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This paper presents a benchmark model for the analysis and active control of bending-torsion
flutter in a flexible wing structure. The structural dynamics of a rectangular wing are modeled
using a finite element (FE) beam formulation. Aerodynamic loads are computed using the planar
Doublet Lattice Method (DLM), a frequency-domain linearized potential flow approach. To
enable control design, the DLM results are converted to the time-domain using rational function
approximation (RFA) based on Roger’s method. The structural and aerodynamic models are
consistently coupled, forming an aeroservoelastic plant that is controlled via distributed trailing
edge flaps as well as leading edge slats. The plant is observed through distributed IMUs that
measure accelerations perpendicular to the wing surface. A thorough modal analysis of the
coupled system is performed, revealing the evolution of the critical aeroelastic eigenmodes
with increasing freestream velocity and their velocity-dependent modal observability and
controllability. The accompanying open-source MATLAB/Simulink implementation provides a
practical foundation for benchmarking aeroservoelastic control strategies.

I. Introduction

Flutter is a dynamic aeroelastic instability that results from the interaction between structural vibrations and
unsteady aerodynamic forces [1]. As modern aircraft design trends increasingly favor lightweight and flexible

structures to enhance fuel efficiency and aerodynamic performance, the susceptibility to flutter emerges as a fundamental
constraint [2]. Conventional approaches mitigate this risk through conservative structural design margins, limiting
operations to airspeeds well below the open-loop flutter onset. However, active control techniques offer the potential
to extend this operational boundary by artificially increasing modal damping, thereby enabling higher performance
without compromising stability [3, 4].

Within the field of aeroservoelasticity, numerous studies have explored active flutter suppression using high-fidelity
models of full aircraft configurations [5–9] as well as experimental wind tunnel setups [10–12]. In parallel, control
theory research often focuses on academic, simplistic two-dimensional airfoil models [13–17], which, while analytically
tractable, fail to capture the spatial complexity and coupling effects relevant to realistic control design [3]. Despite the
abundance of studies, there remains a lack of open-access, standardized benchmark models that balance fidelity and
tractability, and thus support reproducible controller development and comparative evaluation across the community.

To address this gap, this paper introduces an open-source benchmark model of a flexible rectangular wing with
distributed sensors and actuators. A rectangular wing undergoing bending-torsion flutter represents the simplest
configuration that still captures realistic flutter phenomenon in aircraft [18]. The structural model is constructed from a
finite-element beam formulation capturing bending and torsional degrees of freedom. Aerodynamic forces are calculated
using the Doublet Lattice Method (DLM) [19], a frequency-domain linear potential flow panel method that accounts for
unsteady lift effects. To enable time-domain simulation and controller synthesis, the frequency-domain aerodynamic
data is transformed via Rational Function Approximation (RFA), specifically using Roger’s method [16, 20, 21]. The
coupled structural-aerodynamic model is cast in a Linear Parameter-Varying (LPV) state-space form, where the system
matrices depend explicitly on the freestream velocity. Actuation is realized via four trailing edge flaps and four leading
edge slats, while sensing is accomplished through distributed inertial measurement units (IMUs).

A central contribution of this work is a detailed modal analysis of the LPV system, covering the evolution of the
dominant aeroelastic modes with increasing airspeed and identifying their controllability and observability characteristics.
These insights directly inform the design of sensing and actuation architectures optimized for flutter suppression and
gust load alleviation. The accompanying MATLAB/Simulink implementation offers a reproducible testbed that supports
both controller design and validation, thereby serving as a foundational resource for future research in aeroservoelastic
control.
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Paper Organization Section II presents the FE bending-torsion-beam formulation; Section III introduces the planar
DLM linearized potential flow solution; In section IV the two models are consistently coupled; Section V introduces
actuator and senor models; Section VI details the final LPV model used for control design. Section VII presents the
results of a detailed modal analysis focused on the critical aeroelastic flutter phenomenon; A preliminary AFS control
strategy is developed in section VIII; Conclusions are drawn in Section IX.

Fig. 1 Bending and Torsion
Bernoulli-Euler beam theory

II. Structural Model
The Bernoulli-Euler beam theory was chosen to model the structural bending dynamics of the generic rectangular

wing. Bernoulli-Euler beam theory assumes that cross-sections remain plane and perpendicular to the neutral axis
after deformation, and that shear deformations are negligible. To model torsional effects, Saint-Venant torsion theory is
adopted under the assumption of linear torsional displacement. The beam undergoes:

• bending in the 𝑧-direction, described by the transverse displacement 𝑢𝑧 (𝑦),
• twisting about the 𝑦-axis, described by the torsional angle 𝜓𝑦 (𝑦).

Consider a beam element with axis along the 𝑦-direction and cross-section lying in the 𝑥𝑧-plane. In the FEM modeling
of slender structures subject to combined torsion and bending, it is critical to adopt shape functions that accurately
reflect the underlying mechanics. The bending deformation is interpolated using cubic Hermite shape functions to
ensure 𝐶1 continuity of displacement, while torsion is represented using linear shape functions, suitable due to the
lower-order continuity requirement. Figure 2 displays the cubic Hermitian polynomials on normalized element length.
The transverse displacement as expressed in Hermitian polynomial shape functions is

𝑢𝑧 (𝑦) = 𝐻1 (𝑦)𝑑1 + 𝐻2 (𝑦)𝑑2 + 𝐻3 (𝑦)𝑑4 + 𝐻4 (𝑦)𝑑5, (1)

where 𝐻𝑖 (𝑦) are the standard cubic Hermite functions defined on the interval 𝑦 ∈ [𝑦1, 𝑦2]. Torsional rotation is
interpolated using linear shape functions

𝜓𝑦 (𝑦) = 𝑁1 (𝑦)𝑑3 + 𝑁2 (𝑦)𝑑6. (2)

Under Bernoulli-Euler beam theory, the rotation due to bending is 𝜓𝑥 (𝑦) = 𝑑𝑢𝑧
𝑑𝑦

. The nodal degrees of freedom are

Fig. 2 Hermitian Beam Element Shape Functions.
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thus: 𝑑1 = 𝑢𝑧 (𝑦1) vertical displacement at node 1; 𝑑2 = 𝜓𝑥 (𝑦1) = 𝑑𝑢𝑧
𝑑𝑦

slope at node 1; 𝑑3 = 𝜓𝑦 (𝑦1) torsional rotation
at node 1; 𝑑4 = 𝑢𝑧 (𝑦2) vertical displacement at node 2; 𝑑5 = 𝜓𝑥 (𝑦2) = 𝑑𝑢𝑧

𝑑𝑦
slope at node 2; and 𝑑6 = 𝜓𝑦 (𝑦2) torsional

rotation at node 2. A schematic of the nodal degrees of freedom is given in Fig. 3. The finite element discretization is

d1

d2
d3

d4

d5
d6

Fig. 3 Six Degrees of Freedom Beam Finite Element.

derived using the Galerkin method. The weak form of the equilibrium equations is obtained by inserting the interpolated
kinematic fields 𝑢𝑧 (𝑦) and 𝜓𝑦 (𝑦) into the principle of virtual work. The Hermite shape functions 𝐻𝑖 (𝑦) for bending and
linear shape functions 𝑁𝑖 (𝑦) for torsion are used to compute the consistent stiffness and mass matrices by integrating
over the element length 𝐿. The internal strain energy 𝑉int of a Bernoulli-Euler beam subject to bending and torsion over
the element length 𝐿 is given by:

𝑉int =
1
2

∫ 𝐿

0
𝐸𝐼𝑎𝑥𝑥

(
𝑑2𝑢𝑧

𝑑𝑦2

)2

𝑑𝑦 + 1
2

∫ 𝐿

0
𝐺𝐼𝑎𝑇𝑦

(
𝑑𝜓𝑦

𝑑𝑦

)2
𝑑𝑦. (3)

This expression consists of the contributions from bending and torsional strain energy. The total kinetic energy 𝑇 of the
beam consists of translational kinetic energy due to the transverse motion 𝑢𝑧 (𝑦), and rotational kinetic energy due to
torsional rotation 𝜓𝑦 (𝑦). The kinetic energy is given by:

𝑇 =
1
2

∫ 𝐿

0
𝐼𝑚𝑇𝑦

¤𝜓2
𝑦 𝑑𝑦 +

1
2

∫ 𝐿

0
𝜌̄ ¤𝑢2

𝑧 𝑑𝑦 −
∫ 𝐿

0
𝐼𝑚𝑧 ¤𝑢𝑧 ¤𝜓𝑦 𝑑𝑦, (4)

Note that the leading negative sign of the coupling term is merely a consequence of the chosen sign convention for 𝑢𝑧
and 𝜓𝑦 . The following cross-sectional properties enter the formulation:

• Bending stiffness:
𝐸𝐼𝑎𝑥𝑥 = 𝐸

∫
𝐴

𝑧2 𝑑𝐴, (5)

• Torsional stiffness:
𝐺𝐼𝑎𝑇𝑦 = 𝐺

∫
𝐴

𝑟2 𝑑𝐴, (6)

• Torsional mass moment of inertia:
𝐼𝑚𝑇𝑦 =

∫
𝐴

𝑟2𝜌 𝑑𝐴, (7)

• Deviation moment:
𝐼𝑚𝑧 =

∫
𝐴

𝑥𝜌 𝑑𝐴, (8)

• Mass per unit length:
𝜌̄ =

∫
𝐴

𝜌 𝑑𝐴. (9)

where 𝑟 denotes the radial distance from the shear center (torsion axis), 𝜌 denotes the beams mass density, 𝐸 denotes
Young’s modulus, and 𝐺 the shear modulus. Substituting the FE discretization into the equations for internal strain
energy 3 and total kinetic energy 4 yields a quadratic form in the nodal displacements 𝑑𝑖 and a quadratic form in the
nodal velocities ¤𝑑𝑖 , respectively. The Euler-Lagrange equations for the displacement field 𝑑𝑖 of a linear elastic solid is

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ¤𝑑𝑖
+ 𝜕𝑉

𝜕𝑑𝑖
= 0, (10)
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which yields the element-wise dynamic equations of motion:

𝑀ele
𝑖 𝑗

¥𝑑 𝑗 + 𝐾ele
𝑖 𝑗 𝑑 𝑗 = 0. (11)

This expression defines the entries of the consistent element mass matrix 𝑀ele
𝑖 𝑗

corresponding to translational,
torsional, and coupling contributions between displacement and rotation. Note the coupling between bending and
torsion motion. This phenomenon stems from the non-coinciding elastic and mass axes. The position of the mass axis
relative to the wing elastic axes is of great importance to the aeroelastic behaviour, thus must be accuratly captured by
the model. In fact the addition of mass at the wing tip, i.e. moving the mass axis forward, is often a solution used by
aircraft designers to prevent flutter[18]. Element stiffness and mass matrices are assembled into the global matrices by
adding their contributions to the appropriate positions (DoFs) in the global stiffness and mass matrix. The resulting
second order linear system is:

𝑀𝑔𝑔 ¥𝑞𝑔 + 𝐾𝑔𝑔𝑞𝑔 =
𝜕𝑉ext
𝜕𝑞𝑔

= 𝐹𝑎𝑒𝑟𝑜
𝑔 . (12)

The external forces introduced by the airflow around the lifting surface 𝐹𝑎𝑒𝑟𝑜
𝑔 are subsequently modeled utilizing

linearized potential flow theory.

III. Aerodynamic Model
The benchmark model’s lifting surface is a rectangle with dimensions 𝑐𝑟𝑒 𝑓 × 𝑠. Importantly, its mass axis (i.e., the

chordwise center of mass) does not coincide with its flexural axis. Figure 4 depicts the geometric dimensions of the
wing model. For ease of implementation the models flexural axis always coincides with the 𝑦 coordinate axis in this
code base. To capture the effects of unsteady aerodynamic forces 𝐹𝑎𝑒𝑟𝑜

𝑔 the Doublet Lattice Method (DLM)[16, 19, 20]

y

z

x
xf
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xm

s

Fig. 4 Wing Model Dimensions.

is used.

A. Doublet Lattice Method
This method is rooted in classical potential flow theory and provides a linearized, frequency-domain representation

of the pressure distribution on oscillating lifting surfaces. Its computational efficiency and compatibility with modal
structural models make it an industry standard in preliminary aeroelastic analyses[18]. The DLM arises from linearized
potential flow theory under the assumptions of inviscid, irrotational, flow. In this framework, the perturbation velocity
field is derived from a scalar potential, which satisfies Laplace’s equation[22]. The DLM discretizes the lifting
surface into a lattice of quadrilateral aerodynamic panels. On each panel, a singularity distribution, specifically a
doublet, is placed at the quarter-chord line. The influence of these doublets is evaluated at control points located at
the three-quarter-chord line. The flow tangency condition is enforced at each control point in the frequency domain,
assuming harmonic oscillations. Under these assumptions, the governing equations reduce to a linear system in the
frequency domain. The solution yields complex-valued aerodynamic influence coefficient (AIC) matrices, denoted by
𝑄 𝑗 𝑗 (𝑘), where the subscript 𝑗 refers to the control points and doublet strengths / pressure difference coefficients on
the surface. These matrices relate the normalized normal downwash 𝑤 𝑗 (𝑘) at the control points to the corresponding
pressure difference coefficient Δ𝑐𝑝, 𝑗 (𝑘) through the relation

Δ𝑐𝑝, 𝑗 (𝑘) = 𝑄 𝑗 𝑗 (𝑘)𝑤 𝑗 (𝑘), (13)

where the reduced frequency 𝑘 is defined as dimensionless frequency 𝑘 =
𝜔𝑐ref
2𝑉∞

with 𝜔 being the circular frequency,
𝑐ref the reference chord, and 𝑉∞ the freestream velocity[23]. Figure 5 displays a generic DLM Panel. 𝐶𝑝 indicates
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Fig. 5 Horseshoe Vortex DLM Panel.

the lifting force acting on the quarter line, 𝑤 𝑗 the downwash at the control point. The AIC matrices 𝑄 𝑗 𝑗 (𝑘) capture
both the added-mass and circulatory effects of unsteady aerodynamics. The complex-valued AIC matrix entry 𝑄𝑘𝑙

can be thought of as an amplification of the sinusoidal input signal 𝑤𝑙 (𝑡) = ∥𝑤𝑙 ∥ sin(𝜔𝑡) by ∥𝑄𝑘𝑙 ∥ and a phase shift
by ∠𝑄𝑘𝑙 . In the limit as 𝑘 → 0, the unsteady solution smoothly converges to the quasi-steady solution provided by
the Vortex Lattice Method. Importantly, the DLM solution 𝑄 𝑗 𝑗 (𝑘) is a frequency-domain solution. Rational Function
Approximation (RFA) is used to enable time-domain simulation and/or control design. The Doublet Lattice Method
(DLM) provides unsteady aerodynamic influence coefficient (AIC) matrices 𝑄 𝑗 𝑗 (𝑘) defined in the frequency domain,
where 𝑘 is the reduced frequency.

