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Abstract

For many machine learning tasks, labeled data are crucial. Even though there are methods that can be trained with data
with only few labels, most of the tasks require many labels. In satellite operations, a huge amount of data are generated by
the telemetry parameters of a satellite that keep track of its status. Modern satellites collect telemetry data of thousands of
parameters. For example, the GRACE Follow-On satellites, operated by the German Space Operations Center (GSOC) at the
German Aerospace Center (DLR), define about 80,000 unique housekeeping parameters each. However, all these telemetry
data lack a complete/holistic set of labels. These data are usually unpredictable, hard to reproduce, and very diverse. As a
consequence, expert knowledge is necessary to label these data, e.g., with anomalies. Moreover, labeling data by hand can be
very time-consuming and, therefore, expensive. To overcome these obstacles, we implemented a synthetic satellite telemetry
data library that is able to (a) generate a large variety of telemetry-like data, (b) add a plethora of well-defined anomalies
to these data, and (c) deliver the labels for these injected anomalies. With these data, we are now able to train, validate, and
test our machine learning models. Furthermore, we can compare different models with reproducible data. Since satellite

telemetry data are often strictly confidential, we can share these synthetic data easily with our research partners.

Keywords Satellite telemetry - Machine learning - Anomaly detection - Synthetic data - Labeled data - Software

development

1 Introduction

Nowadays, the usage of Machine Learning (ML) soft-
ware tools is routine in many disciplines, also in the space
domain. These tools are able to analyze huge amount of
data and unburden humans from monotonous tasks. Many of
the ML software tools use statistical methods to learn from
examples, i.e., from labeled data. In our field of expertise—
satellite operations—anomaly detection in satellite telemetry
data is a typical use case. Here, ML software tools are scan-
ning through huge amount of telemetry data and check for
anomalous behavior, which is traditionally a task of system
engineers. However, to implement such ML tools, labeled
data is needed. Those labels, which indicate nominal and
anomalous data, represent the examples from which the tool
learns. With such a data set, the ML model of the tool can be
trained, so that it learns how nominal data looks like and is
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then able to distinguish anomalous from nominal behavior.
In general, huge amounts of satellite data are already avail-
able but, most of the time, they lack labels. And since labe-
ling data by hand is a very time-consuming and therefore
expensive task, the need for an automatic solutions is given.
As described in Sect. 2, some labeled telemetry data sets can
be found online. However, these data sets are the results of
former projects and built for a specific use case. They may
not completely cover the need of new projects and may need
to be adapted; again a time-consuming task. Therefore, a
more customizable solution is needed.

In this article, we present our Python library for the gen-
eration of synthetic satellite telemetry data. In particular,
we focus on its flexible and generic architecture. With this
library, we can create data sets for ML training that contain
various types of telemetry data. Inspired by the possibil-
ity to inject different kinds of anomalies into the generated
telemetry data and document them by labels, we present use
cases for miscellaneous scenarios. The generated training
and validations data sets, for example, are suitable for many
kinds of ML or deep learning applications. Moreover, only
with a diverse and large set of labeled data, ML models can
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be trained more robust and make the initial training easier
and more generic. Such generated models can be transferred
and retrained for specific use cases. Another use case would
be the test of already existing ML software tools on the one
hand as a benchmark tool and, on the other hand, as quality
check for already-in-production software, where effects of
model updates have to be controlled. With these use cases,
we demonstrate the capabilities of our synthetic satellite
telemetry data library.

This paper is structured as follows: in Sect. 2, we pre-
sent related work and focus on publicly available data sets
as well as on open source frameworks which can generate
synthetic telemetry data. The next Sect. 3 is dedicated to
our library for synthetic satellite telemetry data with all its
features and its derived architecture. How we use this library
is described in Sect. 4 and demonstrated on actual use cases,
like supporting the process of software development and
the development our anomaly detection ML tool, ATHMoS
(Automated Telemetry Health Monitoring System) [1, 2]. In
Sect. 5 on Proofs of Concept, we demonstrate the capabili-
ties of the library by mocking real satellite parameters and
using these data to train an anomaly detection framework in
two different scenarios. Future work in Sect. 6 gives a short
outlook on planned future extensions of our library.

This article finishes with a summary and a conclusion in
the last section, Sect. 7.

2 Related work

This section first gives an overview of publicly available
data sets, a common source for labeled data sets to train and
test ML models on. Further in this section, programming
frameworks that generate time series data will be discussed.
The focus of this section, as of the whole paper, will be on
data similar to satellite telemetry.

