field in which it is located,
the material is called paramagnetic. In these materials, each magnetic moment generally
aligns with the applied external magnetic field. However, this magnetic alignment is only
weakly present as the the magnetic moments not fully align with the field direction, leading
to a small and positive susceptibility χpara. > 0. As in the case of diamagnetic material,
the alignment of the magnetic moments does not stay when the externally applied magnetic
field is removed, meaning that the magnetization is only present while the external magnetic
field is present.

Ferromagnetic materials can have independent magnetization that does not necessarily cor-
respond to the external magnetic field. This means that the magnetic moments within the
material align with the external field direction, which stay aligned even if the external field is
removed. This property allows ferromagnetic materials to become permanent magnets.
ferromagnetic materials also exhibit saturation effect when an increase in the applied exter-
nal magnetic field H can no longer increase the material’s magnetization. At this point, the
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B > 0

Diamagnetism Paramagnetism

B = 0 Bext.

Figure 2.2: Illustration of the magnetic moments within a magnetic material. When no exter-
nal magnetic field is present, the net magnetization of each magnetic moment
(depicted as small green arrows) sums to zero. When an external magnetic field
is applied to diamagnetic materials, the magnetic moments tend to align in the
opposite direction of the applied Bext.. In paramagnetic materials, the magnetic
moments align with the direction of the magnetic field. However, they tend to
align only partially, leading to a weak net magnetization M .

total magnetic flux density B reaches its maximum value.

The magnetization response of a ferromagnetic material when exposed to an external mag-
netic field is represented by the hysteresis curve. A schematic representation of the hystere-
sis curve is shown in Figure 2.3b. Initially, the unmagnetized material becomes magnetized
upon exposure to the field, but the magnetization does not increase linearly. It reaches the
saturation point where higher magnetic field strengths no longer result in a higher magneti-
zation. Once the material is magnetized, an external magnetic field opposing the direction
of magnetization must be applied to reduce or reverse the magnetization. A magnetic field
of magnitude Hcor, so called Coercivity, and opposing the magnetization vector has to be
applied to fully demagnetize the magnetized ferromagnetic material. Another way to demag-
netize an magnetized ferromagnet is increasing its temperature. Above a material specific
temperature, also known as the Curie temperature TC , the aligned magnetic moments get
disordered leading to demagnetized state M(T > TC) = 0. Once magnetized by an ex-
ternal magnetic field the material retains some magnetization, when the magnetic field is
removed, which is also known as Remanence.

8
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Ferromagnetism

Bext.

(a)

Saturation BS

H

M

(b)

Figure 2.3: (a) An external magnetic field aligns the magnetic moments within the ferro-
magnetic material. (b) Hysteresis curve of a ferromagnetic material is shown.
A non-magnetized material becomes magnetized upon exposure to an external
magnetic field H . However, the relationship between the applied magnetic field
and magnetization is not linear, as the maximum magnetization, known as Sat-
uration, is reached. When the magnetic field is removed, the material retains
some magnetization, which is known as Remanence.

Current-Induced Magnetic Fields

As previously mentioned, moving charges or an electric current I generate a magnetic field.
The experimentally determined mathematical representation of this field for arbitrary current
shapes I is given by the equation below:

B(r) =
µ0
4π

∫
I dL

|r − rI |2
× r − rI

|r − rI |
. (2.9)

This equation is also known as the Biot-Savart law. The magnetic field induced by the
current I is the integral of the cross-product of the finite element length dL of the current
and the distance vector r−rI between the point r t which the field should be evaluated and
the position rI of the infinite element length. This equation clearly shows, after integrating
over the entire current length, the dependence on the distance r, with the magnetic field
decreasing proportionally to r3, as seen in Equation 2.6.

This is an important phenomenon, as every current flow produces a magnetic field, which
can cause distortions and unwanted noise, especially in indoor environments. In addition,
Alternating Current (AC) generates an alternating magnetic field. Since the current in an
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dL

rI r

x

y

z

Figure 2.4: Schematic of the quantities for calculating current-induced magnetic field.

AC circuit changes direction periodically, the resulting magnetic field also fluctuates in both
magnitude and direction at the same frequency as the current. In indoor environments, AC
power lines and electronic devices can contribute to magnetic field noise, which will be a
crucial factor to consider in the experimental setup discussed in the later Section.

By approximating this integral for long straight currents, one can calculate some resulting
magnetic field strengths from currents within a typical household or laboratory. For these
currents the resulting magnetic field strengths are typically within the order of 0.01 µT to
10 µT for distance of some meters away to a few cm. Another example is the magnetic field
strength near high-voltage power lines, such as those used for trams, which are located
50 − 100 meters away. At street level, just a few meters from a power distribution line, the
magnetic field strength ranges from 0.01 to 1µT.

Induced Currents in Conductive Materials

Eddy currents are currents induced in electrically conductive materials due to time-varying
magnetic fields. This is also known as the Faraday ’s law of induction, which is the third
Maxwell equation:

∇×E = −∂B
∂t

(2.10)

Following the Biot-Savart law, these currents also generate a magnetic field, which can
distort the magnetic field of interest.
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2.1.2 The Behavior of Atoms in an External Magnetic Field

The following sections focus on key phenomena related to atoms and electrons and the be-
havior of their dipole moments in a magnetic field. This is a classical description of quantum
mechanical phenomena that also have an equivalent quantum mechanical description.

Magnetic Moment

At the quantum level, particles such as electrons or atoms with angular momentum exhibit
magnetic dipole moments.
Classically, each atom generates a magnetic dipole moment due to the motion of electrons
around the positively charged nucleus, similar to a current loop (as shown in Equation 2.4),
also known as the orbital magnetic moment. This arises because atoms possess orbital
angular momentum J .
Additionally, particles like electrons can have a magnetic moment due to their intrinsic spin
S. Particles with spin generate a magnetic dipole moment, much like a rotating electrically
charged body in classical electrodynamics.

m = γJ , (2.11)

here the proportionality factor between the two quantities is called the gyromagnetic ratio γ.
This induced magnetic moment is also known as the spin magnetic moment.

The total magnetic moment of an atom is the vector sum of the orbital and spin magnetic
moments. For an atom with a single electron (such as hydrogen 1H), the total magnetic
dipole moment is proportional to the angular momentum and spin of the electron.

Zeeman Splitting

The Zeeman splitting is an important quantum phenomenon that describes the splitting of
atomic energy levels when exposed to an external magnetic field. This effect is crucial in
quantum magnetometry, as it allows the measurement of the magnetic field by observing the
splitting of energy levels. The splitting arises due to the interaction between spin J and the
external field B it experiences. The energy shift ∆E between the levels due to the Zeeman
effect is given by the following equation:

∆E = ∆mJℏγ|B| , (2.12)
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where ℏ is the Planck’s constant and γ is the gyromagnetic ratio, the term ∆mj is the change
of quantum number and the |B| the total intensity value of the magnetic field applied.

B = 0 B > 0

E
n
e
r
g
y

E

mJ = +1

mJ = −1

mJ = 0

∆E

(a)

B

J
ωLar.

(b)

Figure 2.5: (a) Splitting of the energy level of due to an external magnetic field. (b) Preces-
sion of the spin J due to the torque it experiences.

Larmor Precession

Since the magnetic moment has angular momentum J , it experiences a magnetic torque
when exposed to a magnetic field B, as seen in Equation 2.5. It therefore undergoes a
precessional motion around the direction of the applied magnetic field. This precession is
analogous to the precession known in classical physics. The precession of a spin system
around the applied magnetic field occurs at a characteristic Larmor frequency ωLarmor,
which is proportional to the energy difference ∆E induced by the magnetic field strength:

ωLarmor =
∆E

ℏ
= γ|B| (2.13)

Magnetization of Atom Ensembles

In many cases, such as when describing how OPM magnetometers work, an ensemble of
magnetic moments must be considered. In the absence of an external magnetic field, the
orientation of the magnetic moments will be completely random, leading to the cancellation
of each other out. As a result, the sum of the magnetic moments will be zero.
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In contrast, when the ensemble of magnetic moments is exposed to an external magnetic
field B the spins will align themselves parallel as well as anti-parallel with respect to the
field direction. The energy difference between these two energy states of a considered two
level system is given by the Zeeman shift. Because of the energy difference between the
parallel and the anti-parallel aligned magnetic moments, the population of the energy states
will not be identical. As the parallel aligned magnetic moments occupy the state with lower
energy for γ > 0, this state will be more favored. Since magnetic moments with opposite
alignments cancel each other out, only a weak net magnetization vector M can be detected.
Consequently, only the surplus of the magnetic moments in the lower energy state result in
the net magnetization vector M oriented in the direction of B.

The resulting magnetization M of the two-level system is proportional to the population
difference of the two different alignments:

M = µ(N+ −N−) , (2.14)

where µ is the permeability andN+ is the number of magnetic moments in the upper energy
level, that can be expressed with the help of the Boltzmann distribution as:

N+ =
N

1 + exp
{
−γℏB

kBT

} , N− =
N

1 + exp
{γℏB
kBT

} . (2.15)

N = N+ + N− is the total number of magnetic moments in the considered ensemble, ℏ
is Planck’s constant h divided by 2π, kB the Boltzmann constant and T the temperature of
the considered ensemble. With these two Equation of 2.15 for the different energy state
populations, the equation for the net magnetization vector 2.14 follows:

M(B, T ) = Nµ

[
1− exp

{
−γℏB

kBT

}
1 + exp

{
−γℏB

kBT

}]= Nµ tanh

{
γℏB
2kBT

}
. (2.16)

This equation is also called the Brillouin equation. Since the magnetization vector scales
with tanh a saturation effect for very strong magnetic fields can be observed.

Bloch Equations

It can be seen that the net magnetization vector of the atomic ensemble can be influenced by
the applied magnetic field. When exposed to a static magnetic field, the net magnetization
is static and aligned parallel to the direction of the magnetic field. As the individual mag-
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netic moments precess around the direction of the magnetic field, the ensemble averages
out in the transverse direction, leaving the net magnetization with only a component in the
longitudinal direction of the magnetic field. When a time-varying magnetic field is applied,
the net magnetization vector begins to undergo a dynamic motion. The complete motion of
the magnetization vector as a function of the applied magnetic field can be described by the
following differential equation, known as the Bloch equations:

d

dt

Mx(t)

My(t)

Mz(t)

 =

Mx(t)

My(t)

Mz(t)

×

γBx

γBy

γBz

 . (2.17)

The equations presented here are also known as relaxation-free Bloch equations, since they
do not include any relaxation terms of the magnetization vector.

Optically Pumping

For magnetometry purposes and to obtain a measurable signal, the use of an ensemble of
atoms is essential. To achieve this, it is crucial to create a net magnetization, also known as
macroscopic spin polarization. This involves aligning a large fraction of the atomic spins in
the same direction, similar to the magnetization of a medium. In classical NMR applications,
this alignment is typically achieved using strong magnetic fields. In alkali atoms, however,
spin polarization can be achieved more efficiently by optical pumping, where the interaction
between light and the atom is used to increase the spin polarizatoin.

Without further derivation, and as stated in [9], the angular momentum selection rules of the
light-atom interaction are the following:

∆L = ±1 ,∆S = 0 ,

∆J = ±1 ,∆F = ±1 .

It can be seen that by absorbing a photon, angular momentum can be transferred without
changing the spin. The selection rules for the magnetic quantum number depend on the
circular polarization of the pumping light. It is important to note that the pumping occurs
and the magnetization builds up in the direction of light propagation. In addition, the spon-
taneous decay of the pumped states leads to a change in the magnetic quantum number,
with ∆mJ = ±1.

By modeling the absorption of circularly polarized photons, which transfer their angular mo-
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mentum to the atom, and also taking into account the spontaneous decay of the excited
states, the following differential equation for the magnetization vector can be derived:

d

dt

Mx(t)

My(t)

Mz(t)

 = Γpump

 0−Mx(t)

0−My(t)

Mpump −Mz(t)

− Γdecay

Mx(t)

My(t)

Mz(t)

 (2.18)

= Γpump

 −Mx(t)

−My(t)

Meff. −Mz(t)

 (2.19)

where Γpump is the rate of optical pumping and Γdecay is the rate of decay due to sponta-
neous emission. By introducing an effective pumping rate Γ and an effective magnetization
Meff = Mpump

Γpump
Γ , Equation 2.18 can be further reduced to Equation 2.19. By incorporat-

ing the additional term that accounts for net magnetization due to optical pumping into the
general relaxation-free Bloch equations introduced in Equation 2.20, the following differential
equations are obtained:

d

dt

Mx(t)

My(t)

Mz(t)

 =

Mx(t)

My(t)

Mz(t)

×

γBx

γBy

γBz

+ Γ

 −Mx(t)

−My(t)

Meff. −Mz(t)

 . (2.20)

This equation is important because it describes how optical pumping influences the net
magnetization vector of the magnetic ensemble.
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2.2 Magnetic Field Sensing Principles

This section introduces the principles of magnetic field sensing, both through classical meth-
ods and quantum mechanics. It explains the working principles of the magnetometers used
in the experimental setup of this thesis and provides a brief overview of different types
of magnetometers selected. These sensors are divided into two types: Classical Magne-
tometer (CM), which are widely available, and Quantum-based Magnetometer (QM), which
are emerging technologies that utilize quantum mechanical properties to measure magnetic
fields.

This section aims to provide a brief overview of the operating principles of each magnetome-
ter type selected, illustrating the key differences between them, and highlight how quantum-
based magnetometers leverage quantum phenomena to provide absolute measurements.

2.2.1 Classical Magnetometry

There are several techniques for measuring magnetic field strength based on classical mag-
netic phenomena. The following section briefly presents the three most common techniques:
the Hall sensor, the Fluxgate sensor, and the Magnetoresistive sensor.

Hall Sensors

A widely used type of magnetometer is the Hall sensor. These magnetometers exploit the
Hall effect.

A conductor carrying an electric current I induces a voltage, called the Hall voltage UHall,
along its length when a perpendicular magnetic field is applied. The Hall voltage is propor-
tional to both the magnetic field strength B and the current I. An schematic of a Hall sensor
is shown in Figure 2.6. The relationship is given by the equation below:

UHall =
I B

en t
, (2.21)

where e is the charge of an electron, n is the density of electrons and t is the thickness of the
conductor. The voltage induced by the Lorentz force results from the deflection of charges
in the current, leading to a charge imbalance in the conductor. Hall sensors are widely used
in various fields, However their sensitivity is limited compared to other sensor types to about
1nT/

√
Hz [9].
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I

B

UHall

Figure 2.6: Schematic of a Hall sensor. A voltage UHall is induced across its length when a
conductor carrying current I is subjected to a magnetic field B perpendicular to
the current.

Fluxgates

Fluxgate magnetometers, contrary to Hall magnetometers, use a ferromagnetic core and
its hysteresis curve to detect the surrounding magnetic field. The sensor often consists of
a ring shaped ferromagnetic core wrapped with magnetization windings also known as a
Drive Coil. Additional sensing windings are present to capture the induced currents gener-
ated by changes in the net magnetic field due to the magnetization of the core. A schematic
of a Fluxgate magnetometer and its construction is depicted in Figure 2.7a. The measure-
ment process involves detecting the core’s saturation when exposed to a combination of the
external magnetic field Bext. and an alternating field BAC produced by alternating currents
in the Drive Coil [14]. The net magnetic field Hnet(t) at any point in time is the sum of
the external magnetic field Hext. and the alternating magnetic field HAC(t), as expressed
mathematically in the following equation [15]:

Hnet(t) = Hext. +HAC(t) (2.22)

The key principle behind this technique is that, in the absence of an external magnetic field,
the induction of the magnetic field due to the AC current would be symmetrical. However,
when an external magnetic field is present, it magnetizes the ferromagnetic core. This
magnetization leads to an asymmetrical response, due to the hysteresis curve (see Figure
2.3b), to the applied field, allowing to measure the external magnetic field. The resulting
net magnetic field Bnet(t) is a function of the external magnetic field Hext., as shown in the
following equation:

Bnet(t) = f (Hext.(t)) (2.23)
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(a) (b)

Figure 2.7: (a) Schematic of a Fluxgate magnetometer, consisting of a ring-shaped ferro-
magnetic core. Wrapped around the core is a magnetization coil, also known
as the Drive Coil. Surrounding the ring and the Drive Coils is a Sense Coil that
detects the induced current. (b) Cross section of the ferromagnetic core. The
drive coil induces a magnetization within the core that is parallel in the upper half
of the ring and opposite to the external field direction in the lower half.[13]

This signal is proportional to the external magnetic field. The induced electromotive force
E ind.(t) is related to the time derivative of the magnetic field, as described by the equation
below:

E ind.(t) = −sw∂B(t)

∂t
, (2.24)

where s is the area of the ferromagnetic core enclosed by the drive coil and w is the number
of turns of the drive coil.

Since the ring-shaped core has two halves with opposing magnetization vectors, the induced
E ind. in the sense coil would be zero in the absence of an external magnetic field. However,
in the presence of an external field, one half, where the magnetization vector aligns with
the field, reaches saturation before the other half, which has the opposing magnetization
direction, as illustrated in 2.7b. As a result, the induced E ind. from each half does not fully
cancel out, leading to a current spike in the sense coil when this occurs. The Drive Coil is
continuously driven with AC, and as the halves periodically switch between saturated and
unsaturated states, periodic signal peaks are detected in the Sense Coil. By measuring the
periodic current signal from the sense coil and using Equation 2.22 and further approximat-
ing the relation of Equation 2.23, the induced signal depends on the desired Hext. and can
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be calculated when HAC(t) is known [15].

Fluxgate magnetometers are often the preferred solution to monitor Earth’s magnetic field
on ground but also in space, as they offer high sensitivity down to 0.1nT within a field range
of up to 100µT. The sensitivity of these magnetometer is usually around 6-10nT/

√
Hz. The

main challenges are the drifts and the calibration step required to maintain the accuracy of
the magnetometer readings. ts are primarily linked to the temperature sensitivity and aging
of the coils [16].

Magnetoresistive Magnetometer

The classical magnetometer used in the following laboratory experiment operates based on
a phenomenon called anisotropic magnetoresistance.

The resistance of a ferromagnetic material depends hereby on the angle θ between the mag-
netization direction of the material M and the applied current I [17]. The term anisotropic
originates from the fact that in most ferromagnetic materials the resistivity varies with angle
θ. Thus, for parallel alignment B||I the measured resistivity ρ|| is higher than when both are
perpendicular to each other B⊥I.

