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Abstract:

This report outlines a grey-box approach to
controller training and simulation of a Morph-
ing Trailing Edge (TE) fixed-wing Unmanned
Aerial Vehicle (UAV). The method combines
physical modelling through a Flight Dynamics
Model (FDM) with synthetic flight data gener-
ation for non-linear system identification. This
enables the development of an analytical model
that captures the system’s dynamic behaviour
across a wide flight envelope.

The project is part of the MorphAIR initiative,
aiming to enable safe flight and control of a mor-
phing UAV demonstrator. The final goal is to
establish a model-based design pipeline, capa-
ble of transitioning between conventional and
morphing wing configurations while supporting
accurate, simulation-based controller develop-
ment. The thesis developed a working UAV
simulation and excitation pipeline but struggles
to accurately identify non-linear MIMO dynam-
ics in Closed-Loop simulations. Although the
SINDy-based non-linear system identification
overfitted in both open- and closed-loop flights,
further experiments show that a mixed exci-
tation model can still capture Open-Loop re-
sponses under simulation-based excitations.
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Introduction

In the span from 1990 to 2019 the global commercial passenger aviation and freight has seen a four
times increase in demand. The future demand for global commercial aviation is expected to further
increase, causing a rise in global CO; emissions. [1] The aviation industry is a heavy emitter of CO»,,
and greenhouse gases, because of kerosine and contrails, which includes water vapour left in the
atmosphere. The relatively young aviation industry is responsible for an estimated 4% of the total rise
in human-caused temperature increase. [1, 2]

Although the aviation industry has quadrupled in size from 1990 to 2019, the emitted CO, has only
doubled. Due to CO; emission goals and fluctuating fuel prices, the aviation industry has decreased
emissions through advances in biofuels, larger flight hauls, and new technologies. [1]

A group of new flight technologies, promising to save fuel, are morphing wing technologies. These
technologies change the shape of the wing, in order to reach optimal flight conditions [3, 4, 5].
Different morphing technologies are currently being developed, such as span-wise morphing altering
the wingspan to dynamically change wing-aspect-ratio. High aspect ratios save fuel during cruise
conditions, and low aspect-ratios are ideal for slower take-of and landing. Morphing techniques such
as variable sweep wing can rotate the wings to gain higher sweeps improving lift to drag ratio, around
super and subsonic flights. These technologies have shown promising results in both simulation and
wind tunnel experiments. [3].

Another morphing wing technology which has shown promising results in wind tunnel experiments,
is the Morphing Trailing-Edge (TE) Wing. Tests of half span morphing TE wing has shown promising
results in lowering drag compared to conventional ailerons, and require smaller actuator deflections
to produce the equivalent rolling moment. [6].

A major problem with morphing TE wings are their complexity of control, since the camber of the
wing changes drastically during simple manoeuvrers, and the aerodynamics also vary continuously.
With many actuators on the wings becoming deeply coupled, there is a growing demand for real-time
optimisation and control in order to fully benefit from morphing TE wings. [3]

The next step in the deployment and research of Morphing TE wings is real flight tests, where precise
control and optimisation of the wing are crucial for demonstrating its performance [3].

1.1 Initial Problem Statement

How can Morphing Trailing Edge Wings safely be controlled and optimised for real flight tests?
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2 Problem Analysis

The problem analysis begins with an overview of the MorphAIR project, followed by the Proteus
demonstrator, which includes both conventional and morphing wings. Finally, a description is pro-
vided of how the morphing wing can improve flight performance.

2.1 MorphAIR Project

Morphing technologies show promise in both fuel efficiency, flying with higher loads, and allowing
more aggressive manoeuvres. But a fundamental problem in the validation process of emerging mor-
phing technologies, is a lack of real flight tests. In recent years, scaled flight tests have been conducted
on UAV demonstrators in order to reduce costs and mitigate risks

Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by NASA (National
Aeronautics and Space Administration) and AREA-I, is a scaled UAV of a Boeing 737 transport
plane. The Scaled Flight Demonstrator (SFD) is used to test flexible wing tip, and used to counter
the influence of turbulence and gusts. [7] Likewise, Airbus has developed a SFD on the A321, called
AlbatrossOne, testing flapping wing tips with the aim to reduce the impact of gusts and turbulence,
with the goal of optimising fuel usage and wing loads on transport planes. [8] Netherlands Aerospace
Centre (NLR) has experimented with SFD’s produce at 1:8.5 scale of an Airbus A320, intended for
rapid testing of emerging technologies. [9] The three SFD’s can be seen in Figure 2.1

(a) In-flight view of NASA PTERA (b) In-flight view of Airbus Alba-
with flexible wingtips trossOne with flapping wing tips

(e) Ground test of Airbus Alba- (f) Ground test of NLR’s A320 SFD
trossOne

Figure 2.1: Scaled Flight Demonstrators: (a—c) in-flight, (d—f) corresponding ground tests of NASA PTERA,
Airbus’ AlbatrossOne, and NLR’s A320 SFD.

An iteration of the SFD by NLR used to test electric propulsion, was destroyed when a battery caught
fire on the runway, and there has been no news of NLR’s SFD since. [10] This is a testament to
uncertainties and dangers when testing new technologies, even on scaled airplanes.

The current challenge with SFDs is that producing a model from the ground up to resemble a real
aircraft—especially for new and risky technologies—can be expensive. In order to create a less risk-
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CHAPTER 2. PROBLEM ANALYSIS

averse and cost effective SFD test-bed, Deutsches Zentrum fiir Luft- und Raumfahrt (Deutsches Zen-
trum fiir Luft- und Raumfahrt (DLR)) has an interdisciplinary research group MorphAIR (Morphing
Technologies & Atrtificial Intelligence Research Group).

By sourcing commercial, off-the-shelf parts for UAV testbeds, MorphAIR seeks to rapidly test emerg-
ing technologies on cheap UAV demonstrators. One of these demonstrators is the fixed wing UAV,
Proteus initially used for testing morphing wing TE technologies.

2.2 Proteus

The DLR TE morphing wing demonstrator named Proteus, has a fuselage based of the hobby sport
jet called Futura XXL, by Tomahawk Aviation. To facilitate wing modularities, the fuselage has been
amended and the landing gear has been moved. A new jet engine has been installed and the avionics
has been retrofitted. The commercial UAV and the retrofitted Proteus, can be seen on Figure 2.2.

Figure 2.2: Image of the sport jet Futura XXL (Top) & the retrofitted Proteus (Bottom), picture by DLR.

The first iteration of Proteus features a pair of conventional wings, allowing the first iteration of the
UAS (Unmanned Aircraft System) be tested and serves as a baseline for the evaluation of morphing
technologies. The second iteration of Proteus is a set of morphing TE wings, these specialised wings
can be attached directly on Proteus’ fuselage.

Two sets of wings are developed for the same UAV, to establish a baseline of the UAS with conven-
tional and well understood features. This allows potential performance improvements to be compared
on the same basis, but now with the morphing wing installed.

Currently DLR has conducted initial piloted flight tests, with the purpose of testing the airframe with

the conventional wings. On Figure 2.3 the first flight test of Proteus with conventional wings can be
seen, and in Appendix A.3 the full video can be found.
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CHAPTER 2. PROBLEM ANALYSIS

Figure 2.3: The first flight test of Proteus with the conventional wings.

DLR has made progress with the development of the conventual winged demonstrator. However,
in order for the Morphing wing to be tested, an ability to control and fly the demonstrator safely is
essential. This highlights the need of further research into morphing wings, in order to produce safe
flight controllers.

2.2.1 The Morphing Trailing Edge Wing

A simple overview of aerodynamics, covering technical naming of fixed wing aircraft parts, and the
basis of lift and drag, can be found in Appendix A.1. This is a general overview explaining lift and
drag, moreover it covers the technical terms of wing geometry and naming of actuator surfaces, and
lays the foundation for the following equations included in this section.

The implementation of the Morphing wing is still in its early stages. Currently the morphing wing
is under construction by DLR. A description of the produced morphing TE wing from a material-
scientific point of view, can be found in this preprint by Tikalsky et al. [4] An illustration of the
morphing on the TE, can be seen on Figure 2.4.
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CHAPTER 2. PROBLEM ANALYSIS

Figure 2.4: Illustration of morphing wing, Tikalsky et al. [4]

The wings consists of 10 servos and each wing segment, with the ability to deform the flexible mate-
rial on the Trailing Edge. This results in multiple different ways to reach a certain lift distribution for
the UAV. The following equations in 2.1 and 2.2 attempt to explain the main area where the morphing
TE wing can help to optimise lift.

The drag is expressed as in Equation 2.1:

1
D= E,oVZSCD 2.1

Where:

D is the drag force acting parallel to the airflow.

p is the air density.

V is the velocity of the airflow relative to the wing.

S is the wing area.

Cp is the induced drag coefficient, influenced by the wing area and surface shape.

This means in situations with low velocities, induced drag constitutes a large proportion of the total
drag. On Figure 2.5, the relation between other drag sources and induced drag can be seen with their
impact on total drag.

total drag

drag force

parasitic drag _lift-induced drag

flight velocity

Figure 2.5: The different drag sources’ impact on total drag, depending on velocity. Figure collected from [11]

Other drag sources are usually called parasitic drag or form drag, and are more prevalent at higher
velocities.
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CHAPTER 2. PROBLEM ANALYSIS

The induced drag coefficient Cp from Equation 2.1 can be expanded to an equation of total drag, seen
in Equation 2.2.