2.1 Public data sets

As mentioned in the introduction, labeled data are necessary
for training a ML model. A common source for these kinds
of data are publicly available labeled data sets that can be
easily accessed, e.g., by downloading them from the Inter-
net. These data sets often originate from research projects
or publicly funded projects and are derived from real world
as well as synthetic systems. Since these public data sets
are widely used, most of their downsides are known and
discussed on public forums. One disadvantage of these data
sets is that they stay fixed after being published and cannot
be easily expanded, e.g., with more labels. Also, while most
sources or data owners are well known and reliable, it is not
a given that public data sets contain what is promised by
their publishers. It is also not ensured that the data sets will
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be available in the future or that possible changes to the data
sets by the data owners are tracked and previous versions
remain available. Furthermore, one has to take the license
under which the data set is distributed into account. It may
actually forbid certain use cases, e.g., the training of com-
mercial or military ML models. Lastly, the ownership of a
model trained with public data sets may not to be clear. We
want to provide a short overview of publicly available data
sets relevant to the topic of this paper.

The first data set [3] derives from telemetry data of the
European Space Agency’s (ESA) Mars Express orbiter [4]. It
was published about six years ago during a hackathon [5] to
predict the average current in each of the 33 thermal power
lines. The data consists of a training set containing three
Martian years worth of context and electric current measure-
ments data. The provided test set includes the context data
only and entails, among other things, mission operations
plan files, solar angles, and distances.

Notably, the ESA Anomaly Dataset [6], is providing a
large-scale satellite telemetry data set annotated with curated
anomalies from three ESA missions. Developed through an
18-month consortium project involving Airbus Defence and
Space, KP Labs, and the European Space Agency’s Euro-
pean Space Operations Centre (ESOC), this comprehensive
data set enables benchmarking and validation of anomaly
detection models and approaches [7, 8]. It is part of ESA’s
Artificial Intelligence for Automation (A%I) Roadmap ini-
tiative [9], launched in 2021 to harness Al capabilities for
automating space operations.

The project Telemanom utilizes LSTMs, implemented
with TensorFlow (i.e., Keras), to detect anomalies in multi-
variate sensor data [10, 11]. It provides telemetry from real
spacecrafts with labeled anomalies, the Soil Moisture Active
Passive (SMAP) satellite [12] and the Curiosity rover on
mars (MSL) [13].

The Challenger USA Space Shuttle O-Ring data set [14],
published on the UC Irvine Machine Learning Reposi-
tory [15], contains data related to the shuttle’s O-ring dur-
ing launch on 28 January, 1986. After the launch, the USA
Space Shuttle Challenger exploded.

On the very same archive, a data set from a space shuttle
landing control system [16] can be found, as well as the stats
logs [17]. These space shuttle data sets are also available on
the ODDS Web page [18], which provides access to a large
collection of outlier detection data sets with ground truth.

For the sake of completeness, we want to mention four
popular time series data sets not related to the space domain.
The first one is the data set used for The Third International
Knowledge Discovery and Data Mining Tools Competi-
tion [19], which was held in conjunction with The Fifth
International Conference on Knowledge Discovery and
Data Mining [20]. The competition task was to build a (com-
puter) network intrusion detector. To this end, this data set
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is composed of nine weeks of raw TCP dump data from a
local-area network (LAN), which includes a wide variety
of intrusions simulated in a military (computer) network
environment.

The UCR Time Series Classification Archive [21, 22] pro-
vided by the University of California, Riverside, contains
a wide variety of time series data sets from many different
sources and is a common data set collection for benchmark-
ing. It is preprocessed in the sense that the data is already
normalized as well as split into a training and testing sets,
the latter aiming towards reproducibility of the results.

Climate Data Online (CDO) provides free access to
United States National Climatic Data Center’s (NCDC)
archive of global historical weather and climate data [23] in
addition to station history information. These data include
quality controlled daily, monthly, seasonal, and yearly meas-
urements of temperature, precipitation, wind, and degree
days as well as radar data and 30-year climate normals.

The last data collection is made up of 58 time series
data files that are designed to provide data for research in
streaming anomaly detection. This repository [24] contains
the data and scripts which comprise the Numenta Anomaly
Benchmark (NAB). It includes both real-world and artificial
time series data containing labeled nominal and anomalous
periods of behavior.

2.2 Programming frameworks

With programming frameworks that generate telemetry-like
data, custom data sets can be built and adapted to certain
needed characteristics. This makes frameworks very interest-
ing for model training because the data sets can be adjusted
to the specific problem domain. For benchmarking or com-
paring models with other competitors, the programming
parameters used to generate the data sets can be shared. In
this section, we will investigate frameworks that use classic
solutions, i.e., deterministic approaches, to generate the data
sets as well as solutions employing probabilistic approaches.
An important remark is that none of the investigated solu-
tions are capable to generate labeled data sets. Therefore,
the focus lies on the generation of synthetic time series data
resembling satellite telemetry.

There are many frameworks capable of generating syn-
thetic time series data. For example, the open source library
TimeSynth [25] can generate synthetic time series for model
testing. The library can produce both regularly and irregu-
larly sampled data. Its generic architecture allows the gen-
eration of a plethora of different signals, e.g., harmonic func-
tions, pseudo-periodic signals, and many more.