B. Rational Function Approximation
The DLM provides frequency-domain aerodynamic influence coefficients, which are incompatible with time-domain

simulation and state-space control synthesis. To overcome this limitation, the frequency-dependent AIC matrices
are approximated by rational functions in the Laplace variable, enabling conversion to an equivalent state-space
representation with augmented aerodynamic lag states. This transformation is achieved using a Rational Function
Approximation (RFA) technique, most commonly implemented via Roger’s method[16, 20, 21]. Roger’s method
expresses the frequency-dependent AIC matrices 𝑄 𝑗 𝑗 (𝑘) as a rational function in the Laplace domain. Introducing the
normalized Laplace variable 𝑠∗ = 𝑠 ·

(
𝑐ref
2𝑉∞

)
, the RFA takes the form

𝑄 𝑗 𝑗 (𝑠∗) = 𝑄 (0)
𝑗 𝑗

+𝑄 (1)
𝑗 𝑗
𝑠∗ +

𝑛𝑝∑︁
𝑖=1

𝑄
(𝐿,𝑖)
𝑗 𝑗

𝑠∗

𝑠∗ + 𝑝∗
𝑖

, (14)

where 𝑄 (0)
𝑗 𝑗

is the quasi-steady aerodynamics term; 𝑄 (1)
𝑗 𝑗

the added mass term; 𝑄 (𝐿,𝑖)
𝑗 𝑗

the lag term coefficients; and 𝑝∗
𝑖

the real, positive, dimensionless lag poles. This approximation introduces additional aerodynamic state variables, often
called lag states, which evolve according to first-order differential equations of the form[16]:

¤𝑥𝐿 = 𝑅𝐿𝐿𝑥𝐿 + 𝐸𝐿 𝑗 ¤𝑤 𝑗 , (15)

where 𝑥𝐿 are the lag states, 𝑅 is a block-diagonal matrix with −𝑝𝑖 𝐼 on the diagonal, and 𝐸 couples the time derivative
of the normal velocity ¤𝑤 𝑗 at the aerodynamic control points to the lag states[23]. The resulting unsteady aerodynamic
pressure difference coefficients defined on the aerodynamic panel grid are

Δ𝑐𝑝, 𝑗 = 𝑄
(0)
𝑗 𝑗
𝑤 𝑗 +

(
𝑐ref
2𝑉∞

) (
𝑄

(1)
𝑗 𝑗

¤𝑤 𝑗 + 𝐷 𝑗𝐿𝑥𝐿

)
, (16)

with 𝐷 being the output matrix projecting lag states to aerodynamic forces. Importantly, this formulation allows a
clear separation between steady 𝑤 𝑗 -dependent and unsteady ¤𝑤 𝑗 -dependent contributions. In this aeroelastic modeling
codebase the RFA is performed on the physical AIC matrices 𝑄 𝑗 𝑗 (𝑘) prior to modal projection, preserving the physical
interpretation and enabling consistent reuse across different structural configurations and mass cases. This avoids the
mass-case-specific recomputation that generalized aerodynamic matrices would require. Figure 6 show exemplary
Nyquist-Plots of the RFA of the rectangular wing’s AIC matrices 𝑄 𝑗 𝑗 (𝑘). The 200𝑥200 AIC matrix was evaluated at
12 reduced frequencies between 0 and 1.1, covering the frequency range up to 17.5 Hz, at the flutter-speed of 105 m/s,
with flutter at roughly 4.5 Hz. In this example incompressible flow (𝑀𝑎 = 0) is assumed for simplicity. Extension to
compressible flow aerodynamics is however straightforward. The number of distinct RFA poles was chosen to 6 which
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Fig. 6 Nyquist Plot of Rational Function Approximation AIC Matrices.

Table 1 Roger’s Method RFA approximation errors

Max error worst frequency, worst matrix element 0.001818
RMS error all frequencies, worst matrix element 0.001002
RMS error all frequencies, all matrix elements 0.000113

results in 6 · 200 = 1200 aerodynamic lag states, if the pressure distribution on the lifting surface must be preserved.
This illustrated the difficulty of aeroelastic modeling for control design. Even for the academic example of rectangular
wing discretized with 200 aerodynamic panels the number of states in the linear model is enormous. In an industrial
setting several thousand aerodynamic panels are typically necessary to capture the aerodynamics with sufficient accuracy.
The error introduced by the RFA are evaluated at the reduced frequency reference points; see table 1. The Roger’s RFA
approximates the unsteady aerodynamic effects sufficiently well within the relevant frequency range.

IV. Coupling of Structural and Aerodynamic Model
In this work, aerodynamic loads are consistently projected onto the structural degrees of freedom of a beam-type

finite element model. The projection is derived via the principle of virtual work, ensuring mechanical compatibility
and energy consistency. Each aerodynamic panel generates a pressure force acting normal to the lifting surface, in the
negative 𝑧-direction (lift). The integrated pressure force per panel 𝑃𝑖 acts on the quarter point, located at 𝑦 = 𝑦𝑃𝑖

with
chordwise lever-arm 𝑥𝑙,𝑃𝑖

. The corresponding aerodynamic moment about the structural 𝑦-axis is for each panel

𝑀𝑦 (𝑦𝑃𝑖
) = 𝑎𝑃𝑖

· 𝑥𝑙,𝑃𝑖
· 𝐶𝑝,𝑃𝑖

. (17)
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Fig. 7 Consistent Coupling of DLM and FEM.

Figure 7 illustrates the geometric relations between aerodynamic forces and the structural beam axis. The work done by
the aerodynamic force on the structure is evaluated via the principle of virtual work:

𝛿𝑊𝑎 = 𝐹𝑧 · 𝛿𝑤𝑑 , (18)

where the total vertical displacement at the force application point includes both vertical translation and rotation:

𝑤𝑑 = 𝑢𝑧 (𝑦𝑃𝑖
) + 𝑥𝑙,𝑃𝑖

· 𝜓𝑦 (𝑦𝑃𝑖
). (19)

Thus, the virtual work becomes:

𝛿𝑊𝑎 = −𝑎𝑃𝑖
𝐶𝑝,𝑃𝑖

(
𝛿𝑢𝑧 (𝑦𝑃𝑖

) + 𝑥𝑙,𝑃𝑖
· 𝛿𝜓𝑦 (𝑦𝑃𝑖

)
)
. (20)

The structural displacements are interpolated via FEM shape functions at the spanwise location 𝑦𝑃𝑖

𝑢𝑧 (𝑦𝑃𝑖
) =

∑︁
𝑖

𝐻𝑖 (𝑦𝑃𝑖
) · 𝑑𝑖; 𝜓𝑦 (𝑦𝑃𝑖

) =
∑︁
𝑖

𝑁𝑖 (𝑦𝑃𝑖
) · 𝑑𝑖 , (21)

where 𝐻𝑖 are Hermite shape functions for bending, and 𝑁𝑖 are linear shape functions for torsion. The total vertical
displacement becomes

𝑤𝑑 =
∑︁
𝑖

𝐻𝑖 (𝑦𝑃𝑖
) · 𝑑𝑖 + 𝑥𝑙,𝑃𝑖

∑︁
𝑖

𝑁𝑖 (𝑦𝑃𝑖
) · 𝑑𝑖 . (22)

Substituting into the virtual work expression gives the consistent nodal force contributions

𝛿𝑊𝑎 =
∑︁
𝑖

(
−𝑎𝑃𝑖

𝐶𝑝,𝑃𝑖
𝐻𝑖 (𝑦𝑃𝑖

)
)
𝛿𝑑𝑖 +

∑︁
𝑖

(
−𝑎𝑃𝑖

𝐶𝑝,𝑃𝑖
𝑥𝑙,𝑃𝑖

𝑁𝑖 (𝑦𝑃𝑖
)
)
𝛿𝑑𝑖 . (23)

