
Vol.:(0123456789)

CEAS Space Journal 
https://doi.org/10.1007/s12567-024-00589-1

ORIGINAL PAPER

Synthetic satellite telemetry data for machine learning

Clemens Schefels1 · Leonard Schlag1 · Kathrin Helmsauer1

Received: 28 March 2024 / Revised: 18 December 2024 / Accepted: 19 December 2024 
© The Author(s) 2025

Abstract
For many machine learning tasks, labeled data are crucial. Even though there are methods that can be trained with data 
with only few labels, most of the tasks require many labels. In satellite operations, a huge amount of data are generated by 
the telemetry parameters of a satellite that keep track of its status. Modern satellites collect telemetry data of thousands of 
parameters. For example, the GRACE Follow-On satellites, operated by the German Space Operations Center (GSOC) at the 
German Aerospace Center (DLR), define about 80,000 unique housekeeping parameters each. However, all these telemetry 
data lack a complete/holistic set of labels. These data are usually unpredictable, hard to reproduce, and very diverse. As a 
consequence, expert knowledge is necessary to label these data, e.g., with anomalies. Moreover, labeling data by hand can be 
very time-consuming and, therefore, expensive. To overcome these obstacles, we implemented a synthetic satellite telemetry 
data library that is able to (a) generate a large variety of telemetry-like data, (b) add a plethora of well-defined anomalies 
to these data, and (c) deliver the labels for these injected anomalies. With these data, we are now able to train, validate, and 
test our machine learning models. Furthermore, we can compare different models with reproducible data. Since satellite 
telemetry data are often strictly confidential, we can share these synthetic data easily with our research partners.

Keywords  Satellite telemetry · Machine learning · Anomaly detection · Synthetic data · Labeled data · Software 
development

1  Introduction

Nowadays, the usage of Machine Learning (ML) soft-
ware tools is routine in many disciplines, also in the space 
domain. These tools are able to analyze huge amount of 
data and unburden humans from monotonous tasks. Many of 
the ML software tools use statistical methods to learn from 
examples, i.e., from labeled data. In our field of expertise—
satellite operations—anomaly detection in satellite telemetry 
data is a typical use case. Here, ML software tools are scan-
ning through huge amount of telemetry data and check for 
anomalous behavior, which is traditionally a task of system 
engineers. However, to implement such ML tools, labeled 
data is needed. Those labels, which indicate nominal and 
anomalous data, represent the examples from which the tool 
learns. With such a data set, the ML model of the tool can be 
trained, so that it learns how nominal data looks like and is 

then able to distinguish anomalous from nominal behavior. 
In general, huge amounts of satellite data are already avail-
able but, most of the time, they lack labels. And since labe-
ling data by hand is a very time-consuming and therefore 
expensive task, the need for an automatic solutions is given. 
As described in Sect. 2, some labeled telemetry data sets can 
be found online. However, these data sets are the results of 
former projects and built for a specific use case. They may 
not completely cover the need of new projects and may need 
to be adapted; again a time-consuming task. Therefore, a 
more customizable solution is needed.

In this article, we present our Python library for the gen-
eration of synthetic satellite telemetry data. In particular, 
we focus on its flexible and generic architecture. With this 
library, we can create data sets for ML training that contain 
various types of telemetry data. Inspired by the possibil-
ity to inject different kinds of anomalies into the generated 
telemetry data and document them by labels, we present use 
cases for miscellaneous scenarios. The generated training 
and validations data sets, for example, are suitable for many 
kinds of ML or deep learning applications. Moreover, only 
with a diverse and large set of labeled data, ML models can 

 *	 Clemens Schefels 
	 clemens.schefels@dlr.de

1	 German Aerospace Center (DLR), German Space Operations 
Center (GSOC), 82234 Weßling, Bavaria, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12567-024-00589-1&domain=pdf


	 C. Schefels et al.

be trained more robust and make the initial training easier 
and more generic. Such generated models can be transferred 
and retrained for specific use cases. Another use case would 
be the test of already existing ML software tools on the one 
hand as a benchmark tool and, on the other hand, as quality 
check for already-in-production software, where effects of 
model updates have to be controlled. With these use cases, 
we demonstrate the capabilities of our synthetic satellite 
telemetry data library.

This paper is structured as follows: in Sect. 2, we pre-
sent related work and focus on publicly available data sets 
as well as on open source frameworks which can generate 
synthetic telemetry data. The next Sect. 3 is dedicated to 
our library for synthetic satellite telemetry data with all its 
features and its derived architecture. How we use this library 
is described in Sect. 4 and demonstrated on actual use cases, 
like supporting the process of software development and 
the development our anomaly detection ML tool, ATHMoS 
(Automated Telemetry Health Monitoring System) [1, 2]. In 
Sect. 5 on Proofs of Concept, we demonstrate the capabili-
ties of the library by mocking real satellite parameters and 
using these data to train an anomaly detection framework in 
two different scenarios. Future work in Sect. 6 gives a short 
outlook on planned future extensions of our library.

This article finishes with a summary and a conclusion in 
the last section, Sect. 7.

2 � Related work

This section first gives an overview of publicly available 
data sets, a common source for labeled data sets to train and 
test ML models on. Further in this section, programming 
frameworks that generate time series data will be discussed. 
The focus of this section, as of the whole paper, will be on 
data similar to satellite telemetry.

2.1 � Public data sets

As mentioned in the introduction, labeled data are necessary 
for training a ML model. A common source for these kinds 
of data are publicly available labeled data sets that can be 
easily accessed, e.g., by downloading them from the Inter-
net. These data sets often originate from research projects 
or publicly funded projects and are derived from real world 
as well as synthetic systems. Since these public data sets 
are widely used, most of their downsides are known and 
discussed on public forums. One disadvantage of these data 
sets is that they stay fixed after being published and cannot 
be easily expanded, e.g., with more labels. Also, while most 
sources or data owners are well known and reliable, it is not 
a given that public data sets contain what is promised by 
their publishers. It is also not ensured that the data sets will 

be available in the future or that possible changes to the data 
sets by the data owners are tracked and previous versions 
remain available. Furthermore, one has to take the license 
under which the data set is distributed into account. It may 
actually forbid certain use cases, e.g., the training of com-
mercial or military ML models. Lastly, the ownership of a 
model trained with public data sets may not to be clear. We 
want to provide a short overview of publicly available data 
sets relevant to the topic of this paper.

The first data set [3] derives from telemetry data of the 
European Space Agency’s (ESA) Mars Express orbiter [4]. It 
was published about six years ago during a hackathon [5] to 
predict the average current in each of the 33 thermal power 
lines. The data consists of a training set containing three 
Martian years worth of context and electric current measure-
ments data. The provided test set includes the context data 
only and entails, among other things, mission operations 
plan files, solar angles, and distances.