The Python library tsBNgen [26] generates time series data
sets based on an arbitrary Bayesian network structure. It han-
dles discrete nodes by using a multinomial distribution, con-
tinuous nodes by using a Gaussian distribution, and can form

a hybrid network using a mixture of discrete and continuous
nodes.

In [27] Zhang et. al. propose a novel data-driven approach
to synthetic data set generation for smart-grids. Using a real
data set as input, its conditional probability distribution is
learned using deep Generative Adversarial Networks (GANS).
The generated synthetic samples are based on the learned
distribution.

The paper [28] proposes a new probabilistic forecast model
for multivariate time series also based on Conditional GANS.

This multivariate approach makes it interesting for generat-
ing more complex data sets even if the focus of the paper is on
forecasting data and not on generating data sets.

The authors of the paper [29] focus on one dimensional
times series and explore a “few shot” approach. With a “few
shot” approach, a model can be trained with only little data,
e.g., only a few labeled samples per class. To achieve that,
they are using two GANs simultaneously to model fake time
series examples. The ability to learn from little data makes
this an interesting feature, also for the satellite domain. In that
domain, since the usage of operational data as training data is
very common, only short snippets of nominal telemetry data
are often available.

In [30], two reconstruction methods are proposed for syn-
thetic time series generation, named Rank-wise and Step-wise
methods. For their use case to simulate wind speed, the authors
demonstrate the potential of the developed models over other
synthetic time series generation methods such as the Markov
chain method or an autoregressive method.

SynSys [31] generates synthetic time series data that is com-
posed of nested sequences using hidden Markov models and
regression models. Initially, the models are trained on real data
sets. The author’s goal is to create realistic synthetic smart
home sensor data that reflects human behavior.

Since large language models like ChatGPT [32] show
astonishing results in numerous domains, the authors of [33]
propose a foundation model for time series data, named
TimeGPT. With that model, the generation, i.e., prediction
of time series data is possible. However, the model with its
framework is still in a early development stage and not open
for a broad public, therefore, we could not test this promising
new approach.

In the next section, we present our library for synthetic
satellite telemetry data, that is capable of producing various
telemetry like time series data including a wide variety of
labeled anomalies.
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3 Library for synthetic satellite telemetry
data

The Synthetic Telemetry Data library can create satellite-
like telemetry data including labeled anomalies. It provides
various generators for synthetic telemetry data and differ-
ent kinds of anomalies. Both the generated telemetry data
resemble real satellite telemetry data, and the generated
anomalies resemble typical anomalies that can usually be
found in real satellite telemetry. These generated data pro-
vide robust training data sets for ML tools, especially in
the space domain, where the lack of labeled data or even
nominal data, that can be used for training tasks, is evident.
The data, i.e., the signals and anomalies, are generated by
deterministic processes and can be re-produced by re-using
the same function-parameters.

This makes the library suitable for research and bench-
marking of ML models where reproducible results are
crucial.

Since Python became the de facto standard in data sci-
ence, the synthetic telemetry library is implemented as a
modular Python library and can be integrated seamlessly
into Jupyter notebooks or any other Python-based data sci-
ence tool. In general, the development follows the KISS-
Principle, keep-it-short-and-simple, which results in a code
basis that is both easy to maintain and to extend. With its
simple and intuitive usage, the library is applicable even
by inexperienced programmers and fits well into the whole
Python ecosystem. With respect to a stable support, reliabil-
ity, and security, the library only depends on few third-party
Python libraries that are widely-used and well maintained
such as Pandas, Numpy, or Scipy.

In the following parts, key design decisions explaining
the architecture of the library are presented.

3.1 Architecture

For us, a signal is a one-dimensional sequence of plain data
points. Telemetry, on the other hand, is a signal with added
time information for each data point, which makes it a two
dimensional structure; a time series. Therefore, the library
is separated into two main modules, see Fig. 1: the Synthetic
Signal module and the Synthetic Telemetry module.

3.1.1 Synthetic signals

The Synthetic Signal module can generate signals of vari-
ous types. Currently, there are thirteen predefined signal
types available. Moreover, the module provides the possi-
bility to build signals from chunks of real satellite telem-
etry data, from combinations of arbitrary signals, or from
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Fig. 1 Synthetic satellite telemetry library’s architecture

Synthetic Signal
with Anomalies

(mathematical) functions. From our experience as a mission
control center, these types already cover a very large range
of typical satellite telemetry signals.

The implementation of the signal types uses the con-
cept of Python Generator functions that behaves similar
to an iterator. Therefore, generators are very memory effi-
cient since they generate only as much data as needed or
demanded. With this efficient concept, signal generators
can produce continuous streams of data that can be used
to simulate real-time telemetry reception. Moreover, with
generators it is possible to change the configuration of the
produced data during run-time. This means that the signal
parameters can be changed, e.g., the frequency of a signal
or the signal amplitude. That way, anomalies can be injected
during the streaming process and provide an option to test
and benchmark real-time systems.