(CL)?
TegAR

Cp =Cpo+ (2.2)

Where:

Cp is the total induced drag coefficient.

Cpo is the zero lift drag, based on the geometry of the wing and potential extremities of the plane,
causing a higher zero lift drag coefficient.

Cr 1s the total lift force, expressed by the equation of lift.

eo 1s the Oswald efficiency number, which will be further explained below.

AR 1is the aspect ratio, determined by the geometric relation between length and width between the
cord and span of the wing.

Since Cp is partially based of the inherent lift of (CL)2 over wing geometric constants, the drag
coefficient rises when the lift coefficient does. The impact of this term will be reduced with a high
Oswald efficiency number. This explains why the Oswald efficiency number ey of Equation 2.2, is
an important factor. It describes how close the wing shape is to the ideal drag-reducing wing shape.
This wing shape is the ideal elliptical wing which ensures an Oswald efficiency number of 1. The
further away from the elliptical shape, the Oswald efficiency number decreases, and the induced drag
coefficient increases. One of the better known planes with wing shapes resulting in high Oswald
efficiency numbers are the WW?2 Spitfire planes, seen on Figure 2.6

Figure 2.6: Illustration of Spitfire Mk Ila P7350 with near ideal elliptical wing shape. Figure collected from
[12]

As seen on Figure 2.5, when planes fly at higher velocities, the induced drag decreases, and thus
the specific shape of the wing becomes less important. A morphing TE wing can also save fuel by
optimising lift to drag ratio because of its smooth surface deflectors with no gaps. It can improve
controllability because of more flexible actuators, the morphing wing might improve the impact of
gusts, and alleviate loads during aggressive manoeuvrers. [13]

However, for the Proteus demonstrator equipped with the Morphing TE wing, the most important
impact comes from the change of the wing shape and the increase in the Oswald efficiency number
when doing deflections. This is because Proteus primarily flies at lower velocities, and is not built for
complex manoeuvres.
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CHAPTER 2. PROBLEM ANALYSIS

An example of how the morphing TE wing can improve the Oswald Efficiency number can be seen
on Figure 2.7, where both the conventional wing and the morphing wing has been simulated with
(VLM).

Spanwise Lift Distribution [¢, = 0.71; a=5"; Ma=0.1]

: I I
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Figure 2.7: Vortex Lattice Method of both the conventional/Reference wing (left) & the Morphing wing (right).
The x-axis describes the normalised span of the wing. The y-axis is the local lift coefficients over the span of
the wing, all summing up to the lift of cL = 0.71 required for reaching an Angle of Attack (AOA) of 5 degrees.

Figure 2.7 is a comparison between the span-wise lift coefficients of the conventional wing to the
morphing wing. In the figure, both wings are first compared in their undeformed states, visualised
in the blue & green graphs, with a total spanwise lift coefficient of cL = 0.43 resulting in an AOA
of 0 degrees. Then both wings are tasked to produce the same spanwise lift coefficient of cL = 0.71
resulting in an AOA of 5 degrees. The conventional wing has to deform its inner flaps by 15 degrees,
where the morphing wing can produce the required lift coefficient in a more distributed manner. The
elliptical dotted line is the ideal elliptical wing shape, producing an Oswald efficiency number equal
to 1, thus minimising the lift induced drag.

The benefits of the morphing wing can be seen on the Oswald efficiency number of ey = 0.923 which
inherently reduced the induced drag, and the morphing wing need to do a much smaller deflection to
reach an AOA of o = 5°, compared to the conventional wing.

The values of this can be seen on Table 2.8, where in this specific case the increase in Oswald effi-
ciency factor for the morphing wing results in a lift to drag increase of +4.9%.
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CHAPTER 2. PROBLEM ANALYSIS

Configuration cL = 0.43 (Alpha = 0 deg) cL =0.71 (Alpha = 5 deg)
Oswald:

Reference Wing 0.886 0.828 (Flaps 10 deqg)
Morphing Wing 0.886 0.923

Difference 0 +11.49 %

Cpi -

Reference Wing 0.0100 (100 dcts) 0.0290 (290 dcts)
Morphing Wing 0.0100 (100 dcts) 0.0256 (256 dcts)
Difference 0 -11.76 %

L/D: (D ~ Cpp + CDis CDo =0.0300)

Reference Wing 109 12.21
Morphing Wing 109 12.81
Difference 0 +4.9 %

Figure 2.8: Table Containing the VLM results of deflection between conventional and morphing wings.

An image of Proteus equipped with the Morphing wing can be seen on Figure 2.9.

Figure 2.9: Image of Proteus equipped with the Morphing Wing.

A video of the Morphing wing deflecting can be found in Appendix A.3.

2.2.2 Vortex Lattice Method

The Votex Lattice Method (VLM) is an analytical tool that can estimate the spanwise lift distribution
of the wings. VLM handles the wing geometry as distributed panels where the lift and drag con-
tribution of all panels are used to estimated lift and drag coefficients. The VLM is used instead of a
traditional CFD program, because it can estimate coefficients of the morphing wings in approximately
2-3 minutes on a normal laptop. This is in stark contrast to CFD simulation of the entire UAV, which
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CHAPTER 2. PROBLEM ANALYSIS

takes 1-8 hours on a HPC (High-Performance Computing) depending on the granularity. The VLM
makes it feasible to run offline simulations where the lift/drag coefficients are returned for each wing
configuration.

2.3 Classical Control of Fixed Winged UAVs

An overview of fixed wing UAV control techniques is needed. A common approach used to describe
fixed winged aerodynamics for use in control is calculating the aerodynamic forces and moments
directly from lift and drag coefficients. The dynamic equations are often simplified to lateral and
longitudinal forces, with no assumed cross coupling. This method is often preferred because it can
easily be assumed linear and has closed form solutions.

The forces are described by an expansion of lift and drag coefficients describing the forces of the
fixed wing plane. The coefficients used for Proteus can be found in the Appendix A.2. Most of these
coefficients can be assumed constant in specific flight conditions, this means in order to model the
flight dynamics for an entire flight envelope, a lookup table with the corresponding coefficients is
needed. The coefficients are usually generated through different CFD simulations. But VLM can also
be used to estimate wing related coefficients.

The total lift force coefficient can be described as:

Brefp Crefq Brefr
C C,——+4+C1,6,+Cr 0,+CL,0 2.3
’ 2VTAS+ quVTAS+ LVZVTAS+ Le O Ly O T 0L 3

CL=Co+Cro0 +CL[3[3 +Cr

The total drag force, follows the principles of Section 2.2.1, with the parasitic drag being a static
coefficient in the look-up table and the induced drag coefficient being calculated based on lift in the
Equation 2.2. This quadratic drag term can also be linearized to a coefficient included in a look-up
table.

The total lateral force coefficient which explains the side force of the plane, can be calculated by the
following equation:

By, Cre Byeyr
Cy = Cro+Crat+CypP +Cr, L ¢y =1 | ¢y 20

Cy,0,+Cy, 6, +Cy, o 24
PWras | 0 2Vpas T gy e T OO O -

The forces can then be calculated from these total coefficient and their relation the airflow on the
wing, as seen on the equation2.5.

F,= _CDQSref
Fy = CYQSref (2.5)
F, = _CLQSref

Where:

Cp(a,B,0) is the drag coefficient (function of angle of attack, sideslip and control deflections).
Cy (o, 3,0) is the side-force coefficient.

Cr(o, B,0) is the lift coefficient.

Srer 18 a constant describing the area of the wing.

Q is the airflow, described by Equation 2.6.
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CHAPTER 2. PROBLEM ANALYSIS

1
Q= pVras’ (2.6)
Where:
p is the current atmospheric pressure.
Vras is the true airspeed of the UAV.
The moments of the plane is similarly explained by total lift and drag coefficients:
Brefp Crefq Brefr
C=Cp+Cqa+C C C C C.0,+Cy 6.+ Cy, 6
1 =Cio+Caot+Cpf+C, Wrs +0, Wrns +C, Wrrs + €100+ Cpp 0e + €,
Brefp Crefq Brefr
Brefp Crefq Brefr

The moments can also be derived similarly to the forces, the moment equations can be seen on Equa-
tion 2.7.

M, = Cy O Srer bref>
My = Cp O Sref Crets 2.7)
M = Gy O Sref Dret.

Where:

byet 1s the wing span used for roll and yaw moments.

Cref 18 the mean aerodynamic chord used for pitch moment.

Cy,Cy,,C, are the non dimensional roll, pitch, and yaw moment coefficients.

These classical fixed wing dynamical equations can easily be linearized over specific flight envelopes
[14]

Linearization

For control design and stability analysis, these non-linear aerodynamic coefficients are usually lin-
earized about a steady trim condition. Denote the steady values by a subscript “0” and small devia-
tions by A(-). Then, for example,

C
ACL ~ Crg Ad+Cp, Ad,+ - +Cy, 2;2 Aq,

and similarly for Cp,Cy,Cy,Cy,,C,. Usually on UAVs, the dynamic pressure is measured directly by
a pitot tube on the aircraft, and does not need to be linearised. Retaining only first-order/linear terms
gives a standard state-space form for the rigid-body dynamics. [14].

