
 

 

Arun Babu 

Condition Monitoring of Road Traffic Infrastructure by Using 
Synthetic Aperture Radar  

2025 

Dissertation 





Condition Monitoring of Road TrafÏc Infrastructure by Using
Synthetic Aperture Radar

Zustandsüberwachung der Straßeninfrastruktur durch Radar mit
synthetischer Apertur

Der Technischen Fakultät
der Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur
Erlangung des Doktorgrades Dr.-Ing.

vorgelegt von

Arun Babu

aus Thodiyoor, Indien



Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 11.11.2025

Gutachter: Prof. Dr.-Ing. Gerhard Krieger
Prof. Dr.-Ing. Stefan Hinz



Acknowledgments

This doctoral research, carried out at theMicrowaves andRadar Institute of the German
Aerospace Center (DLR), would not have been possible without the assistance and
support of many individuals. I am deeply thankful to everyone who has guided and
supported me throughout this scientific journey.

First and foremost, I would like to express my heartfelt thanks to my supervisor Dr.
Stefan V. Baumgartner, for sharing his extensive knowledge of SAR concepts, data
processing, and analysis. His consistent technical and moral support, coupled with
regular meetings, innovative ideas, and valuable insights, were crucial in guiding me
through the challenges I encountered during the research phase. I am also grateful to
him for reviewing my conference papers, journal articles, and this dissertation, which
significantly improved their quality.

I am sincerely grateful to my PhD advisor and department head, Prof. Dr. Gerhard
Krieger, for providing me with the opportunity to register as a PhD student at the
Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg. His ideas
and suggestions during the PhD status meetings were helpful in refining my results
and encouraged me to look at the research problems from different perspectives. I am
also thankful to him for reviewing my journal articles and this dissertation, offering
constructive feedback that greatly enhanced their clarity and overall quality.

I also wish to thank my group leader, Prof. Dr. Marwan Younis, for allowing me to
carry out my research within his team.

Furthermore, my sincere thanks go to the director of theMicrowaves andRadar Institute
Prof. Dr. AlbertoMoreira for providing me the opportunity to conduct this doctoral
research at the institute and also for having regular PhD status meetings.

I am grateful to my colleagues at DLR for their efforts in acquiring and providing the
experimental SAR datasets and ground truth data necessary for this research, as well as
for their assistance with administrative tasks both within DLR and at the foreigner’s
ofÏce.

Finally, I would like to extend my deepest thanks to my parents and my beloved wife
Arya for their constant support and encouragement, which motivated me to strive for
greater achievements.

Oberpfaffenhofen, January 2025

Arun Babu

iii





Abstract

Roads play a crucial role in the development of a country. Therefore, it is essential to
carry out periodic inspections to assess the road surface conditions and carry out neces-
sary maintenance activities for ensuring the efÏcient and safe movement of people and
goods. The most important factors affecting the quality of road surfaces include surface
roughness, cracks, potholes as well as unevenness. Nowadays, specialised survey vehicles
equipped with numerous sensors are used globally to monitor road conditions, however,
this activity is mainly concentrated on major roads and only once in every few years, as
this is a very resource-intensive task. However, as road conditions deteriorate rapidly,
particularly in winter due to freeze-thaw cycles, more frequent monitoring is essen-
tial to detect problems early and take preventative actions. The utilisation of airborne
and spaceborne synthetic aperture radar (SAR) systems is a promising avenue for road
condition monitoring as it offers cost-effective and large-scale monitoring capabilities,
enabling predictive road maintenance strategies.

This doctoral thesis focuses on the development of methods and processing chains for
accurate road surface roughness estimation, detection and orientation estimation of
cracks as well as road width estimation using high-resolution fully focused SAR data.
The road surface roughness estimation methods were developed and tested for both
airborne and spaceborne X-band SAR systems, while the processing chains for crack
detection, orientation estimation and road width estimation were specifically tailored
and tested for airborne X-band SAR systems.

A new semi-empirical roughness estimation model and machine learning-based support
vector regression (SVR), random forest regression (RFR) and artificial neural network
(ANN)-based regression models were developed, trained and tested specifically for road
surface roughness estimation using fully polarimetric airborne X-band SAR data. The
new semi-empirical roughness estimation model and processing chain were adapted
for road surface roughness estimation using single-polarised X-band spaceborne SAR
data. Since both the airborne and spaceborne SAR data have a low signal-to-noise
ratio (SNR) due to the lower backscatter from smooth road surfaces, additive noise
estimation and minimisation techniques were integrated into the processing chains as a
pre-processing step to improve the reliability of the road surface roughness estimation.
Similarly, after generating the road surface roughness values, upper sigma nought (𝜎𝑜)
and lower SNR thresholding techniques were implemented to further eliminate the
invalid and noisy results. Multi-dataset fusion approacheswere also developed to fuse the
surface roughness estimates frommultiple SAR datasets with different data acquisition
geometries to minimise the errors introduced in road surface roughness estimation due
to incidence angle variations, low SNR and shadow regions.

v



Furthermore, a novel method based on the combined use of an adaptive thresholding
algorithm and the Radon transform has been proposed in this thesis for cracks detection,
severity and orientation estimation. In this method, the cracks detection is performed
using the adaptive threshold algorithm, while the severity of the cracks is expressed in
terms of the maximumRadon magnitude values obtained from the sinogram and the
orientation of the detected cracks is represented as bearing angles. The road width is
measured by detecting abrupt changes in road surface roughness at the road boundaries.

All processing chains, including those for road surface roughness, cracks detection, ori-
entation estimation and road width measurements, generate keyhole markup language
(KML) files to visualise the results in Google Earth (GE) for enhanced interpretation.

Validation of these methods and processing chains was conducted using DLR’s airborne
F-SAR system and Germany’s spaceborne TerraSAR-X system, demonstrating close
agreement with ground truth measurements, which were acquired with sub-millimetre
level accuracy by using a 3D laser scanner. Overall, this research contributes to advancing
road condition monitoring techniques, with implications for predictive maintenance
strategies and infrastructure management.
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Zusammenfassung

Straßen spielen eine entscheidende Rolle in der Entwicklung eines Landes. Daher ist es
unerlässlich, regelmäßige Inspektionen durchzuführen, um die Zustände der Fahrbah-
noberflächen zubewertenundnotwendige Instandhaltungsmaßnahmendurchzuführen,
um eine efÏziente und sichere Bewegung von Menschen und Gütern zu gewährleis-
ten. Die wichtigsten Faktoren, die die Qualität der Fahrbahnoberflächen beeinflussen,
sind Oberflächenrauheit, Risse, Schlaglöcher sowie Unebenheiten. Heutzutage werden
weltweit spezialisierte Vermessungsfahrzeuge mit zahlreichen Sensoren eingesetzt, um
Straßenbedingungen zu überwachen, jedoch hauptsächlich auf Hauptstraßen und nur
alle paar Jahre, da dies eine sehr ressourcenintensive Aufgabe ist. Da sich Straßenbe-
dingungen jedoch insbesondere im Winter aufgrund von Frost-Tau-Zyklen schnell
verschlechtern, ist eine häufigere Überwachung erforderlich, um Probleme frühzeitig
zu erkennen und präventive Maßnahmen zu ergreifen. Die Nutzung von luft und
raumgestützten Radarsystemen mit synthetischer Apertur (SAR) bietet sich als vielver-
sprechenderAnsatz für dieÜberwachung von Straßenbedingungen an, da sie kostengün-
stige und großflächigeÜberwachungsmöglichkeiten bieten und die Entwicklung prädik-
tiver Straßeninstandhaltungsstrategien ermöglichen.

Diese Doktorarbeit konzentriert sich auf die Entwicklung vonMethoden und Verar-
beitungsketten zur genauen Schätzung der Fahrbahnoberflächenrauheit, zur Erken-
nung und Orientierungsschätzung von Rissen sowie zur Schätzung der Straßenbre-
ite unter Verwendung hochauflösender voll fokussierter SAR-Daten. Die Methoden
zur Abschätzung der Straßenoberflächenrauheit wurden sowohl für luft- als auch
weltraumgestützte X-Band-SAR-Systeme entwickelt und getestet, während die Ver-
arbeitungsketten für Rissdetektion, Orientierungsabschätzung und Straßenbreitenab-
schätzung speziell für luftgestützte X-Band-SAR-Systememaßgeschneidert und getestet
wurden.

Ein neues semi-empirisches Rauheitsschätzungsmodell und auf maschinellem Lernen
basierende Modelle wie Support-Vektor-Regression (SVR), Random-Forest-Regression
(RFR) und künstliche neuronale Netze (ANN) wurden speziell für die Rauheitss-
chätzung von Fahrbahnoberflächen unter Verwendung vollständig polarimetrischer
luftgestützter SAR-Daten entwickelt, trainiert und getestet. Das neue semi-empirische
Rauheitsschätzungsmodell und die Verarbeitungskette wurden für die Schätzung der
Fahrbahnoberflächenrauheit mit weltraumgestützten X-Band-SAR-Daten für die Ver-
wendung von nur einer Polarisation angepasst. Da sowohl luft- als auch weltraum-
gestützte SAR-Daten aufgrund der geringeren Rückstreuung von glatten Fahrbah-
noberflächen ein niedriges Signal-Rausch-Verhältnis (SNR) aufweisen, wurden additive
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Rauschschätzungs-undMinimierungstechniken als Vorverarbeitungsschritt in die Verar-
beitungsketten integriert, um die Zuverlässigkeit der Fahrbahnoberflächenrauhigkeitss-
chätzung zu verbessern. Nach der Schätzung der Fahrbahnoberflächenrauheitswerte
wurden außerdemobere Sigma-Nought- (𝜎𝑜) und untere SNR-Schwellenwerttechniken
implementiert, um ungültige und verrauschte Ergebnisse weiter zu eliminieren. Es wur-
den auchAnsätze zur Fusionmehrerer Datensätze entwickelt, um die Rauheitsschätzun-
gen aus mehreren SAR-Datensätzen mit unterschiedlichen Datenerfassungsgeometrien
zu fusionieren, um Fehler bei der Schätzung der Fahrbahnoberflächenrauheit aufgrund
von Einfallswinkelvariationen, niedrigem SNR und Schattenbereichen zu minimieren.

Darüber hinaus wurde in dieser Doktorarbeit eine neuartige Methode zur Detektion,
Bewertung der Schwere und Orientierung von Rissen vorgeschlagen, die auf der kom-
binierten Verwendung eines adaptiven Schwellenwertalgorithmus und der Radon-
Transformation basiert. Bei dieser Methode erfolgt die Rissdetektion mithilfe des adap-
tiven Schwellenwertalgorithmus, während die Schwere der Risse durch die maximalen
Radon-Magnitudenwerte aus dem Sinogramm ausgedrückt wird und die Orientierung
der detektierten Risse als Himmelsrichtung angegeben wird. Die Straßenbreite wird
durch die Erkennung abrupter Änderungen der Fahrbahnoberflächenrauheit an den
Straßengrenzen gemessen.

Um die Ergebnisse besser interpretieren zu können, haben die entwickelten Verar-
beitungsketten für die Schätzung der Fahrbahnoberflächenrauheit, Rissentdeckung,
Orientierungsschätzung und Straßenbreitenmessungen Keyhole Markup Language
(KML)-Dateien generiert. Diese Dateien werden verwendet, um die Ergebnisse in
Google Earth (GE) zu visualisieren und ermöglichen Vergleiche mit GE-Optikbildern.

DieValidierungdieserMethodenundVerarbeitungskettenwurdemit dem luftgestützten
F-SAR-System des DLR und dem deutschen weltraumgestützten TerraSAR-X-System
durchgeführt. Sie zeigen eine gute Übereinstimmung mit den aktuellen Bodenmes-
sungen. Insgesamt trägt diese Forschung zur Weiterentwicklung von Techniken zur
Überwachung des Straßenzustands bei und hat Auswirkungen auf vorausschauende
Instandhaltungsstrategien und das Infrastrukturmanagement.
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1 Introduction

1.1 Background and Motivation

Road infrastructure plays a vital role in facilitating the movement of people and goods,
making it crucial for a country’s development [92]. Consequently, regular inspection
and maintenance of roads are essential for both economic progress and safety considera-
tions [P2, 69]. Several factors can affect the quality of road surfaces, with road surface
roughness, cracks, potholes, and unevenness being the most significant ones [3, 33, 68,
82].

Road surface roughness plays a crucial role in determining the friction between the road
and vehicle tyres [56, 143], thereby significantly affecting a vehicle’s skid resistance [53,
85]. Figure 1.1(a) illustrates the interaction between a rough road surface and a vehicle
tyre [P4]. The weight on the tyre and the road’s vertical profile cause the tyre’s rubber to
be penetrated by the road’s vertical rough points. Due to the tyre rubber’s flexibility, it
conforms to the shape of the rough points, resulting in an increased contact surface area
between the road and the tyre [2]. This behaviour enhances the grip and reduces the
likelihood of tyre skidding [96]. On the other hand, Figure 1.1(b) portrays the contact
between a very smooth road surface and a tyre. In this scenario, there are not enough
vertical rough points on the road, leading to a smaller contact surface area compared
to Figure 1.1(a). Consequently, less friction is generated, increasing the chances of
skidding [2, 96]. The observations from both figures emphasise the importance of an
optimal level of skid resistance for safe acceleration, braking, and steering manoeuvres.
However, excessively high road surface roughness can adversely affect driving comfort,
fuel consumption, and generate increased noise levels [83]. Achieving the right balance
of skid resistance is crucial to ensure both safety and driving quality.

