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ABSTRACT

The cryosphere is a crucial component of Earth’s climate system, influencing
global climate patterns, sea-level rise, and freshwater availability. Within this
system, the alpine cryosphere is especially important due to its sensitivity to
climatic changes and their substantial impact on regional hydrology, ecosys-
tems, and natural hazard dynamics. The accurate monitoring and assessment
of alpine cryosphere presents significant challenges, primarily due to the
complexity of the terrain and the variability of the environmental conditions.

This dissertation aims to address these challenges by advancing synthetic
aperture radar (SAR) methodologies to enhance the understandings about
cryosphere processes. Particularly, the application of SAR in three essential
cryosphere research areas were investigated, including glacier dynamics
monitoring, snowmelt mapping, and glacier mass balance assessments. The
studies were conducted in various alpine regions, including the Swiss Alps
and the Karakoram, utilizing high-resolution SAR data from multiple satellite
missions.

The first study developed a novel cross-correlation stacking method to
improve offset tracking for measuring glacier surface displacements. By lever-
aging temporal redundancy in SAR image series, the method significantly
reduced noise interference and improved the accuracy and coverage of dis-
placement estimations. The method was successfully applied and validated
on the Aletsch Glacier in the Swiss Alps, demonstrating broad applicability
and enhanced performance across different SAR sensors.

The second study proposed an integrated framework combining SAR
data with topographic information to accurately map seasonal snow melting
in mountainous regions. The adaptive integration of SAR-based wet snow
detection and terrain corrections significantly improved mapping accuracy
compared to conventional methods. Applied in the Karakoram region, this
approach provided valuable insights into snowmelt dynamics, aiding water
resource management and climate adaptation strategies.

The third study developed a comprehensive framework leveraging digital
elevation models (DEMs) derived from the high-resolution TanDEM-X SAR
data to assess the elevation and mass changes of glaciers in the Karakoram
region. The proposed framework effectively integrated INSAR DEM gener-
ation, elevation change mapping and mass balance estimation, providing a



scalable and robust approach for glacier mass balance assessments. The study
revealed the updated mass balance of glaciers in Karakoram and detailed
the spatial distribution of glacier elevation changes, contributing to a better
understanding of glacier dynamics in this region.

Collectively, these studies demonstrated the substantial potential of ad-
vanced SAR techniques to address challenges in alpine cryosphere research,
offering scalable and accurate tools essential for climate resilience, sustainable
water management, and environmental monitoring.
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ZUSAMMENFASSUNG

Die Kryosphdre ist eine entscheidende Komponente des Klimasystems der
Erde, da sie globale Klimaerscheinungen, den Meeresspiegelanstieg und die
Verfiigbarkeit von Stilwasser wesentlich beeinflusst. Wegen ihrer Sensibilitat
gegeniiber klimatischen Verdnderungen sowie aufgrund ihrer signifikanten
Zusammenhinge mit Okosystemen, dem regionalen Wasserkreislauf und
diversen Naturgefahren spielt die alpine Kryosphére innerhalb dieses Systems
eine besonders wichtige Rolle. Thre prazise Uberwachung und Einschitzung
birgt erhebliche Herausforderungen, vor allem aufgrund der Komplexitit des
Geldndes und der Variabilitdt der Umweltbedingungen.

Gegenstand dieser Dissertation ist die Weiterentwicklung von Synthetic-
Aperture-Radar- (SAR-)Methoden mit dem Ziel, Prozesse in der Kryosphare
besser zu verstehen und die genannten Herausforderungen zu bewaltigen. Ins-
besondere wurde die Anwendung von SAR in drei wesentlichen Forschungs-
bereichen der Kryosphire untersucht: Uberwachung der Gletscherdynamik,
Kartierung der Schneeschmelze und Bewertung der Gletschermassenbilanz.
Die Studien wurden in verschiedenen alpinen Regionen durchgefiihrt, dar-
unter die Alpen und der Karakorum, unter Verwendung hochauflésender
SAR-Daten aus mehreren Satellitenmissionen.

Die erste Studie entwickelte eine neuartige Cross-Correlation-Stacking-
Methode, um das Offset-Tracking zur Messung von Gletscheroberflachenbe-
wegungen zu verbessern. Durch die Nutzung der zeitlichen Redundanz in
SAR-Bildserien konnte diese Methode die Signalqualitdt sowie die Genau-
igkeit und Abdeckung der Verschiebungsschdtzungen erheblich verbessern.
Die Methode wurde erfolgreich auf den Aletschgletscher in den Schweizer
Alpen angewendet und validiert, wobei sie eine breite Anwendbarkeit und
verbesserte Leistung iiber verschiedene SAR-Sensoren hinweg demonstrierte.

Die zweite Studie schlug ein System vor, SAR-Daten mit topografischen
Informationen zu kombinieren, um die saisonale Schneeschmelze in Ber-
gregionen genau zu kartieren. Die adaptive Integration von SAR-basierter
Nassschneeerkennung und Geldndekorrektur verbesserte die Kartierungsge-
nauigkeit im Vergleich zu herkdmmlichen Methoden signifikant. Diese Me-
thode wurde im Karakorum angewendet und lieferte wertvolle Erkenntnisse
tiber die Dynamik der Schneeschmelze, die hilfreich fiir die Wasserressour-
cenbewirtschaftung und Klimaanpassung sind.
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Die dritte Studie entwickelte ein umfassendes System, das digitale Hohen-
modelle (DEMs) aus den hochauflosenden TanDEM-X-SAR-Daten nutzt, um
die Hohen- und Massendnderungen von Gletschern im Karakorum zu bewer-
ten. Das vorgeschlagene System vereinte effektiv die Erstellung von DEMs,
die Kartierung von Hohendnderungen sowie die Schitzung der Massenbi-
lanz und bietet einen skalierbaren und robusten Ansatz zur Bewertung der
Gletschermassenbilanz. Die Studie enthiillte die aktualisierte Massenbilanz
der Gletscher im Karakorum und beschrieb detailliert die raumliche Vertei-
lung der Gletscherhohendnderungen, was zu einem besseren Verstiandnis der
Gletscherdynamik in dieser Region beitrug.

Insgesamt haben diese Studien das erhebliche Potenzial von SAR-Methoden
zur Bewiltigung von Herausforderungen in der alpinen Kryosphéarenfor-
schung demonstriert und skalierbare sowie prazise Werkzeuge bereitgestellt,
die fiir Klimaresilienz, nachhaltiges Wassermanagement und Umweltiiberwa-
chung unerléasslich sind.
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INTRODUCTION

1.1 Advancing Observations of the Cryosphere with
Synthetic Aperture Radar

The cryosphere refers to all frozen water components of the Earth system,
including glaciers, snow cover, ice sheets, permafrost, and frozen water bodies
in oceans, lakes, and rivers [1—]. It is a crucial component of the Earth’s
climatic, ecological, and economic systems, influencing every living being
on the planet directly and indirectly. While the cryosphere is concentrated
in polar and high-latitude regions, it also extends to high-altitude regions
such as High Mountain Asia (HMA), the Alps, and the Andes. In these alpine
regions, cryosphere components, such as glaciers and seasonal snow cover,
are particularly important due to their essential role in modulating regional
climates and regulating water resources (Fig. 1.1).
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1 Credit: National Snow and Ice Center, https:/ /nsidc.org/learn/what-cryosphere



The cryosphere plays an important role in regulating the Earth’s energy
balance through affecting the surface albedo with the reflective white surfaces
of snow and ice [5]. Additionally, the cold environments of the cryosphere
provide unique habitats for diverse species, supporting biodiversity and
ecosystem functioning [6, 7]. Changes in the cryosphere, such as glacier
and ice sheet melting, directly contribute to sea-level rise, posing significant
threats to coastal communities and ecosystems [8]. Furthermore, the melt-
ing of glaciers and snow directly regulates the hydrological cycle, affecting
freshwater availability and distribution [9, 10]. Rapid cryosphere changes
can destabilize local environments, increasing hazards such as glacial lake
outburst floods (GLOFs), avalanches, and ice shelf collapses, posing severe
risks to nearby communities [11-15].

Under the pressure of climate change, the cryosphere is becoming increas-
ingly vulnerable, undergoing strong changes in recent decades [16-18]. For
example, global glaciers have experienced accelerated melting and retreat,
with a mass loss rate of 267 £+ 16 Gt/yr between 2000 and 2019 [19]. Snow
cover in mountain regions has also declined since the mid-2oth century, char-
acterized by shorter durations and reduced snow depth [16, 20, 21]. Similarly,
Arctic sea ice extent, concentration, and thickness have decreased significantly
in recent decades [22, 23].

The increasing vulnerability of the cryosphere highlights the urgent need
for comprehensive observations and assessments of cryosphere environments
and processes. Remote sensing techniques, particularly Synthetic Aperture
Radar (SAR), have emerged as effective tools for observing the cryosphere
across large spatial scales and over extended time periods.

SAR is an active microwave imaging technique that offers unique advan-
tages for studying cryosphere environments. Compared to passive imaging
sensors, SAR transmits radar pulses and measures their reflections, enabling
active imaging regardless of illumination conditions. Operating in the mi-
crowave spectrum, it penetrates clouds, fog, and precipitation, ensuring
reliable observations in all weather. By synthesizing a large antenna aper-
ture via the motion of the sensor platform (hence the name), SAR achieves
high-resolution imaging without being constrained by the physical size of
the antenna, allowing the observation of large spatial areas with fine de-
tails [24—27]. Additionally, SAR preserves phase information in its radar
signals, enabling the measurement of surface elevation and displacements
using the interferometric SAR (InSAR) technique [28]. All these unique capa-
bilities make SAR an indispensable tool for cryosphere research, providing



high-resolution, all-weather imaging and precise measurements to monitor
dynamic processes in polar and glacial environments [29—33].

Despite these advantages, it remains challenging to apply SAR technology
to cryosphere studies in high-altitude alpine regions. In these regions, the
backscattering signal, dielectric responses and InNSAR measurement accuracy
are strongly affected by the complex topography, high surface roughness,
and varying properties of snow and ice. These factors can strongly distort the
backscattering signals and complicate the interpretation of results [34—37].

To address these challenges and advance the application of SAR in alpine
cryosphere studies, this dissertation developed innovative methods to process
and analyze SAR data in alpine regions. These methods were applied to
various cryosphere processes in the Alps and the Karakoram region of High
Mountain Asia, demonstrating their robust performance in representative
alpine environments. The SAR datasets obtained through the proposed meth-
ods provided valuable insights into the cryosphere processes and dynamics
occurring within these regions.

Specifically, this dissertation investigated three main application areas of
SAR in alpine cryosphere studies.

The first application focused on measuring glacier ice flow velocities in
the Alps to facilitate robust mapping of glacier dynamics in complex alpine
topography. This work addressed the need for accurate, high-resolution
glacier velocity maps capable of robustly increasing spatial coverage across
alpine glaciers.

The second application involved large-scale seasonal snow cover mapping
in the Karakoram region using SAR data. This research aimed to develop
a robust and efficient method for seasonal snow mapping in high-altitude
mountain regions, thereby providing detailed datasets for analyzing snowmelt
dynamics and supporting water resource management.

The third application targeted at the development of a comprehensive
framework for generating high-quality Digital Elevation Models (DEMs)
through advanced InSAR processing and analysis. This framework enabled
accurate estimation of glacier elevation and mass changes in the complex
topography of the Karakoram. This work was motivated by the need to
produce highly accurate glacier elevation change maps, thus improving the
understanding of spatial patterns and distribution of glacier mass balance
within the region.



1.2 Principles of Synthetic Aperture Radar

Since the early development of operational SAR systems in the 1970s, SAR
technology has advanced significantly, leading to the emergence of various
SAR missions and systems [38]. In this section, an overview of the principles
of SAR is provided, including the imaging mechanism, SAR image properties,
and SAR interferometry.

1.2.1 Imaging mechanism of SAR

A typical SAR system consists of a transmitter, a receiver, and signal process-
ing units. Radar pulses at a specific frequency f are transmitted from the
transmitter toward the target area, and the backscattered signals reflected
from the target surface are received by the receiver. These signals are then
processed to generate an image.

o

T |
- Flying Track
/ ¥ing

-

Antenna /

o - || MNadir Track
- A
Azimuth = H \ \
| ] \\\
Slant Range
\ ,R.: \ u;_

Ground Range
Footprint

FIGURE 1.2: Imaging geometry of a typical SAR system.

The SAR imaging geometry is characterized by a side-looking configuration
(Fig. 1.2). In this configuration, the sensor is oriented perpendicular to the
flight direction of the platform, and the antenna beam scans the target area



line by line as the platform moves forward. The flying direction along the
track is the azimuth direction, while the direction perpendicular to the azimuth
is the slant range (also often referred as range) direction. The projection of
the slant range onto the ground is called the ground range. The radar’s
measurements are made along its line-of-sight (LOS), which represents the
direct path between the sensor and the target. The angle between the LOS
and the vertical direction is called the incidence angle (6), which varies with
the distance from the sensor and the topography of the target area.

Due to the side-looking geometry, several geometric distortions often occur
in SAR images, especially in mountainous areas with complex topography.
These distortions include layover, foreshortening and shadowing [39, 40].

Layover occurs when different target points are mapped into the same
range cell (i.e. a pixel) in SAR images. This often happens on steep slopes
where the top of the slope is imaged before the bottom. Layover region
typically shows strong backscattering (i.e. bright pixels) in a SAR intensity
image. The foreshortening effect is caused by small local terrain slope angles.
When the local terrain slop angle is smaller than the local incidence angle,
the slopes appears shortened in the SAR image, indicating a worse range
resolution for these area. Similar to layover, foreshortening also leads to strong
backscattering in an image. Shadowing regions are those areas that are not
illuminated by the radar signal, such as the back side of a steep slope. Both
layover and foreshortening also contribute to shadowing. Shadowing regions
typically appear dark in an image as no backscattered signal is received.

1.2.2 SAR image properties

In SAR images, each pixel represents the backscattered radar pulses from the
target surface. These backscattered signals are recorded as complex numbers,
preserving both the amplitude and phase information of the radar wave. Such
imagery is referred to as Single-Look Complex (SLC) images, which can be
mathematically expressed as:

S(x,y) = A(x,y)el?x) (1.1)

where A(x,y) and ¢(x,y) denote the amplitude and phase of the backscat-
tered signal, respectively, and (x,y) are the pixel coordinates in the image.
The amplitude represents the strength of the radar signal, while the phase
provides information about the distance between the radar and the target
surface.

In order to visualize and interpret SAR images, the SLC images are often
converted to an intensity image by taking the square of the amplitude, i.e.,



I(x,y) = A%(x,y). In the intensity image, the strength of the backscatter
signal can be directly visualized from the brightness of the pixel. However,
unlike images generated by optical sensors, the imaging process of SAR
is fundamentally a coherent scattering process. This introduces a unique
phenomenon in the image called "speckle," which appears as a noise-like
pattern. It is important to note that speckles are noise-like but not noise.
In fact, they are real radar measurements resulting from the constructive
and destructive interference of scattered signals [41]. While speckle can
obscure fine details in the image, it also carries valuable information about
the scattering properties of the surface [42].

Before analyzing intensity images, it is essential to apply calibration to
ensure accurate interpretation of radar signals. Radiometric calibration is
performed to normalize the backscattering intensity by accounting for the
local illuminated area, resulting in the backscattering coefficient o0 [28, 43—
45]. This process corrects for variations in radar signal strength caused by
imaging geometry and ensures that the measured intensity represents the
actual scattering properties of the surface. For most applications in alpine
regions, it is necessary to further correct the backscattering coefficient ¢” for
terrain effects, yielding the terrain-corrected backscattering coefficient 7 [46].
Both ¢ and < are expressed in decibels (dB) and provide a quantitative
basis for analyzing radar signals.

The backscattering strength is influenced by several key parameters, in-
cluding object geometries and surface roughness, incidence angles, radar
wavelength, dielectric properties of the target material, and polarization of
the radar wave. These parameters determine how radar waves interact with
the surface and provide insights into the physical and geometric properties
of the target.

Object geometries and surface roughness are essential parameters that
determine the backscattering intensity by altering the scattering behavior
of radar waves. Curved or rough surfaces scatter radar energy in multiple
directions, typically resulting in higher backscattering coefficients compared
to smooth surfaces. In contrast, flat or smooth surfaces, such as calm water
bodies, reflect most of the incident radar energy away from the sensor, leading
to very low backscatter. This property is particularly useful for applications
like detecting glacier crevasses or mapping iceberg boundaries, where the
contrast between rough and smooth surfaces is critical [41, 47].

The incidence angle also has strong impact on how radar waves interact
with the surface. On ground surfaces with sparse or no vegetation layers,
the backscatter generally decreases as the incidence angle increases. Such



decrease in backscatter is less pronounced for vegetated or rough ground
surfaces. When applying backscattering intensity for applications such as
wetland classification, the backscattering intensity is often normalized by
the local incidence angle to produce an incidence-independent backscatter
coefficient. In these cases, a linear or a cosine model is often employed to
simulate the empirical backscatter based on incidence angles [48, 49].

The wavelength of the radar wave is another key factor that affects backscat-
ter. Longer wavelengths, such as L-band and P-band, penetrate deeper into the
ground surface, making them suitable for studying subsurface structures like
forest biomass, soil moisture, and snow pack structures. In contrast, shorter
wavelengths, such as X-band and C-band, have limited penetration depth
but are more sensitive to surface features. Consequently, short-wavelength
sensors are preferred for applications that focus on surface properties, such
as monitoring elevation changes or mapping snow cover extent. The choice of
wavelength depends on the specific application and the type of information
required [41].

The dielectric constant of the target material also influences backscatter
by determining how much of the radar energy is absorbed and reflected.
Materials with higher dielectric constants, such as wet snow or moist soil,
tend to absorb more energy and exhibit weaker backscatter compared to
materials with lower dielectric constants, like dry snow or dry soil. This
sensitivity to moisture content enables SAR systems to detect changes in
surface moisture or snowmelt conditions, which are crucial for hydrological
studies and climate monitoring [25, 50].

Polarization, which refers to the orientation of the electric field of the trans-
mitted and received radar wave, further affects the interaction between radar
waves and surface features [28]. Common polarimetric configurations include
horizontal-horizontal (HH), vertical-vertical (VV), and cross-polarized (HV
and VH). Each polarization interacts with the surface in distinct ways, result-
ing in various backscattering mechanisms such as surface scattering, volume
scattering, and double-bounce scattering. By analyzing and decomposing
polarimetric information, it is possible to extract complementary insights into
these scattering mechanisms, enabling detailed characterization of surface
properties. Therefore, polarimetric SAR systems, which simultaneously ac-
quire multiple polarization channels, are particularly valuable for applications
such as land cover classification and vegetation structure analysis [51].



1.2.3 SAR interferometry

SAR interferometry is a unique and powerful technique that leverages the
phase information of SAR images to measure surface elevation and dis-
placements. Depends on the acquisition geometry of SAR sensors used for
interferometry, the INSAR technique can be classified into the single-pass and
the repeat-pass INSAR. The single-pass INSAR employs two or more SAR
sensors to acquire images of the same target area simultaneously, providing
accurate measurement of surface elevations. The repeat-pass INSAR, on the
other hand, uses a single (or multiple) SAR sensor to acquire images of the
same area at different times. This technique is primarily used to measure
surface displacements, such as subsidence and ground deformation [52-55].
The following discussion exclusively focuses on single-pass InSAR.
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FIGURE 1.3: Acquisition geometry of single-pass InSAR.

The acquisition geometry of single-pass INSAR with two SAR sensors is
shown in Fig. 1.3. The two SAR sensors, S; and Sy, fly over the same target P
with a fixed baseline distance B. The different positions of the two sensors
lead to a difference of AR between the range distances R; and R; from the
two sensors to the target point. The elevation / of the target point can be
calculated using the simple trigonometric relationship:

h=H — Rqycosf (1.2)



where H is the height of the sensor above the ground, and 0 is the incidence
angle of the primary sensor S;. To solve for the incidence angle 6, the law-
of-cosine can be applied to the triangle formed by the two sensors and the
target point. Assuming both AR and baseline B are small compared to the
range distance R; [56], the following approximation can be made:

AR =~ Bsin( — ) (1.3)

where « is the horizontal angle of the baseline vector. Note that Bsin(f — )
is equivalent to the parallel baseline B)| in the acquisition geometry.

The range distance difference AR can be accurately measured using inter-
ferometry. Let S1(x,y) and S2(x,y) be the two SLC images acquired by the
two sensors, the interferogram is generated by taking the complex conjugate
of the two SLC images:

S1(x,y) - $3(x,y) = [S1(x,y)|[S2(x, y) |/ P x) =2 0xr) (1.4)
where the phase of the two SLC images are

47T
¢1(X, y) = _TRl + (,bl,scatter(x/ y)

47
(Pz(x/ y) = _TRZ + (PZ,scatter(x/ }/)

(1.5)

For single-pass acquisitions, the phase of the scatterers in the two images,
P1 scatter aNd P2 scatter, are assumed to be the same and thus are canceled
out in the interferogram. The resulted phase in the interferogram is then
proportional to AR:

#ly) = 9i(5y) — galvy) = — (R —Re) = ~SCAR (1)

A relationship between the interferogram phase and the change in elevation
can be further established as [57]:

op  4mBcos(f—a) 4w By
oh A Rysinf A Rysiné

(1.7)

where B is the perpendicular baseline. This expression describes the sensi-
tivity of the interferometric phase to elevation height. Considering a phase
fringe of a cycle of 27, the height of ambiguity (HoA) can then be defined as:

_ AR sin

ha = 2B,

(1.8)



The HoA is a crucial parameter for InNSAR applications, as it describes the
maximum range of height that corresponds to one full phase cycle of 27t. A
smaller HoA indicates a higher sensitivity to height differences. Although
it is benefiting to reduce HoA for high-precision measurements, it is also
important to consider the trade-off between the HoA and the radar geometry.
A smaller HoA is often associated with a larger baseline, which can lead to
increased decorrelation and reduced coherence in the interferogram [58].

Another important parameter in INSAR is the interferometric coherence, which
quantifies the correlation between two SLC images used to generate the
interferogram. The coherence is defined using the normalized intensity of the
interferogram, expressed as:

LSS )]
VS Gy P (525, 0P)

where (-) denotes the expectation operator. The coherence value ranges from
o to 1, with 1 indicating perfect correlation and o indicating no correlation.
The coherence is influenced by several factors, including the temporal decor-
relation caused by changes in the target surface between acquisitions, the
spatial decorrelation due to the spatial variability of the target surface, and
the noise in the radar signal [53].

(1.9)

1.3 SAR Applications in Cryosphere Studies

The advancements of SAR in the recent decades have enabled the application
of SAR in diverse fields. The following sections provide an overview of SAR
applications in cryosphere research, focusing on three main areas: glacier
velocity monitoring, snow cover mapping, as well as glacier elevation and
mass change estimation.

1.3.1 Monitoring alpine glacier velocity with SAR

Glacier velocity is a key parameter for understanding glacier dynamics,
mass balance and the responses of glaciers to climate change [59]. Within
a glacier, the velocity field reflects the movement of ice under the process
of internal deformation and basal sliding. Closely monitoring changes in
glacier velocity provides valuable insights into the processes related to various
glacier properties, such as ice thickness, basal conditions, surface topography
changes and surge dynamics [60, 61]. Additionally, the measurement of
glacier velocity are critical inputs to glacier models, enabling the prediction
of future glacier behavior and its impacts on sea-level rise and hydrology [62,
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63]. Furthermore, glacier dynamics in alpine regions are closely linked to the
stability of surrounding slopes and the potential for glacier-related hazards,
such as ice avalanches and GLOFs. Monitoring glacier velocity can help
assess risks associated with these hazards and inform risk management
strategies [13, 14, 64].

Due to the remote location and large area of glaciers, traditional in-situ
measurements of glacier velocity are often limited in spatial coverage and
temporal resolution. In contrast, remote sensing techniques, especially SAR
techniques, have emerged as powerful tools for monitoring glacier velocity
over large areas and extended time periods [65-68].

Monitoring glacier velocity based on SAR imagery is typically achieved
through two main approaches, including the differential interferometry SAR
(DInSAR) technique and offset tracking methods. Both approaches have their
advantages and limitations, and the choice of method depends on the specific
application and the characteristics of the target glacier.

DInSAR measures glacier velocity based on the phase difference within an
interferogram formed by two SAR images, typically using the repeat-pass
InSAR technique with two or more SAR images acquired from the same track
but at different times [57, 58]. DINSAR measurement can reach very high
precision of about a few millimeters for displacement measurements along the
LOS direction, and can be extended to 3-D velocity vectors when combining
with offset tracking [30, 68]. However, the application of DINSAR on glaciers
is often limited by the decorrelation of the interferogram, primarily caused by
the fast velocity with respect to the acquisition frequency and the temporal
change of glacier surface conditions (e.g. the melting conditions, precipitation,
and changes of surface roughness). As a result, DINSAR is primarily effective
in polar regions with stable surface conditions [30, 69—71] or areas covered by
short temporal baseline acquisitions [72].

Offset tracking, in contrast, relies on the intensity information of SAR
images and stable features on the glacier (e.g. crevasses and ice ridges) to
track the displacement over time. Although it is of lower precision comparing
to DInSAR, this approach is more robust against temporal decorrelation,
making it suitable for monitoring velocities of glaciers with rapid surface
changes, such as those in alpine regions [65, 66]. Offset tracking is versatile
and can be applied to both optical and SAR images. In SAR applications, it can
utilize different input modalities such as complex values, coherent speckles
or intensity, leading to variations like coherence tracking, speckle tracking and
intensity tracking [73]. The flexibility and resilience to surface changes make
offset tracking a valuable tool for monitoring glacier velocity in alpine regions.
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The following part of this section exclusively focus on SAR offset tracking,
with an overview of the principles of offset tracking and its applications in
alpine glacier velocity monitoring.

1.3.1.1 Offset tracking with SAR

The principle of offset tracking is to identify the offset that can maximize
the similarity between a primary image and a secondary image, thereby
determining the movement of objects or features from one image patch to
another. To evaluate the similarity, the Normalized-Cross-Correlation (NCC)
is often used, which is defined as:

L (L, ]) L) (L(i+xj+y) —b)

NCC(x,y) =
\/Zz] Ill] \/sz 121+x]+y)_12)

(1.10)

where [; and I, are the two image patches, [; and I, are the mean values of
the two patches, and (x,y) is the offset between the two patches. The offset
vector from the center of the patch to the location of the maximum NCC value
is considered as the offset for the best matching, which can be converted into
a velocity vector by dividing the offset by the time interval between the two
images.

To successfully retrieve the offset vector, the maximum NCC value should
be significantly larger than the noise level in the NCC field, thereby allowing
the high-confident determination of the offset vector. To evaluate the confi-
dence of the offset vector, the signal-to-noise ratio (SNR) of the NCC field can
be defined as below: o

SNR = log, (c,zg/cj%) (1.11)

where ¢, is the normalized cross-correlation (i.e. the maximum value of the

NCC) of the two images and C‘j; denotes the mean value of the ambient NCC
field [74].

In practice, offset tracking is typically implemented in a windowed manner,
where a small window is moved across the image to calculate the NCC for
each pixel. The choice of window size is crucial for the success of offset
tracking. A small window size can improve the spatial resolution of the
derived velocity field over the image, but it also reduces the information
content and available features inside the window, leading to a lower signal-to-
noise ratio (SNR) in the NCC field and unreliable velocity vectors. In contrast,
a larger window size can increase the SNR but may also lead to a loss of
spatial resolution and details in the velocity field. This is especially important
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when applying the method to alpine glaciers, where the size of glacier is
often small and limiting the size of the window.

1.3.1.2 Development and applications of offset tracking

Since the early 2000s, offset tracking based on SAR imagery has been widely
adopted to monitor glacier velocities. The early applications primarily used
offset tracking to complement DINSAR methods in cases where temporal
decorrelation limited the generation of coherent interferograms. These studies
focused predominantly on polar regions, where extensive ice sheets and stable
surface conditions were expected to facilitate reliable measurements [75-77].

Building on this foundation, intensity tracking and coherence tracking
using SAR imagery were developed and tested by Strozzi et al. [36] to monitor
a tidewater glacier in Svalbard. This work demonstrated the effectiveness
of offset tracking for glaciers with strong dynamics. Subsequently, Lange,
Luckman & Murray [74] further advanced the method by applying offset
tracking to ERS-2 SAR data on an outlet glacier in Greenland. They proposed
the use of a high-pass filter to focus the cross-correlation on smaller features,
thereby improving the coverage and robustness of velocity estimates. Similarly,
Quincey et al. [78] also used the ERS SAR data and applied offset tracking
to measure the velocity of the Baltoro Glacier in the Karakoram mountains.
The results underscored the robust performance of the method in challenging
mountain terrains. These innovations marked crucial steps in refining the
technique for broader use across diverse glacier types and environmental
conditions.

In parallel with advancements in SAR offset tracking, significant progress
was also made for optical images. Various algorithms for image match-
ing were proposed using optical imagery, such as the NCC algorithm [65],
the phase correlation algorithm [79], and the orientation correlation algo-
rithm [80]. Additionally, Debella-Gilo & Ké&&b [81] demonstrated an inter-
polation method that successfully enhanced the precision of offset tracking
to a sub-pixel level. A comprehensive evaluation revealed that most image
matching algorithms achieved reliable velocity measurement at sub-pixel
precision, with phase correlation and cross-correlation on orientation images
being the most robust [82]. Furthermore, improvements were also proposed
to adaptively adjust the similarity matching window size, thereby making
offset tracking more robust and automatic. These attempts include the locally
adaptive template size optimization method [83] and the multiple-image-
multiple-chip algorithm [81]. These advancements in optical offset tracking
not only expanded its applications but also influenced SAR offset track-
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ing methodologies, as both techniques benefited from similar algorithmic
principles and workflows.