Hence, the consistent external force vector from panel 𝑃𝑖 is

𝐹ele =



𝐻1 (𝑦𝑃𝑖
) · (−𝑎𝑃𝑖

𝐶𝑝,𝑃𝑖
)

𝐻2 (𝑦𝑃𝑖
) · (−𝑎𝑃𝑖

𝐶𝑝,𝑃𝑖
)

𝑁1 (𝑦𝑃𝑖
) · (−𝑥𝑙,𝑃𝑖

· 𝑎𝑃𝑖
𝐶𝑝,𝑃𝑖

)
𝐻3 (𝑦𝑃𝑖

) · (−𝑎𝑃𝑖
𝐶𝑝,𝑃𝑖

)
𝐻4 (𝑦𝑃𝑖

) · (−𝑎𝑃𝑖
𝐶𝑝,𝑃𝑖

)
𝑁2 (𝑦𝑃𝑖

) · (−𝑥𝑙,𝑃𝑖
· 𝑎𝑃𝑖

𝐶𝑝,𝑃𝑖
)


. (24)
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Summing over all aerodynamic panels, the global aerodynamic force vector acting on the structure is obtained as

𝐹aero
𝑔 = 𝑆𝑔 𝑗𝑄 𝑗 𝑗𝑤 𝑗 , (25)

where 𝑄 𝑗 𝑗 is the DLM influence matrix, 𝑤 𝑗 are the normal velocities at the control points, and 𝑆𝑔 𝑗 is the consistent
coupling matrix that maps aerodynamic forces to structural nodal forces using the above projection.

Conversely, the structural motion alters the boundary conditions of the flow through velocity compatibility at the
aerodynamic control points. The generalized structural displacements 𝑞𝑔 and their time derivatives ¤𝑞𝑔 induce changes
in the flow field, modeled as:

𝑤 𝑗 = 𝐷
Re
𝑗𝑔𝑞𝑔 + 𝐷Im

𝑗𝑔 ¤𝑞𝑔, (26)

where 𝐷Re
𝑗𝑔

, 𝐷Im
𝑗𝑔

are coupling matrices formed by evaluating the shape functions at the control point locations. This
projection ensures compatibility between the aerodynamic panel method and the structural FEM shape functions,
preserving energy consistency. Consequently, approximate spline interpolation is unnecessary.

V. Actuator and Sensor Models
The generic rectangular wing model developed in this work is equipped with four leading edge slats and four

trailing edge flaps of equal dimension, covering the entire span of the wing. The chordwise size of each control surface
is 1/10 of the total chord length, modeled by first and last row of the DLM panel discretization for slats and flaps,
respectively. Figure 8 shows the full aerodynamic panel discretization. Notice the chordwise first and last panels are used
to model trailing edge flaps and leading edge slats. The red dots indicate the position of the vertical acceleration sensors.
Accurate representation of actuator dynamics is essential for aeroservoelastic controller design, as unmodeled phase

Fig. 8 Unsteady Aerodynamic DLM Panel Discretization.

loss in the control path can significantly degrade stability margins. Typical control surface deflection servos introduce
non-negligible phase lag due to the high frequency nature of flutter suppression[12]. To represent the dynamics of the
control effector, a second-order low-pass filter (PT2) was selected.

𝐺act (𝑠) =
𝐾𝜔2

0

𝑠2 + 2𝑑𝜔0𝑠 + 𝜔2
0
, (27)

with parameters 𝐾 = 1, damping ratio 𝑑 = 1, and natural frequency 𝜔0 = 2𝜋 · 16 rad/s, corresponding to a -3 dB
bandwidth of approximately 10 Hz. This choice ensures sufficient responsiveness for active flutter suppression, as
the first aeroelastic mode of the system becomes unstable around 4.5 Hz. A PT2 actuator model was chosen over a
simpler first-order (PT1) model due to the nature of the aerodynamic model. Specifically, the unsteady aerodynamic
forces depend not only on the position of the control surface but also on its velocity and acceleration. In the Simulink
implementation of the benchmark wing system, actuator saturation limits and rate limits were also included to reflect
realistic constraints of typical servo actuators. These nonlinearities are essential for evaluating the robustness and
performance of active flutter suppression controllers under realistic operational limits and for enabling safe deployment
scenarios in simulation-based controller validation.

The model includes eight distributed vertical acceleration measurements. In practice local acceleration can be
measured cost efficient using standard Inertial Measurement Units (IMUs). These sensors are intended to capture the
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structural dynamics relevant to aeroelastic instabilities. The models local acceleration measurement outputs are given by

𝑎𝑧 = Φzg ¥𝑞𝑔 , (28)

where Φzg maps generalized accelerations ¥𝑞𝑔 to the respective sensor positions.

VI. Linear Parameter Varying State Space Model
Finally the structural dynamic equation of motion 12 is combined with the aerodynamic force vector 25. The AIC

Matrix term 𝑄 𝑗 𝑗 is substituted with its Rational Function Approximation 16 and the local downwash at the aerodynamic
control points 𝑤 𝑗 with its contributions from the dynamic deformation of the structure 26 as well as control surface
deflection. Expressed in Structural FEM DoFs the full equation of motion reads

𝑀𝑔𝑔𝑠
2𝑞𝑔 + 𝐷𝑔𝑔𝑠𝑞𝑔 + 𝐾𝑔𝑔𝑞𝑔 =

(
𝑄

(0)
𝑗 𝑗

+𝑄 (1)
𝑗 𝑗
𝑠∗ +

𝑛𝑝∑︁
𝑖=1

𝑄
(𝐿,𝑖)
𝑗 𝑗

𝑠∗

𝑠∗ + 𝑝𝑖

)
·
(
𝐷Re

𝑗𝑔𝑞𝑔 + 𝐷Im
𝑗𝑔 ¤𝑞𝑔 + 𝐷Re

𝑗 𝑥𝑢𝑥 + 𝐷Im
𝑗 𝑥 ¤𝑢𝑥

)
. (29)

This is a linear equation of motion and may be cast into a first-order state-space form

¤x = A(𝑉∞)x + B(𝑉∞)u, y = C(𝑉∞)x + D(𝑉∞)u (30)

where the system matrices depend explicitly on the freestream velocity 𝑉∞, rendering the model a linear parameter-
varying (LPV) system. The state vector x includes both structural and aerodynamic states. The transformation of eq. 29
into state space form shall be discussed in the following. Key definitions are repeated for convenience:

• Dynamic pressure:
𝑞 =

1
2
𝜌𝑉2

∞, (31)

• Reduced frequency:
𝑘 = 𝜔

𝑐𝑟𝑒 𝑓

2𝑉∞
, (32)

• Dimensionless Laplace variable:
𝑠∗ = 𝑠

𝑐𝑟𝑒 𝑓

2𝑉∞
, (33)

• RFA lag poles:
𝑝𝑖 = 𝑝∗𝑖

2𝑉∞
𝑐𝑟𝑒 𝑓

. (34)

Transformation of the Second-Order Structural Dynamics The structural dynamic from the beam FE model is a
second-order linear differential equation

𝑀𝑔𝑔 ¥𝑞𝑔 + 𝐷𝑔𝑔 ¤𝑞𝑔 + 𝐾𝑔𝑔𝑞𝑔 = 𝐹aero
𝑔 . (35)