Road surfaces with cracks and potholes pose significant safety risks to road users, leading
to accidents andprematurewear and tear of vehicles [5, 106]. Cracks typically develop on
the road surface due to the expansion and contraction caused by temperature variations.
During the day, the sun’s heat causes the road to expand, while at night, the temperature
drop causes contraction. This repetitive cycle of expansion and contraction weakens
certain areas on the road, and regular vehicular movement over these weakened spots
eventually results in the formation of cracks [12, 13]. Over time, these cracks can worsen
and lead to the emergence of potholes, which are particularly prevalent during winter.
In the winter season, freezing and thawing cycles play a key role in pothole formation
(cf. Figure 1.2) [11]. When the temperature is above zero degrees Celsius, snow on
the road surface melts, and the water seeps into the cracks present on the road. As the
temperature drops below zero degrees Celsius, this water freezes and expands, exerting
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(a) (b)

Figure 1.1: Road surface roughness visualisation. (a) The contact area between a rough road surface and
a tyre (road vertical profile is exaggerated for better visualisation). (b) The contact area between a very
smooth road surface and a tyre [P4].

Figure 1.2: Cracks deterioration and pothole formation due to freeze-thaw cycles in the winter season.

pressure on the road surface, causing the cracks to widen. When the temperature rises
again, the ice beneath the road surface melts and evaporates, leaving behind a void under
the road surface. When a vehicle passes over these weakened points, the road surface
breaks, leading to the creation of potholes [67]. The continuous freezing and thawing
process during winter exacerbates the pothole problem, making it a significant concern
for road maintenance and safety.

Road surface unevenness refers to the smoothness of the road surface in both longi-
tudinal and transverse directions (cf. Figure 1.3) [87]. Factors affecting it include
construction methods, equipment used, compaction level, construction quality control
measures, and material choice. Deficiencies in these aspects can lead to variations, result-
ing in an uneven road surface [86]. The consequences are impactful, directly affecting
vehicle performance, comfort, and stability. Uneven surfaces reduce acceleration, brak-
ing, and cornering efÏciency, posing safety risks. They also increase vehicle operating
costs due to accelerated wear on tyres, suspension systems, and other components, neces-
sitating frequent maintenance. Moreover, an uneven road has a shorter lifespan due
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Figure 1.3: Road surface unevenness.

to constant trafÏc impact and environmental factors, requiring more frequent repairs
[146]. Addressing road surface unevenness is crucial during both the construction and
maintenance phases.

In summary, ensuring the regular and systematic monitoring of road surfaces is of prime
importance for maintaining acceptable quality levels and promptly addressing adverse
factors. Proactively identifying and rectifying road surface issues, such as roughness,
cracks, potholes, and unevenness, enhances road safety, improves driving comfort, and
prolongs the lifespan of roads. The following section will delve into the state-of-the-art
road condition monitoring techniques used for this purpose.

1.2 State-of-the-art Road Condition Monitoring Techniques

The strategies employed for road condition monitoring differ across various countries,
involving both wide-scale data collection for major roads and localised approaches that
target specific road sections of interest [91]. The information gathered from reports
published by transportation departments in different countries are discussed in [16, 43,
128, 144].

For nationwide road condition monitoring, several countries utilise specialised survey
vehicles equipped with various sensors. A fully automated Laser CrackMeasurement
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System (LCMS) is mounted on these vehicles to detect different types of cracks, such as
longitudinal cracks, transverse cracks, pavement edge cracking, and alligator cracking
[81]. Laser profilers or multi-sensor profilers are employed to estimate rutting, which
refers to longitudinal depressions on the road surface often caused by heavy trucks’
wheel paths. These profilers are also used to measure the road surface roughness and
international roughness index (IRI) which is widely used as a measure of road surface
unevenness [79]. Additionally, high-resolution digital cameras are installed on these
survey vehicles to inspect road signs, structures, lane dividers, and guardrails. Some
transportation departments also equip these vehicles with ground-penetrating radar
(GPR) systems. These GPR systems serve various purposes, including the detection of
subsurface changes beneath the road surface, the demarcation of homogeneous zones,
the estimation of asphalt or concrete layer thicknesses, and the identification of voids
or buried utilities [62]. Differential GPS systems are integrated into the vehicles to
precisely locate and determine the orientation of the road defects identified by the sensors
[110]. However, these advanced survey vehicles come with significant costs and require
substantial time andmanpower to operate throughout the country. Consequently, such
comprehensive surveys are conducted only once every few years [P4]. For instance, in
Germany, they are performed approximately every four years, primarily focusing only
on major motorways [107].

Localised approaches for road condition assessment involve accredited surveyors inspect-
ing the road sections either by walking or driving. The defects identified by the surveyors
are analysed, and a priority rating for maintenance is assigned. Based on this rating,
the defects are repaired, and a report is uploaded to a central database, which includes
images of the defects, surveyor findings, and information about the maintenance work
performed. However, this approach is highly inefÏcient and demands considerable time
and effort [91, 110].

Considering that road deterioration happens much faster, especially during the winter
season [24], there is a growing need formore frequent road conditionmonitoring, ideally
on an annual basis. To address this need, researchers are exploring novel approaches
using remote sensing techniques for wide-scale road condition monitoring to improve
efÏciency and cost-effectiveness [120]. The next section will delve into state-of-the-art
road condition monitoring using synthetic aperture radar remote sensing techniques.

1.3 State-of-the-art SAR-based Road Condition Monitoring

SyntheticApertureRadar (SAR) has the potential to be used as an alternative technology
for wide-area road condition monitoring due to its sensitivity to changes in dielectric
properties and surface roughness [137]. Only a few studies can be found in the open
literature that have utilised SAR data to estimate road surface quality.
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In one such study [129], L-band SAR data from the ALOS-PALSAR satellite of Japan,
with a 7-meter spatial resolution, were used to establish a correlation between SAR
backscatter signal and the International Roughness Index (IRI) values for the road
surfaces in Thailand. The findings revealed that as road conditions deteriorated, the
SAR backscatter values increased, suggesting a potential relationship between the two
parameters.

Another study took place in the Commonwealth of Virginia, employing X-band SAR
data from the Cosmo-SkyMed satellite of Italy, with a 3-meter spatial resolution to
estimate IRI values. This study achieved an overall accuracy of 92.6% in estimating IRI
values from the SAR data [95].

These studies demonstrate the feasibility of SAR-based approaches for estimating road
defects, highlighting the potential of SAR technology as a valuable tool for road condi-
tion monitoring and maintenance assessment.

1.4 Main Objectives and Thesis Contributions

Although studies in the literature have explored the use of SAR for monitoring road
surface quality, as mentioned in the previous section, it is crucial to highlight that these
studies were preliminary and limited in scope. They primarily focused on estimating
the International Roughness Index (IRI), which represents road unevenness, but this is
just one parameter for road condition monitoring. Furthermore, the SAR data used
in these studies were of medium resolution (3 to 7 meters), which posed limitations in
generating high-quality road condition maps. Consequently, interpreting the results of
these studies might be challenging for a road maintenance engineer without expertise in
SAR data analysis.

This thesis aims to expand the scope and assess multiple parameters critical to road
condition monitoring. The main objectives of this study are as follows:

1. Road Surface Roughness Estimation: The first objective is to evaluate the
potential of state-of-the-art roughness estimation models for road surface rough-
ness estimation using high-resolution airborne SAR data. Additionally, the study
will develop a new semi-empirical road surface roughness estimation model tai-
lored to airborne SAR, offering enhanced accuracy and applicability.

2. Machine Learning Applications: Building upon the roughness estimation
efforts, the second objective is to investigate the effectiveness of machine learning-
based algorithms for estimating road surface roughness using high-resolution
airborne SAR data. These algorithms have the potential to further refine rough-
ness estimates and streamline the monitoring process.
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3. Spaceborne SAR Application: The third objective focuses on exploring the
possibility of utilising high-resolution spaceborne SAR data for road surface
roughness estimation. This study aims to expand road condition monitoring
capabilities to a global scale.

4. Cracks Detection and RoadWidth Estimation: The fourth objective involves
the development of algorithms for crack detection and road width estimation
using high-resolution airborne SAR data. These algorithms will enable the iden-
tification of road surface defects, such as cracks, and provide valuable data for
road width assessment.

This thesis introduces a novel and comprehensive approach to road condition moni-
toring through the application of SAR technology. By estimating multiple parameters
that influence road conditions and leveraging high-resolution SAR data with sub-meter
spatial resolution, this research aims to bridge the gap between current monitoring
techniques and the requirements of modern road infrastructure management.

The key novelties and contributions of this thesis are outlined below:

� Detailed analysis has been carried out to assess the applicability of state-of-the-art
roughness estimation models, initially designed for estimating soil roughness in
agricultural fields, for the estimation of road surface roughness (cf. Chapters 2
and 3) [P1, P2, P3, P4].

� Anew semi-empiricalmodel andprocessing chain have been specifically developed
for accurately estimating road surface roughness using high-resolution airborne
SAR data. The model has been developed to overcome the shortcomings of the
state-of-the-art roughness estimation models and to improve the accuracy of road
surface roughness estimation. To achieve the best possible results, the model is
trained using high-resolution airborne SAR data with 25 cm spatial resolution,
along with ground truth surface roughness data of micrometre accuracy (cf.
Chapter 3) [P4, P5].

The functionalities of the processing chain include:• Estimation and minimisation of additive noise in the polarimetric SAR
(PolSAR) data to enhance the reliability of road surface roughness estima-
tion.• Upper sigma nought thresholding to remove pixels with high backscatter-
ing from lane dividers, overhead signboards, flyover walls, and other similar
structures, which can lead to invalid surface roughness estimates.
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• Lower signal-to-noise-ratio (SNR) thresholding to eliminate the noise-
dominated pixels, avoiding invalid surface roughness values from low SNR
regions and radar shadow regions.• Multi-dataset fusion to combine road surface roughness results from var-
ious SAR datasets with different acquisition geometries and incidence
angles, improving the overall accuracy of the results.• Geocoding of road surface roughness images, extraction of roads of interest
using Open Street Map (OSM) data, and visualisation of the road surface
roughness results in Google Earth.

� Machine learning-based artificial neural network (ANN), random forest (RF),
and Support Vector Regression (SVR) models were trained and evaluated for
road surface roughness estimation utilising high-resolution airborne SAR data.
These models can learn and adapt to data variations and different environmental
conditions, making them valuable for estimating road surface roughness even
when the SAR data characteristics fall outside the validity conditions of the
conventional roughness estimation models (cf. Chapter 4) [P5, P8].

� The newly developed semi-empirical road surface roughness estimation model
and processing chain, originally designed for airborne SAR applications, have
been adapted for spaceborne SAR scenarios. This adaptation allows for consistent
monitoring of road conditions worldwide, using high-resolution spaceborne SAR
data (cf. Chapter 5) [P6].

The modifications introduced to enable this adaptation comprise:• Estimating a new set of coefÏcients for the semi-empirical model.• Estimating and subtracting the noise-equivalent beta nought (NEBN)
from the sigma nought backscatter image to reduce additive noise.• Employing multilooking of the SAR data, enhancing the signal-to-noise
ratio (SNR), and generating approximately square pixels, which facilitates
easier image interpretation.

� Algorithms were developed to detect cracks on the road surface, estimate their
orientationwith respect to the true north direction, and determine the roadwidth
using high-resolution airborne SAR data (cf. Chapter 6).

The key investigations include:• Analysis of the flight heading angle dependency on the visibility of cracks
in airborne SAR data.
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• Investigations on the possibility of cracks detection from airborne SAR
data using methods based on Canny edge detector [30], stationary wavelet
transform (SWT) [41] and Radon transform [9].• Development of a novel method for cracks detection and orientation esti-
mation based on the combined use of an adaptive thresholding algorithm
and the Radon transform.• Combining the geocoded road surface roughness images with the OSM
data for road width estimation.

Moreover, this research’s findings hold significant promise for predictive maintenance
in road infrastructure management. By harnessing SAR technology to periodically
monitor road conditions, it enables the early detection of potential issues and facilitates
proactive maintenance efforts. This proactive approach can significantly extend the
lifespan of road networks, reduce maintenance costs, and enhance overall transportation
safety and efÏciency. Thus, this research not only establishes SAR as a valuable tool
for road condition assessment but also paves the way for the integration of predictive
maintenance practices into road infrastructure management, ensuring the long-term
sustainability and resilience of road networks.

1.5 Structure of the Thesis

This thesis is structured into seven chapters, each dedicated to addressing various aspects
of road condition monitoring using SAR data. The remaining chapters are organised as
follows:

Chapter 2 covers the principles of SAR, data acquisition geometry, SAR image genera-
tion, and information about distortions in SAR images and radar backscatter coefÏcients.
Additionally, this chapter explores state-of-the-art roughness estimation models.

InChapter 3, a new semi-empirical road surface roughness model for airborne SAR
is introduced. The chapter details the processing chain used to estimate road surface
roughness and presents the experimental results. Furthermore, it includes a comparative
analysis between the results obtained using state-of-the-art roughness estimation models
and the newly developed semi-empirical model.

Chapter 4 discusses the application of machine learning-based algorithms for road sur-
face roughness estimation using airborne SAR data. The chapter covers the structure of
the processing chain and presents the experimental results obtained from this approach.

The estimation of road surface roughness using high-resolution spaceborne SAR data is
presented inChapter 5. This chapter discusses the adaptation of the newly developed
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semi-empirical road surface roughness estimation model for spaceborne SAR scenarios
and outlines the processing chain’s structure. Additionally, the chapter presents and
compares the experimental road surface roughness results obtained from the spaceborne
SAR data with those from the airborne SAR data.