Until the early 2010s, SAR applications for glacier velocity monitoring were
primarily focused on polar regions and limited to short temporal periods due
to data availability constraints. The emergence of new SAR missions later
expanded the study area to a wider range of alpine glaciers. For instance, the
X-band TerraSAR-X [84] data has been applied to glaciers in the Himalayas,
the Alps, Central Asia, and Svalbard [85-89]; the L-band ALOS/PALSAR [90]
was used together with DEMs to investigate mountain glacier motion in
Central Tian Shan and Mt. Muztagh Ata [91, 92]; and the X-band COSMO-
SkyMed [93] was adopted to study glacier dynamics in Argentina [94, 95].
Collectively, these missions enhanced the ability to monitor glacier dynamics
in diverse and challenging environments.

Another remarkable shift occurred after 2015 with the launch of the
Sentinel-1 SAR mission [96]. The Sentinel-1 mission introduced free and
openly accessible SAR data with high resolution and short revisit times.
This transformative leap has greatly contributed to the expansion of stud-
ied areas to include more glaciers in the low latitude regions, such as the
High-Mountain-Asia (HMA) area and the Andes Mountains [97—99]. It also
facilitated the generation of large scale ice velocity maps over Greenland and
globally [100, 101].

The growing Sentinel-1 data archive has provided new opportunities for
glacier velocity tracking but also demanded new methods to effectively ex-
ploit the data of large spatial coverage and extended temporal period. In
response to these demands, this dissertation aims to develop a novel method
that leverages SAR image time-series to improve the spatial coverage of robust
velocity estimates for alpine glaciers. By leveraging the dense temporal sam-
pling and consistent data quality offered by modern SAR systems, this work
seeks to advance glacier monitoring methodologies and address limitations
in traditional approaches.

1.3.2 Mapping snow cover in alpine regions with SAR

As a fundamental component of the cryosphere, snow has substantial impacts
on the global climate system, water cycles and ecosystems. This significance
has led it to be identified as one of the Essential Climate Variables [102]. Snow
cover significantly influences the surface energy balance by reflecting a con-
siderable portion of solar radiation, playing a crucial role in regulating global
and regional temperatures and climate patterns. Regarding the regional water
cycle, snowmelt directly contributes to streamflow and groundwater recharge,
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thereby supporting water supply for local communities and ecosystems. The
seasonality and variability of snow cover also regulate ecosystem processes,
such as vegetation growth, animal migration, and habitat availability. Due to
these significant impacts, mapping snow cover is essential for understanding
climate interactions, managing water resources, and assessing ecosystem
health [103, 104].

To effectively map snow cover, remote sensing techniques have been widely
adopted. Optical remote sensing has traditionally been the primary method
for snow cover mapping, leveraging the spectral reflectance properties of
snow in different bands. However, limited by cloud cover and illumina-
tion conditions, the application of optical remote sensing is often restricted
in alpine regions, where weather conditions are frequently unstable. As a
valuable alternative, SAR systems have shown great potential due to their
advantages of all-weather capability and high spatial resolution.

The principle behind snow cover mapping using SAR is based on the
interaction between radar waves and the snowpack. Within the snowpack,
dielectric properties are predominantly determined by the liquid water con-
tent (LWC) and snowpack density [105, 106]. Dry snow, characterized by
lower LWC and a higher proportion of ice particles and air voids, typically
exhibits a lower dielectric constant compared to wet snow. This leads to less
energy absorption and consequently higher backscattering. As the snowpack
becomes wet, the dielectric constant significantly increases due to higher
LWC, resulting in altered radar backscattering behavior. Even a small increase
in LWC can induce substantial changes in dielectric properties and backscat-
tering strength. By analyzing these changes in backscattering properties, the
snowpack can be mapped and classified into different snow types, such as
dry and wet snow.

Early attempts to use SAR for snow cover mapping primarily focused on
analyzing the varying responses of SAR backscattering to different snow
types. Rott [34] first analyzed differences in backscattering over mountain
regions across various surface types, including wet snow, glaciers, and other
land covers. Their results suggested that incidence angle and wavelength
considerably influence backscattering coefficients. The relationship between
backscattering mechanisms and snowpack properties was further investigated
by Shi & Dozier [107], demonstrating the effective use of C-band SAR to dis-
tinguish between snow and glaciers. The potential of early SAR systems, such
as ERS-1 and RADARSAT, for wet snow mapping was also demonstrated [50,
108].
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With the launch of the Sentinel-1 mission, mapping snow cover over large
areas has become more feasible. The freely available data and short revisit
time of Sentinel-1 have enabled the generation of large-scale snow cover
maps, essential for monitoring snow cover dynamics and understanding
their impacts on climate and hydrology. For instance, Nagler et al. [109]
systematically evaluated the potential of Sentinel-1 for snow cover mapping
and proposed an effective algorithm based on radar backscattering coefficients.
This algorithm has been widely adopted in subsequent studies and has shown
promising performance across many regions.

In Nagler’s method, a series of Sentinel-1 SAR images are used to calculate
the backscattering ratio as follows:

R; = r)/?/r)/?,ref (1.12)

where ) and 'y?,r of are the terrain-corrected backscattering coefficient of the
image i and the reference image, respectively. The reference image is typically
selected from a series of SAR images acquired under dry snow or snow free
conditions. Considering the different response of backscattering to the local
incidence angle (¢) under different polarization channels (i.e., VV and VH), a
composite ratio is further proposed to combine the backscattering ratios of
different polarizations. The composite ratio is defined as:

R. = WRyy + (1 = W)Ryy (1.13)

where Ry, and Ryy are the ration for the VV and VH polarization channels,
W is the weighting factor defined based on the local incidence angle (0) as
the following:

0 (9 < 91)
W=1905(1+5=5) (6 <6<6) (1.14)
0.5 (9 > 92)

with 0; = 20° and 6, = 45°. The resulting ratio is then used to classify
snowpack conditions using a threshold value of -2 dB as suggested in the
original work.

Although Nagler’s method has been successfully applied to many re-
gions, the fixed threshold value of -2 dB is not always effective, especially in
mountainous areas where complex terrain and surface conditions introduce
substantial uncertainty into backscattering measurements. To address these
challenges, soft thresholds have been proposed to enhance the robustness of
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snow cover classification [110-112]. These flexible thresholds accommodate
varying conditions, making them more suitable for the complexities of alpine
regions. Additionally, selecting an appropriate reference image is crucial for
accurately calculating the backscattering ratio. Different approaches have
been proposed to address this issue. For instance, Koskinen, Pulliainen &
Hallikainen [113] suggested selecting a stable winter scene as the reference
image, assuming consistent dry snow conditions. Alternatively, Luojus et al.
[114] recommended averaging multiple SAR images acquired under dry snow
conditions to minimize temporal variations and noise. Another approach
by Pettinato et al. [115] employed linear interpolation between SAR acqui-
sitions at the start and end of the snowmelt season to generate a dynamic
reference image, aiming to better capture seasonal variability. These methods
highlight the importance of careful reference image selection in improving
the reliability of SAR-based snow cover mapping. Furthermore, auxiliary
data such as DEMs, land cover maps, and meteorological models have been
utilized to further enhance snow cover mapping accuracy [116, 117]. These ap-
proaches have shown promising results in improving accuracy and robustness
in alpine regions.

Despite considerable advancements in SAR snow cover mapping, alpine
regions still pose significant challenges due to complex terrain and rapidly
changing snow conditions. One representative example is the Karakoram re-
gion, where pronounced topographic effects often cause significant distortions
in SAR signals, hindering accurate and robust snow cover mapping. Addi-
tionally, the vast spatial extent of this region complicates the development of
universally effective algorithms.

Given these challenges, this dissertation aims to develop a robust method
utilizing Sentinel-1 SAR image series and topographic features derived from
high-resolution DEMs to improve snow cover mapping accuracy and reliabil-
ity in the Karakoram region.

1.3.3 Measure glacier elevation change and mass balance with SAR

Measuring the elevation change of glacier surfaces is crucial for quantifying
glacier mass balance and understanding glacier dynamics. Glacier mass
balance refers to the total mass gain or loss of a glacier over a specific period,
typically expressed as the difference between accumulation (mass gain) and
ablation (mass loss) [60]. Monitoring glacier mass balance is essential for
understanding how glaciers respond to climate change, as variations in
temperature and precipitation directly influence accumulation and ablation
processes. On a global scale, glacier mass balance is a significant contributor
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to sea-level rise, accounting for approximately 27 + 22 mm of global mean
sea-level rise [8, 118]. On regional scales, glacier mass balance plays a critical
role in local hydrology and ecosystems by supplying meltwater to water
resources [119].

Traditional methods for measuring glacier mass balance, such as in-situ
point-wise measurements on glacier surfaces, are often constrained by limited
accessibility and high uncertainty when extrapolating to larger scales [118].
Since the advent of modern spaceborne remote sensing sensors in the 1990s,
remote sensing imagery has become the primary approach for regional and
global glacier mass balance studies [120].

1.3.3.1 InSAR DEM:s for glacier mass balance measurements

One widely used method for measuring glacier mass balance with remote
sensing data is DEM differencing, also known as the geodetic method [120]. This
technique involves generating two DEMs from data acquired at different times
and calculating the elevation change between them. The elevation change (dh)
and the time interval (dt) are used to derive the elevation change rate (dh/dt),
which can be converted into mass balance by applying an assumption about
the ice density [121].

The two primary data sources for DEM generation are optical stereo im-
agery and SAR interferometric image pairs. Compared to optical stereo
imagery, SAR imagery offers several advantages, including the imaging capa-
bilities under all-weather conditions, as well as higher vertical accuracy and
spatial resolution (e.g., about 6 m for TanDEM-X DEM compared to about
100 m for ASTER stereo optical DEM [33]), thereby making SAR a powerful
tool for glacier mass balance measurement.

The first near-global INSAR DEM was generated during the Shuttle Radar
Topography Mission (SRTM) in 2000 by employing a C-band system [122].
Later, the TanDEM-X mission was launched in 2010, with the goal of produc-
ing a high-resolution global DEM [123]. TanDEM-X utilizes two X-band SAR
satellites flying in close formation to acquire interferometric data, enabling
the creation of high-resolution DEMs with a vertical accuracy of 3.49 m overall
and 0.88 m in areas excluding vegetation and snow/ice coverage [124].

The SRTM and TanDEM-X DEMs have been extensively utilized in numer-
ous studies to derive glacier mass balance [120, 125]. In these studies, the
two DEM products have served dual purposes: either as reference DEMs
to facilitate data processing tasks (e.g. orthorectification and geocoding), or
as primary datasets for DEM differencing. In the latter case, it is important
to note that the global TanDEM-X DEM product is post-processed using a
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mosaic of acquisitions taken at different times. This temporal inconsistency
makes the global TanDEM-X DEM unsuitable for deriving accurate elevation
change rates over glaciers. To address this limitation, individual TanDEM-
X acquisitions are preferred for generating DEMs that preserve accurate
timestamps, allowing for more reliable elevation change measurements.

The application of INSAR-derived DEMs for DEM differencing has been
successfully demonstrated across various alpine regions, offering valuable
insights into glacier dynamics. For example, Malz et al. [126] investigated
elevation and mass changes in glaciers within the Southern Patagonia Icefield
using TanDEM-X and SRTM DEMs. Similarly, [127] assessed glacier mass
balance in the Puruogangri Ice Field located in the inner Tibetan Plateau.
Paul & Haeberli [128] utilized SRTM DEM and measured elevation changes
in glaciers across the Swiss Alps. Moreover, an inter-comparison experiment
conducted by Piermattei et al. [129] analyzed geodetic mass balance estimates
derived from TanDEM-X, SRTM, and ASTER stereo-optical DEMs. This study
emphasized the importance of establishing best practices within the research
community to enhance understanding of physical processes in cryosphere
studies.

1.3.3.2 Challenges of alpine terrain for INSAR DEM generation

Despite numerous successful applications, generating and analyzing InSAR
DEMs in mountainous regions remains challenging due to specific limitations,
such as difficulties in phase unwrapping and errors arising from radar signal
penetration.

The first major challenge is phase unwrapping errors caused by rugged
alpine terrain and intricate water bodies. Phase unwrapping is a critical step
in InSAR processing that reconstructs the absolute phase from its wrapped
form. In steep and complex topography, abrupt elevation changes can create
discontinuities in phase data, leading to errors in the final DEM. These errors
primarily affect DEMs in two ways. First, they result in large data voids, par-
ticularly in regions with steep slopes or intricate terrain where radar signals
fail to adequately capture the surface. Such voids reduce the spatial coverage
and completeness of the DEM, making it difficult to achieve a continuous
representation of the topography. Second, geometric distortions, such as lay-
over effects, introduce phase unwrapping errors by misrepresenting the true
topography. For example, a mountain peak may appear incorrectly connected
to its base, leading to erroneous phase unwrapping results. These distortions
complicate the phase unwrapping process, often producing unreliable or
inaccurate DEMs in rugged alpine regions.
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Another challenge involves the signal penetration of radar waves, which
introduces significant uncertainties in DEM differencing. This is particularly
noticeably when combining datasets from different wavelengths (e.g., C-band
SRTM and X-band TanDEM-X) or modalities (e.g., optical and SAR) [130].
Radar signals penetrate snow and ice to varying degrees depending on
their wavelength and surface conditions, causing discrepancies in elevation
measurements. For instance, X-band signals used in TanDEM-X generally
penetrate less deeply into snow and ice compared to the longer-wavelength
C-band signals used in SRTM, potentially introducing systematic biases when
comparing the two datasets. Similarly, combining SAR-derived DEMs with
optical DEMs (e.g., from ASTER or SPOT) for geodetic elevation change
measurements can also lead to discrepancies due to differences in signal
penetration and sensitivity to surface conditions. These discrepancies can
result in significant errors in elevation change estimates, particularly in
regions with complex surface conditions, such as snow-covered or debris-
covered glaciers.

To address these challenges, this dissertation proposes a novel three-module
framework for glacier mass balance assessment in the Karakoram region. The
framework comprises three key components: the first module generates
DEMs with the InNSAR technique using individual TanDEM-X acquisitions to
preserve accurate timestamps; the second module processes elevation change
maps, ensuring consistency and minimizing errors; and the third module
performs mass balance analysis with rigorous uncertainty propagation. By
leveraging long-term TanDEM-X acquisitions from the 2010s to the 2020s,
this work provides updated and highly detailed measurements of glacier
mass balances in the Karakoram, with unprecedented high resolution and
accuracy.

1.4 Research Objectives and Questions

The importance and increasing vulnerability of the cryosphere highlighted
the urgent need for closely monitoring and measuring its components. This
is particularly pronounced in alpine regions where high-altitude mountain
environments face heightened vulnerability and maintain direct connections
to local communities through water resources, tourism, and hazard manage-
ment.

This dissertation aims to advance the application of SAR, a powerful Earth
observation technique, to alpine cryosphere studies. The research comprises
three self-contained contributions that address the challenges of applying
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SAR in the alpine cryosphere environments. Each contribution develops
innovative methodologies to use SAR for observing and measuring different
cryosphere components, accompanied by comprehensive data analysis that
enhances our understanding of specific cryosphere processes.

The following section outlines the specific research objectives and questions
addressed in each of these three contributions.

1.4.1 Cross-correlation stacking for robust offset tracking using SAR
image time-series

This study presents an innovative approach to enhance offset tracking for
glacier velocity monitoring using SAR data. Traditional NCC-based offset
tracking methods typically rely on a single pair of images to compute the NCC
field and measure the offset vector. While effective in some contexts, these
methods encounter significant challenges in mountainous regions, where
complex terrain and environmental variability limit their reliability. Addi-
tionally, alpine glaciers are often smaller in size compared to those in polar
regions, further constraining the size of the NCC window that can be applied.
These limitations highlight the need for a more robust and high-resolution
offset mapping method tailored to such conditions.

To address these challenges, this research aims to develop an innovative
method for robust alpine glacier velocity mapping by leveraging the extensive
archive of SAR time series data. Building on the temporal redundancy of
SAR image series, a novel cross-correlation stacking technique is introduced.
By averaging multiple consecutive NCC results, this method suppresses
noise and enhances offset tracking accuracy. The approach enables reliable
measurements with smaller image templates while maintaining broader
spatial coverage, overcoming the constraints posed by traditional methods.

The investigation is guided by three key research questions:

1. How does cross-correlation stacking improve the robustness of displace-
ment estimation compared to single-pair NCC methods?

2. Can smaller image templates achieve comparable spatial coverage to
larger templates when combined with stacking?

3. How does the method generalize across SAR sensors with different
resolutions and acquisition characteristics?
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1.4.2 Mapping seasonal snow melting in Karakoram using SAR and
topographic data

Seasonal snowmelt monitoring in the Karakoram region plays a vital role
in managing regional water resources, assessing natural hazards, and un-
derstanding the interactions between climate and hydrology. While existing
SAR-based snowmelt mapping techniques have proven effective in many
regions, their application in the Karakoram is limited by the area’s complex
terrain and rapidly changing surface conditions. These challenges make it
difficult to achieve reliable and accurate results using conventional methods.

To address these limitations and enable the generation of large-scale
snowmelt datasets, this study proposes a robust framework that integrates
SAR imagery with topographic data. By leveraging this integration, the frame-
work aims to improve the accuracy of wet snow mapping in mountainous
environments where traditional methods often struggle. The research focuses
on developing solutions to overcome terrain-induced errors and enhance the
reliability of snowmelt monitoring in this challenging region.

The study is structured around three key research questions:

1. How can SAR and topographic data be effectively integrated to mitigate
terrain-induced errors in wet snow classification?

2. Does the proposed method outperform conventional SAR or optical-
based approaches in mapping accuracy?

3. What temporal and spatial insights into snowmelt patterns can be
derived from the application of the method across major basins in
Karakoram?

1.4.3 Geodetic glacier mass balance in the Karakoram (2011-2019)
from TanDEM-X: An InSAR DEM differencing framework

Measuring glacier elevation and mass changes is essential for understanding
glacier dynamics, assessing their response to climate change, and evaluating
their contributions to sea-level rise and regional water resources. In recent
decades, the Karakoram region has exhibited anomalous glacier behavior,
with slight thickening trends that contrast sharply with the widespread
mass loss observed globally. This unique phenomenon, often referred to as
the "Karakoram anomaly," highlights the need for detailed investigations to
unravel the underlying dynamics of glacier mass change in this region.

To address this, the study focuses on quantifying glacier elevation changes
(dh/dt) and mass balance in the Karakoram from 2011 to 2019, utilizing nearly
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a decade of TanDEM-X InSAR data. A robust and scalable framework was
developed to tackle the challenges posed by the region’s complex terrain,
enabling high-resolution assessments of glacier dynamics with a strong em-
phasis on uncertainty quantification. This approach not only enhances the
accuracy of glacier mass balance measurements but also provides a deeper
understanding of the processes driving glacier behavior in heterogeneous
mountainous regions.
The study seeks to address the following three key research questions:

1. What are the spatial patterns and magnitude of elevation changes
(dh/dt) and glacier mass balance in the Karakoram region during
2011-20197

2. How do surge-type and non-surge glaciers differ in their elevation
change and mass balance behaviors?

3. Can a comprehensive framework combining advanced DEM generation,
elevation change mapping, and uncertainty analysis improve glacier
mass balance assessments in complex terrains?

1.5 Thesis Structure

This dissertation is structured into five chapters. Chapters 2, 3, and 4 present
the three primary studies that constitute the foundation of this research. Each
chapter corresponds to a study that has either been published or submitted for
publication in peer-reviewed journals. Chapter 5 concludes the dissertation by
summarizing the key findings and proposing directions for future research.
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Abstract

Offset tracking is widely applied for measuring ground surface displacements
from remote sensing data. Displacements are determined by the offset where
two image templates match best. The match can be evaluated with normalized
cross-correlation (NCC), in which the height and location of the NCC peak
represent the matching quality and the corresponding offset. Attaining robust
offset estimations requires an unambiguous tracking of the peak in the NCC
noise floor. To improve offset estimations, we propose a cross-correlation stacking
method that can significantly suppress the noise floor of NCC. Instead of deriving
offsets from each pair-wise NCC, we stack a series of consecutive pair-wise
NCCs and determine the offset after averaging the NCC stack. Thereby, tracking
benefits from the redundant information in multiple NCCs and is more robust
to noise. We assessed the method by measuring the flow velocity of the Great
Aletsch Glacier in Switzerland using image time series collected by the synthetic
aperture radar (SAR) satellites TanDEM-X and Sentinel-1A. Using relatively
small templates of 48 x 48 pixels combined with a stack of seven pair-wise
NCCs of TanDEM-X images, we obtain velocity fields whose spatial coverage
are almost equivalent to the coverage of velocity fields obtained with templates of
96 x 96 pixels applied on a single image pair. Similar improvements in spatial
coverage are observed for Sentinel-1A. The results demonstrate that the stacking
method can greatly enhance both the spatial resolution and the coverage of the
obtained velocity fields.

Keywords

Offset tracking, glacier velocity, cross-correlation, stacking, synthetic aperture
radar (SAR)

2.1 Introduction

Measuring ground surface displacement using either optical or synthetic
aperture radar (SAR) images is of interests to many environment-related
studies, and two mostly used methods for this purpose are offset tracking
and differential interferometric SAR (D-InSAR). The focus of this study is
offset tracking, which has been successfully applied to many studies such as
detecting landslides [1-3], estimating co-seismic slips [4, 5], and measuring
glacier surface velocities [6—15].

Offset tracking is a template matching method which can be robustly
applied to either optical or SAR images [6, 16]. It is often referred as feature
tracking when applied to optical images [17]. For SAR images, it is also called
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coherence tracking when using SAR single-look complex images, or intensity
tracking when only using real-valued intensity images [6]. The concept of
offset tracking is to estimate displacement offsets through measuring the
similarity between two images taken over the same area and at different times.
In practice, image pairs are firstly partitioned into templates, and then the
agreement between two templates are calculated based on certain similarity
measures, such as least square difference [18], maximum likelihood [19], and
normalized cross-correlation (NCC) [16, 20]. The templates are shifted against
each other until the best agreement is found, for which the shift defines the
estimated offset.

_)[ Image . ]_)[Similarity Measure]—)[ Offset Flel(.l Final Offset Fields

Pre-processing Post-processing

Orthorectification F Core Operation
I

Co-registration ) m

Image Filtering

Outlier Removal

| Offset Filtering

Multi-Offset-Field
Stacking

TemPl_ate Similarity between templates (e.g. NCC) and
Partition track of offsets (black arrow) to the best match

QHAD

F1GURE 2.1: Common procedure for offset tracking. The core operation of offset
tracking is highlighted with the red box.

So far, plenty of efforts have been made in order to improve offset track-
ing. The first family of improvement are mainly focused on the image
pre-processing steps. For instance, Leprince et al. [17] proposed a software
named COSI-CORR to achieve automatic and precise orthorectification, co-
registration, and subpixel correlation for optical images; Lange, Luckman
& Murray [21] suggested applying spatial high-pass filters to SAR imagery
before cross-correlation to focus the offset tracking on small surface features;
Debella-Gilo & Kadb [22] developed a technique to locally optimize template
sizes for image partition.

Techniques for the post-processing of offset fields have also been proposed
in previous studies, which mainly exploit redundant offset measurements
to attain robust offset fields (e.g. smoothing, detecting outliers, median fil-
ters). Ahn & Howat [23] proposed a multiple-image multiple-chip (MIMC)
algorithm, in which multiple NCCs are generated with template pairs under
different configurations (i.e. template sizes, convolution filters, etc.), and a
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population of offset vectors are obtained from every individual pair-wise
NCC so that a final offset vector can be voted from the population. Simi-
larly, Stumpf, Malet & Delacourt [3] proposed a multiple pairwise image
correlation (MPIC) technique, which generates multiple offsets for each pixel
location using pair-wise NCC and then summarizes the stack of offsets using
developed indicators.

The previous attempts have greatly pushed forward the performance of
offset tracking for displacement measurement. These works, focusing either
on pre-processing of images or on post-processing of offset fields, derive
all information from a pair-wise NCC and use the apparent peak of the
NCC field to estimate offsets [16]. Unfortunately, for a pair-wise NCC with
low signal-to-noise ratio (SNR), the apparent peak could be found at a false
location when the NCC is dominated by noise. Even though redundant offsets
estimated from multiple pair-wise NCCs can be used to reduce false detection
(e.g. Stumpf, Malet & Delacourt [3]), directly separating the time-invariant
NCC component from noise has almost never been explored for SAR offset
tracking.

In this work, we propose a method to improve the performance of SAR
incoherent offset tracking by firstly creating a stack of pair-wise NCCs from
an image time-series and then averaging the NCC stack for offset estimation.
Thereby, we make the NCC more robust for tracking by exploiting the entire
information of the NCC to reduce the noise floor and to enhance the SNR.
The concept has been adopted for Particle Image Velocimetry (PIV) [24, 25],
for medical image tracking [26, 27], and recently for ice fall tracking with
optical imagery [28]. In these works, different terms were used for the concept,
including mean cross-correlation, ensemble tracking, ensemble correlation
or ensemble matching. We prefer to refer to the method as "cross-correlation
stacking" (or specifically "NCC stacking"), because these words can best
represent the core operation of the method and correspond to a widely
used terminology for SAR image time-series analysis [29—32]. So far, NCC
stacking has not been adopted for SAR images, where we expect significant
improvement by reduction of speckle noise.

In this paper, we described the NCC stacking method for SAR imagery,
and assessed its effectiveness by measuring the flow velocities of the Great
Aletsch Glacier in Switzerland using SAR image series collected by the
satellites TanDEM-X [33] and Sentinel-1 [34].
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2.2 Methodology
2.2.1 NCC stacking

2.2.1.1 NCC decomposition

Classical offset tracking algorithms commonly use NCC to evaluate the
similarity between a pair of image templates with a workflow similar to
Fig. 2.1. The NCC can be calculated in either the spatial domain or the
frequency domain. In the frequency domain the NCC between the two
templates I; and I, extracted from two SAR intensity images taken over the
same area and at different times, can be conveniently calculated as

B b
VEULPY - E{| L2}
with [; = F(I;) the Fourier transform of the template I;, * the complex
conjugation, and E{|[;|?} and E{|[5|?} the total energy of the two templates.

The obtained spectrum 4 is transformed back to obtain the NCC in the spatial
domain

7= (2.1)

y=F"(%)

where the offset is estimated by tracking the location of the peak in 7.

Robust tracking relies on unambiguous identification of the NCC peak,
which requires the template pair to contain abundant trackable features, such
as rigidly shifted geometric structures. On the other hand, noise that hampers
the successful offset estimation is added to the NCC field by temporally uncor-
related contents, such as incoherent speckle, non-rigidly translated features
(e.g. collapsing crevasses, distorted landscape), and temporally changing
surface properties (e.g. snow cover, water content or vegetation change).

From the perspective of offset tracking, an image template, and also its
Fourier transform, can be considered as being composed of signal § and noise
l:

[=s+n.

The signal 3 corresponds to the correlated content (i.e. §; = 57) that generates
the signal of the NCC, whereas the noise 7 represents the uncorrelated
content. Then, we can re-write Eq. (2.1) as

Ak A

S5 + Sﬁﬁz -+ ﬁT.@z + ﬁiﬁﬁz

VEULPY - E{| L2}

, (2.2)
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which decomposes 4 into four elementary cross-correlations, including a
shifted auto-correlation, 873>, and three cross-correlations between signals
and noise (377, 7178, and 7] 7). Since the noise in one template is independent
from either the noise or the signal in the other template, we can consider
the latter three components as noise contributing to 4. Therefore, in order to
attain reliable offset estimations, the Fourier transform of 375, must present
a dominant peak in 7 that greatly surpasses the superposition of all noise
components. The dominance of this peak can be characterized by the signal-
to-noise ratio (SNR) of the NCC, defined as

2
c
SNR = 10log;, jz (2.3)
c
f

with ¢, the NCC peak height and cj% the average of the squared ambient
NCC field <. To ensure reliable tracking, the SNR should be sufficiently high.
Otherwise the tracking delivers false results because the peak that represents
the true offset can not reveal itself from the noise floor (i.e. the SNR is too
low).

2.2.1.2 NCC stacking using image time-series

To make offset tracking more robust against noise, we can create a stack of
pair-wise NCCs using image time-series and then average the NCC stack to
suppress the noise floor. An overview of our general workflow is presented
in Fig. 2.2.

Suppose a short time-series of N co-registered image is collected with a
repeat interval of t. With integer multiples a of the repeat interval t, we can
calculate a stack of N — a pair-wise NCCs from Eq. (2.1) using all template
pairs with a time interval of T = at. In this stack, each pair-wise NCC captures
a snapshot of the displacement represented by the template pair. Assuming
constant surface velocities during acquisition of the time-series, we can expect
that all pair-wise NCCs record identical offsets. Hence, it can be presumed
that the peaks generated by 575, in all pair-wise NCCs <y are located at more
or less the same position, whereas the ambient noise field, generated by
8171y + 7118, + N]fip, averages out in the stack.

This principle can be easily extended to multiple image time-series, such
as image series acquired in multiple different years, in different spectral
or polarimetric channels, or even from different imaging sensors. For that,
suppose M image time-series are collected and each time-series i consists
of N; (i = 1..M) images, we can then create a total stack that consists of
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FIGURE 2.2: A conceptual workflow of the NCC stacking method. With the acquired
image time-series, an NCC stack is obtained by calculating pair-wise
NCCs consecutively, and then the stack is averaged to track the peak.
The shown stacking workflow can be directly inserted into the core
operation in Fig. 2.1(red box) to replace the pair-wise NCC.