Notably, the ESA Anomaly Dataset [6], is providing a 
large-scale satellite telemetry data set annotated with curated 
anomalies from three ESA missions. Developed through an 
18-month consortium project involving Airbus Defence and 
Space, KP Labs, and the European Space Agency’s Euro-
pean Space Operations Centre (ESOC), this comprehensive 
data set enables benchmarking and validation of anomaly 
detection models and approaches [7, 8]. It is part of ESA’s 
Artificial Intelligence for Automation (A2 I) Roadmap ini-
tiative [9], launched in 2021 to harness AI capabilities for 
automating space operations.

The project Telemanom utilizes LSTMs, implemented 
with TensorFlow (i.e., Keras), to detect anomalies in multi-
variate sensor data [10, 11]. It provides telemetry from real 
spacecrafts with labeled anomalies, the Soil Moisture Active 
Passive (SMAP) satellite [12] and the Curiosity rover on 
mars (MSL) [13].

The Challenger USA Space Shuttle O-Ring data set [14], 
published on the UC Irvine Machine Learning Reposi-
tory [15], contains data related to the shuttle’s O-ring dur-
ing launch on 28 January, 1986. After the launch, the USA 
Space Shuttle Challenger exploded.

On the very same archive, a data set from a space shuttle 
landing control system [16] can be found, as well as the stats 
logs [17]. These space shuttle data sets are also available on 
the ODDS Web page [18], which provides access to a large 
collection of outlier detection data sets with ground truth.

For the sake of completeness, we want to mention four 
popular time series data sets not related to the space domain. 
The first one is the data set used for The Third International 
Knowledge Discovery and Data Mining Tools Competi-
tion [19], which was held in conjunction with The Fifth 
International Conference on Knowledge Discovery and 
Data Mining [20]. The competition task was to build a (com-
puter) network intrusion detector. To this end, this data set 



Synthetic satellite telemetry data for machine learning﻿	

is composed of nine weeks of raw TCP dump data from a 
local-area network (LAN), which includes a wide variety 
of intrusions simulated in a military (computer) network 
environment.

The UCR Time Series Classification Archive [21, 22] pro-
vided by the University of California, Riverside, contains 
a wide variety of time series data sets from many different 
sources and is a common data set collection for benchmark-
ing. It is preprocessed in the sense that the data is already 
normalized as well as split into a training and testing sets, 
the latter aiming towards reproducibility of the results.

Climate Data Online (CDO) provides free access to 
United States National Climatic Data Center’s (NCDC) 
archive of global historical weather and climate data [23] in 
addition to station history information. These data include 
quality controlled daily, monthly, seasonal, and yearly meas-
urements of temperature, precipitation, wind, and degree 
days as well as radar data and 30-year climate normals.

The last data collection is made up of 58 time series 
data files that are designed to provide data for research in 
streaming anomaly detection. This repository [24] contains 
the data and scripts which comprise the Numenta Anomaly 
Benchmark (NAB). It includes both real-world and artificial 
time series data containing labeled nominal and anomalous 
periods of behavior.

2.2 � Programming frameworks

With programming frameworks that generate telemetry-like 
data, custom data sets can be built and adapted to certain 
needed characteristics. This makes frameworks very interest-
ing for model training because the data sets can be adjusted 
to the specific problem domain. For benchmarking or com-
paring models with other competitors, the programming 
parameters used to generate the data sets can be shared. In 
this section, we will investigate frameworks that use classic 
solutions, i.e., deterministic approaches, to generate the data 
sets as well as solutions employing probabilistic approaches. 
An important remark is that none of the investigated solu-
tions are capable to generate labeled data sets. Therefore, 
the focus lies on the generation of synthetic time series data 
resembling satellite telemetry.

There are many frameworks capable of generating syn-
thetic time series data. For example, the open source library 
TimeSynth [25] can generate synthetic time series for model 
testing. The library can produce both regularly and irregu-
larly sampled data. Its generic architecture allows the gen-
eration of a plethora of different signals, e.g., harmonic func-
tions, pseudo-periodic signals, and many more.

The Python library tsBNgen [26] generates time series data 
sets based on an arbitrary Bayesian network structure. It han-
dles discrete nodes by using a multinomial distribution, con-
tinuous nodes by using a Gaussian distribution, and can form 

a hybrid network using a mixture of discrete and continuous 
nodes.

In [27] Zhang et. al. propose a novel data-driven approach 
to synthetic data set generation for smart-grids. Using a real 
data set as input, its conditional probability distribution is 
learned using deep Generative Adversarial Networks (GANs). 
The generated synthetic samples are based on the learned 
distribution.

The paper [28] proposes a new probabilistic forecast model 
for multivariate time series also based on Conditional GANs.

This multivariate approach makes it interesting for generat-
ing more complex data sets even if the focus of the paper is on 
forecasting data and not on generating data sets.

The authors of the paper [29] focus on one dimensional 
times series and explore a “few shot” approach. With a “few 
shot” approach, a model can be trained with only little data, 
e.g., only a few labeled samples per class. To achieve that, 
they are using two GANs simultaneously to model fake time 
series examples. The ability to learn from little data makes 
this an interesting feature, also for the satellite domain. In that 
domain, since the usage of operational data as training data is 
very common, only short snippets of nominal telemetry data 
are often available.

In [30], two reconstruction methods are proposed for syn-
thetic time series generation, named Rank-wise and Step-wise 
methods. For their use case to simulate wind speed, the authors 
demonstrate the potential of the developed models over other 
synthetic time series generation methods such as the Markov 
chain method or an autoregressive method.

SynSys [31] generates synthetic time series data that is com-
posed of nested sequences using hidden Markov models and 
regression models. Initially, the models are trained on real data 
sets. The author’s goal is to create realistic synthetic smart 
home sensor data that reflects human behavior.

Since large language models like ChatGPT  [32] show 
astonishing results in numerous domains, the authors of [33] 
propose a foundation model for time series data, named 
TimeGPT. With that model, the generation, i.e., prediction 
of time series data is possible. However, the model with its 
framework is still in a early development stage and not open 
for a broad public, therefore, we could not test this promising 
new approach.

In the next section, we present our library for synthetic 
satellite telemetry data, that is capable of producing various 
telemetry like time series data including a wide variety of 
labeled anomalies.



	 C. Schefels et al.

3 � Library for synthetic satellite telemetry 
data

The Synthetic Telemetry Data library can create satellite-
like telemetry data including labeled anomalies. It provides 
various generators for synthetic telemetry data and differ-
ent kinds of anomalies. Both the generated telemetry data 
resemble real satellite telemetry data, and the generated 
anomalies resemble typical anomalies that can usually be 
found in real satellite telemetry. These generated data pro-
vide robust training data sets for ML tools, especially in 
the space domain, where the lack of labeled data or even 
nominal data, that can be used for training tasks, is evident. 
The data, i.e., the signals and anomalies, are generated by 
deterministic processes and can be re-produced by re-using 
the same function-parameters.