Chapter 6 focuses on the algorithms developed for detecting cracks and estimating road
width using airborne SAR. The chapter deals with different approaches for crack detec-
tion and a method for road width estimation is also explained. The chapter concludes
by presenting the experimental results obtained using these algorithms.

The thesis concludes with Chapter 7, which offers a comprehensive summary and
discussion. Additionally, this chapter presents future work and outlook for further
advancements in SAR-based road condition monitoring.
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2 Synthetic Aperture Radar and Classical
Roughness Estimation Models

2.1 SAR Concepts

Synthetic Aperture Radar (SAR) is an active remote sensing technology that has the
capability to produce high-resolution two-dimensional images of the Earth’s surface.
Unlike passive sensors that detect naturally occurring electromagnetic (EM) radiation,
SARoperates by transmitting its ownEMpulses towards the ground and then capturing
the signals that bounce back after interacting with the terrain and objects on the Earth’s
surface [4]. This interaction provides information about the properties and structure
of the objects and surfaces under observation. SAR systems typically operate in the
microwave portion of the EM spectrum, encompassing various frequency bands such as
P, L, S, C, X, and Ka [136]. SAR is evolved from the side-looking airborne radar (SLAR)
[77] and it differs in operation from SLAR by harnessing the motion of platforms such
as satellites, aircraft, or drones, on which it is mounted, to synthesize a larger antenna
aperture or ”virtual antenna” which is larger than the physical antenna size [99, 138].
This is achieved by the application of phase-coherent signal processing techniques that
integrate multiple transmitted pulses [132]. The larger antenna aperture, combined
with advanced processing techniques, results in SAR’s unique ability to generate high-
resolution images [99].

A SAR system functions by transmitting precisely timed microwave pulses towards
the Earth’s surface. These pulses interact with various features such as landforms, veg-
etation, buildings, water bodies, etc. and produce backscattered signals [134]. These
backscattered signals are received by the SAR system between the pulse transmission
events [47], and the system records both their amplitude and phase values which contain
information about the observed surface [23]. The phase data can be used to determine
the distance between the SAR system and ground targets, while the amplitude data
can be used to quantify the backscattered signal that returns to the radar, revealing
details about the surface roughness, terrain slope and dielectric properties [89]. These
amplitude and phase data, often referred to as ’raw data’, undergo further processing
which involves complexmotion compensation and SAR focusing techniques to generate
the SAR image [114]. Since SAR has its own pulse transmission capability, parameters
like frequency, look angle and polarisation can be chosen according to the intended
applications [136]. Modern SAR systems can transmit and receive EM pulses in vari-
ous polarisation states, such as linear (horizontal and vertical) or circular polarisations,
enabling the generation of dual- and quad-polarised SAR images that provide diverse
perspectives of the same scene [49]. Quad-polarised SAR, known as fully polarimetric
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SAR (PolSAR) [90], captures various structural and physical information and facilitates
the detection of different scattering mechanisms. The operating frequency, look angle,
polarisation and illuminated area dimensions of a SAR dataset determine its suitability
for different remote sensing applications [136].

Furthermore, SAR’s active naturemeans it can operate independently of external factors
like weather conditions and daylight. Microwave wavelengths can penetrate through
clouds and rain, enabling SAR to provide consistent imaging capabilities regardless of
environmental conditions [99, 142]. This attribute distinguishes SAR as an all-weather,
all-time imaging technology, making it invaluable for a wide array of applications, includ-
ing agriculture (for crop monitoring and yield prediction) [93, 108], forestry (for assess-
ing forest health and deforestation) [78, 130], infrastructure monitoring (for detecting
changes and deformations) [58, 105], disaster management (for assessing post-disaster
damage) [17, 71], and military surveillance (for intelligence gathering and target identifi-
cation) [57, 112], among others. The following sub-sections discuss SAR concepts in
more detail and address the data acquisition geometry, SAR image generation, distor-
tions in SAR images and the importance of the backscatter coefÏcient in SAR remote
sensing.

2.1.1 Data Acquisition Geometry

This subsection explains the data acquisition geometry for an airborne SAR system,
assuming a flat earth geometry, disregarding the effects of Earth’s curvature [46, 104].
SAR systems can operate in various imaging modes, depending on the desired spatial
resolution and the extent of the region that needs to be imaged. The most frequently
employed imaging modes for both airborne and spaceborne SAR systems are the spot-
light, stripmap, and scansar modes [99]. Figure 2.1 illustrates the data acquisition
geometry of the stripmap data acquisition mode.

In Figure 2.1, the SAR antenna is afÏxed to the side of a moving platform, such as an
aircraft, which maintains a constant velocity (𝑣p) and a constant altitude (ℎ) above the
ground. The antenna observes the terrain in a side-looking configuration. The SAR
captures images of the region orthogonal to the aircraft’s flight path, known as the range
direction. The direction of the aircraft movement is termed as the azimuth direction.
The extent of the region that the SAR system can image in a specific mode is referred to
as the swath. The area of the swath closest to the SAR antenna is called the near range,
while the area farthest from the SAR antenna is known as the far range. The slant range
direction is the path in which the antenna transmits the radar pulses to the ground.
Consequently, the slant range distance increases from the near range to the far range
[73, 99, 137]. The projection of the slant range on the ground from the nadir is known
as the ground range. The antenna is tilted downwards from the horizontal plane by a
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Figure 2.1: SAR data acquisition geometry in stripmap mode.

depression angle (𝜃d), which is complementary to the incidence angle (𝜃) for the case of
a flat Earth Cartesian geometry as with airborne SAR. In the stripmap mode, the SAR
antenna maintains a fixed boresight and transmits radar pulses at a rate known as the
pulse repetition frequency (PRF) [47].

The imaging characteristics of the SAR system are determined by the 3 dB half-power
beamwidth of the antenna. In the range direction, the range beamwidth (𝛩rg) defines the
maximumwidth of the swath, while in the azimuth direction, the azimuth beamwidth
(𝛩az) determines the synthetic aperture length (𝐿sa). The synthetic aperture length,
which is dependent on the slant range, can be expressed as [38]:𝐿sa = 2𝑅o tan(Θaz2 ) , (2.1)

where𝑅o represents the slant range distance to the center of the swath. The time required
to create this synthetic aperture, known as the synthetic aperture time (𝑇sa), is given by
[38]: 𝑇sa = 𝐿sa𝑣p . (2.2)

In real-world scenarios, the SAR antenna footprint includes multiple targets. For two
targets to be distinguished in the slant range direction without applying any pulse
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compression, their backscattered signals must not overlap in time. Assuming the SAR
transmits rectangular pulses of duration (𝜏p), the minimum slant range distance (slant
range resolution) required to separate two neighbouring targets can be expressed as [38]:𝛿r,raw = c𝜏p2 , (2.3)

where c denotes the speed of light in a vacuum. This equation indicates that slant range
resolution improves with shorter pulse durations. However, shorter pulses demand
higher transmission power to maintain a strong signal-to-noise ratio (SNR) in the
backscattered signals. The trade-off between pulse duration and slant range resolution
can be resolved by using pulse compression techniques with matched filters (cf. section
2.1.2). These techniques enable high-resolution imaging while maintaining lower peak
transmission power, significantly improving both the slant range resolution and the
SNR for point targets.

In the azimuth direction, the backscattered signals from the targets overlap within the
azimuth footprint. For real aperture radars (RAR) with a narrow azimuth beamwidth
(𝛩az), the azimuth resolution can be approximated as [38]:𝛿az,raw ≈ 𝛩az𝑅o = 𝜆𝑅o𝑙a , (2.4)

where 𝜆 is the radar wavelength, and 𝑙a is the physical antenna length. This formula
shows that the azimuth resolution degrades as the slant range (𝑅o) increases. At a given
frequency, a longer antenna improves azimuth resolution for RAR systems.

In SAR, instead of using a longer antenna, signal processing techniques can be used
to coherently combine backscatter signals received over the illumination period of a
particular target to create a very large synthetic aperture in the azimuth direction. This
method achieves a higher azimuth resolution (𝛿az) without requiring a physically larger
antenna. The azimuth resolution, based on the coherent processing interval time (𝑇CPI),
can be expressed as [25]: 𝛿az ≈ 𝜆𝑅o2𝑣p𝑇CPI

. (2.5)

From the above equation, it is evident that the azimuth resolution can be improved
by increasing the 𝑇CPI. If the complete synthetic aperture time is used as the coherent
processing interval (𝑇CPI = 𝑇sa), then the best possible azimuth resolution for the SAR
system can be obtained and can be written as [38]:
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𝛿az ≈ 𝑙a2 . (2.6)

This equation highlights that SAR systems provide azimuth resolution independent of
range, depending only on the physical length of the antenna. Therefore, even spaceborne
SAR systems can achieve high azimuth resolution by designing antennas with shorter
lengths to widen the azimuth beamwidth, allowing for extended coherent integration
times.

Figure 2.2: SAR data acquisition geometry in staring spotlight mode.

As mentioned at the beginning of this sub-section, the SAR system can be operated
in other imaging modes such as the spotlight mode to increase the azimuth resolution.
Figure 2.2 shows the data acquisition geometry for the staring spotlight mode, which
is the most advanced variant of the spotlight technique capable of providing the best
possible azimuth resolution. In this mode, the antenna pattern is electronically steered in
the azimuth direction to focus on a fixed area for an extended duration. This prolonged
illumination time increases the synthetic aperture length (𝐿sa), consequently enhancing
azimuth resolution. However, a drawback of this technique lies in the reduced coverage
area due to the extendedobservation time required for a small area, resulting in anarrower
swath compared to the stripmap mode [97].
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2.1.2 Pulse Compression and Range Resolution

Pulse compression techniques enhance the slant range resolution and SNR in SAR
systems by employing long, modulated transmit pulses instead of short, high-power
ones. This approach uses linear frequencymodulated (LFM) signals, commonly referred
to as ”chirp” signals. When these chirp signals are transmitted and their backscattered
signals are received, matched filtering is applied during signal processing. This process
compresses the spread-out backscattered signals in the range direction, achieving the fine
slant-range resolution of a short pulse while retaining the high energy of a long pulse
[39].

Pulse compression is performed by convolving an uncompressed received signal 𝑠(𝑡)
with a proper reference function ℎ(𝑡). The pulse compressed signal 𝑠out(𝑡) is given as:𝑠out(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) = ∫∞−∞ 𝑠(𝜏)ℎ(𝑡 − 𝜏) 𝑑𝜏 , (2.7)

where ∗ denotes the convolution operator. The reference function ℎ(𝑡) is the time-
reversed complex conjugate of the expected received signal 𝑠(𝑡).
After performing the pulse compression using matched filters, the slant range resolution
(𝛿r) for a LFM transmitted pulse is given by [38]:𝛿r = 𝛼wn

c2𝐵r
, (2.8)

where 𝐵r is the bandwidth of the chirp signal and 𝛼wn accounts for windowing losses
(e.g., 𝛼wn ≅ 0.89 for a rectangular window). This equation highlights that large chirp
bandwidths should be used for achieving high slant range resolution.

Since the ability of a SAR system to distinguish objects in the ground range direction is
more critical than in the slant range direction, the ground range resolution (𝛿rg) can be
approximated by modifying the slant range resolution equation as follows [116]:𝛿rg = 𝛼wn

c2𝐵r sin 𝜃 , (2.9)

where 𝜃 is the local incidence angle at the point of incidence of the transmitted chirp
signal on the ground.
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2.1.3 SAR Image Generation

To convert the raw data, i.e. the backscattered signals recorded by the SAR system, into
a SAR image, several signal processing steps are required, collectively referred to as SAR
image focusing [114]. The important signal-processing steps involved in this process
include range compression, range cell migration correction (RCMC), and azimuth com-
pression [34]. Figure 2.3 illustrates a simplified block diagram outlining the progression
from raw SAR data to the focused image, specifically for a single-point target imaged by
the SAR system. Brief descriptions for each of the steps are as follows:

Figure 2.3: Major steps in focused SAR image generation from raw data.

Range Compression: Pulse compression is performed along the range direction of the
received raw SAR data (cf. top right image in Figure 2.3) [34].

Range Cell Migration Correction (RCMC):This is a crucial correction step in the
SAR image generation procedure that addresses the motion-induced range walk, par-
ticularly in the range direction, known as range cell migration (RCM). RCM happens
because the radar pulse illuminates different ground areas at different times due to the
movement of the SAR platform. This leads to different Doppler shifts in the backscat-
tered signals from various ground locations, causing phase errors. These errors result in
the displacement of the SAR image in the range direction, causing blurring. The RCM
is mitigated by correcting the curvature of the target range history (cf. bottom right
image in Figure 2.3) [34, 38].

Azimuth Compression: It is the final step in the SAR image generation process. It
involves focusing the radar echoes in the azimuth direction to generate the final SAR
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image. This process compensates for the Doppler shift caused by the motion of the SAR
platform and ensures that the backscattered signals from different ground points are
correctly aligned along the azimuth direction. The result is a focused SAR image with
high azimuth resolution [99].

By sequentially performing these signal processing steps, raw radar measurements can be
converted into high-quality and high-resolution SAR images suitable for various remote
sensing applications.

Figure 2.4: SAR image acquired by the airborne X-band F-SAR system.

The fully focused SAR data obtained after performing the above-described SAR image
generation steps are in a complex form, where each pixel is represented by real and imag-
inary values. By calculating the pixel-wise amplitude values of these complex numbers, a
visual representation of the SAR data can be created, an example of which is shown in
Figure 2.4. This image was created using the airborne X-band F-SAR system with an
azimuth and range resolution of 25 x 25 cm (see alsoAppendixA).The yellowdirectional
arrows indicate the azimuth and range direction. When visually analysing the image,
different ground targets can be identified based on the differences in amplitude values.
Lakes appear very dark due to the low backscatter from calm water surfaces, while roads
also have a relatively low brightness due to the low backscatter from smooth surfaces.
Meadows in the vicinity of roads appear brighter because of increased backscatter from
comparatively rough land surfaces, whereas trees and built-up areas appear bright due to
strong backscatter. So, as with optical images, a thorough examination of fully focused
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SAR images can also provide valuable insights into ground features and targets within
the imaged regions.