M sub-stacks of pair-wise NCCs, each of which consists of N; — a pair-wise
NCCs. Assuming identical surface velocities for all individual time-series, we
can average the total stack of pair-wise NCCs in spatial domain to get the
averaged NCC in which the offset is tracked:
XMy
TN
Particularly, seasonal velocity variations, or the so-called "phase-averaged
velocity fields" [25], can be resolved with Equation (2.4) when sub-stacks
for each phase of a year (e.g. months) are averaged over multiple years.
Equation (2.4) also permits to track step-like displacement (e.g. co-seismic
slips) using a stack of correlation pairs in which each pair is composed of pre-
and post-event images.

(2.4)

2.2.2 Offset tracking with sub-pixel precision

In practice, precise tracking requires sub-pixel precision, which is achieved
by firstly fitting the NCC peak with a continuous function (e.g. polynomial
or Gaussian function), and then finding the location of the maximum of the
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fitted function [35]. In this work, we used a Gaussian function g(x,y) in the
form of Eq. (2.5) to fit the NCC peak.

g(x,y) = Ae(=P(x=x0)*+Q(x=x0) (y=y0) +R(y—40)*) 4 p (2.5)
where

b cos20 sin?0

202 207
_ —sin 20  sin26

Q= 202 202

X y
R— sin’f  cos?6

202 207

The Gaussian function g(x,y) is parameterized by its center location
(x0,Y0), standard deviation (oy,0y), the maximum value A, the rotation
parameter 6 and the vertical shift b. In order to fit the Gaussian function, we
firstly extracted a window () of a few pixels size (see Sect. 2.3.2) centered at
the NCC peak, and then up-sampled the extracted window by a factor of ten
using bilinear B-Spline interpolation. Within the up-sampled window )/, we
solve a non-linear least-squares (LS) problem to minimize the cost function

F=2 ) (NCC(xy)-g(xy))? (2.6)
(xy)eqY

with x,y coordinates of the up-sampled window (). To ensure convergence,
the window size for extraction and initial value of parameters must be
carefully selected. In this work, we used the following values for initialization:

* (x0,Y0): the center location of the up-sampled window;

* (0%, 0y): 1/4 of the width and height of the up-sampled window respec-
tively;

A: the NCC peak height;
e 0: zero;
® b: mean value of the ambient field.

For successful fits, the peak position p = (X, fit, Yo it) is used. If minimiza-
tion fails, the initial values p = (xo,y0) are kept. Once the peak location is
determined, the offset vector D = (Dy, D,) can be estimated by measuring
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the shift from the NCC center & = (x.,V.) to the peak with D = § — ¢, and
the obtained offset vector field can be converted to a velocity field by

7=

ﬂ_\ !l

(2.7)

2.2.3 Evaluating the obtained velocity field

To quantify the performance gain between the stacked and the pair-wise NCC,
we calculated the following three parameters from the obtained velocity fields.
As these parameters vary strongly for different image pairs, we evaluated for
each stack size all possible combinations of correlation pairs and obtained
mean, minimum, and maximum values for the spatial coverage and the
velocity residuals.

2.2.3.1 Spatial coverage

In offset tracking applications, the obtained velocity field is often post-
processed by removing outliers and unreliable estimations. In this work,
we used two thresholds for this purpose, one is based on the maximum
velocity magnitude and the other is based on the minimum acceptable SNR
(values are defined in Sect. 2.3.2). Thresholding the velocity field leads to
voids in the velocity maps, and this allows us to evaluate the robustness of
different methods by measuring the spatial coverage Rcoy of the velocity map
as

Amap
Atotal

Rcov = (28)

with Amap the area of the map excluding voids and Ay the total area of the
study region (black glacier outline in Fig. 2.3).
2.2.3.2 Velocity residuals

The accuracy of offset tracking can be evaluated by examining velocity residu-
als over static ground, assuming that velocities of such region should be equal
to zero. For that, we define the residual ratio within selected static regions as

Aresidual
Rres =

(2.9)
Astatic
with Ajesiqual the area covered by residual velocities within the static ground
and Asatic the total area of the static ground (red dashed rectangles in Fig. 2.3).
Particularly, we define residual velocity as the velocity vector whose corre-
sponding offsets larger than one pixel in either x— or y— directions.
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2.2.3.3 SNR gain
Reliable tracking can be characterized by the SNR value. To evaluate the im-
provement of confidence level on the obtained velocity field, we can calculate
the SNR gain by

SNRgain = SNRgtack — SNRpair- (2.10)

With the SNR gain, it is possible to examine the change of SNR at every tem-
plate location in the image scene. Specifically, SNRgain > 0 indicates increased
confidence level, whereas SNRg,i, < 0 indicates decreased confidence level.

2.3 Study Site and Data
2.3.1 Study site

To evaluate NCC stacking, we derive the surface velocity of the Great Aletsch
Glacier located in central Switzerland. The glacier represents one of the
largest alpine glacier systems in the European Alps (Fig. 2.3). The Great
Aletsch glacier consists of three main tributaries, including the Aletschfirn,
the Jungfraufirn, and the Ewigschneefaeld, and these tributaries merge at
Konkordiaplatz and flow into the main stream of the Great Aletsch Glacier.

The Great Aletsch glacier has been used as a test site for many studies
to explore methods for glacier surface velocity estimations. For instance,
Prats et al. [37] used airborne interferometric repeat pass SAR data in L- and
P-band to measure the surface velocity field around Konkordiaplatz; Erten
[38] proposed a method based on polarimetric similarity measure for velocity
tracking and tested it here; Schubert et al. [39] compared a wavelet-based
and correlation-based image matching methods for glacier velocity retrieval
using repeat TerraSAR-X stripmap and spotlight images acquired in August
2009 and obtained velocity estimates over the strongly crevassed area (ice fall,
tongue) of Aletsch Glacier.

An almost complete velocity map has been generated by Leinss & Bernhard
[40] based on pair-wise cross-correlation using a time series of about 130
TanDEM-X acquisitions. They also provided the in-situ GPS velocity mea-
surement at 22 locations on the glacier (red dots in Fig. 2.3). In our study,
we used these GPS measurement to validate our velocity results. For that we
calculated the root-mean-square error (RMSE) as

1 n
RMSE = \/n ;(v}r“k — pineas)? (2.11)

46



640000 645000 650000

155000
155000

145000

140000
140000

] 640000 645000 650000

FIGURE 2.3: Overview of the Great Aletsch Glacier. The glacier outline is delineated
in black according to Paul et al. [36]. The area within the black glacier
outline was used to calculate the spatial coverage of successful velocity
estimates. Locations of in-situ velocity measurements by GPS are
marked with red dots. Glacier-free regions used for residual velocity
evaluation are indicated by red dashed rectangles. The processed area
of the SAR images is shown by the black rectangle. The approximate
location of the Great Aletsch Glacier within Switzerland is indicated
by the star in the inset. The base image is taken from SWISSIMAGE
25, 20170 2019 swisstopo (JD100042).
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with 0!k one component (x, y) of the tracked velocity, v the correspond-

ing measured velocity and # the total number of velocity points that is kept
after thresholding.

2.3.2 SAR data, pre-processing and thresholding

To test the proposed stacking method, we processed two distinct SAR datasets.
The first dataset was collected by TanDEM-X, which is a high-resolution inter-
ferometric X-band SAR mission launched at June 21, 2010 [33]. Our dataset is
a subset of the dataset used in [40] and consists of eight dual-pol stripmap
(SM) images acquired between 2017-01-10 and 2017-03-28 with equal repeat
interval of 11 days (Table 2.1). All acquisitions were made from orbit 154 (de-
scending) at an incident angle of 32°, resulting in a ground range resolution
of 6.6 X 2.2 m (az x rg) [41]. The second dataset is collected from Sentinel-1A,
which is a C-band SAR mission launched by ESA (European Space Agency)
in April, 2014 [34]. This dataset includes two image series acquired from the
same orbit (66, descending). One consists of eight images acquired between
2017-01-03 and 2017-03-28, and the other consists of seven images acquired
between 2018-01-22 and 2018-03-23 (Table 2.1). All images were acquired in
Interferometric Wide Swath (IW2) mode with dual-polarization (VV and VH)
and at identical incident angle of 41°, resulting in a resolution of 22 x 4.7 m
(az x rg) [42]. Acquisitions were made with equal repeat interval of 12 days
within each time series.
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TanDEM-X Sentinel-1A
2017-01-10 2017-01-03 2018-01-10
2017-01-21 2017-01-15 2018-01-22
2017-02-01 2017-02-08 2018-02-03
Acquisition 2017-02-12 2017-02-20 2018-02-15
Dates 2017-02-23 2017-02-27 2018-02-27
2017-03-06 2017-03-04 2018-03-11
2017-03-17 2017-03-16 2018-03-23
2017-03-28 2017-03-28

TABLE 2.1: Acquisition for this study



For each sensor, the images were co-registered to a common reference scene
followed by orthorectification using the SwissAlti3D elevation model obtained
from the Federal Office of Topography (swisstopo). As all data were acquired
in two polarizations, we averaged the intensity of the two polarizations
to reduce SAR speckle. For Sentinel-1A we weighted the VH polarization
by the ratio of mean intensities, (VV)/(VH); for TanDEM-X we did not
apply any weighting because the VV and HH polarization have very similar
backscatter intensities. We did not apply oversampling of the amplitude
before intensity calculation [43] as both dataset are already oversampled
compared to their native radar pixel spacing. No multi-looking was applied
to neither of the datasets, though the two interpolation steps of coregistration
and orthorectification can be considered as multilooking to some grade. After
the pre-processing, the pixel spacing of TanDEM-X imagery is 2m X 2 m,
and that of Sentinel-1A is 5 m x 5 m. All images were converted to log-scale
before cross-correlation. Examples of SAR images from the two datasets are
presented in Fig. 2.4. The figure illustrates how different image resolution
impacts visible surface feature details [Fig. 2.4(c)-(d)].

Before cross-correlation, we applied high-pass filters to both datasets to
better focus on small scale features [21]. The high-pass filter is implemented
using a Gaussian kernel whose size is 51 x 51 pixels and standard deviation
is 17 x 17 pixels. To study the influence of template sizes on the behavior of
the stacked NCC, we used a large template size of 96 x 96 pixels and a small
template size of 48 x 48 pixels for image partition. For tracking the NCC
peak with sub-pixel accuracy, extraction windows of 11 x 11 pixels and 7 x 7
pixels were used for TanDEM-X and Sentinel-1A images respectively. The
chosen window sizes ensured that the curve fitting procedure successfully
converged at 99% of the templates for the two datasets.

For TanDEM-X data, image pairs were grouped with time interval of 11
days (a = 1) to calculate pair-wise NCCs, and thus we obtained in total seven
pair-wise NCCs from the acquisitions listed in Table. 2.1. For Sentinel-1A,
due to its larger pixel sizes compared to TanDEM-X, the time interval used to
form image pairs was set to be 24 days (a = 2) to accommodate larger offsets.
Therefore, we obtained in total 11 pair-wise NCCs for Sentinel-1A imagery,
including six from the time-series of 2017 and five from the time-series of
2018.

For both datasets, considering the maximum velocity measured in previous
studies [37, 38, 40], the threshold of maximum velocity magnitude was set
t0 Umax = 1 m - d ™', Higher velocities were considered as outliers and were
removed. Threshold on minimum SNR for unreliable estimation removal
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FIGURE 2.4: Example orthorectified SAR images taken from (a) TanDEM-X and (b)
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Sentinel-1A. No smoothing filter was applied for speckle removal to
preserve the spatial resolution. The zoom-in figures (c)-(f) show the
effect of different resolution. Very bright mountain slopes are affected
by layover (e.g. the east-facing slope of Ewigschneefaeld as indicated
by the dashed oval).
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F1GURE 2.5: Magnitude (top) and direction maps (bottom) of velocity fields pro-
duced using TanDEM-X SAR images. The left four figures, (a)(e) and
(b)(f), are generated with large template (96 x 96 pixels), the right four
figures, (c)(d) and (g)(h), with small templates (48 x 48 pixels). (a)(c)
and (e)(g) are produced with a single pair-wise NCC for which the
best coverage among all pair-wise results was obtained (2017-01-21 vs.
2017-02-01); (b)(d) and (f)(h) are generated by stacking seven pair-wise
NCCs calculated from acquisitions between 2017-01-10 and 2017-03-28
(Table 2.1). Black voids represent removed outlier and results with an
SNR below 10 dB. The glacier outline is delineated in white. Axes are
labeled with Swiss Coordinates (CH1903/LVo03) of unit meters.
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was set as SNRpin = 10 dB. These thresholds were not optimized for glacier
velocity filtering, as the major focus of this work is to compare the perfor-
mance of different algorithms rather than obtain optimum velocity fields for
glacier dynamic studies. The threshold to identify residual velocities in the
glacier-free regions (Fig. 2.3) was set to be 0.2 m -d !, corresponding to an
offset of about one pixel, for both datasets.

2.4 Results

2.4.1 Velocity fields: pair-wise vs. stacked cross-correlation

Velocity fields obtained from TanDEM-X imagery are presented in Fig. 2.5
for pair-wise and stacked NCCs with large (96 x 96 pixels, 2 m pixel spacing)
and small (48 x 48 pixels) templates. Black voids in the figure are caused by
removing outlier and unreliable estimates. The two velocity fields of pairwise
NCC [Fig. 2.5(a, c)] are produced with images acquired at 2017-01-21 and
2017-02-01. This image pair represent the best coverage of reliable estimates
(92% and 74% respectively) among the seven other velocity fields generated
with pair-wise NCC. The averaged velocity maps of all seven pair-wise
velocity fields (Fig. 2.12 in the appendix) show less noise in the glacier free
area, but the coverage over the glacier is greatly reduced than the selected
ones. Either picking the best one or averaging all velocity maps are user-
defined post-processing steps, and thus it is difficult to determine which one
represents the fairest comparison between NCC stacking and pair-wise NCC
velocity estimation. We consider our choice of picking the best pair-wise map
for comparison to be of disadvantage for NCC stacking which, nevertheless,
shows a better spatial coverage.

In Fig. 2.5(a)-(d), velocity magnitude fluctuations along the glacier central
line are consistent in all results, with the highest velocities at the ice fall
between Ewigschneefaeld and Konkordiaplatz. The orientation of velocities
[Fig. 2.5(e)-(h)] is a good indicator to verify the consistency of velocity fields
and our results show generally consistent orientation patterns that conform
with glacier geometries.

The velocity fields generated by NCC stacking [Fig. 2.5(b, d)] show much
less noise than results generated by the single pair-wise NCC [Fig. 2.5(a,
c)] for both template sizes. Focusing on areas indicated by red arrows in
Fig. 2.5(b, f) and comparing them to Fig. 2.5(a, e), the stacked NCCs produce
much smoother fields for both velocity magnitude and orientation than a
pair-wise NCC. For small templates and pair-wise NCC [Fig. 2.5(c, g)], areas
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FIGURE 2.6: Magnitude (a-d) and direction map (e-f) of velocity fields produced
using Sentinel-1A images. Panels are arranged the same way as Fig. 2.5.
The results of pair-wise NCC [(a, e) and (c, g)] are produced using
the image pair from which the best spatial coverage of 11 NCC pairs
was obtained (2017-01-15 and 2017-02-08). Results of stacked NCC [(b,
f) and (d, h)] are produced by stacking 11 pair-wise NCC calculated
from winter acquisitions between 2017-01-03 and 2018-03-23 (Table 2.1).
Black voids in velocity fields are caused by removing outlier and
unreliable estimates. The glacier outline is delineated in white.
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of arrows are mostly covered by widely spreading voids, suggesting that it is
difficult to obtain accountable velocity measurements over these areas.

Velocity fields obtained from Sentinel-1A imagery are shown in Fig. 2.6 for
large and small templates (96 x 96 and 48 x 48 pixels at 5 m pixel spacing).
Results of pair-wise NCCs shown in Fig. 2.6(a, c) and (e, g) are produced
from the image pair 2017-01-15 and 2017-02-08, which represent again the best
coverage (86% and 53% respectively) among the 11 results of pair-wise NCCs.
The average of the 11 pair-wise velocity maps (Fig. 2.12 in the appendix)
shows a comparable coverage for large templates (96 px) and a slightly better
coverage for small templates (48 px). However, the additionally covered
area shows many velocity artifacts. Hence, the single pair-wise NCC with
the best coverage was chosen for further study. Compared to Fig. 2.5, the
Sentinel-1A results show much lower spatial resolution and also less spatial
coverage. Nevertheless, results obtained by NCC stacking show reduced noise
compared to pair-wise NCCs, and velocity fields at specific locations [red
arrows in Fig. 2.6(b, f)] are smoother for stacked NCCs than for pair-wise
NCCs.
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F1Gcure 2.7: Change of spatial coverage when using different stack sizes (i.e. num-
ber of pair-wise NCC in the stack). A single pair-wise NCC corre-
sponds to a stack size of one. In each group, all possible combinations
of pair-wise NCC for stacking are evaluated. The bar height indicates
the mean value of the group, and the black error bars indicate the
maximum and minimum value in each group.
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2.4.2 Spatial coverage of velocity fields

For the high elevations in the accumulation area of all glacier tributaries,
velocity estimation from TanDEM-X failed using pair-wise NCCs [Fig. 2.5(a)].
In contrast, the uncovered region shrink to only the upper part of Ewigschnee-
faeld when applying NCC stacking [Fig. 2.5(b)]. When decreasing template
sizes, the spatial coverage decreases for pair-wise and stacked NCC [Fig. 2.5(c,
d)], but the pair-wise NCC shows a more serious decline of spatial coverage
than the stacked NCC. Remarkably, the velocity map of stacked NCCs with
small templates [Fig. 2.5(d, h)] reaches a level of coverage that is almost as
good as the coverage of pair-wise NCCs and big templates [Fig. 2.5(a, e)].
Noteworthy, the small templates doubled the spatial resolution compared to
the big ones.

For Sentinel-1A, when applying pair-wise NCCs and large templates
[Fig. 2.6(a)], velocities can only be properly estimated in areas showing
large crevasses including the ice fall, the glacier tongue, as well as the upper
part of the Aletschfirn and the Jungfraufirn. However, with NCC stacking
[Fig. 2.6(b)], the whole body of the Great Aletsch Glacier, except for the upper
part of Ewigschneefaeld, is successfully tracked. For pair-wise NCCs and
small templates [Fig. 2.6(c)], the successfully tracked area is further reduced
comparing to Fig. 2.6(a). Only the ice fall can still be tracked due to well
visible crevasses [Fig. 2.4(c)]. With stacked NCC the area of reliable estimates
is significantly increased at the glacier tongue, the top of the Aletschfirn, and
the Jungfraufirn [Fig. 2.6(d)].
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FIGURE 2.8: Same as Fig. 2.7 but for the change of residual ratios with difference
stack sizes.
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Fig. 2.7 shows the systematic analysis of the influence of the stack size on
the spatial coverage of reliable velocity estimates. In general, the coverage
ratio increases when increasing stack sizes for both template sizes and for
both datasets. For pair-wise NCC applied on TanDEM-X data (light and dark
red bars in Fig. 2.7), the average coverage ratio is 85% for templates of 96 x 96
pixels and 68% for templates of 48 x 48 pixels. They are increased to 97%
and 88% with a stack size of seven. For Sentinel-1A (light and dark blue
bars in Fig. 2.7), the average coverage ratio is increased from 83% to 96% for
templates of 96 x 96 pixels, and from 49% to 77% for templates of 48 x 48
pixels.

For both datasets, the biggest relative coverage improvement are observed
when employing stack size of three. At this point, the best coverage ratio of
TanDEM-X results increased by 4% to 96% for large templates and by 11% to
83% for small templates. With Sentinel-1A imagery, the best coverage ratio
increased by 7% to 93% for large templates, and by 17% to 70% for small
templates. Further increasing the stack size keeps improving the coverage
ratio but it gradually saturates at a certain level. For large templates, almost
fully coverage for both datasets is obtained, whereas for small templates
the coverage seems to saturate at about 89% for TanDEM-X and 79% for
Sentinel-1A. This implies that for the given dataset the stacking NCC has
mostly exploited the information content in the image series that contributes
to the successful tracking. In the remaining uncovered areas, mostly located
in the snow covered accumulation zone, no trackable features seem to be
present. Higher coverage could be expected for image pairs where a certain
level of coherence is maintained so that also speckle pattern can be tracked
in the feature-free snow-covered areas.

Fig. 2.5 and 2.6 show that the coverage of successful velocity estimates
using NCC stacking and small templates was very similar to the coverage of
the single NCC pair estimates where, however, doubled template size was
used. This is confirmed by the statistics shown in Fig. 2.7. Specifically, the
difference of coverage ratio between NCC stacking with small templates and
single pair-wise NCC with large templates is only 4% (88% versus 92%) for
the TanDEM-X results and 9% (77% versus 86%) for the Sentinel-1A results.

2.4.3 Residual velocities of velocity fields

In the glacier free areas of Fig. 2.5 and Fig. 2.6, the pair-wise NCC results
show stronger noise and more residuals than the results of NCC stacking.
The systematic analysis of these velocity residuals in Fig. 2.8 shows that
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the residual ratio, Eq. 2.9, decreases with the increase of stack size for both
datasets and both template sizes.

Similar to the spatial coverage ratio, the biggest relative decrease of residual
ratio is observed when stacking three pair-wise NCCs. For TanDEM-X and
at stack size of three, the average residual ratio (red in Fig. 2.8) decreased
from 9% to less than 1% with large templates and from 23% to 5% with
small templates. With Sentinel-14, it decreased from 18% to 3% with large
templates, and from 37% to 13% with small templates (blue in Fig. 2.8). For
large templates, the minimum residual ratios already reduce to almost zero
with stack size of three for both TanDEM-X and Sentinel-1A. Very big ranges
between the maximum and minimum residual ratios are observed for pair-
wise NCCs. However, with NCC stacking, the ranges quickly narrow to much
smaller extents for both datasets.

2.4.4 SNR gain

Fig. 2.9 illustrates the SNR gain of stacked NCC compared to the pair-wise
NCC with the best coverage ratio for both datasets. For most areas, the SNR
increases regardless of template sizes and sensor. For TanDEM-X data and
both template sizes, large areas of strong SNR gain (in red) are found at the
Aletschfirn and the Jungfraufirn. In these areas velocity fields are noisy and
contain many gaps for the pair-wise results shown in Fig. 2.5 and 2.6 whereas
the stacking results show increased spatial coverage and much smoother
velocity orientations. Areas showing an SNR decrease (in blue) seem to be
located in areas where the velocity maps do not show much improvement
either because the area is well traceable already with a single pair or because
the area is not traceable, neither with pair-wise nor with stacked NCC. For the
well traceable areas (e.g. center of the Aletsch Glacier), the SNR dramatically
decreases, because the pair-wise NCC with best coverage already represents
the highest SNR in the NCC stack, and thus averaging the stack brings the
SNR down.

To gain insight into the reason of SNR change, we chose two representative
templates with an SNR increase and decrease, selected from the red and
blue area within the white boxes in Fig. 2.9(a)(d). For these templates, the
pair-wise and stacked NCC fields are presented in Fig. 2.10. In the upper
row of the figure, the SNR decrease for both TanDEM-X and Sentinel-1A
can be attributed to the drop of the averaged NCC peak, which is caused by
the variation of peak strength within the NCC stack. Moreover, for Sentinel-
1A, the bright diagonal pattern in the stacked NCC indicates that the major
energy of pair-wise NCC are evenly distributed along the diagonal, and image
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58



features within templates very likely have periodic patterns. Although not
shown, but comprehensible from lower row of Fig. 2.10, the SNR reduction
in very difficult areas can also be caused by an apparent peak picked from
the noise, which can show a larger SNR in pair-wise NCC compared to
the SNR of the true peak identified in the stacked NCC. In this sense, the
SNR improvement in the lower row of Fig. 2.10 for both TanDEM-X and
Sentinel-1A shows the successful suppression of ambient noise with stacking.
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F1GURE 2.10: Example NCC fields extracted from blue and red areas within the
black box of Fig. 2.9 (a)(d). The pair-wise NCC shown here represent
the highest SNR in all pair-wise NCCs.

2.4.5 Validation against in-situ measurements

Velocities obtained by the different methods are validated by comparing
velocity magnitudes and components along the easting (vy) and northing
(vy) with the in-situ measurement. Results are presented in Fig. 2.11. Positive
vy indicates east pointing velocity vector, and positive v, indicates south
pointing velocity vector. For both TanDEM-X and Sentinel-1A, the RMSE
value for stacked NCCs are in general smaller than that for pair-wise NCCs.

For TanDEM-X, most velocities estimated are somewhat smaller than the
GPS data, in both x— (easting) and y— (northing) directions, shown by the
right-wards biased point cloud in Fig. 2.11(a)-(d). Velocities estimated with
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F1GURE 2.11: Validation of estimated velocities with respect to in-situ measure-

ments for TanDEM-X (upper row) and for Sentinel-1A (lower row).
The four columns shows result of a single pair-wise NCC and large
templates (96 x 96 pixels) (a, e), stacked NCC and large templates (b,
f), a single pair-wise NCC and small templates (48 x 48 pixels) (c, g),
as well as stacked NCC and small templates (d, h). The diagonal solid
grey line indicates a 1:1 match, and the two dashed grey lines indicate
a mismatch of +0.1m - d~!. RMSE values for velocity magnitude and
components are reported in each panel with corresponding color. Due
to the incomplete velocity coverage, not all of the 22 measurement
points are used for validation. The number of points (Npoints) used
for RMSE calculation are reported in associated panels.

Sentinel-1A imagery have higher uncertainty than that with TanDEM-X as
shown by the more randomly distributed point cloud. However, more than
half of the points are biased to the right side of the 1:1 line, showing that re-
sults of Sentinel-1A are also somewhat smaller than the in-situ measurement.

For both sensors, points of high velocity magnitude vmag show less scatter
from the 1:1 line than points of small velocity magnitude, indicating that fast
moving surfaces are estimated with higher confidence. For TanDEM-X, RMSE
values in northing (Ry) are in general higher than that in easting (Ry). In
contrast, although Ry for Sentinel-1A are also higher than Ry with pair-wise
NCCs, they turn to be smaller than Ry with stacked NCCs. The RMSE of
Sentinel-1 results are in general higher than the RMSE of TanDEM-X results.
This is also illustrated by the increased outliers contained in Fig. 2.11(e)-(h)
comparing to Fig. 2.11(a)—(d). This is partly determined by the different image
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resolution of the two sensors. Moreover, as the stacked NCC greatly extended
the coverage of the velocity map (see Fig. 2.6), the number of points being
used for validation are increased for the stacking results [Fig. 2.11(f, h)]. As
show in Table 2.2, the added points are estimated with larger uncertainties
comparing to the points that are kept in both methods. Hence the outliers in
Sentinel-1 results are increased.

Points added to the Points kept in both
result of stacking results

Rmag = 0.196 Rmag = 0.120
96 x 96 pixels Ry = 0.078 Ry = 0.166
Ry =0.278 Ry =0.138

Rumag = 0.312 Runag = 0.159
48 x 48 pixels Ry = 0.310 Ry = 0.144
Ry =0.350 Ry =0.196

TaBLE 2.2: RMSE values for different group of validation points in the results of
Sentinel-1A

2.5 Discussion

2.5.1 Spatial Coverage

The spatial coverage of reliable offset estimates is a crucial parameter for
the obtained offset field. As seen from the comparison between results of
large and small templates in Fig. 2.5 and Fig. 2.6, it is clear that using large
templates can effectively increase reliable estimates. This is because large
templates can accommodate more image features than small ones, and thus
can enhance the auto-correlation peak height and the SNR of the NCC. For
offset tracking using SAR images, larger templates are required, compared
to optical images, to compensate for the noise introduced by temporally
uncorrelated (incoherent) SAR speckles.

However, using large templates inevitably depreciates the spatial resolution
of the obtained offset field, and thus is not of advantage for studying small-
scaled problems (e.g. small glaciers or landslides). In addition, large templates
are also not suitable for studying non-homogeneous velocity fields such as
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shear zones, where strong velocity gradient can cause non-uniform shifts of
image contents within one template and thus can lead to dispersed peaks in
the NCC.

When large templates are not applicable, our results suggest that NCC
stacking can provide a powerful solution for robust tracking at high spatial
resolution. As shown in Fig. 2.7, the spatial coverage of NCC stacking with
templates of 48 x 48 pixels is almost equivalent to that of pair-wise NCC with
templates of 96 x 96 pixels for both sensors. This suggests that NCC stacking
permits to use smaller templates to get velocity fields of equivalent coverage
as using big templates for pair-wise NCC.

2.5.2 Estimation accuracy

In this study, we firstly evaluated the accuracy of velocity estimation using
residuals over static ground. Comparing to the validation against the in-situ
measurement, this is an indirect method of evaluating the estimation accuracy,
as it is difficult to precisely quantify to what degree the accuracy over glacier-
free area actually represents that over glacier covered regions. However, many
studies have used this method due to the lack of in-situ measurement [13]. In
Fig. 2.8, the decrease of the residual ratio with increasing stack size shows
that NCC stacking effectively reduced the uncertainty of velocity estimation.
In addition, when using pair-wise NCC, the range between the maximum
and minimum residual ratios is quite big, suggesting that different imaging
conditions have a strong influence on the estimation accuracy. With stacking,
the ranges quickly narrow down, showing that temporally stacking pair-wise
NCCs can average out the change of image conditions and thus make it more
accurate for velocity estimation than just a single pair-wise NCC.