This makes the library suitable for research and bench-
marking of ML models where reproducible results are 
crucial.

Since Python became the de facto standard in data sci-
ence, the synthetic telemetry library is implemented as a 
modular Python library and can be integrated seamlessly 
into Jupyter notebooks or any other Python-based data sci-
ence tool. In general, the development follows the KISS-
Principle, keep-it-short-and-simple, which results in a code 
basis that is both easy to maintain and to extend. With its 
simple and intuitive usage, the library is applicable even 
by inexperienced programmers and fits well into the whole 
Python ecosystem. With respect to a stable support, reliabil-
ity, and security, the library only depends on few third-party 
Python libraries that are widely-used and well maintained 
such as Pandas, Numpy, or Scipy.

In the following parts, key design decisions explaining 
the architecture of the library are presented.

3.1 � Architecture

For us, a signal is a one-dimensional sequence of plain data 
points. Telemetry, on the other hand, is a signal with added 
time information for each data point, which makes it a two 
dimensional structure; a time series. Therefore, the library 
is separated into two main modules, see Fig. 1: the Synthetic 
Signal module and the Synthetic Telemetry module.

3.1.1 � Synthetic signals

The Synthetic Signal module can generate signals of vari-
ous types. Currently, there are thirteen predefined signal 
types available. Moreover, the module provides the possi-
bility to build signals from chunks of real satellite telem-
etry data, from combinations of arbitrary signals, or from 

(mathematical) functions. From our experience as a mission 
control center, these types already cover a very large range 
of typical satellite telemetry signals.

The implementation of the signal types uses the con-
cept of Python Generator functions that behaves similar 
to an iterator. Therefore, generators are very memory effi-
cient since they generate only as much data as needed or 
demanded. With this efficient concept, signal generators 
can produce continuous streams of data that can be used 
to simulate real-time telemetry reception. Moreover, with 
generators it is possible to change the configuration of the 
produced data during run-time. This means that the signal 
parameters can be changed, e.g., the frequency of a signal 
or the signal amplitude. That way, anomalies can be injected 
during the streaming process and provide an option to test 
and benchmark real-time systems.

The main library’s features for the users are:
Predefined signals
The predefined signals form the basis for a fast and easy 

creation of custom data sets. Furthermore, these types can be 
used to create more complex signals by combining them to 
new signals, e.g., Fig. 2d shows an addition of a Sine signal 
generator and a Cosine signal generator. The implementa-
tion uses a generic Python generator that derives arbitrary 
signal data from a given input function definition. With that 
generator and predefined function definitions, we can pro-
vide some basic signal types to the users that are common in 
satellite telemetry data or that can be used as basis for more 
complex signal types. All thirteen predefined signal types 
are fully customizable by changing the function parameters 
like frequency, amplitude, etc.:

•	 Flat: just a straight line, i.e., a constant function.
•	 Sine: a plain Sine curve.
•	 Cosine: a plain Cosine curve.
•	 Square: a box-shaped signal with identical boxes dimen-

sions.
•	 Triangle: a saw tooth signal, triangle shaped.
•	 Step: a flat signal with one step after a defined number of 

points.

Fig. 1   Synthetic satellite telemetry library’s architecture



Synthetic satellite telemetry data for machine learning﻿	

•	 Steps: a raising step function with steps of equal size.
•	 Steps Random: a raising step function with steps of ran-

dom size (see Fig. 2b).
•	 Modes: a signal that changes between different levels, 

resembles different operation modes of satellites.
•	 Modes Random: a signal that changes between different 

levels randomly (see Fig. 2a).
•	 Ramp: a continuous increasing or decreasing signal, like 

the power level of a loading battery.

Signals from real telemetry snippets
In satellite operation, most of the telemetry data does not 

contain any anomaly because anomalies occur very rarely 
on satellites. Therefore, the library provides the option to 
generate signals from real satellite telemetry snippets as 
depicted in Fig. 2c. These snippets are repeated indefinitely. 
However, the generators built from snippets act and can be 
used exactly like the predefined synthetic signal generators 
which means all available anomalies are also applicable 
to these kind of generators. Using this method, the signal 
parameters like the frequency or the amplitude of a signal 
can be changed. With the option to take nominal satellite 
telemetry data and inject artificial anomalies (at well defined 
time points), we can generate very realistic training data 
with a representative nominal/anomalous rate for ML tasks.

Combinations of signals
Several signal generators of any kind can be combined 

by mathematical operator, e.g., plus, minus, or modulo, 
to a new signal generator. This type of signals resembles 
the principle of frequency modulation where a carrier 
signal wave is modified by the transmitted information, 

a common technique in telecommunications engineering. 
Thus, it allows the users to build complex signal combi-
nations like a Cosine signal on top of a Sine signal, see 
Fig. 2d.

Signals from functions
For users who need special signals which are not 

included into our predefined signal set, the library pro-
vides the possibility to generate signals from (mathemati-
cal) functions, i.e., Lambda expressions. That way, the 
user has the freedom to build very specific custom signal 
types which can be used like the predefined ones.

Injected anomalies
To us, an anomaly means that the signal data is different 

compared to the rest of the signal, in other words: the data 
is different from what is expected. If you are working with 
data streams, then you can already inject anomalies during 
the signal generation process. These anomalies are real-
ized as generators, too, and can be combined in any pos-
sible way. Therefore, you can easily modify your Python 
program to use signals with any anomaly by just exchang-
ing a signal generator with an anomaly generator. The 
anomalies will be added randomly to the signal as long as 
the generator is active and generates data. However, that 
way, no labels for the anomalies will be generated.

The library offers eight different anomaly types:

•	 Outliers: adds data points that differ significantly from 
other data points to the signal, visually a peak or a drop in 
the data (see Fig. 3a). In real satellite telemetry, this is a 
very common anomaly. Possible causes are transmission 
errors, interferences, or even hardware defects on board 
the satellite.

Fig. 2   Synthetically gener-
ated signals with the number 
of points on the x-axis and the 
amplitude value on the y-axis

Fig. 3   Synthetically generated 
telemetry with injected anoma-
lies and labels. On the x axis the 
time information is displayed, 
on the y axis the amplitude



	 C. Schefels et al.

•	 Gaps: deletes data points from the signal flow to intro-
duce gaps, see Fig. 3a. In real satellite operations, this 
is a common anomaly caused by, e.g., transmission 
errors.

•	 White-Noise: adds random samples from a normal 
(Gaussian) distribution to the signal (Fig. 3a). The 
white noise can be added to the complete signal dura-
tion or limited to only certain sections of the signal. 
Satellite telemetry can be affected by solar flares or 
other natural phenomena such as atmospheric noise 
that can cause this kind of anomaly.