2.1.4 Distortions in SAR Image

SAR images are susceptible to various types of distortions, primarily occurring due to
the side-looking geometry of the SAR system. This configuration causes SAR systems
to measure distances to objects on the ground in the slant range rather than directly in
the ground range from the nadir point. Consequently, SAR images display variation in
ground range resolution (𝛿rg) from the near range to the far range. The distortions com-
monly encountered in SAR images due to this side-looking geometry are foreshortening,
layover, and radar shadow.

(a) (b) (c)

Figure 2.5: Distortions in SAR image. (a) Foreshortening. (b) Layover. (c) Radar shadow.

Foreshortening is observed when the radar beam encounters an inclined tall feature,
such as a mountain or skyscraper (cf. Figure 2.5(a)). In such cases, the radar wavefront
reaches the feature’s base at point 𝑎 before it reaches the top at point 𝑏. Since SAR
systems measure distances in the slant range, this inclination causes the slope of the
feature, spanning from point 𝑎 to point 𝑏, to appear compressed. Consequently, the
length of the slope is misrepresented as being shorter (from point 𝑎′ to point 𝑏′) in the
(slant range) radar image [142].

Layover, as illustrated in Figure 2.5(b), occurs when the radar beam first encounters
the top of a tall feature (point 𝑏) before reaching its base (point 𝑎). Consequently, the
backscattered signal from the top of the feature arrives before the signal from the bottom.
This results in the top of the feature being displaced toward the SAR sensor, creating a
”layover” effect over the base of the feature, as shown by points 𝑏′ to 𝑎′. Layover is most
prominent at smaller incidence angles, particularly in the near range, and is frequently
observed in rugged, mountainous terrain [142].
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Radar shadowing arises when the radar beam is unable to illuminate a specific portion of
the ground surface. These shadows predominantly occur behind vertical features or steep
slopes, extending towards the far range (yellow region shown in Figure 2.5(c)). In regions
where the radar beam cannot reach, shadowed areas appear dark in the SAR image, as
there is no radar energy available for backscattering. As the incidence angle increases
from the near range to the far range, the shadow effects become more pronounced, as
the radar beam approaches the surface at a shallow angle [116].

SAR images also exhibit a form of distortion called speckle, which is a granular or
grainy noise-like pattern that appears as a result of the interference of radar waves. It
is characterized by random variations in brightness or intensity across the image pixels.
Speckle can obscure fine details in the image and reduce its visual clarity [99, 125].

Figure 2.6: Speckle formation in a SAR image.

The formation of speckle can be primarily attributed to the interference ofmultiple radar
waves returning from a resolution cell. A resolution cell in SAR represents the smallest
distinguishable area on the ground, determined by the system’s spatial resolution and it
encompasses a finite number of scattering centres or reflectors on the ground. Each of
these scattering centres contributes to the backscattered signal. Speckle arises due to the
constructive and destructive summation of radar waves reflected from these scattering
centres within the resolution cell (cf. Figure 2.6). When radar waves return in phase, they
constructively interfere, leading to pixels of high intensity or brightness in the image.
Conversely, when waves return out of phase, destructive interference occurs, resulting
in pixels of low intensity or darkness. The random distribution and phase relationships
of scattering centres within the resolution cell collectively give rise to the speckle pattern
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[99, 125]. To address the issue of speckle, various techniques are employed, including
multilooking [141] and speckle filtering [133].

2.1.5 Signal-to-Noise Ratio and Backscattering CoefÏcient

The signal-to-noise ratio (SNR) is a measure of the strength of the backscattered signal
compared to the background noise received by the SAR system. SNR is an important
parameter in SAR because it indicates how well the radar can distinguish between the
target signal (desired information) and unwanted noise. The higher the SNR, the better
the SAR system’s ability to detect and distinguish features on the ground [45]. The
SNR of amonostatic SAR system after coherent integration can be calculated as follows:

𝑆𝑁𝑅 = 𝑃avg𝐺2𝜆3c44𝜋3𝑅3𝐵r sin 𝜃𝑣𝑘𝑇s𝐹𝐿𝜎𝑜 , (2.10)

where 𝑃avg is the average transmit power, 𝐺 is the gain of the SAR antenna, 𝜆 is the
wavelength of the SAR system, 𝑐 is the speed of light, 𝜎𝑜 is the radar backscattering
coefÏcient, 𝑅 is the slant range distance, 𝐵r is the bandwidth of the chirp signal, 𝜃 is the
local incidence angle, 𝑣 is the SAR platform velocity, 𝑘 is the Boltzmann constant, 𝑇s is
the system noise temperature, 𝐹 is the noise figure of the SAR system and 𝐿 accounts
for combined losses in the SAR system.

The radar backscatter coefÏcient (𝜎𝑜) is a normalisedmeasure of howmuch radar energy
is scattered back in the direction of the radar. It is the radar cross section (RCS) per unit
area and is given in square metres per square metre (m2/m2) or decibels (dB). The radar
backscatter coefÏcient is independent of the size of the target and is more related to the
intrinsic scattering properties of the target material. The 𝜎𝑜 values are influenced by
several factors, including the material composition, dielectric constant, surface rough-
ness, slope, moisture content and other characteristics of the imaged ground surface
[123]. As a result, it is an important parameter for evaluating the structural and physical
properties of the imaged area, which justifies its wide applicability in remote sensing
applications, including road condition monitoring.

2.2 State-of-the-Art Roughness Estimation Models

The vertical profile of a road surface, as shown in Figure 2.7, illustrates the millimeter-
level undulations present on the road’s surface [P4]. The variability within this profile
plays a pivotal role in determining the road surface roughness [44]. To quantitatively
assess road surface roughness, one commonly usedmetric is the rootmean square (RMS)
height (ℎrms) of these vertical undulations, which can be computed as follows [64, 74]:
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ℎrms = √∑𝑛𝑖=1(ℎ𝑖 − ℎ)2𝑛 − 1 , (2.11)

where ℎ𝑖 is the height of the 𝑖th sample, ℎ is the mean height over all the samples and 𝑛
is the number of samples considered.

However, it is important to note that ℎrms cannot be directly estimated from SAR data.
Instead, the effective vertical roughness parameter (𝑘𝑠), a dimensionless parameter, can
be estimated from SAR data. Subsequently, ℎrms can be calculated using the following
equation [64, 74]: ℎrms = 𝑘𝑠2𝜋/𝜆 , (2.12)

where 𝜆 denotes the wavelength of the SAR system.

Figure 2.7: Vertical road surface profile.

The following sub-sections offer an overview of existing surface roughness estimation
models in the literature that utilise SAR data to assess surface roughness values (𝑘𝑠
parameters) within the imaged region. While these models were primarily designed
for assessing surface roughness of agricultural fields, their applicability to road surface
roughness estimation is explored later in chapter 3. The models are categorized into
three groups: SAR polarimetry-based models, physical roughness estimation models,
and semi-empirical roughness estimation models [74].

2.2.1 SAR Polarimetry-based Models

Asmentioned in section 2.1, a PolSAR system employs four transmit-receive polarisation
combinations: HH (horizontal transmit, horizontal receive), HV (horizontal transmit,
vertical receive), VH (vertical transmit, horizontal receive), and VV (vertical transmit,
vertical receive). These measurements are represented by a scattering matrix (𝑺) as
follows [P4, 88, 142]:
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𝑺 = [𝑆HH 𝑆HV𝑆VH 𝑆VV
] . (2.13)

This 2x2 scattering matrix offers valuable insights into radar return polarisation proper-
ties, facilitating a comprehensive characterisation of ground target scattering behaviour
[32]. Targets on the ground can be classified or decomposed based on their scattering
mechanismsusing coherence and covariancematrices, which are second-order representa-
tions derived from the scatteringmatrix [99]. Two common target vector representations
in the literature are the Pauli feature vector (𝒌p) and the lexicographic feature vector
(𝒌l), which are described as [88, 115]:

𝒌p = 1√2 ⎡⎢⎢⎢⎢⎣
𝑆HH + 𝑆VV𝑆HH − 𝑆VV𝑆HV + 𝑆VH

j(𝑆HV − 𝑆VH)
⎤⎥⎥⎥⎥⎦ , 𝒌l = ⎡⎢⎢⎢⎢⎣

𝑆HH𝑆HV𝑆VH𝑆VV

⎤⎥⎥⎥⎥⎦ . (2.14)

The 4x4 covariance matrix 𝑪4 is computed by multiplying the lexicographic feature
vector with its transpose conjugate [88]:

𝑪4 = ⟨𝒌l𝒌T∗
l ⟩ = ⎡⎢⎢⎢⎢⎣

|𝑆HH|2 𝑆HH𝑆∗
HV 𝑆HH𝑆∗

VH 𝑆HH𝑆∗
VV𝑆HV𝑆∗

HH |𝑆HV|2 𝑆HV𝑆∗
VH 𝑆HV𝑆∗

VV𝑆VH𝑆∗
HH 𝑆VH𝑆∗

HV |𝑆VH|2 𝑆VH𝑆∗
VV𝑆VV𝑆∗

HH 𝑆VV𝑆∗
HV 𝑆VV𝑆∗

VH |𝑆VV|2
⎤⎥⎥⎥⎥⎦ , (2.15)

where ⟨⋅⟩ represents local averaging over a set of neighbouring pixels [142].
Similarly, the 4x4 coherency matrix (𝑻4), resulting from the product of the Pauli feature
vector with its conjugate transpose, is represented as [88]:
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𝑻 4=⟨𝒌 p
𝒌T∗ p

⟩=
⎡ ⎢ ⎢ ⎢ ⎣

|𝑆 HH+𝑆
V
V
|2

(𝑆 HH+𝑆
V
V
)(𝑆 HH−

𝑆 VV)∗ (𝑆 HH
+𝑆 VV)(𝑆

H
V

+𝑆 VH)∗ (𝑆 HH
+𝑆 VV)(j

(𝑆 HV−𝑆
V
H

))∗
(𝑆 HH−𝑆

V
V
)(𝑆 HH+

𝑆 VV)∗
|𝑆 HH−𝑆

V
V
|2

(𝑆 HH−𝑆
V
V
)(𝑆 HV+

𝑆 VH)∗ (𝑆 HH
−𝑆 VV)(j

(𝑆 HV−𝑆
V
H

))∗
(𝑆 HV+𝑆

V
H

)(𝑆 HH+
𝑆 VV)∗ (𝑆 HV

+𝑆 VH)(𝑆
H
H

−𝑆 VV)∗
|𝑆 HV+𝑆

V
H

|2
(𝑆 HV+𝑆

V
H

)(j(𝑆 HV−
𝑆 VH))∗

j(𝑆 HV−𝑆
V
H

)(𝑆 HH+
𝑆 VV)∗ j(𝑆 HV

−𝑆 VH)(𝑆
H
H

−𝑆 VV)∗ j(𝑆 HV
−𝑆 VH)(𝑆

H
V

+𝑆 VH)∗
|𝑆 HV−𝑆

V
H

|2
⎤ ⎥ ⎥ ⎥ ⎦.

(2.16)
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For monostatic SAR systems (where the same radar antenna is used for both trans-
mission and reception), the scattering reciprocity principle holds: 𝑆HV = 𝑆VH [99].
Consequently, the 4x4 coherency and covariance matrices simplify into 3x3 matrices,
denoted as 𝑻3 and 𝑪3, respectively [88, 142]:

𝑻3 = ⎡⎢⎢⎣ |𝑆HH + 𝑆VV|2 (𝑆HH + 𝑆VV)(𝑆HH − 𝑆VV)∗ 2(𝑆HH + 𝑆VV)𝑆∗
HV(𝑆HH − 𝑆VV)(𝑆HH + 𝑆VV)∗ |𝑆HH − 𝑆VV|2 2(𝑆HH − 𝑆VV)𝑆∗
HV2𝑆HV(𝑆HH + 𝑆VV)∗ 2𝑆HV(𝑆HH − 𝑆VV)∗ 4|𝑆HV|2 ⎤⎥⎥⎦ ,
(2.17)

𝑪3 = ⎡⎢⎢⎣ |𝑆HH|2 √2𝑆HH𝑆∗
HV 𝑆HH𝑆∗

VV√2𝑆HV𝑆∗
HH |𝑆HV|2 √2𝑆HV𝑆∗

VV𝑆VV𝑆∗
HH

√2𝑆VV𝑆∗
HV |𝑆VV|2 ⎤⎥⎥⎦ . (2.18)

The first SAR polarimetry-based method to estimate the 𝑘𝑠 parameter is based on
the anisotropy parameter (𝐴), which gives information about the secondary scattering
mechanisms and is derived from the minor eigenvalues of the 3x3 coherency matrix (𝑻3)
as shown below [21, 88]: 𝐴 = 𝜆2 − 𝜆3𝜆2 + 𝜆3

, (2.19)

where 𝜆2 and 𝜆3 represent the second and third eigenvalues of the 𝑇3 matrix.