Using the in-situ measurement, we also directly quantified the error of
estimation at selected locations on the glacier. In general, estimated velocities
show quite small RMSE values with respect to the in-situ measurement, but
the satellite-based velocities are, in average, slightly below the in-situ data.
Velocity time series indicate that the seasonal velocity increase starts around
early May [40]. Considering that in-situ velocities were measured between
2019-04-30 and 2019-05-06, it is reasonable that the in-situ measurement
appear slightly higher than the winter velocities obtained by offset tracking.

The confidence level of offset tracking depends on surface structures but
also on the sensor resolution. We observed a higher confidence for fast moving
regions where strong and well visible features are induced by fast glacier
flow (e.g. big crevasses). Differences of confidence levels also occur between
velocity components along the northing and easting, which is likely caused by
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the different resolution along the azimuth (mostly along the northing) and the
slant-range (mostly along the easting) direction of the used SAR images. At
the Great Aletsch Glacier, the image scene is rotated by about 10° in average
between northing-easting and azimuth-range due to orthorectification. The
resolution (az x rg) is about 6.6 m x 2.2 m for TanDEM-X [41] and about 22
m x 4.7 m for Sentinel-1A [42]. Therefore, RMSE along the northing Ry is in
general higher than RMSE along the easting Ry. Despite the lower resolution
along the northing, we obtain comparable uncertainties for vx and vy.

2.5.3 Stack size

The results show that NCC stacking is able to sufficiently improve the track-
ing performance by increasing both spatial coverage and tracking accuracy.
Although the performance keeps improving with the increased stack sizes,
we found the biggest relative improvement of the performance for a stack size
of three. This indicates that the most prominent relative performance gain is
not necessarily achieved using many pair-wise NCCs for stacking. Therefore,
when the size of NCC stack is limited by the amount of available data (i.e.
too little images available), stacking over a limited number of pair-wise NCC
can still provide considerable performance enhancement. A small NCC stack
is also of advantage when high temporal resolution is desired. For instance,
when studying temporal velocity variations (e.g. glacier surge, seasonality,
or fast landslides), large stacks would either average out transient velocities
or, in worst case, could lead to strong blurring of the NCC peak such that
it cannot be tracked anymore. Using relatively small NCC stack can better
compromise the need of improving spatial coverage without sacrificing too
much temporal resolution.

For example, studying the seasonal fluctuations of a glacier’s flow velocity
requires high temporal resolution. With the increasingly available SAR images
of short revisit time, it is possible to collect many images within a few months
during which the seasonal velocity variations are limited. Hence, we can
compose an image series within one season to make velocity variations
between seasons traceable. Another example is to apply the stacking method
to fast-flowing glaciers. Fast-flowing glaciers often behave complex dynamics
with strong acceleration and deceleration NCC, and thus the NCC peaks are
shifted in the NCC series. In this case, we can adjust the stacking size such
that the velocity fluctuation within one stack is minimized.
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2.5.4 TanDEM-X versus Sentinel-1A

The comparison of Fig. 2.5 and Fig. 2.6 shows that velocity fields obtained
from TanDEM-X imagery have better spatial coverage than that of Sentinel-
1A, for the same template size. We think that the coverage difference could
originate from the different resolutions of the sensors. High resolution means
that the image template could contain more distinguishable features than
templates of the same pixel size but generated from low resolution data. A
similar effect has been observed for optical imagery where low resolution
sensors often underestimate the velocities observed by high resolution sen-
sors [44]. For example, the two meter resolution of TanDEM-X can better
resolve features like crevasses which are often only a few meters large. For
Sentinel-1, it is more likely that multiple crevasses are contained in one reso-
lution cell and thus add up to speckle patterns by interference of the radiation
scattered at different locations of the crevasse. The transformation of features
to speckle degrades the correlation process.

The high resolution of TanDEM-X obviously improved the accuracy of
offset estimation. In Fig. 2.11, RMSE values for Sentinel-1A are in general
twice as large as for TanDEM-X, which is comparable to the difference of
resolutions of the two sensors. Moreover, different pixel sizes also affect the
choice of time intervals between image pairs. In the experiment, due to the
large pixel sizes, time intervals between Sentinel-1A image pairs were set to be
T = 24 days, which are about twice as long as the repeating time of TanDEM-
X. Taking long time interval ensures that image features shift far enough
for detection. If the time interval were not sufficiently large, image features
would not move out of one resolution cell for low resolution sensors such as
Sentinel-1. In this case, the NCC would not be able to track the displacement.
However, larger time intervals also increases temporal decorrelation between
the image pair [40], and thus degrades the SNR of the NCC.

Although TanDEM-X has the advantage of having high resolution, the data
coverage of TanDEM-X is not as applaudable as Sentinel-1. Sentinel-1 has
very good global coverage and constant re-visiting time of 12 days (six days
for Sentinel-1A /B together), making it especially preferred for time-series
collection. We found that the Great Aletsch Glacier is almost at the limit
for Sentinel-1A offset tracking with pair-wise NCC, but the stacked NCC
shows promising results. The NCC stacking method could show further
improvement when combining very short sequences of Sentinel-1A/B, e.g.
average 6-day SAR image pairs of Sentinel-1A /B before calculating cross-
correlation over significantly larger time intervals.
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2.6 Conclusion

In this work, we presented a cross-correlation stacking method to improve
offset tracking. Instead of estimating displacement offsets from a single pair-
wise NCC, we firstly calculate a stack of multiple pair-wise NCCs from image
time-series, and then average the NCC stack before tracking the NCC peak.
With the assumption that the surface object moves with constant velocity
during the image series acquisition, we can effectively suppress the noise
floor and meanwhile maintain the NCC peak height.

The proposed stacking method is assessed by measuring the flow velocity
of the Great Aletsch Glacier using both TanDEM-X and Sentinel-1A images.
The result shows that the SNR of the NCC are greatly improved by stacking,
leading to extended coverage of velocity field and more precise velocity
estimates. Remarkably, the coverage of NCC stacking with small templates is
equivalent to the coverage of pair-wise NCC with big templates. This makes
NCC stacking the preferred method when the template size is limited by a
study area with small glaciers. Assessing the performance improvement with
respect to different stack sizes shows that prominent performance gain does
not necessarily rely on a large number of pair-wise NCCs in the stack, which
suggests that the stacking method can also be applied to small NCC stacks
when only short image time-series is available or high temporal resolution is
required.

In this work, we evaluated NCC stacking with equally spaced time-series
data of a single sensor. However, as long as the spatial offset can be assumed
to be the same for all NCC pairs, various data sources can by used as
input, e.g. different spectral or polarization channels, data from different
sensors (e.g. SAR and optical), data from the same period of the year or
different image combinations of before and after seismic events. Resampling
of the cross-correlation function before stacking could even allow for NCC
stacking over image series with unequal time intervals. With the increasingly
growing archives of remote sensing data, cross-correlation stacking provides
a promising method to benefit from the acquired time series for robust offset
tracking.

Appendix

Using the pair-wise NCC, we obtained series of velocity maps for the collected
TanDEM-X and Sentinel-1A images. After applying the same thresholds with
Umax = 1 m-d ! and SNR,;, = 10 dB, the velocity map series are averaged
to produce the averaged velocity maps (Fig. 2.12). The spatial coverage ratio
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FIGURE 2.12: Averaged velocity magnitude maps produced using TanDEM-X
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[(@)(b)] and Sentinel-1A images [(c)(d)] with large (96 x 96 pixels)
and small (48 x 48 pixels). Acquisitions are listed in Table 2.1). Black
voids represent removed outlier and results with an SNR below 10
dB. The spatial coverage ratio of each panel are listed in Table 2.3.
The glacier outline is delineated in black. Axes are labeled with Swiss
Coordinates (CH1903/LV03) of unit meters.



of the averaged velocity maps are presented in Table 2.3. For TanDEM-X
results, the coverage ratio of the averaged velocity maps [Fig. 2.12 (a)(b)]
are lower than the best coverage as presented in Fig. 2.5. For Sentinel-14,
although the coverage ratio of the averaged velocity maps [Fig. 2.12 (c)(d)]
are somewhat higher than the selected map with the most spatial coverage
(Fig. 2.6), the additionally covered area in the averaged velocity maps reveals
very noisy velocity data.

Template Size 96 x 96 pixels 48 x 48 pixels
TanDEM-X 88.77% 89.91%
Sentinel-1A 89.7% 91.8%

TABLE 2.3: Spatial coverage of the averaged velocity maps
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Abstract

Mapping seasonal snow melting is crucial for assessing its impacts on wa-
ter resources, natural hazards, and regional climate in Karakoram. However,
complex terrain in the high-mountain region poses great challenges to remote-
sensing-based wet snow mapping methods. In this study, we developed a novel
framework that incorporates synthetic aperture radar (SAR) and topographic
data for robust and accurate mapping of wet snow over Karakoram. Our method
adopts the Gaussian mixture model (GMM) to adaptively determine a wet snow
index (WSI), and a computed topographic snow index (TSI) considering the
impact of terrain on wet snow distribution to improve the accuracy of map-
ping. We validated the mapping results against Sentinel-2 snow cover maps,
which demonstrated significantly improved accuracy using the proposed method.
Applied across three major water basins in Karakoram, our method generated
large-scale wet snow maps and provided valuable insights into the temporal
dynamics of regional snow melting extent and duration. This study offers a
practical and robust method for snow melting monitoring over challenging
terrains. It can contribute to a significant step forward in better managing water
resources under climate change in vulnerable regions.

3.1 Introduction

Monitoring seasonal snow melting is of global importance within cryosphere
studies, given the profound and far-reaching impacts of snow on climate,
hydrology, and ecosystems. Snow cover plays a crucial role in modulating the
Earth’s energy balance by altering surface albedo, thereby exerting cooling
effects on the terrestrial surface and influencing climate patterns at local and
regional scales. Notably, in high-altitude areas, the accumulation of snow
serves as a primary water source for downstream flows and governs the
runoff dynamics in many mountainous basins [1].

The Karakoram region, characterized by its elevated topography and
unique climatic conditions, is of exceptional significance in snow cover moni-
toring. Situated at the center of the Hindukush-Karakoram-Himalaya (HKH)
mountain system, the Karakoram is renowned for hosting some of the world’s
highest peaks and harboring the largest alpine glacier system outside the
polar regions [2]. Across its expansive landscape, snow and ice reserves are
substantial, encompassing an area exceeding 20,000 km?, with seasonal snow
covering nearly 90% of this expanse [3-5].
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F1GURE 3.1: Geolocation of the Karakoram region overlaid on the COP-30 DEM.
The study region includes three major water basins: Hunza, Shigar,
and Shyok, which are delineated in red. Elevation histograms of the
tree basins are shown in the right panel. Median elevations of basins
are indicated with vertical red lines in histograms. Footprints of S1
images used in the study are shown with black and blue boxes (black:
relative orbit 27; blue: relative orbit 129).
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In the expansive and challenging terrain of the Karakoram region, ground-
based observation methods struggle to effectively cover the vast and rugged
terrain, and hence remote sensing techniques have become the primary ap-
proach for snow cover mapping. While spaceborne optical and multi-spectral
sensors like MODIS, Landsat-7/8, and Sentinel-2 (S2) have been employed
in numerous studies, their reliability is often compromised by cloud cover
and illumination conditions [4, 6-10]. To overcome this limitation, synthetic
aAperture radar (SAR) presents a valuable alternative for monitoring snow
regardless of weather and daylight conditions.

The foundation of snow classification in SAR imagery was established
based on the unique backscattering responses generated from the distinctive
interactions of snow with SAR signals. For dry snow, radar signals can
penetrate through the snowpack down to a specific depth depending on the
signal wavelength and thus generate a strong backscattering signal at the
snow-ground boundary [11, 12]. As the snowpack undergoes melting, its
liquid water content increases in the wet snow pack and causes high dielectric
losses, resulting in significant reductions in backscattering intensities [11, 13].
Based on the change in backscattering intensities, early wet snow detection
methods were developed using the ratio of SAR backscattering coefficients [11,
14]. The ratio was derived from SAR images acquired during the snow
melting season and reference images obtained under snow-free or dry snow
conditions. An empirical threshold of -2 dB on C-band Sentinel-1 (S1) ratio
images was proposed to classify snow, distinguishing wet from dry snow,
and has proven to be effective [13].

Subsequent refinements were proposed to enhance the algorithm for robust
application on various ground surface types. For example, sigmoid functions
were introduced as a soft threshold to replace -2 dB, and it was shown to
be effective in resolving the uncertainties arising from mixed pixels of wet
snow and other constituents [15-17]. Various strategies for selecting bias-free
reference images were devised, such as choosing a specific reference scene
during winter [18], averaging multiple images over a defined period [19], or
employing linear interpolation between images at the beginning and end of
the melting period [20]. In practice, auxiliary data were usually combined
to improve the accuracy of snow detection, such as digital elevation models
(DEMs), land category maps, meteorological model, and snow cover maps
derived from optical multi-spectral sensors [13, 14, 21—23]. Recent develop-
ments in machine learning also brought opportunities to further improve
SAR snow mapping. Supervised classification algorithms, such as support
vector machine and random forest, were applied to different SAR products
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and have shown promising results [23, 24]. Deep learning algorithms were
also exploited and have exhibited great potential in achieving more robust
and accurate wet snow classification [25].

Despite the efforts to improve the method for robust SAR-based snow
mapping, challenges remain in mountainous regions such as Karakoram,
where complex topography may strongly distort SAR signals and thus lead
to considerable uncertainties when applying a single-valued threshold for
snow classification [3, 26—28]. Furthermore, large-scale application of wet
snow mapping in Karakoram requires a method to be adaptively responsive
to basin-specific variations, posing practical challenges to efficient method
development [17]. ML techniques may offer versatile solutions, but their
application in this region is limited by the availability of training data [23,
25].

To address these challenges, this study proposes a novel framework that
integrates SAR and topographic data for versatile and robust wet snow
mapping covering three major water basins of Karakoram. In the first step,
we employed an unsupervised learning algorithm, namely the Gaussian
mixture model (GMM), to adaptively determine the wet snow index (WSI).
Secondly, a topographic snow index (TSI) was calculated to account for the
influence of topography on snow distribution. We applied the proposed
method to a time series of SAR imagery acquired by Sentinel-1 (51) between
2017-2021 and generated regional-wide wet snow maps of high spatial and
temporal resolution. The validation using S2 images showed considerable
improvements compared to conventional threshold-based methods. Crucial
snow dynamic variables including the wet snow extent (WSE) and snow
melting duration (SMD) were derived from the snow maps, demonstrating
the significance of closely monitoring wet snow in watershed management.

The paper is organized as follows. Section 2 introduces the study site and
data. Section 3 explains the proposed method in detail. Section 4 presents the
result of the study, including the validation and the snow dynamic variables.
Section 5 discusses the method and its implications for snow mapping. Section
6 concludes the study and provides an outlook for the future development.

3.2 Study area and data
3.2.1 Study area

The Karakoram region, spanning extensively across parts of Pakistan, India,
and China, is bordered by some of the highest mountain systems on Earth,
including the Himalayas, the Pamir Mountains, and the Hindu Kush moun-
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Relative Orbit di- Revisit Start End Number

orbit rection  interval date date of acqui-
sitions

Hunza 27 Ascending 12 days  2017- 2021- 148
02-05 12-29

Shigar 27 Ascending 12 days  2017- 2021- 148
02-05 12-29

Shyok 129 Ascending 12 days  2017- 2021- 146
03-20 12-24

TaBLE 3.1: Information on Sentinel-1 (51) images used for the generation of wet
snow maps. The ascending pass crossed over the study region in the
late afternoon (around 18:00 local time).

tain ranges (Fig. 3.1). The study area encompasses the majority of Karakoram,
covering an expansive geographical domain of approximately 450,000 km?.
This region extends from approximately 35°N to 38°N latitude and 76°E to
78°E longitude, characterized by a wide range of altitudes from around 2,000
m a.s.] (above sea level) in the valleys to well over 8,000 m a.s.I at the highest
summits. The extreme topographic variation gives rise to rugged terrain,
including steep valleys and towering mountain peaks.

Karakoram is situated upstream of both the Upper Indus Basin (UIB) and
the Tarim River Basin. It covers three significant watersheds: Hunza, Shigar,
and Shyok, as shown in Fig. 3.1. These basins serve as the upstream sources
of the UIB and contributes 65-85% of annual flows to the Indus River with
the melting water from snow and glaciers, sustaining the livelihoods of
millions of residents residing within these basins [6, 29, 30]. The hydrological
importance of Karakoram emphasizes the important role of mapping snow
melting in the region.

3.2.2 Data
3.2.2.1 Sentinel-1 SAR imagery

The SAR imagery used in our research was acquired by the spaceborne C-
band S1 SAR sensor. The S1 SAR satellite provides high geolocation accuracy
and a short orbit repeat cycle of 12 days, facilitating precise and frequent
monitoring of snow melting [13].
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In this study, we use single-look-complex (SLC) data from S1 acquired
in interferometric wide (IW) swath mode. These data cover scenes with a
swath width of 250 km at a spatial resolution of ~ 5 x 20 m in the range and
azimuth direction. Both VV and VH dual-polarization data were employed
for the following analysis. The details of the S1 images utilized in this study,
including orbit numbers and acquisition dates, are provided in Table 3.1.

3.2.2.2 Copernicus digital elevation model

Digital elevation models (DEM) provide essential topographic information
crucial for both SAR image pre-processing and snow distribution mapping,
particularly in the rugged landscapes of mountainous regions. In this study,
we employed the Copernicus Global 1-arcsec (COP-30) DEM, recently released
by the European Space Agency (ESA) in 2020, to facilitate the SAR image
processing and snow mapping. The COP-30 DEM product was derived from
the TanDEM-X SAR data acquired between 2010 and 2015, providing global
coverage at a resolution of 30 meters and a vertical root mean square error as
low as 1.68m [31, 32].

The COP-30 DEM data covering the study regions were downloaded
through the Copernicus Space Component Data Access PANDA Catalogue [33],
as shown in the base map in Fig. 3.1. The DEM products are referenced in
geographic coordinates using the World Geodetic System 1984 (WGS84). The
vertical heights are referenced to the EGM2008 geoid model.

3.2.2.3 Sentinel-2 Level-2A imagery

To validate the snow maps generated using the proposed method, we also de-
rived snow cover maps on selected dates using multi-spectral S2 images. The
S2 sensor operates in a sun-synchronous orbit with a revisit time of 5 days [34].
Equipped with 13 spectral bands ranging from visible and near-infrared to
shortwave infrared, S2 images offer valuable spectral information for land
cover characterization and have been widely used in snow cover mapping. In
this study, we used the Sz Level-2A (L2A) products to generate snow cover
maps for validation purposes. The L2A product is orthorectified bottom-of-
atmosphere surface reflectance data, that are derived through the atmospheric
correction of the Level-1C products using the Sen2Cor method [35]. Practically
useful supplementary data are also included in the L2A product, including
cloud and snow confidence maps and a scene classification map that identifies
elements like clouds, cloud shadows, and snow. The spatial resolution of
images under different spectral bands varies from 10 to 60 meters.
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We selected S2 L2A images taken during the summer months with minimal
cloud cover as potential candidates. From these, only images that could be
matched with an S1 SAR image within a window of £3 days were used
to generate reference snow maps with the Let-it-snow (LIS) algorithm (Sec-
tion 3.3.5; [36]). The LIS algorithm employed RGB spectral bands B2 (blue), B3
(green), and B4 (red), as well as infrared bands B8 (NIR) and B11 (SWIR), for
snow-cloud-ice classification. We accessed the S2 data through the Copernicus
Open Access Hub.

3.3 Methodology

This section describes the proposed method for integrating SAR and topo-
graphic data to map melting wet snow. The key steps of the method are
summarized in Fig. 3.2.

The raw S1 SLC data were first pre-processed to generate backscatter
images. Same-orbit SLC time series were co-registered to a common reference
scene to accurately align the geolocation of pixels. Then we multi-looked each
SLC with a window size of 12 x 1 (rg X az) to obtain backscattering intensity
images with squared pixel spacing of approximately 14 x 14 m. The intensity
images were further converted to 7° images with terrain-based radiometric
correction [37]. All pre-processing steps were conducted using the GAMMA
software [38].

3.3.1 SAR backscattering ratio

With the pre-processed 7" images, we derived the composite backscatter
ratio (R.) following the method proposed by [13]. The R, metric combines
the backscatter ratios from both the VV and VH channels to comprehen-
sively assess surface condition changes associated with snow melting. This
approach incorporates a weighting factor W, which is determined by the
local incidence angle (LIA, ), to account for variations in backscatter due to
differing incidence angles. This adjustment enables more robust snowmelt
detection across varying terrain geometries.

To compute R., we first calculated the SAR backscatter ratio R; for each
polarization i € vv, vh using the following equation:

R; = IY?/rY?,ref (3-1)

where 7? s Tepresents a reference image constructed using the average of
multiyear winter images. Note that this differs from other alpine regions,
such as the Alps, where summer months are often used as the reference due
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to snow-free conditions. In Karakoram, due to the all-year-long snow cover
at the higher elevations, we used winter images as a reference to leverage the
dry snow conditions in winter for highlighting the contrast in backscattering
intensity between summer wet snow (lower intensity due to water absorption)
and winter dry snow

With R; for each polarization, the composite ratio R, was calculated as a
weighted sum of Ryy and Ry,

R. = WRyy + (1 = W)Ryy (3-2)

where the weighting factor W is defined based on the LIA as:

0 (0 < 91)
W=17051+45%) (61<6<6,) (33)
05 (6 > 67)

with 6; = 20° and 6, = 45°.

3.3.2 Wet snow index

While R, alone effectively indicates surface condition changes, it can be
sensitive to local variations and does not inherently incorporate adaptive
boundaries for wet snow classification. Therefore, instead of directly applying
a threshold to R, for wet snow classification, we propose using a GMM to
convert R. into a Wet snow index (WSI) to have a probabilistic measure that
better captures the varying conditions of wet snow across different terrains. By
leveraging the density distribution of R values, the WSI enables a dynamic
scaling of the classification based on the underlying distribution of R, values.

The GMM is an unsupervised probabilistic model for clustering and density
estimation. We configured the GMM to identify two clusters corresponding
to the wet snow pixels and the no-snow (or dry snow) pixels as

P(R;) = ) ;- N(Re|pi, 03), (3-4)

M

i=1

where P(-) the probability density function (PDF) of R, 7; the i-th Gaussian
component’s mixing coefficient for wet snow (i = 1) and no-snow (or dry
snow) (i = 2) clusters, and N(R|u;, 0;) the Gaussian distribution with mean
u; and standard deviation ¢;. We used the full covariance structure in the
GMM, i.e. each component has its own general covariance matrix, after testing
different types of covariance structures.
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To train the GMM and determine its parameters (7;, p;, and o;), we ran-
domly sampled 10° unlabeled pixels from the summer R. images of each
basin and employed the expectation-maximization (EM) algorithm to fit the
model for each basin with the sampled pixels [39]. During the training, the
maximum number of EM iterations were set to 100, and the convergence
threshold was set to 1073, With the estimated GMM parameters, the WSI can
be determined using a modified logistic function:

L

WSI = 11 okx—x0) (3:5)
with
_ i — o
01+ 02
_ Mt
Xp = 5

where k is the slope factor, x the logistic curve’s midpoint and L the carrying
capacity representing the supremum of the function. Here the carry capacity
L was set to 10 to amplify the differences between pixels of different R
values.

In the WSI logistic function, the slope factor k is determined by the sep-
aration between the two clusters, providing a flexible and adaptive control
over the sensitivity of WSI to the difference between snow conditions. In
the case when the two clusters are perfectly distinct from each other (i.e.
|u1 — u2| > 01 + 02), the WSI is transformed into a step function and thus
effectively acts as a single-value hard threshold at xo. Therefore, Nagler’s
method can be taken as a special case under this assumption with xo = —2 dB.
Contrarily, the mixed clusters (i.e. |1 — p2| < 01 + 02) would lead to pro-
gressively flattened WSI and soft segmentation boundaries. A similar form of
logistic function was proposed by Rondeau-Genesse, Trudel & Leconte [17],
which was determined with empirical parameters and used as soft thresholds
to replace the hard threshold of -2 dB on R.. In our approach, the GMM
allows for an adaptive choice of the parameter k based on the distribution
density of R, thereby enabling flexible and robust applications at large scale.

3.3.3 Topographic snow index
Given the strong impact of terrain properties on snow distribution, we in-
troduce the TSI as a component of the proposed method to account for the
terrain influence on snow presence.

Terrain properties, including the elevation, slope, and aspect, collectively
influence the spatial and temporal distribution of snow. Compared to lower

83



= = =004, 0= 140 - U= =034, 0= 2.08 —— e =842, o= 542
==+ u=—7.00, 0=560 ==: U=—1048,0=402 ==: U= -0,19,0=137

{a) Hunza 1o el Shyok [

b} Shigar

T
1
i
1
|
1
1
U

T
1
i
1
1
i
i - i
020 !
|

0.15 4

Density

.10

005 =

-——
- 4
-

0,00 === T T T t T
10 -20 —-15 -10 -5 o 3 1

FIGURE 3.3: Parameters of the GMM and WSI used for (a) Hunza, (b) Shigar and
(c) Shyok. The gray shaded histogram shows the density of R. of the
sampled points. Dashed red and blue curve represent the PDF (scaled
on the left y axis) of the two clusters in the GMM. Solid black lines
(scaled on the right y axis) show the WSI. The vertical dashed black
line marks the center of WSI curves (where R, = x¢). The mean (y)
and standard deviation (c) of the GMM are reported above the panel.

altitudes, regions of higher elevation experience lower temperatures and
are conducive to more snow accumulation. The steepness of slopes and
the orientation of aspects, on the other hand, impact the snow distribution
through the solar illumination and wind exposure. To take these factors into
account, we calculated the TSI in two steps. First, we derived the discrete
topographic bin maps using the COP-30 DEM by partitioning the terrain with
its elevation, slope and aspect. The partition was based on slope below or
above 20°, elevation in every 10om, and aspect in every 15°. The topographic
bin map can effectively capture the localized terrain attributes that influence
the occurrence of snow. The median WSI value within each topographic
bin was then calculated to obtain the TSI, so that the regional propensity
of wet snow occurrence under the specific topographic conditions could be
quantified.

An example TSI distribution for Hunza at different elevation, slope, and
aspect are presented in Fig. 3.4. In this example, TSI values show different
patterns across seasons and topographic conditions. In spring, strong TSI
signals are found around 4000 m.a.s.] for east-facing slopes (aspect 0 ~ 190°)
over flat terrain (slope 6 < 20°), while no obvious TSI signal is observed for
steep terrain (slope 6 > 20°). This can be explained by the limited snowmelt
during the spring season of Karakoram. In summer, strong TSI signals are ob-
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served above ~5000 m.a.s.l. for all slope and aspect conditions, indicating the
presence of wet snow. However, steep slopes showed an unevenly distributed
TSI across slope aspects, which can be attributed to the shadowing effect of
the surrounding terrain. In autumn, TSI signals generally decrease due to
the absence of wet snow, and the snow line retreats to higher elevations. This
example indicates that the dynamic influence of topography on snowmelt
can be effectively captured by the designed TSI signal.
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FIGURE 3.4: TSI values at different elevation (y axis), aspect (x axis) and slope
classes (top row: flat slope with 8 < 20°, bottom row: step slope with
6 < 20°) for Hunza basin. Three observation dates in spring (left
column), summer (middle column) and late autumn (right column)
are displayed. Aspects of o, 9o, 180 and 270 degrees align with the
north, east, south,and west direction, respectively.

3.3.4 Integrated snow index

As illustrated in Fig. 3.2, the final step generated an integrated snow index (SI)
map through pixel-wise multiplication of WSI and TSI. This multiplication
scales the WSI by incorporating terrain characteristics, thereby linking the
observed SAR backscattering ratio directly to terrain properties.

In order to classify the integrated SI into binary snow maps, it is crucial to
apply an adaptive threshold that accounts for the variation in topographic
features across different basins. The variation in SAR backscatter response
within a basin is inherently handled by the GMM when deriving the WSL
In contrast, the TSI is time-varying and basin-specific, requiring an opti-
mal coefficient to condition the SI for classification. This coefficient should
moderate the influence of TSI in the SI formulation and compensate for
the concentration of TSI values within a limited range so that the impact
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of TSI can be normalized to align with the traditional -2 dB reference. To
determine this coefficient, we performed a sensitivity analysis, evaluating
F1 score, precision, and recall across different values using the Sz validation
snow map. The results (Fig. 3.12) demonstrate that Hunza and Shyok exhibit
similar responses, with optimal coefficients close to 3.5, while Shigar reaches
its optimum at approximately 2.5. However, to avoid overfitting to specific
basins or validation dates, we selected 3.5 as an overall coefficient to balance
classification performance across all basins. This coefficient also reflects a
moderate threshold applied to the TSI to determine the overall SI threshold
for each basin.
The threshold was then calculated using the following equation:

SI Threshold = 3.5 x WSI|g.=_» (3.6)

where WSI|g —_, represents the WSI at a backscatter ratio of R. = —2 dB
for each basin. This value is basin-specific, allowing the threshold to adapt
based on each basin’s distinct characteristics. Together, these conditions
form an integrated, basin-adaptive thresholding mechanism, combining SAR
backscatter and topographic information into a single index to determine the
SI threshold.

Note that while the SI threshold is basin-specific, it is time-independent.
The WSl is derived from a GMM trained on samples collected from multiple
summer scenes over several years, ensuring that it represents an aggregated
measure for each basin and is not tied to individual scenes or seasons. This
design ensures robustness to seasonal variations in liquid water content and
enables consistent application across different validation dates.

3.3.5 Sentinel-2 snow cover maps

The proposed method was validated using Sz snow cover maps generated
following the LIS algorithm proposed by [36]. Before running the LIS algo-
rithm, the input S2 multi-spectral bands were resampled to a pixel size of
20m x 20m to match the resolution of different bands. The COP-30 DEM was
also resampled to the same pixel size as the S2 images.