It is possible to measure the changes in the magnetic field by measuring this resistance
change. In the case of the chips incorporated in the CM, nickel-iron (Permalloy) thin-film
segments are deposited onto a silicon wafer, which makes it possible to construct a so-
called Wheatstone bridge. This structure is a typical setup used to measure resistance
changes. In this setup, resistors are arranged in a diamond-like configuration. Input voltage
is applied across one axis of the structure, and a voltage reading is taken across the other
axis of the diamond structure. In the case of the magnetometer setup, this is very similar.
An illustration of this sensor bridge design can be found in Figure 2.8. The input voltage is
applied across the horizontal axis of the structure. Within the structure, Permalloy sections
are incorporated with different orientations of the permalloy material in the four arms of the
diamond structure. The voltage which measure the resistance change across the different
arms of the structure are taken across the vertical axis between Out+ and Out−. When an
external magnetic field is present, the resistivity of the magnetoresistive material changes.
This change can be detected as a voltage change when a constant voltage is applied to the
bridge. This occurs because the output voltage is sensitive to the resistance changes in the
bridge caused by the magnetic field. These resistive elements are aligned along a common
sensitive axis, ensuring that an increase in the magnetic field along this axis produces a
positive voltage change.
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Figure 2.8: Schematic representation of a magnetoresistive bridge sensor utilizing permalloy
thin film structures. The diagonal arrows indicate the magnetization direction
along the easy axis. The bridge configuration allows a voltage measurement
between Out+ and Out− when an input voltage Vb is applied, providing a signal
proportional to the external field along the sensitive axis.[18]

Since a single bridge structure provides information about only one component of the
magnetic field, three such bridges can be arranged perpendicularly to one another to enable
the measurement of all three components of the magnetic field. This configuration allows
for the detection of arbitrary field directions.

2.2.2 Quantum-based Magnetometry

Many new concepts for magnetometry using quantum-mechanical phenomena have been
and are being developed. Quantum-based magnetometers, operating in the quantum regime,
are in principle to be absolute, meaning they provide accurate measurements. These de-
vices are expected to offer drift- and bias-free measurements without the need for cal-
ibration. Today, the most commonly known magnetometers include OPM, NV centers,
the so-called Superconducting Quantum Interference Device (SQUID), and Spin Exchange
Relaxation-Free (SERF) magnetometers. Furthermore, a relatively new concept using Ry-
dberg atoms, not only for electrometry but also for magnetometry, has been demonstrated
[19]. This is also the aim of the department of Quantum NanoPhysics where this Master
thesis takes place, to develop and implement a Rydberg-based sensor that can measure
both electric and magnetic fields.

The following section briefly presents the working principles of three selected sensors: OPM,
NV magnetometers, and the SQUID magnetometers.
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Optically Pumped Magnetometers

The quantum magnetometer used in the laboratory experiment presented in the following
chapters operates on the principle of optically pumped states of vapor atoms within a glass
cell.
As described in Section 2.1.2, optical pumping refers to the process of optically exciting
atoms from their ground state to an excited state, which internally increases the net magne-
tization of the atomic ensemble within the vapor cell. This resulting magnetization, which is
sensitive to the magnetic field, interacts with the field to be measured. Through this interac-
tion, the magnetic field can be measured on the basis of various schemes for magnetic field
detection.
The magnetometer at hand in this work exploits the well-defined precession frequency of
rubidium atoms, which depends on the total magnetic field strength they experience. This
measurement scheme is known as Free Induction Decay (FID) [20], [21]. A basic schematic
of this type of sensor is shown in the following Figure 2.9a. First, a laser beam is circularly
polarized by passing through a quarter-wave plate. The scheme for detecting the magnetic
field strength is divided into two phases.

In the first phase, a strong polarizing magnetic field Bpol is applied, aligned parallel to the
light propagation. This field is generated by Helmholtz coils. The incident laser beam,
together with the polarizing magnetic field, causes the atoms within the vapor cell to become
spin-polarized, increasing the net magnetization of the atomic ensemble within the cell.

In the second phase, the polarizing magnetic field is rapidly switched off, causing the atoms
and respectively the net magnetization M0 vector to precess around the magnetic field
Bext. to be measured, as it aligns itself with the magnetic field direction. The precession
of the magnetization follows the Bloch Equations as shown in Equation 2.20. Following
the Equation 2.13, the precession frequency is directly proportional to the magnetic field
strength experienced by the atoms. The power of the laser light is tuned down during this
period so that it is weak enough to prevent any optical pumping. The light passes through
the precessing atoms in the vapor cell, which modulates the light due to the fact that the
absorption coefficient of the atomic ensemble depends on the degree and orientation of
the net magnetization vector [22]. The light that has passed through the vapor cell is thus
proportional to the transverse component of the magnetization vector relative to the direction
of light propagation. The transverse component of the magnetization is described as follows:

M⊥(t) = M0 sin (ωLar.t+ ϕ0) e
−γdecayt (2.25)

The decay of the sinusoid is due to the fact that the transverse component of the magneti-
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Figure 2.9: (a) Schematic diagram of the FID measurement setup used in the OPM QuSpin.
The laser light is circularly polarized through a λ/4 plate and propagates through
the vapor cell containing 87Rb atoms. In the first step, a strong polarizing field,
Bpol, is applied to align the spin states. After polarization, Bpol. is switched
off, and the spins begin to precess around Bext., modulating the light with the
corresponding ωLar.. (b) Output of the photodiode, in the second phase where
the Bext. is measured.

zation vector becomes smaller as it aligns with the field direction. Once the magnetization
vector is completely aligned, the transverse component has completely disappeared and
only the longitudinal component remains. The signal detected by the photodiode is then
amplified, and a frequency counter measures the precession frequency. A schematic of the
signal detected by the photodiode is shown in Figure 2.9b.

Since the precession frequency has a fixed relationship with the magnetic field strength
given by 6.998Hz/nT, the measured frequency can be used to determine the experienced
magnetic field.

Nitrogen Vacancy Magnetometers

Nitrogen Vacancy (NV) centers are an emerging quantum sensor technology that is grad-
ually being minituarized and commercialized. These sensors use the spin system induced
by a point defect in the diamond lattice, where a nitrogen atom replaces a carbon atom and
is directly neighboring to a missing lattice atom, known as a vacancy forming a spin-triplet
system. The defect within the lattice is visualized in Figure 2.10a. Hereby, the blue atoms
represent the carbon atoms, the red atom represents the Nitrogen atom, and the white ball
represents the missing atom.
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Figure 2.10: (a) Diamond lattice structure containing an NV defect. (b) Fluorescence spec-
trum detected at the detector. (c) Energy levels and the two pathways of the
de-excitation are illustrated.

The NV center’s quantum state can be manipulated and read out using microwaves and
laser excitation. Its energy levels are sensitive to the surrounding magnetic field, leading to
Zeeman splitting, which shifts the resonance frequency.

Under laser excitation, the spin state can be elevated from the ground state to the excited
state. De-excitation back to the ground state can occur mainly via two different pathways.
The first is a direct transition to the ground state, which is accompanied by the emission of
red fluorescent light of λ = 637nm, often referred to as the bright state. The second pathway
involves an intermediate metastable state, where fluorescence in the infrared spectrum is
emitted, and commonly known as the dark state.

A widely used detection method for this system is Optically Detected Magnetic Resonance
(ODMR), in which the fluorescence from an NV center in diamond is used to measure an
external magnetic field the NV is in. This method relies on the fact that, at microwave reso-
nance which depends on the magnetic field, the ms = 0 spin state is driven into a transition
to the ms = ±1 states. These states have a higher probability of decaying via the dark-
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state pathway, where no visible fluorescent light is emitted. By recording the fluorescence
intensity while sweeping the microwave frequency over a range that includes the resonance
frequency, one can observe two characteristic dips in the ODMR spectrum. This spectrum
with the characteristic dips can be seen in Figure 2.10b. The frequency separation ∆f

between these dips is directly proportional to the Zeeman splitting of the ms = ±1 energy
levels. With this frequency difference and Equation 2.12, the external magnetic field strength
can be calculated.

In contrast to the OPM, the fluorescence depends on the angle θ between the NV axis and
the direction of the magnetic field it experiences. This characteristic enables the possibility
of vectorizing the magnetic field sensor by incorporating multiple NV centers whose axes
are orthogonal to each other, spanning all three spatial dimensions [23].

SQUID Magnetometers

Superconducting Quantum Interference Device (SQUID) magnetometers rely on supercon-
ducting materials that incorporate Josephson junctions. Unlike other quantum magnetome-
ters, SQUIDs require cooling to low temperatures to achieve the superconducting state.
Additionally, the sensor measures the magnetic flux Φ through an effective area A to deter-
mine the magnetic field strength B.

The core component of a SQUID is the Josephson junction, at which tunneling of elec-
tron pairs across the junction happen. The tunneling current at the junctions are used to
calculate the magnetic flux the magnetometer is experiencing. According to [24], the tunnel-
ing current between the two superconductors is described by the first Josephson equation
(Equation 2.26), which depends on the applied current I0 and the phase difference between
the superconductors, ϕ2 − ϕ1. The second Josephson equation, stated in Equation 2.27,
describes the time evolution of the phase difference due to the applied voltage V across the
two superconductors.

Is = I0 sin (ϕ2 − ϕ1) , (2.26)
d

dt
(ϕ2 − ϕ1) =

qV

ℏ
. (2.27)

There are two primary types of these magnetometers, classified by the number of Joseph-
son junctions incorporated and how the bias current needed to operate the sensor is applied.
The AC SQUID incorporates only one junction between the superconductors and requires
an AC operating current. The DC SQUID, on the other hand, incorporates two junctions in
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parallel and uses direct current for operation.

Figure 2.11: Illustration of a DC SQUID,
which incorporates two Joseph-
son junctions. The sensor mea-
sures the magnetic flux Φ pass-
ing through surface A by mea-
suring the current Iges. due to
tunneling at the junctions.[24]

In the following, the structure and operation of a DC SQUID will be briefly explained. This
type usually consists of a ring-shaped structure made of a superconductor. Two junctions
split the ring into two equal halves. The junctions are made of a normal resistive material
like copper. In Figure 2.11 a schematic of the structure is illustrated. The superconducting
ring encloses the effective surface A, which is essential for the derivation of the magnetic
field intensity. Starting with the probability current in an electromagnetic field and using the
fact that the induced current of the magnetic field within the structure will result in a current
of zero within the structure’s volume, one can arrive at the following sum of current at each
junction:

Iges = 2I0 sin(δ0) cos
(qe
ℏ
Φ
)
. (2.28)

Here, I0 is the applied current, δ0 is a constant phase shift between the two superconductor
and qe is the charge of an electron. This equation can be separated into a constant term
2I0 sin(δ0) and a magnetic flux dependent term cos

( qe
ℏ Φ
)
. The constant can be determined

by calibrating the current in a known magnetic field with a known magnetic flux. After cali-
bration, the magnetic flux can be determined by measuring the current along both junctions.
To find the magnetic field strength B, the surface area A of the ring structure has to be
known.
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2.3 Earth’s Magnetic Field

This section provides a brief introduction to the composition of Earth’s magnetic field. Fol-
lowing this, a reference magnetic field model, known as the International Geomagnetic Ref-
erence Field (IGRF), is presented. The IGRF is used to calculate the magnetic anomaly
field, which is the desired magnetic field component for navigation near the Earth’s surface.

2.3.1 Composition

The Earth is surrounded by magnetic fields. The magnetic field experienced at any given
location and time is a superposition of multiple sources. Following the description by Cani-
cani (2016) [8], on which this section is based, these sources can be categorized as internal
and external. Internal sources include the magnetic field generated by the Earth’s core and
the magnetization of the Earth’s crust. External sources arise from the ionosphere and the
magnetosphere.

Figure 2.12: Simulation of Earth’s dipole-like magnetic field arising from the inner core [25].

The primary magnetic field arising from an internal source is generated by the Earth’s fluid
outer core, a process known as the geodynamo. This field is responsible for making a
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compass needle point north. It can be thought of as a dipole field, and it is considered
the most dominant field. An illustration of this main magnetic field of the Earth is depicted
in Figure 2.12. The field is generated by the motion of an electrically conductive fluid in
the core, driven by heat and the rotation of the earth. The magnitude of the magnetic field
caused by this varies between 30 − 70 µT. Although changes in the movement of the
core fluid cause changes in the generated magnetic field, known as secular variation, this
deviation is modeled and corrected every 5 years by the IGRF [26].

The second source of the magnetic field is the Earth’s crust. The origin of these magnetic
fields lies in magnetization, which can result from permanently magnetized materials or
induced magnetization due to paramagnetic minerals within it. These spatially varying ma-
terials and their non-uniform distribution contribute to the magnetic anomaly field of earth
[27]. Anomalies can also be due to man made structures containing magnetic materials
which further add to distortions of an ideal dipole field.

Beyond these internal sources, external magnetic fields can arise from processes such as
particle interactions in the magnetosphere. These interactions are driven by solar winds,
that are streams of charged particles ejected from the Sun’s surface. The charged particles
interact with Earth’s magnetic field, causing them to move in circular currents known as ring
currents. These ring currents, in turn, induce additional magnetic fields, particularly in the
polar regions. Geomagnetic storms, which occur when intense bursts of solar wind impact
the Earth’s magnetosphere, cause time-varying fluctuations in Earth’s magnetic field, which
make denoising techniques to minimize their effects necessary, as these distortions can be
in the polar region of the Earth as high as a couple of 10 nT and at the equator a few nT.
One way to mitigate these fluctuations is by observing magnetic fields at geomagnetic ob-
servatories. Using these measurements, it may be possible to account for these variations.
However, due to the high fluctuations in the polar regions, geomagnetic navigation is not
viable there [28].

2.3.2 Reference Magnetic Field Model

The magnetic field induced by the fluid Earth’s core changes over time. This overall dipole-
like field of the core is modeled by tracking the Earth’s magnetic field. The goal is to provide
a standardized core field model used worldwide. For magnetic navigation in particular a
standardized reference model enables consistent magnetic anomaly field mapping around
the entire Earth. This model is based on a spherical harmonic scheme, which attempts
to fit periodic harmonics onto the Earth’s surface. These harmonics, also known as wave
numbers n, are inversely proportional to the spatial wavelength of the Earth. By summing
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Figure 2.13: Real parts of the spherical harmonics up to and including wavenumber n = 4.
The IGRF fits coefficients to Schmidt semi-normalized associated Legendre
polynomials, each corresponding to a specific wavenumber, to model Earth’s
dipole-like magnetic field [29].

these spherical harmonics with their respective weights, any arbitrary function on the sur-
face of the Earth can be defined. There are two main parameters that affect the spherical
harmonic. One being the wave number n, which determines how often the wave oscillates
around the circumference of the sphere, and the secondly m, which determines how often
the harmonic oscillates in the longitudinal direction of the sphere for a given n. An illustration
of the spherical harmonics for wave numbers up to n = 4 is shown in Figure 2.13.
The main contribution of the model comes from low wave numbers, as the Earth’s core field
can be approximated as a tilted dipole field. On top of this, deviations are captured by higher
wave numbers to refine the model further. However, wave numbers until n < 16 are consid-
ered to arise from Earth’s core magnetic field. Higher wave numbers are said to be from the
earths crust and its anomalies, which is not to be modeled.

The optimized geomagnetic model that is recalculated every 5 years provides a scalar mag-
netic potential field V (r, ϕ, θ, t), which depends on the spherical polar coordinates with pa-
rameters: radius r, latitude ϕ, longitude θ, and time t. To obtain the desired magnetic field
strength B(r, ϕ, θ, t) at a specific location, the gradient of this potential has to be computed

28



2 Theoretical Background

Figure 2.14: Isocontour lines of the Earth’s magnetic field calculated from the IGRF model,
derived from geomagnetic observations over the past century [26].

at the desired location (r, ϕ, θ):

B(r, ϕ, θ, t) = −∇V (r, ϕ, θ, t). (2.29)

The scalar magnetic potential field follows from the fitted Gauss coefficients gmn and hmn
for the respective Schmidt semi-normalized associated Legendre polynomial Pm

n (ϕ) and is
calculated as follows [26]:

V (r, ϕ, θ) = a

nmax∑
n=1

(a
r

)i+1
n∑

m=0

[gmn cos (mθ) + hmn sin (mθ)]Pm
n (ϕ) . (2.30)

The most recent total magnetic field intensities derived form the IGRF model as an contour
map is depicted in Figure 2.14.
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2.3.3 Magnetic Anomaly Field

The magnetic anomaly field is the preferred field for magnetic navigation on Earth, as it is
assumed to remain stable over long periods of time. This stability arises from the magne-
tization of minerals within the Earth’s crust when the surface solidified, making it a reliable
reference for navigation. To derive useful information about the anomaly field from total
magnetic field measurements obtained through surveys and mapping, one must subtract
the standard reference field modeled by IGRF. However, the subtraction of the scalar field
measurements alone does not yield the true magnetic anomaly field of the Earth, as the
direction of the magnetic anomaly cannot be precisely captured from a single total field
intensity measurement. Nevertheless, this information is still useful, as the resulting field
represents the projection of the anomaly field component along the magnetic field vector
of the reference field. Figure 2.15 shows the magnetic anomaly field map provided by the
NOAA National Centers for Environmental Information [30].
The mean core field is approximately 50 µT. In comparison, the Earth’s anomaly field is on
the order of hundreds of nT, resulting in a difference of about three orders of magnitude.

Figure 2.15: Upward-continued Magnetic Anomaly Map of the Earth at an altitude of 4 km
above sea level [30].
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2.4 Classical Inertial Measurement Sensors

Magnetic field-aided navigation aims to enhance and correct position estimates derived from
classical inertial sensor measurements to provide a self-sufficient navigation solution. This
section provides a brief introduction to the inertial navigation sensors, explaining their fun-
damental operating principles. Additionally, it outlines how position estimates are obtained
by integrating acceleration and angular velocity measurements, including the necessary co-
ordinate transformations to convert the state of the moving body from the body frame to the
navigation frame. Finally, it discusses how these state estimates diverge from the true state
of the body over time.

2.4.1 Working Principles of Accelerometers and Gyroscopes

This section briefly describes the working principle of measuring linear acceleration and
angular rate changes in a moving body via mechanical inertial navigation sensors. Further-
more, it outlines the basic scheme by which Micro-Electro-Mechanical Systems (MEMS)
inertial navigation sensors operate, based on [31]. This introduction is divided into two sec-
tions: Accelerometers and Gyroscopes.

Accelerometers are used to measure linear accelerations a along each axis of a moving
body, that are generated when forces are acting on it. The basic principle of detecting
such accelerations involves measuring the displacement ∆x of a probe body with a known
mass m suspended by springs with known spring rates k. This displacement occurs due to
the forces acting on the mass, allowing it to be directly correlated to acceleration through
Newton’s second law:

F = ma = k∆x . (2.31)

Today, the most popular type of accelerometers are MEMS accelerometers, which can be
found in nearly all electronic devices. The basic principle involves a micromechanical struc-
ture containing a mass that is engineered into a silicon wafer and held by spring-like struc-
tures surrounding it. The mass is suspended by springs and can move when the body to
which the accelerometer is attached is in motion. The displacement caused by dynamic
forces can be measured using different methods, such as capacitive, piezoresistive, or
piezoelectric effects. These electrical signal than are converted to the acceleration which is
outputted in units of m/s2 or g, the gravitational acceleration and corresponds to 9.81m/s2.

Gyroscopes, on the other hand measure the angular change rate ω of the respective roll
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ϕ, pitch θ, and yaw ψ angles around each of the three axis x, y and z of the body. This
allows for the detection of the angular velocity of the motion, which is needed to transform
coordinates from the body frame to the navigation frame. The working principle of MEMS
gyroscopes is based on detecting Coriolis acceleration, which acts upon a vibrating proof
mass perpendicular to the axis of rotation when a rotational force is applied. The detected
acceleration enables the calculation of angular velocity and changes in angle.
The core of the MEMS sensor is an oscillating mass suspended within the sensor by mi-
cromachined spring-like structures. Unlike linear accelerometers, it must be continuously
driven to maintain its oscillation. Similar to accelerometers, the experienced acceleration
is detected through various electrical displacement measurement techniques, allowing for
the calculation of angular velocity. The output is typically measured in degrees per second,
which, when integrated once and given a known initial angle, allows for the calculation of the
rotated angle.