The 𝑘𝑠 parameter can then be estimated using the anisotropy parameter with the fol-
lowing equation [64, 74]: 𝑘𝑠 = 1 − 𝐴 . (2.20)

The second method, based on the coherency matrix, uses the 𝑇22 and 𝑇33 elements of
the 𝑻3 matrix to estimate 𝑘𝑠 [64, 74]:𝑘𝑠 = 1 − 𝑇22 − 𝑇33𝑇22 + 𝑇33

, (2.21)

where 𝑇22 = |𝑆HH − 𝑆VV|2 and 𝑇33 = 4|𝑆HV|2.
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2.2.2 Physical Roughness Estimation Models

Physical roughness estimation models are mathematical approximations that rely pri-
marily on electromagnetic scattering theory to estimate surface roughness values. These
models are based on the physical principles that govern the interaction of radar waves
with ground surfaces. Physical models attempt to relate SAR observables (such as 𝜎o

values) to surface roughness values [52, 139]. Since randomly rough surfaces do not
have a direct solution, several approximations are considered in the development of
these models, which limits their use within a certain validity range [74]. Some of the
commonly used physical models/approximations for estimating surface roughness from
SAR data are:

1. Kirchoff Approximation Method: This method is also known as the tangent
plane approximation and assumes that the reflection from a point on the ground
is locally specular, i.e., it is mainly directed towards a single scattering angle. It
models the reflection from each ground point by approximating the local terrain
profile around that point with a tangent plane. In other words, the complex
surface geometry is simplified by assuming that the terrain is locally flat [122].
This approach is particularly effectivewhen the surface undulations are larger than
the wavelength of the SAR system and is therefore suitable for SAR systems with
smaller wavelengths (e.g. X-band) [64]. TheGeometricOptics (GO) and Physical
Optics (PO) methods are derived from the Kirchoff approximation. The GO
method uses a stationary-phase approximation and is suitable for surfaces with
large-scale undulations and steep variations [131]. For surfaces with smaller slopes
and moderate undulation heights, a scalar approximation is required, which is
included in the POmodel [131]. The Kirchhoff approximation method is valid
when the surface correlation length (𝑘𝑙), which is a measure of the spatial extent
over which the surface height variations are statistically correlated, satisfies the
condition 𝑘𝑙 > 6. The GOmodel has validity conditions 𝑘𝑠 > √10/(2 cos 𝜃)
and 𝑘𝑙 > 6, and the POmodel has validity conditions 𝑘𝑠 < 1/(4/√2) ⋅ 𝑘𝑙 and𝑘𝑙 = 4/√2 ⋅ 𝑘𝑠. Here 𝜃 is the local incidence angle [74].

2. Small Perturbation Model (SPM): In this model, the scattering of the EM
waves at the ground surface is considered as a boundary value problem defined
by partial differential equations [54]. The central idea is to find a plane wave
solution that matches the boundary conditions of the surface and ensures the
continuity of the tangential component of the EM field across the boundary
[122]. The estimation of the surface roughness is done by expanding the EM
field scattered from the surface into a Taylor series in which each term reflects a
different order of the perturbation. The initial term (𝐸o) within this Taylor series
characterises the field over a perfectly flat surface, while subsequent terms (𝐸1,𝐸2, etc.) detail the effects of small surface irregularities. To model the roughness,
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the concept of effective surface currents is introduced, which are characterised
by the small-scale roughness on a mean surface. By finding a solution that is
consistent with the boundary conditions and takes into account the influence of
the effective surface currents and perturbation terms, the surface roughness values
can be estimated [131]. SPM assumes that these roughness variations are small
relative to the wavelength of the incident EMwaves and are therefore suitable for
SAR systems operating at longer wavelengths (e.g. L-band) [64]. The SPM has a
validity range of 𝑘𝑠 < 0.3 and 𝑘𝑙 > √(2)/0.3 ⋅ 𝑘𝑠 [74].

3. Integral Equation Model (IEM): This model was developed to account for
multiple scattering from a ground point and to provide a more accurate repre-
sentation of the interaction of radar waves. This is achieved by introducing an
additional complementary term to the Kirchhoff tangent plane approximation
[131]. This extended approach allows the modelling of the expected backscatter
coefÏcient (𝜎𝑜) from the ground surface as a function of several key parameters,
including the dielectric constant (𝜖′), the surface roughness parameter (𝑘𝑠), the
correlation function (e.g. Gaussian or exponential) and the correlation length
(𝑘𝑙). It is important to note that the IEM provides a more detailed and compre-
hensive understanding of surface scattering effects [36]. The Advanced Integral
EquationModel (AIEM) is an improved and updated version of the IEM that
extends its applicability to a wider range of scenarios and surface types [35].
IEM has the validity conditions of 𝑘𝑠 < 1.2√𝜖′/𝑘𝑙, 𝑘𝑙 < 1.2√𝜖′/𝑘𝑠, and𝜖′ < 𝑘𝑠2 ⋅ 𝑘𝑙2/1.44 [74].

2.2.3 Semi-Empirical Roughness Estimation Models

The semi-empirical roughness estimationmodels aremathematical models that combine
theoretical radar scattering principles with observed properties of the ground surface to
estimate roughness values. Unlike purely physical models, which rely solely on electro-
magnetic scattering theory to estimate roughness, and purely empirical models, which
rely solely on observed relationships with no theoretical basis, semi-empirical models
strike a balance between the two approaches [72]. They take into account both the
underlying physics of radar scattering and the empirical knowledge gained from ground
truth data collected at the test sites to improve the accuracy of roughness estimates
[74]. The Ohmodels and the Dubois model are the most widely used semi-empirical
roughness estimation models.

The original Oh model [102], developed in 1992, necessitates the calculation of the
Fresnel reflectivity (Γo) parameter to estimate the 𝑘𝑠. The non-linear equation used to
estimate Γ𝑜 is:
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(2𝜃𝜋 ) 1Γo [1 − 𝑞0.23√Γo
] + √𝑝 − 1 = 0 , (2.22)

where 𝑝 is the co-polarisation ratio given by 𝑝 = 𝜎o
HH𝜎o
VV
, 𝑞 is the cross-polarisation ratio

given by 𝑞 = 𝜎o
HV𝜎o
VV
, and 𝜃 is the local incidence angle. This equation requires an iterative

root-finding algorithm to estimate Γo values. Once Γo is obtained, the 𝑘𝑠 parameter
can be calculated using:

𝑘𝑠 = ln⎛⎜⎝ √𝑝 + 1(2𝜃𝜋 ) 13Γo

⎞⎟⎠ . (2.23)

The updated version of the Ohmodel [103], published in 2004, estimates the surface
moisture (𝑚𝑣) parameter insteadof Γo to determine𝑘𝑠. The𝑚𝑣parameter is derivedby
finding the solution for the following equation using an iterative root-finding algorithm:

1 − ( 𝜃90)0.35𝑚𝑣−0.65 𝑒−0.65× [[−3.125 ln{1 − 𝜎o
VH0.11𝑚𝑣0.7 cos2.2 𝜃}]0.556]1.4 − 𝑝 = 0 . (2.24)

Subsequently, 𝑘𝑠 can be estimated as:𝑘𝑠 = [−3.125 ln{1 − 𝜎o
VH0.11𝑚𝑣0.7 cos2.2 𝜃}]0.556 . (2.25)

Similar to the physical roughness estimation models, the semi-empirical models are also
developed for use within certain validity ranges. Both versions of the Ohmodel have a
validity range of 0.1 < 𝑘𝑠 < 6.0 and the accuracy of the 𝑘𝑠 values outside this validity
range cannot be guaranteed and should therefore be discarded.

The semi-empirical Dubois model [48], introduced in 1995 for soil roughness and
moisture estimation, determines the 𝑘𝑠 parameter in a two-step non-iterative process.
First, it estimates the dielectric constant (𝜖′ ) using the equation:

𝜖′ = log10 ( (𝜎o
HH)0.7857𝜎o

VV
) 10−0.19 cos1.82 𝜃 sin0.93 𝜃𝜆0.15−0.024 tan 𝜃 . (2.26)
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Then, 𝑘𝑠 is estimated in the second step:𝑘𝑠 = 𝜎o
HH

11.4 10 2.751.4 sin2.57 𝜃
cos1.07 𝜃10−0.02𝜖′ tan 𝜃𝜆−0.5 , (2.27)

where 𝜆 is the wavelength of the SAR system.

The Dubois model has validity conditions of 𝑘𝑠 < 2.5 and 𝜃 > 30o, and 𝑘𝑠 values not
meeting both conditions should be discarded.

2.3 Chapter Summary

This chapter provided a thorough exploration of SAR technology, highlighting its ability
to generate high-resolution images regardless of weather conditions. It discussed SAR
data acquisition geometry, including concepts like synthetic aperture formation, imaging
modes and spatial resolution calculations in stripmap mode. Furthermore, it delves
into SAR image generation processes such as range compression, range cell migration
correction and azimuth compression, essential for converting raw data into usable SAR
images.

Distortions in SAR images, such as foreshortening and speckle, are discussed and their
effects on image interpretation are highlighted. The importance of the signal-to-noise
ratio (SNR) and the SAR backscatter coefÏcient (𝜎o) for the evaluation of image quality
and for applications such as road condition monitoring are also explained.

The chapter then explored various models for estimating the surface roughness from
SAR data, categorised into SAR polarimetry-based, physical, and semi-empirical models.
Eachmodel category is thoroughly examined, detailing its principles, validity conditions,
and limitations.

Overall, this chapter provides an essential foundation for understanding SAR technology
and its associated applications. It equips the reader with the knowledge necessary to
go into depth in subsequent chapters, which will focus on the practical applications
of these state-of-the-art roughness estimation models and also on the development of
new models/methods for road surface roughness estimation and also for road condition
assessment.
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3 Novel Semi-Empirical Road Surface Roughness
Estimation Model for Airborne SAR

This chapter introduces a novel semi-empirical model specifically developed for road
surface roughness estimation with airborne SAR. A comparative analysis is also per-
formed between the experimental results derived from this model and the results of the
state-of-the-art roughness estimation models described in section 2.2. The experimental
road surface roughness results were generated for the Kaufbeuren, duraBASt and Braun-
schweig test sites using high-resolution airborne X-Band SAR data from the German
Aerospace Center’s (DLR) F-SAR system. Further information on the test sites and
the F-SAR data acquisition is available in Appendix A. Contents of this chapter were
already published in [P1, P2, P3, P4, P5].

3.1 Development of a New Semi-Empirical Model

To assess the reliability of polarisation channels for road surface roughness estimation,
particularly for very smooth road surfaces with low backscattering, an investigation
was conducted on the co-polarisation (HH&VV) and cross-polarisation (HV&VH)
channels. In this context, a comparison was made between the sigma nought (𝜎𝑜)
backscattering coefÏcient (see section 2.1.5 on page 21) and the noise equivalent sigma
zero (NESZ) parameter. The NESZ represents the noise floor of a SAR system and any𝜎𝑜 values below the NESZ for that particular SAR system can be considered as noise
and unreliable for subsequent investigations [P4, 51].

Figure 3.1 illustrates 𝜎𝑜 versus NESZ plots for the Kaufbeuren runway, covering the
entire runway length. These plots display 𝜎𝑜 values for different polarisations alongside
the NESZ plot, utilising two F-SAR datasets (PS04 and PS12) with parallel flight tracks
to the runway. The PS04 dataset, acquired at an altitude of approximately 2.2 km
with a 39∘ incidence angle (cf. Table A.3 on page 175), and the PS12 dataset, acquired
from an altitude of about 3 km with a 40∘ incidence angle (cf. Table A.2 on page 174),
reveal an increase in 𝜎𝑜 values at the runway ends due to rougher concrete and lower 𝜎𝑜
values in the smoother asphalt middle region (refer to Figure 3.1 for the Google Earth
image of the Kaufbeuren runway highlighting these regions). Co-polarisation 𝜎𝑜 values
are consistently above the NESZ of the F-SAR system, indicating their reliability for
road surface roughness estimation. However, cross-polarisation 𝜎𝑜 values fall below
the NESZ for asphalt areas, indicating noise dominance. Since SAR polarimetry-based
models and semi-empiricalOhmodels require cross-polarisation channels (see section 2.2
on page 21), they are therefore unsuitable for reliable road surface roughness estimation,

31



3 Novel Semi-Empirical Road Surface Roughness EstimationModel for Airborne SAR

Figure 3.1: 𝜎𝑜 vs NESZ plots for the Kaufbeuren runway. The Google Earth image shown at the top
highlights the asphalt and concrete regions of the runway.

at least for the radar data investigated in this thesis. In addition, the physical models
described in section 2.2 are also not suitable for estimating road surface roughness, as the
scattering mechanisms considered in the development of these models apply to rough
soil surfaces and are not suitable for road surfaces.

The Dubois model is the only state-of-the-art roughness estimation model requiring
only co-polarisation channels. However, early investigations revealed an incidence angle
dependency in the Dubois model, resulting in a gradient change in surface roughness
values from near to far range [P4]. Consequently, a new semi-empirical road surface
roughness estimationmodel was developed based onDuboismodel assumptions, aiming
to minimise incidence angle dependency and enhance overall accuracy.

The scattering assumptions from the Dubois model assert that the backscattered signal
(𝜎𝑜

pq) for a p transmitted and q received polarisation can be modelled as a function of
surface roughness (𝑘𝑠), surface moisture, and local incidence angle (𝜃) [137]. If it can
be ensured that the road surface is dry, then the surface moisture component in the
backscattered signal can be neglected. The new semi-empirical model is formulated as a
function of the surface roughness (𝑘𝑠) and the local incidence angle (𝜃) as follows [P4]:
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𝜎𝑜
pq = 𝛿(cos(𝜃))𝛽(𝑘𝑠)𝜖 sin(𝜃) . (3.1)

In (3.1), the term 𝛿(cos(𝜃))𝛽 denotes the relationship between 𝜎𝑜
pq and the local inci-

dence angle (𝜃). From this relationship, it can be understood that the 𝜎𝑜
pq decreases as

the incidence angle (𝜃) increases and this decrease in 𝜎𝑜
pq is higher at low incidence angles

and lower at high incidence angles [19, 20, 27].

