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This paper presents a control design methodology for active flutter suppression in parameter-
varying aeroservoelastic systems. A rectangular wing exhibiting bending-torsion flutter is
modeled in a linear parameter-varying framework. Modal analysis of the critical flutter pole pair
shows that both associated eigenvectors are well observed by distributed inertial measurements.
Leveraging this property, a least-squares optimal blending of eight accelerometer signals is
computed to isolate the flutter dynamics in a two-channel virtual output. A low-order structured
𝐻∞ controller is then synthesized on this reduced interface, targeting robust stabilization up to a
specified freestream velocity with prescribed gain and phase margins while minimizing control
effort. Relative to an 𝐻2-optimal SISO blending baseline, the proposed approach achieves
increased flutter damping and reduced control effort. The architecture further supports
sensor fault tolerance by precomputing blending matrices for alternative sensor configurations,
enabling reconfiguration without modifying the controller dynamics. Open-source MATLAB
code accompanies the paper to facilitate reproducibility and extension to more complex systems.

I. Introduction
Background Flutter denotes a self-excited aeroelastic instability arising from the interaction of unsteady aerodynamics
with structural modes, often involving coupling between bending and torsional dynamics [1]. Traditional airframe
design mitigates flutter risk by maintaining a large margin to the open-loop flutter boundary, which increases structural
weight and constrains the use of high-aspect-ratio, lightweight wings. Active flutter suppression (AFS) aims to increase
the damping of critical aeroelastic modes via feedback control, thereby relaxing those structural penalties [2, 3]. The
fundamentals of AFS are discussed in [4] and a comprehensive survey is provided by Livne [5].

Related Work Early studies on two-dimensional airfoil sections provided foundational insight into flutter mechanisms
and their controllability properties [6, 7]. These works showed that bending-torsion flutter can, in principle, be
suppressed through constant feedback of the displacement and/or acceleration in either heave or pitch[8]. A key insight
is that effective flutter suppression often hinges on frequency separation between the first bending and torsion modes [9].
While feedback of the heave and/or pitch velocity is an intuitive approach to increase damping, root locus analysis
has demonstrated its limited efficacy in cases of closely spaced or coalescing modal frequencies [4]. Furthermore
torsion angle feedback tends to outperform bending displacement feedback in terms of achievable damping [10]. The
majority of AFS strategies can be broadly divided into collocated SISO feedback and multivariable optimal control.
Collocated schemes, in which sensors and actuators share the same location, offer strong robustness properties and
design simplicity [11] A prominent example of such collocated control is the Identically Located Force and Acceleration
concept, which successfully addressed the damping of structural modes of the B-1 aircraft [12–14]. Collocated vertical
acceleration feedback enabled the very first AFS flight test in the unstable-region on a B-52 aircraft in 1973 [15].
Further notable publications on collocated feedback for AFS include [16–20]. The more recent research in AFS
abandoned the simplicity of a SISO controller. Multivariable optimal control approaches have become prevalent. While
𝐻2-optimal Linear Quadratic Gaussian (LQG) controllers [21, 22] provided a principled starting point, the difficulty of
encoding robustness margins limited adoption. Modern AFS is dominated by multivariable 𝐻∞-optimal control [23–28].
Aeroelastic dynamics vary markedly with operating conditions, most notably Mach number and dynamic pressure. Since
the aeroelastic states evolve on a much faster timescale than variations in these parameters, the problem is well-suited to
a linear parameter-varying (LPV) description, for which a gain-scheduled control offers a natural strategy. [29–32] A
complementary line of work pursues modal isolation, which aims to decouple specific dynamic modes, e.g. the flutter
mode from the residual system dynamics. The method exploits the high-dimensional sensor measurements by forming a
linear combination (blending vector) of the signals, such that the resulting virtual output isolates the targeted modal
state. An analogous procedure may be applied to a multitude of actuator commands, enabling direct excitation of the
desired mode. The feedback loop is then closed SISO, substantially reducing overall design complexity. [33–36]
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This Work This paper introduces a systematic modal isolation framework tailored to dominant complex-conjugate
eigenvalues (flutter mode). The central idea is to retain all independently measurable components of the critical
dynamics (generalized position and velocity surrogates), rather than constraining the design to a single blended channel.
Concretely this work includes:

1) A least-squares (LS) optimal modal blending framework that (i) constructs output and input blends as (weighted)
Moore-Penrose pseudoinverses of the critical output and input pole-vector matrices, (ii) preserves modal
quadratures (position/velocity surrogates) and minimum-effort actuation maps exactly on the critical subspace,
and (iii) defines a well-conditioned, fault-reconfigurable virtual interface for structured 𝐻∞ synthesis.

2) A Gram-determinant metric for modal controllability and observability that (i) quantifies the independent
measurability and excitability of complex-conjugate modes via the squared volume spanned by the corresponding
output/input pole vectors, (ii) extends naturally to arbitrary mode subsets, (iii) is insensitive to rotation and
common rescaling, and (iv) predicts the conditioning (i.e., noise/effort amplification) of least-squares modal
blends.

3) A structured 𝐻∞ controller design (systune) on a reduced 2× 2 (virtual) interface that balances active structural
damping and actuator economy, while maintain robust stability up to a specified freestream velocity with
prescribed gain/phase margins.

4) A benchmark comparison against the 𝐻2-optimal SISO blending method of Pusch [36], demonstrating improved
flutter damping and reduced control effort in simulation.

5) A practical reconfiguration mechanism for sensor-fault tolerance by precomputing alternative blending matrices
for degraded sensor configurations, enabling reconfiguration without changing controller dynamics.

6) An open-source MATLAB implementation for reproducibility and extension.

Paper Organization Section II presents the proposed methodology; Section III introduces the aeroservoelastic
benchmark; Section IV details control requirements; Section V summarizes the 𝐻2-optimal blending baseline; Section VI
reports design and evaluation results; Conclusions are drawn in Section VIII.

II. Modal Blending Methodology
Modal isolation techniques reduce controller complexity by decoupling critical dynamics from residual modes.

However, existing SISO formulations [36] are effectively discarding valuable information if multiple 𝑛𝑐 critical poles
are to be controlled. This section develops a systematic framework for 𝑛𝑐 × 𝑛𝑐 controller structures. The goal is to
exploit all relevant information in the measurement signals and, dually, all available actuation capability. At the same
time, controller complexity must remain tractable. The modal feedback controller must move all critical poles of a
MIMO LTI system into a desired area of the complex plane. Control effort should be minimized and the effect on
residual poles must be kept small. For this purpose static input/output blends are constructed that (i) concentrate sensing
and actuation on the critical modal subspace, while (ii) minimizing spillover onto residual dynamics. Here, spillover
refers to the unintended excitation or observation of non-targeted modes through the blended channels.
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Fig. 1 Block Diagram of proposed Control Method

A. Modal Observability and Controllability
Consider a linear time-invariant (LTI) system of order 𝑛 with distinct eigenvalues, described by the state-space model