The main library’s features for the users are:

Predefined signals

The predefined signals form the basis for a fast and easy
creation of custom data sets. Furthermore, these types can be
used to create more complex signals by combining them to
new signals, e.g., Fig. 2d shows an addition of a Sine signal
generator and a Cosine signal generator. The implementa-
tion uses a generic Python generator that derives arbitrary
signal data from a given input function definition. With that
generator and predefined function definitions, we can pro-
vide some basic signal types to the users that are common in
satellite telemetry data or that can be used as basis for more
complex signal types. All thirteen predefined signal types
are fully customizable by changing the function parameters
like frequency, amplitude, etc.:

Flat: just a straight line, i.e., a constant function.

Sine: a plain Sine curve.

Cosine: a plain Cosine curve.

Square: a box-shaped signal with identical boxes dimen-
sions.

Triangle: a saw tooth signal, triangle shaped.

e Step: aflat signal with one step after a defined number of
points.
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Fig.2 Synthetically gener-
ated signals with the number :
of points on the x-axis and the L|‘
amplitude value on the y-axis .

(a) Random modes signal that changes between the values 1,2, and

4 randomly.

(c) Signal derived from real satellite telemetry.

e Steps: araising step function with steps of equal size.

e Steps Random: a raising step function with steps of ran-
dom size (see Fig. 2b).

e Modes: a signal that changes between different levels,
resembles different operation modes of satellites.

e Modes Random: a signal that changes between different
levels randomly (see Fig. 2a).

e Ramp: a continuous increasing or decreasing signal, like
the power level of a loading battery.

Signals from real telemetry snippets

In satellite operation, most of the telemetry data does not
contain any anomaly because anomalies occur very rarely
on satellites. Therefore, the library provides the option to
generate signals from real satellite telemetry snippets as
depicted in Fig. 2¢c. These snippets are repeated indefinitely.
However, the generators built from snippets act and can be
used exactly like the predefined synthetic signal generators
which means all available anomalies are also applicable
to these kind of generators. Using this method, the signal
parameters like the frequency or the amplitude of a signal
can be changed. With the option to take nominal satellite
telemetry data and inject artificial anomalies (at well defined
time points), we can generate very realistic training data
with a representative nominal/anomalous rate for ML tasks.

Combinations of signals

Several signal generators of any kind can be combined
by mathematical operator, e.g., plus, minus, or modulo,
to a new signal generator. This type of signals resembles
the principle of frequency modulation where a carrier
signal wave is modified by the transmitted information,

Fig.3 Synthetically generated
telemetry with injected anoma-
lies and labels. On the x axis the
time information is displayed,
on the y axis the amplitude

(a) Sine signal with white noise, labeled outliers, and gaps.
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(c) Sine signal with frequency changes.

e

(b) Steps random signal with varying step size.

B aa

(d) Plain sine signal with an cosine signal added.

a common technique in telecommunications engineering.
Thus, it allows the users to build complex signal combi-
nations like a Cosine signal on top of a Sine signal, see
Fig. 2d.

Signals from functions

For users who need special signals which are not
included into our predefined signal set, the library pro-
vides the possibility to generate signals from (mathemati-
cal) functions, i.e., Lambda expressions. That way, the
user has the freedom to build very specific custom signal
types which can be used like the predefined ones.

Injected anomalies

To us, an anomaly means that the signal data is different
compared to the rest of the signal, in other words: the data
is different from what is expected. If you are working with
data streams, then you can already inject anomalies during
the signal generation process. These anomalies are real-
ized as generators, too, and can be combined in any pos-
sible way. Therefore, you can easily modify your Python
program to use signals with any anomaly by just exchang-
ing a signal generator with an anomaly generator. The
anomalies will be added randomly to the signal as long as
the generator is active and generates data. However, that
way, no labels for the anomalies will be generated.

The library offers eight different anomaly types:

e QOutliers: adds data points that differ significantly from
other data points to the signal, visually a peak or a drop in
the data (see Fig. 3a). In real satellite telemetry, this is a
very common anomaly. Possible causes are transmission
errors, interferences, or even hardware defects on board

the satellite.

) Sine signal with amplifications.

(d) Real signal with frequency changes.
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e Gaps: deletes data points from the signal flow to intro-
duce gaps, see Fig. 3a. In real satellite operations, this
is a common anomaly caused by, e.g., transmission
errors.

e White-Noise: adds random samples from a normal
(Gaussian) distribution to the signal (Fig. 3a). The
white noise can be added to the complete signal dura-
tion or limited to only certain sections of the signal.
Satellite telemetry can be affected by solar flares or
other natural phenomena such as atmospheric noise
that can cause this kind of anomaly.

e Trends: causes a continuous increase or decrease of
the signal. On satellites, this anomaly can indicate a
degradation of components like the battery cells.

e Signal-shifts: shifts the frequency of the signal by a
certain factor. This can also happen in satellite telem-
etry, caused by, e.g., the Doppler effect [34].

e Resolution changes: increases or decreases the resolu-
tion of the signal. They appear in real data when the
satellite has contact with the ground station — the direct
up- and down-link to the ground station enables larger
data rates because the generated data does not have to
be stored on the limited on-board storage device of the
satellite.

e Frequency changes: changes the frequency of the signal,
see Fig. 3c and d. This is also a phenomenon that is
induced by ground station contacts.

e Signal amplifications: increases or decreases the ampli-
tude of the signal as seen in Fig. 3b. This can be caused
by overlay effects or interferences of different signals.