The second term (𝑘𝑠)𝜀 sin (𝜃) indicates the relationship between 𝜎𝑜
pq and the effective

surface roughness (𝑘𝑠). 𝜎𝑜
pq and 𝑘𝑠 have a power law relationship and the sensitivity

of 𝜎𝑜
pq to 𝑘𝑠 is higher at high incidence angles than at low incidence angles [20, 22,

117]. The sin (𝜃) term is added to the relationship to minimise this incidence angle
dependency.

The equation in (3.1) can be inverted to estimate 𝑘𝑠 as a function of 𝜎𝑜
pq and incidence

angle (𝜃) as follows:
𝑘𝑠 = 10[ log(𝜎𝑜pq)−log(𝛿(cos(𝜃))𝛽)𝜖 sin(𝜃) ] , (3.2)

where 𝛿, 𝛽, and 𝜖 are the unknown coefÏcients that need to be estimated to solve the
equation. The coefÏcients can be estimated using the ground truth (GT) surface rough-
ness (GT ℎrms) values, 𝜎𝑜

pq values and the known incidence angle values (𝜃) at the GT
spots using the method of least square-based curve fitting. Details about the GT data
collection process and the GT ℎrms can be found in Appendix A on page 178.

Three F-SAR datasets (PS04, PS05, and PS12) acquired over the Kaufbeuren test site (cf.
Table A.2 on page 174) were used to estimate the 𝛿, 𝛽, and 𝜖 coefÏcients. These datasets
were acquired from distinct sides of the runway (cf. Figure 3.2). Table A.2 provides
information on the flight heading direction, aspect angle, and incidence angle values at
the runway. The aspect angle represents the SAR look direction towards the runway
relative to the north direction. Notably, these three datasets exhibit diverse aspect and
incidence angles for the runway, facilitating an unbiased model coefÏcients estimation.

Figure 3.3(a) depicts the GT ℎrms plot for GT spots 1-8. Figures 3.3(b-d) present the𝜎𝑜
HH and 𝜎𝑜

VV plots for the PS04, PS05, and PS12 datasets, respectively, corresponding
to GT spots 1-8. The similarity in trends between Figure 3.3(a) and Figures 3.3(b-d)
suggests a correlation between changes in ℎrms and magnitude changes in 𝜎𝑜

HH and 𝜎𝑜
VV.

This correlation was leveraged in estimating the coefÏcients for the new model using
a least square-based curve fitting algorithm, employing the GT ℎrms, 𝜎𝑜

HH, 𝜎𝑜
VV, and

incidence angle (𝜃) values for GT spots 1-8 from these datasets as inputs [P4].
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Figure 3.2: Flight tracks for acquiring the F-SAR datasets used for estimating and testing the newmodel
coefÏcients.

Table 3.1: CoefÏcients estimated for the new semi-empirical model.

Model CoefÏcients
Polarisation

HH VV𝛿 0.06782502 0.06792563𝛽 -0.9301637 -2.46489793𝜀 2.23988886 2.27478606

The model coefÏcients were estimated for the HH and VV polarisations separately and
the values are shown in Table 3.1. Using this model coefÏcient values, (3.2) can be
written as:
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(a) (b)

(c) (d)

Figure 3.3: Correlation between ground truth (GT) ℎrms and 𝜎𝑜 values. (a) GT ℎrms plot. 𝜎𝑜
HH and 𝜎𝑜

VV
plots for (b) PS04 dataset, (c) PS05 dataset, (d) PS12 dataset.

𝑘𝑠HH = 10[ log(𝜎𝑜𝑝𝑞)−log(0.06782502(cos𝜃)−0.9301637)2.23988886 sin𝜃 ] , (3.3)

𝑘𝑠VV = 10[ log(𝜎𝑜𝑝𝑞)−log(0.06792563(cos𝜃)−2.46489793)2.27478606 sin𝜃 ] , (3.4)

where 𝑘𝑠HH is the 𝑘𝑠 value estimated for the HH polarisation and 𝑘𝑠VV is the 𝑘𝑠 value
estimated for the VV polarisation. The final 𝑘𝑠 value can be calculated by taking the
mean of the 𝑘𝑠HH and 𝑘𝑠VV values.
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Figure 3.4: Ground truth (GT) ℎrms vs. model estimated surface roughness.

Figure 3.4 shows the GT ℎrms vs. model-estimated surface roughness plots generated
using the 𝑘𝑠HH values, 𝑘𝑠VV values and the mean 𝑘𝑠 values after estimating the model
coefÏcients using the least square-based curve fitting method. By analysing Figure 3.4, it
can be understood that the deviation between the GT ℎrms and the model-estimated
surface roughness is not so high, the Root Mean Square Error (RMSE) obtained for
the HH polarisation is 0.30 mm, for the VV polarisation the RMSE is 0.27 mm and for
the HH-VV average, the RMSE obtained is also 0.27 mm. This low RMSE indicates
that the model coefÏcients given in Table 3.1 are reliable and can be used in the new
model to accurately estimate the road surface roughness. From Figure 3.4, it can also be
observed that the RMSE obtained for the VV polarisation is slightly better compared
to the RMSE obtained for the HH polarisation. Also, the RMSE obtained from the
HH-VV average is the same as the RMSE obtained for the VV polarisation alone (0.27
mm). So, averaging the 𝑘𝑠 values obtained from the HH and VV polarisations does
not provide a better RMSE than using the VV polarisation alone. For a more robust
performance analysis of the new model, surface roughness estimates were generated
using several X-band airborne F-SAR datasets acquired from multiple test sites with
different data acquisition geometries, which are discussed later in this chapter.

Figure 3.5(a) and Figure 3.5(b) show the model dynamics of the newmodel for HH and
VVpolarisation, respectively. The change in surface roughness (ℎrms) values with respect
to different incidence angles (𝜃) and sigma nought (𝜎𝑜) combinations can be observed in
the plots. In both Figure 3.5(a) and Figure 3.3(b), each surface roughness line represents
the change in surface roughness with respect to the incidence angle variations when the
sigma nought remains constant. From both the plots, it can be observed the changes in
surface roughness are small with respect to the incidence angle when the 𝜎𝑜 magnitudes
are small (for, e.g., -27 dB and -32 dB). The change in surface roughness is higher as
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(a)

(b)

Figure 3.5: Model dynamics of the newmodel. (a) HH polarisation. (b) VV polarisation.

the incidence angle changes when the 𝜎𝑜 magnitude is larger (e.g., -12 dB). Given that
road surfaces typically have low 𝜎𝑜 values, this suggests that the surface roughness values
estimated using the newmodel for road surfaces are less affected by changes in incidence
angle, leading to more consistent estimates even under different geometric conditions.

3.2 Algorithm and Processing Chain

The estimation of road surface roughness using fully polarimetric (PolSAR) airborne X-
bandF-SARdatasets using the previously discussed state-of-the-art roughness estimation
models (refer to section 2.2 on page 21) and the newly developed semi-empirical model
(refer to section 3.1 on page 31) involves several key steps. The PolSAR datasets are
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pre-processed before feeding them to the surface roughness estimation models. Also,
post-processing steps are applied to the model-estimated surface roughness (ℎrms) values
before generating the final surface roughness image. The flowchart illustrating the
processing chain for road surface roughness estimation is shown in Figure 3.6.

Figure 3.6: Flowchart of the processing chain for road surface roughness estimation using airborne F-SAR
data.

3.2.1 Data Pre-processing Steps

The data pre-processing steps are aimed at preparing the fully polarimetric SAR (Pol-
SAR) datasets for using them effectively as input to the roughness estimation models for
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accurate and reliable road surface roughness (ℎrms) assessment. These procedures include
estimating and minimising additive and multiplicative noise and applying radiometric
calibration to generate sigma nought (𝜎𝑜) backscatter images.

Since the SAR backscatter received from the road surfaces is very low, the additive and
multiplicative noise present in the airborne PolSAR data needs to be minimised for low
SNR applications such as road surface roughness estimation [50]. The additive noise 𝑁
present in the PolSAR data is caused by the thermal/system noise of the SAR system
and it affects each of the polarisation channels [63]. Therefore the measured scattering
matrix 𝑺′ by the SAR system can be written as a sum of the ideal scattering matrix 𝑺
and additive noise matrix 𝑵 as follows [63]:𝑺′ = 𝑺 + 𝑵 , (3.5)

where 𝑵 = [𝑛HH 𝑛HV𝑛VH 𝑛VV
] .

The additive noise present in the data can be considered as a zero-mean Gaussian white
noise process and the additive noise power 𝑁 can be modelled as [63]:⟨𝑛𝑖𝑗𝑛∗𝑖𝑗⟩ = ⟨𝑛𝑚𝑛𝑛∗𝑚𝑛⟩ = 𝑁 and ⟨𝑛𝑖𝑗𝑛∗𝑚𝑛⟩ = 0 , (3.6)

where ∗ is the complex conjugate operator.

The additive noise affected Pauli basis vector 𝒌3p noisy corresponding to the measured
scattering matrix 𝑺′ can be written as [63]:

𝒌3p noisy = 1√2 ⎡⎢⎢⎣𝑆HH + 𝑆VV + (𝑛HH + 𝑛VV)𝑆HH − 𝑆VV + (𝑛HH − 𝑛VV)𝑆HV + 𝑆VH + (𝑛HV − 𝑛VH)⎤⎥⎥⎦ . (3.7)

The additive noise affected 3x3 coherency matrix𝑻3 noisy corresponding to the measured
scattering matrix 𝑺′ can be estimated by the spatially averaged multiplication of the
Pauli basis vector 𝒌3p noisy with the transpose of its complex conjugate as follows [63]:

𝑻3 noisy = 12 ⎡⎢⎢⎣𝑇11 + 2𝑁 𝑇12 𝑇13𝑇21 𝑇22 + 2𝑁 𝑇23𝑇31 𝑇32 𝑇33 + 2𝑁⎤⎥⎥⎦ . (3.8)
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For a monostatic SAR system, the cross-polarised channels are completely correlated in
the absence of additive noise, i.e., 𝑆HV = 𝑆VH [63]. This is because a monostatic SAR
follows the scattering reciprocity condition. Since the two cross-polarised channels are
measured independently by the SAR system the additive noise level present in the two
cross-polarised channels will be different. So, as the additive noise level increases the
correlation between the cross-polarised channels decreases. This decorrelation between
the cross-polarisation channels can be utilised to estimate the additive noise power 𝑁.
Since the scattering reciprocity condition is not valid for noisy data, the 4-dimensional
Pauli basis vector 𝒌4p noisy is required and it can be written as shown in (3.9) [63].

𝒌4p noisy = 1√2 ⎡⎢⎢⎢⎢⎣
𝑆HH + 𝑆VV + (𝑛HH + 𝑛VV)𝑆HH − 𝑆VV + (𝑛HH − 𝑛VV)𝑆HV + 𝑆VH + (𝑛HV − 𝑛VH)

j(𝑆HV − 𝑆VH) + (𝑛HV − 𝑛VH)
⎤⎥⎥⎥⎥⎦ . (3.9)

This 𝒌4p noisy vector can be used to estimate the noise-affected 4x4 coherency matrix𝑻4 noisy as [63]: 𝑻4 noisy = ⟨𝒌4p noisy ⋅ 𝒌∗
4p noisy⟩ . (3.10)

The diagonalisation of the 𝑻4 noisy matrix leads to the following form [63]:

𝑫4 = ⎡⎢⎢⎢⎢⎣
𝜆1 + 𝑁 0 0 00 𝜆2 + 𝑁 0 00 0 𝜆3 + 𝑁 00 0 0 𝑁

⎤⎥⎥⎥⎥⎦ , (3.11)

where 𝜆1, 𝜆2, 𝜆3 are the first three eigenvalues of the additive noise-free 4x4 coherency
matrix and 𝑁 is the additive noise present in the data.

In the absence of additive noise, the 4x4 coherency matrix has a rank of 3, and only
the first three eigenvalues 𝜆1, 𝜆2, 𝜆3 have non-zero values. But, the presence of noise
makes the 4x4 coherency matrix be of rank 4 and the 4th eigenvalue 𝜆4 represents the
additive noise present in the data (𝜆4 = 𝑁). So, the additive noise can be filtered out by
subtracting the additive noise power 𝑁 from the first three eigenvalues of the coherency
matrix or by subtracting 𝑁 from the diagonal elements of the 𝑻3 noisy as follows [63]:
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𝑻3 = 𝑻3 noisy − 𝑁 ⎡⎢⎢⎣1 0 00 1 00 0 1⎤⎥⎥⎦ , (3.12)

where 𝑻3 is the additive-noise filtered 3x3 coherency matrix.

The next data pre-processing step is the estimation and minimisation of multiplicative
noise present in the PolSAR data. Speckle is the dominant multiplicative noise present
in the SAR data [14]. It appears as a granular disturbance and occurs due to the coherent
imaging of the SAR systems. For this study, the speckle present in the PolSAR data
was minimised by speckle filtering using a refined-Lee speckle filter with a 3x3 window
[145].