¤𝑥 = 𝐴𝑥 + 𝐵𝑢, (1)
𝑦 = 𝐶𝑥, (2)
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with 𝑛𝑢 control inputs and 𝑛𝑦 measurable outputs. The transfer function matrix from inputs to outputs admits the dyadic
expansion

𝐺 (𝑠) =
𝑛∑︁
𝑖=1

𝐶𝑣𝑖𝑤
𝐻
𝑖
𝐵

𝑠 − 𝜆𝑖
, (3)

where 𝑣𝑖 and 𝑤𝐻
𝑖

denote the bi-orthonormal right and left eigenvectors of 𝐴 (𝑤𝐻
𝑖
𝑣 𝑗 = 𝛿𝑖 𝑗 ) associated with distinct

eigenvalue 𝜆𝑖 . The factor 𝑤𝐻
𝑖
𝐵 is referred to as the 𝑖-th input pole vector, quantifying how strongly mode 𝑖 is excited by

the system inputs. Analogously, the vector 𝐶𝑣𝑖 is the 𝑖-th output pole vector, indicating how strongly mode 𝑖 is observed
in the outputs [37]. An eigenvalue of an MIMO LTI system is called controllable if its input pole vector is not zero and
observable if its output pole vector is not zero, however this existence result provides no degree of "controllability"[37].
Various quantitative measures of modal controllability and observability have been proposed in the literature [38–40].
Of particular relevance in feedback stabilization is the pole sensitivity [41], which characterizes the rate at which an
eigenvalue can be shifted under constant output feedback.

Pole Sensitivity under Output Feedback For a MIMO system with proportional output feedback 𝑢 = −𝐾𝑦, the
sensitivity of the 𝑘-th closed-loop eigenvalue 𝜆𝑘 with respect to the 𝑗𝑖-th feedback element 𝑘 𝑗𝑖 is defined as

𝑆
𝜆𝑘
𝑗𝑖

=
𝜕𝜆𝑘

𝜕𝑘 𝑗𝑖
. (4)

The closed-loop eigenvalue problem reads
(𝐴 − 𝐵𝐾𝐶)𝑣𝑘 = 𝜆𝑘𝑣𝑘 , (5)

where 𝑣𝑘 is the right eigenvector corresponding to 𝜆𝑘 . Differentiating with respect to 𝑘 𝑗𝑖 gives

(𝐴 − 𝐵𝐾𝐶) 𝜕𝑣𝑘
𝜕𝑘 𝑗𝑖

− 𝐵 𝜕𝐾

𝜕𝑘 𝑗𝑖
𝐶𝑣𝑘 = 𝑆

𝜆𝑘
𝑗𝑖
𝑣𝑘 + 𝜆𝑘

𝜕𝑣𝑘

𝜕𝑘 𝑗𝑖
. (6)

Multiplying from the left by the associated left eigenvector 𝑤𝐻
𝑘

yields

𝑤𝐻𝑘 (𝐴 − 𝐵𝐾𝐶) 𝜕𝑣𝑘
𝜕𝑘 𝑗𝑖

− 𝑤𝐻𝑘 𝐵
𝜕𝐾

𝜕𝑘 𝑗𝑖
𝐶𝑣𝑘 = 𝑆

𝜆𝑘
𝑗𝑖
𝑤𝐻𝑘 𝑣𝑘 + 𝜆𝑘𝑤

𝐻
𝑘

𝜕𝑣𝑘

𝜕𝑘 𝑗𝑖
. (7)

Using the left-eigenvalue relation
𝑤𝐻𝑘 (𝐴 − 𝐵𝐾𝐶) = 𝜆𝑘𝑤𝐻𝑘 , (8)

multiplying by 𝜕𝑣𝑘
𝜕𝑘 𝑗𝑖

, and subtracting the result from Eq. (7), the pole sensitivity becomes

𝑆
𝜆𝑘
𝑗𝑖

= −
𝑤𝐻
𝑘
𝐵 𝜕𝐾
𝜕𝑘 𝑗𝑖

𝐶𝑣𝑘

𝑤𝐻
𝑘
𝑣𝑘

. (9)

For normalized eigenvector pairs (𝑤𝐻
𝑖
𝑣 𝑗 = 𝛿𝑖 𝑗 ), this simplifies to

𝑺𝜆𝑘 = − (𝐶𝑣𝑘) (𝑤𝐻𝑘 𝐵), (10)

that is, the outer product of the 𝑘-th mode’s input and output pole vectors. Compared to the dyadic expansion of Eq. (3),
the sensitivity of eigenvalue 𝜆𝑘 to the feedback element 𝑘 𝑗𝑖 is identical to the negative residue of the transfer function
entry 𝐺𝑖 𝑗 (𝑠) at the respective pole 𝑠 = 𝜆𝑘 . With suitable scaling of input and output variables, these sensitivities provide
meaningful measures of modal controllability and observability [39].

Modal Measures for Real and Complex Poles For a real eigenvalue with normalized eigenvectors, suitable scalar
measures of modal controllability and observability are given by

|ℎ𝑖 | = ∥𝐶𝑣𝑖 ∥ , (11)
| 𝑓𝑖 | =



𝑤𝐻𝑖 𝐵

 , (12)
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where |ℎ𝑖 | represents the effective observability of mode 𝑖 across all outputs, and | 𝑓𝑖 | the effective controllability of
mode 𝑖 via all inputs [39]. For complex eigenvalues, the same procedure applies, but the pole sensitivity becomes
complex-valued. For 𝜆𝑖 = 𝛿 + 𝑖𝜔,

𝑆
𝜆𝑖
𝑗𝑖
= ℜ

{
𝑆
𝜆𝑖
𝑗𝑖

}
+ 𝑖ℑ

{
𝑆
𝜆𝑖
𝑗𝑖

}
, (13)

where ℜ{𝑆𝜆𝑖
𝑗𝑖
} reflects sensitivity of the modal damping ℜ{𝜆𝑖}, and ℑ{𝑆𝜆𝑖

𝑗𝑖
} reflects sensitivity of the modal frequency

ℑ{𝜆𝑖}.

Proposed Gram-Determinant Measure A measure of independent controllability and observability for complex-
conjugate pole pairs (or more generally, for any subset of modes) based on the Gram determinant of the corresponding
pole vectors is proposed. Given pole vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛, the Gram matrix is defined as

𝐺 (𝑣1, . . . , 𝑣𝑛) =
©­­­«
⟨𝑣1, 𝑣1⟩ · · · ⟨𝑣1, 𝑣𝑛⟩

...
. . .

...