The LIS algorithm started by generating provisional snow masks by apply-
ing thresholds on the normalized difference snow index (NDSI) and the red
band reflectance (p.q) with the condition:

(NDSI > n;) AND (preq > i) (3.7)

where n; = 0.4 and r; = 0.2 [36]. This step was designed to identify snow-
covered areas while excluding non-snow surfaces such as vegetation and
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bare ground. However, this approach could sometimes exclude snow-covered
pixels due to errors in cloud masking. To correct the errors, a refinement
step was introduced to reassign dark cloud pixels that were initially mis-
classified. Following Gascoin et al. (2019), dark clouds were identified by
applying a threshold of 0.3 on the bilinearly downsampled red band, which
reduced the resolution of the red band from 2om to 24om by a factor of
12. This process helped to exclude cloud shadows and high-altitude cirrus
clouds from the snow classification. Afterwards, the provisional snow masks
were further refined using the basin snow line calculated from the COP-30
DEM. We calculated the total snow cover fraction (SCF) within every 10om
elevation band using the provisional snow mask, and defined the snow line
using the lowest elevation band where the SCF exceeded 30%. For pixels
identified as dark clouds above the determined snowline, the conditions used
in Equation (3.7) were reapplied with adjusted thresholds to account for the
unique conditions at high altitudes. Specifically, the relaxed thresholds of
n; = 0.15 and r; = 0.04 were used to classify snow pixels, and dark cloud
pixels with p,q4 > 0.1 were reassigned as cloud, while other pixels were
categorized as "no snow." These adjusted thresholds help to differentiate
snow from dark clouds in challenging high-altitude environments, ensuring
a more accurate classification. Following the adjustment of the snow mask,
we extended the LIS algorithm by further applying a threshold on the NIR
band with pnr > 0.4 to classify glacier ice and water bodies from snow [40].

3.4 Results

3.4.1 Validation of snow classification maps

The validation of snow classification results was carried out for three basins on
specifically suited summer dates (Table 3.2). These dates were chosen based
on conditions of minimal cloud cover and the shortest possible intervals
between acquisitions of S1 and S2 images. As S2 snow cover maps classify
snow (both dry and wet) rather than only wet snow, we have chosen only the
summer dates as listed in Table 3.2 to ensure that the S2 snow cover maps
were mostly covered by wet snow. For Hunza and Shyok, two S2 images
with an acquisition interval of 2 days were combined to achieve a complete
coverage of the basin, whereas same-day acquisitions of S1 and S2 were found
for Shigar in 2019.

In the three basins, adaptive SI thresholds were used to generate the snow
classification maps. The threshold values for each basin are also reported in
Table 3.2. These thresholds provided basin-adaptive and time-independent
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S1 date S2 dates  SI threshold

2020-07-29

Hunza 2020-07-31 14.62
2020-07-31

Shigar 2019-08-06 2019-08-06 5.44

Shyok 2019-07-08 2019707707 12.33
2019-07-09

TABLE 3.2: Sentinel-1 (S1) and Sentinel-2 (S2) data as well as SI thresholds used for
the validation. Different acquisition dates and adaptive SI thresholds
were used for basins.

classification boundaries to distinguish wet snow and dry snow or snow-free
pixels.

Figure 3.5 shows maps of R. and SI, as well as the SI snow map and the
S2 snow map over the three basins. Compared to the R. map, the SI map
shows much clearer boundary that separates wet snow pixels from no-snow
or dry snow pixels. Over glacier surfaces and valley regions (shown with
the zoomed-in insets), R. falls in the value range of —4 to 0 dB, making it
sensitive to the choice of threshold values. The R. map over these regions
presents noisy patterns, likely due to the complex scattering mechanisms on
glacier surfaces. Over glacier surface, especially in the ablation zone, radar
backscatter responses are highly variable due to refreezing, supraglacial fea-
tures (e.g., crevasses, sun cups, debris cover) and the presence of wet debris
or bare ice [41]. These features contribute to significant spatial variability in
backscatter within a single pixel, making it challenging to distinguish dry
snow, wet snow, and ice with R. alone. Additionally, glacier movement be-
tween winter and summer scenes introduces further variability, compounding
the uncertainty in detection.

In Fig. 3.5(b), it is observed that the variation of SI values is within different
ranges across the three basins. This is due to the different density distributions
of R, WSI, TSI and SI in the three basins as shown in Fig. 3.7, underscoring
the necessity of applying dynamically adaptive thresholds for each basin to
generate classification results.

The snow maps in Fig. 3.5(c) and (d) offer a visual comparison between
the snow maps produced by the proposed method and the Sz LIS algorithm.
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FIGURE 3.5: (a) R, (b) integrated SI, (c) SI classification map, and (d) S2 snow cover
map (as a reference) for all three basins (Hunza, Shigar, and Shyok).
The S2 snow map was generated using the Let-it-snow (LIT) algorithm,
as described in Section 3.3.5. Zoomed insets provide a closer view of
selected locations in each basin, highlighting performance differences
on glacier surfaces.
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FIGURE 3.6: Detailed comparison between the snow classification map obtained
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using SI (left column), R. (middle column) and the S2 snow cover map
(right column, reference) for Hunza (top row), Shigar (middle row),
and Shyok (bottom row) basins. Class labels are indicated in the color
bar. Note that the selected regions were located in the mid-elevation
range of the area, and hence the snow class in both S1 and Sz results
both refers to wet snow.
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A detailed comparison is further illustrated in Fig. 3.6. Overall, the two meth-
ods show good agreement, demonstrating the effectiveness of the proposed
approach. Notably, the SI-based classification exhibits reduced false positives
and cleaner snow-free classifications in valleys and over glacier surfaces, as
evident in the detailed comparison. This improvement is primarily attributed
to the incorporation of topographic information through TSI, which smooths
SI values within each topographic bin. However, a consistent mismatch in the
ice/water category can be observed between the SAR (both the SI and ratio
methods) and Sz results, particularly over glacier surfaces. This discrepancy
arises from the differing detection principles of the two approaches: the Sz
results classify glacier ice using thresholds on the NIR band, while the SAR-
based methods do not explicitly resolve glacier ice. On the observed date,
glacier ice in the ablation zone may have partially melted, reducing the SAR
backscatter ratio and leading to its misclassification as wet snow in the SAR
results. As discussed earlier, glacier surfaces present unique challenges for
SAR-based methods due to their complex scattering mechanisms. While the
inclusion of TSI improves the robustness of our method by integrating topo-
graphic controls, it does not explicitly account for the heterogeneity of glacier
surfaces. Consequently, glacier-specific conditions, such as localized melting
or scattering from mixed ice-snow surfaces, may lead to underestimation or
misclassification.

We further quantified the comparison using a confusion matrix and the F1
score, as listed in Table 3.3. In the confusion matrix, S2 snow-free (S2-SF) and
S2 snow (52-S) pixels are used as negative and positive labels, respectively,
while S1 snow classification maps designate no-snow or dry snow (51-N/D)
and wet snow (S1-WS) pixels as their counterparts. To minimize errors caused
by the presence of dry snow at high altitudes, areas above 5500 m a.s.l. were
excluded from the calculation. This elevation threshold, representing 11.08%
of pixels in Hunza, 12.95% in Shigar, and 30.43% in Shyok (19.60% in total),
was chosen because such areas are consistently classified as non-melting
zones due to persistently low air temperatures that inhibit snowmelt. Across
all three basins, the proposed method shows an improvement in classification
performance. In Hunza and Shyok, both true negative and true positive rates
increased, while in Shigar, the true negative rate improved by o.11, though
the true positive rate decreased slightly by 0.04. Despite this, the overall F1
scores improved for all three basins, highlighting the method’s enhanced
precision and recall.

We also evaluated the accuracy of the classification map using the ele-
vation profile of snow distributions. As illustrated in Fig. 3.8, the profile
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FIGURE 3.8: Snow coverage profile along elevation bands. Elevation bands were
binned every 1oom, and the snow coverage within a band was cal-
culated based on the aggregated snow pixel percentage within every
band. Numbers reported in legends measured the mean absolute error
(MAE) between the profile curve of SAR wet snow classification and
the S2 snow cover map.
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. Confusion Matrix
Basin F1 Score

S2-SF(N)  S2-S (P)
S1-N/D (N) 0.93 | 0.88 o0.07 | 0.12

Hunza 0.86 | 0.78
S1-WS (P) 0.13 | 0.21 0.87] 0.79

Shigar S1-N/D (N) 0.94 | 0.83 0.06 | 0.17 0.84 | 0.79
S1-WS (P)  0.22 | 0.18 0.78 | 0.82

Shyok S1-N/D (N) o0.90 | 0.87 o0.10|0.13 0.93 | 0.8
S1-WS (P)  0.08|0.13 0.92 | 0.87

All Basins S1-N/D (N) 0.92 | 0.86 0.08 | 0.14 0.89 | 0.84

S1-WS (P)  o0.12 | 0.16 0.88 | 0.84

TaBLE 3.3: Confusion matrix and F; score between S1 snow classification maps
and S2 snow cover maps. Snow-free (52-NS) and snow (52-S) pixels in
S2 snow cover maps correspond to the negative (N) and positive (P)
labels, respectively. The associated labels in S1 snow classification maps
are no-snow or dry snow (51-N/D) pixels and wet snow (S1-WS) pixels.
Results of the proposed method are highlighted in bold, whereas the
R threshold based results are reported in normal font.

of snow coverage was analyzed along 10om elevation bands. Below 4500m
a.s.]l, snow coverage was overestimated by approximately 7% when using
the R, thresholds, leading to a misrepresentation of the actual snow line,
especially over the challenging conditions on glacier surfaces and valleys
(Fig. 3.5). In contrast, the SI method provided a snow classification closer
to the Sz profiles in the low-elevation regions. Between 4500m and 5500m
a.s.], the SI curve exhibited a noticeably steeper slope than the Sz curve,
with an underestimation of snow coverage between 400om and 5000m and
an overestimation from 5000m to 5500m. This pattern suggests that the SI
uncertainties in mixed snow conditions within transition zones might have
led to a nonlinear exaggeration of the TSI response to snow cover. A more
precisely calibrated TSI model could further align snow coverage profiles be-
tween the SI method and Sz results. Above 5500m a.s.l, where expansive dry
snow cover predominates, both R. and SI maps showed a greater reduction
in wet snow coverage compared to S2, highlighting the differing sensitivities
of SAR signals to dry snow conditions in these methods compared to S2’s
multi-spectral data.
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FIGURE 3.9: Temporal and elevation dependence of WSE in (a) Hunza, (b) Shigar
and (c) Shyok, as well as (d) the total WSE of the three basins within the
studied period, and (e) temperature and precipitation record obtained
from the ERA5 dataset. In panel s(a)~(c), the WSE is represented by
the color scale. In panel (d), blue line indicates the weekly average tem-
perature of the three basins, and the shaded blue indicates the range
between the weekly maximum and minimum temperature. Monthly
averaged precipitation is shown with the green bar. The shaded gray
zone shows the summer of the year. The WSE was calculated as the
ratio of wet snow-covered area to the total area within each respective
elevation band.
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3.4.2 Temporal dynamics of snow melting

In this section, we further applied the proposed method to the collected S1
image time series between 2017-2021 to generate wet snow maps across all
three basins. The generated wet snow maps were resampled from the original
SAR image resolution of 14 x 14m to 30x 30m before the analysis to speed up
the processing. The temporal interval of the time series was 12 days, the same
as the acquisition interval of S1 images. We analyze two key properties of
snow cover dynamics derived from the time series data: the wet snow extent
(WSE) and the snow melting duration (SMD). It is worth noting that these
properties represent just a subset of the potential insights that can be derived
from this dataset.

3.4.2.1 Wet snow extent

The temporal patterns and elevation dependencies of WSE across the Hunza,
Shigar, and Shyok basins are depicted in Fig. 3.9 (a)~(c). WSE was calculated
as the percentage of wet snow pixels within each 100-meter elevation band,
offering a granular view of snowmelt progression. Over the 5-year period
analyzed, a consistent interannual pattern was observed in all three basins.
Melting is typically initiated by the end of March to early April and is
concluded by late September to early October. As temperatures rose from
spring (i.e., April to May) into summer, the melting front (e.g. the upper and
lower elevation boundary of the melting area) ascended along the altitude
gradient. Specifically, the lower elevation boundary of wet snow extended
upwards as snow at lower altitudes fully melted, while the upper boundary
extended to higher altitudes as higher temperatures resulted in melting
at greater elevations. In the peak melting months (i.e., July and August),
the upper boundary of melting snow reached its maximum altitude before
descending, whereas the lower boundary extended to its highest extent and
stabilized until the end of the melt season.

Fig. 3.9 d~e illustrate the interactions between total WSE, temperature,
and precipitation within the region using data from the ERA5 reanalysis
dataset [42]. The temperature data, averaged weekly, include mean, maximum,
and minimum temperatures of air at 2m above the surface of land across the
Karakoram region, providing insights into the thermal conditions influencing
snow melting. The precipitation data are the accumulated liquid and frozen
water falling to the Earth’s surface. They were compiled and averaged monthly
to complement the temperature analysis by revealing precipitation trends
and their impact on snowpack. While the three basins demonstrated similar
interannual variability, annual discrepancies were pronounced within the time
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series. For instance, the peak WSE in 2018, around 40%, was notably lower
than the approximately 50% observed in other years. This reduction in WSE
is related to diminished winter precipitation during the 2017-2018 season, as
indicated by the precipitation data. The onset of snow melting aligned well
with the period when maximum temperatures rise above freezing, suggesting
that peak temperatures were a more sensitive indicator for the onset of snow
melting than mean temperatures. These complex interannual fluctuations
underscore the snowpack’s responsiveness to immediate weather conditions,
such as temperature spikes and precipitation events.

3.4.2.2 Snow melting duration

The SMD reflects the temporal persistence of wet snow cover within a given
year, allowing for consistent comparisons across years with varying numbers
of observation days. To compute the SMD for each year, we first determined
the ratio of days with wet snow cover (M) to the total number of observed
days (N) for each pixel. Since the number of observation days (N) varied each
year and was typically less than 365, we re-scaled this ratio to a 365-day basis
using the formula (M/N) X 365 to standardize the annual average of wet
snow cover days and enable consistent comparisons between years.

Fig. 3.10 presents the annual average SMD across the study region from
2017 to 2021. The average SMD displays a pronounced terrain dependency:
valley areas at lower altitudes typically exhibit an SMD of fewer than 60
days, while higher altitudes, such as glacier accumulation zones, generally
experience SMD exceeding 120 days. In certain high-altitude regions, the wet
snow cover can persist for more than 180 days annually.

To assess the temporal and spatial dynamics of SMD, we evaluated the
annual fraction of SMD for each basin, as depicted in Fig. 3.11. SMD was
categorized into four ranges: o-60 days (blue), 60-120 days (orange), 120-180
days (green), and 180-240 days (red). In Hunza, the area with a SMD of
less than 60 days saw a decline from 2017 to 2019, followed by an increase
from 2020 to 2021. This change was inversely related to the 60-120 days
category, which expanded from 2017 to 2019 before contracting. The fraction
of WSD exceeding 120 days initially decreased from 2017 to 2019 and then
increased as the 60-120 days category diminished. A pronounced peak within
the 180-240 days range occurred in 2017. The Shigar basin exhibited more
pronounced annual oscillations in SMD. The area with an SMD below 60 days
fluctuated around an average of 0.5, while the 60-180 days category mirrored
the pattern in Hunza, increasing from 2017 to 2019 before a subsequent
decline. The SMD range of 120-180 days remained relatively stable at about
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FIGURE 3.10: Annual average SMD of the study region, calculated based on the
5-year observation.
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0.2, with periods exceeding 180 days noted only in 2017 and 2020. The Shyok
basin experienced the most substantial temporal variation in SMD. The o-60
days category showed strong variance around the 0.5 level. The 60-120 days
category peaked in 2019, representing a larger fraction (~0.5) compared
to those in Hunza (~0.3) and Shigar (~0.35). The 180-240 days range was
present exclusively in 2017.
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0.8
07 SMD (days)
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0.5 e 60-120

04 s 120-180
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FIGURE 3.11: Fraction of snow melting duration in the three basins between 2017-
2021. SMD was segmented into four categories as represented by
different colors.

3.5 Discussion

3.5.1 Classification performance

Compared to the conventional methods where only a single-value threshold
are used on the R. map, the proposed method has effectively improved
the mapping accuracy in the validation. This is primarily attributed to the
transformation of R. into WSI and the incorporation of TSL

The GMM enabled a data-driven approach that allowed adaptively trans-
forming the R into WSI based on the local SAR signal responses. As shown
in Fig. 3.3, the WSI function for each basin was characterized by distinct
center (xp) and slope (k) parameters determined from the GMM, indicating
that varied local responses of SAR backscattering were raised by the diverse
nature of wet snow distribution in different basins. This provides the flexi-
bility required for large-scale application and thus offered an approach for
robust wet snow mapping in complex and diverse landscapes.

Furthermore, the proposed method enriched the terrain analysis in snow
mapping by incorporating multiple topographical factors (i.e., elevation, slope,
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and aspect) beyond the traditional use of snow line elevation. The add-on
information from slope and aspect enables accurate capture of snow spatial
distribution over the complex terrain, which is particularly important in the
Karakoram region. As exemplified in Fig. 3.4 for the Hunza basin, the TSI
values vary with elevation, aspect, and slope across different times of the year.
At the onset of snowmelt, flat and east-facing slopes at altitudes between
3500m a.s.] and 5000m a.s.l exhibited higher TSI values than the other regions,
suggesting snow in such areas was more susceptible to melting, likely due to
solar exposure. As the season progressed into summer, altitude increasingly
dictated the snowmelt on flat terrains, while on steeper slopes, aspect also
played a significant role. Approaching late autumn, the snow line stabilized
at similar altitudes across the two slope classes, yet variations were observed
across the aspect with higher TSI values on south-facing slopes (approximate
aspect of 75° — 255°), indicating conditions more conducive to melting. This
level of detail in our analysis demonstrated the potential of our method to
provide a more comprehensive understanding of wet snow dynamics than
analysis using only snow line elevations.

While the proposed method demonstrates strong performance across the
three basins in Karakoram, several limitations should be acknowledged. First,
the choice of the SI threshold relies on the coefficient determined through
sensitivity analysis for the selected study areas. While this approach balances
classification performance across the basins, it is not fully dynamic and may
require adaptation for larger, more topographically diverse regions, such
as global-scale applications. Future work could explore supervised learning
models, such as random forests or neural networks, to capture more complex,
nonlinear relationships between SAR backscatter, topography, and snow
conditions, enabling dynamic threshold adaptation.

Second, glacier surfaces present unique challenges for SAR-based snow
classification. As shown in the results, glacier-specific scattering mechanisms,
including contributions from wet debris, bare ice, and supraglacial features,
introduce variability in radar backscatter that is not explicitly modeled in the
current method. This limitation may lead to underestimation of wet snow on
glacier surfaces and highlights the need for further refinement of the method
to better handle glacier-specific conditions, potentially by incorporating land
surface type information.

Finally, the use of TSI introduces potential bias in regions where topo-
graphic conditions deviate significantly from the assumptions underlying its
calculation. As shown in Fig. 3.7, the long-tailed distribution of TSI values
reflects the cumulative statistical nature of TSI, which relies on using a sin-
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gle median value to represent each topographic bin. This approach may be
inadequate in bins with strong terrain variations, especially when the TSI
distribution of pixels within a bin is highly skewed. In such cases, using the
median can lead to systematic overestimation or underestimation — overes-
timating in left-skewed distributions and underestimating in right-skewed
ones — ultimately affecting precision and recall in the classification results
(see Sect. S2 of the Supplement for detailed visualizations). For instance, low
TSI values in ablation zones may lead to underestimation of wet snow, as
noted in the comparison with S2 results. While the inclusion of TSI improves
overall robustness by integrating terrain characteristics, future studies should
evaluate strategies to mitigate these biases, especially in regions with complex
topography or unique land surface characteristics.

It is also important to note that while we followed Nagler’s method [13]
to generate the R. image, we did not apply the same post-processing steps,
such as median filtering and land cover masking. These smoothing and
filtering steps may influence accuracy, and future work could incorporate
them to further evaluate their impact and potentially improve snow mapping
performance.

3.5.2 Implications of wet snow maps

Large-scale wet snow maps, especially the ones with high spatial and tempo-
ral resolution, have significant implications for hydrological studies, water re-
source management, and climate impact assessments [43]. Snow data obtained
from remote sensing and field site stations have proven to be fundamental
for the development, calibration, and validation of snowpack, hydrology, and
runoff prediction models [44—48].

Using the wet snow maps generated from the proposed method, our study
has extracted and analyzed two critical snow variables, i.e., WSE and SMD,
which are crucial for understanding regional snow melting dynamics. The
analysis of WSE uncovered detailed patterns of snowmelt changes over time
and across elevations, which can provide valuable observations for calibrating
snowpack models or forecasting runoff events [48]. The interpretation of SMD
highlighted the yearly differences in snow melting duration across the basins,
with Hunza exhibiting relative stability and Shyok demonstrating the most
variability. A long-term SMD observation record will provide key insights
into the changes of the regional climate pattern.
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3.6 Conclusions

In this study, we proposed a novel approach for mapping wet snow in
complex mountainous regions, such as Karakoram, by effectively combining
S1 SAR data with topographic information. We first adopted the GMM to
adaptively transform the SAR backscattering ratio R. into the WSI as a robust
representation of wet snow under complex surface conditions. Then, we
introduced the TSI to capture the likelihood of snow presence influenced by
topographic conditions. Validation with 52 snow cover maps demonstrated a
notable improvement in the accuracy of wet snow classification.

With the collected time series of S1 images over the three major water basins
in Karakoram, we produced large-scale wet snow maps using the proposed
method. The wet snow maps have enabled detailed analysis of crucial snow
variables including the WSE and SMD. Analysis of the two variables revealed
the dynamic pattern of the temporal-spatial distribution of wet snow in
Karakoram, suggesting that the comprehensive dataset produced with this
study can offer further enhancement for hydrological model calibrations
and validation, thereby ensuring informed water resource management and
climate modeling.

Future work involves integrating the approach with in situ observations
and hydrological models to further improve the accuracy and utility of
water resource planning tools. Continuing to advance this research would
provide results that are greatly beneficial for fostering climate resilience and
sustainability in Karakoram.

Appendix: Sensitivity analysis on SI threshold

We applied a sensitivity analysis to TSI coefficients to find the optimal SI
threshold finding. A series of TSI coefficients were tested using validation
images to examine how the TSI coefficient in the SI threshold affected the
classification results. Three metrics, including the F1 score, precision and
recall, were evaluated and used as the selection criteria. The result (Fig. 3.12)
showed that the optimal coefficients for Hunza and Shyok were close to 3.5,
while a lower coefficient of around 2.5 was found to be optimal for Shigar.
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Hunza Snow Index Maps
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Shigar Snow Index Maps
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Shyok Snow Index Maps
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Abstract

Glaciers serve as sensitive indicators of climate change, influencing both regional
water supplies and global sea-level rise. Contrasting to the global tendency
towards retreat, glaciers in the Karakoram exhibits an unusual pattern of sta-
bility and modest thickening. However, the spatial variability and underlying
causes of the mass balance anomalies remain insufficiently understood, primarily
due to the limitations in previous measurement methods. To address this gap,
we conducted a comprehensive geodetic analysis of glacier elevation changes
in the central and eastern Karakoram, covering 681 glaciers of over 10,000
km? between 2011 and 2019. The elevation was measured exclusively with
TanDEM-X InSAR data to reduce penetration bias and temporal ambiguities.
The geodetic analysis was conducted using a three-module DEM Differencing
framework. In this framework, the first module generates high-quality InSAR
DEM with an iterative approach to address the challenges of mountainous ter-
rain for InSAR processing; the second module employed an innovative voids
filling method using Gaussian Process Regression for robust elevation change
mapping; and the third module incorporates a non-stationary uncertainty analy-
sis for rigorous uncertainty quantification. The results reveal a regional mean
elevation change rate of 0.0038 £ 0.0042 m/yr and a specific mass balance
of 0.0032 + 0.0052 m w.e. yr—!, indicating slight overall thickening during
the study period. The spatial patterns of elevation change display pronounced
heterogeneity and clear differences between surge-type and non-surge glaciers,
reflecting the complex interplay of dynamic, climatic, and morphological fac-
tors in the region. This study demonstrates the capability of high-resolution
TanDME-X InSAR DEM for accurate geodetic mass balance analysis in chal-
lenging mountain environments. The proposed framework provides a scalable
methodology for future large-scale glacier studies.

Keywords
Karakoram, Glacier Elevation Change, Mass Balance, TanDEM-X, InSAR

4.1 Introduction

Glaciers are vital components of the Earth’s cryosphere, playing a key role in
regional hydrology and serving as sensitive indicators of climate change [1].
The glacier mass balance reflects the difference between ice accumulation
and ablation, offering crucial insights for understanding glacier dynamics
and their response to climatic variability [2-5]. Studying the mass balance
also plays an essential role for assessing a broader environmental processes
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such as water resource availability, ecosystem functioning, and the impacts of
climate change on vulnerable mountain communities [6-11].

Recent studies have documented a consistent trend of global glacier mass
loss and ice thinning over the past few decades. For instance, Hugonnet et al.
[9] reported a global glacier mass loss of 267+16 Gt/yr during 2000-2019, con-
tributing to approximately 2143 percent of observed sea-level rise. Similarly,
Dussaillant et al. [12] estimated an annual loss of 172127 Gt equivalent water
since 1976, resulting in 22.7+2.3 mm of sea-level rise. More recently, Zemp
et al. [11] reported an average annual glacier mass loss rate of -273+16 Gt/yr
during 2000-2023. These findings underscore the critical role of glaciers in
driving sea-level rise and highlighted the urgency of understanding regional
variations in glacier behavior.

While most glaciers worldwide exhibit a general thinning trend, significant
spatial variations and regional heterogeneity exist. One notable exception is
the Karakoram region, part of the greater Himalaya-Karakoram-Hindukush
(HKH) mountain system. The Karakoram region hosts one of the largest
glaciated areas outside the polar regions, estimated from 36,845 km?* to
50,750 km? [13]. This region is of particular importance due to its role in
sustaining regional water resources and its unique climatic setting at the
confluence of the westerlies and monsoon systems [14]. Since 1997-2001, a
phenomenon known as the "Karakoram anomaly" has been observed, where
many glaciers remain stable or even gain mass, contrary to the widespread
retreat seen in other glacier regions [15]. This anomaly is believed to result
from a combination of various factors, including regional climate variability,
the influence of the westerlies, and the insulating effect of debris cover [16—
18]. Understanding the Karakoram anomaly is crucial for deciphering the
complex interplay between climate, glacier dynamics, and regional hydrology.

To enhance the understanding about Karakoram glaciers, large-scale digital
elevation models (DEMs) have been widely used to quantify the unique
mass balance dynamics in the region. Previous studies have employed DEM
derived using either Synthetic Aperture Radar (SAR) or optical stereo images
to measure the geodetic mass balance. For instance, Gardelle, Berthier &
Arnaud [19] measured positive mass balance of +0.11 £0.22 m yr*1 for 5,616
km? glaciated area in the central Karakoram during 1999-2008 using DEM
obtained from the Shuttle Radar Topography Mission (SRTM) and stereo-
scopic SPOT-5 imagery. Seasonal difference in the elevation change trends
were identified using ICESat time series from 2003 to 2008/09, including
positive trends (+0.41 £ 0.04 m yr~!) in winter and slightly negative trends
(—0.07 £0.04 m yr~!) in autumn [20]. Similarly, Rankl & Braun [21] analyzed

117



71 glaciers in the central Karakoram (2000-2012) using high-quality DEMs
from the TanDEM-X Mission, finding significant distinctions in mass changes
for surge (—0.15 £ 0.10 m w.e.yr ') and non-surge (—0.07 4- 0.10 m w.e.yr 1)
glaciers. More recent studies using optical stereo DEMs (2000-2016) have
measured GMB of —0.03 + 0.07 m w.e.yr ! for the region and confirmed that
the Karakoram anomaly extends to the western Kunlun and eastern Pamir re-
gions [22], with updated analysis showing positive (+0.12 & 0.14 m w.e.yr ')
and negative (—0.24 £+ 0.11 m w.e.yr!) mass balance for the central and
Eastern Karakoram in 2008-2016, respectively [23].

Despite these valuable contributions, there remains limitations in current
methodologies to obtain accurate and contemporary elevation change mea-
surements in Karakoram. Comparing to optical stereo DEMs, generating
DEM with the Interferometric SAR (InSAR) technique has the advantage
of having higher spatial resolution and vertical accuracy. However, current
InSAR based DEM often relies on SRTM data acquired in 2000 and TanDEM-
X DEMs collected between 2011 and 2013. Such restricted temporal span
has greatly limited the contemporary assessments of glacier dynamics with
InSAR DEM. Integrating optical stereo DEM with INSAR DEM can alleviate
such limitation, but the discrepancy in the penetration of the two types of
sensors may introduce extra systematic bias and uncertainties [24, 25].