Technically speaking, the plots in Fig. 3 show telemetry
data with anomalies instead of plain signals. However, the
only difference to plain signal plots, as shown in Fig. 2, is
the depicted time information on the x axis instead of the
number of points.

For some anomalies, e.g., white noise or trends, the dura-
tion can be defined. If the duration lasts the whole signal
time span, the anomaly becomes the nominal behavior of
the signal, e.g., like the white noise in Fig. 3a.

Some anomaly types can be seen as nominal behavior too,
e.g., signal shifts, resolution, and frequency changes. These
anomalies can be caused by the routine satellite operations
like maneuvers or ground contacts procedures. Based on
that, satellite operators would see them as nominal data, not
as anomalies. However, we stick to our strict anomaly defini-
tion (see Sect. 3.1.1) and interpret every divergent behavior
as anomalous behavior. In the end, the user can decide: if a
divergent behavior is included into the training data set, then
the trained algorithm will learn this divergent behavior as
nominal behavior. If the divergent behavior is only put into
the test and validation data sets, then the divergent behavior
will be detected as anomalous behavior.
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3.1.2 Synthetic telemetry

The library module Synthetic Telemetry adds the time infor-
mation to the generated signal. Furthermore, it contains func-
tions for visualizing, editing, and exporting time series data
sets. But its main purpose is to add anomalies with labels to
the telemetry data. This means that, in contrast to the Syn-
thetic Signal module, labels are generated after the anoma-
lies are injected. Labels include the kind of the anomaly, the
start and end time stamp, and the parameters necessary for
the recreation of the injected anomalies. All these data can be
exported into a file and stored within a data set to guarantee
the reproducibility of the data. The module provides exactly
the same types of anomalies as the Synthetic Signal module
(see Sect. 3.1.1). However, since the injection of the anoma-
lies happens after the signal generation and with the added
time information, which implies that we now handle finite data
with a well defined start- and end-date, the user can define
the properties of the anomalies with respect to the whole data
set more precisely, e.g., the likelihood of an anomalous event
within the data set. In Fig. 3, some example signals with their
anomalies and labels are plotted using the whole functionality
of the Synthetic Telemetry module.

3.2 Synthetic telemetry data set generation

The generation of synthetic telemetry data sets can be eas-
ily automated via Python scripts. For example, for anomaly
detection in satellite telemetry data, a data set typically
consists of training data (without anomalies) and test and
validation data sets which include anomalies. The size of
these data sets can be huge (with several gigabytes of data)
and should include different kinds of signals combined with
different kinds of anomalies. For our data sets, we use the
following workflow, see Fig. 4.

First, a signal has to be generated, i.e., the plain data
points without any time information with the help of the
Synthetic Signal module. After that, the time information
has to be added to the signal by the Synthetic Telemetry
module and the desired anomalies have to be injected. Since
the generation of each single telemetry parameter is inde-
pendent, we use threads to generate more parameters in
parallel (be careful with your computer memory (RAM)).
Finally, the script stores a file for each telemetry param-
eter data with its configuration, which finalizes the data set
generation.

4 Use cases

Our original motivation for developing the synthetic telem-
etry data library was to create a flexible data set genera-
tor for ML tools training data. However, after finishing the
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implementation of the library, we have identified several
other fields of application that we present in this section.

4.1 Software development

Software development usually cycles over many phases.
While there are many use cases to explore in the various
phases, e.g., using synthetic data for more realistic mock-
ups during the design phase or to get an understanding for
the input when engineering the requirements, we want to
describe two use cases we see as the most promising at
the German Space Operations Center (GSOC). First, we
describe the benefits of the synthetic data for testing and
continuous integration (CI) of the software product. The sec-
ond main use case is the development of prototypes which,
especially for data science related applications based on
ML methods, require reliable and labeled data as input for
a proper evaluation.

4.1.1 Continuous integration and testing

Typical CI pipelines nowadays automate many steps such as
checking the code style, building the product, or generating
documentation and release notes. At GSOC, we often use
these pipelines implemented in GitLab, our version control
system, to ensure and improve the quality of our operational
software such as our mission planning system [35, 36]. An
example of a successful CI pipeline is depicted in Fig. 5.

backend_lint frontend_test

frontend_lint integration_test

graphigLint sbi_test

Fig.5 Example of a successful CI pipeline at the GSOC including
code validation, style checks, building, testing and generation of doc-
umentation

When applying CI to software implementing ML methods,
the evaluation of the algorithm’s performance or the opti-
mization and generation of the ML model are also often an
important part of the CI pipeline. Both of these steps almost
always require an accurately labeled data set to base their
results on. While using a synthetic data set for the model
generation could lead to overfitting depending on the ML
method and its application, it brings a great benefit to the
performance evaluation of the algorithm in the CI pipeline.