2.4.2 Position Derivation via Inertial Navigation Sensors

Position information can be derived from known accelerometer and gyroscope measure-
ments. This is obtained by integrating twice the acceleration over time

x(t) =

∫∫
a(t)dt+

∫
v0dt+ x0 (2.32)

Since acceleration measures only linear forces, the measured angular velocities ω from the
gyroscopes can be used to reconstruct the roll ϕ, pitch θ, and yaw ψ angles of the moving
platform. This requires an integration step to obtain the resulting angles from the measured
angular velocities ω about each respective axis. With this information about dynamic motion
and heading, a coordinate transformation can be applied to obtain the position and head-
ing estimate in the desired navigation frame N . The explicit transformation and integration
steps are provided in the following section. The IMU measurements are taken in the body
frame, which are denoted with b, as the sensors move with the body. However, the desired
position is in the navigation frame N . To obtain the position in the navigation frame from the
raw measurements of the IMU in the body coordinate system, the gyroscope measurements
must first be integrated.
This integration is typically done using an Euler integration step, as the sensor measure-
ments are provided at discrete time intervals. The integration scheme can be stated as
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Figure 2.16: Euler step integration. The discrete measurements y′t are integrated over
equidistant time intervals ∆t to compute the desired quantity yt.

follows:

yEuler
t+∆t ≈ yt + y′t∆t , (2.33)

where y′t is the quantity to be integrated, yt is the state prior to the integration step and
∆t the integration step interval. In the case of measuring angular velocity and calculating
the angle, y′t represents angular acceleration ω, and ∆t is the time interval between the
measurements at hand. The resulting angles are as follows

ϕt+∆t = ϕt + ωx
t ∆t , (2.34)

θt+∆t = θt + ωy
t∆t , (2.35)

ψt+∆t = ψt + ωz
t∆t . (2.36)

After integrating the angular velocities, the Euler angles ϕ, θ, and ψ between the body frame
and the reference frame are determined. A schematic illustration of the body and navigation
frame, along with the angles between them, can be seen in Figure 2.17.
These angles are then used to perform a coordinate transformation that aligns the axes of
both frames. This can be done by sequentially rotating each axis by its respective angle.
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These rotations can be mathematically described using the following rotation matrices:

Rx(ϕ) =

1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 , (2.37)

Ry(θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 , (2.38)

Rz(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (2.39)

The three rotation matrices can be multiplied together to form a single transformation matrix.
The resulting coordinate transformation matrix RN

b which aligns the body frame with the
navigation frame, is given by:

RN
b = R(ϕ, θ, ψ) = Rz(ψ)Ry(θ)Rx(ϕ) (2.40)

=

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) s(ϕ)c(θ)

c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ) c(ϕ)c(θ)

 , (2.41)

where s(·) and c(·) are standing for sin(·) and cos(·) respectively.

When the correct rotation matrix for each time is calculated and the navigation frame is
considered an inertial coordinate frame, accelerations aN , velocities vN , and positions xN

of the moving body in navigation frame can be determined using the following equations:

aN
t = RN

b,t a
b
t , (2.42)

vN
t+∆t = vN

t + aN
t ∆t , (2.43)

xN
t+∆t = xN

t + vN
t ∆t− tNb,t=0 . (2.44)

where ab is the acceleration in the body frame and tNb,t=0 is the initial translation vector at
time t = 0 that describes the initial position of the body in the navigation frame.

When a rotating navigation frame, such as the Earth-centered Earth-fixed (ECEF) coordi-
nate system, which is centered at the Earth’s center and rotates with the Earth’s rotation ω

around its axis, is used, the equations do not hold true, and pseudo-accelerations must be
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Figure 2.17: Schematic of the relationship of the navigation frame N and the body frame b.
To convert measurements from the body frame, where linear acceleration and
angular velocities are recorded, to the navigation frame, a coordinate trans-
formation is required. This involves a rotational transformation via the rotation
matrix RN

b . The position in the body frame represents the desired position es-
timate for navigation.

included. This gives the following result for the acceleration:

aN = RN
b ab − ω × vN − ω × (ω × xN ) , (2.45)

where the ω× vN term represents the Coriolis term and ω× (ω×xN ) represents the cen-
tripetal force, both of which need to be subtracted from the experienced body accelerations.

2.4.3 Position Errors due to INS

There are primarily two error types that occur when calculating the position only by using
IMU measurements. One type of error arises from the sensor and its measurements them-
selves. This include measurement biases that still persist even after calibration, drift, which
is essentially a time-varying bias caused by factors such as temperature fluctuations, elec-
tromagnetic interference, and other environmental influences that add random noise signal
upon the true signal.
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The second source of error is the accumulation of integration errors. Integration in discrete
time is an approximation, where each step approximates the state forward in time. This
process leads to errors that accumulate over time, which is known as integration drift. Inte-
gration in discrete time is typically done by using an Euler integration step, seen in Equation
2.33. The error of an Euler step is typically scaling by the square of the integration step
width ∆t and hence given by:

ϵEuler
t = yEuler

t − ytruet = O
(
∆t2

)
(2.46)

Furthermore, transitioning from acceleration to position requires two integration steps, mak-
ing the method even more prone to these integration errors.

There are different grades of IMU for various applications. Depending on the application,
drift, noise, and price vary significantly. IMUs are typically categorized into four different
classes based on their performance. The position errors are usually expressed in km/hr.
The following performance numbers and prices are taken from [32]:

• The highest grade called strategic-grade IMU, possesses a position drift of less than
0.03km/hr and typically costs over 1 MioUSD.

• Navigation-grade IMU, commonly used in aircraft, has a drift rate of approximately
2km/hr and costs around 100 kUSD.

• Tactical-grade IMU has a drift rate of approximately 20-40 km/hr and the price ranges
around 10 kUSD.

• The commercial-grade IMU has a drift rate that exceedes 40 km/hr and cost around
a few 100 USDs.
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2.5 The Unscented Kalman Filter

An important aspect of the navigation aiding algorithm used in this work is sensor fusion.
This technique combines position estimates from various sensors to provide a more accu-
rate and reliable estimation. In this work, sensor fusion is used to integrate position esti-
mates from inertial sensors with those derived from mapping magnetic field measurements
to obtain more robust positions. The following theoretical introduction into the KF (Kalman
Filter) is based on [33] and [34].

2.5.1 Fusion of Estimates

The sensor fusion process involves the combination of different types of estimates and sen-
sor data. Many approaches exist for this, such as Particle Filters and non-linear Bayesian
filters [35].
One distinct method for non-linear Bayesian filtering is the Unscented Kalman Filter (UKF).
In contrast to other filtering methods, UKF uses specifically chosen sample points to repre-
sent the underlying distributions, characterized by their mean and covariance matrices. This
sampling process to generate the respective sampling points is known as the Unscented
Transform (UT), which sampling scheme is presented in more detail in later section.
The KF generally consists of a prediction step and an update step. Hereby, the prediction
step is used to predict the state by propagating the initial state in time t according to the
state transition function F of the process model. The second step is the update step which
uses the measurement model to incorporate the measurement state with the propagated
state prediction.

Process Model

The state Xt is propagated by the process model. The mathematical description of this
model is as follows:

Xt+1|t = FXt|t + qt , qt ∼ N (0,Qt) . (2.47)

Here, the state is propagated by the function F, and is perturbed by the process noise qt

that follows an assumed normal distribution with zero mean and covariance Qt.
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Figure 2.18: Schematic illustration of a two-dimensional distribution function that gets prop-
agated by function F in time t. The UKF samples the Probability Density Func-
tion (PDF), and passes the samples points X

(±i)
t|t through F . Each sampling

point hereby gets an assigned weight w(±i). The propagated sampling points
X

(±i)
t+1|t and there weights are used to estimate the propagated PDF.

Measurement Model

The measurement model describes how the sensor measurement relates to the state. Math-
ematically, this is described as follows:

zt+1 = HXtrue
t+1|t + rt , rt ∼ N (0,R) , (2.48)

where zt is the measurement at time t, H is the measurement matrix that maps the true state
Xtrue

t+1|t into the measurement space, and the measurement is disturbed by the measurement
noise vector R.

2.5.2 Unscented Transform

In contrast to other filters, the UKF propagates the probability distribution of the state by
sampling it in a specific order. It tries to capture information about the whole PDF by using
only a few carefully chosen points and their corresponding weights. These sampling points
are then propagated through a non-linear propagation function F of the process model. The
sampling of the underlying distributions, known as the UT, is generally performed using the
following sampling scheme:

X(0) = µX , X(±i) = µX ±
[√

n+ λSX

]
i
, (2.49)
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where n is the number of dimensions of the state vector X and therefore also the dimension
of the probability distribution to be sampled. SX being the Cholesky decomposed covari-
ance matrix PX = SXST

X of the state covariance.

w(0)
mean =

λ

n+ λ
, w(±i)

mean =
1

2(n+ λ)
, (2.50)

w(±i)
mean = w(±i)

mean =
1

2(n+ λ)
, i = 1, . . . , n (2.51)

In addition, λ is the parameterized scaling factor that not only affects the spread of the
sampling points X(±i) from the mean X(0) as can be seen in Equation 2.49 but also the
weighting w(±i) of each sampling point. Here, this scaling factor is calculated as follows:

λ = α2(n+ κ)− n , (2.52)

where the constant α is a parameter scaling the distance from the mean of the PDF.
The sampling points X(i) are used to propagate the state probability distribution through F.
Once propagated, the points passed through F are used to estimate the resulting probability
function. The mean X

(0)
t+1|t and the covariance Pt+1|t follow from the following equations:

X
(0)
t+1|t ≈

n∑
i=−n

wi
mean

(
FX

(i)
t|t

)
, (2.53)

Pt+1|t ≈
n∑

i=−n

wi
cov

(
FX

(i)
t|t

)
. (2.54)

An illustration of the scheme using two-dimensional PDF is shown in Figure 2.18. Here, the
grayed initial distribution is sampled as mathematically described above. Once fully sampled
and the weights are determined, the sampling points are propagated through the process
function, which describes the underlying dynamics of the system. After all sampling points
have passed through the function F, the propagated distribution (green) is estimated by
taking the weighted sum of the resulting sampling points.

2.5.3 Kalman Gain and Updates

The updating of the propagated state is done by computing a so-called Kalman gain K.
Hereby, the relation between the propagated state covariance and the measurement covari-
ance is used to derive a factor, with which the measurement state and the predicted state
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are fused to maximize the state probability and minimize the state covariance. The Kalman
gain matrix is calculated by the following equation:

Kt+1 =
Pt+1|tH

′

HPt+1|tH′ +Rt+1
. (2.55)

Once the weight matrix Kt+1 has been calculated, the state vector Xt+1|t is updated as
follows:

Xt+1|t+1 = Xt+1|t +Kt+1

(
zt+1 −HXt+1|t

)
. (2.56)

Consequently, the covariance matrix Pt+1|t of the state Xt+1|t+1 is updated by the following
equation:

Pt+1|t+1 = Pt+1|t +Kt+1HPt+1|t . (2.57)

The updated state Xt+1|t+1 and the respective covariance matrix Pt+1|t+1 contain all avail-
able information about the state at time t+1. Hereby, the state represents the optimal state
which minimizes the state uncertainty.
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2.6 Kriging Interpolation

The Kriging interpolation method is used to create continuous, complete maps of various
geophysical quantities based on a sparse set of sample points. It is often employed to
reduce the number of sampling points required to generate a fully sampled map. Unlike
classical interpolation methods, which often rely only on data from the nearest neighbors,
Kriging uses a weighted linear combination, with weights proportional to the spatial correla-
tion between data points to provide more accurate interpolation.

The method is divided into two steps. In the first step, a so called variogram of the known
data points is calculated, representing the spatial covariance between the known locations.
With this spatial information, the second step derives weights for each known data point rel-
ative to the unsampled location, based on the correlation information. The following section
is based on the paper of Li et al. [36].

The variogram γ is calculated by computing the covariance between each pair of sampled
points. The lag distance, which is the unit distance of the spatial separation between pairs
of points, plays a crucial role in this calculation. The variogram is explicitly defined as the
half of the variance between measurement z(·) at point x and x+ lag:

γ(x, lag) =
1

2
V ar [z(x)− z(x+ lag)] (2.58)

To find the variogram that depends solely on the lag distance between points, eliminating
the dependency on specific location x, the variograms of all location pairs with known mea-
surements are grouped by their lag distance. By taking the mean of the variogram values
for each lag, the resulting variogram becomes a function only dependent on lag, γ(lag).
Additionally, theoretical variograms can be fitted using different methods, each describing a
different spatial correlation curve. The most common is the Gaussian variogram, defined as
follows:

γ(lag) = C0 + C

(
1− exp

{
− lag

a

})
(2.59)

Here, the parameter C0 represents the nugget, C is the so-called arch height, and C0 + C

is often referred to as the sill. The parameter a denotes the range. The range defines the
boundary between correlated and uncorrelated lag distances. The nugget corresponds to
the variogram value at lag zero, while the sill represents the value at which the variogram
levels off. An illustration of the different variograms and their curves, using the same sill and
range values, is shown in Figure 2.19.
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Figure 2.19: Illustration of the variograms for the different methods. The point where the var-
iogram exceeds the threshold represents a lack of spatial correlation, meaning
that lag distances greater than the range do not influence the data.

Furthermore, an experimental variogram γ⋆ can be constructed using the given sampled
points and their respective measurements. Hereby, the variance is calculated by the sum of
squared differences for all point pairs with a certain lag:

γ⋆ =
1

2N(lag)

N(lag)∑
i

[z(xi)− z(xi + lag)]2 . (2.60)

By computing the experimental variogram of the sparse map to be interpolated, one can
use the theoretical variograms to find the best-fitting theoretical variogram. Once a fitted
variogram with the optimal parameters, which best resembles the experimental variogram, is
found, a system of linear equations can be set up. For this linear equation system, the results
of the fitted variogram between all possible pairs of locations with known measurements xi
for i ∈ 1, .., n are needed. Furthermore, the result of the variogram for the location x0
for which the measurement should be calculated, with respect to all known measurement
locations xi, must also be computed. With these values obtained the desired weights λi can
be calculated by solving the following system of linear equations:

γ(x1, x1) γ(x1, x2) . . . γ(x1, xn) 1

γ(x2, x1) γ(x2, x2) . . . γ(x2, xn) 1
...

...
. . .

...
...

γ(xn, x1) γ(xn, x2) . . . γ(xn, xn) 1

1 1 . . . 1 0




λ1
λ2
...
λn
µ

 =


γ(x1, x0)

γ(x2, x0)
...

γ(xn, x0)

1

 . (2.61)
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The term µ is a Lagrange multiplier used to incorporate the constraint that the sum of the
weights should be equal to one,

∑
i λi = 1. The prediction ẑ(x0) at the unsampled point x0,

given the calculated weights λi, is computed than as follows:

ẑ(x0) =
N∑
i=1

λiz(xi) . (2.62)

This scheme of calculating the estimation is further illustrated in Figure 2.20 (b). Here,
the gray squares represent locations where the measurements are known, while the green
square indicates the location at which the measurement should be estimated. After fitting
a variogram for the given map and calculating the variogram results between all pairs of
known locations, as well as between all known locations and the location to be estimated,
the linear equation in Equation 2.61 can be solved. This leads to the respective weight for
each known location, which is used in the estimation of the measurement at location x0.
By traversing all unknown locations and calculating the estimated measurements using the
described procedure, one can construct a fully sampled map.

lag = 3

lag = 2

lag = 1

z(x0)

(a)

z(x4)

z(x1)

z(x2)

z(x3)

z(x6)
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Figure 2.20: (Left) Extent of each lag distance to the location x0. (Right) Scheme for cal-
culating the unknown measurement ẑ(x0) based on the known measurements
at locations xi using the Kriging algorithm. The spatial correlation between the
known measurements and the missing locations is used to compute the corre-
sponding weights λi which are then used to estimate a measurement ẑ at the
unknown location x0.
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2.7 Performance Metrics of Sensors

The performance of a sensor is generally quantified by a few key metrics. Important metrics
for inertial navigation sensors and magnetometers include the following:

Bias describes the constant offset between the measured value and the actual quantity
measured. Biases can arise due to many different external factors, such as temperature
changes of the sensor, which in this case leads to a constant offset. However, bias can
often be eliminated by calibration.
For example, for inertial navigation sensors static calibration can eliminate the offsets of the
accelerometers and gyroscopes, when the sensor is known to stand still.
Magnetometers can be calibrated by measuring the absolute magnetic field or by precisely
defining the magnetic field the sensor is expected to experience. For example, Meritt coils
are used in highly shielded, quiet environments to counteract the Earth’s magnetic field near
zero, while a second three-dimensional coil array creates a predefined magnetic field.

Drift typically refers to the change in the output of a sensor when the input signal remains
constant. This phenomenon is often described as a time-varying bias that has not been
compensated for during calibration. However, drift can be mitigated by understanding how
factors such as time, temperature, and other external influences affect the measurements.
By modeling these effects, drift can be compensated for through post-processing techniques
to a certain degree. However, the less drift a sensor has, the better. Further, in magnetom-
etry for space application usually Fluxgate magnetometers are deployed accompanied by
QM for drift mitigation. Hereby based on the measurements of the QM the fluxgate sensors
are recalibrated during deployment.
One method of characterizing and quantifying the types of drift and noise of a sensor is
through the Allan Deviation (AD) analysis [37]. This method computes the variance σ2AD(τ)

over different averaging time lengths τ of the sensor time series recorded, resulting in a
graph where distinct slope regions indicate various types of sensor drift. For this, the time
series is divided into N adjacent intervals, indexed by n ∈ {1, .., N}, each with a sample
length τ . The difference between the means of each subsequent interval is then calculated,
squared, and averaged [38]. Mathematically this is done as follows:

σAD(τ) =

√
1

2

〈
(ỹn+1 − ỹn)

2
〉
. (2.63)

The interval length τ ranges from a minimum of one sample to a maximum of half the total
length of the time series. Figure 2.21 shows a graph illustrating the different types of drift
that can be derived from the calculated AD.
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Figure 2.21: Alan Deviation in log-log scale. The distinct regions with varying slopes help
identify the different types of noise present in the sensor’s time-series data.[39]

In this log-log plot, white noise is identified in the region where the graph has a slope of
m = −0.5, showing that Gaussian white noise is present. Furthermore, the bias instability,
which determines the intrinsic drift rate without any external disturbances, is found near the
minimum of the graph, where the slope is equal to m = 0. The bias instability can be read
directly from the y-axis at the point where this condition is satisfied. In addition, the drift rate,
which is specific to each measurement, can be found in the region where the AD plot slopes
upwards with a slope of m = 1. This measure incorporates further drifts caused by external
influences.

Noise is defined as any variation in the measurement that does not originate from the actual
quantity being measured. It can arise from environmental disturbances, interference from
other devices or sensors, or come from the sensor itself. A key difference between noise
and other systematic errors, such as biases and drift, is that noise is random and therefore
not predictable. This type of noise is also known as stochastic noise.