To address these limitations and produce high-resolution, contemporary
measurements of glacier elevation changes using InSAR data, we exploited
TanDEM-X InSAR dataset acquired during its two global missions, including
the first mission in 2011-2013 and the second mission in 2017-2020 [26]. By ex-
clusively using INSAR DEM of the same sensor, we can avoid the penetration
bias that is often introduced when combining TanDEM-X with SRTM or opti-
cal DEMs [27, 28]. In our work, the INSAR DEM were generated by the raw
acquisitions from TanDEM-X individually, which preserved the timestamp of
each acquisition and reduced temporal ambiguities. However, using exclusive
InSAR data for regional elevation change mapping introduces new challenges
for spatial coverage, as the complex terrain of the Karakoram causes large
voids in the INSAR DEM due to shadowing, layover, and low coherence. To
address this challenge, we developed a Gaussian Process Regression (GPR)
method for void filling, enabling robust preservation of the spatial patterns
while reconstructing the missing data. We further implemented an uncer-
tainty propagation framework to account for the non-stationarity and spatial
correlations of uncertainties.

Through these efforts, we seek to present the recent patterns of elevation
and mass change in the Karakoram region during the 2011-2019 period by
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leveraging the advanced capabilities of the TanDEM-X mission. This can
contribute to a better understanding of the Karakoram anomaly and its
implications for regional hydrology and climate systems. Additionally, our
methodological improvements in DEM generation and void filling can serve
as a valuable reference for future studies of glacier mass balance in complex
mountain environments.

4.2 Study Region and Dataset

4.2.1 Study region

The specific study region lies within 34.10°N to 36.53°N and 74.25°E to
78.95°E, covering the central and eastern Karakoram range (Fig. 4.1). The
altitude of the region ranges from about 1000 to more than 8500 m above sea
level (m a.s.l.), with a mean altitude of 4580 m a.s.l. The climatic regime is
primarily influenced by the mid-latitude westerlies, with a secondary contri-
bution from the South Asian monsoon [29]. The westerlies dominate during
the winter and spring, delivering the majority of the annual snowfall, while
the monsoon provides limited precipitation during the summer. Pronounced
seasonal temperature variations drive surface melt during summer and snow
accumulation during winter [30].

Glaciers in this region span a wide range of elevations, from approximately
3000 to over 7500 m a.s.l., with 60 to 8o % of the glaciated area located between
3800 and 5800 m a.s.l. [32]. The Karakoram is notable for its distinct glacier
dynamics, including frequent surge events characterized by episodic, rapid
advances of glacier fronts [32—34]. Debris-covered glaciers are also widespread
in the region and exhibit lower mass loss rates compared to clean-ice glaciers
due to the insulating effect of debris layers [35]. The interplay of debris cover,
steep topographic gradients, and surge dynamics contributes to the spatial
heterogeneity of glacier mass balance across the region.

4.2.2 TanDEM-X data

The TanDEM-X mission, launched by the German Aerospace Center (DLR)
in June 2010, was designed to generate a consistent global DEM with un-
precedented accuracy using an innovative bi-static satellite formation [36, 37].
The mission’s SAR instrument operates in the X-band frequency (9.65 GHz),
offering less ground penetration compared to C-band instruments such as
SRTM. The initial global DEM acquisition was completed between 2011 and
2014. Building on the mission’s stable performance, a new global mission —
later referred to as the DEM 2020 mission — was conducted between 2017
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FIGURE 4.1: Overview of the study region and datasets. The Karakoram region
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is outlined in red, representing the study area. The footprints of in-
dividual TanDEM-X acquisitions are displayed as with color-coded
rectangles. Glacier outlines (green) are sourced from the Randolph
Glacier Inventory (RGI) v7.o database [31]. ICESat-2 measurements are
represented by red dots. The background grayscale shading indicates
elevation measured by the Copernicus Global 1-arc-second (COP-30)
DEM.



and 2020, facilitating the measurement of surface changes on Earth between
the two global missions [26, 38].

In both mission phases, the TanDEM-X SAR satellites collected Co-registered
Single-look Slant-range Complex (CoSSC) data products for DEM generation.
Each CoSSC product consists of two focused and co-registered Single Look
Complex (SLC) images acquired by the twin satellites operating in bi-static
InSAR strip-map mode. With InSAR processing, high-resolution DEMs can be
produced from the CoSSC datasets. Each SLC image has a spatial resolution
of approximately 3 x 3 meters in both ground range and azimuth, allowing
the generation of DEMs with a spatial resolution of approximately 8 x 8
meters.

In this study, we leveraged the raw CoSSC datasets and generated high-
resolution DEMs using the proposed INSAR processing pipeline. This ap-
proach preserved the acquisition timestamp of each DEM, thereby reducing
temporal ambiguity when performing DEM differencing. To minimize sea-
sonal effects in the mass balance calculations, only acquisitions during the
accumulation period of a hydrological year (September to April) were used.
Specifically, a total of 117 CoSSC images were collected for the Karakoram re-
gion, comprising 62 images acquired in 2011—2012 and 55 images in 2019-2020.
The 2011 acquisitions were captured exclusively in ascending orbits, while
the 2019 acquisitions were captured in descending orbits. The Height-of-
Ambiguity (HOA) values ranged from 50 to 100 meters for the 2011 images
and were consistently around 50 meters for the 2019 images (Fig. 4.2). The
nine-year temporal gap between the two datasets satisfies the minimum five-
year duration required for applying the constant volume-to-mass conversion
factor [39].

4.2.3 Reference DEM

In this study, the Copernicus Global 1-arc-second (COP-30) DEM was used
as the reference in the DEM generation module. Released by the European
Space Agency (ESA) in 2020, the COP-30 DEM was derived from the initial
global acquisitions of the TanDEM-X mission and provides a vertical Root
Mean Square Error (RMSE) of 1.68 meters over flat terrain.

Beyond its exceptional vertical accuracy, the COP-30 DEM offers signifi-
cant advantages when generating DEMs from TanDEM-X CoSSC data. Since
it was produced using the same X-band TanDEM-X data, the penetration
bias between the reference DEM and the CoSSC measurements is negligi-
ble. This eliminates the need for complex corrections related to penetration
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F1GURE 4.2: Height of ambiguity (HOA) of CoSSC products used in this study for
2011 winter (blue dots) and 2019 winter (red cross).

depth differences, allowing direct updates to the reference DEM through
interferometric phase differences to produce the final DEM products.

The COP-30 DEM is referenced in geographic coordinates based on the
World Geodetic System 1984 (WGS84), with vertical heights aligned to the
EGM2008 geoid model. The dataset covering the study area was obtained
through the Copernicus Space Component Data Access PANDA Catalog [40].

4.2.4 Glacier outlines

The glacier outlines used in this study were sourced from the Randolph
Glacier Inventory (RGI) v7.0 [31]. Released in September 2023, the RGI
v7.0 provides a comprehensive global dataset of glacier outlines, primarily
representing conditions around the year 2000.

For the Karakoram region, the inventory includes 17,559 glaciers, covering
a total area of 21,675 km®. To improve the reliability of our analysis, we
excluded smaller glaciers with an area less than 0.5km2, as they are more
prone to higher relative uncertainties in area measurements and contribute
minimally to the overall glacier volume. Following this filtering, the final
glacier inventory used for mass balance analysis consisted of 4,299 glaciers,
encompassing a total area of approximately 20,000 km?.
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4.3 Methods

In this study, we developed a three-module framework to generate and ana-
lyze glacier elevation change rates (dh/dt) and mass balance in Karakoram
(Fig. 4.3). Module 1 focuses on generating temporally accurate DEMs from
individual TanDEM-X acquisitions, providing the basis for calculating el-
evation changes. Module 2 involves creating differential DEMs (dDEMs)
by combining seasonal DEM mosaics, which are used to derive the dh/dt
and mass balance. Module 3 estimates the uncertainties in dh/dt and mass
balance using a non-stationary spatial framework following the method pro-
posed by Hugonnet et al. [41]. The final output includes a regional dataset of
glacier dh/dt and mass balance estimation. The following sections describe
the details of each module.

itk ot oAt

Mass Balance Caloulation

¥

Seasonal Masaic l

Input Dataseis:

TarDEM-X COSSC

RIGH Y71 Irwarany
COF-30 DEM

INSAR Processing
+ Wrapped Phiba Gaocoding
+ Phasa Masking
» s Lnwsapging
+ Orak MiscalBimtion Comrpetian
= Deita Height Masking
= Pheasa Refinemant

+ Dolta Hesght Converson

DEM Maosaic Coregistration

{dhidt) Cakeulation

1

Outlier Remowval l

Uncanainty Estimation

» Heterossadaslicily Madeling
+ Spatial Correfation Estimation
* Glagar Uncansnly Propagaton

» Reglan Unosrlsnly Propagation

1

T

Gausakan Process Regrassion

Giacier Elgvation Change and

|
|
[ Evavation Ghangs Rate
|
|

Referenca DEM Update

(GPR) Voids Filling
Mass Balance Dataset

FIGURE 4.3: Flow chart of the proposed framework for this work. The framework
comprises three core modules, including the DEM generation module,
difference DEM processing module and the mass balance analysis
module.

4.3.1 DEM generation

This section describes the detailed steps for DEM generation using a single
TanDEM-X CoSSC product. The primary goal is to produce a temporally
accurate DEM for each acquisition through an iterative refinement process,
which ensures precise geocoding and reduces phase unwrapping errors using
the residual phase derived from the CoSSC interferogram and a reference

topography [42].
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4.3.1.1 Residual phase decomposition

In DEM generation, the key component of the method is the residual phase
between the CoSSC interferogram and the reference topography. Given an
interferogram Icossc calculated from a CoSSC product and s simulated
from the reference DEM, the residual phase can be expressed as:

0@ = Icossc — et (4.1)

Ideally, after phase unwrapping, the residual phase é¢ would contain only
the elevation difference between the CoSSC measurement and the reference
topography. However, due to the presence of additional practical error sources,
the residual phase 6¢ should be further decomposed into the following
components:

5§0 = (5(PAh + 5§0miscal + 5§0n0ise + 5§0error (42)

where d¢@,j, is the phase related to the topographic height difference, ¢ piscal
represents phase contributions from orbit mis-calibration, é¢neise corresponds
to incoherent noise in the CoSSC data and noise in the reference DEM, and
d@error accounts for phase unwrapping errors.

Accurately estimating the elevation difference to refine the reference topog-
raphy requires proper isolation of the phase term ¢, from the other error
terms. To achieve this isolation, we developed a series of interferometric SAR
(InSAR) processing steps, which are detailed in the following section.

4.3.1.2 InSAR processing

Before starting the INSAR processing steps, we geocoded the CoSSC images
using the reference DEM to obtain an initial Look-Up Table (LUT) that con-
verts SAR slant-range coordinates into DEM map coordinates. The geocoding
process also generates the first simulated interferogram I, from the reference
DEM, which is used to calculate the wrapped residual phase .

To isolate the phase term d¢,;, from other error terms, we first used the
LUT to inversely geocode the wrapped residual phase d¢ back into the
map geometry. This step is crucial in mountainous regions to minimize
unwrapping errors caused by extreme topographic features, such as steep
slopes and sharp mountain peaks. Under the map geometry, we applied a
coherence mask with a threshold value of 0.3 and masked out layover and
shadow areas to eliminate unreliable phase data. The remaining phase data
were then unwrapped using the Minimum-Cost-Flow (MCF) algorithm. To
reduce phase jumps caused by large data voids, data gaps were filled with
random noise prior to unwrapping. While this may introduce artifacts, it
stabilizes the unwrapping process when data gaps are unavoidable.
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After phase unwrapping, a quadratic polynomial phase model was fitted
to the unwrapped phase map to estimate and remove phase trends caused
by orbit mis-calibration. The fitted phase trend was subtracted from the
unwrapped phase map, resulting in a preliminary phase map. However,
extreme phase values caused by unwrapping errors may still be present
and could propagate into the height difference maps. To address this, we
converted the preliminary phase map into height differences Ah and created
an extreme height mask to filter out unreliable phase pixels. The extreme
height mask was generated by applying a threshold of |Ah| > min(10,3c,y),
where 0y, is the standard deviation of Ah. After applying the extreme height
mask, we refitted the quadratic phase model on the masked phase map and
subtracted the newly fitted phase trend. This produced the corrected phase
map, which successfully isolated the phase term ¢,,. Finally, the corrected
phase map was converted into a height difference map Ah, which was used
to update the reference DEM.

4.3.1.3 Iterative reference DEM update

In the previous step, we obtained a height difference map Ah representing
the topographic height difference between the CoSSC measurement and
the reference DEM. This difference arises not only from actual topographic
change but also from geocoding errors introduced by the inaccurate LUT [27].
To separate the geocoding error from the actual topographic change, an
iterative refinement process was applied.

In the first iteration, the initial reference DEM Hj, was updated using the
height difference map Ah; derived from the InNSAR processing steps, resulting
in a corrected DEM H; = Hy + Ahy. The corrected DEM H; was then used to
regenerate a new LUT with reduced geocoding errors. Following the same
InSAR processing steps, a new height difference map Ah, was obtained from
the corrected DEM.

In the second iteration, the DEM H; was updated using the new height
difference map Ahy, producing a second corrected DEM H, = Hj + Ahs.
As the updated LUT from the previous iteration had already minimized
geocoding errors, the geocoding step was no longer necessary. Instead, the
corrected DEM H; was directly used to generate the simulated interferogram
and calculate the residual phase. Following the INSAR processing steps, a
new height difference map Ahz was obtained, representing the topographic
difference between the CoSSC measurement and the second corrected DEM
H,.
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After two iterations, geocoding errors were sufficiently reduced, and the
final DEM Hj3 was generated by updating the second corrected DEM H, with
the new height difference map Ahg:

Hs = H, + Ahs

This iterative process ensured that the final DEM was both accurate and free
from significant geocoding errors.

4.3.2 Difference DEM processing

The individual DEMs generated from the CoSSC products were used as
input in the second module for dDEM processing. This module involved a
series of steps to create the regional dDEM map, including DEM mosaicking,
coregistration, dh/dt calculation, outlier removal, and void filling.

4.3.2.1 Mapping the elevation change rate

To calculate the elevation change rate, the DEMs of the two study periods
(2011-2012 and 2019-2020) were firstly merged to generate two seasonal DEM
mosaics. Individual DEMs were re-projected onto a common grid aligned with
the reference DEM to ensure proper pixel alignment. For overlapping pixels
within the same grid cell, we applied a mean-merge strategy and calculated
the average value of all overlapping pixels for the same grid cell. Each
seasonal DEM mosaic was then co-registered to the reference DEM using the
method proposed by Nuth & Kaab [43]. This step effectively reduced residual
elevation errors caused by minor differences in geocoding transformations
among the individual DEMs. As summarized in Table 4.1, co-registration
have greatly improved the alignment between the seasonal mosaic and the
reference DEM. For the 2011 winter DEM, the median elevation difference
over stable regions decreased from -1.112 m to 0.016 m, with the Normalized
Median Absolute Deviation (NMAD) decreased from 8.891 m to 2.456 m.
Similarly, the median difference for the 2019 winter DEM was reduced from
0.486 m (NMAD: 7.058 m) to -0.044 m (NMAD: 2.183 m).

Using the two seasonal DEM mosaics, we generated the dDEM map by
subtracting the 2011 winter DEM mosaic from the 2019 winter mosaic. The
dh/dt map was then calculated by dividing the dDEM by the time difference
between the two mosaics. Instead of using a fixed time interval, we calculated
the interval for each pixel based on the timestamps of the individual DEMs
used in the mosaics. This approach preserved the temporal accuracy of the
dDEM and avoided ambiguities that might arise from using a fixed interval.
Outliers in the dh/dt map were identified using an elevation binning method
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2011 Winter 2019 Winter

Before Mean 4 Std (m) —1.460 £10.555 0.974 £+ 8.554
Median + NMAD (m) —1.112+8.891  0.486 +7.058
After Mean + Std (m) 0.016 £6.893  —0.244 +5.759

Median + NMAD (m)  0.016 £ 2.456 —0.044 £2.183

TABLE 4.1: Comparison of seasonal DEM mosaics over stable ground before and
after co-registration

[23]. For each 100-meter elevation bin, values deviating by more than +3
NMAD from the median were masked as outliers. Pixels on slopes steeper
than 40° were excluded from the calculation of median and NMAD values
within each bin to reduce the impact of unreliable measurements.

4.3.2.2 Voids filling using Gaussian process regression

The generated dh/dt map exhibited substantial data gaps, primarily due
to insufficient SAR acquisitions during the study period, low coherence in
certain regions, and geometric effects such as layover and shadow. To ensure
temporal consistency in the dh/dt map, we did not use DEMs from other years
for void filling, as this could introduce temporal mismatches and ambiguity.
Although hypsometric interpolation is a widely used alternative [9, 23, 44,
45], it often fails to accurately reconstruct large voids, particularly in complex
glacier systems like those in the Karakoram.

To address these challenges, we adopted GPR for void filling, leveraging
its ability to model spatially correlated data and to quantify prediction uncer-
tainty [46]. Unlike deterministic interpolation methods, GPR provides both
mean predictions and associated uncertainty estimates, thereby enhancing
the interpretability and reliability of the reconstructed dh/dt values.

Given the strong influence of topography on glacier elevation changes, we
modeled dh/dt as a function of several observable features, including the
absolute elevation (h), terrain slope («), aspect (), and spatial coordinates
(x,y). The relationship is expressed as:

dh/dt = f(h,a,0,x,y)+€ (4.3)

where € ~ N(0,0?) is the residual Gaussian noise. The function f(-) can
be expressed as a Gaussian process defined by its mean function m(X) and
covariance function k(X, X):

f(X) ~ GP(m(X), k(X, X)) (4-4)
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where X = [k, a, 0, x, y] is the input feature vector. These features were selected
based on their established relevance to glacier surface processes; however,
future work could explore additional predictors such as curvature or distance
from glacier centerline.

For the mean function, we set m(X) = 0. The covariance function was
defined as a sum of a Radial Basis Function (RBF) kernel and a Matérn kernel
with v = 1.5, allowing the model to capture both smooth, large-scale and
moderate, local variations in dh/dt. This hybrid kernel configuration was
chosen based on preliminary experiments and previous literature, which
indicate improved flexibility for representing glacier surface variability.

To account for glacier-specific dynamics, we trained a separate GPR model
for each glacier. For each glacier, a stack of gridded features (h, «, 6, x, y) was
extracted from the reference DEM, paired with corresponding observed dh/dt
values. Only pixels with measured dh/dt were used for model training and
validation, while pixels with missing values were reserved for inference. To
minimize spatial autocorrelation between training and validation sets, we
employed a spatially stratified split: 80% of available pixels were randomly
selected for training and 20% for validation, ensuring spatial independence
where possible. To ensure computational efficiency, the training and validation
sets were capped at 30,000 and 3,000 pixels, respectively. All input features
and target values were standardized to zero mean and unit variance prior to
modeling.

The GPR models were trained by maximizing the exact marginal log like-
lihood (MLL), using the Adam optimizer with a learning rate of 0.01 and a
maximum of 1,000 epochs. Early stopping was applied with a patience thresh-
old of 100 epochs, based on validation root-mean-squared error (RMSE). We
set a fixed random seed for reproducibility and used gpytorch for model im-
plementation, leveraging GPU acceleration to reduce computation time [47].
Model performance was primarily evaluated using RMSE on the valida-
tion set. We also computed mean absolute error (MAE) and coefficient of
determination (R?) to provide a more comprehensive assessment.

After training, the GPR model was used to infer both the mean and stan-
dard deviation of dh/dt in void regions. This probabilistic approach ensured
that the void-filled dh/dt map not only reconstructed missing values but also
provided pixel-wise uncertainty estimates, thus improving the reliability and
interpretability of the final product.
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4.3.3 Glacier mass balance analysis

Using the measured dh/dt map, the glacier-wide specific mass balance (b)
was calculated for individual glaciers in the study region. To avoid unreliable
calculations, we limited the mass balance analysis to glaciers with an area
larger than 1 km? and a minimum measurement coverage ratio of 30%. This
resulted in 681 glaciers included in the analysis, with a total area of 10963.29
km?.

For each glacier, the specific mass balance of glacier i is calculated using
the mean dh/dt (%) over the glacier, as expressed in Eq. (4.5):

bl‘ =p- N . ﬁi (45)

where p = 850 £ 60 kg/m3 is the volume-to-mass conversion factor [39], N
is the number of pixels within the glacier outline obtained from the RGI v7.0

dataset, and (%) _is the dh/dt value at pixel i.
1

The regional mass balance was calculated using the area-weighted mean
dh/dt of all glaciers in the study region, as expressed in Eq. (4.6):

N dh

bregion =pQ- ZN A (4.6)

where A; is the area of glacier i, %i is the mean dh/dt of glacier i and N is
the number of glaciers in the study region.

4.3.3.1 Glacier-wide uncertainty propagation

The uncertainty of the glacier-wide mass balance was calculated considering
the uncertainty of the mean dh/dt per glacier and the uncertainty of the
volume-to-mass conversion factor, as defined in Eq. (4.7):

_ 2
oz = (p- Uﬁ)Z + (dh : ap) (4.7)

where o is the uncertainty of the mean dh/dt per glacier, and 0, = 60
kg/m3 is the uncertainty of the volume-to-mass conversion factor [39].

In Eq. (4.7), the uncertainty of the glacier-wide mean dh/dt (o) can
be further divided into two components, including the uncertainty of the
measured region M and the voids filled region V, as expressed in Eq. (4.8),
assuming the two uncertainties are independent:

A 2 /A 2
2 _ M V
Yang = (Ag %h,M> T (Ag%h,v> (4-8)
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where A and Ay are the areas of the measured and voids filled regions,
respectively, and Ag is the total glacier area.

4.3.3.2 Uncertainty propagation in measured regions

To quantify the uncertainty of the mean dh/dt in the measured region M, we
employed a non-stationary spatial framework proposed by Hugonnet et al.
[41]. This framework comprises three steps: standardizing errors, modeling
spatial correlation, and propagating uncertainty.

Firstly, we used non-glaciated regions as proxies to quantify the system-
atic bias and random errors in dh/dt, with the assumption that elevation
changes in these regions are negligible. By calculating the median and NMAD
of dh/dt over the non-glaciated regions, we found that the median dh/dt
value was -0.00024 m/yr, and the NMAD of dh/dt was 0.20 m/yr. These
indicates negligible systematic bias and relatively low uncertainties in the
dh/dt measurements. However, we must consider the heteroskedasticity of
the dh/dt dispersion before modeling the spatial correlation of random er-
rors [41]. Using the proxy errors, we modeled the dependence of elevation
change errors on terrain slopes with an exponential curve, fitting the model
using the average NMAD of dh/dt across 1-degree slope bins. Based on the
heteroskedasticity model, we standardized dh/dt following Equation 4.9:

dh/dt
Odh/dt

Zanydar = (4.9)

where 0,4+ represents the modeled dispersion of dh/dt and Z,,4 is the
standardized dh/dt.

Secondly, the spatial correlations of dh/dt uncertainties was modeled using
Zan,4t- To model the spatial correlation, we employed the Dowd estimator
and derived the empirical variogram from the stable region. A variogram
quantifies how data similarity decreases as the distance between data points
increases. The Dowd estimator is expressed in Equation 4.10,

29740 (d) = 2.198 - median (z(x,y) — z(x’,y’))2 , (4.10)

where Zj,,4; is the standardized dh/dt, and z(x,y) and z(x',y’) are the
standardized dh/dt of two sampled points with distance d [48]. Points in
the estimator were sampled using a pairwise subsampling method proposed
by Hugonnet et al. [41]. Compared to the classical Matern estimator, the Dowd
estimator is less sensitive to outliers. Using the estimated variogram 4, a
spatially continuous variogram <y was fitted using a long-short range model,
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in which a Gaussian model and a Spherical model were employed to account
for the short and long range correlations, respectively.

Finally, with the continuous variogram model -y , the uncertainties for the
mean dh/dt of a glacier can be propagated using an exact analytical solution
as shown in Equation 4.11:

N

1 N
O = N2 Y. ) oioi(1 = v(dy)) (4.11)
i=1j=1

where N is the number of pixels within the glacier outline, ¢; and ¢} are uncer-
tainties of dh/dt at pixel i and j, respectively, and d;; is the distance between
pixel i and j. However, this analytical solution is computationally expensive
for large glaciers. To address this, an approximate method proposed by [41]
was adopted to reduce the computational cost while maintaining accuracy.
This approximation uses a random subset of K pixels and is expressed as:

1 N K N
‘7571 ~ N2-K Z‘Tgh,i : Z Z(l —7(xx — xi)) (4.12)
i=1 k=1i=1

where K is a random subset with k pixels, and x; and x; are the locations of
pixel k and i, respectively.

4.3.3.3 Uncertainty propagation in void regions
For the voids filled region 1, we used the covariance matrix of the GRP model

k(X,X') to propagate the uncertainty for the mean dh/dt of the voids filled
region following Eq. (4.13):

1 M Ny

Ut%h,v - YO ) k(xi,xp) (4.13)
Vi=1j=1

where Ny is the number of pixels within the voids filled region. In practice,
k(x;, x;) on large glaciers was not feasible to calculate due to the large number
of pixels. To address this, we used a random subset of K pixels to approximate
the covariance matrix, assuming the covariance structure is stationary.

4.3.3.4 Regional mass balance uncertainty propagation

To propagate the mass balance uncertainty from glacier-wide to regional scale,
the uncertainty of glacier areas (¢4,) needed to be included additional to the
uncertainty of the mean dh/dt (0;) and the volume-to-mass conversion factor
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(0p). Assuming the three uncertainty sources are independent, the uncertainty
of the regional mass balance can be expressed as:

oz = (p : U"Th):>2 + (ﬂz - ap)z (4.14)

bregior\

where o _ is the uncertainty of the area-weighted mean dh/dt of all glaciers
in the study region.

The uncertainty of the area-weighted mean dh/dt can be calculated using
the following equation:

2 1 Y o \2 o

Uﬂz = (ZAl)z ; (d]’lz —dh2> UAi+
N - (4.15)
ZEAlA]COV(th,dh])]
ij

where dhy is the area-weighted mean dh/dt of all glaciers in the study region,
and Cov(%i,ﬂj) is the covariance between the mean dh/dt of glacier i and
glacier j. Using again the variogram model vy, the covariance can be expressed
as:

Cov(dh;,dh;) = O Oah, — Vv (4.16)

where oz, and Ogy,; are the uncertainties of the glacier-wide mean dh/dt for
glacier i and glacier j, respectively, and V is the variogram model. Detailed
derivation of Eq. 4.16 can be found in 4.6.

4.4 Results

4.4.1 Glacier surface elevation change

The spatial distribution of glacier dh/dt across the Karakoram region revealed
a wide range of behaviors, with both thinning and thickening observed
across the 681 glaciers analyzed (Fig. 4.4). The average dh/dt across the
region was 0.0038 4- 0.0042 m yr~! (STD = 1.18), while the median dh/dt
was 0.036 m yr~! (NMAD = 0.47). The observed variability reflected the
complex interplay of climatic and dynamic processes affecting glaciers in this
region.

The regions of maximum thickening and thinning are highlighted in
Fig. 4.4(a). The maximum di/dt value, 21.44 m yr—!, was observed on the
Hispar Glacier (RGI2000-v7.0-G-14-21670), specifically along the glacier trunk
near its Kunyang Tributary. This corresponded to a documented surge event
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on the glacier’s main trunk between 2013 and 2016, during which a maximum
thickening of over 180 m was observed, aligning well with our dh/dt mea-
surements [49]. Conversely, the minimum dh/dt value, —10.27 m yr_l, was
found on the Panmah Glacier (RGI2000-v7.0-G-14-12063), near its tributaries.
The observed high rates of thinning (dh/dt) were likely a result of reduced
ice flux and increased ablation during the quiescent phase of the surge cy-
cle. Historical records indicate that several surge events occurred on these
tributaries between 1995 and 2005, prior to the study period (Hewitt, 2007).
Following these surges, the glacier likely entered a quiescent phase during
the study period. Another notable thinning region was found on the Siachen
Glacier (RGI2000-v7.0-G-14-20040, Fig. 4.4(d)), with around —3 ~ —4 m yr~!
of thinning. This anomalous elevation change was related to a rock avalanche
event during 2001 and 2016 documented in Berthier & Brun [23].

kSt et

FIGURE 4.4: Spatial distribution of glacier elevation changes in the study region.
The base map in the background is the COP-30 DEM used as reference.
dh/dt of individual glaciers are color-coded using the color bar. Insets
are zoom-in views of sub-regions to offer a closer look of local details.
Green boxes in the inset (a) indicate the location of observed maximum
thickening and thinning. The black arrow in the inset (b) indicates the
location of the Rimo Glacier.
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In the Karakoram region, surge-type glaciers are widely distributed. Their
unique behaviors, which distinguish them from non-surge glaciers, making
the analysis of surge-type glaciers critical for understanding regional glacier
dynamics [33]. Surge glaciers are typically characterized by rapid mass re-
distribution events, such as advancing ice fronts and thickened lower glacier
regions, followed by a quiescent phase during which ice flux is reduced and
ablation dominates. In this study, surge-type glaciers were identified using
the RGI v7.0 database, where glaciers are classified as observed surge, proba-
ble surge, possible surge, and no-evidence [31]. As summarized in Table 2,
surge-type glaciers in the study region account for 19.23% of the total glacier
population but cover 75.63% of the total glacier area. In contrast, non-surge
glaciers make up 76.80% of the population but cover only 19.70% of the
glaciated area. A comparison of surge-type and non-surge glaciers revealed
distinct differences in their elevation change behaviors.

Category Population (%)  Area (km?, %)
o - No Evidence 523 (76.80%)  2159.69 (19.70%)
1 - Possible Surge 3 (0.44%) 22.44 (0.20%)

2 - Probable Surge 24 (3.51%) 440.56 (3.02%)
3 - Observed Surge 131 (19.23%)  8340.61 (76.08%)

TABLE 4.2: Population size and area of glaciers in different surge categories.