⟨𝑣𝑛, 𝑣1⟩ · · · ⟨𝑣𝑛, 𝑣𝑛⟩

ª®®®¬ , (14)

where ⟨𝑣𝑖 , 𝑣 𝑗⟩ = 𝑣𝐻𝑖 𝑣 𝑗 denotes the Hermitian inner product. The Gram matrix determinant,

Γ(𝑣1, . . . , 𝑣𝑛) = det𝐺 (𝑣1, . . . , 𝑣𝑛) ≥ 0, (15)

quantifies the independence of the respective set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛. For a complex-conjugate pole pair 𝛿 ± 𝑖𝜔
with normalized eigenvectors 𝑣, 𝑣 and 𝑤𝐻 , 𝑤𝐻 , the proposed observability and controllability measures are

Γ𝐻 = det𝐺 (𝐶𝑣, 𝐶𝑣) , (16)

Γ𝐹 = det𝐺
(
𝑤𝐻𝐵, 𝑤𝐻𝐵

)
. (17)

Geometrically, the Gram determinant equals the squared volume of the parallelepiped spanned by the given vectors. If
any vectors are collinear, the determinant collapses to zero, indicating that the modes cannot be independently measured
or controlled. Conversely, values close to one indicate near-orthogonal pole vectors and thus strong independent
controllability and observability. Γ is scale dependent with Γ ∈ [0, 1] for sets of unit length (normalized) vectors. In the
case of complex conjugate pairs care must be taken. The Gram determinant is equivalent to and may be interpreted in
the real two-dimensional subspace spanned by its real embedding [ℜ{𝐶𝑣},ℑ{𝐶𝑣}].

B. Least-Squares-Optimal Modal Blending Matrix
Static blending matrices 𝑀𝑦 ∈ R𝑛𝑐×𝑛𝑦 and 𝑀𝑢 ∈ R𝑛𝑢×𝑛𝑐 are proposed that, extract the coordinates of a chosen set

of critical modes from the measured outputs and synthesize actuator commands that excite these modes with minimal
effort. The virtual output and virtual input are

𝑦𝑣 = 𝑀𝑦 𝑦, 𝑢 = 𝑀𝑢 𝑢𝑣 , (18)

and the resulting virtual plant 𝐺𝑣 retains the essential dynamics of the critical modes while attenuating residual content:

𝐺𝑣 (𝑠) ≜ 𝑀𝑦 𝐺 (𝑠) 𝑀𝑢 ≈
𝑛𝑐∑︁
𝑖=1

(𝐶𝑣𝑖) (𝑤𝐻𝑖 𝐵)
𝑠 − 𝜆𝑖

. (19)

The approximation quality and robustness hinge on (a) how independently the critical modes are seen in 𝑦 and excited
by 𝑢, and (b) the conditioning of the blends. That is the orthogonality of residual modes input/output pole vectors to the
space spanned by the critical pole vectors.

Critical modal subspaces. Let {(𝜆𝑖 , 𝑣𝑖 , 𝑤𝑖)}𝑛𝑐𝑖=1 denote the eigen-pairs of 𝐴 for the 𝑛𝑐 critical modes to be controlled,
with right eigenvectors 𝑣𝑖 ∈ C𝑛 and left eigenvectors 𝑤𝑖 ∈ C𝑛 normalized such that 𝑤𝐻

𝑖
𝑣 𝑗 = 𝛿𝑖 𝑗 . Define the critical

output and critical input pole-vector matrices

𝐶crit =

[
𝐶𝑣1 · · · 𝐶𝑣𝑛𝑐

]
∈ C𝑛𝑦×𝑛𝑐 , 𝐵crit =


𝑤𝐻1 𝐵
...

𝑤𝐻𝑛𝑐𝐵

 ∈ C𝑛𝑐×𝑛𝑢 . (20)
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Least-squares modal output blending. Assume 𝐶crit has full column rank (𝑛𝑦 ≥ 𝑛𝑐). The Moore-Penrose
pseudoinverse

𝑀𝑦 ≜ 𝐶
†
crit = (𝐶𝐻crit𝐶crit)−1𝐶𝐻crit ∈ C𝑛𝑐×𝑛𝑦 (21)

defines the modal output blending matrix. For a measured output 𝑦 ∈ R𝑛𝑦 , the LS estimate of the critical modal
coordinates is

𝑥 = 𝑀𝑦 𝑦 ∈ C𝑛𝑐 . (22)

This choice of output blending yields the following properties:
• 𝑦̂ = 𝐶crit𝐶

†
crit𝑦 is the orthogonal projection of 𝑦 onto col(𝐶crit);

• 𝑀𝑦𝐶crit = 𝐼𝑛𝑐 , i.e. exact recovery of modal states for 𝑦 ∈ col(𝐶crit);
• 𝑦 − 𝑦̂ is orthogonal to range(𝐶crit), i.e. residual dynamics/noise are rejected in the LS sense;
• min𝑥 ∥𝑦 − 𝐶𝑥∥2 −→ 𝑥 = 𝐶

†
crit𝑦, is the closest approximation in LS sense.

Least-squares modal input blending. Assume 𝐵crit has full row rank (𝑛𝑢 ≥ 𝑛𝑐). Dually in input space the modal
input blending matrix is defined as

𝑀𝑢 ≜ 𝐵
†
crit = 𝐵𝐻crit (𝐵crit𝐵

𝐻
crit)

−1 ∈ C𝑛𝑢×𝑛𝑐 (23)

For a commanded generalized force 𝑓mod ∈ C𝑛𝑐 , the LS actuation is

𝑢★ = 𝑀𝑢 𝑓mod ∈ R𝑛𝑢 . (24)

This choice of input blending yields the following properties:
• 𝑢★ = 𝐵

†
crit𝐵crit𝑢 is the projection of 𝑢 onto row(𝐵crit);

• 𝐵crit𝑀𝑢 = 𝐼𝑛𝑐 , i.e. exact realization of commanded generalized forces 𝑓mod;
• min𝑢 ∥𝑢∥2 , subject to 𝑓mod = 𝐵crit𝑢 −→ 𝑢★ = 𝐵

†
crit 𝑓mod;

• 𝑓mod = 𝐵crit𝑢★, commanded generalized force is achieved with minimum actuator demand.

Complex modes and real coordinates. For complex conjugate pairs (𝜆, 𝜆) with right eigenvectors (𝑣, 𝑣) and left
eigenvectors (𝑤𝐻 , 𝑤𝐻 ), real virtual inputs/outputs are obtained by the real-imaginary embedding

𝐶R
crit =

[
ℜ{𝐶𝑣} ℑ{𝐶𝑣}

]
, 𝐵R

crit =

[
ℜ{𝑤𝐻𝐵}
ℑ{𝑤𝐻𝐵}

]
, (25)

yielding modal coordinates that are linearly equivalent to generalized position and velocity for the corresponding
oscillatory mode. The same LS constructions applied to 𝐶R

crit and 𝐵R
crit produce real blending matrices.

Weighted and regularized blending The plain pseudoinverse assumes homogeneous sensor/actuator scaling and
white noise.