12 of 51



Prior Work

This chapter gives an overview of the work and conclusions previously done on the MorphAIR
project. The goal of the internship has been to facilitate training of reinforcement learning controllers
in simulation, and prepare a realistic environment for safe implementation of flight controllers. The
initial target for the Reinforcement Learning (RL) environment was to create an automatic gain tuner
for the inner- and outer-loop controllers intended for the fixed wing UAV. The work is a summation
of what was previously done in by the author during the 9th semester. [15]

3.1 Development of PyFDM

To enable training of an RL agent that can be safely deployed on the real UAV, a simulation en-
vironment was developed in Python, which is called PyFDM. This simulation suite is a series of
modules, ranging from the simple aerodynamic solver to the sensor suite can be individually replaced
or changed. The simulation environment is still under continuous development, and modules are
being actively added to PyFDM for further granularity of the simulation.

3.2 Disturbance Modelling

Bridging the gap between simulation and reality required the incorporation of realistic atmospheric
disturbances. Domain randomization was grounded in established standards, with turbulence and
gust models drawn from United States Department of Defence MIL-F-8785C standards and its later
revisions. The Dryden turbulence model was selected for its rational transfer functions, facilitating a
six-degree-of-freedom wind disturbance profile based on altitude, true airspeed, and specified inten-
sity. Only a low-altitude variant has been implemented, since initial flight envelopes remain near the
ground. White-noise trajectories are passed through the Dryden filters and sampled via zero-order
hold, yielding time-varying linear and rotational disturbance velocities, that can be used in a discrete
simulation.

The Dryden turbulence adds velocity changes to both the rotational and lateral direction, the Dry-
den turbulence is stochastically generated based on a generalised transfer function. The disturbance
varies by height, wing-span, airspeed, and an intensity parameter. An example of generated Dryden
turbulence can be seen on Figure 3.1.

13 of 51



CHAPTER 3. PRIOR WORK

125
10 073
100 050 4
z = 05 0y
2 o £ S o
E £ E
€ . g
£ £ 000 {
R 3 00 2
H 5 E
£ oz & 10
3 £ £
" 5 -0s § s
0.00
10 -0.75
-025 ’
-1.00 {
o S I R B 00 25 50 75 100 125 150 175 200 00 25 S50 75 100 125 150 175 200
time in seconds i In secinds time in seconds
0.04
oos {
0.04
E 0.06 [
£ 2 ooz =
g g g .
g 004 | 1 £ £ 002 | |
b £ < f
E ooz il o Bl Rt b LI LIS AR (e B L I 2 oo 2 |
E ' i : i i
2 000 1M R | N A 2 5 000 il | { i i
: 1L - ] : ‘ .
E -0.02 1 | | ' | l g -0.02 H |
g { 2 2 S —0.02
£ oo L | W R = €
5 H
& -0.04
-0.06 | oo
00 25 50 75 100 125 150 175 200
O RESS TREC Thoill okey G TR SRRl time in seconds 0p 25 50 75 100 125 150 175 200

time in seconds

Figure 3.1: Plot of Dryden turbulence velocities, added to the lateral and rotational velocities.

3.3 Servo Modelling

Accurate servo dynamics are critical for Sim2Real transfer. A second-order transfer function was
derived from system identification experiments on DroneCAN HBL388 servos. In the test rig, PWM
(Pulse Width Modulation) commands sweep from minimum to maximum while the resulting servo
rotation is recorded, as seen on Figure 3.2. Only the raw servo angle is logged, since the exact
kinematic mapping to surface deflection remains under development on the Morphing wing. The
deflection for the conventional wing is assumed a linear scalar from servo rotation to aileron surface

deflection.

Figure 3.2: Test rig of Morphing wing segment,
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This data enables least-squares fitting of time-delay, through subspace methods. Which gives a dis-
crete time model that describes the system lag both from the mechanical inertia and communication
latency. Once identified, the servo model is inserted into the simulation loop as a linear system matrix.
The RL agent can learn to compensate for the true actuator responses.

3.4 RL PID (Proportional — Integral — Derivative) Autotuner Setup

The automatic gain tuner uses Stable-Baselines3’s implementation of Proximal Policy Optimization
(PPO). The training environment is wrapped as a Markov decision process in which each episode com-
prises a single decision, which is the choice of three PID gains for the inner-loop roll controller, part
of the Python Flight Control Module (PyFCM). Upon selection, PyFCM applies these gains for the
duration of the 500-step simulation, during which PyFDM evolves the aircraft state. Multiprocessing
across eight parallel environments accelerates data collection and stabilises PPO gradient estimates
for a final model. Figure 3.3, illustrates the environment setup as a Markov decision process, where
the agent gets access to the initial dynamic pressure and then outputs suitable PID gains.

/ Environment \

/ PyFCM \ aileron / PyFDM )
i A
elevator
L Inner-loop
( b rudder
Outer-loop |y B
> 4 throttle
NAV —>

—

state:
action: Qdyn
kp, ki, kd (
L Agent reward

Figure 3.3: Illustration of RL training environment for episodic PID gain tuning.

15 of 51



CHAPTER 3. PRIOR WORK

3.5 Reward Function

A second order reference model for roll dynamics serves as the foundation of the reward function.
The penalty is proportional to the squared deviation from the desired roll angle and its distance from
the desired response defined by a target damping ratio and natural frequency. The training run is
terminated with heavy reward penalties for the UAV doing ground collisions or stalls.

The reason a second order system was used a reward function was to avoid incentivise the agent to
choose high PID gains. The second order reward model can be seen on Figure 3.4.

Step Response
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4 4
°
2
~ 34
R
@
o
[
o
= 2
e
14
—— Reference model (time-continuous)
----- Reference model (time-discrete)
0 --- Reference step

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

Figure 3.4: Response of second order system with { =0.7 & ® =0.5.

The specific Natural frequency and damping ratio was hand-tuned so the reference roll response
would, mimic common response behaviour for UAVs commanded to roll.

The reason why the agent has been trained to follow a predefined second order system is to ensure
that the UAV acts predictably when the PID gains are used in real flight tests, and discourage any
aggressive manoeuvres learned in simulation.

3.6 Training and Results

Over 100 000 episodes on multi-CPU setups, the agent converged to relatively low proportional and
integral gains that achieved stable roll control. When tested with varying roll set points every 100
steps, the trained policy produced smooth, slightly under-damped responses, which can be seen in
Figure 3.5.
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Figure 3.5: Screen-shot of gains converging during training.

These roll gains were still relatively aggressive even with the second order reward function. This
means generally over the flight envelope the less aggressive hand tuned gains are safer to fly with.

Module Block K, K; K, Limits
Controllery 2.0 0.0 0.0 —
Roll Controllergy ¢ —-1.36 —-1.30 -7091 —
Limiter Aileron — — —  [-25°, 257
. Controllerg -0.5 -02 0.0 —
Pitch Limiter Elevator ~ — — —  [—25°, 259
Throttle Gain 1.0 — — —
Yaw Controllerp 0.0 —1.0 0.0 —
Limiter Rudder — — —  [-30°, 30°]

Table 3.1: Inner-loop controller parameters PID gains and actuator limits, with the RL converged PID roll
gains.

Module Block K, K Ky Limits
Course Controller, 1.0 0.0 20 —
Limiter Roll Angle — — — [-30°, 30°]
Speed Controllery, 1.0 02 0.0 —
P Limiter Throttle — - — [0, 1]
) Controller;, 02 0.0 0.0 —
Height 1 miter Pitch Angle — — —  [=20°, 20°]

Table 3.2: Outer-loop controller parameters PID gains and actuator limits.
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3.7 Hardware-in-the-Loop Inference

The work also included preparation for launching RL agents on a companion computer for running
inference. This NVIDIA Jetson companion computer is installed on Proteus, and enables both training
and deploying PPO agents live. The trained PPO policy, originally saved in PyTorch format, was
exported to ONNX and accelerated with NVIDIA’s TensorRT back-end on a Jetson Orin NX. This
conversion ensures even larger and more sophisticated GPU-accelerated models can be deployed
to the PX4’s companion computer architecture. And RL agents trained in PyFDM can be directly
deployed on Proteus,

3.8 Conclusion and Further Work

The internship was concluded with the development of the initial modules for PyFDM. Even though
the RL trained gains were slightly too aggressive for automatic gain tuning, the RL training pipeline
still works. And DLR are continuing the development of offline RL training in PyFDM.

The current plan is to utilise PPO to learn the optimal dynamics and control of both the conventional
wing and the morphing wing of Proteus, and let the RL agent directly control the surfaces.

This should first be done for the conventional wings, and if PyFDM proves realistic enough for train-
ing and testing agents on the real Proteus, an RL training environment for the morphing wing could
be made.
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4 Delimitation

This thesis deviates slightly from previous work, which was focused on setting up the flight simula-
tion, and designing an RL pipeline.The MorphAIR project will focus on training controllers for both
conventional and morphing wings, using RL in order to be able to optimise the flight profile of the
morphing wing.

This can prove problematic as it relies on a “one-shot” approach where the Sim2Real (Simulation-to-
Real) gap is closed by training an agent in simulation and testing in flight. This is challenging as the
PPO RL algorithm used for training agents, is completely black box empirical model.