Noise can be quantified in the time domain using methods such as AD analysis as described
prior. In the frequency domain, more prominent methods include the Power Spectral Density
(PSD) analysis which quantifies the distribution of noise power across different frequencies.
The time series to be evaluated is divided into n segments of equal length. For each of
the n segments, the Fourier Transform is calculated, which transforms the data from the
time domain into the frequency domain. Afterward, the amplitude of each frequency bin is
squared, and the mean of these squared values is taken to calculate the power. By analyzing
the PSD, one can quantify the power of each respective frequency component of the time
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2 Theoretical Background

series. This information can then be used to minimize noise signals through a suitable filter,
which reduces the unwanted noise signal form the measurement.

Further, an often-used quantity derived from measurements is the Signal-to-Noise Ratio
(SNR), which is equivalent to the power ratio between the true signal and the noise signal
or the ratio of the respective amplitudes:

SNR =
Psignal

Pnoise
=
σ2signal

σ2noise
=
Asignal

Anoise
(2.64)

The higher the SNR, the better the sensor can distinguish the true signal from the noise.
Mathematically, this is equivalent to calculating the ratio of powers, the ratio of variances, or,
alternatively, the ratio of amplitudes between the signal and the noise of the measurement.

Sensitivity is a commonly used metric to quantify and compare the performance of different
sensors. It defines the value of how small of a signal change the sensor can measure. In
magnetometry, sensitivity is typically given in units of T/

√
Hz, which is derived from the

calculated PSD and taken at the frequency of 1 Hz.
An important aspect is that the sensitivity is limited by the environmental noise the sensor is
experiencing. For example, if the noise level in the environment is higher than the sensor’s
sensitivity, it becomes difficult to distinguish between true variations in the measured quantity
and variations caused by noise.

Resolution is also closely related to the noise and the sensitivity. Hereby resolution also
often defined as the smallest measurable change in the physical quantity that the sensor
can reliably detect. Further, there is also often two different resolutions defined: the spatial
resolution and the temporal resolution.

The spatial resolution is usually limited by the sensor size and defines the limits of spatial
variation it can resolve. The temporal resolution in other words describes how the sensor
can pick up the temporal variation which is limited by the sampling frequency of the sensor.
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2.8 Navigation Performance

The navigation performance metrics used in the later chapter, with which the results of the
navigation aiding algorithm are presented and discussed, are outlined below.
The following three types of error are used: Maximum Absolute Error (ME), Mean Absolute
Error (MAE) and Root-Mean-Square-Error (RMSE). In the following formulas, yi represents
the true values, ŷi represents the predicted values, and n is the total number of observa-
tions. The predicted values can hereby be both, either the position estimates from pure INS
navigation which is also known as the dead reckoning solution and the position estimates
resulting from the magnetic field-aided navigation algorithm.

The ME is defined as follows:

ME = max
i∈{1,2,...,n}

|yi − ŷi| , (2.65)

which gives the maximal deviation within the observations. The MAE is calculated as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.66)

gives a quantification of the mean error RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2.67)

where yi are the true values, ŷi are the predicted values, n is the total number of observa-
tions.
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This chapter introduces the general methodology of the research conducted in this work.
The planned experimental setup for the real-life implementation of the magnetic field-aided
navigation algorithm is described, followed by a detailed explanation of the magnetic field-
aided navigation scheme. This includes map matching, probability and covariance estima-
tion, and the overall algorithm, with the map matching and covariance calculations based on
the work by Wang et al. [10].

The simulation approach is then presented, covering both the laboratory experiment simula-
tions and the real-flight path simulations. Finally, the general data acquisition and processing
steps for magnetic navigation aiding in the experiment are outlined, including data collection
from the sensor, the process of acquiring data for sensor noise and drift analysis, and the
generation of the magnetic field map.

3.1 Experimental Setup of the Laboratory Experiment

A physical experimental setup was designed and constructed in the laboratory. The goal was
to create a continuously moving platform with a known absolute position at all times, enabling
the quantification of the stability and performance of the magnetic field-aided navigation
algorithm in a real-life experiment.

To achieve this, a custom-designed, 3D-printed platform was mounted at each end of a
1m carbon fiber rod, which holds the IMU and the magnetometers. The rod is horizontally
mounted onto an aluminum post, which is then attached to a motorized rotation stage from
ThorLabs that provides circular motion. The rotation stage is controlled by custom Python
code, allowing for the specification of movement protocols, homing, and real-time position
reading during operation. Furthermore, the setup consists of an arrangement of perma-
nent neodymium magnets randomly placed on the base, where the rotation stage is also
mounted. Cylindrical neodymium N35 magnets with a diameter of 5mm and a height of
5mm were chosen to create the magnetic field variations for the setup. The distance be-
tween the magnets and the magnetometers is approximately 20 − 30cm to produce field
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variations of a few µT. These specifications and the distance were determined based on
prior simulations conducted using the Magpylib package [40] in Python. The simulations
were designed to generate magnetic field ranges similar to those encountered during real-
world travel over large distances on and above the Earth’s surface. At the same time, the
magnetic field gradient was kept below 300nT/cm, which is the maximum gradient that
the OPM can reliably measure. A rendering of the planned laboratory setup and its actual
implementation is shown in Figure 3.1.

Figure 3.1: (Top) Rendering of the experimental setup used for rotating the platform on
which the inertial sensor and magnetometers are mounted. (Bottom) Picture
of the implemented laboratory setup.
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3.2 Magnetic Field-Aided Navigation

The goal of this work is to take the first steps toward magnetic field-aided navigation and
implement a navigation-aiding algorithm which corrects position estimates derived from INS
by mapping and comparing the magnetic field measurements recorded, while in motion, to
a pre-recorded magnetic field map. The following section describes the concepts of the
implemented navigation algorithm.

3.2.1 Map Matching Problem

An important problem that needs to be overcome not only in magnetic field-aided navigation
but also in all navigation schemes that utilize matching measurements and an underlying
map is the so-called map matching problem. This problem refers to the issue that arises
when more than one match between the measured quantity and the map at hand is found.
This leads to signal ambiguity, causing uncertainty about which of these matched locations
the signal originally arises from. Mathematically, one can model the sensor measurement

Spatial Coord.

|B|

ms + 3σm

ms − 3σm

x1 x2 x3

xINS − 3σx xINS + 3σx
Search Window

1D Map Matching

Figure 3.2: Illustrated is the scheme of how map matches are found on an one-dimensional
example. Locations of matches xi are considered when the magnetic field mea-
surements m(xi) fall within the interval m(xi) ∈ [ms − 3σm,ms + 3σm] and are
within the search window xi ∈ [xINS − 3σx, xINS + 3σx].
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ms as a Gaussian random variable following: ms ∼ N
(
m0, σ

2
Mag.

)
, where m0 is the noise-

less, true signal and σMag. is the standard deviation of the signal error due to the overall
noises the magnetometer is experiencing.

To overcome this map ambiguity only candidate locations that fall within the interval with
specified bounds around the magnetometer’s magnetic measurement ms and that are spa-
tially bounded around the position estimate of the INS xINS are considered as matches.
This limits the location to the most likely locations, minimizing map matches at completely
different locations. The locations of the matches that fall within the intervals are assigned
as {z1, ..., zn}. An illustration of this map-matching scheme is found in a one-dimensional
problem, as shown in Figure 3.2. It is important to set both spatial and measurement bounds
appropriately to ensure that there are neither too many nor too few map matches. Therefore,
the spatial bounds are defined as δx = 3σx, where σx is the standard deviation of the INS
position estimate xINS. Similarly, the interval considered for the magnetic field measurement
is based on the sum of the expected deviations from both the map and the sensor, yielding
a total uncertainty of σm =

√
σ2Map + σ2Mag.. These bounds correspond to a confidence level

of γ = 99% for both the spatial location and magnetic field measurements.

3.2.2 Probabilistic Data Association

The goal of the Probabilistic Data Association (PDA) is to calculate the most probable posi-
tion given the set of position candidates of the map matching step. This step takes the list of
candidate locations Zn = {z1, ...,zn} in, that were found by map matching in search win-
dow around INS position estimate xINS. The probability weight of each candidate location
zi of Zn is calculated as follows:

wi =
p (zi|xINS)∑n
j=1 p (zj |xINS)

, (3.1)

which is normalized such that the sum of the weights for each match equals 1. The con-
ditional probability p (zi|xINS) ∼ N (zi − xINS,Σ) follows a multivariate normal distribution.
To reduce the set of multiple candidate positions to a single estimate, the weighted mean is
computed:

zPDA = z̄ =
n∑

i=1

wizi . (3.2)
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A schematic depiction of how map matching and the position estimate calculated by the
PDA are related is shown in Figure 3.3.

rs

xINS
zPDA

Map Matches Zt = {z1, z2, z3}

true
Traj

ector
y

Figure 3.3: Illustrated is the working principle of the Map Matching process in two dimen-
sions. The position estimate zPDA of the IMU is used to define the search area
of the map (red circle). The locations zi are used to calculate the resulting map
match by taking the weighted sum of the matched locations. The weight of each
location is computed as stated in Equation 3.1.

The corresponding associated weighted variance is calculated by taking the average sum of
the measurement covariance Ri and the spatial covariance of the location found:

R̄ =
n∑

i=1

wi

[
Ri + (zi − z̄) (zi − z̄)⊤

]
. (3.3)

The initial measurement covariance Ri represents the signal noise variance of the mea-
surements in the immediate proximity of the location relative to the measurements at the
location and is described in the next section in more detail.

3.2.3 Unscented Kalman Filter

As outlined, a UKF is used to fuse the position estimates obtained from the INS and the
map matching. The Process Model and the Measurement Model of the UKF used in the
implemented algorithm are defined in the following. Additionally, the Process Noise and
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Measurement Noise are specified. Initially, the state Xt of the platform consists of the
position vector xt, concatenated with the velocity vector vt and the direction angle θ, forming
the following state vector:

Xt = (xt,vt, θt) . (3.4)

Process Model

The state is propagated by the Process Model. The mathematical representation of the
process model is given by the Equation 2.47. This step of the UKF is also known as the Pre-
diction Step. Here the state is propagated by the function F and perturbed by the process
noise qt which follows a normal distribution with zero mean and covariance Qt.

In the case of the underlying application of this thesis, the function F is a non-linear function
and describes the integration steps taken via the Euler integration step to go angular ve-
locities to the corresponding Euler angle used for the rotational transformation of the body
accelerations from the body frame b to the navigation frameN . Furthermore, F contains the
integration steps to go from the measured accelerations at of the platform to the velocities
vt and the positions xt respectively.

Since only a motion in the horizontal plane is considered, this transformation is a simpler
case of the three-dimensional case presented in Equation 2.41 and is given by the following:

RN
b =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (3.5)

The Process Noise Qt results from the measurement noise of the accelerometers σ2Acc. and
gyroscopes σ2Gyro. of the IMU used. The process covariance matrix has the following form:

Qt =


1
2σ

2
Acc.∆t

4 0 1
3σ

2
Acc.∆t

3 0 0

0 0.5σ2Acc.∆t
4 0 1

3σ
2
Acc.∆t

3 0
1
3σ

2
Acc.∆t

3 0 σ2Acc.∆t
2 0 0

0 1
3σ

2
Acc.∆t

3 0 σ2Acc.∆t
2 0

0 0 0 0 σ2Gyro.∆t
2

 . (3.6)
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Measurement Model

The fusion of position estimation of the magnetic field measurements and the map match-
ing for the navigation aiding are described by the Measurement Model of the UKF. This
step of the UKF is also known as the Update Step. The position estimate is based on the
comparison of one of the magnetometer’s signal measurements ms with the magnetic field
map M. As described in the previous section on PDA, there is the possibility of multiple
map matches, which are then combined to maximize the likelihood of the computed position
estimate. The function H represents the map matching function, which maps the magnetic
field measurement ms to the map matched location xPDA.

The definition of Measurement Noise is not trivial in this case. Because the magnetic field
measurements are in units of Tesla and the position is given in meters. There is also no
direct link to calculate the uncertainty resulting from the map comparison step. Following
the approach of Storms [41], the covariance matrix Ri of each individual location match
is calculated by looking at neighboring locations and deriving a gaussian likelihood func-
tion with these neighboring measurements. The likelihood L of one neighboring location is
calculated as follows

L(xN ;ms) =
1√
2πσ2m

exp

(
−(ms −m(xN ))2

2σm

)
, (3.7)

where the measured magnetic field ms is subtracted from the magnetic field value m(xN )

of the neighboring location of the map match xN . The standard deviation σm is the square
root of the sum of the variances from the map σ2Map and the magnetometer σ2Mag.. By normal-
izing the likelihoods of all neighboring locations, the standard deviation σx of the resulting
normalized Gaussian PDF is used to define a diagonal matrix representing the covariance
matrix of the position match:

Ri =

(
σ2x 0

0 σ2x

)
. (3.8)

The covariances obtained for each map match are considered and weighted to calculate
the resulting covariance matrix of the PDA position estimate, as shown in Equation 3.3. In
addition, as proposed by Wang et al. [10], the normalized Map Variability V (xi) of the entire
search radius is used to scale the measurement covariance. This quantity quantifies the
degree of variability in the map and provides information on how much the map is changing
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and is calculated as follows:

V (xi) =
∑
i

[z(xi)− z(x0)]
2 . (3.9)

This results in a scaled measurement covariance of the following:

R = V (xINS)R̄ , (3.10)

where additional clipping is applied to ensure that the covariance is no smaller than the
spatial dimension of a single pixel of the map.

3.2.4 Batch Estimation

Incorporating the position estimate from Map Matching is not performed at every map match-
ing step. This is because an incorrectly matched position, if corrected at a high map match-
ing rate, can lead to a divergent position estimate. In addition, the position estimate from the
INS is sufficiently accurate over short time intervals, making frequent updates unnecessary.
A more efficient approach is to fuse the map matches with the INS position estimate using
a series of map matches, referred to as batches in this thesis, which are found along the
trajectory. By combining these batches with the kinematic information of the state, more
accurate and stable position estimates can be obtained. In the further course, this step is
referred to as the Batch Estimation Step.

Time
Sampling
Rate

Map
Matching

Correction
Step

Batch Estimation length

Figure 3.4: Illustrated is the relationship between the sampling rate, the map matching rate,
and the correction step rate. The number of subsequently listed map match
results used for one correction step is defined as the Batch Estimation Length.

The matches identified at each map matching step are stored along with the corresponding
velocities and heading angle, as well as the map match covariances and state covariances.
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An illustration of the magnetometer sampling rate, map matching rate and correction steps
is shown in Figure 3.4, where the batch length is defined. The batch length indicates how
many map matches are combined to obtain the resulting position estimate for correction.
Once the specified batch length is reached, the batch estimation procedure is initiated. In

t

xINS

zPDA

t + 1

xINS

zPDA

tr
u
e
T
ra
je
ct
or
y

vt vt+1

t + 2

xINS

zPDA

Figure 3.5: Illustrated is the Batch Estimation process for 3 subsequent steps. In black the
true trajectory is visualized. The red trajectory shows the pure INS position esti-
mate of, which diverges from the true trajectory. The green and following violet
curve shows the resulting trajectory using map matching and batch estimation.

this step, past map matches and their corresponding kinematic information are propagated
over time and fused with the position estimate from the subsequent map match. This pro-
cess is implemented using an additional UKF, which enables the propagation of covariance
information alongside the position estimate by using the stored velocities. The schematic
of this procedure is shown in Figure 3.5 for three consecutive steps. As described, the po-
sition estimate from the INS is used for map matching. The green crosses represent the
map matches found for each step. The position estimates, which fuse the map matches,
are denoted as zPDA. Once a zPDA and its covariance are propagated over time and space
with the respective velocity, the propagated position estimate and the newly found position
estimate from map matching are fused to minimize the covariance of the position estimates.
The resulting position estimate from this single step of batch estimation is marked as a violet
dot. This position estimate is then used for propagation in the next step of the batch esti-
mation process. Once all the positions in the list of batches have been traversed, the final
position estimate, incorporating all previous matches and kinematic information, is used to
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fuse the diverging INS position.

3.2.5 Overview of the Magnetic Field-Aided Navigation Algorithm

As each step has been described in detail, the entire algorithm process is now described
step by step. A schematic flowchart of the algorithm is shown in Figure 3.6.

First, the accelerations a and angular velocities ω are taken from the IMU. The preceding
position is also available. The position propagation due to the dynamics measured by the
IMU and the integration of the angular velocities is described in Section 2.4.2. This propaga-
tion occurs in the prediction step of the UKF, where the state covariance is also propagated
over time.

Once the state estimate Xt|t−1 with the corresponding covariance matrix P t|t−1 is com-
puted from the INS, the position estimates xt

INS and the corresponding position covariance
Σt

INS are extracted and used for map matching. The position estimate xt
INS is used as the

central location of the circular search area. The covariance is used to calculate the search
radius, the chosen radius being rs = 3σx, within which the spatial bounds are set. The mag-
netometer measurements are then used to define the limits of the magnetic field interval for
consideration of a match, requiring estimates of magnetometer noise σMagn. and estimates
of map noise σMap to define the interval within which a location is considered a match.
If more than one match is found, the multiple matches are merged into a single most likely
map match by using PDA step. Once the map match and its resulting covariance have been
computed, they are stored with the other state components in a list for Batch Estimation.

Until the specified batch length is reached, no update step of the UKF is performed to merge
the position estimates of the INS and the map matching. This means that the state derived
solely from the INS is used for the next subsequent time step and the whole process is
repeated.

Once the specified batch length is reached, the list of map matches is traversed chronolog-
ically. Fusion is then performed in another UKF, where the map matches are propagated
in time using the corresponding velocity and fused with the next map match. At the end of
the batch estimation, the map match incorporates both the previous map match information
and the kinematic information of the moving platform. This batch estimation result ztB is then
considered as a position estimate for the update step of the magnetic navigation UKF to cor-
rect the state of the moving body. Not only the position estimate but also the corresponding
covariance of the positions are updated in the updating step.
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Figure 3.6: Schematics of the implemented magnetic field-aided navigation system based
on map matching of magnetometer measurements to a magnetic field map.
(Top) Time steps in which no correction step is performed: the INS position es-
timate is calculated solely based on the experienced accelerations and angular
velocities. The resulting position estimate and its respective position covariance
are provided for map matching. This step also incorporates the magnetic field
measurements. Based on the map matches found, the most probable location
of the measurements is calculated along with its covariance. These results, in-
cluding the corresponding velocities, are saved for the batch estimation step for
later propagation. The INS state estimate is then used for the next time step.
(Bottom) Similar to the previous scenario, position and map matches are calcu-
lated. When the specified batch length is reached, batch estimation is executed.
The resulting batch estimation position and covariance are fed into the predic-
tion step of the UKF, allowing for position correction. The corrected position is
incorporated into the state vector, which is then used for the next time step.

58



3 Experimental Setup and Methodology

3.2.6 Different magnetic field-aiding approaches

Different magnetic field measurements with their respective map can be used to support
navigation. Since the magnetic field is a vector quantity, it offers more information than just
a single scalar value such as the total magnetic field strength. Instead of relying solely
on total field measurements, each vector component (e.g., in the x, y and z directions)
can be considered individually. This enables the use of separate maps and corresponding
measurements for each component to estimate location. The advantage is that when using
only a single component, map matching identifies locations along the corresponding contour
line of the map. In contrast, using multiple components results in matches that are more
consistent across all components, making the identified location more probable and specific.