1) Output weighting (pre-whitening). Given a positive-definite weight matrix𝑊𝑦 ∈ R𝑛𝑦×𝑛𝑦 , one may incorporate
sensor reliability or noise characteristics. If the measurement noise covariance Σ𝑦 is available, the choice
𝑊𝑦 = Σ−1

𝑦 yields the weighted least-squares projector

𝑀
(𝑊 )
𝑦 = (𝐶𝐻crit𝑊𝑦𝐶crit)−1𝐶𝐻crit𝑊𝑦 , (26)

which maximizes SNR in the chosen metric.
2) Input weighting. If one actuator is preferably used choose an actuator penalty𝑊𝑢 ≻ 0 and use

𝑀
(𝑊 )
𝑢 = 𝑊−1

𝑢 𝐵𝐻crit (𝐵crit𝑊
−1
𝑢 𝐵𝐻crit)

−1, (27)

which minimizes 𝑢⊤𝑊𝑢𝑢 subject to 𝐵crit𝑢 = 𝑓mod.
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Identifiability and the Gram determinant. With Eq. (21) and Eq. (23), the closed-loop design interface is the
𝑛𝑐 × 𝑛𝑐 virtual plant

𝐺𝑣 (𝑠) = 𝑀𝑦 𝐺 (𝑠) 𝑀𝑢. (28)
Decomposing 𝐺 = 𝐺crit + 𝐺res gives

𝐺𝑣 (𝑠) = 𝑀𝑦 𝐺crit (𝑠) 𝑀𝑢 + 𝑀𝑦 𝐺res (𝑠) 𝑀𝑢, (29)

where the residual term quantifies spillover. The accuracy and robustness of LS blending depend on (a) the mutual
independence of the columns/rows of 𝐶crit and 𝐵crit, as well as (b) the geometrical and/or frequency separation of the
residual poles from the critical poles. For a mode pair, the Gram determinants

Γ𝐻 = det
(
𝐶⊤

crit𝐶crit
)
, (30)

Γ𝐹 = det
(
𝐵crit𝐵

⊤
crit

)
(31)

coincide (up to normalization) with the observability/controllability measures introduced earlier. Here, the transpose
(rather than the Hermitian transpose) is used because the Gram determinants are evaluated on the real embeddings 𝐶R

crit
and 𝐵R

crit, as defined previously. Values near zero signal poor separability which leads to noise amplification in 𝑀𝑦

and excessive actuator demand in 𝑀𝑢. Excessive spillover from residual modes 𝐺res (𝑠) is avoided by separation of the
residual modes from the critical modes in frequency (ℑ{𝜆𝑟 }) and/or orthogonality of its input/output pole vector to the
space spanned by the critical pole vectors (geometrical separation). If a residual mode is neither separated geometrically
nor in frequency, it is advisable to include said mode into the set of critical modes. However, care must be taken to
ensure that expanding the set of critical modes does not destroy independent observability/controllability; indicated by
Γ𝐻 ≈ 0/Γ𝐹 ≈ 0. In such case any attempt of independently controlling said critical plant eigen-dynamic is doomed to
failure and revisiting plant design - adding sensors, actuator - may be appropriate.

Summary of properties. Under full column/row rank of 𝐶crit / 𝐵crit, 𝑢★ = 𝑀𝑢 𝑓mod minimizes actuator effort for
achieving a desired excitation of the critical modes 𝑓mod. And 𝑥 = 𝑀𝑦 𝑦 yields a LS-optimal approximation of
the critical modes states 𝑥. These properties make LS blending a natural, interpretable choice for low-order modal
controllers (e.g. 2 × 2 loops on flutter pole pairs).

III. Aeroservoelastic Benchmark Model
To enable the development and evaluation of secondary flight control functions, a representative aeroelastic model

of a flexible rectangular wing was constructed and presented in a separate work [42]. The aeroservoelastic benchmark
model is methodologically consistent with industry standards yet of comprehensible complexity. The model is linear
both in its structural as well as its aerodynamics model. The structural behavior is modeled using a beam-based finite
element (FE) formulation capable of capturing bending and torsional deformations, while the unsteady aerodynamic
forces are obtained via the Doublet Lattice Method (DLM). The resulting coupled system is transformed into a first-order
state-space representation. A Rational Function Approximation (RFA) was used to "translate" the frequency-domain
aerodynamics model DLM in the time domain. As a result, a Linear Parameter-Varying (LPV) state-space model is
obtained, where the system matrices depend explicitly on the freestream velocity 𝑉∞. This formulation captures the
critical dependence of aeroelastic coupling on flight speed and serves as a comprehensible yet physically meaningful
benchmark model for the design and testing of active flutter suppression strategies. Figure 2 shows one possible
configuration of the benchmark model with a single outboard aileron and 8 distributed vertical acceleration sensors
available for secondary flight control.

A. Structural Model
The structural dynamics of a rectangular wing are derived from a beam-based finite element formulation that captures

both bending and torsion. The formulation is based on Bernoulli-Euler beam theory for bending, assuming plane
sections remain orthogonal to the neutral axis, and Saint-Venant torsion theory, assuming linear torsional displacement.
The assembled linear FE model yields second-order structural dynamics of the form:

M𝑔𝑔 ¥q𝑔 + K𝑔𝑔q𝑔 = Faero,𝑔 (32)

where q𝑔 ∈ R𝑛𝑔 denotes the vector of structural generalized coordinates, i.e. all unconstrained degrees of freedom, and
Faero,𝑔 are generalized aerodynamic forces projected onto the structural degrees of freedom.
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Fig. 2 Wing with distributed IMUs and one Aileron

B. Unsteady Aerodynamics Model
The aerodynamic forces acting on the wing are computed using the Doublet Lattice Method (DLM)[43, 44], which

provides a frequency-domain linear potential flow model for oscillating lifting surfaces. The DLM implementation
used in this research was provided by Böhnisch and Bangel[45]. The wing is discretized into a rectangular grid of
panels along the span and chord, with each panel hosting a doublet at the quarter-chord and a control point at the
three-quarter-chord, as shown in Fig. 3. Solving the DLM yields complex-valued aerodynamic influence coefficient

BVP1

BVP2

JP2

JP1

l
k
j

Cp

wj

Fig. 3 Unsteady Aerodynamic DLM Panel

(AIC) matrices Q 𝑗 𝑗 (𝑘), which relate the normalized vertical velocity 𝑤 𝑗 (𝑘) at control points to the differential pressure
coefficients Δ𝑐𝑝, 𝑗 (𝑘) on each panel:

Δ𝑐𝑝, 𝑗 (𝑘) = Q 𝑗 𝑗 (𝑘)𝑤 𝑗 (𝑘) (33)

where 𝑘 = 𝜔
𝑐ref
2𝑉∞ is the reduced (dimensionless) frequency. The complex-valued AIC matrix entry 𝑄𝑘𝑙 can be thought

of as an amplification of the sinusoidal input signal 𝑤𝑙 (𝑡) = ∥𝑤𝑙 ∥ sin(𝜔𝑡) by ∥𝑄𝑘𝑙 ∥ and a phase shift by ∠𝑄𝑘𝑙 .
To enable time-domain simulation and control synthesis, a Rational Function Approximation (RFA) using Roger’s

method[15, 46, 47] is applied:

Q 𝑗 𝑗 (𝑠∗) = Q(0)
𝑗 𝑗

+ Q(1)
𝑗 𝑗
𝑠∗ +

𝑛𝑝∑︁
𝑖=1

Q(𝐿,𝑖)
𝑗 𝑗

𝑠∗

𝑠∗ + 𝑝𝑖
(34)

with 𝑠∗ = 𝑠 · 𝑐ref
2𝑉∞ and lag terms 𝑝𝑖 > 0. This representation introduces aerodynamic lag states x𝐿 ∈ R𝑛𝐿 , governed by:

¤x𝐿 = Rx𝐿 + E ¤𝑤 𝑗 (35)

The resulting unsteady aerodynamic forces in generalized coordinates are :

Faero,𝑔 = S𝑔 𝑗
(
Q(0)
𝑗 𝑗
𝑤 𝑗 +

𝑐ref
2𝑉∞

Q(1)
𝑗 𝑗

¤𝑤 𝑗 + Dx𝐿
)

(36)

C. Aero-Structure-Coupling
Coupling between the structural and aerodynamic sub-models is performed via the principle of virtual work,

ensuring energy-consistent interactions. Aerodynamic panel forces are projected onto the structural model using the
FEM shape functions evaluated at the aerodynamic panel quarter chord locations, yielding a consistent coupling matrix
S𝑔 𝑗 . Equivalently, structural motion induces aerodynamic downwash velocities at the aerodynamic control points.