•	 Trends: causes a continuous increase or decrease of 
the signal. On satellites, this anomaly can indicate a 
degradation of components like the battery cells.

•	 Signal-shifts: shifts the frequency of the signal by a 
certain factor. This can also happen in satellite telem-
etry, caused by, e.g., the Doppler effect [34].

•	 Resolution changes: increases or decreases the resolu-
tion of the signal. They appear in real data when the 
satellite has contact with the ground station – the direct 
up- and down-link to the ground station enables larger 
data rates because the generated data does not have to 
be stored on the limited on-board storage device of the 
satellite.

•	 Frequency changes: changes the frequency of the signal, 
see Fig. 3c and  d. This is also a phenomenon that is 
induced by ground station contacts.

•	 Signal amplifications: increases or decreases the ampli-
tude of the signal as seen in Fig. 3b. This can be caused 
by overlay effects or interferences of different signals.

Technically speaking, the plots in Fig. 3 show telemetry 
data with anomalies instead of plain signals. However, the 
only difference to plain signal plots, as shown in Fig. 2, is 
the depicted time information on the x axis instead of the 
number of points.

For some anomalies, e.g., white noise or trends, the dura-
tion can be defined. If the duration lasts the whole signal 
time span, the anomaly becomes the nominal behavior of 
the signal, e.g., like the white noise in Fig. 3a.

Some anomaly types can be seen as nominal behavior too, 
e.g., signal shifts, resolution, and frequency changes. These 
anomalies can be caused by the routine satellite operations 
like maneuvers or ground contacts procedures. Based on 
that, satellite operators would see them as nominal data, not 
as anomalies. However, we stick to our strict anomaly defini-
tion (see Sect. 3.1.1) and interpret every divergent behavior 
as anomalous behavior. In the end, the user can decide: if a 
divergent behavior is included into the training data set, then 
the trained algorithm will learn this divergent behavior as 
nominal behavior. If the divergent behavior is only put into 
the test and validation data sets, then the divergent behavior 
will be detected as anomalous behavior.

3.1.2 � Synthetic telemetry

The library module Synthetic Telemetry adds the time infor-
mation to the generated signal. Furthermore, it contains func-
tions for visualizing, editing, and exporting time series data 
sets. But its main purpose is to add anomalies with labels to 
the telemetry data. This means that, in contrast to the Syn-
thetic Signal module, labels are generated after the anoma-
lies are injected. Labels include the kind of the anomaly, the 
start and end time stamp, and the parameters necessary for 
the recreation of the injected anomalies. All these data can be 
exported into a file and stored within a data set to guarantee 
the reproducibility of the data. The module provides exactly 
the same types of anomalies as the Synthetic Signal module 
(see Sect. 3.1.1). However, since the injection of the anoma-
lies happens after the signal generation and with the added 
time information, which implies that we now handle finite data 
with a well defined start- and end-date, the user can define 
the properties of the anomalies with respect to the whole data 
set more precisely, e.g., the likelihood of an anomalous event 
within the data set. In Fig. 3, some example signals with their 
anomalies and labels are plotted using the whole functionality 
of the Synthetic Telemetry module.

3.2 � Synthetic telemetry data set generation

The generation of synthetic telemetry data sets can be eas-
ily automated via Python scripts. For example, for anomaly 
detection in satellite telemetry data, a data set typically 
consists of training data (without anomalies) and test and 
validation data sets which include anomalies. The size of 
these data sets can be huge (with several gigabytes of data) 
and should include different kinds of signals combined with 
different kinds of anomalies. For our data sets, we use the 
following workflow, see Fig. 4.

First, a signal has to be generated, i.e., the plain data 
points without any time information with the help of the 
Synthetic Signal module. After that, the time information 
has to be added to the signal by the Synthetic Telemetry 
module and the desired anomalies have to be injected. Since 
the generation of each single telemetry parameter is inde-
pendent, we use threads to generate more parameters in 
parallel (be careful with your computer memory (RAM)). 
Finally, the script stores a file for each telemetry param-
eter data with its configuration, which finalizes the data set 
generation.

4 � Use cases

Our original motivation for developing the synthetic telem-
etry data library was to create a flexible data set genera-
tor for ML tools training data. However, after finishing the 



Synthetic satellite telemetry data for machine learning﻿	

implementation of the library, we have identified several 
other fields of application that we present in this section.

4.1 � Software development

Software development usually cycles over many phases. 
While there are many use cases to explore in the various 
phases, e.g., using synthetic data for more realistic mock-
ups during the design phase or to get an understanding for 
the input when engineering the requirements, we want to 
describe two use cases we see as the most promising at 
the German Space Operations Center (GSOC). First, we 
describe the benefits of the synthetic data for testing and 
continuous integration (CI) of the software product. The sec-
ond main use case is the development of prototypes which, 
especially for data science related applications based on 
ML methods, require reliable and labeled data as input for 
a proper evaluation.

4.1.1 � Continuous integration and testing

Typical CI pipelines nowadays automate many steps such as 
checking the code style, building the product, or generating 
documentation and release notes. At GSOC, we often use 
these pipelines implemented in GitLab, our version control 
system, to ensure and improve the quality of our operational 
software such as our mission planning system [35, 36]. An 
example of a successful CI pipeline is depicted in Fig.  5. 

When applying CI to software implementing ML methods, 
the evaluation of the algorithm’s performance or the opti-
mization and generation of the ML model are also often an 
important part of the CI pipeline. Both of these steps almost 
always require an accurately labeled data set to base their 
results on. While using a synthetic data set for the model 
generation could lead to overfitting depending on the ML 
method and its application, it brings a great benefit to the 
performance evaluation of the algorithm in the CI pipeline.

The labeled synthetic data can be used to assess both 
the computational performance of an algorithm as well 
as its performance in terms of accuracy. To evaluate the 
computational performance, the data set can be constructed 
to contain samples with a realistic frequency over a typi-
cal timespan which the algorithm should be able to han-
dle. Evaluating the algorithm on the same hardware in each 
triggered pipeline and recording its execution time allows 
to track whether changes or updates to the software or its 
imported libraries slow down the algorithm. The accuracy of 
an algorithm can be evaluated using a labeled data set fitting 
the algorithm’s application. For, e.g., measuring the perfor-
mance of ATHMoS, our telemetry anomaly detection ML 
tool, synthetic data containing various labeled anomalies can 
be used to compute evaluation metrics such as the F1 score 
or the receiver operating characteristic (ROC). A deteriora-
tion of the algorithm or its configuration can be measured 
in each pipeline execution and ensures the software yields 
good results with respect to the synthetic baseline. Should 
new behaviors occur or requirements change, the synthetic 
data set can easily and reliably be regenerated to reflect the 
changes.