After minimising the additive and multiplicative noise present in the data, the noise-
minimised scattering matrix elements can be estimated from 𝑻3 as given below [P4].|𝑆HH|2 = 𝑇11 + 2𝑅𝑒{𝑇12} + 𝑇222 (3.13)

|𝑆HV|2 = 𝑇332 (3.14)

|𝑆VV|2 = 𝑇11 − 2𝑅𝑒{𝑇12} + 𝑇222 (3.15)

The final step in the data pre-processing procedure involves performing radiometric
calibration to generate calibrated backscatter images (𝜎𝑜). This calibration is carried out
as follows [75]: 𝜎𝑜

HH = sin 𝜃 ⋅ |𝑆HH|2 , (3.16)

𝜎𝑜
HV = sin 𝜃 ⋅ |𝑆HV|2 , (3.17)

𝜎𝑜
VV = sin 𝜃 ⋅ |𝑆VV|2 , (3.18)

where 𝜃 is the local incidence angle.
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These noise-minimised, radiometrically calibrated 𝜎𝑜 images enable the comparison
of backscatter measurements between surfaces and facilitate the estimation of surface
properties such as roughness [P6]. Consequently, these images, along with the local
incidence angle image (𝜃), serve as input for road surface roughness estimation models.

3.2.2 Post-processing of the Road Surface Roughness Results

After estimating the road surface roughness values using different roughness estimation
models, several post-processing steps are required to increase the reliability of the ℎrms
estimation and to facilitate better visualisation and interpretation of the final road
surface roughness image. These post-processing steps include 𝜎𝑜 and SNRmasking,
multi-dataset fusion, as well as geocoding and visualisation on Google Earth (GE).

1. 𝝈𝒐 and SNR masking: High sigma nought (𝜎𝑜) values not originating from
the road surface can cause errors in the road surface roughness estimation. Figure
3.7(a) shows the 𝜎𝑜

VV image for the Cologne motorway intersection. By analysing
the image, it can be observed that the strong reflection from the lane dividers
present in between the roads and also the strong reflection from the flyover walls
are visible in yellow colour. These strong reflections cause invalid high surface
roughness values which need to be eliminated. For this purpose, an upper 𝜎𝑜
threshold masking technique was implemented.

(a) (b)

Figure 3.7: 𝜎𝑜
VV images. (a) 𝜎𝑜

VV image for Cologne motorway intersection. (b) 𝜎𝑜
VV image showing

primarily reflections from lane divider and flyover walls.

Figure 3.7(b) shows the 𝜎𝑜
VV image with sigma nought values higher than -10.96

dB. This threshold value was determined empirically using a trial-and-error pro-
cedure. From Figure 3.7(b), it can be understood that all the pixels on the road
surface with 𝜎𝑜

VV higher than -10.96 dB correspond to strong reflections from
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lane dividers and flyover walls. So, all the pixels with 𝜎𝑜
VV greater than -10.96 dB

were masked out from the final surface roughness image.

Similar to the high sigma nought values not corresponding to the road surface,
the very low signal-to-noise ratio (SNR) pixels can also result in unreliable surface
roughness estimation. The sigma nought values obtained from the low SNR
pixels are more dominated by the noise than the actual radar signal. The surface
roughness values obtained from these pixels are unreliable and do not correspond
to the actual ground truth surface roughness. Therefore, the surface roughness
values obtained from the low SNR pixels should be discarded. The SNR of the
dataset can be estimated as follows [51]:𝑆𝑁𝑅pq = 𝜎𝑜

pq − 𝜆4𝜆4
, (3.19)

where𝑆𝑁𝑅pq is the SNR estimated for the p transmitted and q received polarisa-
tion, 𝜎𝑜

pq is the sigma nought value for the pq polarisation and 𝜆4 is the 4th eigen-
value of the 4x4 coherency matrix which is used for the additive noise removal.

An SNR vs. surface roughness analysis was carried out to estimate the changes in
the model-estimated surface roughness as the SNR decreases. For this purpose,
a region with high SNRwas selected on the runway surface at the Kaufbeuren
test site. The actual SNR and the surface roughness values for that region were
computed using different surface roughness models from the PS04 dataset (cf.
Table A.2 on page 174). After that, simulated complex randomGaussian noise
was added to the four polarisation channels independently and the SNR was
varied from the actual value to lower values and the corresponding changes in the
surface roughness were plotted.

In Figure 3.8(a), the red plot illustrates the relationship between SNR and surface
roughness for the anisotropy-based roughness estimation method. Notably, for
SNR above 8.45 dB, the estimated surface roughness exhibits minimal variations,
while below this threshold, the roughness increases. The green plot in the same
figure presents the SNR vs. surface roughness plot for the coherencymatrix-based
method, indicating nearly constant roughness (around 2.78 mm) for SNR above
9.45 dB. Figure 3.8(b) displays the SNR vs. surface roughness plot for the Dubois
model, with stable roughness (around 0.3 mm) for SNR over 7.7 dB and then
increasing as SNR falls below this value. In Figure 3.8(c), a similar analysis for the
new semi-empirical model reveals constant roughness (1.45 mm) for SNR equal
to or greater than 8.43 dB, with minimal surface roughness deviations for SNR
higher than 5.98 dB. These slight variations in surface roughness values while
decreasing the SNR up to 5.98 dB are typically insignificant and can be neglected
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(a)

(b)

(c)

Figure 3.8: Surface roughness vs. SNR plots. For (a) anisotropy and coherency matrix methods, (b) the
Dubois model and (c) the new semi-empirical model.
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in most of the cases. It is important to note that the plots in Figure 3.8 have
different scales on the y-axis due to the large variations in surface roughness values
estimated by the different models. Using different scales appropriate for each
model allows for better identification of small variations in surface roughness val-
ues as the SNR decreases. From this analysis, it can be generalised that the lowest
SNR that ensures constant roughness is the minimum SNR required for reliable
and unbiased surface roughness estimation. Therefore, surface roughness values
where the SNR falls below these model-specific SNR thresholds are considered
invalid and can be neglected to minimise measurement errors.

Figure 3.9: ”Multi-Dataset Averaging Method” (left) and ”Highest SNRMethod” (right).

2. Multi-dataset fusion: When multiple datasets with different incidence angles
and viewing directions contribute surface roughness images, fusing them into a
single surface roughness image enhances the overall accuracy of ℎrms estimates.
This fusion process effectively mitigates errors in ℎrms estimation arising from
challenges like low SNR, speckle, and shallow incidence angles. Two novel
multi-dataset fusion approaches were employed in this study: the ”Highest SNR
Method” and the ”Multi-Dataset Averaging Method”.
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The ”Highest SNR Method” assumes that the most accurate ℎrms estimate is
derived from the dataset with the highest SNR. Consequently, a pixel-wise SNR
search is conducted across all pixels in the available datasets, and for each pixel,
the ℎrms value is extracted from the dataset with the highest SNR for that specific
pixel (cf. Figure 3.9 right).

On the other hand, the ”Multi-Dataset Averaging Method” assumes that all ℎrms
values from the various available datasets are accurate and valid. This is ensured
by applying upper 𝜎𝑜 and lower SNR thresholds in advance to eliminate invalidℎrms estimates in all individual surface roughness images. As a result, the fused
surface roughness image is generated by pixel-wise averaging of the ℎrms values
from all available surface roughness images (cf. Figure 3.9 left).

3. Geocoding, road extraction and Google Earth visualisation: The analysis
of the road surface conditions can be better evaluated by visualising the surface
roughness estimates, for instance in Google Earth (GE). This can help to compare
the surface roughness values with the recent high-resolution optical views of the
same regions (if available). To visualise the surface roughness in GE, the generated
surface roughness images were geocoded from the slant-range coordinate system
to a geographic coordinate system with a grid spacing of 0.25m.

For extracting the roads from the geocoded road surface roughness image, the
Open Street Map (OSM) road layers are used [98]. The road layers within the
boundaries of the geocoded road surface roughness image were extracted using
the OSMnx Python package [28]. However, the road layers from the OSM only
contain the road centrelines without information about the road width, as shown
by the black lines in Figure 3.10. Knowledge of the road width is required for
the extraction of roads from the geocoded road surface roughness image. For this
purpose, a ”buffer” operation [61] was performed on these road centrelines to
create polygons around these centrelines with a specific width, as shown by the
red polygons in Figure 3.10. Depending on the type of road, the width of these
polygons was set to match the expected road boundaries, which were measured
using Google Earth. For example, for the roads considered in the Braunschweig
test site (see section A.1.3 on page 170), the width of these polygons was set to
12 m for motorways and 6 m for motorway link roads. For the runway at the
Kaufbeuren test site (see section A.1.1 on page 169), the polygon width was set
to 30 metres. If these preset road widths are not suitable for the roads of interest,
a manual road width input can be entered into the processing chain to adjust the
width of these polygons to that of the road boundaries. The processing chain
also has the functionality to extract the road layers and create the road width
polygons only for the roads of interest. For example, by specifying the OSM
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Figure 3.10: OSM road layer (black) and buffered road width polygon (red) visualisation. The buffered
road width polygon represents the most likely road width for the known road type.

filter key ”Motorway A4”, the road width polygons are only generated for the
motorway A4 within the extent of the geocoded road surface roughness image.

In the next step, all surface roughness values in the geocoded road surface rough-
ness image outside of these road width polygons are masked out from the final
surface roughness image, so that only the surface roughness values of the roads of
interest are retained. KML files are then created overlaying only the road surface
roughness results in GE. This approach is intended to make it easier for road
maintainers without SAR expertise to interpret the results and enable them to
carry out maintenance measures efÏciently. In addition to the KML file, a Geo-
graphic tagged image file format (GeoTIFF) file is also created that contains the
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extracted road surface roughness images to ensure compatibility with state-of-
the-art geographic information system (GIS) software. An example is shown in
Figure 3.22 on page 63.

3.3 Experimental Results and Discussion

3.3.1 Comparison of Different Roughness Estimation Models

This sub-section presents road surface roughness (ℎrms) results for the duraBASt and
Kaufbeuren test sites obtained from the anisotropy method, coherency matrix method,
Dubois model, Oh model, and the new semi-empirical model.

Figure 3.11: Google Earth image of duraBASt test site (yellow polygon) and nearby motorway showing
smooth and rough road surfaces.

Figure 3.11 displays the Google Earth (GE) image of the duraBASt test site, which is
outlined with the yellow border near the Cologne motorway intersection and shows
distinct road materials with varying surface roughness. The smooth and rough regions
identified at the duraBASt test site are shown in Figure 3.11. Also, a change in road
surface colour can be observed on the motorway near the duraBASt test site in the GE
image. This may be due to maintenance work done in that region. Further details about
this test site can be found in Appendix A on page 170.
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Figure 3.12: ℎrms images. (a) ℎrms image generated using the anisotropy method before additive noise
removal. (b)ℎrms image generated using the anisotropymethod after additive noise removal. (c)ℎrms image
generated using the coherency matrix method before additive noise removal. (d) ℎrms image generated
using the coherency matrix method after additive noise removal. (e) ℎrms image generated using the Oh
2004model before additive noise removal. (f)ℎrms image generated using the Oh 2004model after additive
noise removal.
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The surface roughness images generated using the anisotropy method, coherency matrix
method and the Oh 2004 model for the duraBASt test site and the adjacent motorway
are shown in Figure 3.12. For the purpose of easier interpretation, the duraBASt test
site is highlighted with a white border in all images. Figure 3.12(a) shows the surface
roughness image generated using the anisotropymethod without additive noise removal.
Subsequent application of the anisotropymethod after removing additive noise is shown
in Figure 3.12(b). A comparison with the GE image in Figure 3.11 reveals that both
results from the anisotropy method, even after noise removal, fail to effectively differen-
tiate between smooth and rough road sections. Figure 3.12(c) and Figure 3.12(d) exhibit
surface roughness images from the coherency matrix method before and after additive
noise removal, respectively. The coherency matrix method is also unable to distinguish
between smooth and rough road sections both before and after noise removal. Similarly,
Figure 3.12(e) and Figure 3.12(f) illustrate surface roughness results using the Oh 2004
model before and after additive noise removal, respectively, demonstrating the model’s
inability to differentiate road surface conditions.

Figure 3.13 shows the surface roughness images generated using the Dubois model and
the newly developed semi-empirical model for the duraBASt test site and the adjacent
motorway. The Dubois model’s surface roughness images, showcased in Figures 3.13(a)
and (b) before and after additive noise reduction, exhibit minimal noticeable differences
at this zoom level. Both images successfully identify surface roughness changes at the
duraBASt test site and the motorway, as depicted in Figure 3.11. Figure 3.13(c) presents
the surface roughness image from the new semi-empirical model before additive noise
reduction. Comparing it with the GE image in Figure 3.11 and the Dubois model’s
results (Figures 3.13(a) and (b)) reveals that much smaller changes in the surface rough-
ness variations at the duraBASt test site and also at the motorway are noticeable in the
new model’s result. Figure 3.13(d) illustrates the surface roughness image produced by
the new model after additive noise reduction, showing a reduction in high surface value
pixels with yellow colour compared to Figure 3.13(c). In summary, both the Dubois
model and the new model demonstrated reliable surface roughness results, distinguish-
ing them from the results generated using other models shown in Figure 3.12 that either
produced noisy images or were unable to distinguish between smooth and rough road
sections.

In Figure 3.14, the surface roughness (ℎrms) values generated for the GT spots at the
Kaufbeuren test site by different models are compared with the ground truth surface
roughness (GT ℎrms ) values obtained by laser scanning (refer to Appendix A on pages
169 and 178 for more details on test site and GT data collection, respectively). The
surface roughness plots were generated using the PS03, PS04, PS05, and PS12 datasets
(cf. Table A.2 on page 174). Figure 3.14(a) shows the surface roughness plots for the GTℎrms values and the ℎrms values estimated from the anisotropy method and coherency
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Figure 3.13: ℎrms images. (a) ℎrms image generated using the Dubois model before additive noise removal.
(b) ℎrms image generated using the Dubois model after additive noise removal. (c) ℎrms image generated
using the newmodel before additive noise removal. (d) ℎrms image generated using the newmodel after
additive noise removal.

matrix (𝑻3) method. By analysing Figure 3.14(a), it can be seen that the ℎrms values
estimated by the anisotropymodel at the smoothGT spots (low surface roughness spots)
were highly overestimated and the model estimated ℎrms values at the rough GT spots
(high surface roughness spots) were underestimated. For the𝑻3 matrix method, the ℎrms
values obtained at both the rough and smooth spots were highly overestimated. Table
3.2 shows the comparison between the GT ℎrms values and the model-estimated ℎrms
values for the PS03 dataset. From Table 3.2, it can be found that the RMSE obtained
for the anisotropy method is 0.88 mm and 1.99 mm for the 𝑻3 matrix method.