The effectiveness of using individual vector components Bx, By and Bz, as compared
to the total magnetic field magnitude |B|, is briefly evaluated in the laboratory simulation.
To implement this approach, a magnetic field map for each vector component is required,
against which the corresponding recorded measurements are map-matched. The resulting
position estimates xi for each axis i ∈ x, y, z are then fused by minimizing their respective
covariance matrices P i, assuming that the position estimates are uncorrelated. The fused
estimates for the position x and its associated covariance P are obtained using the following
equations:

P = P−1
x + P−1

y + P−1
z , (3.11)

x = P
(
P−1

x xx + P−1
y xy + P−1

z xz

)
. (3.12)

Another approach would be to use the gradient components, which eliminates the need for
absolute measurements. Since the gradient of a vector field is considered, this is repre-
sented as a 3× 3 tensor:

∇B =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By

∂x
∂By

∂y
∂By

∂z
∂Bz
∂x

∂Bz
∂y

∂Bz
∂z

 (3.13)

By using the fact that the magnetic field is divergence-free as stated in Equation 2.3 and,
under the assumption of that no currents and no changing electric fields are present, also
curl-free ∇×B = 0, only 5 of the 9 magnetic gradient tensor components are independent.
Incorporating multiple components of these independent tensor components can enhance
navigation accuracy further [42].
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3.3 Simulation Approach

The simulation framework developed for this work serves two purposes. First, to test the
implementation prior to conducting the real experiment, and second, to evaluate the navi-
gation performance under controlled conditions and to identify challenges in the real world
implementation of the navigation aiding algorithm. To achieve this, two different simulation
scenarios have been implemented. The first scenario simulated the laboratory setup, while
the second simulated a real-world application of airplane navigation using real magnetic
anomaly maps.

In the following sections, both simulation approaches and the chosen parameters are de-
scribed in detail.

3.3.1 Simulation of Laboratory Experiment

The lab experiment was first simulated before being deployed in the real world. This allowed
the algorithm to be implemented and developed in advance.

This was achieved by simulating a randomly generated magnetic field arrangement with
specified parameters, which produced the assumed true magnetic field. Based on this sim-
ulated field, magnetic field measurements were generated from the magnetometer moving
along a specified circular trajectory with a set radius of R = 0.45m and rotational speed of
1RPM. Noise, modeled as random Gaussian noise, was added according to the specified
noise characteristics of the magnetometer. In addition, the accelerations and angular veloc-
ities for the motion along the trajectory were simulated by adding expected Gaussian white
noise. The IMU sampling rate was set to 100Hz, while the magnetometer sampling rate
was set to 20Hz during the simulations. The noisy measurements were synchronized using
the same time array to allow easy traversal of the data arrays. The full set of simulation
parameters can be found in the Table 3.1.

Figure 3.7 shows a randomly generated magnetic field map as a heat map in the back-
ground. The magnetic field map spans a simulated rectangle of 1.2m×1.2m, with a chosen
resolution of 1cm. Furthermore, the circular trajectory, with a radius of R = 0.45m, is shown
as a dashed blue line. The starting position of the simulation is marked by the red star. For
conducting the simulation experiments, a brief parameter optimization of the UKF parame-
ters, α and β, was first performed over the most promising interval. Following this, Monte
Carlo simulations with 500 iterations per chosen batch length and map noise level were
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Figure 3.7: The region of interest is
shown with the desired
trajectory (blue, dashed
line) of the moving platform
on which the sensors are
mounted. Also shown is the
randomly generated mag-
netic field map with a pixel
size of 1cm. The starting
point of the trajectory is
marked with a red star.

conducted. These simulations aim to analyze how map quality influences the magnetic nav-
igation aiding algorithm and to determine the optimal batch length for the lab experiment.
Furthermore, component-wise map matching using vector measurements to map the loca-
tions was also performed to evaluate how this approach affects the navigation performance.

Table 3.1: Simulation Parameters of the Laboratory Experiment

Parameter Units Value

Initial Position [m] (0.45± 0.01, 0± 0.01)

Initial Velocity [m/s] (0± 0.001, 0.047± 0.001)

Initial Heading [deg] 0± 0.01

IMU Acceleration Noise Level [m/s2/
√
Hz] 1× 10−4

Gyroscope Noise Level [deg/
√
Hz] 1× 10−3

Magnetometer Noise Level [pT/
√
Hz] 3

Map Noise Levels [nT] {0.5, 1, 1.5, 2}
Batch Estimation Lengths {10, 20, 30}
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3.3.2 Simulation of Flight Scenarios

Building upon the simulations conducted in the laboratory, the goal was to deploy and vali-
date the implemented navigation algorithm in potential real-world applications, such as nav-
igation aiding for airplanes.

Similar to the laboratory simulations, the airplane’s movement was restricted to the horizon-
tal plane with stabilized roll and pitch angles. This limitation reduces the usual six Degrees-
of-Freedom (DOF) in three-dimensional space to only three. This is valid because, in flight
applications, further different sesnor and systems are used to determine flight height. Ad-
ditionally, for determining the heading angle of an airplane, there are also further systems
like magnetic heading which makes calculating of heading angle using the gyroscope re-
dundant. By considering a constant heading angle, this reduces the DOF further to only two
of the original six DOF.

The total magnetic field maps used for the simulation were derived from the Earth’s Mag-
netic Anomaly Grid (EMAG2), which is publicly available at [30]. Since the resolution of
these maps is too coarse for the intended application, they were upscaled via interpolation
using a standard linear interpolation method to achieve a resolution of 2 arc-seconds, which
corresponds to approximately 120m at the chosen latitude and longitude for the simulation.
Figure 3.8 shows the area of the flight path simulation. Furthermore, the position state was

Figure 3.8: Magnetic anomaly field
map of the area surround-
ing the implemented flight
path in southeastern Aus-
tralia. The actual flight
path is depicted as a red
line, with a star marking
the starting point of the
trajectory.

represented in geodetic coordinates, as the maps are referenced in the same geodetic frame
also known as the North-East-Down (NED) coordinate system, resulting in a state vector of
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the following form:

Xt =
[
latt, lont, v

north
t , veastt

]
, (3.14)

The magnetic field measurements were simulated by recording the magnetic field along the
true flight path before starting the simulations. In addition, random Gaussian white noise at
the specified noise level for the QuSpin QTFM was applied.

Since a magnetic field map typically contains errors that are unknown, additional random
noise was added before performing the map matching within the rectangular search area
around the INS position estimate. Only one noise level, σmap = 0.5nT, was chosen for the
simulations. For the EMAG2 anomaly map, measurements during a real-life flight exper-
iment would need to account for the magnetic field strength from the IGRF model, which
should be subtracted from the magnetic field. An overview of the simulation parameters is
provided in Table 3.2.

The simulations were conducted for two different simulation sets, each with different batch
lengths and map matching rates. For both simulation sets, a parameter sweep of the UKF
parameters α and β was conducted to find the optimal UKF parameter set. Once the optimal
parameter set was chosen, a Monte Carlo simulation was performed for each simulation set
to analyze the stability of the implemented algorithm.

Table 3.2: Simulation Parameters of the Flight Path Simulations

Parameter Units Value

Initial Position (lat, lon) [deg] (−35.5± 2
3600 , 144.5± 2

3600)

Initial Velocity (vnorth, veast) [m/s] (18.7± 0.1, 27.0± 0.1)

IMU Acceleration Noise Level [m/s2/
√
Hz] 1× 10−5

Magnetometer Noise Level [pT/
√
Hz] 3

Map Noise Levels [nT] 0.5
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3.4 Data Collection and Processing

This section outlines the process of data acquisition and storage for magnetic field-aided
navigation and noise studies in the laboratory.

It begins by describing the general procedure for acquiring data, including how information
from the magnetometers is retrieved and stored. Next, the method used to collect data for
analyzing sensor noise and sensitivity is presented. This is followed by a brief explanation
of the procedure for acquiring data to calibrate the IMU. The subsection concludes with the
data collection method used to obtain sample points for generating the magnetic field map,
which is essential for the navigation-aiding part of the experiment.

3.4.1 General Data Acquisition

The two magnetometers used are the TwinLeaf VMR, a classical magnetometer that uses
three magnetoresistive sensor chips to capture the three vector components of the magnetic
field, and the QuSpin QTFM Gen2, an optically pumped magnetometer. Both magnetome-
ters are depicted in Figure 3.9. The specification specified by the companies are listed in
Table 3.3.

To read the sensor data, two custom Python scripts were implemented, one for each magne-
tometer at hand. These scripts enable configuring the sensor settings via serial commands
sent using the UART protocol. They also handle the reading of sensor data and storing the
received data in DataFrames, which are subsequently saved as .csv files.

Figure 3.9: Depicted are the two magnetometers at hand: on the left, the TwinLeaf VMR; on
the right the QuSpin QTFM Gen2 [20].
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Table 3.3: Comparison of the TwinLeaf VMR and QuSpin QTFM Gen2 magnetometers.

Property TwinLeaf VMR QuSpin QTFM Gen2

Sensitivity [pT/
√
Hz] 300 3

Dynamic Range [µT] [−100, 100] [1, 150]

Max Gradient Field [nT/cm] N/A 300

A key component of this work is the synchronization of the two magnetometers to allow for
side-by-side comparison of the magnetometers and also being able to incorporate the IMU
measurements with the magnetic field measurements for navigation.
To achieve this, data from both sensors is collected at the same time using multithreading,
with each measurement assigned a timestamp to ensure synchronization. This is espe-
cially critical because the two sensors send the data in different ways. The TwinLeaf VMR
continuously streams the measurement data one by one, while the QuSpin QTFM sends
the measurement data in batches, including internal timestamps for reconstruction of the
measurement sequence.

The synchronization of the three components of the laboratory experiment is achieved
through the choosing of a reference timeline. In this case, the sensor time-line of the Twin-
Leaf VMR was selected. Having this reference time line allows the other two components,
the QuSpin QTFM and the rotation stage, to be synchronized to it.
For the sensor with the higher sampling rate, the closest sampling points are selected and
aligned with the reference time-line. Given the higher sampling rate of the reference sensor,
there are additional sensor readings between the matched points. These additional mea-
surements are then utilized and incorporated into the final matched measurements by taking
the mean value of the measurements that fall around the matched reading.
The same matching process, of finding the closest sampling match, is applied to the rotation
stage. As the rotation stage has a lower sampling frequency, the missing sampling values
are then interpolated using the closest sensor measurement. This interpolation is valid due
to the fact that the rotation stage only provides positional information about the angle it is in.
An illustration of this synchronization scheme is depicted in Figure 3.10.
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Time
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Figure 3.10: Schematic of how the data from the three sensors are synchronized for the lab-
oratory experiment: Each sensor operates at its own sampling rate. The Twin-
Leaf VMR was chosen to provide the reference timeline. The other two sensors
and their measurements are synchronized by finding the closest timestamps to
this reference. For the sensor with a higher sampling rate than the reference,
the excess measurements are handled by taking the mean value around the
matched reading. For the lower sampling sensor, interpolation is used to esti-
mate the missing values at the reference timestamps. This results in all three
sensors sharing the same timeline and having an equal number of sampling
points.

3.4.2 Noise and Drift Analysis

Prior to conducting the lab experiment, the bias, noise, and drift levels of the inertial sensors
and magnetometers were quantified by acquiring sensor data over an extended period. To
ensure accurate error quantification, the environment was kept as stable as possible to
minimize the influence of external factors. Furthermore, the sensors had been running for
several hours to reach a steady state, which in turn minimizes temperature fluctuations.

For noise and sensitivity quantification, the acquired time-series data were analyzed using a
Fourier Transform to obtain the spectral density. Data from both TwinLeaf VMR and QuSpin
QTFM sensors were collected simultaneously over a duration of 6h, with measurements
taken overnight. This long-term data acquisition was used to analyze sensor drift via AD
analysis and common linear drift fitting.

3.4.3 Inertial Sensor Calibration

Accurate position estimates calculated from inertial sensors depend on precise calibration,
especially ofr consumer grade IMU. Sensor bias can significantly distort the calculated po-
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sition, leading to large errors in a short period of time. This is particularly problematic for the
navigation-aiding algorithm in the laboratory experiment, which may not have enough time
to counteract excessive drift.

The basic method for calibrating the IMU sensors is static calibration. This method is using
known output values of the sensor for different orientations to estimate the offsets caused
by axis misalignment, non-orthogonality, and gravitation. To correct for these systematic
errors, a calibration matrix A can be used, which accounts for misalignment and scale factor
deviations, while individual sensor biases are captured in a bias vector b. The calibrated
sensor output (xi, yi, zi) is then computed as:xiyi

zi

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


gixgiy
giz

+

bxby
bz

 .
(gix, giy, giz) is the expected output for each axis. In the case of aligning the the z-axis of
the sensor parallel to the gravity vector it should read

(
0m
s2
, 0m

s2
, 9.81m

s2

)
. By recording the

output of each axis for various orientations and and knowing the expected output value each
orientation should have, it is possible to solve for matrix A and vector b. For calibrating the
built-in IMU of the TwinLeaf VMR, six static orientations were used with each axis aligned
parallel and antiparallel once to the gravity vector. This calibration step has to be only done
once.

Furthermore, as the IMU is mounted on a moving platform, perfect horizontal alignment is
not always possible. As a result, further calibration is required to obtain accurate measure-
ments. After each standstill simulation, a short measurement is taken to remove static bias
caused by a slight tilt of the platform, thus eliminating gravitational offsets.

3.4.4 Magnetic Field Map Generation

The quality and accuracy of the magnetic field map are crucial for navigation with magnetic
fields. For navigation to be reliable, the map must provide accurate, location-specific mag-
netic field data. This section outlines the two main steps involved in producing these maps.
The first step focuses on the data collection methods, while the second step outlines the
process of transforming the measured data into a usable map.

The laboratory experiment uses a rotating platform, therefore the same platform was used
to generate the underlying magnetic field map. By varying the radius of motion, the main
Region of Interest (ROI) of the 1.5m × 1.5m area can be traversed sufficiently. Given the
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dimensions of the OPM sensor head, a pixel resolution of 2cm was selected for the prelimi-
nary measurement mapping.
However, to avoid the need to measure at 30 different radii, data were collected at only eight
radii, ranging from 30cm to 75cm with 5cm separation.
Data collection for map generation was performed by synchronizing the QuSpin QTFM Gen-
2 magnetometer with the step readings of the rotary stage. Each sensor reading was given
an absolute timestamp, which was then used to determine the location of each magnetic
measurement. The magnetometer was configured to sample at a rate of 128Hz, while the
rotary stage provided position readings at approximately 20Hz. To synchronize the data sets,
the magnetometer readings with the smallest time stamp difference to each stage reading
were selected. As the magnetometer provided excess readings, these were averaged to
minimize uncorrelated random noise, which acts further as a low-pass filter. In addition, due
to the chosen velocity of 1RPM, several averaged magnetic field measurements fell within
the 1cm pixel size, requiring further averaging to ensure spatial consistency.

To compensate for the missing grid points, a Kriging interpolation algorithm was imple-
mented, which allowed the reconstruction of the complete magnetic field map. As different
Kriging interpolation algorithms exist and parameters such as sill and range can be ad-
justed depending on the underlying problem, the experimental variogram of the recorded
maps were used to find the best matching method and the best parameter set.

The resulting map is complete, with no missing pixels within the circular ROI of radius R ∈
[0.3m, 0.75m].
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4 Results & Discussion

This section presents the results obtained from both the simulation approaches and the
experiment conducted in the laboratory. Additionally, the results are discussed to provide a
clearer understanding of the rationale behind each step taken.

In the first part, the results of the simulation approaches are presented and discussed, in-
cluding both the laboratory experiments and the flight path simulation results.
Moving on from the simulation approaches, the experimental data are presented and dis-
cussed in the second half of this chapter. This includes further a comparison of the magne-
tometers at hand in terms of drift and noise.

4.1 Simulation Approach

4.1.1 Simulation of the Laboratory Experiment

This section presents the results of the simulation of the laboratory experiment. The map
is introduced, and its characteristics are outlined. The optimization results of the sampling
parameters α and β for the UKF are then discussed. With the optimized parameters, the
algorithm is evaluated in terms of performance and stability, considering the batch length
and map noise. In addition, magnetic field navigation using the vector components of the
magnetic field for navigation is also examined.

Simulated Magnetic Field Map

The randomly generated simulated magnetic field map used for the subsequent analysis is
shown in Figure 4.1 (upper left corner ). Additionally, the variability of the map within the
search area of each pixel is calculated using the equation presented in Equation 3.9. For
this calculation, a pixel radius of rs = 3 was chosen, and the entire map was traversed pixel
by pixel. The map varies between 2nT and 50nT.
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Figure 4.1: (Upper left) Randomly generated magnetic field map used in the following sec-
tion. (Upper right) Corresponding map variability, calculated using Equation 3.9.
(Bottom left) Mean map matching error per pixel, computed using the PDA im-
plemented in the navigation aiding algorithm. (Bottom right) Mean number of
map matches within the search area of each location in the map.

Further evaluation of the position estimate error within the considered search area for each
pixel, using the PDA approach presented in Section 3.2.2, is shown in Figure 4.1 (bottom
left). The corresponding number of map matches found in the search area is depicted in Fig-
ure 4.1 (bottom right). For these evaluations, randomly generated magnetic measurements,
incorporating the magnetometer noise of the QuSpin QTFM, were conducted for each pixel.
The resulting plots represent the mean values of ten computations.
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The map matching error is generally around 1cm, which corresponds to the spatial resolution
of the map. The results of the map matching evaluation reveal interesting patterns, with line
contours indicating deviations in the mean PDA error. Further analysis of the number of map
matches shows similar patterns, suggesting that in those regions of the map, more matches
are found and incorporated into the position estimate. This indicates a correlation where
a higher number of map matches leads, in some cases, to a higher position error and, in
others, to a lower position error.

Discussion: One realization of the magnetic field map arrangement was presented, along
with an analysis of how the map varies and how the map matching algorithm performs
across the entire area. This included the evaluation of map variability and the PDA error
over the full map. For this analysis, a defined search area around each pixel was considered,
with a constant radius. The radius was selected based on the observation that the standard
deviation σx of the position estimate tends to converge at a value slightly above the pixel
resolution. As specified, a search radius of rs = 3px was used in this evaluation, as this was
found to be the mean search radius when setting it to three times the standard deviation of
the state’s position estimate rs = 3σx when navigation simulations were conducted. Since
the number of matches across most of the map remains below five, and the PDA position
error stays close to the pixel resolution, this indicates that the bounds for map matching are
appropriately defined. These measurement bounds were set according to the specifications
detailed in Section 3.2.1.

Optimization of Unscented Kalman Filter Parameter

In order to find the optimal set of UKF parameters, a parameter sweep of the scaling pa-
rameters α and β of the UT was conducted. For the optimization, a batch length of ten was
used. Additionally, the map noise in the simulations was set to a level of σMap = 1nT. The
intervals for parameter α were set to [0.1, 0.9] and for β to [2, 8], with respective step sizes
of ∆α = 0.1 and ∆β = 1. For each parameter combination, a total of 10 simulations were
conducted.