𝑤 𝑗 = DRe
𝑗𝑔q𝑔 + DIm

𝑗𝑔q𝑔 (37)

7



Combining both structural and aerodynamic states yields the final aeroelastic state vector:

x =


q𝑔
¤q𝑔
x𝐿

 . (38)

The total number of model states is twice the structural eigenmodes considered plus all lag states introduced by the RFA.
In an industry setting, depending on the required model fidelity, the number of states may exceed several hundreds. A
significant challenge for controller synthesis[48].

D. Actuator Model
Accurate representation of actuator dynamics is essential for aeroservoelastic controller design, as unmodeled phase

loss in the control path can significantly degrade stability margins. Typical control surface deflections servos introduce
non-negligible phase lag due to the high frequency nature of flutter suppression. Neglecting this effect typically leads to
overly optimistic stability predictions, and compensating for it requires an actuator model that correctly reproduces
both the magnitude roll-off and the phase characteristics in the relevant frequency range [49]. In the benchmark model,
each control surface is represented by an idealized second-order actuator (PT2 element) with a unit static gain and a
prescribed natural frequency and damping ratio. The transfer function has the form

𝐺act (𝑠) =
𝐾𝜔2

0

𝑠2 + 2𝑑𝜔0, 𝑠 + 𝜔2
0
, (39)

where 𝐾 = 1 ensures unity steady-state gain, 𝜔0 = 32Hz defines the actuator bandwidth, and 𝑑 = 0.9 sets a moderately
damped response. PT2 was chosen in order to provide the current deflection, rate and acceleration of the control surface
based on a commanded deflection, whilst keeping the model as simple as possible. The actuator model is supplemented
with deflection and rate limits for nonlinear simulation / evaluation. This parameterization yields a realistic phase delay
at the comparatively high frequencies of the dominant aeroelastic modes to be controlled, where the actuator phase
margin becomes a limiting factor for stabilizing feedback.

E. LPV Model of Benchmark Wing
The wing is equipped with inertial measurement units (IMU) located on the center of the actuator hinge axis.

Outputs y consist of the horizontal (𝑧-axis) acceleration of the wing structure at these points. Control inputs u are
the deflection commands for the trailing edge flaps and leading edge slats. The resulting linear parameter varying
state-space model writes

¤x = A(𝑉∞)x + B(𝑉∞)u (40)
y = C(𝑉∞)x + D(𝑉∞)u (41)

This LPV formulation captures the essential velocity-dependent coupling between bending and torsion. The resulting
flutter dynamics, characterized by the coalescence of bending and torsional modes, are visualized in Fig. 4. Note the
aerodynamic panel discretization. This model provides a representative benchmark for developing and evaluating active
flutter suppression controllers.

Fig. 4 Flutter Oscillation
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The wing dimensions used for this numerical example are taken from the textbook of Wright and Cooper [1]. The
open-loop aeroelastic system becomes unstable due to bending-torsion flutter at a freestream velocity of 105 m/s. As
can be seen from the pole maps of Fig. 5 bending-torsion flutter is dominated by four critical aeroelastic eigenvalues; i.e.
two complex conjugate pairs; i.e. the coalescence of the structural bending and torsion mode. The eigenvalue loci of the
benchmark model are depicted at 60 m/s in Fig. 5a and at 120 m/s in Fig. 5b. The stabilizing AFS controller must place

(a) Pole Map at Velocity below Flutter (b) Pole Map at Velocity in Flutter

Fig. 5 Pole Maps in Stable and Unstable Regime

the open loop unstable pole pair "back" into the left half plane (LHP), whilst minimizing the effect on the residual poles.

IV. Requirements for Active Flutter Suppression
The design of an active flutter suppression (AFS) controller must address fundamental requirements to ensure robust

stability, control effectiveness, and fault tolerance. Given the critical nature of AFS systems, these requirements must be
met across the full operational envelope while accounting for model uncertainties and potential hardware failures.

A. Robust Stability: Gain and Phase Margins
Active flutter controllers must stabilize an otherwise open-loop unstable system and ensure robust performance

across varying flight conditions. Classical robustness metrics such as gain and phase margins provide an accessible
means of ensuring controller robustness, with a minimum gain margin of 6 dB and phase margin of 45° often used as
baseline targets.[27]

B. Control Activity and Actuator Constraints
The effectiveness of AFS depends largely on the available control authority and bandwidth. The design must ensure

that control activity remains within actuator limits (prevent saturation). Key considerations include Bandwidth and
Response Time. Actuators must provide sufficient bandwidth to counteract aeroelastic instabilities; Power and Force
Limits. Control laws should minimize actuation demand to avoid excessive power consumption and maintenance cost.

In practice actuators, developed for primary flight control, often pose significant constraints on the AFS controller
design. Saturation, rate limits, and most notably phase delays must be explicitly accounted for to prevent insufficient
active damping or even destabilizing feedback. Control allocation must also reflect actuator effectiveness and redundancy.
Livne[5] underscores that modern AFS implementations should consider both "modal participation" and "modal
controllability" of each actuator surface. Actuators must be selected and configured to interact constructively with
dominant aeroelastic modes, especially under partial failure scenarios. Furthermore, any command strategy must
consider energy efficiency and structural fatigue limits. Reducing peak actuator demands not only preserves energy but
also enhances system longevity and fault resilience.
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C. Fault Tolerance
Given the catastrophic risk associated with loss of flutter suppression, AFS systems must be as fault-tolerant as

possible. Fault detection, isolation, and recovery (FDIR) capabilities are essential to mitigate the impact of sensor or
actuator failures. The system should employ redundant sensors and actuators, with fault detection algorithms isolating
failed components. Control reallocation strategies must redistribute control effort among remaining actuators to maintain
stability ("Graceful Degradation"). Redundant sensing technologies must be used to enhance fault resilience.

V. SISO Blending Baseline
As a baseline for active flutter suppression, a modal control strategy based on 𝐻2-optimal blending of inputs

and outputs is adopted. This method, originally developed by Pusch and Ossmann[34–36], addresses the challenge
of controlling individual modes in over-actuated and over-sensed systems through SISO controllers derived from a
high-order MIMO model. The key idea is to construct virtual inputs and outputs via static linear combinations, referred
to as blending vectors, which isolate the target mode as effectively as possible.