Here, 𝑞𝑔 denotes the structural coordinates (FEM DoFs). To express this in state-space form, we define the structural

state vector xs =

[
𝑞𝑔

¤𝑞𝑔

]
, [

¤𝑞𝑔
¥𝑞𝑔

]
=

[
0 𝐼

−𝑀−1
𝑔𝑔𝐾𝑔𝑔 −𝑀−1

𝑔𝑔𝐷𝑔𝑔

] [
𝑞𝑔

¤𝑞𝑔

]
+

[
0
𝑀−1

𝑔𝑔

]
𝐹aero
𝑔 (36)

Inclusion of Aerodynamic Lag States The unsteady aerodynamic forces computed via the Doublet Lattice Method
(DLM) are approximated in the Laplace domain using Roger’s Rational Function Approximation (RFA), which introduces
first-order lag dynamics:

¤𝑥𝐿 = 𝑅𝐿𝐿𝑥𝐿 + 𝐸𝐿 𝑗 ¤𝑤 𝑗 (37)
where 𝑥𝐿 are the aerodynamic lag states and 𝑤 𝑗 are the downwash velocities at the DLM control points. These depend
on both structural velocities and control surface motions. The lag states capture the aerodynamic memory effects and
enable an accurate time-domain representation. The aerodynamic forces are reconstructed as:

𝐹aero
𝑔 = 𝑞𝑆𝑔 𝑗

(
𝑄

(0)
𝑗 𝑗
𝑤 𝑗 +

(
𝑐𝑟𝑒 𝑓

2𝑉∞

)
𝑄

(1)
𝑗 𝑗

¤𝑤 𝑗 + 𝐷 𝑗𝐿𝑥𝐿

)
(38)
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Final Coupled State-Space Form Combining the structural and aerodynamic dynamics, the complete state vector
becomes:

x =


𝑞𝑔

¤𝑞𝑔
𝑥𝐿

 (39)

The respective first-order LPV state-space system reads:
¤𝑞𝑔
¥𝑞𝑔
¤𝑥𝐿

 =


0𝑔𝑔 𝐼𝑔𝑔 0𝑔𝐿

𝑀̃−1
𝑔𝑔 𝐾̃𝑔𝑔 𝑀̃−1

𝑔𝑔 𝐷̃𝑔𝑔 𝑀̃−1
𝑔𝑔𝐷𝑔𝐿

𝐸𝐿𝑔 0𝐿𝑔 𝑅𝐿𝐿



𝑞𝑔

¤𝑞𝑔
𝑥𝐿

 +


0𝑔𝑥 0𝑔 ¤𝑥 0𝑔 ¥𝑥
𝑀̃−1

𝑔𝑔 𝐵𝑔𝑥 𝑀̃−1
𝑔𝑔 𝐵𝑔 ¤𝑥 𝑀̃−1

𝑔𝑔 𝐵𝑔 ¥𝑥
𝐸𝐿𝑥 0𝐿 ¤𝑥 0𝐿 ¥𝑥



𝑢𝑥

¤𝑢𝑥
¥𝑢𝑥

 (40)

This state space formulation ensures compatibility with modern control synthesis. The matrix entries are defined in the
appendix.

Output Equation The measurement model provides the vertical accelerations 𝑎𝑧 of distributed points on the wing,

𝑎𝑧 = Φzg ¥𝑞𝑔 , (41)

i.e. a linear mapping from the structural coordinates second time derivative (structural accelerations ¥𝑞𝑔. Since the
structural acceleration appears on the left side of the final state space dynamic equation 40, the full system dynamics are
repeated in the output equation

y = Cx + Du . (42)

Which explained the intuitively nonphysical artifact of feed-through term D in the benchmark wings state space model.

𝑎𝑧 =

[
Φ𝑧𝑔𝑀̃

−1
𝑔𝑔 𝐾̃𝑔𝑔 Φ𝑧𝑔𝑀̃

−1
𝑔𝑔 𝐷̃𝑔𝑔 Φ𝑧𝑔𝑀̃

−1
𝑔𝑔𝐷𝑔𝐿

] 
𝑞𝑔

¤𝑞𝑔
𝑥𝐿

 +
[
Φ𝑎𝑧 𝑀̃

−1
𝑔𝑔 𝐵𝑔𝑥 Φ𝑎𝑧 𝑀̃

−1
𝑔𝑔 𝐵̃𝑔 ¤𝑥 Φ𝑎𝑧 𝑀̃

−1
𝑔𝑔 𝐵̃𝑔 ¥𝑥

] 
𝑢𝑥

¤𝑢𝑥
¥𝑢𝑥

 (43)

Modal Projection The finite element discretization described in Section II results in a potentially very high-dimensional
system. In fact the number aerodynamic lag states is number of aero panels 𝑛 𝑗 times number of Roger’s poles 𝑛𝑝 , and
the number of structural states is twice the FEM DoFs 𝑛𝑔. In total the number of states 𝑛𝑆 = 2𝑛𝑞 + 𝑛𝑝𝑛 𝑗 is in general
prohibitively large for any controller synthesis method. Even this comparatively very lightweight benchmark model
yields a total number of 𝑛𝑆 = 2 · 51 + 6 · 200 = 1302 system states. To render the system computationally tractable for
control synthesis and to filter very high frequency dynamics irrelevant to the flutter phenomenon, a modal reduction is
performed. This process projects the physical dynamics onto a truncated set of the structure’s dominant eigenmodes.
The undamped natural modes of vibration are obtained by solving the generalized eigenvalue problem associated with
the conservative structural system

𝑀𝑔𝑔 ¥𝑞𝑔 + 𝐾𝑔𝑔𝑞𝑔 = 0 . (44)

The corresponding generalized eigenvalue problem

(𝐾𝑔𝑔 − 𝜔2
𝑟𝑀𝑔𝑔)𝜙𝑟 = 0, 𝑟 = 1, . . . , 𝑛𝑔 (45)

is solved for the positive eigenfrequencies 𝜔𝑟 and the associated mass-orthonormal mode shapes 𝜙𝑟 , satisfying

Φ⊤
𝑔 𝑓𝑀𝑔𝑔Φ𝑔 𝑓 = 𝐼 𝑓 , Φ⊤

𝑔 𝑓𝐾𝑔𝑔Φ𝑔 𝑓 = diag(𝜔2
𝑟 ). (46)

Mass-normalization reduces ill-conditioning that commonly arises for large unscaled FE models. Here Φ𝑔 𝑓 ∈ C𝑛𝑔×𝑛 𝑓

contains the 𝑛 𝑓 ≪ 𝑛𝑔 retained modes (typically the lowest 5 modes), and the subscript 𝑓 denotes the modal (flexible)
coordinate system.