4.1.2 � Prototyping

When developing software prototypes for ML applications, 
labeled data is vital as it provides a basis for the evaluation 
of new approaches. In the domain of spacecraft operations, 
a large and reliable data set is often not available or of confi-
dential nature. The synthetic labeled data set can solve these 
issues.

One example of the data set’s benefits is the development 
of a real-time version of ATHMoS, the anomaly detection 
system at the GSOC. ATHMoS was originally designed as 
a batch processing system for low-orbit satellites. In this use 

Fig. 4   Data set generation workflow

Fig. 5   Example of a successful CI pipeline at the GSOC including 
code validation, style checks, building, testing and generation of doc-
umentation



	 C. Schefels et al.

case, telemetry data is only available during ground contact 
and all data is downloaded and analyzed afterwards. How-
ever, GSOC also operates geostationary satellites. For those 
satellites, an almost permanent connection to the satellite 
is available and we aim to optimize ATHMoS to run as a 
real-time system as well. Therefore, we implemented a CI 
pipeline that is using the synthetic data to measure how fast 
the system reacts to new behavior and which data rate can 
be handled realistically. After each run, this pipeline gener-
ates a web page containing a summary of the results of the 
measurements. From the results, developers can quickly get 
feedback about their new optimizations. Figure 6 depicts the 
result page with the top plot showing the training and test 
data with the computed anomaly scores for a simple sine 
wave shaped telemetry. For a better comparison, the training 
and test data are plotted as line plots underneath.

Another example is the classification of various behav-
iors, both anomalous as well as nominal. As the synthetic 
data generator also provides labels describing the type of 
the introduced behaviors, methods correctly classifying the 
different behaviors can be researched and prototyped using 
the synthetic data set.

4.2 � Anomaly detection

Synthetic data also has many applications for anomaly detec-
tion. While using labeled, real-world data would be optimal, 
it is also often not feasible to spend many engineers’ hours 
on labeling to get such data. Instead, one can rely on syn-
thetic data which can include artificial anomalies and their 
labels to create fully labeled data sets.

Most importantly, one can use labeled synthetic data to 
test different AI methods, e.g., while developing your own 
algorithm, and also to benchmark different AI models using 
standardized training and test sets. Finally, one might run 
into situations where there is not sufficient training data 
available, e.g., because the system is very new. Using the 

synthetic data generator we can use expert knowledge to 
create artificial time series which are sufficiently close to the 
real data. This synthetic data can be used to train the initial 
AI model for anomaly detection.

4.2.1 � Method testing

When developing a new method for anomaly detection, one 
has to check that a sufficient amount of anomalous behavior 
has been detected, in particular that both the rate of false 
negative (missed) detections and the rate of false positive 
detections is sufficiently small. Since AI developers often 
do not have labeled data available – just like our satellite 
data at GSOC – the only way to verify the results of dif-
ferent AI models is to verify detections as anomalies, e.g., 
by discussing detections with the our satellite engineers. In 
contrast, without labeled data, it is hard to make sure the 
models haven’t missed any significant anomalies.

Using fully labeled, synthetic data enables developers to 
automatically compute both the false negative and false posi-
tive rate, and tweak their models to lower those rates.

4.2.2 � Benchmarking

Similar to the use case in the previous section, one can use 
the fully labeled, synthetic data set to benchmark different 
ML algorithms. A complete set of labels allows the devel-
oper to determine the number of true positives (detected 
anomalies) and the number of true negatives (not detected 
nominal behavior) as well as the number of false nega-
tive (not detected anomalies) and false positive detections 
(detected nominal behaviour). Using those numbers, one can 
compute different metrics to evaluate the precision of the 
model, such as the F1 score or the AUROC score.

To provide an example, we benchmarked the algorithm 
used in ATHMoS, the outlier probability via intrinsic dimen-
sion (OPVID) [1], against the local outlier probability algo-
rithm (LoOP) [37]. Four different synthetic signals derived 
from real telemetry signals along with injected anomalies 
were used for this benchmark, see Sect. 3.1.2. In Fig. 7, we 
can see that ATHMoS performs better for this type of data 
and injected anomalies with respect to the AUROC metric. 
In addition to the model precision, a standardized data set 
can also be used to evaluate the performance of the model. 
This includes the time needed for training the model and 
testing/inference, and the data capacity, in particular for stor-
ing the model.

4.2.3 � Training of AI methods for anomaly detection

A final use case at GSOC is using synthetic data to train an 
AI model where we currently have insufficient data. When 
a new satellite launches, the engineers might know how Fig. 6   Data science CI pipeline results of real-time ATHMoS



Synthetic satellite telemetry data for machine learning﻿	

a certain telemetry parameter should behave and want to 
supervise this parameter as soon as possible. Using the syn-
thetic data generator, one can generate a time series which 
mimics nominal behavior for this parameter. Then, one can 
train an AI model for anomaly detection to start detecting 
anomalies beginning shortly after the Launch and Early 
Orbit Phase (LEOP) instead of waiting a year or more for 
sensible data. To improve the model going from synthetic 
to real data, one can include frequent re-trainings using as 
much real data as are available.

5 � Proofs of concept

After introducing the main concepts and showcasing the 
library’s capabilities through relevant use cases, this sec-
tion now demonstrates their practical application with two 
compelling examples. First, we utilize the library to synthe-
size some representative satellite parameters, to allow us to 
accurately mimic their characteristics and then compare the 
resulting simulated data against actual measurements from 
real satellite parameters. Second, we leverage the library 
to mock a specific parameter, train our in-house anomaly 
detection framework ATHMoS [38, 39], and then employ 
the trained model to detect anomalous behavior in real data 
from that parameter.

5.1 � Mimic real satellite telemetry data

Our library allows us to generate realistic satellite telemetry 
data by simulating various parameters. This capability is 
particularly useful for testing and evaluation purposes (see 
Sect. 4), where access to real satellite data may be limited 
or restricted. To demonstrate the effectiveness of our library, 
we generate synthetic telemetry data for a set of key param-
eters and compare it against actual measurements from a 
real satellite. Notably, since our real satellite data are con-
fidential, we have anonymized it for presentation purposes; 

in contrast, no such treatment was necessary for the synthe-
sized data.

In detail, the four key parameters are GPS_X, which 
monitors the GPS position of the satellite with a precision 
of centimeters. Additionally, TEMP provides critical thermal 
information for the satellite’s systems, measured in degrees 
Celsius. The satellite’s electric power/distribution subsystem 
(EPS) is also monitored through two key parameters: EPS_
MAIN, which tracks the main electric power bus voltage, 
and EPS_BAT, which monitors the battery electric current.