Given a system’s modal decomposition, each oscillatory eigenmode is characterized by a complex conjugate pole
pair and associated complex conjugate eigenvectors.

G𝑖 (𝑠) = C𝑖

©­­­­­­«
𝑠I −

[
ℜ{𝑝𝑖} ℑ{𝑝𝑖}
−ℑ{𝑝𝑖} ℜ{𝑝𝑖}

]
︸                   ︷︷                   ︸

A𝑖

ª®®®®®®¬

−1

B𝑖 (42)

For a target mode, the 𝐻2-optimal blending approach formulates an optimization problem to jointly maximize the
controllability and observability of the mode in terms of the 𝐻2 norm of the resulting SISO transfer function.

max
k𝑦 ∈R𝑛𝑦 , k𝑢∈R𝑛𝑢

∥k𝑇𝑦 · G𝑖 (𝑠) · k𝑢∥𝐻2

∥G𝑖 (𝑠)∥𝐻2

; ∥k𝑦 ∥ = ∥k𝑢∥ = 1 (43)

This is achieved by searching for real-valued blending vectors that yield a maximum-energy projection of the input-output
transfer through the target mode. The resulting optimization is efficiently solved using a reformulation in terms of
the maximum singular value of a phase-rotated residue matrix, allowing a scalar search over the rotation angle. The
outcome is a set of input and output blending vectors that define virtual channels for modal control. These channels
are then each stabilized using low-order SISO controllers Push demonstrated successful flutter suppression using this
synthesis approach[35].

VI. Controller Design
The aeroelastic wing model considered in this research becomes unstable at a freestream velocity of 105 m/s. Prior

work has shown that 𝐻∞-optimal robust controllers designed at a single airspeed tend to stabilize the model up to that
design point, but not necessarily beyond [50]. In this work a design speed of up to 140 m/s is considered. The classical
𝐻∞ synthesis requires a single linear system to design against. However in this work the simplicity of the convex 𝐻∞
synthesis was traded for the more flexible structured, non-smooth 𝐻∞ synthesis, which allows for optimization against a
set of linear models. Hence the linear controller is optimized against the LPV model for freestream velocities ranging
from 90 m/s, well below flutter, up to the design speed of 140 m/s. The wing is chosen to incorporate 8 distributed IMUs,
measuring vertical acceleration, and one outboard aileron as depicted in Fig. 2. Hence, in the present configuration,
modal blending is applied only to the plant outputs (measurements), while the single actuator requires no input blending.

A. Critical Modes and Modal Blending
As can be seen from the pole maps of Fig. 5 bending-torsion flutter is dominated by four critical aeroelastic modes

(two complex conjugate pairs). Ideally these four critical aeroelastic eigenvectors are used for blending matrix design,
resulting in a 𝑛𝑐 = 4 × 𝑛𝑦 = 8 output blending matrix 𝑀𝑦 . Since only one aileron is considered for flutter suppression
in this example there is no input blending necessary. Figure 6 shows the gram determinant of the 2 eigenvectors of
the fluttermode as well as the gram determinant of the 4 eigenvectors of the critical aeroelastic modes projected into

10



Fig. 6 Gram determinant of flutter & critical modes projection into output space

output space over free-stream velocities 𝑉∞. The independent measurability of the flutter increases sharply around the
onset of flutter, then degrades with increasing 𝑉∞ while the four critical aeroelastic eigenvectors are not independently
measurable at any 𝑉∞. Since the two dominating complex conjugate pole pairs are not independently measurable solely
the fluttermode, i.e. the unstable pole pair, is chosen for modal blending. This choice inevitably leads to spillover
from the dropped residual mode, is however the best achievable solution considering the available measurements. The
two-dimensional virtual output is constructed using the least-squares optimal projection discussed in ch. II.

𝐶R
crit =

[
ℜ{𝐶𝑣} ℑ{𝐶𝑣}

]
, (44)

The 𝑛𝑐 = 2 × 𝑛𝑦 = 8 modal blending matrix is chosen to optimally separate the two eigenvectors contribution to the
measurement output. No additional weighting terms are introduced.

𝑀𝑦 = pinv(𝐶R
crit) = 𝐶

†
𝑐𝑟𝑖𝑡

(45)

This choice isolates the relevant flutter modes generalized position and velocity state in LS sense, acknowledging
the trade-off in the form of residual mode spillover. Nevertheless, it ensures tractable and robust synthesis given the
measurement limitations.

B. Structured 𝐻∞ Synthesis Problem
Controller synthesis is performed using the structured 𝐻∞ optimization framework implemented in MATLAB’s

systune [51, 52]. This non-smooth optimization method allows minimizing the 𝐻∞ norm of frequency-weighted
closed-loop transfer functions while enforcing hard constraints on robust stability margins. Unlike classical 𝐻∞ synthesis,
the structured approach permits the designer to prescribe a fixed controller architecture, thereby avoiding the high-order
controllers that typically arise from full-order synthesis on aeroelastic plants.

Generalized Plant Formulation. The synthesis is performed on a generalized plant P(𝑠) that augments the aeroelastic
model with disturbance and noise inputs, performance outputs, and the measured acceleration signals. The generalized
plant lower fractional feedback interconnection (LFT) is illustrated in Fig. 7. The exogenous input vector 𝑤 comprises
two disturbance channels representing generalized forces on the bending and torsion modes, 𝑑𝑞 𝑓1

and 𝑑𝑞 𝑓2
, together with

sensor noise inputs 𝑛𝑖 on each of the eight accelerometers. The performance output vector 𝑧 includes the generalized
modal displacements 𝑞 𝑓1 , 𝑞 𝑓2 , their time derivatives ¤𝑞 𝑓1 , ¤𝑞 𝑓2 , and the aileron deflection command 𝛿ail. This formulation
enables direct penalization of both structural response and control effort within a single optimization objective.

Static Weight Selection and Physical Interpretation. Following the signal-weighted 𝐻∞ design philosophy [50],
the closed-loop specifications are expressed through a combination of static scaling weights and frequency-dependent
shaping filters. The static weights normalize the exogenous inputs and performance outputs to unit magnitude, thereby
providing direct physical interpretation and facilitating systematic tuning. Four static scaling parameters are employed:
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Fig. 7 LFT feedback for structured 𝐻∞ synthesis.

• 𝑉𝑑: the expected maximum magnitude of modal disturbance forces, selected based on the anticipated turbulence
intensity and/or gust loads;

• 𝑉𝑛: the expected maximum sensor noise amplitude, determined from accelerometer specifications;
• 𝑉𝑢: the maximum allowable control surface deflection;
• 𝑉𝑝: the performance output scaling, chosen to normalize the modal displacement response to unit magnitude.