The resulting mean of the mean absolute error (MAE) of the magnetic field-aided navigation
algorithm for different values of α and β is presented in Figure 4.2 (left). Furthermore,
Figure 4.2 (right) shows the mean simulation duration achieved for each parameter set. The
parameter optimization plots do not show any clear tendency or relationship between the α
and β parameters of the UKF. However, some parameter sets exhibit a lower MAE and a
higher mean simulation duration.
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Figure 4.2: (Left) Mean of mean absolute error of the navigation aiding algorithm for each
set of α and β. (Right) Mean of simulation duration of each parameter set.
Simulation duration is considers the simulated time in which the position error of
the magnetic field-aided navigation does not exceed 15cm.

To select the optimal parameter set, a cost function was defined, which minimizes the MAE
of the simulation runs while maximizing the duration of simulations. The following cost func-
tion was formulated:

J(α, β) = w1 · MAE(α, β)− w2 · Duration(α, β) (4.1)

The three best parameter sets that minimize the cost function, along with their corresponding
MAE values and simulation durations, are presented in Table 4.1. Parameter Set 1 was
selected for further analysis of the algorithm’s stability in the following course of the work.

Table 4.1: Optimal Parameter Sets for UKF

Parameter Set α β MAE [cm] Duration [min]

Set 1 0.3 5 3.0 7.3

Set 2 0.3 6 2.8 6.2

Set 3 0.1 8 3.4 7.7
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Discussion: Prior to conducting the parameter optimization step, it was observed that the
UKF parameters significantly influence the algorithm’s performance. This initial optimiza-
tion, although based on a limited number of samples, aimed to identify general trends in
how performance depends on the chosen parameters. However, for a more reliable and
robust analysis, a larger number of samples per parameter set would be necessary. Addi-
tionally, a wider range for the scaling factor α should be considered, as suggested in the
[33], where it is stated that α could be varied within the interval [1 · 10−4, 1]. The limita-
tions of the implemented optimization presented were mostly due to the number of samples,
the computational time, and the large number of simulations required. To manage this, a
simulation stop was implemented at a duration of 20min, as simulations reaching this point
typically required around 5min of computation time.

This optimization process is closely tied to the estimation of map-matching covariances.
Defining these covariances is not straightforward, and the parameter tuning can also be in-
terpreted as a way of fine-tuning how the assumed Gaussian PDF are sampled and fused.
Therefore, the optimization plays an important role in both enhancing performance and re-
fining the underlying probabilistic assumptions used for the fusion of the position estimates.
Furthermore, it is important to note that the UKF used for fusing the position estimate of the
batch estimation with the INS position estimate, and the UKF used to fuse single matches
for batch estimation, currently share the same parameter set of α and β. While separating
these UKF parameter sets could be beneficial, as this would allow for further tuning, it would
also require two separate optimization processes if optimal performance is desired.

Navigation Algorithm Stability Analysis

The evaluation of the implemented navigation algorithm was conducted using Monte Carlo
simulations. A total of 500 simulations were performed for each batch length and map noise
level considered. The results are shown in Figure 4.3 and Figure 4.4.

As in the previous UKF optimization, two observables are evaluated. The duration of the
simulations in which the magnetic field-aided navigation did not exceed the defined error
threshold of 15cm, and the MAE over the entire simulated trajectory are looked into. Focus-
ing on the distribution of simulation durations dependent on map noise and batch length, it
can be observed that, although the optimization step was performed at a batch length of 10,
the peaks of the PDF for batch lengths of 20 and 30 tend to occur at slightly higher durations
for map noise levels above 1nT. Additionally, the number of simulations reaching the max-
imum duration of 20min decreases significantly as the map noise increases. For example,
at a batch length of 20, the proportion of simulations reaching the maximum duration drops
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Figure 4.3: Histograms of simulation durations for different batch lengths and map noise
levels.

from approximately 33% at a map noise level of 0.5nT to around 6% with at map noise lev-
els 1nT. With further increases in map noise, this percentage continues to drop, reaching
below 1% for map noise level of 2nT. This trend is consistently observed across all batch
lengths.

When examining the distribution of the MAE, particularly at low map noise levels, distinct
peaks are observed for noise levels of 0.5nT and 1nT, with the mean absolute error cen-
tered below 2cm. At higher map noise levels, these peaks become less pronounced as the
PDF broadens and shifts slightly upward, indicating an increased position error. Addition-
ally, it is visible that a batch length of 10 results in poorer performance compared to longer
batch lengths. A few simulation examples with varying simulation durations are shown in the
Appendix. To evaluate the deviation of the navigation-aided position estimate over time and
compare it to the position estimate from pure INS navigation, simulations that reached the
end of the simulation time without exceeding the set error threshold were considered. The
graph in Figure 4.5 (left) shows the resulting error plots over time for the navigation-aided
algorithm and the pure INS at map noise level of 1.5nT and batch length of 20. For this,
the mean of the simulation considered is taken. The pure INS position errors diverge fast
ending the 20min simulation duration at about 1 − 2m, while the position error of the map
matching algorithm stays bounded within 0.5 − 4cm. This is visualized in the zoomed in
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Figure 4.4: Histograms of mean absolute errors for different batch lengths and map noise
levels.

interval in Figure 4.5 (right). It is noticeable that oscillation in the position error are present.
This is attributed to the circular trajectory of the movement and the fact that the body moves
multiple times through the same map.

Discussion: The simulation of the laboratory setup was carried out using a single randomly
generated magnetic field map realization. This was done to evaluate the performance and
stability of the implemented algorithm, specifically in relation to map noise level and batch
length, while keeping the map constant. Further studies could explore different parameter
sets, as many of the algorithm’s parameters are adjustable. For example, the dependency
of the search radius on the position estimate, as well as the bounds for considering a map
match, could be varied. The algorithm demonstrated good navigation performance, as most
of the trials were successfully completed over one entire circular trajectory. Divergence
issues seem to arise when map matches were missing or incorrect matches are used, par-
ticularly when velocity errors especially the direction component are present. As this leads
to high deviation from the true location while no position correction is done.

One key research point that needs to be addressed is the potential for correcting velocity
drift when only fusing INS and magnetic field measurements. It is important to note that this
simulation was specifically tailored to the planned laboratory experiment. For other appli-
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Figure 4.5: The mean error over time of the considered simulations that reached the simula-
tion end is depicted. A comparison between the navigation-aided algorithm and
the pure INS error shows that the algorithm’s error does not diverge and remains
bounded, which is not the case for the unaided error.

cations, different simulations would be required, but the methodology used to analyze the
stability of the algorithm’s performance could be adapted accordingly. Further simulations
should consider a wider range of scenarios.

Navigation Aiding Based on Vector Components of the Magnetic Field

The previous simulation only considered the total intensity of the magnetic field. However,
since the magnetic field is a vector field, the vector components of the field can also be uti-
lized for navigation aiding. Equivalent to the previously presented Monte Carlo simulations,
a Monte Carlo simulation is conducted that considers fusing position estimates of each of
the three vector components for navigation aiding. To compare the performance of the total
intensity map matching with that of the vector component matching, the simulations were
limited to a single batch length of 20 and a map noise level of 1.5nT. The resulting MAE and
simulation duration histograms of the Monte Carlo simulations are presented in Figure 4.6.
When comparing these vectorial navigation results (blue) to the previously presented Monte
Carlo simulations (solid black line), it becomes evident that utilizing all three vector compo-
nents for map matching enhances the simulation duration. The peak of the empirical PDF
occurs around 4min, compared to the peaks at around 3min in the previous simulations.
However, the comparison indicates the histogram indicates that more simulations reach the
maximum simulation duration of 20min. Looking at the mean absolute error distribution,
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Figure 4.6: Monte Carlo results using all three vector components of the magnetic field for
map matching. Simulation parameters are set to a batch length of 20 and a map
noise level equivalent to 1.5nT for total intensity map matching.

the peak of the distribution is more prominent compared to the corresponding total intensity
map matching. When comparing this to the other map noise level distributions of the total
intensity map matching, it is evident that although a map noise level of equivalent 1.5nT was
simulated for these vector component simulations, the resulting distribution more closely re-
sembles those for lower map noises of the total intensity simulations. This suggests that
using all three vector components results in more robust navigation aiding.
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Figure 4.7: The mean error over time of the considered simulations that reached the simu-
lation end using the three vector components for map matching is shown.
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Figure 4.7 shows further the mean error with the respective standard deviation over time
for simulations that reached the end of the simulation. Comparing this error plot to the total
magnetic field one it can be seen that the error curve has a different reoccuring pattern and
less error fluctuations within one rotation.

4.1.2 Flight Path Simulations

Simulations were conducted using the specified flight path and a real magnetic anomaly
map, both of which were introduced in the previous chapter. Two different sets of param-
eters were selected. Simulation Case A uses a batch length of 10 with the magnetometer
sampling rate set to 0.2Hz. Simulation Case B uses a batch length of 25 and a magnetome-
ter sampling rate at 1Hz. For both sets, a brief UKF parameter optimization was performed
prior to conducting the Monte Carlo simulation with the optimal parameter sets found.

Optimization of Unscented Kalman Filter Parameter

Initially, a quick optimization of the UKF parameters for each simulation set was performed
using a limited number of simulation samples of 10. The parameters α and β were con-
sidered within the ranges α ∈ [0.3, 0.5] and β ∈ [4, 8]. The intervals for α and β were
not equally spaced and the intervals chosen based on intuition of prior simulations. The
resulting heat plots of the Mean Absolute Error (MAE) and Total Error (TE) for Simulation
Case A are shown in Figure 4.8. The same heat plots for Simulation Case B can be found
in the Appendix. Neither of the plots for both simulation cases do show any clear tendency
on how UKF parameter influence the performance of the navigation aiding. However, some
parameter sets tend to perform better than others. To determine the optimal parameter set,
the following cost function was defined to minimize both the MAE and TE simultaneously:

J(α, β) = w1 ·MAE(α, β) + w2 · TE(α, β) , (4.2)

where the weights are set to w1 = w2 = 0.5. The top three parameter sets for α and β iden-
tified during the minimization process for each Simulation Case are presented in Table 4.2.
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Figure 4.8: Resulting mean values for the Mean Absolute Error and Total Error for each UKF
parameter set of Simulation Case A.

Table 4.2: Optimal Parameter Sets for UKF

Parameter Set α β MAE [km] TE [km]

G
ro

up
A Set 1 0.42 4 2.09 2.85

Set 2 0.32 4.4 2.32 2.68
Set 3 0.3 5.2 1.74 3.38

G
ro

up
B Set 1 0.58 9 1.29 4.23

Set 2 0.5 8 1.32 4.49
Set 3 0.3 8 1.41 4.69

Furthermore, Figure 4.9 illustrates the mean error plots for various UKF parameter sets used
in the implemented navigation algorithm during the optimization step for Simulation Case A.
For this analysis, the error from each individual simulation was calculated, and the mean
error was then computed for each parameter set. It is evident that the choice of parameters
has a significant impact on the resulting navigation error curves. Most simulations show a
rapid divergence from the true trajectory. However, some simulations stabilize at different
error magnitudes after the initial divergence, while others show a diverging pattern similar to
that of the pure INS. The error plot corresponding to the optimal parameter set is highlighted
in green, with the shaded area representing the ±1σ confidence interval. The respective
error plots for the parameter sets of Simulation Case B are provided in the Appendix.
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Figure 4.9: Mean errors along the trajectory for different parameter sets of α and β. The er-
ror plots show varying curves depending on the parameter values, indicating that
the UKF parameters have a significant impact on the navigation performance of
the algorithm.

Discussion: Similar to the optimization performed in the laboratory experiment, a brief pa-
rameter optimization was conducted for both simulation cases considered. As before, only a
limited sample size of 10 simulations per parameter set was used. The results indicate that
different parameter configurations lead to varying navigation performance.

For the optimal parameter set in Simulation Case A, the position error initially increases
rapidly, reaching approximately 2000m, which is even higher than that of the pure INS.
However, the error appears to stabilize over time, suggesting that the navigation error is
ultimately bounded. In contrast, the best parameter set for Simulation Case B shows a
slower initial error growth. Yet, as the trajectory progresses, the position error curve begins
to follow a similar diverging trend to that of the pure INS solution. In the case of the optimal
parameter set of Simulation Case A the algorithm seems to be overconfident during the
initial phase, leading to a rapid divergence from the true position. Wile for the Simulation
Case B the algorithm seems to lack sufficient correction, which results in an error curve that
closely resembles pure INS performance.
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This optimization was conducted using two different simulation cases, each employing vary-
ing batch lengths and sampling rates. However, certain parameters such as the spatial and
measurement bounds used for map matching were kept fixed across both cases. Further
simulations and a broader exploration of the full parameter space are necessary to improve
the performance of the navigation algorithm. The current parameters were selected based
on intuition and insights gained during the development and tuning of the simulation code.

It is important to note that the conclusions drawn here are limited by the small number of
simulations per parameter set. To overcome this in the following section a Monte Carlo
simulation using the most promising parameter set for Simulation Case A and Simulation
Case B is conducted.

Monte Carlo Simulations

With the optimal parameter set for α and β for each simulation case chosen, a Monte Carlo
study was conducted to further evaluate the algorithm’s performance. In this study, 1000
simulation runs were performed for each case.

1 2 3 4 5 6 7
MAE [km]

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

Mean Absolute Error

0.0

0.2

0.4

0.6

0.8

1.0

0.36

2 4 6 8 10
TE [km]

0.00

0.01

0.02

0.03

0.04

Total Error

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
Fu

nc
tio

n0.89

Monte Carlo Simulation Results

Figure 4.10: Histograms and the respective cumulative probability function from the con-
ducted Monte Carlo simulations: (Left) Mean Absolute Error between the true
trajectory and the navigation-aided trajectory. (Right) Total Position Error at the
end of the navigation.

The resulting histograms for the MAE and TE for Simulation Case A are shown in Fig-

81



4 Results & Discussion

ure 4.10. Further, along with the histograms, the cumulative probability functions are de-
picted. This allows for determining the percentage of simulations that outperformed the
pure INS navigation. Looking at the distributions in the histograms, the peak values of both
measures, the MAE and the TE, are smaller than the average INS error across the simula-
tions. Looking at the cumulative probability function of the TE, it is visible that around 89%

of the simulations stay below the value of the pure INS estimate. The cumulative probability
function of the MAE shows that only about 39% of the aided navigation runs outperform the
pure INS in terms of position error along the trajectory. This leads to the conclusion that,
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Figure 4.11: Resulting error plots from the Monte Carlo simulations. Dark blue solid line:
Diverging error curve of the pure INS position estimate. Colored solid lines
with shaded areas: Mean and standard deviation of simulations that fall within
specified MAE intervals. Black solid line: Error plot of the best simulation from
the Monte Carlo runs.

even though the final position estimate of the aided navigation is more accurate for most
of the simulations, the overall navigation performance along the trajectory of the majority of
simulations is worse. This is also reflected in the mean error plots along the trajectory, which
are accumulated and averaged over different MAE values, which are depicted in Figure 4.11
with different colors. Further, Table 4.3 lists the corresponding probabilities of the selected
MAE intervals. However, looking at the error plot of the best simulation with the lowest MAE
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value (solid black line), it is visible that position error can be bound within maximal position
error of 1.2km.

Table 4.3: Probability over the plotted MAE [km] intervals.

p(0.6 < MAE < 1.0) = 2.3% p(3.0 < MAE < 3.4) = 8.9%
p(1.0 < MAE < 1.4) = 9.1% p(3.4 < MAE < 3.8) = 8.2%
p(1.4 < MAE < 1.8) = 11.3% p(3.8 < MAE < 4.2) = 7.0%
p(1.8 < MAE < 2.2) = 10.8% p(4.2 < MAE < 4.6) = 6.6%
p(2.2 < MAE < 2.6) = 9.6% p(4.6 < MAE < 5.0) = 5.9%
p(2.6 < MAE < 3.0) = 7.4% p(5.0 < MAE < 5.4) = 3.8%

Discussion: The results of the Monte Carlo simulations using the optimized parameter set
from the previous section have been presented. The simulation revealed mixed navigation
performance, with both well-performing and poorly-performing runs. When comparing the
MAE of pure INS navigation to that of magnetic field-aided navigation, it is evident that in
most cases, the aided navigation performs worse overall. This is in contrast to the optimiza-
tion step, where the aiding algorithm appeared capable of bounding the position estimate.
This leads to the conclusion that further optimization will require a larger number of simula-
tions, as previously mentioned. Nevertheless, the best outcomes demonstrate that position
correction is possible.

This leads to the conclusion that further work on the algorithm and the covariance estimation
is necessary, or alternatively, that additional optimization of the UKF parameters and other
variables, such as batch length, search radius, and measurement bounds, is required. When
comparing the results to similar simulations by Wang et al. (2023) [10], it becomes evident
that their algorithm, which also uses a magnetic anomaly map in a similar region of Australia,
performs better. Although the overall scheme of map matching and the PDA approach in this
work is based on their methodology, a similar level of navigation performance could not be
replicated. However, it is unclear in their work whether the magnetic field map also accounts
for additional noise. In this simulation, Gaussian white noise was added to the map to model
environmental noise. This was done following the work of Canciani [28], who notes that map
errors must be taken into account, as they can arise from both the recording process and
map interpolation, which can be as high as 2nT. A noise level of 0.5nT was chosen here
based on the mentioned maximal expected deviations.

Further, noteworthy is that the algorithm by Wang et al. [10] implements smoothing and
refines the position estimate by incorporating both forward and backward filtering, while
iterating multiple times along the whole trajectory to improve the navigation accuracy.
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4.2 Experimental Laboratory Data

This section presents the experimental results recorded in the laboratory. The evaluation
begins with the IMU and magnetometer drift and noise analysis, followed by an analysis of
the recorded magnetic field maps and their stability over time. The section concludes with
the presentation of the magnetic navigation attempts conducted within the laboratory.

4.2.1 Noise and Drift Analysis

IMU Performance Quantification

For the characterization and quantification of the IMU noise processes, an overview of the
time series recorded for each sensor type (accelerometer and gyroscope) is presented.
This overview includes the PSD plot, the AD plot, the raw data with a linear regression,
and the low-pass filtered raw data (averaged over 10s) along with the the respective linear
regression.

The overview of the accelerometer data is shown in Figure 4.12. By examining the AD plot, it
is evident that all three accelerometer contain Gaussian white noise, as indicated by a slope
of m = −0.5 in the region of τ ∈ [0.1, 1] in the AD graph. Additionally, the accelerometers
exhibit correlated noise, visible as slight humps in the AD graph for τ < 3 × 103 between
the downsloping section and the minimum region, which distorts the Bias Instability (BI)
quantification. The minimum region quantifies the BI for all three axes within the range of
τ ∈ [2·103, 9·103]. Moreover, the acceleration random walk process dominates the noise for
τ > 3 × 104s, as the rate random walk and drift rate random walk σAD increase rapidly. By
evaluating the value at τ = 1s of the linear fitted line (dashed), the corresponding Velocity
Random Walk (VRW) value can be determined. The BI, which quantifies random variations
in sensor bias over shorter time intervals, is identified in the region with a slope of m = 0,
within the interval τ ∈ [101s, 103s], where the Allan deviation curve reaches its minimum.
Furthermore, since the AD plots does not shows an upward slope with m = 1 for longer
integration times τ , no drift rate can be quantified from the data. The computed values are
listed in Table 4.4. Additionally, the sensor drifts, as indicated by the slopes of the linear
regressions of the measurement series, are found in the same Table. Similarly, the same
analysis can be done for the gyroscopes of the IMU. Figure 4.13 shows an overview of the
gyroscope measurements. Additionally, Gaussian white noise is present in the sensor mea-
surements of all three axes. Furthermore, the x and y-axes show correlated noise, visible
as slight humps before the minimum region is reached. The minima are reached at slightly
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Figure 4.12: Accelerometer Noise and Drift Overview: (Upper row, left) Power Spectral Den-
sity. (Upper row, right) Allan Deviation. (Middle row) Raw time series data of
the accelerometer recordings, including a linear fit for each axis. (Bottom row)
Low-pass filter applied to the raw data of each axis, including the same linear
fit.

smaller τ values, within the interval τ ∈ [7 · 102s, 4 · 103s]. Again, all three sensors rapidly
slope upwards, indicating noise characterized as rate random walk and drift rate random
walk σAD, which quantifies that measurement drift at longer time scales are apparent. The
values for Angle Random Walk (ARW) and BI are listed in Table 4.4. Further, the sensor
drifts, determined by linear regression fitting of the measurement series are also listed in the
same Table.