Figure 8 contains the plots of data of four real parameters 
in the left column. In the right column, four synthetic param-
eters are plotted. They are generated with our library and 
mimic the behavior of the real parameters. The last listed real 
parameter, EPS_BAT, contains some outliers which have 
also been mocked in the synthetic parameter. At first glance, 
the similarity between the real and the synthetic parameters 
is striking. To provide a more precise assessment, we pre-
sent statistical comparisons between the real and synthetic 
parameters in Table 1. The primary discrepancy between the 
real and synthetic data for Parameter GPS_X is revealed at 
the 50th percentile. The discrepancy at the 50th percentile 
of Parameter GPS_X is caused by an imperfect fit to the 
underlying sine wave, and can be addressed by refining the 
parameter’s hyper-parameters. Despite this discrepancy, the 
synthetic data remain suitable for training purposes, as we 
demonstrate in the following paragraph.

5.2 � AI training with synthetic telemetry data

Now, with a synthetic telemetry data that accurately mim-
ics the characteristics of a real satellite parameter, we can 
leverage this to train our in-house anomaly detection frame-
work ATHMoS. By training ATHMoS on this synthesized 
data, we equip it to identify anomalous behavior in the actual 
parameters.

ATHMoS [40] typically uses one year of past data to 
generate a trained model. We accomplish this by splitting 
our input data into short intervals, each spanning 1.5 h. The 
input data, i.e., the training set, consists of one year of syn-
thetic data of Parameter GPS_X without any anomalies. As a 
next step, we compute feature vectors containing descriptive 
statistics for each interval. Based on each feature vector’s 
k-nearest neighborhood, a probabilistic outlier score using 
the intrinsic dimension is calculated [41]. The k-nearest 
neighborhood, the intrinsic dimension, and the probabilistic 
intrinsic dimension outlier score make up our trained model.

New telemetry data, here the data from the real param-
eter, are tested against the computed model by applying 
the OPVID [1] algorithm, resulting in scores between 0.0 
and 1.0 with scores greater or equal to 0.9 typically cat-
egorized as an anomaly. This score roughly describes how 
similar the descriptive feature vector computed for the new 

Fig. 7   AUROC metric of ATHMoS benchmarks (OPVID vs. LoOP)



	 C. Schefels et al.

telemetry data is to the ones used in the trained model. 
For this set, we took about one week of the real satellite 
data and used our library to inject two kinds of anoma-
lies, eight outliers and one signal amplification. With the 
knowledge of the characteristics of the anomalies, we are 
able to measure the quality of our data as AI training set.

To validate that our synthetic data accurately replicates 
real satellite parameter characteristics, we test against the 
trained ATHMoS model to nominal telemetry data from 
an actual satellite (i.e., data without any anomalies). As 
shown in Fig. 9a, the resulting anomaly scores are consist-
ently low and confirm the absence of anomalous behavior.

To further demonstrate the effectiveness of our 
approach, we intentionally introduce anomalies into the 
actual telemetry data and re-run the trained ATHMoS 
model on this modified data set. As evident in Fig. 9b, all 
injected anomalies are accurately detected by the model, 
resulting in high anomaly scores.

6 � Future work

In this section, we want to give a short outlook on planned 
future extensions of our library.

The most obvious extension is to implement the possi-
bility to represent dependencies and correlations between 
telemetry parameters. As the individual system compo-
nents of a satellite depend on each other, the behavior of 
one parameter influences the behavior of other parameters. 
For example, the state of the battery depends on the state 
of the solar panels: If sunlight shines on the solar panels, 
they produce power and charge the battery. The telem-
etry data of both components reflect this dependency. 
More complex dependencies are the result of maneuvers, 
which normally involve plenty of satellite components and 
affect their states. Synthetically generating dependencies 
between telemetry parameters would allow us to train 

Fig. 8   Comparison of real satellite telemetry data (on the left) with synthetic generated data (on the right)

Table 1   Statistical descriptions of real and synthetic telemetry parameters

GPS_X TEMP EPS_MAIN EPS_BAT

Real Synth. Real Synth. Real Synth. Real Synth.

Count 20,955.00 20,955.00 20,955.00 20,955.00 20,955.00 20,955.00 20,955.00 20,955.00
Mean 1,842,159.45 185,204.14 25.91 25.81 32.24 32.26 0.02 0.02
Std 337,831,022.45 334,272,129.07 2.72 2.89 0.28 0.28 0.00 0.00
Min − 692,044,768.00 − 692,842,010.05 21.58 20.95 31.54 31.62 0.01 0.01
25% − 233,764,666.00 − 222,814,226.24 23.36 23.05 31.97 31.98 0.02 0.02
50% 3,420,925.00 11,184,317.54 25.81 25.77 32.44 32.45 0.02 0.02
75% 254,040,262.00 249,563,670.86 28.38 28.58 32.44 32.45 0.02 0.02
Max 685,000,557.00 684,347,800.10 31.03 31.03 32.45 32.45 0.03 0.03



Synthetic satellite telemetry data for machine learning﻿	

models on multivariate training sets and open the way for 
the detection of more complex anomalies.

Including periodic behavior in synthetic telemetry data is 
another candidate for an extension. As we know, low-earth 
orbit (LEO) satellites fly in orbit about 90 min around the 
earth. This cycle is apparent in many telemetry parameters 
of a LEO satellite. Another example of a periodic behavior 
is the eclipse cycle, when the satellite enters the shadow of 
the earth. In this phase, certain configuration are triggered to 
prepare the satellite, e.g., for safe energy as the solar panels 
will not produce any power during the eclipse. A configura-
tion of periodic behavior would be a great asset to make the 
synthetic telemetry data more realistic.

Another idea is to implement data generators on the basis 
of generative adversarial networks (GANs). This deep learn-
ing technique is used in many disciplines for the generation 
of synthetic data. Since it learns from real telemetry data, 
it could produce very realistic data and, furthermore, when 
trained on multivariate data, even dependencies between 
single telemetry parameters. However, it is challenging to 
obtain a reliable nominal training data set and to get labels 
for the anomalies injected by the GAN.

Lastly, the library can be extended to inject more realistic 
anomalies into the generated data. For now, we only support 
basic anomaly types. Therefore, more complex anomalies 
or even patterns of real anomalies would be a benefit for 
our library.

7 � Summary and conclusion

In this paper, we present a Python library for synthetic satel-
lite telemetry data generation. This novel library can gener-
ate plenty of different types of telemetry signals and can 
inject various types of anomalies into the generated data 
sets including their labels. In the section on related work, 
we review public available telemetry data sets (with labeled 

anomalies) and other frameworks for telemetry data genera-
tion. Our library is original because it combines the advan-
tages of both worlds: on the one hand, the possibility to 
generate data sets with labeled anomalies and on the other 
hand the flexibility of generating an arbitrary amount of cus-
tomized satellite telemetry signals for ML tasks.