It would be preferable to have an additional analytical surrogate model, that can be simulated fast
enough to predict if any actions taken by the RL agent, can lead to any unstable conditions or con-
straint breaches in the future.

stabilising analytical
Conventional Wing t model

Flight Test | > x> &
I~ i 7
16 1« ®
’«" SSID Morphing : ,f’, RL
i Win Morphing Wi
Simulation @ 1l [ : e

A\

| | | N
System Identification 3 N RL @ %
Conventional Wing \‘ Conventional Wing '-‘
Morphing Wing 9 G €
Flight Test A | \&/ @
| | 5o
> stabilising analytical > Project Timeline

model

Figure 4.1: Tlustration of MorphAIR pipeline, consisting of 3 project timelines. The top timeline represents
flight tests of the conventional wing. The middle represents developments in simulation. The bottom represents
flight tests with the Morphing wing.

Figure 4.1 represents the different planned steps of MorphAIR. Step 1 is the creation of the simulation
environment and the system identification analytical surrogate model for the conventional wing. The
aim of step 2 is to verify this model on the real conventional winged UAV and create an analytical
safety controller, that can be used on Proteus as a protective safety layer. The same will be done for
the morphing winged Proteus in step 3 and 4, where an identified analytical surrogate model should
be able to predict future states based on current inputs and states. Where a stabilising analytical model
can function as a protective layer for when empirical and untested RL agents has to be deployed, re-
flected by step 5 & 6, and 7 & 8, for the conventual and morphing wings, respectively.

This thesis focuses on the red part on Figure 4.1, by setting up the simulation pipeline of PyFDM

(Python Flight Dynamics Module), and developing system identification strategies, that might even-
tually capture the dynamics of the morphing wing in simulation.
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4.1 Final Problem Formulation

The final problem formulation can be described based on the problem analysis, the prior work and
delimitation of the MorphAIR project.

Can a simulation environment for a fixed wing UAV, be non-linearly system-identified over multiple
flight suites.
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Methods

The methods chapter delves into the background of different kinds of identified models.Specifically
methods focuses on covering the state of the art of system identification within aerospace, including
how non linear cases are handled and the trade off’s of between open loop and closed loop system
identification. Subsequently, a non linear system identification approach will be presented, followed
by a suitable excitation scheme.

5.1 White, Grey, & Black Box Models

Currently in aerospace, the system identifications of airplanes and UAV’s (Unmanned Aerial Vehicle)
follow some general approaches. The white box modelling approach utilises the underlying physics
of the vehicle, and a set of equations are setup to from physical properties that mimic real world be-
haviour. [16]

A common approach to creating white box model of UAVs is to base them on underlying physical
knowledge, and formulate uncoupled equations of motions. In aerospace, these are usually linearised
systems based on lift equations which describes lateral, longitudinal, yawing-moment, and rolling-
moment equations of motions are often used for formulating linearized state space models of air-
planes. [16] [14]. This decoupled non-linear model, can then be linearized and used as a white box
model for a controller, as explained in Section 2.3.

Black box methods are data-based approaches, where data is used to identify responses of an un-
known system. Usually the system responses is modelled purely from input/output data, gathered
from experiments around operating point of the unknown system. Black box methods do suffer from
a complete lack of transparency, since it only attempts to explain the input/output process through
mathematical models. [16] [17]

Usually these black box models are trained on flight data, capturing the poorly understood mechanics,
or complicated non-linearities. Different black box system identification methods has been used in
aerospace, such as subspace identification methods, Neural Network (NN)s, or genetic algorithms.
These methods are good at capturing the precise dynamics present in the data, but are generally hard
to interpret, as these models do not directly convey physical meaning. [17] [16]

Grey box methods are mix of white and black box approaches, where better known dynamics are de-
rived by underlying physics and poorly understood or highly non-linear parts are covered by flight
data. Examples of grey box modelling can be improvements of flight parameters derived from
white box approaches, where methods such as parameter estimation or correction for white box ap-
proaches, describing specific smaller non-linear parts with data based models in white box descrip-
tions. [16] [18].

Black box methods can also be modified to include grey or white areas, by utilising standard lift

equations or more complicated geometric lift descriptions formulated from white box approaches,
these can then be simulated generating data that can be identified by a black box approach. With
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flight simulators getting better and more sophisticated, this simulated system identification is getting

more traction. [16]

Method Interpretability | Model Fidelity Examples of Use

White Box | High As high as the underly- | Physics-based lift equa-
ing equations allow tions

Black Box | Low Depends on quality of | Input/output system
data identification
and is prone to overfit-
ting

Grey Box | Medium Trade-off between | Mixed parameter esti-
physics- and data- | mation or simulation
based approaches

Table 5.1: Comparison of White, Grey, and Black Box methods

As seen in Table 5.1, the white box methods are generally regarded ideal in aerospace because of
the high interoperability, but the model’s accuracy is only as good as the underlying physics and as-
sumptions. If a white box approach is used on a system with poorly understood dynamics or weird
couplings, a worse model could be derived. On the other hand pure black box modelling suffers from
low interpretability, and the data laying the foundation of the black box model must be of high quality
and broadly represent the system at the desired operating points in order to reduce over fitting. The
middle ground of grey box modelling does seem to contain best of both worlds, with a balance be-
tween verifiable models for classical aerodynamics, and precise data-based models for complicated
or highly non-linear subsystems.

This work will focus on a grey box pipeline utilising Flight Dynamics Model (FDM) simulation to

generate synthetic data for further system identification. The goal is to cover a wide flight envelope
and eventually be used for a Vortex Lattice Method VLM simulation.

5.2 Linear System Identification

When performing linear system identification from a purely black-box perspective, a common chal-
lenge is that only the system’s inputs and outputs are known. Therefore, the internal system dynamics
are unknown and must be estimated as illustrated in Figure 5.1.
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Input/Output System

_)u(t) Plant _)y(t)

Figure 5.1: Illustration of the system identification problem. The inputs: u(¢) and outputs: y(¢) are known,
however the the plant system is unknown.

When doing system identification in aerospace, the UAVs surface deflections are used as inputs u(t)
and the resulting states are used as outputs y(¢), and from this the UAV plant dynamics can be found.
For estimating linear systems from input/output data, different methods has been developed, and many
variations exist.

In aerospace, modern subspace methods are currently preferred for linear system identification. These
methods utilise the linear properties of systems to derive system matrices.

Subspace methods such as MOESP (Multivariable Output-Error State Space) and N4SID (Numerical
Subspace State Space System Identification) or variations thereof, are popular linear system identi-
fication choices in aerospace, since they output linearised state space matrices from Multiple-Input
Multiple-Output (MIMO) systems and can handle coupled dynamics.

Both of these methods use the properties of linear system such as Hankel matrices and observability
criteria, but because of these linear properties they have trouble handling very non-linear systems.

Since the Morphing wing model, needs to optimise lift and drag, which change dynamics polyno-
mially over different heights and velocities, a system identification method that can handle these
non-linearities is needed.

5.3 System Identification of Non-linear Systems

In order to capture the expected non-linearities of the aerodynamics, explained in Section 2.2.1, non-
linear system identification methods are needed.

Neural networks are great at fitting complex input/output relationships, however they do not give an
explicit analytical description of how inputs are transformed into outputs. Instead they behave purely
as black box models with parameters tuned by data, which makes them hard to interpret or analyse in
closed form. [19] By contrast, polynomial NARMAX (Nonlinear AutoRegressive Moving Average
with eXogenous input) models specify a clear input—output difference equation, but when extended
to MIMO systems the number of possible regressors explodes, which especially becomes a problem
when identifying highly coupled dynamics such as a an UAV [20]

Another non-linear capable identification algorithm which can both handle non-linearities, return an-
alytical and interpretable models, and do not explode in parameters when identifying MIMO systems,
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is Sparse Identification of Non-linear Dynamics (SINDy) (Sparse Identification of Non-linear Dy-
namics). [19]

53.1 SINDy

Sparse Identification of Non-linear Dynamics (SINDy) is a newer system identification method, which
seeks to find the most sparse or the least terms to describe input - state pairs. The methods can take
input/output trajectories, which SINDy tries to predict using non-linear terms.

Xptr] = ®(Xk,uk) =, 5.1

Where:

Xy, 1s the state vector at sample k.

uy 1s the control input at the same sample.
O(x,uy) is the library of candidate functions.

Z is the coefficient matrix to be identified, each column corresponds to one state equation and will be
reduced through a sparsity cut-of parameter.

Equation (5.1) is in discrete time, but SINDy can also handle continuous system. When initialising
the SINDy algorithm, a feature library is given, holding potential non-linear terms suspected to be
present in the system, as seen in Equation 5.3.1.

. | |
OX)= |1 X X* X* ... sin(X) cos(X) --- (2.4)

This candidate library can be manually constructed with the suspected non-linear terms in the system,
but should be kept concise.

For a data set of length N the stacked regression reads
X+=®E, X+:[X1,...,XN]T,

with the matching library matrix @. Identification is posed as

[x]

o (5.2)

1 2
*— i + = =
= argmin S{|X" —OF|[ + 2 |||
Where:
|| - ||F is the Frobenius norm; sums the squared prediction error over all states.
|| - |lo counts the non-zero elements of E, enforcing sparsity.
A > 0 is the sparsity threshold. Larger A gives more coefficients driven to zero.

Problem (5.2) is solved with Sequential Thresholded Least-Squares (STLSQ) (Sequential Thresh-
olded Least-Squares), where ordinary least-squares steps alternate with coefficient pruning until all
remaining terms exceed A in magnitude. The threshold A and the highest polynomial degree in the
library are selected on a basic train/validation grid. Finally, the model is refitted on the combined
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train + validation set, returning the coefficient matrix of Z*.