During the studied period, surge-type glaciers exhibited diversified thick-
ening and thinning in their ablation (areas of ice loss, typically at lower
elevations) and accumulation zones (areas of ice gain, typically at higher
elevations). Glaciers in the active surge phase generally experienced thick-
ening in accumulation zones and thinning in ablation zones. One notable
example was the South Rimo Glacier (Fig. 4.4(b), black arrow), which entered
its surge phase in 2013 and experienced maximum thickening of approxi-
mately 28 m at the surge front by 2019 [50, 51]. Another example was the
North Kunchhang Glacier I (Fig. 4.4(c)), which underwent a documented
surge between June 2015 and June 2019 [52]. Such strong surge dynamics
significantly impacted glacier mass distribution, leading to high variability in
dh/dt values for surge-type glaciers. In contrary, glaciers in the post-surge
recovery phase, such as the Panmah Glacier, were mostly characterized by
thinning in the ablation zones but limited thickening in the accumulation
zones.

134



Statistical analysis further highlighted the differences between surge-type
and non-surge glaciers. The mean dh/dt for all surge-type glaciers (including
possible and probable surge glaciers) is 0.019 +0.0052 m yr~! (STD = 1.32),
and the median dh/dt is 0.068 m yr! (NMAD = 0.50). This variability
was largely driven by the dynamic processes of surging, which cause lo-
calized thickening and thinning. In contrast, non-surge glaciers were pri-
marily influenced by climatic factors such as temperature and precipitation,
which drive gradual thinning. Their mean dh/dt was —0.058 4= 0.0044 m yr*1
(STD = 0.53), and the median dh/dt was —0.054 m yr—! (NMAD = 0.35).
The narrower range of variability in non-surge glaciers reflected their more
stable response to climate forcing, as opposed to the highly variable behavior
of surge-type glaciers.

(&) Surge ] (b} Non-Surge

FIGURE 4.5: Dependency of glacier dh/dt on elevation for surge-type (a) and non-
surge (b) glaciers. The number of pixels within each elevation bin are
shown with the bar plots on top panels. The median and Normalized
Median Absolute Deviation (NMAD) values of each elevation bin are
shown with the red line and gray shaded area.

Distinctive patterns were also observed on the elevation dependence of
dh/dt for surge and non-surge glaciers. As shown in Fig. 4.5, the median and
NMAD of dh/dt were calculated for every 100 m elevation bins to capture
the variability of dh/dt across different elevations. For surge glaciers, despite
of the strong variability exhibiting in the data, a general transition altitude —
where the median dh/dt approaches zero—was evident around 47004800
m a.s.] (above sea level). Below the transition altitude, the median dh/dt is
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predominantly negative, reflecting thinning in the ablation zones for most
surge glaciers in the region. The magnitude of thinning decreased with in-
creasing elevation, indicating a transition toward accumulation zones. Above
the transition altitude, the median dh/dt stabilized around +0.1 m yrfl,
reflecting the thickening trend within most surge glaciers. For non-surge
glaciers, a similar increasing trend as surge glaciers was observed for dh/dt
with elevation increasing, but the transition altitude is located at a lower
regions of approximately 4200—4300 m a.s.l. Below this altitude, dh/dt val-
ues were consistently negative, indicating thinning in the ablation zones.
Above the transition altitude, dh/dt values fluctuate around zero, suggesting
a near-balance between mass gain and loss in these higher-elevation areas.

I Gasherbrum Glacker L.
& Aktash Glasier i

FIGURE 4.6: Spatial distribution of glacier mass balance in the Karakoram region
(main panel). The population size (a) and area (b) of glaciated regions
are calculated for mass balance bins between -1 to 1 m w.e. yr~!. Dis-
tribution of glacier mass balance for surge-type and non-surge glaciers
are shown with the violin plot (c).

4.4.2 Glacier mass balance

The area-weighted specific mass balance of the studied 681 glaciers was
0.0032 + 0.0052 m w.e. yr~!, showing a slightly positive mass balance for the
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region. However, the strong spatial variability of glacier dh/dt resulted in
a highly heterogeneous distribution of glacier-wide specific mass balance
across the study region (Fig. 4.6). Glaciers in the eastern extent of the study
area (i.e., from 77.10°E onward) generally exhibited negative mass balance. In
contrast, glaciers in the central and north-western portions of the region are
predominantly characterized by positive mass balance. However, a cluster of
glaciers in the western extent of the region (around 75.0°E, 36.0°N) experi-
enced significant mass loss, standing out as localized exceptions to the overall
trend.

Among glaciers larger than 10 km?, the Gasherbrum Glacier (RGI2000-v7.0-
G-14-20459) showed the maximum mass gain, with a specific mass balance of
0.41 4 0.044 m w.e. yr~!. This glacier is a north-facing surge-type glacier with
an area of 101.33 km?. The most recent surge was observed between 2005
and 2007 and transited to its quiescent phase after 2008 [53]. While the exact
reason for the substantial mass gain observed on the Gasherbrum Glacier
remains unclear, it is likely resulted from the enhanced accumulation in the
upper regions during the quiescent phase. In contrast, the glacier with the
maximum mass loss is the Aktash Glacier (RGI2000-v7.0-G-14-18524), with
a specific mass balance of —0.66 4= 0.070 m w.e. yr—!. The Aktash Glacier is
also a surge-type glacier, with an area of 24.43 km?. Satellite imagery analysis
reveals that this glacier has a relatively short surge cycle of approximately
three years, with its most recent documented surge occurring between 2003/ 4
and 2009, advancing its terminus by more than 500 meters [54]. Approximate
locations of the Gasherbrum and Aktash glaciers were marked on Fig. 4.6
with black arrows.

We analyzed the distribution of glacier population and area across different
mass balance bins (Fig. 4.6(a) and (b)). The majority of glaciers have mass
balance values within the range of -0.20 to 0.20 m w.e. yr~!, with the peak
population centered around 0.0 m w.e. yr~—!. However, the summed glacier
area showed a clear bias toward positive mass balance. Specifically, more than
5000 km? of glacier area experienced slight mass gain of approximately o0.20
m w.e. yr~ 1. This discrepancy between the distribution of glacier population
and area was primarily attributed to the presence of large surge-type glaciers
in the region. As illustrated in Fig. 4.6(c), surge-type glaciers exhibited a near
balanced median mass change (0.0024 m w.e. yr~!) and a density curve that
skewed slightly towards positive. Their area-weighted specific mass balance is
0.0161 4 0.0063 m w.e. yr‘l. This contrasted with non-surge glaciers, which
had a negative median mass balance (—0.055 m w.e. yr!) and a slightly
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negative skewed density curve. The area-weighted specific mass balance for
non-surge glaciers is —0.049 + 0.0067 m w.e. yr— 1.

Galcier dh /d? [m yr

FIGURE 4.7: Mass balance distribution with respect to different (a) glacier size
groups and (b) glacier median elevation groups. The top panels show
the count of glaciers within the respective group. The distribution
of mass balance are calculated for the entire group in panel (a), and
separately for surge-type and non-surge glaciers in panel (b).

Two factors that may influence the individual glacier mass-balance variabil-
ity were examined in Fig. 4.7, including glacier area and median elevation.

In the study region, the majority of glaciers fell within the smallest area
category (1-5 km?), and the number of glaciers decreased exponentially with
increasing glacier area. Only 19 glaciers were in the largest category (100+
km?). Smaller glaciers (1-5 km?) exhibited a median thinning rate of approx-
imately -0.01 m w.e. yr~!, while larger glaciers showed relatively stronger
thinner rate at around -0.05 m w.e. yr~!. The largest glaciers (100+ km?) dis-
played balanced mass change with the median value at approximately 0.02
m w.e. yr—1). Despite the varying population of glaciers across area categories,
the variance in individual glacier mass balance remained relatively consistent,
with values generally ranging from -0.5 to 0.5 m w.e. yr~'. While differences
in skewness were observed among area categories, no clear trend toward
positive or negative mass balance emerged.

For glacier median elevation, the majority of glaciers had median elevations
above 5000 m a.s.l. A general stable near zero median mass balance were
found for glaciers in groups of median elevations below 5400 m a.s.l., whereas
strong median negative mass balance were found for glaciers in the group of
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FIGURE 4.8: Example glaciers demonstrate the voids filling performance using
Gaussian Process Regression (GPR). The leftmost column show original
glacier dh/dt maps with voids (marked as gray shaded). The second
column show dh/dt maps with voids filled using GPR models. The
third column shows the distribution of voids filling uncertainties, with
zero representing the measured area (i.e. no filling). The rightmost
column shows the validation performance of GPR models for the
respective glacier, with blue scatter dots showing the validation pixels
and red line showing the 1-to-1 matching. The RGI-index, name and
area of the glacier are reported on top of the respective row.
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median elevations above 5700 m a.s.l. Comparing to surge-type glaciers, the
median mass balance of non-surge glaciers were closer to near zero. Similar
to area categories (Fig. 4.7(a)), differences in skewness were observed across
elevation groups, but no clear trend toward positive or negative mass balance
was apparent.

4.4.3 Voids filling evaluation

Voids filling is a crucial step in regional dh/dt mapping and geodetic mass
balance measurement [44]. This step was particularly important in our study,
as we avoided using DEMs from different times for voids filling to ensure no
temporal ambiguity was introduced, thereby leaving relatively large voids in
the dh/dt map.

Given the complex terrain and glacier dynamics in the region, we employed
the GPR model to infer the missing data in voids region, taking into account
the dependence of dh/dt over various terrain features. Fig. 4.8 illustrated
examples of voids filling for glaciers of varying sizes. In these examples, voids
were predominantly located in high-elevation regions, typically within glacier
accumulation zones or near glacier edges. High-elevation regions are often
characterized by steep slopes and are affected by SAR image artifacts such as
shadow and layovers, leading to data gaps in these areas. To fill the missing
values in such regions, it is crucial to account for the spatial distribution
of missing values and ensure that the interpolation method considers the
influence of topography on the distribution of glacier elevation change.

Comparing to the original dh/dt map with voids (leftmost column), the
filled dh/dt maps (second column) showed that the spatial patterns of dh/dt
distribution were effectively reconstructed by the GPR model. The uncertainty
in the filled regions, as shown in the third column, varied across glaciers.
This variability was raised because the GPR models were trained for each
glacier specifically, and the inference confidence of the model depended
on several factors, including the quality of training data, the density of
measured samples near prediction points, and the noise level in the data.
Validation results (rightmost column) indicated that the model performs well
for small glaciers (area below 5 km?), achieving low RMSE and high R?. For
medium-sized glaciers, while the RMSE slightly increased, the R? remained
high., indicating that the model continues to capture the dynamics effectively.
For large glaciers, the validation RMSE showed only a moderate increase;
however, the R? dropped below 0.8. This suggests that the model struggles
to fully capture the more complex dynamics of large glaciers, which may be
influenced by more diverse topographic conditions of large glaciers compared
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to smaller ones. Note that the validation results presented here are obtained
by dividing the measured data for each glacier into separate training and
validation sets, as described in Section 3.2.2. The model is trained only on the
training data, and its predictive accuracy is then evaluated on the validation
data—these are real measurements that were not used during training. This
approach allows us to measure how well the GPR model can predict missing
values based on available data.

Sodel BASE

Maode| HMSE

FIGURE 4.9: Distribution of (left column) voids uncertainty versus dh/dt measure-
ment coverage, (middle column) validation Root-Mean-Squared-Error
(RMSE) versus dh/dt measurement coverage, and (right column) voids
uncertainty versus validation RMSE for surge-type (top row) and non-
surge (bottom row) glaciers.

As shown in Fig. 4.9, we inspected the relationship between voids un-
certainty, dh/dt measurement coverage, and the validation RMSE of GPR
models for both surge-type (top row) and non-surge (bottom row) glaciers.
For surge-type glaciers, the distribution of voids uncertainty exhibited a
relatively isotropic pattern with respect to measurement coverage, suggesting
that voids uncertainty was not strongly correlated with the measurement
coverage. Similarly, the model validation RMSE showed a uniform pattern
across different levels of measurement coverage. When examining the rela-
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tionship between voids uncertainty and RMSE (Fig. 4.9¢c), a slight inverse
correlation was observed for RMSE values between 0.0-0.5, where higher
RMSE corresponded to lower voids uncertainty. For larger RMSE values
(above 0.5), voids uncertainty became independent from RMSE and was con-
centrated between 0.1-0.2. For non-surge glaciers, voids uncertainty showed a
weak and noisy positive correlation with measurement coverage. The model
validation RMSE, on the other hand, does not exhibit a clear dependence
on measurement coverage, with contours spread uniformly across different
coverage levels. Finally, the relationship between voids uncertainty and RMSE
revealed no strong dependence, as the contours were relatively uniform and
do not indicate a clear trend.

This result shows that the uncertainty over the voided region does not
depend on the size of the voids, nor on the overall validation accuracy of the
model. This is due to the fundamental principle of how GPR model estimates
uncertainty for a target variable. In GPR modeling, each predicted value is
treated as a random variable described by a probability distribution, rather
than a single fixed value. The shape of this distribution is determined by a ker-
nel function, which captures the spatial correlation among all available data
samples. As a result, the uncertainty provided by the GPR model is mainly
influenced by the spatial distribution of the measured data points within the
feature space. In the feature space, if a missing value is surrounded by many
relevant and similar measurements, the model will be more confident in its
prediction, resulting in lower uncertainty. Conversely, if the missing value is
isolated or located in an area with unusual terrain features, the uncertainty
will be higher. By incorporating various terrain features as inputs to the GPR
model, we ensured that the distribution of available measurement samples
in the feature space remains independent of voids size and the distribution
of training samples. Consequently, the model achieves robust inference for
missing values in the voids region.

4.4.4 DEM accuracy and uncertainty propagation

To validate the accuracy of the seasonal DEM mosaics, we compared the
2019 winter mosaic with ICESat-2 measurements over glacier-free surfaces.
The ICESat-2 points were acquired between 2019-08-29 and 2020-04-26 and
matched the time span of the second acquisition period of the CoSSC prod-
ucts. Points over slopes steeper than 40° were excluded due to the high
uncertainty of TanDEM-X measurements in such areas. A total of 58,777
ICESat-2 points with surface slopes between 0° and 40° were used for valida-
tion. The spatial distribution of the validation points is shown in Fig. 4.1. The
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comparison revealed that the ICESat-2 measurements were slightly higher
than the generated DEM mosaic, with a mean difference of 0.29 m and a
median difference of 0.28 m (Fig. 4.10). This discrepancy is likely due to
the deeper penetration of SAR signals compared to ICESat-2 measurements
[55]. The vertical accuracy of the DEM mosaic, estimated using the NMAD
of elevation differences, was 3.53 m. This accuracy is lower than the typical
accuracy of the COP-30 DEM, likely due to the complex terrain in the study
area and the absence of post-editing steps.
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FIGURE 4.10: Distribution of elevation differences over stable ground between
ICESat-2 measurements and the 2019 winter DEM mosaic. The me-
dian and + 1 Normalized Median Absolute Deviation (NMAD) val-
ues are indicated by the black solid lines and red dashed lines, re-
spectively.

Besides the highly accurate DEM, we also rigorously analyzed the un-
certainty of the measured dh/dt using a non-stationary framework. This
approach accounts for the heteroskedasticity of measurement errors in dh/dt
and incorporates spatial error correlations over both short and long ranges.

As illustrated in Fig. 4.11, we investigated the relationship between dh/dt
and terrain slope across non-glaciated regions. These areas revealed a clear
dependence of dh/dt dispersion on slope, which is captured by the modeled
exponential curve expressed in Equation 4.17:

Odh/dt = 0.0186(0'066“) +0.074 (4_17)

Here, 04,4 represents the dispersion of dh/dt and a denotes the terrain
slope. This dependence can be attributed to the influence of local incidence
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angles on the sensitivity of the interferometric phase to elevation within the
InSAR system. On steeper terrain, the precision of InNSAR digital elevation
models (DEMs) decreases, resulting in higher dh/dt dispersion and greater
uncertainty.

To further refine the analysis, we standardized dh/dt using the modeled
heteroskedasticity and employed non-glaciated regions as proxies to infer
spatial error correlations. The empirical variogram and its fitted continuous
variogram are presented in Fig. 4.12. The spatial correlation model combines
a short-range Gaussian component and a long-range Spherical component.
Specifically, the Gaussian model has a range of 204.53 m and a partial sill
of 0.76; the Spherical model has a range of 1590.40 m and a partial sill
of 0.28. These results indicate that short-range correlations dominate the
standardized dh/dt errors, but long-range correlations remain considerable.
As noted by Hugonnet et al. [41], relying solely on short-range models may
severely underestimate elevation uncertainties for areas larger than 0.1 km?.
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4.5 Discussion

4.5.1 Regional mass balance in Karakoram

In Karakoram, the anomalous behavior of glacier mass balances has been
identified since the 1970s, which was characterized by stable and weakly
positive mass balance in the region in contrast to the mass loss observed in
the Himalayas and other regions of the world [15, 16]. Benefiting from the
increasingly available remote sensing data, geodetic mass balance measured
by DEMs derived using LiDAR, optical stereo image pair and SAR data have
provided valuable information on the mass balance of glaciers in Karakoram.

A recent review by Li et al. [56] summarized the changes of glacier mass bal-
ance in the Karakoram region since 1998 made by relevant studies (Fig. 4.13).
Although these studies cover various temporal and spatial scales, the reported
mean mass balance generally ranged between +0.1m w.e. yr~!, indicating
a near-equilibrium state for glaciers in the region. However, some recent
global scale studies suggested that the anomaly of mass balance change in
Karakoram was no longer as significant as before. For instance, the thickening
of glaciers in central-western Asian was observed to be brought down to a
generalized thinning in the late 2010s using large-scale ASTER DEMs [9],
with the mean elevation change rate decreased from —0.1 +0.17 m/yr during
2000-2004 to —0.23 +0.14 m/yr in 2015-2019. The decade mean dh/dt during
2000-2019 for the region was reported to be —0.16 - 0.06 m/yr, approximately
equivalent to a specific mass balance of —0.135 4 0.02m w.e. yr~! with the
assumption of a density of ~ 850 £ 60 kg/m3. A similar observation was
made in the community that estimates the global glacier mass changes [11].

In our results, the regional mass balance over almost a decade (2011-2019)
was estimated to be 0.0032 £ 0.0052 m w.e. yr‘l, demonstrating a near bal-
ance to positive trend comparing to previous studies (Fig. 4.13). Particularly,
our area-weighted mass balance is strongly contrast to the negative value
reported in the global scale studies. To further illustrate the difference be-
tween the results of our study and the previous work, we compared our
glacier dh/dt measurements with the openly shared results from Hugonnet
et al. [9]. The regional mass balance calculated using the Hugonnet dataset
is —0.1138 m w.e. yr! for the same glaciers covered in our study. The un-
certainty is not quantified as we do not have access to the spatial correlation
model of the Hugonnet dataset. To understand the different mass balance
for each glacier measured by our study and the Hugonnet dataset, detailed
comparision is shown in Fig. 4.14. In the comparison, the histograms illus-
trate the overall distribution of glacier aggregated dh/dt for both studies.

146



0.2 4
)3 sl References
B Gardelle et al. (2012)
P Kiab et al, (2012)
0.1 4 B

Lin et al. f_?Ul?)
B Lin et al. (2017)
W KaEb et al. (2015)
0.0 = p—————— Rankl et al, (2016)

—_— W Agarwal et al. (2017)
Lhakpa et al. (2022)
—0.1 - —;T I This study

L2 B e e e ]
1998 2003 2008 2013 2018 2023

Year

Mass Balance Estimation [m w.e. a~!]

F1GURE 4.13: Comparison of the regional specific mass balance reported in relevant
studies and this study. The horizontal bars represent the time periods
covered by each study, and vertical bars indicate the uncertainty. Ref-
erences include Lhakpa, Fan & Cai [18], Gardelle, Berthier & Arnaud
[190], Kddb et al. [20], Rankl & Braun [21], K&é&b et al. [57], Agarwal
et al. [58], and Lin et al. [59]. Result of this study is highlighted in red.
The black solid line at 0 m w.e. yr~! serves as a reference for no net
mass change.

147



[ Hugonnet et al, (20213 [ This Study === 1:1 line

@ 1.0 _{b] . ’1
a
80 - 2.5 08 - - ,I
s
n o e i3
z — 2.0 I a
< 60 L 04
™ » B 0.2+
C 15 £ 2
= 2 = 00 -
= 40 = -
> A = - -
% = 1.0 73 12
g L —0.4
= - 0.5 0.8
| —0.8 -
Ml ==t ,'L, —FE——t- 0.0 —1.0 — T T T
Glacier dh/dt (Mean) [m yr~'] Hugonnet et al. (2010-2020} [m yr~']
1.0 5 Pl
200 {d) s
0.8 - P
i — (G
; 150 ';- 0.4 =
E z E (b2 =
- H ot "
5 100 : oz 00
g =] % —0.2
3 2 —0.4 -
7o = —06
—0.8 -
0 10 =TT T T T T T T
R T I L I Tl I, R
ANaPolakaTePat ot ooy
Glacier dh /dt {Median} [m _1.-'r_l| Hugonnet et al. {2000-2020} [m I\fr—’]

FIGURE 4.14: Comparison of glacier elevation change rates (dh/dt) between this
study and the Hugonnet et al. [9] dataset. The top row and the bottom
row shown the distribution of mean and median glacier dh/dt (a, c)
and their scatterplot comparison (b, d), respectively. The histograms
illustrate the number of glaciers and density for each dataset. The
scatter plots include a 1:1 reference line for visual comparison.

148



While the distributions were largely overlapped, both the glacier-wide mean
and median dh/dt of our results were slightly biased towards more positive
values compared to the Hugonnet dataset. Additionally, our results exhibited
slightly broader tails, indicating higher variability in glacier aggregated dh/dt.
As median values were more robust to outliers, the distribution of median
dh/dt values showed much less variability in both studies compared to the
mean dh/dt distributions. The scatter plots provided a one-to-one comparison
of glacier samples between our study and the Hugonnet dataset. For both
the mean and median dh/dt, the data points were generally centered around
the 1:1 line, indicating overall agreement between the two studies. However,
noticeable scatterings were present, highlighting the different distribution of
glacier-wide dh/dt distributions.
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FIGURE 4.15: Elevation change rate (dh/dt) for example glaciers of varying sizes
derived from this study and the dataset of Hugonnet et al. [9]. For
each glacier in (a)-(d), the left map represents results from the dataset
of Hugonnet et al. [9], and the right map corresponds to the results
of this study. The mean dh/dt is indicated for each glacier. The color
bar at the bottom illustrates the range of dh/dt.
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A few example glaciers are presented in Fig. 4.15 to further illustrate the
differences between the two datasets. For small and medium sized glaciers
(Fig. 4.15 (a) and (b)), both dh/dt maps showed consistent and comparable
spatial patterns. For instance, strong thinning was observed at similar loca-
tions in both datasets. However, our results resolved finer-scale variations,
such as crevasses and isolated zones of thinning and thickening, which were
smoothed out in the Hugonnet dataset due to the coarser resolution. For
surge-type glaciers (Fig. 4.15 (c) and (d)), both studies captured the general
thickening-thinning patterns along the main trunk of the glaciers. However,
notable differences were observed in the accumulation zones. For the glacier
in Fig. 4.15(c), our dh/dt map showed general positive elevation changes in
the accumulation region, while the Hugonnet dataset exhibited substantial
variability and large areas of negative elevation change. This discrepancy
results in a positive glacier-wide mean dh/dt in our study, whereas the
Hugonnet dataset yielded a negative mean dh/dt. A similar pattern was
observed for the glacier in Fig. 4.15(d), where our results showed balanced
or slightly positive elevation changes across the accumulation zone, and the
Hugonnet dataset showed large variability with extensive areas of negative
elevation changes.

The difference observed in the above comparison can be explained by the
different data and methods used for the analysis. In the Hugonnet dataset,
the elevation change was estimated using a multi-year time-series fitting
approach with ASTER DEMs for the period 2000—2019. The dh/dt map for
individual glaciers were provided with 100m resolution. In our study, we
employed only the TanDEM-X data acquired in two operational phases (2011-
2014 and 2015-2019) to avoid introducing artifacts caused by system bias
and seasonal ambiguities. The former method is more robust in estimating
the trend of mass changes, while our results preserved better temporal
sensitivity and spatial variability. Besides, the Hugonnet dataset was produced
using the ASTER DEM and relied on data interpolation to fill the spatial-
temporal data gaps caused by cloud contamination. The interpolation process
may introduce additional uncertainties and smooth out fine-scale spatial
patterns, particularly in accumulation zones where elevation changes are
generally smaller and more variable. In contrast, our use of TanDEM-X data,
which offers stronger penetration capabilities through cloud, provides more
reliable elevation measurements with less interference. Thus, the choice of
data and processing methods may play a significant role in the reported
mass balance differences. Considering the varying analysis performed in
different studies, further investigation is needed to reconcile differences
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across studies, integrate diverse datasets and methodologies, and derive
consensus estimates [11].

4.5.2 Spatial variability of elevation and mass change

Benefiting from the high-resolution TanDEM-X CoSSC data, detailed maps of
glacier dh/dt and mass balance were generated for over 10,000 km? of glacier
covered area in Karakoram. The dh/dt map revealed the highly heteroge-
neous spatial distribution of glacier elevations changes in the region. From
the dh/dt map, the spatial variability of elevations changes is observed to
be predominantly contributed by the surge-type glaciers. Previous studies
have reported that surging events in Karakoram were expanding and increas-
ing, coincident with the positive glacier mass balance in the region [60]. A
similar observation was made in our study, where the statistical analysis
on dh/dt showed that surge-type glaciers in the region are generally in a
near-equilibrium or positive mass balance state, while non-surge glaciers
mostly experienced thinning and mass loss. Another notable observation
from the dh/dt map is the varied surge-phase that the surge-type glaciers
experienced. Glaciers experiencing (or just finished) the active surge phase
mostly have large thickening close to the glacier front and strong thinning in
their accumulation zones. In contrary, glaciers in the quiescent or post-surge
recovery phase generally showed thinning in their middle and lower parts,
with thickening observed in the upper reach. Example surge-type glaciers of
such contradicting behaviors can be found in Fig. 4.4(b).

Besides the spatial heterogeneity, the distribution of elevation change along
altitude also demonstrates distinctive behavior between surge-type and non-
surge glaciers. Overall, both glacier types exhibit a similar trend of decreased
thinning rates with increasing elevation. This altitude-dependent pattern has
been widely documented in previous studies [22, 61, 62], and reflects the
transition from ablation zones, where mass loss dominates, to accumulation
zones, where mass gain increases. The thickening or near-balanced state
observed at higher elevations may serve as an indicator of the overall mass
balance condition. However, our results reveal a notable difference in be-
tween surge and non-surge glaciers. The transition altitude for surge glaciers
is located at a higher altitude (4700-4800 m a.s.l.) compared to non-surge
glaciers (4200—4300 m a.s.l.), suggesting distinct mass balance regimes influ-
enced by glacier dynamics. Moreover, the altitude dependence of elevation
change is known to be strongly influenced by localized glacier dynamics,
morphological features, and climate regimes [22]. For instance, thick debris
cover or delayed adjustment to balance velocities could alter thinning or

151



thickening trends at specific elevations, as observed in other regions such as
Bhutan and Kunlun [22]. These localized factors highlight the complexity of
interpreting elevation-dependent mass balance trends across large regions.
Further investigation, particularly through coupling with glaciological mod-
els, could provide deeper insights into the elevation dependence of glacier
mass balance [63].

It is important to note that the classification of surge-type glaciers in
our analysis is based on the RGI 7.0 inventory, which may not fully cap-
ture the timing of individual surging events relative to our study period.
Glacier surges are episodic and can occur outside the temporal window
of our elevation change measurements, potentially leading to mismatches
between the cataloged surge status and actual glacier dynamics during our
observation timeframe. This limitation should be considered when interpret-
ing the observed differences between surge and non-surge glaciers, as the
surging activity may not be contemporaneous with our data. Future stud-
ies incorporating time-resolved surge inventories or direct monitoring of
glacier dynamics would help to more accurately assess the impact of surging
behavior on elevation change patterns.

Due to the strong variability of regional dh/dt, the mass balance of glaciers
in Karakoram is also highly heterogeneous. From the mass balance map
(Fig. 4.6), a general trend of mass balance change can be observed, with
thinning in the eastern and thickening in the western part of the region. A
similar finding was reported by Berthier & Brun [23], where the mass balance
in the central and western part of the region showed stable to positive mass
balance, with statistically significant difference to the eastern part. However,
in our study, the longitude dividing the change of mass balance appeared
to be around 77.1°E, which is slightly different from the 76.5°E reported
by Berthier & Brun [23]. This difference is likely due to the different mass
balance of the Siachen Glacier between the two studied period (2011-2019 vs
2000-2016).

Another factor contributing to the heterogeneous pattern of mass balance
in the Karakoram is the extensive presence of debris-covered glaciers. Based
on the survey of Herreid & Pellicciotti [64], the debris covered area accounts
for approximately 17% of all glaciated area within the studied glaciers. One
example of anomalous mass balance caused by debris-covered glaciers can
be observed in the western part of the region (around 75°E, 36°N). As shown
in Fig. 4.16, dh/dt on debris-covered regions show slightly right skewed
distribution compared to non debris-covered areas, with the mean dh/dt of
0.01 m/yr (SD=2.47 m/yr) and median of -0.20 m/yr (NMAD=0.90 m/yr). In
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contrast, the mean dh/dt on non debris-covered areas is 0.00 m/yr (SD=0.89
m/yr) and median of 0.05 m/yr (NMAD=0.43 m/yr). The difference in dh/dt
distribution between debris-covered and clean-ice glaciers is statistically
significant based on the two-sample Kolmogorov-Smirnov test (p < 0.0001).
According to Herreid & Pellicciotti [64], the area of debris-covered glaciers in
the entire South Asia West is approximately 3662 km?, accounting for 13.7% of
the total glaciated area in the region. On debris-covered glaciers, field surveys
and modeling studies have shown that thick debris layers can reduce ice melt
rates by insulating the glacier surface and limiting thermal energy transfer,
whereas thin and moist debris layers can accelerate ablation by increasing
the absorption of solar radiation [65-67]. The complex interactions between
debris cover characteristics, glacier dynamics, and local climate conditions
contribute to the observed heterogeneity in mass balance patterns across the
Karakoram region.