Its modular structure, and simple and intuitive usage 
ensure that our library fits well into the whole Python eco-
system and enables data scientists to easily integrate our 
library into their tools. Moreover, we demonstrate its appli-
cability with several use cases in the space domain. We 
describe the integration into our in-house software develop-
ment process, where we use the library for the development 
of new prototypes, for continuous integration and for testing 
of already deployed software. Lastly, we show the usability 
of the generated data in ML development, e.g., for training 
data sets and for benchmarking different ML models and 
prove our concepts within two scenarios: the mocking of 
satellite parameters and the AI training with synthetic data.

Acknowledgements  The authors are thankful to Steffen Zimmermann, 
Dr. Martin Wickler, Mila Stillman, and all members of the DLR MBT-
Team for their valuable support and fruitful discussions.

Author contributions  C.S. wrote the main manuscript text, L.S. and 
K.H. wrote most of Section 4. All authors reviewed the manuscript.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Data availability  No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 

Fig. 9   Anomaly score and telemetry data of the real satellite Parameter GPS_X



	 C. Schefels et al.

as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

	 1.	 O’Meara, C., Schlag, L., Faltenbacher, L., Wickler, M.: 
ATHMoS: automated telemetry health monitoring system at 
GSOC using outlier detection and supervised machine learn-
ing. In: Proceedings of the 14th International Conference on 
Space Operations (SpaceOps 2016), 5 (2016)

	 2.	 Schefels, C., Schlag, L., Del Moro, A., Helmsauer, K., Lesch, 
T., Göttfert, T.: Bringing a machine-learning based novelty 
detection software tool from research to production. In: Pro-
ceedings of the 17th International Conference on Space Opera-
tions (SpaceOps 2023), 5 (2023)

	 3.	 Märtens, M., Izzo, D.: Mars express power challenge dataset 
(2016). https://​doi.​org/​10.​5281/​zenodo.​63273​79

	 4.	 Mars express–investigating the red planet. https://​www.​esa.​int/​
Scien​ce_​Explo​ration/​Space_​Scien​ce/​Mars_​Expre​ss/. Accessed 
21 Aug 2023

	 5.	 Mars express power challenge. https://​kelvi​ns.​esa.​int/​mars-​expre​
ss-​power-​chall​enge/. Accessed 21 Aug 2023

	 6.	 Andrzejewski, J., Ruszczak, B., Nalepa, J., Lakey, D., Collins, 
P., Kolmas, A., Bartesaghi, M., Martínez-Heras, J.: ESA anom-
aly dataset. https://​zenodo.​org/​recor​ds/​12528​696. Accessed 21 
Nov 2024

	 7.	 Kotowski, K., Haskamp, C., Andrzejewski, J., Ruszczak, B., 
Nalepa, J., Lakey, D., Collins, P., Kolmas, A., Bartesaghi, 
M., Martinez-Heras, J., De Canio, G.: European space agency 
benchmark for anomaly detection in satellite telemetry (2024). 
arXiv:​2406.​17826

	 8.	 ESA anomaly detection benchmark. https://​github.​com/​kplabs-​
pl/​ESA-​ADB. Accessed 21 Nov 2024

	 9.	 De Canio, G., Eggleston, J., Fauste, J., Palowski, A.M., Spada, 
M.: Development of an actionable AI roadmap for automating 
mission operations. In: Proceedings of the 17th International 
Conference on Space Operations (SpaceOps 2023), 5 (2023)

	10.	 Telemanom—anomaly detection in time series data using 
LSTMS and automatic thresholding. https://​github.​com/​khund​
man/​telem​anom. Accessed 21 Aug 2023

	11.	 Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soder-
strom, T.: Detecting spacecraft anomalies using LSTMs and 
nonparametric dynamic thresholding. In: Proceedings of the 
24th ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining. ACM (2018). https://​doi.​org/​10.​
1145/​32198​19.​32198​45

	12.	 Soil Moisture Active Passive (SMAP). https://​smap.​jpl.​nasa.​
gov/. Accessed 21 Aug 2023

	13.	 Mars Curiosity Rover (MCR). https://​mars.​nasa.​gov/​msl/. 
Accessed 21 Aug 2023

	14.	 Draper, D.: Challenger USA space shuttle o-ring. UCI Machine 
Learning Repository (1993). https://​doi.​org/​10.​24432/​C5PW2T

	15.	 UC Irvine Machine Learning Repository. https://​archi​ve.​ics.​uci.​
edu/. Accessed 21 Aug 2023

	16.	 Shuttle Landing Control. UCI machine learning repository 
(1988). https://​doi.​org/​10.​24432/​C57S34

	17.	 Statlog (Shuttle). UCI machine learning repository. https://​doi.​
org/​10.​24432/​C5WS31

	18.	 Outlier Detection Datasets (ODDs). https://​odds.​cs.​stony​brook.​
edu/. Accessed 21 Aug 2023

	19.	 KDD Cup 1999 Data. http://​kdd.​ics.​uci.​edu/​datab​ases/​kddcu​
p99/​kddcu​p99.​html. Accessed 21 Aug 2023

	20.	 KDD ’99: Proceedings of the Fifth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, New 
York, NY, USA (1999). Association for Computing Machinery

	21.	 UCR time series classification archive. https://​www.​cs.​ucr.​
edu/%​7Eeam​onn/​time_​series_​data_​2018/. Accessed 21 Aug 
2023

	22.	 Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.-C.M., Zhu, Y., 
Gharghabi, S., Ratanamahatana, C.A., Keogh, E.: The UCR time 
series archive (2019). https://​doi.​org/​10.​48550/​arXiv.​1810.​07758

	23.	 Climate data online: dataset discovery. https://​www.​ncdc.​noaa.​
gov/​cdo-​web/​datas​ets/. Accessed 21 Aug 2023

	24.	 The Numenta Anomaly Benchmark (NAB) build status. https://​
github.​com/​numen​ta/​NAB/. Accessed 21 Aug 2023

	25.	 Maat, J.R., Malali, A., Protopapas, P.: Timesynth–multipurpose 
library for synthetic time series. https://​github.​com/​TimeS​ynth/​
TimeS​ynth/ (2017). Accessed 21 Aug 2023

	26.	 Tadayon, M., Pottie, G.: tsBNgen: a python library to generate 
time series data from an arbitrary dynamic Bayesian network 
structure. https://​github.​com/​manit​adayon/​tsBNg​en. Accessed 
21 Aug 2023

	27.	 Zhang, C., Kuppannagari, S.R., Kannan, R., Prasanna, V.K.: 
Generative adversarial network for synthetic time series data gen-
eration in smart grids. In: 2018 IEEE International Conference 
on Communications, Control, and Computing Technologies for 
Smart Grids (SmartGridComm), pp. 1–6 (2018). https://​doi.​org/​
10.​1109/​Smart​GridC​omm.​2018.​85874​64