Φ𝑔 𝑓 =
[
𝜙1, 𝜙2, . . . , 𝜙𝑛 𝑓

]
. (47)

The structural displacements and velocities are then approximated as

𝑞𝑔 (𝑡) = Φ𝑔 𝑓 𝑞 𝑓 (𝑡), ¤𝑞𝑔 (𝑡) = Φ𝑔 𝑓 ¤𝑞 𝑓 (𝑡), (48)
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where 𝑞 𝑓 ∈ R𝑛 𝑓 are the modal coordinates. Substituting into the structural equation of motion (12) and pre-multiplying
by Φ⊤

𝑔 𝑓
yields the modal form

Φ⊤
𝑔 𝑓𝑀𝑔𝑔Φ𝑔 𝑓︸          ︷︷          ︸

=𝐼 𝑓

¥𝑞 𝑓 +Φ⊤
𝑔 𝑓𝐾𝑔𝑔Φ𝑔 𝑓︸         ︷︷         ︸
=diag(𝜔2

𝑟 )

𝑞 𝑓 = Φ⊤
𝑔 𝑓 𝐹

aero
𝑔 . (49)

The generalized aerodynamic forces, coupling matrices, and downwash contributions are projected accordingly:

𝑆 𝑓 𝑗 = Φ⊤
𝑔 𝑓 𝑆𝑔 𝑗 ∈ R𝑛 𝑓 ×𝑛 𝑗 , (50)

𝐷Re
𝑗 𝑓 = 𝐷

Re
𝑗𝑔Φ𝑔 𝑓 ∈ R𝑛 𝑗×𝑛 𝑓 , (51)

𝐷Im
𝑗 𝑓 = 𝐷

Im
𝑗𝑔Φ𝑔 𝑓 ∈ R𝑛 𝑗×𝑛 𝑓 . (52)

Note that actuator and sensor mappings must be transformed in the same manner, e.g. Φ𝑧𝑔 ↦→ Φ𝑧 𝑓 = Φ𝑧𝑔Φ𝑔 𝑓 .
Additionally, the modal projection allows empirical structural damping to be introduced. In this work viscous modal
damping is assumed for simplicity. A viscous modal damping matrix 𝐷 𝑓 𝑓 is constructed assuming a constant damping
ratio 𝜁 for all retained modes:

𝐷 𝑓 𝑓 = diag(2𝜁𝑟𝜔𝑟 ), (53)
with a uniform damping ratio 𝜁𝑟 = 0.01 applied to all retained modes.

A significant reduction in system states is achieved by projecting the lag state dynamics of eq. 37 onto the retained
structural modes. After some tedious algebraic manipulations the projected aerodynamic modal forces become

𝐹aero
𝑓 = 𝑞𝑆 𝑓 𝑗

(
𝑄0

𝑗 𝑗𝐷
𝑅𝑒
𝑗 𝑓 +

𝑛𝑝∑︁
𝑖=1

𝑄
𝐿𝑖

𝑗 𝑗
(𝐷𝑅𝑒

𝑗 𝑓 − 𝑝𝑖
1
𝑉∞

𝐷 𝐼𝑚
𝑗 𝑓 )

)
·𝑞 𝑓

+ 𝑞𝑆 𝑓 𝑗

(
𝑄0

𝑗 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗 𝑓 +𝑄1

𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
𝐷𝑅𝑒

𝑗 𝑓 +
𝑛𝑝∑︁
𝑖=1

𝑄
𝐿𝑖

𝑗 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗 𝑓

)
·𝑠𝑞 𝑓

+ 𝑞𝑆 𝑓 𝑗

(
𝑄1

𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
𝐷 𝐼𝑚

𝑗 𝑓

)
·𝑠2𝑞 𝑓

+ 𝑞𝑆 𝑓 𝑗

𝑛𝑝∑︁
𝑖=1

𝑄
𝐿𝑖

𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗 𝑓
𝑝2
𝑖
− 𝐷𝑅𝑒

𝑗 𝑓
𝑝𝑖)

𝑠 + 𝑝𝑖
·𝑞 𝑓 .

(54)

The respective terms of eq. 54 are aerodynamic stiffness, damping, mass and lag. With the aerodynamic forces projected
onto the retained modeshapes the total number of system states becomes 𝑛𝑆 = 2𝑛 𝑓 + 𝑛 𝑓 𝑛𝑝 . With 5 retained structural
modes and 6 RFA poles for this benchmark model 𝑥𝑆 = 40. Note the additional 2 states introduced by each actuator. An
equivalent state space form, suitable for implementation, of the lag term of Eq. (54) can be found in the appendix in
Eq. 72. The generalized modal forces remain fully representative of the physical system, making this reduced-order
model ideal for control synthesis. Modal projection introduces several important limitations that must be acknowledged.

First, projecting aerodynamic forces through a modal basis compresses the distributed pressure field into modal
generalized forces, resulting in loss of spatial pressure detail. Consequently, quantities requiring local pressure
information, such as panel-level hinge moments, cannot be recovered from the truncated modal model.

Second, the validity of the reduced model depends critically on selecting modes that capture the dynamic energy in
the frequency band of interest. Modal truncation that omits modes having non-negligible aerodynamic coupling can
produce erroneous predictions of flutter speed and modal damping. A pragmatic selection criterion is to include all
modes with eigenfrequencies up to two to three times the expected flutter frequency.

Third, model reduction should be accompanied by quantitative error metrics such as the reconstruction error
∥𝑞𝑔 −Φ𝑔 𝑓 𝑞 𝑓 ∥ and the discrepancy in computed eigenvalues between full and reduced models; however, such analysis
was beyond the scope of this work.

VII. Modal Analysis
A fundamental analysis step is the modal decomposition of the system, which facilitates physical insight into the

dominant mechanisms of instability such as flutter or divergence. Consider the linear state space dynamics

¤𝑥(𝑡) = 𝐴𝑥(𝑡), 𝑥 ∈ R𝑛 . (55)
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The modal transformation is a similarity transformation that diagonalizes the system matrix 𝐴 into a set of decoupled
modes:

𝑥 = 𝑇𝑧 ⇒ ¤𝑧 = 𝑇−1𝐴𝑇𝑧 = Λ𝑧 (56)

This modal transformation of the full aeroelastic model must not be confused with the modal projection onto the
dominant modes of the conservative structural system in sec. VI. The coupled structural-aerodynamic system exhibits
characteristic aeroelastic behavior due to the interaction between aerodynamic and structural forces. Two critical
aeroelastic modes dominate the benchmark rectangular wing’s system dynamics near the instability boundary. These
modes manifest around a frequency of 4.5 Hz, corresponding to a circular frequency of approximately 28 rad/s, and
are responsible for the onset of bending-torsion flutter. Figure 9 depicts the deflection of the bending and the torsion
structural mode for a full oscillation of the fluttermode at flutter speed. Note the typical phase shift between bending
and torsion. The structural mode deflections are scaled to be energy equivalent. That is a static bending deformation
of amplitude 1 stores the same amount of elastic potential energy as a torsion amplitude of 1. The bending-torsion
fluttermode of the benchmark wing is thus dominated by bending.

Fig. 9 Full Period of Flutter Bending & Torsion

Modal Characteristics at Fixed Velocities To illustrate the evolution of the aeroelastic poles, Fig. 10 shows the pole
locations of the linear time-invariant (LTI) system linearized at two representative freestream velocities. At a subcritical
velocity of 𝑉∞ = 60 m/s, the system is stable and all poles lie in the left-half complex plane (Fig. 10a). The two critical
aeroelastic modes are visible near the imaginary axis with low damping and dominant imaginary parts around 28 rad/s.
As the velocity increases to 𝑉∞ = 120 m/s (Fig. 10b), the damping of these modes reduces further, and one pair of
complex conjugate poles crosses into the right-half plane, signaling the onset of flutter instability.

Classical Flutter Characteristics The velocity-dependent evolution of modal frequency and damping is depicted in
the classical flutter plots[24] shown in Figure 11. The top plot illustrates the frequency (𝑉𝜔-plot), and the bottom plot
shows the corresponding damping ratios (𝑉𝑔-plot) of the two critical modes as functions of freestream velocity. A
distinct coalescence and subsequent divergence of the mode pair is observed, culminating in the flutter boundary where
the damping becomes zero. This intersection occurs at a critical flutter speed around 105 m/s.

LPV Pole Trajectory with Velocity The complete trajectory of the aeroelastic eigenvalues as a function of freestream
velocity is shown in the colored pole map in Figure 12. This visualization highlights the continuous motion of poles in
the complex plane as 𝑉∞ increases. Initially, the two dominant modes are well separated, but they gradually converge
and couple due to increasing aerodynamic interaction. Eventually, one pair becomes unstable beyond the critical flutter
speed, consistent with the observations from the flutter plots.