For transparency this parameterization separates the frequency-independent amplitude scaling from the frequency-
dependent loop shaping. The ratios between these weights directly determine bounds on the closed-loop transfer
functions: 𝑉𝑢/𝑉𝑑 bounds the disturbance-to-control transfer function magnitude, 𝑉𝑢/𝑉𝑛 bounds the noise-to-control
transfer function, and 𝑉𝑝/𝑉𝑑 bounds the disturbance-to-performance transfer function. For the present design, the
weights are selected as 𝑉𝑑 = 0.5, 𝑉𝑛 = 0.1, 𝑉𝑢 = 1, and 𝑉𝑝 = 0.2, reflecting the relative magnitudes of expected
disturbances, sensor noise, available control authority, and acceptable structural response.

Frequency-Domain Weighting and Control Activity Confinement. To shape the closed-loop response in the
frequency domain, a second-order bandpass weighting filter𝑊𝑢 (𝑠) is applied to the control effort channel. The filter is
constructed as

𝑊𝑢 (𝑠) =
(𝑠 + 𝜔1) (𝑠 + 𝜔2)

(𝑠 + 0.01𝜔1) (0.01 𝑠 + 𝜔2)
, (46)

with corner frequencies 𝜔1 = 12 rad/s and 𝜔2 = 64 rad/s. This weighting achieves three design objectives that are
essential for flutter suppression:

1) Low-frequency wash-out: The high-pass characteristic below 𝜔1 prevents the controller from responding to
quasi-static inputs, thereby avoiding interference with rigid-body flight dynamics and autopilot functions that are
not modeled in the aeroelastic plant. This wash-out confines control activity to frequencies above the rigid-body
bandwidth.

2) Unity gain in the flutter band: The approximately unity gain in the frequency range 2–10 Hz (encompassing the
flutter modes at 4–5 Hz) permits unattenuated control authority where active damping is most critical.

3) High-frequency roll-off : The low-pass characteristic above 𝜔2 provides robustness against inevitable model
uncertainty at high frequencies, suppresses sensor noise amplification, and prevents excitation of unmodeled
structural modes.

Fig. 8 Weighting Filter for Control Activity
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The magnitude response of𝑊𝑢 (𝑠) is depicted in Fig. 8. The inverse weighting𝑊−1
𝑢 (𝑠) is used to the control effort

performance channels in the generalized plant, such that minimizing the weighted 𝐻∞ norm penalizes control activity
predominantly at frequencies outside the flutter band while permitting necessary authority near resonance.

Soft Optimization Objectives and Implied Sensitivity Bounds. Three soft tuning goals are formulated to balance
disturbance attenuation against control effort:

1) Modal displacement attenuation: The transfer function from disturbance inputs {𝑑𝑞 𝑓1
, 𝑑𝑞 𝑓2

} to modal displace-
ments {𝑞 𝑓1 , 𝑞 𝑓2 } is constrained by

𝜎̄
(
𝑇𝑑→𝑞 𝑓

(𝑖𝜔)
)
≤
𝑉𝑝

𝑉𝑑
, ∀𝜔. (47)

With 𝑉𝑝 = 0.2 and 𝑉𝑑 = 0.5, the implied bound of 0.4 directly targets suppression of flutter-induced structural
oscillations.

2) Control effort due to disturbances: The transfer function from disturbance inputs to actuator command is
weighted by𝑊𝑢 (𝑠):

𝜎̄
(
𝑇𝑑→𝛿ail (𝑖𝜔)

)
≤ 𝑊−1

𝑢 (𝑖𝜔)𝑉𝑢
𝑉𝑑
, ∀𝜔. (48)

With 𝑉𝑢 = 1 and 𝑉𝑑 = 0.5, this constraint permits a maximum gain of 2 in the flutter band while penalizing
actuator activity at frequencies where control is not needed.

3) Control effort due to sensor noise: The transfer function from noise inputs to actuator command is similarly
weighted:

𝜎̄
(
𝑇𝑛→𝛿ail (𝑖𝜔)

)
≤ 𝑊−1

𝑢 (𝑖𝜔)𝑉𝑢
𝑉𝑛
, ∀𝜔. (49)

With noise scaling 𝑉𝑛 = 0.1, this objective prevents excessive high-frequency control activity driven by
measurement noise, as the implied bound is achieved through the high-frequency roll-off of𝑊−1

𝑢 (𝑠).
These soft constraints collectively shape the input sensitivity and control sensitivity transfer functions, indirectly
bounding the closed-loop sensitivity function magnitude.

Stability Margins from Bounded Sensitivity. The relationship between the sensitivity function 𝑆(𝑠) = (𝐼 + 𝐿 (𝑠))−1,
where 𝐿 (𝑠) denotes the loop transfer function, and classical stability margins provides a rigorous foundation for
robustness guarantees [37]. If the peak sensitivity is bounded as

∥𝑆∥∞ = max
𝜔
𝜎̄
(
𝑆(𝑖𝜔)

)
≤ 𝑀𝑆 , (50)

then the closed-loop system is guaranteed to possess minimum gain and phase margins given by

GM ≥ 𝑀𝑆

𝑀𝑆 − 1
, PM ≥ 2 arcsin

(
1

2𝑀𝑆

)
. (51)

For instance, a peak sensitivity of 𝑀𝑆 = 2 (equivalently 6 dB) implies a gain margin of at least 2 (6 dB) and a phase
margin of at least 29◦. This relationship arises from the geometric interpretation of sensitivity: |𝑆(𝑖𝜔) | equals the
inverse of the distance from the Nyquist curve 𝐿 (𝑖𝜔) to the critical point −1. Bounding |𝑆(𝑖𝜔) | ≤ 𝑀𝑆 ensures that the
Nyquist curve remains outside a disk of radius 1/𝑀𝑆 centered at −1, thereby guaranteeing a minimum distance to the
critical point.

Hard Stability Margin Constraint. While the soft objectives implicitly shape the sensitivity function, robust stability
is explicitly enforced through a hard constraint on classical loop margins at the plant input (actuator command injection
point). The constraint requires a minimum gain margin of 6 dB and a minimum phase margin of 45◦:

GM ≥ 6 dB, PM ≥ 45◦. (52)

These margins are evaluated in the disk margin sense [53], which provides a combined gain-phase robustness guarantee
more stringent than separately specified margins. Unlike classical single-loop margins that consider gain and phase
variations independently, disk margins account for simultaneous perturbations and thereby avoid the pitfalls of
overlooking destabilizing combinations that individually appear safe. This hard constraint ensures that the synthesized
controller maintains adequate robustness against multiplicative uncertainties at the plant input, including unmodeled
actuator dynamics and gain variations.
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Controller Structure and Modal Blending Integration. The controller is parameterized as a fourth-order linear
time-invariant state-space system with a single scalar output (aileron command) and two inputs corresponding to the
virtual modal coordinates. The tunable controller 𝐾tune (𝑠) ∈ RH1×2

∞ is cascaded with the modal output blending matrix
𝑀𝑦 ∈ R2×8 derived in Section VI.A:

𝐾 (𝑠) = 𝐾tune (𝑠) · 𝑀𝑦 . (53)

This factorization decouples the static sensor fusion (blending) from the dynamic compensation (tunable controller),
enabling independent reconfiguration of 𝑀𝑦 for fault tolerance without retuning the controller dynamics. The fourth-
order structure was determined through iterative refinement; lower orders proved insufficient for achieving the required
margin constraints, while higher orders yielded negligible performance improvement.