	28.	 Koochali, Alireza, Dengel, Andreas, Ahmed, Sheraz: If you like it, 
GAN it-probabilistic multivariate times series forecast with GAN. 
Eng. Proc. 5, 40 (2021). https://​doi.​org/​10.​3390/​engpr​oc202​10050​
40

	29.	 Smith, K.E., Smith, A.O.: Conditional GAN for timeseries genera-
tion. arXiv preprint (2020). https://​doi.​org/​10.​48550/​arXiv.​2006.​
16477

	30.	 Bokde, Neeraj Dhanraj, Feijóo, Andrés, Al-Ansari, Nadhir, 
Yaseen, Zaher Mundher: A comparison between reconstruction 
methods for generation of synthetic time series applied to wind 
speed simulation. IEEE Access 7, 135386–135398 (2019). https://​
doi.​org/​10.​1109/​ACCESS.​2019.​29418​26

	31.	 Dahmen, J., Cook, D.: SynSys: a synthetic data generation sys-
tem for healthcare applications. Sensors (2019). https://​doi.​org/​
10.​3390/​s1905​1181

	32.	 OpenAI. Blog: introducing ChatGPT. https://​openai.​com/​blog/​
chatg​pt. Accessed 11 Mar 2024

	33.	 Garza, A., Mergenthaler-Canseco, M.: TimeGPT-1. arXiv preprint 
(2023). https://​doi.​org/​10.​48550/​arXiv.​2310.​03589

	34.	 Narayana, S., Muralishankar, R., Venkatesha Prasad, R., Rao, 
V.S.: Recovering bits from thin air: demodulation of bandpass 
sampled noisy signals for space IoT. In: Proceedings of the 18th 
International Conference on Information Processing in Sensor 
Networks, IPSN ’19, pp. 1–12. New York, NY, USA (2019). 
Association for Computing Machinery. https://​doi.​org/​10.​1145/​
33025​06.​33103​84

	35.	 Wiebigke, A., Krenss, J., Hartung, J., Wiesner, S., Nibler, R., 
Fürbacher, A.: PintaOnWeb—the front end of GSOC’s next gen-
eration mission planning systems. In: Proceedings of the 17th 
International Conference on Space Operations (SpaceOps 2023), 
5 (2023)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.6327379
https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/
https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/
https://kelvins.esa.int/mars-express-power-challenge/
https://kelvins.esa.int/mars-express-power-challenge/
https://zenodo.org/records/12528696
http://arxiv.org/abs/2406.17826
https://github.com/kplabs-pl/ESA-ADB
https://github.com/kplabs-pl/ESA-ADB
https://github.com/khundman/telemanom
https://github.com/khundman/telemanom
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1145/3219819.3219845
https://smap.jpl.nasa.gov/
https://smap.jpl.nasa.gov/
https://mars.nasa.gov/msl/
https://doi.org/10.24432/C5PW2T
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://doi.org/10.24432/C57S34
https://doi.org/10.24432/C5WS31
https://doi.org/10.24432/C5WS31
https://odds.cs.stonybrook.edu/
https://odds.cs.stonybrook.edu/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/
https://doi.org/10.48550/arXiv.1810.07758
https://www.ncdc.noaa.gov/cdo-web/datasets/
https://www.ncdc.noaa.gov/cdo-web/datasets/
https://github.com/numenta/NAB/
https://github.com/numenta/NAB/
https://github.com/TimeSynth/TimeSynth/
https://github.com/TimeSynth/TimeSynth/
https://github.com/manitadayon/tsBNgen
https://doi.org/10.1109/SmartGridComm.2018.8587464
https://doi.org/10.1109/SmartGridComm.2018.8587464
https://doi.org/10.3390/engproc2021005040
https://doi.org/10.3390/engproc2021005040
https://doi.org/10.48550/arXiv.2006.16477
https://doi.org/10.48550/arXiv.2006.16477
https://doi.org/10.1109/ACCESS.2019.2941826
https://doi.org/10.1109/ACCESS.2019.2941826
https://doi.org/10.3390/s19051181
https://doi.org/10.3390/s19051181
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://doi.org/10.48550/arXiv.2310.03589
https://doi.org/10.1145/3302506.3310384
https://doi.org/10.1145/3302506.3310384


Synthetic satellite telemetry data for machine learning﻿	

	36.	 Langs, A., Oertlin, J., Trifin, F.: Applying continuous integration 
for operational products in the mission preparation environment. 
In: Proceedings of the 17th International Conference on Space 
Operations (SpaceOps 2023), 5 (2023)

	37.	 Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: LoOP: local 
outlier probabilities. In: Proceeding of the 18th ACM Confer-
ence on Information and Knowledge Management—CIKM ’09, 
pp. 1649–1652. ACM Press (2009). https://​doi.​org/​10.​1145/​16459​
53.​16461​95

	38.	 Schlag, L., Dauth, M., Braun, A.: The GSOC satellite telemetry 
analysis framework. In: Deutscher Luft- und Raumfahrtkongress 
2019 (DLRK 2019), vol. 9 (2019)

	39.	 Schlag, L., O’Meara, C., Wickler, M.: Numerical analysis of 
automated anomaly detection algorithms for satellite telemetry. 
In: Proceedings of the 15th International Conference on Space 
Operations (SpaceOps 2018), 5 (2018)

	40.	 Schlag, L., Schefels, C., Helmsauer, K.: Applying machine learn-
ing to routine satellite ground segment operations by means of 
automated anomaly detection. In: Aerospace Europe Conference 
2023 (EUCASS-CEAS 2023), vol. 07 (2023)

	41.	 Von Brünken, J., Houle, M.E., Zimek, A.: Intrinsic dimen-
sional outlier detection in high-dimensional data. NII Tech. Rep. 
2015(3), 1–12 (2015)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1145/1645953.1646195

	Synthetic satellite telemetry data for machine learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Public data sets
	2.2 Programming frameworks

	3 Library for synthetic satellite telemetry data
	3.1 Architecture
	3.1.1 Synthetic signals
	3.1.2 Synthetic telemetry

	3.2 Synthetic telemetry data set generation

	4 Use cases
	4.1 Software development
	4.1.1 Continuous integration and testing
	4.1.2 Prototyping

	4.2 Anomaly detection
	4.2.1 Method testing
	4.2.2 Benchmarking
	4.2.3 Training of AI methods for anomaly detection


	5 Proofs of concept
	5.1 Mimic real satellite telemetry data
	5.2 AI training with synthetic telemetry data

	6 Future work
	7 Summary and conclusion
	Acknowledgements 
	References