Having found the sparse coefficient matrix Z*, the identified dynamics can be reconstructed by plug-
ging E* back into the full feature library.

Xp+1 = @(Xk, llk) = (51)

Each column of E* contains the non zero weights for the corresponding state equation, and deacti-
vates” the features that do not live up to the threshold of A.

5.4 [Excitations

In order to catch the necessary dynamics for the system identifications algorithms to create repre-
sentative system models, the input/output data needs to represent the desired operating points. As
covered in the Aerodynamics section 2.2.1, the forces and moments of the morphing wing vary a lot,
especially based on height and velocity. This makes it crucial to capture output data from as many
expected and varied flight conditions as possible. And since the system dynamics are deeply coupled
based on inputs, as many combinations of excitations of the input surfaces are needed too.

For linear system identification, common methods include random noise, burst random noise, pulse
impact, multisine, and sine dwell. Multisine sweeps are considered state of the art for classic linear
models, providing good bandwidth with shorter records and less leakage compared to random noise,
this means fewer excitations are needed to capture accurate dynamics. [21].

Non-linear system identification requires inputs that can capture how harmonics change with both
input level and base frequency, harmonics being multiples of the input frequency present in the sig-
nal. An exponential swept sine or chirp is effective for this, as its continuously varying frequency
and amplitude allow for mapping dependencies and separating high order terms. Inputs must span
both frequency and amplitude for non-linear systems, in contrast to linear systems. This varying fre-
quency and amplitude is necessary, whether through chirps, phase varying multisines, or amplitude
modulated PRBS (Pseudo Random Binary Signals), otherwise higher order terms may be unobserv-
able. [22].

Amplitude modulated PRBS or APRBS, that also varies the amplitude stochastically within maximum
and minimum bounds. It is essentially a series of square waves with stochastically sampled amplitude
and pseudo random pulse duration, where the sign of the amplitude changes every pulse. APRBS is
considered the standard excitation type for non linear system identification. [23].

Another promising excitation method, Orthogonal phase-Optimized MultiSines (OOMS) (Orthogonal
Optimised Multisines), works by ensuring that each actuator excites a distinct slice of the spectrum
with orthogonal frequency content, and by optimising the phase to minimise the peak factor. Meaning
the peaks of the sines on different inputs do not coincide, and create destabilising dynamics. [24]

For MIMO systems, including non-linear cases, multi-sinusoidal signals are preferred over simulta-
neous uncorrelated PRBS, which can fail to excite low or slow reacting dynamics properly.

This can be fixed by the using orthogonal frequency sets so each actuator excites a distinct part of the
spectrum [25], exactly as OOMS does. [24]. It is also advised to increase the scalar amplitude in later
runs to capture non linear terms while keeping the frequency content the same. [25].
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An illustration of the open-loop excitation scheme, can be seen on Figure 5.2.

Open-Loop Excitation System

FExcitation

y(t)

w' () u(®) Plant —>

Figure 5.2: Open-Loop excitation scheme, where APRBS and OOMS are intended as excitioans for the system.

In closed-loop control, inputs become correlated through the feedback loop, especially classic identi-
fication formulas can misestimate the frequency response because of this.

Augmented identification equations are needed, and they work best when inputs are orthogonal phase-
optimised multisines. [26]. OOMS satisfies this by minimising the peak of the different input channels
through phase optimisation, keeping the system from overexcited instability while multiple inputs can
be isolated. [24].

It is stated as long as the signal to noise ratio is not too high 5% amplitude is enough to capture dy-
namics, OOMS specifically works poorly when the Signal to Noise ratio is lower than 10. [24].

APRBS and OOMS both seem to be good excitation schemes for non-linear systems, but it is impor-
tant for MIMO systems that different input-channels are distinguishable through the system.

For closed loop systems it gets a bit more complicated since the controller will bias the inputs. The
closed loop system identification would look like the following illustration on Figure5.3.

Closed-Loop Excitation System

FEzxcitation

ref e u*(t) u(t)

t
Controller y(®)

Plant >

Figure 5.3: Closed loop system excited by adding excitations directly to the controller output: u*(¢)

Such a closed-loop system would need to be augmented with in order to unbias the excitations from
the controller[26].
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When comparing identified models, it is important to cross validate potential hyper parameters and
excitation schemes. A common way to score or compare identified models is. [27]

Since the system identification of the conventual winged UAV dynamics and the morphing wing VLM
based dynamics is done completely in simulation, it is possible to do the system identification purely
in open-loop. Any destabilising or catastrophic excitations will simply end the simulation. But if
similar experiments were to be conducted during real flight tests, a supporting controller would be
required.

This is why system identification of both open-loop and closed loop will be conducted, well knowing
that the closed-loop system identification will be biased.
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6 Implementation

This chapter will cover the implementation of PyFDM and the excitations for the system identifica-
tion. The general pipeline of data generation and system identification can be seen on Figure 6.1
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Figure 6.1: Block diagram of data generation and system identification pipelines.

6.1 Simulation

The simulation of Proteus is done in DLR’s custom made Flight Dynamic simulator called Python
Flight Dynamics Module (PyFDM). Parts of this simulation has been explained in Chapter 3, but the
part of interest is explained further.

The simulation follows a modular architecture, where different parts of the simulation pipeline can
be retrofitted to support different systems. An example of the modules included in the simulation
pipeline and the configuration used for identifying the dynamics of the simplified wing UAV can be
seen in Figure 6.2
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Figure 6.2: Diagram of the PyFDM simulation pipeline, with modules used for simulating fixed-wing dynam-
ics.

All of the modules seen in Figure 6.2, are used to instantiate a simulation module which defines
parameters, mathematics, disturbances, and controllers for the specific simulation.

When instantiating the simulation the inherent modularity of PyFDM makes it possible to for example
compare two different controllers, or different airplanes to each other in simulation. The following
part will explain what components has been used for different modules:

* Simulation.aircraft
- Aircraft parameters and physical properties used for the specific UAV in simulation.

* Simulation.environment
- Atmospheric properties of the earth, such as magnetic field and air density.

* Simulation.aerodynamics
- Aerodynamic model, calculates forces and moments from the aircraft modules coefficients.

* Simulation.inertia
- Models variable mass form loss of fuel.

 Simulation.thrust
- Thrust model outputting forces and moments and fuel consumption.

* Simulation.commands
- Module returning control inputs to the controller.

 Simulation.controls
- Module serve as an input to the simulation for potential autopilot controllers.

* Simulation.sensors
- Sensor module allowing for added disturbances on states.

* Simulation.actuator
- Actuator delay of surface deflections.

* Simulation.turbulence
- Stochastic disturbance modelling turbulence.

* Simulation.solver
- Integrates the dynamics and returns the states one step in the future.
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6.1.1 Physical Modules

The Aircraft module allows for different physical parameters for the simulated UAVs, for the Proteus
demonstrator wing geometry, UAS wing and Inertia tensor, and fixed wing lift coefficients from a
CFD simulation set point. The Inertia tensor is estimated from a CAD (Computer Aided Design)
model, which has then been simulated in CFD, giving the following properties seen in Appendix A.2.
Different aerodynamics models can be used. Initially a simple fixed wing aerodynamic model is used,
using the physical parameters from the aircraft module with the current states and surface deflections.
Through the fixed wing aerodynamics covered in Section 2.3, the forces and moments acted on the
UAV can be found.

Another relevant aerodynamic model that can be used, is a Vortex Lattice Method (VLM), which
geometrically solve the lift of each actuator segment of the wing. It should be noted that the VLM
currently does not handle the reduction of slat effect by the flexible wing segments. A live VLM
module has not been implemented into PyFDM as a module yet, but is the next step, in order to
model the morphing wing.

6.1.2 Control Modules

The commands module can represent many different things depending on the configuration of the
module. Logically the module is supposed to represent the commanded stick input of the pilot. But
for this system identification pipeline the command module is used for generating excitations, through
the Multilnput class a preplanned trajectory of excitations can be exerted on the aircraft. An example
of the planned excitation event can be seen in Table 6.1.

Input Type Surface Start Time [s] Duration [s] Deflection [°]

Square Pulse Aileron 5 10 25
Sine Elevator 7 8 5
Step Rudder 3 6 15

Table 6.1: Template of excitation commands applied to control surfaces during simulation.

These excitation types can be scheduled at the same time across different surfaces, making it possible
to provoke actuator coupled dynamics. The Square Pulse and Sine input types allows for both OOMS
and APRBS excitation schemes to be generated and inserted into the simulation.

The controls module can be omitted, by a direct law turning commanded values directly into actuator
deflections.

Direct law is the mode that is used for open-loop simulation, so the excitations will be directly applied
to the UAV.

But for closed-loop, the controls module facilitates external controllers giving control outputs to the
actuator surfaces of PyFDM. The input wrapper class to the controls module called Mixed Controller,
ensures that any excitations overrides the control outputs of the controller whenever a surface excita-
tion is activated.
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6.1.3 Disturbances & Sensor Modules

It is possible to add sensor noise, to have a discrepancy between the actual simulation states and
the reported sensor values. Through this implementation ideal sensors has been assumed, since no
proper state of the art filtering strategies has been developed for PyFDM. Noise filters are present in
the avionics flight controller for Proteus, and it is assumed that the sensor noise from flight data is
negligible.

The servo actuator responses of Proteus are simulated through a linear actuator response module. The
N4SID subspace identification method mentioned in Section 5.2, has been used to model the servos
of the wing through hardware in the loop data acquisition. Whenever a control output is sent to the
servos a linear response model is activated, modelling response delays.