Discussion: No datasheet or detailed specifications for the integrated IMU were available
to direct compare with the obtained results. However, based on the observed performance
metrics, especially the obtained random walk values, which correspond to a noise amplitude
of the order of 10−3m/s2√

Hz
for the accelerometer and 10−3 deg/s√

Hz
for the gyroscopes suggest

that the device is a simple consumer-grade IMU based on a comparison with the values in
the datasheet of the TDK MPU-9250 IMU [43]. These type of IMU’s are typically used for de-
tecting motion and not for navigation tasks. Additionally, the accelerometer measurements
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in the y-direction show a noticeable deviation compared to the other axes, which can not be
explained.
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Figure 4.13: Gyroscope Noise and Drift Overview: (Upper row, left) Power Spectral Density.
(Upper row, right) Allan Deviation. (Middle row) Raw time series data of the
accelerometer recordings, including a linear fit for each axis. (Bottom row) Low-
pass filter applied to the raw data of each axis, including a linear regression.

Table 4.4: Accelerometer and Gyroscope Noise and Drift

Accelerometer Gyroscopes

Axis VRW
[
m/s√

h

]
BI
[
m/s
h

]
m
[
µm/s2

h

] (
R2
)

ARW
[
deg√
h

]
BI
[
deg
h

]
m
[
mdeg/s

h

] (
R2
)

x 0.19 0.45 49.7 (0.13) 0.41 5.18 1.22 (0.35)

y 17.46 14.38 −83.2 (0.05) 0.30 8.49 −1.45 (0.31)

z 0.57 0.57 50.1 (0.04) 0.66 6.13 2.02 (0.65)
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Magnetometer Noise and Drift Quantification

Prior to conducting long time series and carrying out the planned laboratory experiment,
the environmental noise in different rooms was analyzed. Therefore, environmental noise
in various rooms within the building was measured. Short time series with duration of 5min

were recorded in these rooms to identify the one with the lowest environmental noise. In
total, measurements were taken in eight different rooms.

In Figure 4.14, a comparative overview of both the magnetometers at hand of the recording
in the laboratory room and in the basement room with the lowest noise is shown. In the
overview, the PSD plots, the time series is plotted and further the histograms of the time
series are shown.
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Figure 4.14: (Upper row) Recording in the laboratory. (Lower row) Recording in the base-
ment room with the lowest noise. (First column) PSD plots of both magnetome-
ters. (Middle column) Time series plots. (Last column) Histograms of the time
series.

Examining the PSD plots for both magnetometers in the laboratory room reveals similar
noise levels for both magnetometers. The primary difference between them arises from
their differing sampling rates, which affect the maximum frequency shown in the PSD due
to the Nyquist limit. The time series plots also show similar patterns, indicating that both
magnetometers are capturing the same environmental magnetic noise. Additionally, both
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magnetometer measurement series have a slight downward trend in their signals. However,
the slope of this trend in the TwinLeaf VMR is approximately five times greater than that
observed in the QuSpin QTFM.

In the basement room, where the lowest noise floor was recorded, the QuSpin QTFM
demonstrates a noise floor roughly one order of magnitude lower than in the laboratory envi-
ronment. In contrast, the TwinLeaf VMR shows a similar noise level to that measured in the
laboratory. The time series plots again confirm that both sensors are detecting the same en-
vironmental noise, but with noticeably reduced short-term fluctuations in the QuSpin QTFM.
This difference is further illustrated in the histograms of the time series, where the QuSpin
QTFM has a much sharper and narrower distribution, with a spread of approximately 5nT.

Similar to the noise and drift quantification of the IMU sensors, an analysis of the magne-
tometers was conducted. Comparable overviews containing the PSD plot, the AD plot, the
raw data with a linear regression, and the low-pass filtered raw data (averaged over 10s)
along with the same linear regression were prepared for each of the magnetometers. Fig-
ure 4.15 shows the overview for the TwinLeaf VMR. Focusing on the AD plot, it is evident
that the magnetometers in the x and z-directions, which are not aligned with the main mag-
netic field direction, exhibit Gaussian white noise. Furthermore, the magnetometer in the
y-direction also contains white noise, as it initially slopes with m = −0.5 in the log-log plot.
However, this noise is overpowered by another process that induces additional noise, caus-
ing a turning point with an upward slope. This noise is especially due to the deviation in the
first two hours of recording, which can not be explained. By calculating the AD deviation
from time t ∈ [2h, 6h] and plotting them over τ (dashed orange line in the AD plot) it can be
seen that the hump can be minimized.
The minimum region with slope m = 0 for the x and z magnetometers is reached for
τ ∈ [4 · 101s, 6 · 101s]. Following this region, both axes slope rapidly upwards, characterizing
rate random walk and drift random walk. This early drift rate from both magnetometers is
also visible in the raw data time series and the linear fit. Both magnetometers exhibit faster
drift rates, which increase the magnetic field strength compared to the magnetometer in
the y-direction. In contrast, the minimum region of the magnetometer in the y-direction is
reached at τ = 1.5 · 103s.
The values obtained from the AD plot, such as the random walk value and the drift rate, are
listed in Table 4.6. Hereby, the drift rate is calculated by linear fitting a slope with m = 1 to
the values above time τ > 5 · 103. Additionally, the drift term mlin. obtained through linear
regression is also included in the same table with its respective R2 value. Looking at the
PSD there are no visible peaks in any frequency except to small ones at frequency f = 1Hz

for the magnetometers in x and z-direction.
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Figure 4.15: TwinLeaf VMR Noise and Drift Overview: (Upper row, left) Power Spectral Den-
sity. (Upper row, right) Allan Deviation. (Middle row) Raw time series data of
the accelerometer recordings, including a linear fit for each axis. (Bottom row)
Low-pass filter applied to the raw data of each axis, including the same linear
fit.

Table 4.5: TwinLeaf VMR Noise and Drift Performance Measures

Allan Deviation Lin. Regression

Axis RW
[

nT√
Hz

]
DR

[
nT
h

]
mlin

[
nT
h

] (
R2
)

x 0.266 0.689 0.919 (0.69)
y 0.238 (−)0.232 −0.204 (0.07)
z 0.242 0.689 1.041 (0.87)

The noise and drift analysis overview for the QuSpin QTFM is shown in Figure 4.16. In
addition, the same analysis as described previously was conducted using only the total
magnetic field intensity of the TwinLeaf VMR, enabling a direct comparison between the two
magnetometers.
Looking at the AD plot, no clear Gaussian white noise is apparent. For τ < 1 · 10−2, the
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Figure 4.16: QuSpin QTFM Noise and Drift Overview with side-by-side comparison to the
total measurement TwinLeaf VMR: (Upper row, left) Power Spectral Density.
(Upper row, right) Allan Deviation. (Middle row) Raw time series data of the
accelerometer recordings, including a linear fit for each axis. (Bottom row)
Low-pass filter applied to the raw data of each axis, including the same linear
fit.

Table 4.6: TwinLeaf VMR vs. QuSpin QTFM Noise and Drift Performance Measures

Allan Deviation Lin. Regression

Magnetometer RW
[

nT√
Hz

]
DR

[
nT
h

]
mlin

[
nT
h

] (
R2
)

TwinLeaf VMR 0.266 0.489 0.600 (0.42)
QuSpin QTFM - (−)0.208 −0.261 (0.14)

slope appears to be m = −0.5, but this behavior is disturbed by the same type of noise that
was also observed in the TwinLeaf VMR. This is evident from the overlapping curves in the
range τ ∈ [1s, 4 · 102s], where both magnetometers behave identically. It was found that
the deviation causing this disturbance originates from variations within the first two hours
of recording, which is visible in the time series plots of both magnetometers. Since the
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accelerations were recorded simultaneously, it can be ruled out that the cause is vibrations
of the setup or other kinds of motion.
At higher averaging times, the QuSpin QTFM reaches its minimum region (slope m = 0) at
a later time, around τ = 0.8 · 103s, and exhibits a lower Allan deviation value σAD compared
to the TwinLeaf VMR, which reaches its minimum at τ = 7 · 102s with a higher deviation.
Furthermore, based on the drift rates obtained from linear regression of the raw data, it is
apparent that the drift rate of the TwinLeaf VMR is higher than that of the QuSpin QTFM.

Comparing the raw time series of both magnetometers reveals that they detect the same
noise patterns within the first two hours of recording. However, the raw measurements from
the QuSpin QTFM also show additional outliers, which periodically decrease the magnetic
field measurement by approximately ∆B = 30nT. These outliers are not present in the
TwinLeaf VMR data. Applying a low-pass filter with a window of 10s effectively removes
these outliers.
Finally, examining the PSD plots of both magnetometers shows that the QuSpin QTFM has
a significantly lower noise floor for frequencies above f > 1Hz.

Discussion: Noise and drift analysis of the magnetometers was conducted in indoor envi-
ronments without any active compensation for electromagnetic interference. Time series
measurements were taken in different rooms within the building to identify the location with
the lowest environmental noise levels. This was done not only to select the room with the
lowest noise for the drift and noise comparison between the classical magnetometer and the
quantum-based one but also to find a suitable space for conducting the laboratory experi-
ment.

As briefly mentioned in the theory section, indoor environments tend to be electromagneti-
cally noisy due to the presence of conduits, electronic devices, and other sources of mag-
netic disturbances. This was evident in both the short- and long-term measurement series.
As a result, it was not possible to fully isolate sensor intrinsic noise as specified by the man-
ufacturers and drift, as the environmental noise tended to be of higher magnitude. Typically
intrinsic noise characterization of magnetometers is conducted in highly shielded environ-
ments, often using mu-metal chambers to shield from external magnetic field. Further meth-
ods consist of Helmholtz coils, where these setups incorporate reference magnetometers
and feedback-controller to actively compensate for environmental magnetic noise. For more
accurate noise analysis and performance evaluation, a controlled and shielded environment
is essential.

Furthermore, while Allan deviation plots are commonly used for characterizing inertial sen-
sors, they are less frequently applied to magnetometers. However, work from 2014 [44] pro-
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posed the use of Allan deviation analysis for magnetometers, especially as low-cost MEMS
magnetometers have become more widespread due to their integration into MEMSs IMUs.
The Allan deviation plot provides a useful overview of the stochastic processes present in
the measurement series.

Comparing the drifts of both magnetometers at hand, it is clearly evident that the classical
magnetometers exhibit drift, especially in the axis perpendicular to the direction of the main
magnetic field. However, further examination of the quantum-based magnetometers reveals
that the Allan deviation plot also shows typical drift rates for high τ values, but with much
lower magnitude. Additionally, a slope linear regression of the measurement series shows
a slight drift rate, yet with a very low R2 value, indicating that the linear fit does not capture
the measurement trend very well. Furthermore, this drift cannot be distinctly separated from
other low-frequency drift of the magnetic field it is in.
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4.2.2 Constructed Magnetic Field Maps

The recorded and constructed magnetic field maps for use in magnetic field aided naviga-
tion are presented in this section. As noted in the previous section, the influence of conduits,
electronic devices emitting electromagnetic fields, and the high noise levels in the laboratory
room were found to be negatively affecting the magnetic field aiding navigation. To mitigate
this, the laboratory experiment was conducted in the basement room of the building, where
lower environmental noise was detected. Further, as still noises are apparent in the base-
ment room to enhance the navigation ability the planned variability of the map was increased
by adding more magnets than planned.
As the room chosen is a formal engine testing room and made up of visible steal beams
in the near proximity of the setup the magnetization of the room was recorded first. The
resulting magnetic field map without any magnets is shown in Figure 4.17 (left). Several
different magnet arrangements were recorded. Figure 4.17 (right) shows one such map as
an example. Further mapped and recorded magnetic field arrangements are shown in the
Appendix. In all cases, the magnetic fields were sparsely recorded, as described in Section
3.4.4, and Kriging interpolation was applied to estimate the missing values. The experimen-
tal variogram and the fitted theoretical variogram for interpolation to construct the presented
map of Figure 4.17 (right) are presented in the Appendix.
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Figure 4.17: (Left) Constructed magnetic field map without any magnets. (Right) Example
of a constructed magnetic field map (20250305_0921).

Further analysis is performed on if and how the magnetic field map changes over time.
Figures 4.18 show the maps recorded from the same magnet arrangement, with a 6 hour
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time difference between them. The first column shows the initially recorded map, while
the second column shows the map of the second recording. The first row represents the
recorded magnetic field measurements, while the second row illustrated the fully constructed
magnetic field.

-0
.5

-0
.2

5
0.

0
0.

25
0.

5
y-

Po
sit

io
n 

[m
]

1st Recording 2nd Recording

36

38

40

42

44

-0.5 -0.2 0.0 0.2 0.5
x-Position [m]

-0
.5

-0
.2

5
0.

0
0.

25
0.

5
y-

Po
sit

io
n 

[m
]

-0.5 -0.2 0.0 0.2 0.5
x-Position [m]

36

38

40

42

44

Difference

0.10

0.05

0.00

0.05

0.10

|B
| [

T]

-0.5 -0.2 0.0 0.2 0.5
x-Position [m]

0.10

0.05

0.00

0.05

0.10

|B
| [

T]

Figure 4.18: (Left Column) Initial map recording and the resulting interpolated map. (Mid-
dle Column) Second recording of the same map, taken six hours after the first.
(Right Column) Difference in magnetic field strength between the two record-
ings.

Visually, the two magnetic field maps of the first and second recording appear very simi-
lar. However, when the difference between the two maps is computed, deviations become
apparent. The difference between the two recordings are depicted in Figure 4.18 (right col-
umn). It is found that deviations within the center of the ROI are in the range of ±50nT in
this magnetic arrangement. At the edges of the ROI the deviations become more extreme
to with also regions of the map that deviate more than ±150nT. Similar magnitudes of
deviation between different recordings of the same magnet arrangements were observed
across multiple maps, some of which are included in the Appendix. However, no consistent
patterns in the appearance of these deviations were found.

Additionally, Figure 4.19 presents the standard deviation of the measurements that fall within
each pixel. Figure 4.19 (left) shows the standard deviation from the first map recording, and
Figure 4.19 (right) shows the standard deviation from the second recording. When compar-
ing the two, the standard deviations exhibit a similar pattern. This pattern also correlates
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with the difference between the two recordings shown in the previous figure, Figure 4.18
(right column).
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Figure 4.19: (Left) Standard deviation of the magnetic field measurements that fall within
the same pixel of the first map recording. (Right) Standard deviation of the
measurements that fall within the same pixel of the second map recording.

Discussion: An initial magnetic field map of the room’s structural magnetization, as well as
a map showing the magnetic field of a magnet arrangement, were presented. The baseline
field of the considered ROI was visualized and shows a gradient magnetic field towards the
steel beams of the room. The added permanent magnets successfully introduced some
more variation into the magnetic field. This variations are used to gain position information
for the magnetic navigation.

Despite the fact that magnetic field data for map construction was downsampled and low-
pass filtered before averaging measurements within each pixel, significant variance between
two recordings of the same magnet arrangement was still observed. Unfortunately, the ex-
act magnet configurations were not documented photographically. It appears that standard
deviation within individual pixels increases in regions with higher field gradients, suggesting
a potential sensitivity to these regions. Additionally, deviations between the recorded maps
may result from shifts in the room’s structural magnetization or other environmental influ-
ences. In particular, ongoing construction near the recording area, including the movement
of forklifts, pipes, and large metal beams, possibly contributed to fluctuations in the magnetic
environment during data collection.
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4.2.3 Magnetic Field-aided Navigation

This section presents the attempts for magnetic field aided navigation within the laboratory
experiment. The magnetic field map used in the further course is depicted in the Appendix.

Figure 4.20 illustrates the results of the pure INS navigation estimate and the magnetic
field aided navigation algorithm using raw IMU measurements. The raw IMU measurements
incorporate the static calibration as described in the Section 3.4.3. Looking at position
estimate of the pure INS, position drift occurs rapidly. A position error of approximately 1m

is reached within the first 20 seconds.
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Figure 4.20: (Left) Raw IMU measurements in the body frame, after static bias removal.
(Right) Magnetic field-aided navigation attempt using the raw IMU measure-
ments.

The attempt to implement magnetic field-aided navigation with these accelerations is also
depicted also in the same Figure 4.20 (right). To address the high position drift observed
in the IMU, the batch length was set to 1, and the algorithm was adapted setting the map
matching frequency to a maximum to compensate for the high drift rate. While the algorithm
initially tries to correct the drift, the measured accelerations are too high, causing the esti-
mated velocity to diverge from the true velocity. As a result, the position drift becomes too
severe for the algorithm to correct the position effectively.

Examining the raw IMU data, depicted in Figure 4.20 (left), it is evident that the accelerations
exhibit cyclic variations, leading to much higher velocities than expected. The expected
accelerations in the body frame should be constant for the body-axis, in this case the x-
axis of the IMU, that is aligned radially towards the axis of rotation. This is because only
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centripetal force should be acting on the body in the horizontal plane. Furthermore, the
centripetal acceleration corresponding to a rotational speed of 1RPM with a radius of r =

0.55m is ac = 0.0055m
s2

.

These cyclic deviations are caused by changes in roll and pitch angles during the circular
movement, which allow gravity to affect the accelerometers in the horizontal plane. This
was found by taking stationary acceleration measurements along the circular trajectory. The
angle of roll θ and pitch ϕ can be calculated by using the following equations:

θ = arctan

(−abx
aby

)
, ϕ = arcsin

(−abz
9.81

)
(4.3)

Figure 4.21 (bottom left) shows the recovered roll and pitch angles along the recorded ro-
tations, derived from the measured static accelerations. It can be seen that these angle
deviations perfectly coincide with the cyclic deviation of the measured accelerations. To
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Figure 4.21: (Upper left) Raw body accelerations in the horizontal plane, incorporating static
calibration. (Bottom left) Recovered and fitted roll and pitch angle deviations
along the circular trajectory. By synchronizing the yaw angle with these devia-
tions, angle variation over time can be recovered. (Upper right) Accelerations
after applying notch and low-pass filters. (Bottom right) Accelerations after re-
moval of the gravitational component due to roll and pitch angle deviations.

compensate for roll and pitch changes, three different approaches were tested. The first in-

97



4 Results & Discussion

volved applying a notch bandpass filter to remove frequency components around the rotation
frequency corresponding to 1RPM. Additionally, to mitigate vibrational artifacts, a high-pass
filter was employed. The results of the filtered accelerations are shown in Figure 4.21 (up-
per right). The filter effectively removes both low- and high-frequency components from the
acceleration signals, as the cyclic behavior is no longer present. However, the resulting
acceleration for the x-axis is approximately 200 times greater than the expected centripetal
acceleration, still leading to excessive position drift.