Structural Composition of Critical Modes To further analyze the physical nature of the two critical aeroelastic
modes, their eigenvectors are projected onto the structural degrees of freedom and evaluated as functions of freestream

12



(a) Pole Map at Velocity below Flutter (b) Pole Map at Velocity in Flutter Region

Fig. 10 Pole Maps in Stable and Unstable Regime

Fig. 11 𝑉𝑔-Plot and 𝑉𝜔-Plot of Rectangular Wing

velocity. Figure 13 plots the relative magnitude of bending and torsion components of the modal shapes across
velocities. At low velocities (e.g., 20 m/s), the two modes are largely uncoupled: one mode is dominated by bending,
the other by torsion. However, as velocity increases, the eigenvectors become increasingly aligned, indicating strong
coupling between bending and torsional dynamics[25]. This alignment is evident in the convergence of their respective
projections, reflecting a coalescence in both frequency and modal content. Near and beyond the flutter boundary, both
modes exhibit nearly collinear structural components, underscoring the mixed bending-torsion character of the unstable
flutter mode. This modal evolution provides insight into the physical mechanisms leading to instability and motivates
the selection of sensor and actuator placements that target these specific dynamics. Moreover, the velocity-dependent
nature of the system justifies the use of a linear parameter-varying (LPV) framework for active flutter suppression,
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Fig. 12 Pole-Map of Rectangular Wing

Fig. 13 Bending and Torsion Components of Critical Modes over 𝑉∞
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enabling robust control strategies to stabilize the critical modes across the operating envelope.

Modal Observability & Controllability Measures For a real eigenvalue with individually normalized eigenvectors
satisfying ∥𝑣𝑖 ∥ = ∥𝑤𝑖 ∥ = 1 (as opposed to bi-orthonormalization 𝑤𝐻

𝑖
𝑣 𝑗 = 𝛿𝑖 𝑗), suitable scalar measures of modal

controllability and observability are given by

|ℎ𝑖 | = ∥𝐶𝑣𝑖 ∥ , (57)
| 𝑓𝑖 | =



𝑤𝐻
𝑖 𝐵



 , (58)

where |ℎ𝑖 | represents the effective observability of mode 𝑖 across all outputs, and | 𝑓𝑖 | the effective controllability
of mode 𝑖 via all inputs [26]. For complex conjugate eigenvalues 𝜆𝑖 = 𝛿 ± 𝑖𝜔, the same procedure applies, where
∥ℜ{𝐶𝑣𝑖}∥ reflects observability of the modal "damping" ℜ{𝜆𝑖}, and ∥ℑ{𝐶𝑣𝑖}∥ reflects observability of the modal
"frequency" ℑ{𝜆𝑖}. Dually



ℜ{𝑤𝐻
𝑖
𝐵}



 reflects controllability of the modal "damping" ℜ{𝜆𝑖}, and


ℑ{𝑤𝐻

𝑖
𝐵}



 reflects
controllability of the modal frequency ℑ{𝜆𝑖}.

(a) Flutter Observability (b) Flutter Controllability

Fig. 14 Flutter Modal Observability & Controllability

Figure 14 depicts the evolution of flutter modal observability & controllability over freestream velocity. The absolute
numerical value is of lesser importance as system state and output are scaled for numerical stability. Counterintuitively
the flutter mode seems to be most observable at low frequencies. Between 20 and 60 m/s, observability decreases sharply;
thereafter, it degrades more gradually. This phenomenon can be explained by the normalization of the modeshape
vector 𝑣𝑖 , where at low airspeeds the flutter mode is dominated by the measurable structural deformation states (𝑞 𝑓 , ¤𝑞 𝑓 ).
At high airspeeds the fluttermode is increasingly dominated by non measurable aerodynamic lag states, therefore,
the apparent observability of the normalized eigenvector decreases. Time simulation however confirms that actual
acceleration measurements, of course, increase sharply around the onset of the flutter instability.

As one would expect the fluttermode is increasingly well controllable as freestream velocity grows. Since the
effectivity of aerodynamic control surfaces grows linearly with the dynamic pressure 𝑞, i.e. quadratically with 𝑉∞. Note
that increasing controllability in the sense of Eq. (57) refers solely to the amount of energy introduced to the fluttermode
by a unit system input. In fact intuitive "controllability", i.e. keeping the system at a desirable state through feedback, is,
of course, increasingly difficult with an increasingly unstable flutter pole pair. [27]

In summary, the flutter mode of the generic rectangular wing is reasonably measurable from eight distributed
vertical acceleration sensors and sufficiently controllable with 4 leading edge slats and 4 trailing edge flaps covering the
full wing span. In fact a singe outboard aileron (trailing edge flap) may be sufficient for active flutter suppression, as
demonstrated in the following section VIII.

VIII. Active Flutter Suppression
To demonstrate the practical application of the proposed benchmark model for control design, a simple active flutter

suppression controller similar to the approach by Horikawa and Dowell[28] is implemented. The controller is based
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on constant output feedback[29] using measurements from the two outermost acceleration sensors and actuating only
the outboard trailing-edge aileron. A proportional output feedback strategy is employed, which stabilizes the system

Fig. 15 𝑉𝑔-Plot and 𝑉𝜔-Plot of Open Loop vs. Acceleration Feedback

across a range of freestream velocities. This approach illustrates how even a minimal control architecture can shift the
flutter boundary and increase modal damping. The effectiveness of this setup is illustrated in Fig. 15, which compares
the velocity-dependent damping and frequency characteristics (𝑉𝑔 and 𝑉𝜔 plots) for the open-loop and closed-loop
systems. The corresponding pole trajectories in the complex plane are shown in Fig. 16, indicating the stabilizing shift
of the unstable flutter poles under feedback control. This example serves as a first proof-of-concept for active flutter
suppression using the benchmark model. It highlights that stabilizing control can be achieved with surprisingly simple
static feedback control. However, no considerations have been made regarding the robustness of this control strategy to
modeling uncertainties. Additionally, nonlinear actuator limitations such as saturation,and rate constraints have been
neglected. These factors are critical in real-world applications and must be addressed in more advanced designs[2].
Nonetheless, this example showcases the utility of the benchmark for validating fundamental controller concepts and
provides a basis for the development of more sophisticated control strategies, including robust and gain-scheduled
approaches. The author presents a refined active flutter suppression controller in a companion work [30].
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Fig. 16 Pole-Map of Open Loop vs. Acceleration Feedback

IX. Conclusion
This paper presents a complete, yet comprehensible open-source benchmark model designed to support the

development and evaluation of secondary flight control strategies. The model integrates a finite element (FE) beam
representation of a flexible wing structure with unsteady aerodynamic loading derived from the Doublet Lattice Method
(DLM). Structural and aerodynamic model are consistently coupled without approximate spline interpolation. The
frequency domain DLM is converted to the time-domain via Rational Function Approximation (RFA) using Roger’s
method. This formulation results in a Linear Parameter-Varying (LPV) state-space model dependent on the freestream
velocity, facilitating modern control synthesis techniques.

A key strength of the benchmark lies in its balance between physical fidelity and computational tractability. The
structural model captures the fundamental bending and torsional dynamics of a high-aspect-ratio wing. The unsteady
aerodynamic effects are modeled using the industry standard linearized potential flow panel method instead of 2-D
Theodorsen theory commonly used in research. The actuator layout, consisting of trailing edge flaps and leading edge
slats, along with the distributed inertial sensors reflects possible future flight control configurations. Standard PT2
actuator dynamics as well as generic sensor noise are taken into account. This enables the rapid design and testing of
control strategies under representative conditions.