PyFDM does support dynamical disturbances such as atmospheric wind and turbulence. During sim-
ulation only Dryden turbulence is used, since the flight regime of Proteus is of too low altitude for the
computationally heavy atmospheric model to have large effect on the UAV. The Dryden turbulence
described in Section 3, is used to generate the artificial noise of this simulation. The intensity of the
turbulence is randomised, so different flight trajectories will experience different levels of noise.

6.1.4 Solver Module

The solver integrates the forces and moment of the vehicle dynamics one step into the future.
Scipy’s Livermore Solver for Ordinary Differential Equations (LSODA) integrator is used as a basis
for calculating the next states through the dynamics equations.

LSODA ensures that optimisation problems containing changes in stiffness can be solved, this is
especially prevalent when simulating at high velocities.

The integrator step of the dynamics, takes in the aircraft lift coefficients from the aircraft model. The
inertia model, the trust model, environment model, surface deflections, and the current states, are all
passed to the integrator.

In the integrator the aerodynamic forces and moments from the aerodynamic module, are added to
the forces and moments from the inertia and thrust modules.

The solver module additionally transforms velocities from the UAV frame, to geodetic states.

The forces and moments are then used in a Newton-Euler function calculates the accelerations. These
”dot” states are then projected one time-step in to the future by LSODA and new states and rates are
found.

All of these states and rates, are returned as the next states for PyFDM.

6.1.5 Initialise PyFDM

When starting a PyFDM simulation all modules are initialised, and a trimming function is started.
The trimming function ensures that the simulation starts in stable conditions. It uses a least squares
algorithm to ensure that the initial position of surfaces and the angle of attack, does not create any
forces and moments so the UAV starts in complete equilibrium. This is important because a lot of
flight mechanisms is only well understood at stable conditions, and the dynamic equations of PyFDM
will most likely act non-physical during high instability.
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The trim module is passed the initial simulation parameters and fills out the rest of the starting states,
an example of initial simulation parameters passed to the trimming module can be seen on Table 6.2.

Name Symbol Value
True airspeed Vr 50.00 m/s
Latitude [ 52.31°
Longitude A 10.56°
Altitude h 500.00 m
Flight-path angle Y 0.00rad
Heading X 0.00 rad
Yaw angle v 0.00 rad
Sampling time At 0.02 s
Simulation duration Tiim 10.00 s
Trim mode — simple

Table 6.2: Example of simulation parameters before initial trim.

6.1.6 Run PyFDM Step

When all of the PyFDM modules have been initialised, the simulation parameters are trimmed to ini-
tial states, PyFDM can loop through its steps. Excitations, potential controls, disturbances are added
to surfaces and states, and the next set of states can be derived through the dynamics solver.

After each step, all commanded control inputs, control output surface deflections, state variables,
sensor variables, and wind disturbances are logged in file and saved to disc.

6.2 Control System

For doing closed-loop control, PyFDM support an external controller module input. The flight con-
troller currently used is called Python Flight Control Module (PyFCM).

The control system used for stabilising flight of a inner-loop PID controller and an outer-loop PID
controller, is used to follow a reference trajectory of heading, height, velocity.

A diagram of the outer and inner-loop controller used for closed loop simulation can be seen on
Figure 6.3.
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Figure 6.3: Outer and inner-loop PID controllers used for closed-loop simulation.

The PID gains are hand tuned to be relatively low for fixed wing outer/inner-loop controllers, . The
outer course and inner-loop roll, and outer height and inner-loop pitch controllers are cascaded, but
otherwise they assumed decoupled form each other. The only coupled relation is the adverse yaw
calculation from the yaw controller, which is used to correct a slight moment induced on the yaw
axis when a fixed wing plane is rolling. The hand tuned PID gains used for PyFCM, can be found
in Section 3, Table 3.1. The controller is very simple, and just needs to be able to stabilise the UAV,
during excitations for system identification.

6.3 Randomisation of Simulation & References

Since this is an attempt to map a surrogate model of the flight dynamics of an entire flight regime,
randomisation is needed to gather representative data.

For the open-loop simulation, the state dynamics are explored through randomising the simulation
parameters and then exciting the surfaces. The starting simulation parameters are randomised around
the Proteus operating points with a Gaussian distribution, with the logic being that the data should
reflect where the UAV actually fly in state-space, more than the extremities where it rarely would fly.

Name Symbol Bounds  Unit/ note
True airspeed Vr 50 [40,10] ms~!
Altitude h 500 [200, 1000] m
Flight-path angle Y 0 [—5,+5] deg
Heading L 180 [0, 360] deg
Sampling time Ar 0.02 fixed s

Simulation duration T 30 [25, 35] S

Table 6.3: Randomisation scheme used in random_simulation_parameters (). Each variable is drawn from
A (u, o) and clipped to its bounds, with ¢ = (upper — lower) /6.
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For closed-loop simulation the same randomised simulation parameters are used, but in addition to
excitons, stabilising references for the outer-loop controller are added.

Usually when making aerodynamic models they are focused around a specific close to linear and sta-
ble operating point, such as level-flight, rolling with on aileron, yawing with one elevator, or landing.
But when the goal is to identify dynamics over multiple flight envelopes, and eventually with very high
actuator input morphing wing, randomisation of both flight domains and actuator excitons are needed.

6.4 Excitations

Following the excitations discussed in Section 5.4, three different excitation schemes has been made.
Namely APRBS, OOMS and a mixed excitation scheme where there is a 50% chance that either
OOMS or APRBS will be chosen for the flight trajectory.

OOMS

For generating OOMS excitations an excitation 7 length is chosen at random and a global amplitude
scale s is drawn from a preset set. The base deflection for each control surface is multiplied by s
for changing sine amplitudes, and two integer multipliers k define the sinusoid frequencies f = k/T.
Each sinusoid is given a random phase and the excitation is the sum of these two sinusoids over the
interval of 7. The disjoint k sets ensure that the channels remain spectrally isolated and the random
phases keep the peak distributed.

Figure 6.4 shows an example of OOMS, excitations used in a closed-loop simulation.
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(a) OOMS Aileron excitation. (b) OOMS Elevator excitation. (¢) OOMS Rudder excitation.

Figure 6.4: Side-by-side comparison of three OOMS excitations, inserted in a closed-loop simulation.

APRBS

For generating APRBS excitations, a random sample of a binary sequence is chosen. Then random
amplitudes within bounds are assigned for the run, and are multiplied to the binary sequence. The
frequency between bit shifts is fixed, but sequence and amplitudes are changed between each run.
Figure 6.5, shows the excitations sent to the plant.
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(a) APRBS Aileron excitation. (b) APRBS Elevator excitation. (c) APRBS Rudder excitation.

Figure 6.5: Side-by-side comparison of three APRBS excitations, inserted in a closed-loop simulation. Note
that the square pulses are “rounded” by the actuator delay.

Closed-Loop

As mentioned in Section 5.4, using a closed loop on the system will directly bias the data with the
controller. In order to circumvent this bias, the controller is simply “turned off” on each surface
channel when excitations are emitted. If excitations were to destabilise the UAV, the controller will
then re-establish after the excitations are finished. This will still mean that the controller will bias the
system, but when larger excitations are happening the hope is that any larger amplitudes and different
frequencies can be detected by system identification algorithms.

It should be noted that most literature recommends more sophisticated strategies to handle controller
bias, as explained in Section 5.4.

6.5 SINDy System Identification

With the SINDy algorithm, a pipeline has been made that takes 20 simulation trajectories and gener-
ates the best fitted model, from a training/validation/testing spilt of 16/2/2 trajectories.

The SINDy models are compared and scored with both MSE over the difference in all 11 states, simu-
lated 10 steps into the future. This intuitively makes sense, but it is a bad scoring metric over different
domains. For example if the initial rate of change is high, the error will grow larger over the 10 steps
and the identified model will score worse because of the initial state.

This is why the R? score is used instead. This score compares the total variance explained by the iden-
tified model over the unexplained variance, when comparing the real system to the identified model.

When setting up the SINDy system identification both a sparsity hyper parameter and a target library
has to be assigned. Based on the fact that the Morphing wing has to optimise the Drag and Lift equa-
tions in Section 2.2.1 and that is directly modelled in PyFDM, the non-linearities are assumed to be
of polynomial form. In real flight conditions trigonometric non-linearities are also often present, but
those are not modelled in PyFDM.

This means that finding the best fitted model, for a given data-set a grid search has been used search-

ing for the best combination of of sparsity parameter and order of library to fit, the best R> scoring
model is chosen, the grid search goes over the following parameters:
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Polynomial Degree € {1,2,3}
Sparsity Parameter € {0.01,0.05,0.1,0.2,0.5,0.8}

Two separate scoring methods for the identified models have been defined, namely the coefficient
of determination noted R? and the Mean Squared Error noted MSE. These provide insight into the
quality of the identified system.

an?2
Yy (i —9i)

RP=1-
Yi=1Y(y—y)?

6.1)

Where:

y; are the measured state values at sample i.

y; are the predicted state values from the identified model.
v is the mean of all measured state values.

Equation (6.1) measures the fraction of variance explained by the identified system. A value close to
1 indicates that most of the variance in the measured data is captured by the model, while values near
0 or negative, correspond to poor predictive accuracy.