The labeled synthetic data can be used to assess both
the computational performance of an algorithm as well
as its performance in terms of accuracy. To evaluate the
computational performance, the data set can be constructed
to contain samples with a realistic frequency over a typi-
cal timespan which the algorithm should be able to han-
dle. Evaluating the algorithm on the same hardware in each
triggered pipeline and recording its execution time allows
to track whether changes or updates to the software or its
imported libraries slow down the algorithm. The accuracy of
an algorithm can be evaluated using a labeled data set fitting
the algorithm’s application. For, e.g., measuring the perfor-
mance of ATHMoS, our telemetry anomaly detection ML
tool, synthetic data containing various labeled anomalies can
be used to compute evaluation metrics such as the F1 score
or the receiver operating characteristic (ROC). A deteriora-
tion of the algorithm or its configuration can be measured
in each pipeline execution and ensures the software yields
good results with respect to the synthetic baseline. Should
new behaviors occur or requirements change, the synthetic
data set can easily and reliably be regenerated to reflect the
changes.

4.1.2 Prototyping

When developing software prototypes for ML applications,
labeled data is vital as it provides a basis for the evaluation
of new approaches. In the domain of spacecraft operations,
a large and reliable data set is often not available or of confi-
dential nature. The synthetic labeled data set can solve these
issues.

One example of the data set’s benefits is the development
of a real-time version of ATHMoS, the anomaly detection
system at the GSOC. ATHMoS was originally designed as
a batch processing system for low-orbit satellites. In this use
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case, telemetry data is only available during ground contact
and all data is downloaded and analyzed afterwards. How-
ever, GSOC also operates geostationary satellites. For those
satellites, an almost permanent connection to the satellite
is available and we aim to optimize ATHMoS to run as a
real-time system as well. Therefore, we implemented a CI
pipeline that is using the synthetic data to measure how fast
the system reacts to new behavior and which data rate can
be handled realistically. After each run, this pipeline gener-
ates a web page containing a summary of the results of the
measurements. From the results, developers can quickly get
feedback about their new optimizations. Figure 6 depicts the
result page with the top plot showing the training and test
data with the computed anomaly scores for a simple sine
wave shaped telemetry. For a better comparison, the training
and test data are plotted as line plots underneath.

Another example is the classification of various behav-
iors, both anomalous as well as nominal. As the synthetic
data generator also provides labels describing the type of
the introduced behaviors, methods correctly classifying the
different behaviors can be researched and prototyped using
the synthetic data set.

4.2 Anomaly detection

Synthetic data also has many applications for anomaly detec-
tion. While using labeled, real-world data would be optimal,
it is also often not feasible to spend many engineers’ hours
on labeling to get such data. Instead, one can rely on syn-
thetic data which can include artificial anomalies and their
labels to create fully labeled data sets.

Most importantly, one can use labeled synthetic data to
test different Al methods, e.g., while developing your own
algorithm, and also to benchmark different AI models using
standardized training and test sets. Finally, one might run
into situations where there is not sufficient training data
available, e.g., because the system is very new. Using the

Realtime ATHMoS Minimal on Sinus (SEED: 41)

nnnnnn

Fig.6 Data science CI pipeline results of real-time ATHMoS
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synthetic data generator we can use expert knowledge to
create artificial time series which are sufficiently close to the
real data. This synthetic data can be used to train the initial
Al model for anomaly detection.

4.2.1 Method testing

When developing a new method for anomaly detection, one
has to check that a sufficient amount of anomalous behavior
has been detected, in particular that both the rate of false
negative (missed) detections and the rate of false positive
detections is sufficiently small. Since Al developers often
do not have labeled data available — just like our satellite
data at GSOC - the only way to verify the results of dif-
ferent Al models is to verify detections as anomalies, e.g.,
by discussing detections with the our satellite engineers. In
contrast, without labeled data, it is hard to make sure the
models haven’t missed any significant anomalies.

Using fully labeled, synthetic data enables developers to
automatically compute both the false negative and false posi-
tive rate, and tweak their models to lower those rates.

4.2.2 Benchmarking

Similar to the use case in the previous section, one can use
the fully labeled, synthetic data set to benchmark different
ML algorithms. A complete set of labels allows the devel-
oper to determine the number of true positives (detected
anomalies) and the number of true negatives (not detected
nominal behavior) as well as the number of false nega-
tive (not detected anomalies) and false positive detections
(detected nominal behaviour). Using those numbers, one can
compute different metrics to evaluate the precision of the
model, such as the F1 score or the AUROC score.