The second approach involved tracking the initial roll and pitch angles by incorporating gy-
roscope measurements, depicted in Figure 4.20 (bottom left) to dynamically calculate and
correct for roll and pitch deviations while in motion. However, this method proved not viable,
as the gyroscope measurements even after static calibration still exhibit small biases, lead-
ing to diverging Euler angles after integration. Furthermore, the gyroscope measurements
do not show the sinusoidal graph necessary to explain the roll and pitch angle fluctuations.

The third approach involved using the recovered roll and pitch angle deviations along the tra-
jectory and linking them to the heading angle. By knowing the yaw position, which is already
tracked in the INS, roll and pitch can be compensated. The resulting accelerations of this
approach are shown in Figure 4.21 (bottom right). This approach successfully remove the
cyclic behavior of the accelerations and downscaled them toward the expected centripetal
acceleration. However, the resulting acceleration is still approximately a factor of 10 higher
than expected.

To overcome the issues associated with acceleration measurements and to focus on mag-
netic field-aided navigation, accelerations were derived from rotation stage angle measure-
ments. Furthermore, additional noise was introduced into the derived accelerations to sim-
ulate noisy IMU measurements for the subsequent analysis. Acceleration noise of about
aNoise = 1 · 10−4m/s2/

√
Hz was introduced, as noise levels of the accelerometers at hand,

with about aNoise = 1 · 10−3m/s2/
√
Hz identified in Section 4.2.1 are at the same order as

the expected acceleration.

Firstly, magnetic field measurements along the true trajectory were evaluated using map
matching. For this, the measurement bound, which sets the interval for when a map match is
found, was set to σ = 30nT, and a fixed search radius of rs = 3cm was used. Map matching
was performed for each magnetometer measurement. Figure 4.22 presents the results of
this map matching evaluation. It is apparent that map matches were not found at every point
along the trajectory with the given set of parameters and measurements. Furthermore,
looking at the deviations between the true position and the resulting PDA position estimate,
most position estimates have a deviation within 0.75cm and 1.25cm. However, there are
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Figure 4.22: (Upper ) Map Matches found along the true trajectory. (Bottom) Respective
number of matches and the error of calculated PDA position estimate.

considerable share of estimates where the error exceeds 2cm.

Similar figures to Figure 4.22, showing results for varying measurement bounds, are pro-
vided in the Appendix. As expected, a lower bound results in fewer map matches, which
tends to lead to higher map matching errors. In contrast, a higher bound yields more map
matches, but the error distribution remains similar to that shown for σ = 30nT.

Magnetic field navigation was attempted using simulated IMU measurements, magnetic field
data from the QuSpin QTFM, and the corresponding constructed magnetic field map. Fol-
lowing the approach used in the previous laboratory simulation experiments, a batch length
of 20 and a map matching rate of 20Hz were selected. The optimal parameter set of the
UKF identified in the simulations in Section 4.1.1 were used. The first half of the rotation
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was omitted, as this phase includes a ramp-up period of the rotation stage coming up to the
set speed of 1RPM, during which the accelerations fluctuate significantly. As a result, the
navigation attempts do not begin at the ’3 o’clock’ position but instead start at ’9 o’clock’.
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Figure 4.23: Example results of magnetic field-aided navigation attempts within the labora-
tory experiment. (Top row) Batch length set to 20. (Bottom row) Batch length
set to 5. (Left column) Navigation result. (Right column) Respective error plots.

Examining the navigation results of the selected recording 20250307_1133, it is evident that
the algorithm identifies matches within 2.5cm of the true position during the first quarter of
rotation. However, no substantial correction occurs, as the position error diverges at a rate
similar to that of the pure INS position estimate. This is visualized in Figure 4.23 (right). The
map matches, visualized as red dots, show a mix of both accurate matches with low error
and incorrect matches with higher position error.

By decreasing the batch length from 20 to 5, which results in a higher navigation correction
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rate, the navigation performance of this recording can be improved. The navigation result
is shown in Figure 4.23 (bottom row). During the first two rotation, t ∈ [30s, 140s], the
maximum position error of the magnetic field-aided navigation is bounded to approximately
4cm. The mean absolute error within this time interval is approximately 1.2cm, which is
close to the resolution of the magnetic field map. In comparison, unaided navigation results
in a diverging position error of about 25cm after the same duration. Furthermore, starting
from the third rotation, corresponding to the time interval t > 150 s, the position error begins
to increase. This increase is due to map matches with higher position errors, leading to a
maximum navigation error of 8cm. However, this error is recovered in the last third of the
third rotation, when t ∈ [190s, 210s]. During this period, map matches closer to the ground
truth help recover the position, and the third rotation ends with a position error of about 1cm.
In contrast, the pure INS position has an error of about 35cm by that time.

A different result, where navigation aiding is successful for only the first half of the first
rotation is observed in a recording taken approximately 10min later. The corresponding
error plot is provided in the Appendix under the title 20250307_1142.
Furthermore, the recording 20250307_1219 shows another different result, where magnetic
field aided navigation position diverges early, resulting in a higher position error than the
pure INS, due to incorrect position estimates of the map matching step. The result of this
recording is also presented in the Appendix.

A total of 15 separate recordings were taken to evaluate navigation performance for this
specific magnet arrangement. Each recording contains 3.5 rotations at a speed of 1RPM.
The evaluation revealed mixed outcomes, with results similar to those presented, where
some recordings showed bounded navigation errors for multiple full rotation or only partial
rotations, while others diverge faster than the pure INS solution. Further examples are pro-
vided in the Appendix, where also results of the measurements taken from another magnetic
field arrangement are presented. These examples further show the mixed outcomes of the
magnetic field-aided navigation in the laboratory experiment.

Discussion: Magnetic field-aided navigation was attempted by fusing IMU measurements
with magnetometer data in the planned real-world laboratory experiment.
Results from the first trial using raw sensor data showed that achieving accurate position
estimates using only accelerometer and gyroscope measurements is challenging. It was
also found that the laboratory setup had some flaws. A slight varying tilt in the IMU’s angle
along the circular trajectory caused deviations in the pitch and roll angles, resulting in the
measurement of gravitational acceleration components. These excess accelerations led to
fast divergence of the position estimate, which the map-matching algorithm could not effec-
tively correct. Additionally, vibrations from the stepper motor of the rotating stage caused by
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its stepwise, non-continuous motion introduced noise into the acceleration measurements.
These vibrations were further amplified by the use of a carbon fiber rod on which the sensor
were mounted. While this high-frequency noise from vibrations could be mitigated through
low-pass filtering, correcting for angle deviations along the circular trajectory proved more
challenging. By fitting the roll and pitch deviations, which were obtained from static acceler-
ation measurements, to each position on the circular trajectory and removing these effects,
the cyclic deviation in angles was successfully eliminated. However, the retrieved accelera-
tions remained an order of magnitude higher than expected.

Therefore, accelerations were simulated using the angle measurements obtained from the
rotation stage. Emulating the noise of the IMU was not feasible, as the expected SNR for
the accelerations and the quantified rate random walk of the IMU is less than SNR = 1

for the IMU sampling rate of 50Hz, which was is too low for initial position estimates of the
navigation aiding algorithm.

Evaluating the map-matching performance using the magnetic measurements and the con-
structed maps showed that significantly higher measurement bounds were required com-
pared to the earlier simulations to achieve consistent matches along most of the trajectory.
Furthermore, these map matches still showed deviations from the true trajectory, with a
mean of about 1cm, which is the resolution of the constructed map. However, a consider-
able number of map matches have high errors, indicating that some of them actually cause
greater divergence in position due to incorrect matching. The need for high sigma bounds,
along with persistent map-matching errors, suggests that the environment is too noisy.

Despite a significant number of high-error matches identified during the map-matching eval-
uation, magnetic field-aided navigation was attempted using the recorded measurements
for the magnetic field map presented. As demonstrated in the example, the magnetic field-
aided navigation algorithm was able to correct the position reasonably well for more than
one rotation for some recordings using the optimal found UKF parameters α and β from the
previous simulations made. Further, it was found that a shorter batch length was needed for
the real life implementation to correct for the position drift. Multiple examples demonstrated
successful position correction for one or more rotations, leading to the conclusion that the
implemented magnetic field-aided navigation algorithm is capable of compensating for po-
sitional drift. Some recordings performed better than others, and cases where navigation
failed were also observed.

Multiple measurements using different magnetic field arrangements further demonstrated
the sensitivity of the experimental setup. This sensitivity is probably due to the noisy indoor
environment in which the experiment was conducted, where no shielding was used to miti-
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gate electromagnetic interference. Additionally, mechanical vibrations may have introduced
deviations in the magnetic field measurements, due to the presence of strong gradients over
short distances caused by the use of permanent magnets. Moreover, the small spatial extent
of the experiment could also have contributed to measurement deviations. The OPM utilizes
a vapor cell containing rubidium atoms, which itself has a spatial extent. When magnetic
field gradients are present across this extent, the magnetometer’s sensitivity decreases,
potentially leading to discrepancies between measurements at same locations.

Future work should focus on conducting experiments outside of indoor environments or in
more controlled settings to further reduce electromagnetic interference. Additionally, noise
mitigation techniques should be explored and implemented in future work, as magnetic field
signatures of the anomaly field are on the order of a few nT, while disturbances can be of
the same order of magnitude or even higher. It would also be beneficial to design experi-
ments with a specific application in mind. This would enable more targeted evaluation of the
feasibility of magnetic navigation within that specific context.
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Initial steps toward magnetic field-aided navigation have been taken. Two simulation sce-
narios and the results of magnetic field-aided navigation in a laboratory experiment were
presented.

The simulation of the laboratory experiment demonstrated that magnetic navigation is feasi-
ble in the planned scenario. Furthermore, the simulation included an evaluation of how map
noise influences the algorithm’s ability to correct for it. An increase in map deviations led
to a decrease in the overall performance of the magnetic navigation algorithm. Additionally,
the simulations conducted based on using all three vector components of the magnetic field
outperformed the total field simulations, which leads to the conclusion that using more than
just one magnetic field map can enhance the navigation performance.

Furthermore, a simulation of the flight path using an available anomaly map of the were
conducted to evaluate the algorithm’s performance in a real world application. Initial pa-
rameter optimization demonstrated how the choice of UKF parameters influences the al-
gorithm’s navigation performance. It was observed that optimal parameters appeared to
help bound the position error. A Monte Carlo simulation showed that, although the major-
ity of simulations ended with a lower total error, the overall error along the trajectory was
generally worse compared to pure INS navigation for the optimized parameter set evalu-
ated. However, examining the best-performing simulations revealed that position correction
is achievable, which suggests that further advancements of the algorithm is needed.

The laboratory experiment conducted showed that the implemented algorithm was able to
successfully perform magnetic field-aided navigation for single and also multiple rotations.
Although, the indoor environment presented electromagnetic interference that challenged
real-world implementation and the IMU measurements had to be simulated because the
measured accelerations significantly exceeded the theoretically expected values. The re-
sults are promising for further development, and future work should focus on conducting
experiments that more accurately reflect real-world application scenarios.

Further improvements and advancements to the algorithm are both possible and necessary.
The current approach, which relies on probabilistically fusing position estimates, depends
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on accurate covariance estimation of the map-matching locations. One potential solution
could involve applying machine learning techniques to learn optimal covariances based on
sensor measurements, map variability, and match quality. This could potentially eliminate
the need for the UKF optimization step. Alternatively, machine learning could be used to
learn not only the UKF parameters but also other key parameters such as search window
sizes, measurement bounds, batch length, and more. Also interesting is the deployment
of magnetic field-aided navigation using more components than just the total field intensity,
such as the vector components or the gradients of the magnetic field. This is especially true
given the plan in the department of Quantum Nano Physics, where this Master thesis takes
place, to build a magnetometer array with multiple OPM magnetometers, which could enable
gradiometer-based measurements for navigation and potentially allow the use of magnetic
field signatures for velocity correction as well [45]. In addition, this approach minimizes
temporal variations in the gradient magnetic field measurements, which are present in the
scalar magnetic field data, as these deviations are canceled out when computing the spatial
gradient [42]. Future work should focus on implementing magnetic field aiding within specific
applications to further evaluate its feasibility and performance in context-specific scenarios.
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Appendix

A.1 Laboratory Simulation Examples

Figure A.1: Two examples of the laboratory simulation scenarios. (Left) Resulting trajecto-
ries. (Right) Respective error plots.
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Figure A.2: Example of the laboratory simulation scenarios. (Left) Resulting trajectories.
(Right) Respective error plots.
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A.2 Flight Path Simulation Results: Simulation Case B
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Figure A.3: Heat plots of the resulting mean Mean Absolute Error and Total Error for Simula-
tion Case B of the UKF parameter sweep, which uses a magnetometer sampling
rate of 1 Hz and a batch length of 25.
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tions that use the same UKF parameter sets for Simulation Case B. The green
line with the shaded area represents the error plot with the respective ±σ region
of the optimal UKF parameter set.
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Figure A.5: Histograms of the Monte Carlo simulations for Simulation Case B are shown.
The histograms display a narrow distribution around the mean of the errors from
the pure INS solution for both the mean absolute error and the total error. This
leads to the conclusion that the navigation-aiding algorithm, with the chosen
parameters, does not significantly influence the navigation performance.

114



Appendix

115



Appendix

A.3 Recorded Magnetic Field Maps
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Figure A.6: Experimental variogram used in the Kriging interpolation step for map construc-
tion of the map 20250307_0827. A Gaussian variogram was found optimal, with
a range of 20 and a normalized range of 0.04.
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Figure A.7: Two magnetic field maps constructed for use in magnetic field-aided nav-
igation experiments conducted in the laboratory. (Left) Map recorded at
20250307_0827. (Right) Map recorded at 20250320_1347
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Figure A.8: (Left Column) Initial map recording and the resulting interpolated map
(20250305_1155). (Middle Column) Second recording of the same map, taken
five hours after the first recording (20250305_1650). (Right Column) Difference
in magnetic field strength between the two recordings.
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Figure A.9: (Left) Standard deviation of the magnetic field measurements that fall within
the same pixel of the first map recording (20250305_1155). (Right) Standard
deviation of the measurements that fall within the same pixel of the second map
recording (20250305_1650).
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A.4 Magnetic Field-aided Navigation Results
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Figure A.10: Results of map matching and the error of the calculated PDA position estimate
using real magnetic measurements and the constructed magnetic field map
’20250307_0827’ under different measurement bounds.
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Figure A.11: Error plots of examples using the implemented magnetic field-aided navigation
algorithm versus pure INS. The measurements were recorded using the mag-
net arrangement corresponding to the magnetic field map 20250307_0827.

120



Appendix

40 60 80 100 120 140 160
Time [s]

0

5

10

15

20

25

30

35

40

Er
ro

r [
cm

]
Data recorded: 20250307_1210

pure INS MagNav Map Matches

40 60 80 100 120 140 160 180 200
Time [s]

0

10

20

30

40

Er
ro

r [
cm

]

Data recorded: 20250307_1214

pure INS MagNav Map Matches

30 40 50 60 70 80 90 100 110
Time [s]

0

2

4

6

8

10

12

Er
ro

r [
cm

]

Data recorded: 20250307_1219

pure INS MagNav Map Matches

Figure A.12: Error plots of examples using the implemented magnetic field-aided navigation
algorithm versus pure INS. The measurements were recorded using the mag-
net arrangement corresponding to the magnetic field map 20250307_0827.
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Figure A.13: Error plots of examples using the implemented magnetic field-aided navigation
algorithm versus pure INS. The measurements were recorded using the mag-
net arrangement corresponding to the magnetic field map 20250320_1347.

122



 

 

 
 
 
Eigenständigkeitserklärung für schriftliche Hausarbeiten, insbesondere Abschlussarbei-
ten 
 
 

Eigenständigkeitserklärung 
 
 
Hiermit versichere ich 
Name, Vorname: _________________________________, 
dass ich die vorliegende Arbeit mit dem Titel  
 
 
_________________________________
selbständig und ohne unerlaubte fremde Hilfe angefertigt und alle für die Arbeit verwen-
deten Quellen und Hilfsmittel in der Arbeit vollständig angegeben habe.
Bezüglich der Nutzung von auf künstlicher Intelligenz basierenden Hilfsmitteln (z.B. Chat-
GPT) versichere ich Folgendes:
 
 
Bitte ankreuzen 

o Die Nutzung von KI-basierten Hilfsmitteln wurde von den Prüfenden erlaubt; da-
bei wurde meine Prüfungsleistung bzw. Teile derselben durch diese Hilfsmittel 
nicht ersetzt; ich bin darauf vorbereitet, meine etwaige Nutzung von KI-basierten 
Hilfsmitteln mit entsprechenden dokumentierten Unterlagen wie von den Prüfen-
den gefordert (z.B. Chatprotokolle) darzulegen, sollte es Klärungsbedarf geben.  
 

o Es ist keine Nutzung von KI basierten Hilfsmitteln erfolgt. 

 
______________________    _____________________ 
Ort, Datum        Unterschrift    
    
 

Papadopoulos, Christos

Quantum-Enhanced Correction for Improved Magnetic Field-Aided Navigation

89537 Giengen, 07.05.2025

X


	Introduction
	Background and Motivation
	Thesis Overview

	Theoretical Background
	Magnetic Fields and Magnetism
	Magnetism in Classical Physics
	The Behavior of Atoms in an External Magnetic Field

	Magnetic Field Sensing Principles
	Classical Magnetometry
	Quantum-based Magnetometry

	Earth's Magnetic Field
	Composition
	Reference Magnetic Field Model
	Magnetic Anomaly Field

	Classical Inertial Measurement Sensors
	Working Principles of Accelerometers and Gyroscopes
	Position Derivation via Inertial Navigation Sensors
	Position Errors due to INS

	The Unscented Kalman Filter
	Fusion of Estimates
	Unscented Transform
	Kalman Gain and Updates

	Kriging Interpolation
	Performance Metrics of Sensors
	Navigation Performance

	Experimental Setup and Methodology
	Experimental Setup of the Laboratory Experiment
	Magnetic Field-Aided Navigation
	Map Matching Problem
	Probabilistic Data Association
	Unscented Kalman Filter
	Batch Estimation
	Overview of the Magnetic Field-Aided Navigation Algorithm
	Different magnetic field-aiding approaches

	Simulation Approach
	Simulation of Laboratory Experiment
	Simulation of Flight Scenarios

	Data Collection and Processing
	General Data Acquisition
	Noise and Drift Analysis
	Inertial Sensor Calibration
	Magnetic Field Map Generation


	Results & Discussion
	Simulation Approach
	Simulation of the Laboratory Experiment
	Flight Path Simulations

	Experimental Laboratory Data
	Noise and Drift Analysis
	Constructed Magnetic Field Maps
	Magnetic Field-aided Navigation


	Conclusion
	Bibliography
	Appendix
	Laboratory Simulation Examples
	Flight Path Simulation Results: Simulation Case B
	Recorded Magnetic Field Maps
	Magnetic Field-aided Navigation Results