The benchmark includes a detailed modal analysis of the coupled aeroservoelastic system, enabling the tracking of
eigenvalue trajectories as a function of airspeed. The transition from stable to unstable regimes is clearly characterized,
revealing the physical mechanisms underlying classical bending torsion flutter onset. Additionally, velocity-dependent
assessments of modal controllability and observability provide insight into the effectiveness of different sensor-actuator
combinations, informing control design decisions.

Overall, the proposed benchmark bridges the methodological gap between the high-fidelity aeroelastic models used
in industry and simplistic 2-D airfoil formulations dominating control research. It provides a reproducible platform for
rigorous testing of novel active flutter suppression and/or gust/maneuver load alleviation strategies and encourages
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systematic performance comparisons across competing methodologies. Future extensions of this work may include the
incorporation of parameter uncertainty, extension to a 3-D truss type airframe model and rigid body dynamics.

The accompanying MATLAB/Simulink implementation provides a extensible, and transparent environment for simu-
lation, controller design, and performance evaluation. The respective code is available at github.com/JonasEiche/FlutterWing.

Appendix
Key variables used in sec. VI are defined below.

𝑞𝑔 = structural coordinates (FEM DoFs)
𝑞 𝑓 = modal coordinates (flexible)
𝑢𝑥 = control surface deflections
𝑥𝐿 = aerodynamic lag states
𝐹aero
𝑔 = aerodynamic force vector
𝑀𝑔𝑔 = structural mass matrix
𝐷𝑔𝑔 = structural damping matrix
𝐾𝑔𝑔 = structural stiffness matrix
𝑆𝑔 𝑗 = aero force integration
𝑄 𝑗 𝑗 (𝑠∗) = AIC matrix
𝑄

(0)
𝑗 𝑗

= quasi-steady AIC term
𝑄

(1)
𝑗 𝑗

= added mass AIC term
𝑄

(𝐿,𝑖)
𝑗 𝑗

= aerodynamic lag AIC coefficients

𝐷Re
𝑗𝑔

= struct def. to downwash map
𝐷Im

𝑗𝑔
= struct vel. to downwash map

𝐷Re
𝑗 𝑥

= cs deflection to downwash map
𝐷Im

𝑗 𝑥
= cs deflection vel. to downwash map

𝑅𝐿𝐿 = lag state dynamics matrix (≃ 𝐴)
𝐸𝐿 𝑗 = lag state aero input matrix (≃ 𝐵)
𝐷 𝑗𝐿 = lag state aero output matrix (≃ 𝐶)
𝐸𝐿𝑔 = lag state struct input matrix (≃ 𝐵)
𝐸𝐿𝑥 = lag state cs input matrix (≃ 𝐵)
𝐷𝑔𝐿 = lag state struct output matrix (≃ 𝐶)

𝑀̃𝑔𝑔 = 𝑀𝑔𝑔 − 𝑞𝑆𝑔 𝑗𝑄 (1)
𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑔 (59)

𝐷̃𝑔𝑔 = −𝐷𝑔𝑔 + 𝑞𝑆𝑔 𝑗

(
𝑄

(0)
𝑗 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑔 +𝑄 (1)

𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
𝐷𝑅𝑒

𝑗𝑔 +
𝑛𝑝∑︁
𝑖=1

𝑄
𝐿𝑖

𝑙 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑔

)
(60)

𝐾̃𝑔𝑔 = −𝐾𝑔𝑔 + 𝑞𝑆𝑔 𝑗

(
𝑄

(0)
𝑗 𝑗
𝐷𝑅𝑒

𝑗𝑔 +
𝑛𝑝∑︁
𝑖=1

𝑄
(𝐿𝑖 )
𝑗 𝑗

(
𝐷𝑅𝑒

𝑗𝑔 − 𝑝𝑖
1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑔

))
(61)

𝐵𝑔𝑥 = 𝑞𝑆𝑔 𝑗𝑄
𝑗

𝑖 𝑗

(
𝑄

(0)
𝑗 𝑗
𝐷𝑅𝑒

𝑗𝑥 +
𝑛𝑝∑︁
𝑖=1

𝑄
(𝐿𝑖 )
𝑗 𝑗

(
𝐷𝑅𝑒

𝑗𝑥 − 𝑝𝑖
1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑥

))
(62)

𝐵𝑔 ¤𝑥 = 𝑞𝑆𝑔 𝑗

(
𝑄

(0)
𝑗 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑥 +𝑄 (1)

𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
𝐷𝑅𝑒

𝑗𝑥 +
𝑛𝑝∑︁
𝑖=1

𝑄
(𝐿𝑖 )
𝑗 𝑗

1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑥

)
(63)

𝐵𝑔 ¥𝑥 = 𝑞𝑆𝑔 𝑗𝑄
(1)
𝑗 𝑗

𝑐𝑟𝑒 𝑓

2𝑉∞
1
𝑉∞

𝐷 𝐼𝑚
𝑗𝑥 (64)

(65)
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𝑅𝐿𝐿 =


−𝑝1𝐼 𝑗 𝑗

. . .

−𝑝𝑛𝑝
𝐼 𝑗 𝑗

 (66)

𝐸𝐿 𝑗 =


𝑄

(𝐿1 )
𝑗 𝑗

...

𝑄
(𝐿𝑛𝑝 )
𝑗 𝑗

 (67)

𝐸𝐿𝑔 =


𝑄

(𝐿1 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑔
𝑝2

1 − 𝐷
𝑅𝑒
𝑗𝑔
𝑝1)

...

𝑄
(𝐿𝑛𝑝 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑔
𝑝2
𝑛𝑝

− 𝐷𝑅𝑒
𝑗𝑔
𝑝𝑛𝑝

)

 (68)

𝐷𝑔𝐿 = 𝑞

[
𝑆𝑔 𝑗 , ..., 𝑆𝑔 𝑗

]
(69)

𝐸𝐿𝑥 =


𝑄

(𝐿1 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑥
𝑝2

1 − 𝐷
𝑅𝑒
𝑗𝑥
𝑝1)

...

𝑄
(𝐿𝑛𝑝 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑥
𝑝2
𝑛𝑝

− 𝐷𝑅𝑒
𝑗𝑥
𝑝𝑛𝑝

)

 (70)

(71)

𝐹aero
𝑓 = ...+

[
𝐼 𝑓 𝑓 , ..., 𝐼 𝑓 𝑓

]
·
©­­­«𝑠I −


−𝑝1𝐼 𝑓 𝑓

. . .

−𝑝𝑛𝑝
𝐼 𝑓 𝑓


ª®®®¬
−1

·


𝑞𝑆 𝑓 𝑗𝑄

(𝐿1 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗 𝑓
𝑝2

1 − 𝐷
𝑅𝑒
𝑗 𝑓
𝑝1) 𝑞𝑆 𝑓 𝑗𝑄

(𝐿1 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑥
𝑝2

1 − 𝐷
𝑅𝑒
𝑗𝑥
𝑝1)

...
...

𝑞𝑆 𝑓 𝑗𝑄
(𝐿𝑛𝑝 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗 𝑓
𝑝2
𝑛𝑝

− 𝐷𝑅𝑒
𝑗 𝑓
𝑝𝑛𝑝

) 𝑞𝑆 𝑓 𝑗𝑄
(𝐿𝑛𝑝 )
𝑗 𝑗

( 1
𝑉∞
𝐷 𝐼𝑚

𝑗𝑥
𝑝2
𝑛𝑝

− 𝐷𝑅𝑒
𝑗𝑥
𝑝𝑛𝑝

)

 ·
[
𝑞 𝑓

𝑢𝑥

] (72)
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