To provide an example, we benchmarked the algorithm
used in ATHMoS, the outlier probability via intrinsic dimen-
sion (OPVID) [1], against the local outlier probability algo-
rithm (LoOP) [37]. Four different synthetic signals derived
from real telemetry signals along with injected anomalies
were used for this benchmark, see Sect. 3.1.2. In Fig. 7, we
can see that ATHMoS performs better for this type of data
and injected anomalies with respect to the AUROC metric.
In addition to the model precision, a standardized data set
can also be used to evaluate the performance of the model.
This includes the time needed for training the model and
testing/inference, and the data capacity, in particular for stor-
ing the model.

4.2.3 Training of Al methods for anomaly detection
A final use case at GSOC is using synthetic data to train an

Al model where we currently have insufficient data. When
a new satellite launches, the engineers might know how
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a certain telemetry parameter should behave and want to
supervise this parameter as soon as possible. Using the syn-
thetic data generator, one can generate a time series which
mimics nominal behavior for this parameter. Then, one can
train an Al model for anomaly detection to start detecting
anomalies beginning shortly after the Launch and Early
Orbit Phase (LEOP) instead of waiting a year or more for
sensible data. To improve the model going from synthetic
to real data, one can include frequent re-trainings using as
much real data as are available.

5 Proofs of concept

After introducing the main concepts and showcasing the
library’s capabilities through relevant use cases, this sec-
tion now demonstrates their practical application with two
compelling examples. First, we utilize the library to synthe-
size some representative satellite parameters, to allow us to
accurately mimic their characteristics and then compare the
resulting simulated data against actual measurements from
real satellite parameters. Second, we leverage the library
to mock a specific parameter, train our in-house anomaly
detection framework ATHMoS [38, 39], and then employ
the trained model to detect anomalous behavior in real data
from that parameter.

5.1 Mimicreal satellite telemetry data

Our library allows us to generate realistic satellite telemetry
data by simulating various parameters. This capability is
particularly useful for testing and evaluation purposes (see
Sect. 4), where access to real satellite data may be limited
or restricted. To demonstrate the effectiveness of our library,
we generate synthetic telemetry data for a set of key param-
eters and compare it against actual measurements from a
real satellite. Notably, since our real satellite data are con-
fidential, we have anonymized it for presentation purposes;

in contrast, no such treatment was necessary for the synthe-
sized data.

In detail, the four key parameters are GPS_X, which
monitors the GPS position of the satellite with a precision
of centimeters. Additionally, TEMP provides critical thermal
information for the satellite’s systems, measured in degrees
Celsius. The satellite’s electric power/distribution subsystem
(EPS) is also monitored through two key parameters: EPS_
MAIN, which tracks the main electric power bus voltage,
and EPS_BAT, which monitors the battery electric current.

Figure 8 contains the plots of data of four real parameters
in the left column. In the right column, four synthetic param-
eters are plotted. They are generated with our library and
mimic the behavior of the real parameters. The last listed real
parameter, EPS_BAT, contains some outliers which have
also been mocked in the synthetic parameter. At first glance,
the similarity between the real and the synthetic parameters
is striking. To provide a more precise assessment, we pre-
sent statistical comparisons between the real and synthetic
parameters in Table 1. The primary discrepancy between the
real and synthetic data for Parameter GPS_X is revealed at
the 50th percentile. The discrepancy at the 50th percentile
of Parameter GPS_X is caused by an imperfect fit to the
underlying sine wave, and can be addressed by refining the
parameter’s hyper-parameters. Despite this discrepancy, the
synthetic data remain suitable for training purposes, as we
demonstrate in the following paragraph.

5.2 Al training with synthetic telemetry data

Now, with a synthetic telemetry data that accurately mim-
ics the characteristics of a real satellite parameter, we can
leverage this to train our in-house anomaly detection frame-
work ATHMoS. By training ATHMoS on this synthesized
data, we equip it to identify anomalous behavior in the actual
parameters.

ATHMoS [40] typically uses one year of past data to
generate a trained model. We accomplish this by splitting
our input data into short intervals, each spanning 1.5 h. The
input data, i.e., the training set, consists of one year of syn-
thetic data of Parameter GPS_X without any anomalies. As a
next step, we compute feature vectors containing descriptive
statistics for each interval. Based on each feature vector’s
k-nearest neighborhood, a probabilistic outlier score using
the intrinsic dimension is calculated [41]. The k-nearest
neighborhood, the intrinsic dimension, and the probabilistic
intrinsic dimension outlier score make up our trained model.