1
MSE = -} (vi—5)” (6.2)

Where:

y; are the measured state values at sample i.

yi are the predicted state values from the identified model.
N is the total number of samples in the trajectory.

Equation (6.2) provides an absolute error metric of an entire trajectory of states. Large deviations are
penalised quadratically. The R*> and MSE scores give both a relative and absolute measure of how
well the identified systems replicate the original trained system behaviour.

Since the absolute MSE scoring can deviate significantly depending on starting states and the use of

un-nominalised trajectories, the R* scoring is used to compare models in the grid-search. Where the
relative difference between models works better over different trajectories.
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Each trained model has been simulated in 20 different runs with excitations schemes on the surfaces,
compounded into a single list of trajectories.

7.1 Open-Loop System Identification

For testing the open loop system identification, 3 different excitation schemes have been used, each
having 20 flight trajectories. The simulation starting states are sampled stochastically with normal
distributions, described in Section 6.2.

The results of the 3 open-loop models, comparing the different excitation schemes to each other, can
be seen on Table 7.1

Technique Best config Score  Final MSE  Final R> Ensembled MSE Ensembled R?
APRBS degree=1, threshold=0.01 0.7829 3.973 x 1073 0.7645 3.554 x 1073 0.7644
OOMS degree=2, threshold=0.01 0.8089 5.435 x 1073 0.8154 5.556 x 103 0.8153
Mixed degree=2, threshold=0.01 0.8418 4.910 x 1073 0.7977 4.095x 1073 0.7975

Table 7.1: Open-loop model results for three excitation techniques (20 logs each).

Following the R? score, the open-loop OOMS excited model, explains unseen data the best. The
identified open loop OOMS model, given the same starting configuration and inputs as the real system,
can be seen simulated on Figure 7.1.

Figure 7.1: Simulation of the identified OOMS excited system.
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7.2 Closed-Loop System Identification

The exact same setup is used as the open loop, except for a stabilising inner/outer-loop controller
taking in height, course, and velocity. Initially tests with a stable reference has been conducted, in
order to whether the system can be identified with controller inputs present.

The results of the 3 closed-loop models with APRBS, OOMS, and Mixed excitations, can be seen in
Table 7.2.

Technique Best config Score  Final MSE  Final R*> Ensembled MSE Ensembled R?
OOMS degree=1, threshold=0.01 0.8512 2.107 x 1073 0.8475 1.880 x 1073 0.8472
Mixed degree=1, threshold=0.01 0.8373 2.532 x 1072 0.8460 2.516 x 1072 0.8460
APRBS degree=1, threshold=0.01 0.8148 6.283 x 1073 0.8228 6.611 x 1073 0.8226

Table 7.2: Closed-loop model results for three excitation techniques (20 logs each) with static reference height
and speed.

Following the R? score, the best performing identified closed loop model, is the APRBS exited one.
It should be noted that all closed loop models are fitted to 1. order systems. The simulation of the
closed loop can be seen in Figure 7.2.
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Figure 7.2: Simulation of identified system, from Closed-loop APRBS excited data.

7.3 Further Analysis

It would be of interest to explore how the controller behaves under multiple changes in altitude and
velocity in the trajectories. To investigate this, a simulation consisting of 20 closed-loop flights excited
by APRBS signals was conducted, where the reference trajectory changed in each run.

38 of 51



CHAPTER 7. TESTS

With an ensemble and non-ensemble model, using APRBS excitations.
Fitted to second degree, with 0.0 sparsity

Final model:  Test MSE = 5.769 x 1073, R? =0.8352
Ensembled model:  Test MSE =5.823 x 1073, R? =0.8359

0.0 ~ 05 1.0 15 2.0 25 3.0 35

Figure 7.3: Simulation of identified closed-loop simulation where height and velocity references change. Note
that only 3.5 second can be simulated before instability ensues.

The system can then be linearised into A and B matrices by taking the Jacobian at the operating point
(xs0,us0). The corresponding eigenvalues of A are listed in Figure 7.4, which indicate that several
modes lie close to the unit circle.
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A[0] = 1.0000 IA[0]| = 1.0000
A[1] = 0.1596 IA[1]] = 0.1596
A[2] = 0.4930 IA12]] = 0.4930
A[3] = 0.4904 IA[3]| = 0.4904
A[4] = 0.9262 IA[4]| = 0.9262
A[5] = 0.7000 IA[5]| = 0.7000
A[6] = 0.9924 IA[6]| = 0.9924
A[7] = 0.9996 IA[7]] = 0.9996
A[8] = 0.9999 IA[8]| = 0.9999
A[9] = 1.0008 IA[9]| = 1.0008
A[10] = 1.0007 IA[10]| = 1.0007

Figure 7.4: Eigenvalues of the linearised system matrix A at the operating point (xs0,usp). Values close to
|A| = 1 indicate near-marginal stability.

The ensemble model is able to simulate in 30 seconds without having terms explode, as seen on Figure
7.5.
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Figure 7.5: Simulation of identified closed-loop simulation where height and velocity references change. Note
that the ensemble model allows for simulation.

It should be noted that the Eigen-values are still slightly unstable of the ensemble model, but no os-
cillation are present indicating that the controller might over-damp the system.
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It is also interesting to note that there no imaginary parts in the linearised stability plots of the closed-
loop, but imaginary part are present in the open-loop linearised Eigen-values, they can be seen on
Figure 7.6.
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Figure 7.6: Side-by-side comparison of Open and Closed-Loop discrete time Eigen-values, both linearised.

Additional experiments were carried out to test the identified Open-Loop models under square refer-
ence changes in different flight regimes. Figures 7.7 and 7.8 show the system responses at low altitude
and speed (h = 100,v = 50) and at high altitude and speed (2 = 1000, v = 200).

The following tests show the Open-Loop response of the Mixed excitation model when subjected to
square reference inputs. The model is initialised with the same state as the PyFDM simulation and
is propagated forward under identical square excitations, applied at different times to each control
surface. After the excitation sequence, the model is further propagated without external input. As
shown in Figures 7.7 and 7.8, the identified model remains consistent with the reference behaviour,
and the errors do not diverge significantly across time. This result supports that the mixed excitation
model can generalise across different flight regimes.
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Open Loop square input on Mixed model
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Figure 7.7: Open-Loop mixed model tested with square input at low altitude and velocity (h = 100,v = 50).

Open Loop square input on mixed model
h=1000, v=200

Figure 7.8: Open-Loop mixed model tested with square input at high altitude and velocity (h = 1000, v = 200).
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Discussion

This chapter will discuss the test results and the general implementation of both system identification
and excitations.

8.1 Open-Loop

For the Open-Loop system identification the best fitted excitation technique is the OOMS, fitted to a
second degree polynomial with the lowest threshold. On Table 7.1 this result might seem great, and
85% variance explained by the identified model could be a good result in itself, especially as models
explaining second degree dynamics is the eventual goal. But when looking at the open-loop simula-
tion on Figure 7.1, it becomes clear that the identified model is completely over-fit to the excitation
scheme which is also present in the test data.

What should have been done instead, was to use completely uncorrelated test and validation data.
What was intended to be a system identification model of MIMO non-linear dynamics, has unfortu-
nately turned out to be a model fitting of excitation signals instead.

8.2 Closed-Loop

For the same reasons as in the Open-Loop excitation test, the Closed-Loop results on Table 7.2 are
also inconclusive. This time a stabilising controller minimising the error to a static reference, so it
might seem like the APRBS excitation type is the most similar to the first order dominated controller.
It can be seen on Table 7.2, that even the OOMS excitation that otherwise over-fitted the open-loop
controller to a second order system, now also is of first order in the closed-loop. This might indicate
that the controller bias is high enough to dim out any second order fitting to the sinusoids of OOMS.

8.3 Open-Loop Changing Reference

During further analysis when testing the Open-Loop mixed excitation model in different flight regimes,
a clearly defined response can be seen on most states when compared to free flight in PyFDM given
the same response. This is true in widely differing flight regimes, and suggests that SINDy models
can learn flight responses.

In both cases of high-attitude/high-velocity 7.8, and low-attitude/low-velocity 7.7, a clear correspon-
dence can be observed between the model response and the free-flight behaviour in PyFDM. This
suggests that the SINDy models are able to capture relevant Open-Loop dynamics across different
operating points, even when the excitation and reference profiles differ from those used in training.

8.4 General Remarks

For trimmed open-loop flights the model seems to fit to the excitation used, and closed-loop static
reference flights seems to always fit to the controller bias.
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Interestingly enough if the controller reference is changed once during simulation the SINDy model
did fit a closed-loop model to the second degree, but it caused the simulation to become unstable.
This means all that the goal of describing broad dynamics, in a non-linear MIMO system failed,
because of over-fitting when identifying the system. But for Open-Loop SINDy models tested with
new ’un-seen’’ excitations, a desirable response can be observed compared to a PyFDM trajectory
given the same input excitation. This indicates that given enough training data and doing Open-Loop
MIMO non-linear excitation schemes, it could be possible to do an accurate system identification of
non-linear dynamics over different flight-regimes.

8.5 Further Work

For further work there should be more focus on the machine learning part of SINDy and training/val-
idation data should be sampled from completely different envelopes, with no dominating excitations.
If closed-loop system identification is needed, strategies for handling controller bias are strictly
needed. The bias is too large even when the controller is momentarily turned off, during excitations.
This begs the question whether closed-loop system identification even is needed for the MorphAIR
project. Since real flight tests with the morphing wing cannot be safely conducted without an identi-
fied model from simulation.