Multi-Model Optimization. To ensure robust performance across the flight envelope, the synthesis is performed
simultaneously against a discrete set of linearized plant models at freestream velocities 𝑉∞ ∈ {90, 100, . . . , 160} m/s.
This range spans from well below the open-loop flutter boundary (105 m/s) to the design speed of 140 m/s and beyond.
The systune algorithm jointly optimizes the controller parameters to minimize the worst-case soft objective across
all models while satisfying the hard margin constraint at every operating point. This multi-model approach obviates
the need for explicit gain scheduling while providing point-wise stability and performance guarantees throughout the
velocity range.

Optimization Algorithm and Initialization. The non-smooth optimization problem is solved using the algorithm
described in [51], which combines bundle methods with specialized handling of non-differentiable 𝐻∞ objectives.
To mitigate sensitivity to local minima, the optimization is initialized from eight randomized starting point. Parallel
computation accelerates the multi-start search. The best solution across all initializations is retained, with the final
controller achieving soft objective values below unity and satisfying all hard constraints (robust stability margins).

VII. Controller Evaluation
This section evaluates the performance and robustness of the structured modal blending controller developed in

Section VI.B, with comparisons drawn against the baseline 𝐻2-optimal blending strategy. Emphasis is placed on
frequency-domain and time-domain performance metrics as well as actuator demand. All time simulations as well as
Sigma plots are evaluated at a freestream velocity of 𝑉∞ = 130m/s, well in the unstable flutter region.

A. Robust Stabilization
The modal blending controller achieves robust stabilization across the required range of freestream velocities.

Figure 9 compares classical 𝑉𝑔-, 𝑉𝜔-Plots of the Modal and the 𝐻2-optimal blending controllers. Open Loop flutter
at 𝑉∞ = 105 m/s and 4.5 Hz is indicated by the red circles. An interesting dynamic interaction is observed under the
𝐻2-optimal baseline controller: the two dominant flutter-related modes exhibit a frequency crossing just above the
open-loop flutter speed, then diverge at higher velocities. This crossing behavior is absent under the modal blending
controller, which maintains clear frequency separation between the modes. Nevertheless, both controllers maintain
positive damping across all velocities of interest, with the modal controller providing consistently superior damping
on both critical modes throughout the open loop flutter regime. Pole trajectory analysis, see Fig. 10, confirms the
stabilization effect. The critical aeroelastic poles, remain firmly in the left half of the complex plane (LHP) under
closed-loop conditions for both controllers.

B. Disturbance Rejection and Modal Damping Performance
Modal damping performance is quantified through singular value analysis of the closed-loop transfer function from

disturbance forces to structural deformation outputs. Figure 11 shows that the modal blending controller significantly
attenuates the peak response to disturbances, in the flutter-critical frequency band around 4.5 Hz. This indicates effective
suppression of flutter-induced structural oscillations. In accordance with Bode’s sensitivity integral, sensitivity reduction
near the resonance frequency necessarily leads to sensitivity amplification elsewhere (the “waterbed effect”) [54].
The 𝐻2-optimal controller exhibits slightly improved performance in non-critical bands, but the modal controller
outperforms it decisively in the flutter band, precisely where robust damping is most critical. This pronounced reduction
in the resonance peak confirms the enhanced damping effect. The residual sensitivity is spread evenly across adjacent
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Fig. 9 𝑉𝑔-Plot and 𝑉𝜔-Plot of Open Loop vs. 𝐻2 Blending vs. Modal Blending

frequency bands, avoiding concentrated amplification and ensuring well-balanced closed-loop behavior. Time-domain
validation is provided in Fig. 12 via a frequency sweep excitation applied to the bending mode. The disturbance input
sweeps linearly from 0 to 8 Hz over a 16-second interval. The resulting structural response shows excellent damping of
mid-frequency content. The modal controller effectively attenuates oscillations near the flutter frequency, outperforming
the baseline especially around resonance.

C. Actuator Demand
To assess control effort, actuator deflections are extracted from the same time-domain simulations. Figure 13 shows

the corresponding aileron commands. As expected, actuator activity peaks near the flutter frequency. Notably, the
modal controller achieves improved damping with less deflection at resonance compared to the 𝐻2-optimal controller.
At frequencies away from resonance, however, the baseline controller demands less effort. This phenomenon is further
examined in Fig. 14, which plots the singular values of the transfer function from disturbance inputs to actuator
commands. The modal controller exhibits a relatively flat response, whereas the 𝐻2-optimal controller achieves less
actuator demand outside the flutter band but at the cost of a peak near resonance. This control effort spectrum of the
modal controller is a direct consequence of the 𝐻∞ synthesis objective, which minimizes the peak norm rather than
integrated energy. One possible explanation for the lower integrated actuator demand of the baseline controller is the
restricted control space inherent to SISO design. This restriction may have an effect similar to suboptimal 𝐻∞ synthesis,
which is known to yield solutions closer to 𝐻2/LQR-optimal behavior than the true 𝐻∞-optimal solution. Therefore
including more sophisticated measures of control effort into the soft optimization objectives may be advantages outside
the critical flutter frequency band; But was beyond the scope of this work.

D. Sensor Fault Tolerance
The blending matrix approach is ideally suited for sensor fault tolerance. The blending matrix is linear sensor fusion

scheme. In the event of sensor failure, precomputed alternative blending matrices can be employed to reconstruct the
modal output using a reduced sensor set, without altering the controller itself. This modular reconfiguration capability
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Fig. 10 Pole-Map of Open Loop vs. 𝐻2 Blending vs. Modal Blending

Fig. 11 Singular Values from Disturbance to Structural Deformation 𝐻2 Blending vs. Modal Blending

enhances fault tolerance and supports graceful degradation, assuming sufficient measurement redundancy.
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Fig. 12 Time-Simulation Frequency Sweep Disturbance 𝐻2 Blending vs. Modal Blending

Fig. 13 Time-Simulation Frequency Sweep Disturbance 𝐻2 Blending vs. Modal Blending
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Fig. 14 Singular Values from Disturbance to Actuator Demand 𝐻2 Blending vs. Modal Blending
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VIII. Conclusion
This paper introduced a modal control synthesis strategy for active flutter suppression tailored to systems with

distributed sensing. Using an aeroservoelastic model of a rectangular wing as a benchmark, the critical flutter mode
was isolated via pseudoinverse-based sensor blending, with the blending matrix constructed from the mode’s output
pole vectors. The resulting two-dimensional output enabled the use of structured 𝐻∞ synthesis to design a robust and
efficient minimal controller using only a single control output and two pseudo-measurements. Compared to 𝐻2-optimal
blending, the new approach achieved improved damping of the flutter mode and lower actuator demand, particularly at
problematic flutter frequency ranges. The method also supports fault-tolerant operation by permitting straightforward
reconfiguration of the sensor blending stage.

All results are supported by open-source MATLAB code at github.com/JonasEiche/FlutterWing, enabling repro-
ducibility and extension to more complex configurations such as full aircraft models.
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