New telemetry data, here the data from the real param-
eter, are tested against the computed model by applying
the OPVID [1] algorithm, resulting in scores between 0.0
and 1.0 with scores greater or equal to 0.9 typically cat-
egorized as an anomaly. This score roughly describes how
similar the descriptive feature vector computed for the new
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Table 1 Statistical descriptions of real and synthetic telemetry parameters

GPS_X TEMP EPS_MAIN EPS_BAT

Real Synth. Real Synth. Real Synth. Real Synth.
Count 20,955.00 20,955.00  20,955.00 20,955.00 20,955.00 20,955.00 20,955.00 20,955.00
Mean 1,842,159.45 185,204.14 2591 25.81 32.24 32.26 0.02 0.02
Std 337,831,022.45 334,272,129.07 2.72 2.89 0.28 0.28 0.00 0.00
Min —692,044,768.00 —692,842,010.05 21.58 20.95 31.54 31.62 0.01 0.01
25% —233,764,666.00 —222,814,226.24 23.36 23.05 31.97 31.98 0.02 0.02
50% 3,420,925.00 11,184,317.54 25.81 25.77 32.44 3245 0.02 0.02
75% 254,040,262.00 249,563,670.86 28.38 28.58 32.44 32.45 0.02 0.02
Max 685,000,557.00 684,347,800.10 31.03 31.03 32.45 32.45 0.03 0.03

telemetry data is to the ones used in the trained model.
For this set, we took about one week of the real satellite
data and used our library to inject two kinds of anoma-
lies, eight outliers and one signal amplification. With the
knowledge of the characteristics of the anomalies, we are
able to measure the quality of our data as Al training set.

To validate that our synthetic data accurately replicates
real satellite parameter characteristics, we test against the
trained ATHMoS model to nominal telemetry data from
an actual satellite (i.e., data without any anomalies). As
shown in Fig. 9a, the resulting anomaly scores are consist-
ently low and confirm the absence of anomalous behavior.

To further demonstrate the effectiveness of our
approach, we intentionally introduce anomalies into the
actual telemetry data and re-run the trained ATHMoS
model on this modified data set. As evident in Fig. 9b, all
injected anomalies are accurately detected by the model,
resulting in high anomaly scores.

@ Springer

6 Future work

In this section, we want to give a short outlook on planned
future extensions of our library.

The most obvious extension is to implement the possi-
bility to represent dependencies and correlations between
telemetry parameters. As the individual system compo-
nents of a satellite depend on each other, the behavior of
one parameter influences the behavior of other parameters.
For example, the state of the battery depends on the state
of the solar panels: If sunlight shines on the solar panels,
they produce power and charge the battery. The telem-
etry data of both components reflect this dependency.
More complex dependencies are the result of maneuvers,
which normally involve plenty of satellite components and
affect their states. Synthetically generating dependencies
between telemetry parameters would allow us to train
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models on multivariate training sets and open the way for
the detection of more complex anomalies.

Including periodic behavior in synthetic telemetry data is
another candidate for an extension. As we know, low-earth
orbit (LEO) satellites fly in orbit about 90 min around the
earth. This cycle is apparent in many telemetry parameters
of a LEO satellite. Another example of a periodic behavior
is the eclipse cycle, when the satellite enters the shadow of
the earth. In this phase, certain configuration are triggered to
prepare the satellite, e.g., for safe energy as the solar panels
will not produce any power during the eclipse. A configura-
tion of periodic behavior would be a great asset to make the
synthetic telemetry data more realistic.

Another idea is to implement data generators on the basis
of generative adversarial networks (GANs). This deep learn-
ing technique is used in many disciplines for the generation
of synthetic data. Since it learns from real telemetry data,
it could produce very realistic data and, furthermore, when
trained on multivariate data, even dependencies between
single telemetry parameters. However, it is challenging to
obtain a reliable nominal training data set and to get labels
for the anomalies injected by the GAN.

Lastly, the library can be extended to inject more realistic
anomalies into the generated data. For now, we only support
basic anomaly types. Therefore, more complex anomalies
or even patterns of real anomalies would be a benefit for
our library.

7 Summary and conclusion

In this paper, we present a Python library for synthetic satel-
lite telemetry data generation. This novel library can gener-
ate plenty of different types of telemetry signals and can
inject various types of anomalies into the generated data
sets including their labels. In the section on related work,
we review public available telemetry data sets (with labeled

anomalies) and other frameworks for telemetry data genera-
tion. Our library is original because it combines the advan-
tages of both worlds: on the one hand, the possibility to
generate data sets with labeled anomalies and on the other
hand the flexibility of generating an arbitrary amount of cus-
tomized satellite telemetry signals for ML tasks.

Its modular structure, and simple and intuitive usage
ensure that our library fits well into the whole Python eco-
system and enables data scientists to easily integrate our
library into their tools. Moreover, we demonstrate its appli-
cability with several use cases in the space domain. We
describe the integration into our in-house software develop-
ment process, where we use the library for the development
of new prototypes, for continuous integration and for testing
of already deployed software. Lastly, we show the usability
of the generated data in ML development, e.g., for training
data sets and for benchmarking different ML models and
prove our concepts within two scenarios: the mocking of
satellite parameters and the Al training with synthetic data.
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