1.0 4

Debris-covered: B Debris-covered
Mean: 0.011 m/yr Non debris-covered

P08 o |Median: -0.196 m/yr

g

= Non debris-covered:

? e TL\"I(_‘.E.I.I.H .{_I_EHJ.'."irmfyt'_

&= Median: 0.053 m/yr

!

i

<)

= 04 -

@

=

=

O - -

< 0.2 -

0.0 T T

—6 —4 —2 U 2 4 G

Elevation change (myr 1)
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covered and non debris-covered areas. The histogram illustrates the
normalized frequency of dh/dt values.

4.5.3 Uncertainty of the mass balance estimation

In this study, we implemented a nonstationary heterogeneous framework to
quantify uncertainties in glacier elevation change and mass balance estima-
tions. By employing glacier-free terrain as proxies, we effectively modeled
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both the heteroskedasticity of dh/dt measurement errors and their spatial
correlation patterns. This approach ensured proper consideration of slope-
dependent random errors and the correlation of errors in both short and
long-range distances.

Our analysis revealed remarkably precise results, with the uncertainty of
mean glacier dh/dt across the entire region measuring £0.0042 m/yr, and the
uncertainty in regional specific mass balance at 4-0.0052 m w.e. yr—!. These
uncertainty values are approximately one order of magnitude lower than
those reported in related studies (Fig. 4.13), primarily due to the high vertical
accuracy of the TanDEM-X DEMs generated through our iterative refinement
method.

To verify the quality of our DEMs generation approach, we conducted
extensive validation of the 2019 DEM mosaic using ICESat-2 data, which
demonstrated an overall vertical error of 3.53 m (Fig. 4.10). Assuming similar
vertical accuracy for the 2011 DEM mosaic, the theoretical vertical accuracy
of the differential DEM (dDEM) between these two mosaics would be ap-
proximately 2.49 m, or 0.31 m/yr when normalized by time. This theoretical
estimate closely aligns with our empirical proxy uncertainty measurement
of 0.20 m/yr observed on stable ground, confirming the reliability of our
methodology.

When placed in the context of existing literature, the significance of our im-
proved accuracy becomes apparent. Previous studies have typically reported
much higher uncertainty values for dh/dt over stable ground, generally
around 1-2 m/yr. For instance, Berthier & Brun [23] measured an uncertainty
of 1.12 m/yr on stable ground using ASTER DEM, resulting in a mass bal-
ance uncertainty of £0.15 m w.e.yrfl. Similarly, Rankl & Braun [21] reported
an uncertainty of 1.90 m/yr for elevation differences between TanDEM-X
and SRTM-X DEMs, yielding an uncertainty of £0.12 m/yr for mean glacier
elevation change. Lv et al. [45] documented vertical uncertainties ranging
from 5-10 m over stable ground for a time span of approximately 5 years,
with an uncertainty of +0.04 m/yr for the mean mass balance of 55 glaciers
in eastern Pamir. Compared to these studies, the vertical uncertainty of dh/dt
in our work is significantly lower by an order of magnitude, resulting in
substantially reduced uncertainty in both glacier mean elevation change and
mass balance estimations.

The improvement in uncertainty quantification can be attributed primar-
ily to our methodological choices. The exceptionally low uncertainty in our
results underscored the value of TanDEM-X DEMs for glacier mass balance es-
timation. The TanDEM-X 2020 mission phase provided a unique opportunity
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to generate high-resolution DEM pairs over extended time spans (exceeding
5 years), which is ideal for precise glacier mass balance calculations. Further-
more, by exclusively using DEMs generated from SAR data, the proposed
method can substantially reduce the penetration bias typically caused by
different sensors and acquisition modes [25, 68, 69].

Beyond DEM generation, the voids filling approach also contributed to
uncertainty reduction. In this work, the challenge of dDEM void filling was
addressed using the GPR method, which enabled both the reconstruction
of spatial patterns in dDEM voids and the estimation of uncertainty across
filled areas. Notably, the void uncertainty proved independent of measure-
ment coverage and GPR model training performance, indicating robust and
effective inference of missing values in the dDEM. By properly propagating
void uncertainty into the total uncertainty calculation, this approach enabled
reliable mass balance estimation considering both measurement and voids
filling errors. Future work could involve a systematic comparison of the GPR
approach with other gap-filling methods, such as linear and hypsometric
interpolation [44], to further validate its effectiveness and identify optimal
strategies for different glacier conditions.

4.6 Conclusion

In this study, we measured elevation changes and mass balances across 681
glaciers in the Karakoram region, covering over 10,000 km? of glaciated
area. The results indicated a slightly negative or near-equilibrium status for
the region, but with strong spatial heterogeneity in glacier dynamics and
mass balances. The regional mean dh/dt was 0.0038 + 0.0042 m/yr, and the
regional specific mass balance was 0.0032 + 0.0052 m w.e. yr— . These values
are consistent with previous studies reporting near-stable conditions for the
Karakoram glaciers. Within the region, surge-type glaciers exhibited distinct
behaviors, with an average dh/dt of 0.019 £ 0.0052 m/yr and a specific mass
balance of 0.0161 + 0.0063 m w.e. yr~ . In contrast, non-surge glaciers showed
an average dh/dt of —0.0058 £ 0.0044 m/yr and a specific mass balance of
—0.049 £ 0.0067 m w.e. yr~!. Spatial patterns revealed increasing thickening
from east to west, except for a cluster of debris-covered glaciers in the western
part of the region. Overall, the findings suggest a slight thinning trend for
Karakoram glaciers during the study period, highlighting the complex and
heterogeneous glacier behavior in the region.

The detailed elevation and mass change measurement were enabled by
the comprehensive framework proposed in this work, which integrated three
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core modules to overcome the challenges of glacier mass balance assessments
in complex mountainous terrains. The first module involves the generation of
high-resolution, high-accuracy DEMs using individual TanDEM-X interfero-
metric acquisitions, leveraging the TanDEM-X 2020 mission phase to enable
long time-span measurements for the mass balance. The second module pro-
cessed dDEM mosaics to produce time-sensitive, void-free dh/dt maps. The
use of the GPR modeling approach for void filling ensured that uncertainties
in data gaps are properly quantified. The third module incorporated rigorous
uncertainty propagation methods, ensuring properly quantified uncertainties
by modeling heteroskedasticity and spatial error correlations. By integrating
these modules, the framework provided a robust and scalable solution for
producing accurate elevation change and mass balance measurements, even
in highly heterogeneous and data-sparse regions.

In summary, this study advanced the understanding of glacier dynamics
in the Karakoram region and addressed the challenges of measuring mass
balance in its complex mountainous terrain. Beyond the measurement re-
sults, the proposed framework provided a scalable and adaptable solution
for future studies in other glaciated regions. By integrating high-resolution
DEM generation, advanced dDEM processing, and robust uncertainty quan-
tification, the proposed framework enhanced the accuracy and reliability of
glacier mass balance assessments. These contributions not only improve our
understanding of glacier responses to climate change but also establish a
methodological foundation for studying regional glacier behavior globally.

Appendix: Proof of regional mass balance uncertainty
propagation

The area-weighted average dh/dt for the entire region can be calculated as:

— YN Ai-dh
dhy = Lz 2 A (4.18)
Yty A

where A; is the area of the i-th glacier, dh; is the average dh/dt of the i-th
glacier, and N is the total number of glaciers in the region. To estimate the
uncertainty of dhy, we apply the first-order Taylor expansion for both A; and

156



dh;, assuming independence between the two variables and independence for
errors of A; between glaciers, to obtain:

— 2 — 2
adhy\~ ,  [odhy\”

LS
= 9dh; ddh;

OV(%I', %])

where 04, and gy, are the uncertainties of A; and dh;, respectively, and
Cov(%i,%j) is the covariance between dh; and %j. The covariance term is
zero if the errors of dh; are independent between glaciers, however it must be
considered in our case due to the spatial correlation of the errors.

Let T = ) Aj;, the partial derivatives of %Zj with respect to A; and dh;j can
be drived as:

odhy  dhT — Y. Aidh;  dh; — dhy

0A; T2 T
ddhy A
odh; T

which can be substituted into the equation above to obtain the uncertainty of
%Z as:

2 _ 1 Al % % 2 2 AZ 2
%, = 72| o (i — g 0A1+Z 7,
N (4.19)
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Coverting the summation to a double summation over all pairs of glaciers,
we have:

ﬁ\H

o = [ (an; —dhz) o5+

(4.20)
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N
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Consider variogram
V= V(Ud—hi,ad—hj,r,d)
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where 7 is the correlation range and d is the distance between glacier i and ;.
Assuming second-order stationarity, the covariance term can be expressed as:

Cov(dh;, dh;) = OO, ~ V(Uﬁi,a%j,r,d) (4.21)

replacing the covariance term in Eq. (4.20), and re-write the summation as a
double summation over all pairs of glaciers, we have:

1| N2
o2 :ﬂ[Z(dhi—dhz) oA+

i

(4.22)

N N
L2 Al (Uﬁigﬂf a V)
i

In Eq. (4.22), the first term shows that the uncertainty of glacier area is
scaled by the deviation of the glacier’s average dh from the regional weighted
average dhy. The second term shows that the uncertainty of the regional
weighted average, adjusted by the correlation between glaciers, is scaled by
the product of the glacier areas. Note that the second term

1 N N
ﬁ ZZAlAJ(Uﬂ,Oﬂ] — V)
i
is the same as the uncertainty propagation of spatial ensembles derived by
Hugonnet et al. [41].
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CONCLUSIONS AND OUTLOOK

In this dissertation, SAR-based advancements were introduced to study
cryosphere processes in complex alpine environments. Through three inter-
connected studies, novel methodologies and frameworks were developed to
address key challenges in glacier dynamics monitoring, snowmelt mapping,
and mass balance assessments. Collectively, the research demonstrated the
potential of SAR data to enhance the accuracy, scalability, and applicability
of remote sensing techniques, providing valuable insights into glacier flow
dynamics, snow processes, glacier mass change, and their implications for
water resources and climate resilience.

This chapter summarizes the main findings of the three studies conducted
in this dissertation. For each study, the research questions presented in
Section 1.5 are addressed. Following the summary of each study, potential
directions for future work are discussed.

5.1 Cross-Correlation Stacking for Robust Offset Tracking
using SAR Image Time-Series

This study introduced a novel cross-correlation stacking method to improve
offset tracking for measuring ground surface displacements using remote
sensing data. Traditional offset tracking methods relied on pair-wise NCC
to determine displacement offsets, but these methods were often limited by
noise interference, which affected the precision and coverage of the reliable
results. The proposed method addressed this limitation by stacking multiple
pair-wise NCCs from image time-series and averaging them before tracking
the NCC peak. This approach leveraged redundant temporal information
across multiple NCCs, effectively suppressing noise while preserving the
NCC peak height.

In the study, the proposed method was tested on the Great Aletsch Glacier
in Switzerland using SAR images from TanDEM-X and Sentinel-1A missions.
Results demonstrated significant improvements in spatial resolution and cov-
erage of velocity fields, particularly when using smaller image templates. The
study also explored the generalization capability of the method to different
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SAR sensors and acquisition characteristics, highlighting its potential for
broad applications in offset tracking across diverse datasets.

5.1.1 Addressing the research questions

1. How does cross-correlation stacking improve the robustness of displacement esti-
mation compared to single-pair NCC methods?

The study showed that cross-correlation stacking improves the robustness
of displacement estimation by significantly enhancing the SNR of the NCC.
Unlike single-pair NCC methods, which can be more susceptible to noise and
unreliable peak tracking, stacking involves averaging multiple NCCs (e.g.,
from 7-8 images in this study for TanDEM-X and Sentinel-1A data). This
averaging process effectively suppresses noise interference, thereby improving
the SNR and ensuring that the NCC peak can be tracked more reliably and
robustly. As a result, displacement estimation becomes more accurate, with
extended spatial coverage even in challenging conditions, such as areas with
subtle features or high noise levels.

2. Can smaller image templates achieve comparable spatial coverage to larger
templates when combined with stacking? The study confirms that smaller image
templates can achieve spatial coverage comparable to larger templates when
combined with NCC stacking. The research demonstrated that stacking sig-
nificantly enhances the performance of smaller templates, enabling them to
deliver velocity fields nearly equivalent to those obtained using larger tem-
plates in single-pair NCC methods. For example, velocity estimates derived
from small templates of 48 x 48 combined with a stack of seven pair-wise
NCCs were comparable to those generated with larger templates of 96 x 96
pixels using single-pair NCC. This approach is particularly advantageous for
studies focused on small glaciers or regions where the use of larger templates
is impractical, making NCC stacking a more effective and versatile solution
in such scenarios.

3. How does the method generalize across SAR sensors with different resolutions
and acquisition characteristics?

The result of the study shows that the stacking method generalizes effec-
tively across SAR sensors with varying resolutions and acquisition character-
istics. The study demonstrated its applicability to different SAR datasets, such
as TanDEM-X and Sentinel-1A, which differ in resolution, wavelength, and
acquisition parameters. Consistent performance improvements were observed
in spatial coverage and velocity estimation across both datasets. Moreover,
it is argued that the method’s adaptability extends beyond SAR sensors,
showing potential for broader applications, including the integration of data
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from other spectral channels, sensor types (e.g., SAR and optical), and image
combinations from diverse temporal intervals. This flexibility underscores
the method’s capability for generalization and its suitability for leveraging
the expanding archives of remote sensing data.

5.1.2 Outlook for future studies

The proposed cross-correlation stacking method presents promising oppor-
tunities for enhancing offset tracking in glacier velocity monitoring, with
significant potential for future applications. To further develop this method,
several refinements in methodology can be explored.

A key area for future exploration is the optimization of parameters used
for stacking. While this study employed a moderate stacking size of seven to
eight images, further research could focus on identifying the optimal number
of pair-wise NCCs to be used for stacking under various scenarios, such
as differing flow velocities or image acquisition intervals. Additionally, the
influence of surface features on offset tracking performance under varying
stacking sizes warrants investigation. For example, future studies could ex-
amine whether features of smaller sizes are better tracked with larger stacks.
Moreover, although the findings suggest that significant performance im-
provements can be achieved without requiring large stacks, future studies are
needed to refine the trade-offs between temporal resolution, computational
efficiency and tracking accuracy. Adaptive stacking strategies, where the
number of NCCs is dynamically adjusted based on factors like noise levels or
temporal resolution, also offer exciting possibilities for enhancing scalability
and performance, especially in large-scale applications.

Another promising direction involves integrating the method with multi-
sensor and multi-modal datasets. This study highlights the stacking method’s
ability to accommodate data from different sensors, such as SAR and optical
imagery, or across various spectral channels. Building on this foundation,
future research could investigate how combining datasets from multiple
sensors might enhance displacement tracking in regions where single-sensor
data is insufficient. For instance, integrating SAR data with optical or thermal
imagery could improve tracking performance in areas with diverse surface
characteristics or significant seasonal variations. Additionally, the stacking
method has the potential to complement other deformation measurement
techniques, enabling a more comprehensive reconstruction of offset fields. For
example, combining offset tracking with DINSAR could facilitate the tracking
of three-dimensional displacement fields, providing a deeper understanding
of surface deformation processes. This integration could be particularly bene-
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ficial for applications requiring detailed insights into complex geophysical
phenomena, such as glacier dynamics or tectonic activity.

Finally, future research could focus on automating the stacking process
for handling extensive datasets to better leverage the expanding archives
of remote sensing data. This would involve developing efficient algorithms
and workflows that optimize computational performance while maintaining
accuracy. Cloud-based or distributed computing solutions could play a key
role in streamlining processing, enabling the method to handle large-scale
applications effectively. Such advancements would not only enhance the
accessibility of the stacking approach for global monitoring but also broaden
its use in environmental research. By facilitating the analysis of vast datasets,
the method could support efforts to monitor large-scale glacier.

5.2 Mapping Seasonal Snow Melting in Karakoram Using
SAR and Topographic Data

This study focused on mapping seasonal snow melting in the challenging
terrain of the Karakoram region, which was critical for understanding water
resources, natural hazards, and climate impacts. To address the limitations of
conventional remote sensing methods in such complex mountainous areas, a
novel framework was developed to incorporate SAR data and topographic
information. The framework integrated two key indices: the WSI and the TSI
The WSI was derived using the GMM to adaptively process SAR backscatter-
ing data, while the TSI was introduced to account for terrain influences on
wet snow distribution. The proposed method was validated against Sentinel-2
snow cover maps, showing significant improvements in mapping accuracy.
Applied across three major water basins in the Karakoram, large-scale wet
snow maps were generated in this study, offering valuable insights into the
spatial and temporal dynamics of snow melting. The findings contributed to
hydrological modeling, water resource management, and climate resilience
in vulnerable regions.

5.2.1 Addressing the research questions

1. How can SAR and topographic data be effectively integrated to mitigate terrain-
induced errors in wet snow classification?

The study integrated SAR data and topographic information through
two innovative indices: the Wet Snow Index (WSI) and Topographic Snow
Index (TSI) . The WSI is calculated from SAR backscattering ratio using
the Gaussian Mixture Model (GMM). It enables the adaptive processing
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of SAR backscattering ratios to robustly represent the probability of wet
snow presence given the SAR backscattering intensigy. The TSI, on the other
hand, complemented this by incorporating topographic factors to capture
terrain-induced variations in snow presence. Together, these indices effectively
mitigated errors caused by complex terrain, enabling more accurate wet snow
classification.

2. Does the proposed method outperform conventional SAR or optical-based ap-
proaches in mapping accuracy?

Validation against Sentinel-2 snow cover maps demonstrated that the pro-
posed method greatly improved the accuracy of wet snow classification
compared to the conventional single-threshold method. By combining adap-
tive backscatter ratio processing with terrain-based corrections, the framework
addressed the limitations of traditional single-threshold methods, particularly
in high-altitude regions with complex topography.

3. What temporal and spatial insights into snowmelt patterns can be derived from
the application of the method across major basins in Karakoram?

The application of the method produced large-scale wet snow maps across
three major water basins in the Karakoram, enabling detailed analyses of
key snow variables such as the Wet Snow Extent and Snow Melting Dura-
tion. These analyses revealed dynamic patterns in the temporal and spatial
distribution of wet snow, providing insights into snowmelt processes. The
dataset generated by this study offered valuable information for hydrological
model calibration and validation, enhancing water resource management and
climate modeling efforts in the region.

5.2.2 Outlook for future studies

The advancements presented in this study pave the road for several promising
methodology enhancement and application expansion.

While SAR has proven effective, extreme terrain complexity can introduce
geometric distortions, and dense vegetation may interfere with backscatter
signals, leading to challenges in interpretation. Additionally, the 12-day revisit
interval of Sentinel-1 limits the temporal resolution of observations, which
may miss rapid snowmelt events or short-term fluctuations.

To address these challenges, integrating data from other modalities, such as
optical and thermal imagery, into the framework offers significant potential
for improvement. The GMM used in this study provides a flexible mechanism
to convert signals from any modality into a probability metric, such as the
WESI. This capability enables seamless combination of data across modali-
ties, improving the robustness of snow detection under diverse conditions.
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Furthermore, leveraging observations from multiple sensors allows for the
creation of dense time-series datasets, enhancing the temporal resolution and
overcoming the limitations of single-sensor approaches.

Another opportunity for refinement lies in the use of topographic features
for snow presence estimation. While the Topographic Snow Index TSI demon-
strated effectiveness, there is room to better capture the complex interactions
between snow and topography. Certain topographic conditions may lead to
over- or under-estimation of snow probability, highlighting the need for more
advanced methods. Employing cutting-edge machine learning techniques,
such as deep neural networks, could provide a powerful solution to model
these non-linear and highly dynamic interactions more accurately. These tech-
niques are well-suited to handle the intricacies of mountainous terrain and
snow patterns, enabling more reliable and adaptive snow mapping processes.

Beyond these enhancements, additional research directions offer exciting
possibilities. For example, coupling wet snow maps from remote sensing and
snowmelt dynamics from advanced hydrological models could enable more
accurate simulations of water resource availability, enhance streamflow pre-
dictions, support flood risk assessments, and enable early detection of snow
avalanches. By pursuing these opportunities for improvement and exploring
innovative research directions, future studies can refine methodologies for
wet snow mapping while expanding their applications in hydrological mod-
eling, climate adaptation, and disaster mitigation. These advancements will
be crucial for improving water resource management and ensuring resilience
in high-altitude regions facing the impacts of a changing climate.

5.3 Geodetic Glacier Mass Balance in the Karakoram
(2011—2019) from TanDEM-X: An InNSAR DEM
Differencing Framework

This study investigates glacier mass balance (GMB) and elevation changes
(dh/dt) in Karakoram, a region where glaciers exhibit anomalous stable mass
change compared to the global thinning trend. Using long-term TanDEM-
X observations over nearly a decade (2011—2019), this work analyzed the
elevation and mass changes across over 10,000 km?> of glaciated area in
Karakoram. The regional mean dh/dt is 0.0038 = 0.0042 m/yr and the specific
GMB is 0.032 4 0.0052 m w.e. yr !, indicating a near balanced and slightly
thickening tendency. Spatial patterns of the elevation change are strongly
heterogeneous, with contrasting behaviors between surge-type and non-surge
glaciers. These findings underscore the complexity of Karakoram glacier
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dynamics, shaped by climatic forcing, topographic controls, and glacier-
specific dynamics.

To address the challenges of measuring glacier mass balance in complex
terrains, the study proposed and implemented a comprehensive framework.
This framework integrated high-resolution DEM generation, advanced ele-
vation change mapping, and rigorous uncertainty quantification methods.
It proved effective in producing accurate and scalable glacier mass balance
assessments, offering a methodological foundation for future studies in other
glaciated regions.

5.3.1 Addressing the research questions

1. What are the spatial patterns and magnitude of elevation changes (dh/dt) and
glacier mass balance in the Karakoram region during 2011-20197

The study revealed that glaciers in the Karakoram region were in a slightly
negative or near-equilibrium state during the study period, with a regional
mean dh/dt of 0.0038 &= 0.0042 m/yr and a specific mass balance of 0.032 +
0.0052 m w.e. yr~ . Spatial analysis indicated an increasingly thickening trend
from the east to the west, except for a cluster of debris-covered glaciers in the
western region. These findings emphasize the spatial heterogeneity of glacier
behavior in the Karakoram and are consistent with previous studies, further
reinforcing the unique stability of glaciers in this region compared to other
parts of the Himalayas.

2. How do surge-type and non-surge glaciers differ in their elevation change and
mass balance behaviors?

Surge-type glaciers demonstrated relatively stable or thickening trends,
with an average dh/dt of 0.019 & 0.0052 m/yr and a specific mass balance
of 0.0161 + 0.0063 m w.e. yr~1. In contrast, non-surge glaciers exhibited thin-
ning trends, with an average dh/dt of —0.0058 £ 0.0044 m/yr and a specific
mass balance of —0.049 & 0.0067 m w.e. yr . These findings highlight the
importance of accounting for the diverse glacier dynamics in the region,
particularly the distinct behaviors of surge-type and non-surge glaciers, to
fully understand the spatial and temporal variations in glacier mass balance
changes.

3. Can a comprehensive framework combining advanced DEM generation, elevation
change mapping, and uncertainty analysis improve glacier mass balance assessments
in complex terrains?

The study developed and validated a robust, comprehensive framework
that integrates high-resolution DEM generation, advanced dDEM processing,
and rigorous uncertainty quantification. This framework effectively addressed
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challenges posed by the Karakoram’s complex terrain, enabling accurate
assessments of glacier elevation changes and mass balance. By utilizing
TanDEM-X observations and innovative methods for void filling and error
modeling, the framework significantly reduced measurement uncertainties
and improved the reliability of results. Its scalability and adaptability make it
a valuable tool for glacier mass balance studies in other complex and glaciated
regions worldwide.

5.3.2 Outlook for future studies

This study has laid a strong foundation for understanding glacier dynamics in
the Karakoram region by addressing the challenges of measuring glacier mass
balance in complex mountainous terrains. While the methods and findings
presented here provide valuable insights, there remain several opportunities
to further enhance this field of study.

One key area for improvement is to further employ the full temporal
observations collected by the TanDEM-X mission over nearly a decade. In
this study, only the data collected at 2011 and 2019 were used to generate
DEMs. Although this provides a time-sensitive measurement of elevation
change, it represents only a static status of the elevation and mass changes
during this period. Expanding the analysis to include the entire time series
would enable a more detailed and robust assessment of temporal trends
and inter-annual variability, offering a more dynamic perspective on glacier
behavior and its evolution over time. From this perspective, the continuation
of a single-pass SAR mission for DEM generation after the TanDEM-X would
be highly beneficial to ensure long-term monitoring of elevation changes and
glacier dynamics.

Another important direction is the refinement of radar signal penetration
bias quantification. As this study exclusively used TanDEM-X data to cal-
culate elevation differences, it was assumed that penetration biases were
effectively canceled out. Nonetheless, variations in surface conditions can
significantly influence radar penetration, potentially introducing additional
uncertainties. Future research could focus on developing robust methods to
quantify penetration biases under diverse surface conditions, further reduc-
ing measurement uncertainty and improving the reliability of glacier mass
balance assessments.

Furthermore, scaling up this methodology to larger regions is another
promising direction. Applying this framework on a global scale would require
more efficient processing algorithms and enhanced computational capabilities.
Advancing these technical tools would enable comparative analyses across
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diverse glaciated regions, helping to identify global patterns and regional
anomalies in glacier responses to climate change.

By addressing these opportunities, future research can build on the ad-
vancements of this study to unravel the complexities of glacier dynamics and
their critical role in the Earth’s climate system. These efforts will not only
deepen scientific understanding but also support practical applications in
sustainable water resource management and climate adaptation strategies in
glacier-dependent regions worldwide.

5.4 Summary and outlook of the dissertation

In this dissertation, the application of SAR in alpine cryosphere studies has
been advanced by developing innovative methodologies and applying them
in diverse alpine regions, including the Alps and the Karakoram. The three
studies presented in this dissertation have demonstrated the potential of SAR
to enhance the accuracy, scalability, and applicability of remote sensing tech-
niques for monitoring glacier dynamics, snowmelt and glacier mass balance.
These advancements provide deeper insights into the interactions between
glaciers, snowpack, and climate change, offering important implications for
water resource management and climate adaptation strategies in vulnerable
alpine environments.

The primary contributions of this research include the development of
a novel cross-correlation stacking method for glacier velocity tracking, an
integrated framework for seasonal snowmelt mapping, and a comprehensive
methodology using INSAR derived DEMs for assessing glacier mass balance.
Collectively, these innovations underscore the transformative potential of
SAR data in cryosphere studies, offering crucial insights for climate resilience,
sustainable water management, and environmental monitoring.

Looking into the future, the methodologies and frameworks developed
in this dissertation establish a foundation for continued advancements in
cryosphere research, particularly as new SAR technologies and satellite mis-
sions emerge.

In recent years, the SAOCOM (Satélite Argentino de Observacién Con
Microondas) constellation has delivered high-quality L-band SAR data with
an 8-day revisit interval [1]. These data have shown promising results in
retrieving soil moisture, demonstrating performance comparable to Sentinel-
1 [2]. Given the similarities between detecting soil moisture and snow wetness,
the proposed snowmelt mapping framework could be applied to SAOCOM
data to produce comprehensive wet snow maps for alpine regions.
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In a near future, the NISAR (NASA-ISRO Synthetic Aperture Radar) mis-
sion, scheduled for launch in 2025, will offer L-band SAR data with validated
capabilities for glacier velocity monitoring [3]. The unique penetration char-
acteristics of L-band SAR, compared to the X- and C-band SAR data used
in this dissertation, can enhance the cross-correlation stacking method by
providing complementary insights into deeper layers of snowpack and glacier
ice. This integration could further improve the robustness of glacier dynamics
tracking and expand the applicability of the developed methodologies.

In the longer term, although the TanDEM-X mission is still in operation, its
data acquisition frequency has been significantly reduced, and the mission
is preliminarily scheduled to conclude around 2028-2030[4]. Building upon
the legacy of TanDEM-X, the European Space Agency’s Harmony mission,
expected to launch around 2029-2030, will form a bi-static constellation with
two passive satellites and one Sentinel-1 satellite [5]. This mission will enable
the generation of DEM time-series using INSAR, similar to TanDEM-X, to
extend long-term DEM measurements into the next decade. By combining
the DEMs generated by Harmony with the glacier mass balance assessment
framework developed in this dissertation, long-term glacier dynamics can
be monitored with high temporal resolution. This will provide a more com-
prehensive understanding of glacier mass change trends and their temporal
variability, offering deeper insights into the impacts of climate change on
glaciers.

Future research can build upon these approaches to explore broader spa-
tial and temporal scales, integrate additional remote sensing techniques,
and address pressing questions in cryosphere-climate interactions. Interdisci-
plinary collaborations—spanning hydrology, climatology, and geospatial data
science—can unlock new opportunities for advancing cryosphere research
and tackling the challenges posed by climate change. In conclusion, this
dissertation contributes to the broader goal of understanding and mitigating
the impacts of climate change on the alpine cryosphere. By advancing SAR
applications in alpine cryosphere studies, this dissertation has provided lo-
cal and global communities with valuable tools and insights for building a
sustainable future.
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