8.6 Conclusion

This thesis investigated non-linear system identification of a morphing fixed-wing Unmanned Aerial
Vehicle (UAV) using a simulation-based pipeline. The main objective of robustly identifying broad
non-linear Multiple-Input Multiple-Output (MIMO) dynamics could not be fully achieved due to
overfitting, especially in Closed-Loop tests where controller bias dominated the response.

Nevertheless, the work demonstrates several important outcomes. Limited non-linear MIMO dynam-
ics were captured in Open-Loop simulations, and randomised Orthogonal phase-Optimized Multi-
Sines (OOMS) excitations proved effective for non-linear identification. A full simulation and excita-
tion pipeline was implemented, capable of handling both Open- and Closed-Loop flights. Additional
Open-Loop testing against the Python Flight Dynamics Module (PyFDM) system confirmed that the
mixed excitation model can reproduce desired dynamics without diverging, suggesting that an Open-
Loop model may be feasible through SINDy- based system identification.

Future work should focus on generating more independent validation data to mitigate overfitting,

addressing controller bias for closed-loop identification, and extending the approach with real-world
flight data.
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Appendix

This is section is based of the Prior internship report of 9th semester, and gives a nesseary understand-
ing of fixed-wing aerodynamics. [15]

A.1 Fundamental Aerodynamics of Fixed-Wing Aircraft
To support an understanding of fixed-wing flight, it is necessary to present a simplified overview

of the primary aerodynamic forces. Figure A.l outlines common aerospace terminology relevant to
conventional fixed-wing aircraft:
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Figure A.1: Terminology commonly used in aerospace engineering related to aircraft structure.

The study of fixed-wing aerodynamics concerns how air flows around an aircraft’s wings (or airfoils),
generating the key forces required for flight. The four fundamental forces involved are Lift, Drag,
Weight, and Thrust. Lift acts upwards and counteracts the pull of gravity, enabling flight. It is
generated when air moves more quickly over the upper surface of a curved wing than along its flatter
underside, producing a pressure difference. This phenomenon is explained by Bernoulli’s principle in
combination with Newton’s third law. The formula for lift is presented in Equation A.1.

1
L= E,ovzscL (A.1)

Where:

L represents the lift force acting perpendicular to the oncoming airflow,

p is the air density,

V is the airspeed relative to the wing,

S is the surface area of the wing,

Cr. denotes the lift coefficient, which varies depending on the wing’s geometry and angle of attack.

In classical flight mechanics, these aerodynamic coefficients are typically stored in static lookup tables

for ease of computation.
In Figure A.2 an illustration describing the laminar flow separation can be seen
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Figure A.2: Illustration of flow separation from the upper surface of a curved wing.

Lift is the counterforce to the airplane’s weight which is induced by gravity.
Drag is the resistance experienced as air moves around the aircraft, acting in opposition to the direction
of travel. Its calculation, shown in Equation A.1, is structurally similar to the lift equation.

1
D= E,ovzscD (A.2)

Where:
D stands for the drag force, aligned parallel aligned with the relative airflow,
p,V, and S retain the same meanings as above,

Cp is the drag coefficient, which is influenced by the aircraft’s wing area and surface shape.

Thrust is the forward-driving force generated by the aircraft’s propulsion system, overcoming drag
and sustaining forward motion. Balanced forces results in steady, level flight, illustrated in Figure A.3.

Drag

F Y

Lift Total Aerodynamic Force

Flow Direction

v

Figure A.3: Depiction of force equilibrium in level flight.

The airflow interacting with the airfoil generates lift, and the angle relative to the oncoming wind is
known as the Angle of Attack (AOA). Both lift and drag are produced, and depending on the wing
design, small AOAs can generate additional lift; however if the AOA gets too high, the wings laminar
flow is reduced and the drag increases significantly,, which can cause the aircraft to lose altitude. This
behaviour is depicted in Figure A.4
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Figure A.4: NASA visualisation showing how increased AOA enhances lift until stall.

A fixed-wing aircraft is controlled by adjusting its moments. Angling a surface against the airflow
on one side creates a reaction force, generating a moment. This process is comparable to the concept
shown in Figure A.4, except it involves control surfaces.

The unmanned aerial vehicle UAV utilises four control inputs, for in-flight adjustments: the two tail
elevators and the tail rudder, the two wing ailerons, and engine generating thrust, as seen in Figure A.5

Figure A.5: Illustration of control surfaces on a fixed-wing aircraft

The ailerons adjust the roll movement of the plane. The elevators adjust the pitch movement of the
plane. The rudder adjusts the yaw movement of the plane.

From the wing’s frame of reference, the aircraft itself appears stationary while the gas flows past it.
This assumption is inherent in aerodynamic calculations, with actual aircraft velocity derived after-
wards. Another simplification is to treat the Earth as flat for these calculations; only after computing
the travelled distance is the aircraft’s position projected onto a spherical Earth model, yielding geo-
graphic coordinates such as latitude and longitude.

This represents a very rudimentary outline of aerodynamics for a non-morphing wing. In reality, the
aerodynamic behaviour of both Proteus with conventual wings and particularly Proteus with morph-
ing wings, is far more complex. Nevertheless, since my work has not involved direct aecrodynamic
analysis, this level of understanding is considered sufficient for the current context.
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A.2 Aircraft Coefficients

Aircraft Geometry and Inertia

Parameter Value Unit

Sref 1.41 m?
Cref 0.50 m
Bref 2.99 m
Mass 60 kg

L. 35177  kgm?
Lyy 6.74718  kg'm?
I, 9.21608 kg-m?
Iy 0 kg-m?
I 0.6854  kg-m?
I, 0 kg-m?

Table A.1: Geometry and inertia parameters of the aircraft.

Aerodynamic Force Coefficients

Coefficient Value Notes

e (Oswald factor) 0.95 Span efficiency
CLy 0.17473  Zero-angle lift
CL, 4.64545  AOA lift slope
CL, 6.80827  Pitch rate effect
CDyjs 0.02 Viscous drag
CDjna 0.00177  Induced drag
CYy —0.2667  Sideslip force
cY, 0.1892 Yaw rate effect

Table A.2: Aerodynamic force coefficients.

Aerodynamic Moment Coefficients

Coefficient Value Description

Cl, —0.4108 Roll damping

Cl, 0.0671 Yaw-to-roll coupling
Cle —0.0039 Aileron effect

Cmyg, —0.5552 Pitch stiffness

Cm, —7.2203  Pitch damping

Cmy, —0.0176  Elevator effect

Cng 0.0759 Directional stability
Cn, —0.0612 Yaw damping

Cn¢ —0.0009  Rudder effect

Table A.3: Aerodynamic moment coefficients for roll, pitch, and yaw.
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A.3 External Links

Video of Conventional Wing Flight Test

Google Drive: Video of the First Flight Test of Proteus with the Conventional Wing

Video of Morphing Wing on Proteus
Google Drive: Video of the Morphing Wing Moving on Stationary Proteus

A.4 PyFDM Logged States

This is a representation of the amount of states logged in PyFDM. Most of the values do not directly
describe the dynamics, and can be omitted.

All logged Values from PyFDM

Table A.4: Table of all 112 states, including both simulation states, sensor values, control-input & -output, and
wind disturbances. This shows the almost comical amount of states present in PyFDM,

Most of these stats are redundant, and system identification is only done on the control outputs, and a
subset of the sensor values. A lot of the states such as component velocities or rates, are represented
in different frames. This means its possible to reduce the states of interest to following Table A.5.

Reduced States from PyFDM

[ time control_outputs sensor_values
time [ aileron | elevator | throtile | rudder ) q r X y z ugs vgs w.gs | true airspeed |  Phi Theta Psi alpha beta h chi gamma
0 0 -5,2E-06 | 0,000109 | 0 0,022421 | -0,05133 | 0,120008 | 0,999513 | -0,00034 | -0,0041 | 49,9657 | -0,02592 | -0,25309 | 49,52087 0,000259 | -0,00084 | 0,001695 | 0,006814 | 0,00635 | 500 0 0
‘ 0,02 |0 -0,00016 | 0,003295 [ 0 0,038437 | -0,05191 | 0,23462 | 1,998714 | -0,00126 | -0,00766 | 49,95409 | -0,05353 | -0,13604 | 49,13915 0,00081 | -0,00179 | 0,005956 | -0,00131 | 0,009877 | 500,0041 | -0,00052 | 0,005065
‘ 0,04 10 -0,00055 | 0,01146 | 0 0,007838 | -0,05884 | 0,118051 | 2,997676 | -0,00219 | -0,00936 | 49,94186 | -0,03849 | -0,04845 | 49,3567 0,001091 | -0,0029 | 0,009505 | -0,00056 | 0,00437 | 500,0077 | -0,00107 | 0,002723
‘ 0,06 | 0 -0,00171 | 0,035419 | 0 -0,00288 | -0,07863 | -0,08175 | 3,996263 | -0,00251 | -0,01222 | 49,92199 | -0,00262 | -0,14702 | 49,704 0,001305 | -0,00466 | 0,009306 | 0,003871 | -0,0035 | 500,0094 | -0,00077 | 0,00097

Table A.S5: Table of the reduced 23 states, time, & inputs. The yellow states represents the values needed
for most simpler controllers. The green states might also be needed for more complicated model based flight
controllers.
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