Figure 3.14(b) shows the surface roughness plots generated using the Oh 1992 and Oh
2004models. By observing the plots, it can be understood that the ℎrms values estimated
by both the Oh 1992 and Oh 2004 models were overestimated at both the smooth and
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(a)

(b)

(c)

Figure 3.14: GT ℎrms and model estimated surface roughness comparison plots. (a) anisotropy and
coherency matrix method. (b) Oh 1992 and Oh 2004 method. (c) Dubois model and newmodel.

52



3.3 Experimental Results and Discussion

rough GT spots. From Table 3.2 it can also be seen that the RMSE obtained for the Oh
1992 model is 1.96 mm and 2.44 mm for the Oh 2004 model. From Figure 3.14(a) and
Figure 3.14(b), it can be understood that the model estimated surface roughness plots
are not correlated with the GT surface roughness plots.

By comparing the Dubois model estimated surface roughness plots with the GT ℎrms
plot it can be seen that some of the datasets show an underestimation at the GT spots
and some other datasets show an overestimation (cf. Figure 3.14(c)). However, it can be
seen that the plots are correlated and follow the same trend as the GT surface roughness
plot. FromTable 3.2, it can be seen that the RMSE obtained for theDubois model using
the PS03 dataset is 0.65 mmwhich is lower compared to the above-mentioned models.
By comparing the surface roughness plots estimated using the new semi-empirical model
with the GT ℎrms plot, it can be seen that the deviations are the lowest between the plots.
From Table 3.2 also, it can be seen that the RMSE obtained for the newmodel using
the PS03 dataset is 0.37 mm, which is the lowest RMSE obtained from all the models.
The PS03 dataset is used for the results shown in Table 3.2 because this dataset was not
used for estimating the new model coefÏcients and can therefore be considered as a test
dataset.

Table 3.2: Comparison of surface roughness results at GT spots obtained using different surface roughness
estimation models.

GT spot
GT ℎrms

(mm)
Model estimated ℎrms from PS03 dataset [mm]

Anisotropy
method

Coherency matrix
method

Oh 1992
model

Oh 2004
model

Dubois
model

New
model

1 2.36 2.14 4.27 3.19 2.01 1.05 1.60

2 0.99 1.50 2.61 2.65 3.92 0.72 1.12

3 0.66 1.22 1.38 3.06 2.54 0.66 0.60

4 0.88 2.33 5.32 3.31 1.45 1.99 1.37

5 0.68 1.78 2.04 2.82 3.43 1.16 0.74

6 0.98 1.50 0.37 2.90 4.01 1.03 0.61

7 1.09 1.86 1.35 2.39 4.75 1.31 0.78

8 0.61 1.79 2.29 2.97 2.80 0.49 0.46

RMSE
(mm)

0.88 1.99 1.96 2.44 0.65 0.37

Figure 3.15 illustrates surface roughness error plots for both the Dubois model and
the new semi-empirical model computed at the eight GT spots. These error plots are
generated for the same datasets (PS03, PS04, PS05, and PS12) used for generating Figure
3.14(c). The surface roughness errors are determined by subtracting the GT ℎrms values
from themodel-estimatedℎrms values for eachGT spot. Themean absolute error (MAE)
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values for each dataset are also included in Figure 3.15. Analysing these error plots and
MAE values allows a comparison of the performance of the Dubois model and the
new semi-empirical model across multiple datasets, with theMAE values providing a
quantitative assessment of the accuracy of each model w.r.t. the GT values.

TheMAE is calculated as follows:

MAE = 1𝑛GT spots

𝑛GT spots∑𝑖=1 |ℎrms𝑖 − GT ℎrms𝑖 | (3.20)

where𝑛GT spots represents the number ofGT spots,ℎrms𝑖 represents themodel estimatedℎrms value for each GT spot and GT ℎrms𝑖 is the GT ℎrms value for each GT spot.

Figure 3.15: Surface roughness error plots for the Dubois model and the newmodel.

Comparing the error plots between the new model and the Dubois model shown in
Figure 3.15, it is evident that the surface roughness errors are significantly reduced in
the newmodel compared to the Dubois model. Specifically, examining the four error
plots corresponding to each dataset for the Dubois model, it can be observed that the
highest surface roughness error values are around approximately 1.70 mm and -1.40
mm. Positive error values denote an overestimation, while negative values indicate
an underestimation of the ℎrms values by the model. The highest MAE obtained for
the Dubois model is 0.50 mm (PS05 dataset) and the lowest MAE is 0.28 mm (PS12
dataset), showing large variations between the datasets. Conversely, the highest surface
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roughness error values for the newmodel are around 0.48 mm and -0.75 mm, indicating
a significant reduction in both the overestimation and underestimation of the ℎrms
values. The highest MAE obtained for the newmodel is 0.29 mm (PS03 dataset) and
the lowest is 0.17 mm (PS05 dataset), indicating lower MAE values compared to the
Dubois model and more consistent ℎrms estimation across the datasets. These findings
underscore the superior performance of the newmodel over the Dubois model.

Table 3.3 illustrates a comparison between the GT ℎrms values and those estimated using
both the Dubois model and the new semi-empirical model for the PS03, PS04, PS05,
and PS12 datasets (see Table A.2 on page 174). The PS04, PS05, and PS12 datasets were
utilised to train the coefÏcients for the newmodel, while the PS03 dataset served as the
testing dataset. The table presents the model-estimated ℎrms values alongside the error
values w.r.t. the GT ℎrms value for each GT spot. Additionally, it provides the overall
RMSE w.r.t. the GT ℎrms values for each dataset. Upon examination of the table, it is
evident that the Dubois model exhibits RMSE ranging from 0.43 mm (PS12 dataset)
to 0.73 mm (PS05 dataset). Conversely, the new semi-empirical model demonstrates
RMSE ranging from 0.23 mm (PS05 dataset) to 0.37 mm (PS03 dataset). In general,
the errors obtained with the newmodel are significantly smaller compared to those of
the Dubois model across all four datasets. Consequently, it can be summarised that the
new semi-empirical model offers a superior estimate of road surface roughness than the
Dubois model, both for the training and testing datasets.

Figure 3.16 illustrates the surface roughness error plots for the eight GT spots generated
using the new model with the PS03 dataset (refer to Table A.2 on page 174), both with
and without performing the additive noise subtraction pre-processing step (see section
3.2.1 on page 38). The magenta plot represents the error plot without additive noise
subtraction, while the blue plot depicts the error plot with additive noise subtraction.
Upon comparison, the plots exhibit close agreement, with only a slight performance
enhancement observed with additive noise subtraction. This slight improvement is
reflected in theMAE values, where theMAE value without additive noise subtraction is
0.31 mm, and with additive noise subtraction is 0.29 mm. This marginal difference can
be attributed to the fact that most road pixels in the F-SAR datasets possess excellent
SNR (above the minimum threshold of 5.98 dB required for the newmodel as discussed
in section 3.2.2), resulting in minimal influence of additive noise on the co-polar 𝜎𝑜
backscatter values. However, it is advisable to perform additive noise subtraction when-
ever feasible, as it can reduce the likelihood of erroneous ℎrms estimates, particularly in
very smooth road regions with low SNR or in scenarios such as having shallow inci-
dence angles or increased flight altitude of the F-SAR system, where SNR diminishes
considerably.
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Table 3.3: Comparison of the surface roughness results at the Kaufbeuren GT spots, obtained using the
Dubois model and the new semi-empirical model for the PS03, PS04, PS05 and PS12 datasets.
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3.3 Experimental Results and Discussion

Figure 3.16: Comparison of surface roughness error plots generated by the new model using the PS03
dataset, with and without additive noise subtraction.

3.3.2 Performance Evaluation of the New Model

From the results discussed in the previous sub-section, it can be understood that the
Dubois model and the new semi-empirical model performed better compared to the
other models. However, the surface roughness values estimated by the Dubois model
have an incidence angle dependency which led to the development of a new semi-
empirical model based on the assumptions from the Dubois model.

Figure 3.17 shows the surface roughness image generated for the Kaufbeuren test site
using the Dubois model. After geocoding, the image is visualised in GE, with the areas
outside the runway, taxiway and parking areas removed. The F-SARPS05 dataset, which
has a flight track perpendicular to the Kaufbeuren runway (cf. Table A.2 on page 174
and Figure 3.2 on page 34), was used to generate the image. Consequently, one end
of the runway falls in the near range, starting with an incidence angle of 32∘, while the
other end falls in the far range with an incidence angle ending at 55∘. As explained in
Appendix A on page 169, both ends of the runway are made of concrete, while the
middle region is asphalt. However, it is clear from Figure 3.17 that the Dubois model
has difÏculty distinguishing between concrete and asphalt at near range. Both surfaces
appear predominantly in blue, which indicates a similar surface roughness. On the other
hand, the Dubois model can successfully distinguish between asphalt and concrete in
the far range. Asphalt areas appear mostly in blue, while concrete areas are visible in
green to red. The red colour corresponds to the concrete surface with repeated cuts at
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Figure 3.17: Surface roughness image for the Kaufbeuren test site generated using the Dubois model.

the end of the runway to facilitate aircraft braking (see GT spot 1 in Figure A.6 on page
179). In addition, an increase in surface roughness can be observed from near to far
range for the asphalt regions. These observations indicate that the ℎrms values estimated
by the Dubois model have an incidence angle dependency, with a lower sensitivity to
surface roughness at the near range.

Figure 3.18(a) shows the surface roughness image of the Kaufbeuren test site using
the newmodel from the PS05 dataset, which is the same dataset used to generate the
Dubois model result shown in Figure 3.17. A comparison between Figure 3.18(a)
and Figure 3.17 reveals that in the surface roughness image generated using the new
model, the concrete regions at both ends of the runway are showing a high value of
surface roughness indicated by the cyan, green and yellow colours and the asphalt regions
are showing a low value of surface roughness indicated by the blue colour. From this
result, it can be clearly understood that the newmodel can distinguish between concrete
and asphalt at both near range and far range which may also have different surface
roughness. Furthermore, when looking at the asphalt regions from the near range to the
far range, it can be seen that the influence of the incidence angle on the surface roughness
variations has decreased significantly. Figure 3.18(b) shows the surface roughness image
generated using the newmodel with the PS03 dataset, which was not included in the
estimation of the model coefÏcients and has a different data acquisition geometry (refer

58



3.3 Experimental Results and Discussion

(a)

(b)

Figure 3.18: Surface roughness images for the Kaufbeuren test site generated with the newmodel, using (a)
PS05 dataset, (b) PS03 dataset.
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to Table A.2 on page 174). This dataset can therefore be considered as a testing dataset,
and a comparison with Figure 3.18(a) shows a similar result, with asphalt appearing
predominantly in blue and concrete in cyan to yellow colours. Therefore, it can be seen
that the new model performs satisfactorily on both the training and testing datasets.
A noticeable difference between Figures 3.18(a) and (b) is the presence of several high
surface roughness cuts visible only in the zoomed views of Figure 3.18(a). These cuts,
which appear across the runway at regular intervals, are due to the asphalt being laid
in tiles with very small cuts between them. These small cuts are visible only in Figure
3.18(a) due to the perpendicular viewing (aspect) angle of the PS05 dataset w.r.t. the
orientation of these cuts, which maximises backscatter from these cuts to the radar.
In contrast, these cuts are not visible in Figure 3.18(b) due to the different viewing
geometry (see the range direction arrows marked in both figures). In addition, these
sections are very small in width and depth and therefore not visible in the GE optical
images shown in the zoomed views.

Figure 3.19: Surface roughness image generated for the Landsberg-Lech air base.

Figure 3.19 shows the surface roughness image overlaid on GE for the Landsberg-Lech
airbase in Bavaria, Germany. By analysing the image, it can be seen that the central part
of the runway is depicted in blue, indicating low ℎrms values below 0.5 mm. In contrast,
the outer shoulder areas of the runway are shown in cyan, which indicates an increased
surface roughness in the order of 1.0 mm. The zoomed-in views in Figure 3.19 show
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detailed images of the surface roughness together with GE optical images for a section
of the runway and taxiway. When looking at the GE optical views, it is evident that
the blue and cyan areas of surface roughness have different colours/appearances in the
GE image, indicating the use of materials with different compositions in those areas,
resulting in different surface roughness values.

Figure 3.20: Road surface roughness image generated for the A2-A391motorway crossing in Braunschweig.

The road surface roughness image for the A2-A391 motorway crossing in Braunschweig
is shown in Figure 3.20. Here, the north-south motorway appears predominantly blue,
indicating lower roughness, while the east-west motorway shows green to yellow colours,
suggesting increased roughness. Similarly, a sharp increase in surface roughness can be
seen at the top right end of the north-southmotorway at the flyover. The zoomed-in GE
view of this flyover also shows a sudden change in contrast at both ends of the flyover,
denoted by the yellow ellipses, suggesting the use of different construction materials for
the flyover as compared to the connecting roads.

Additionally, Figure 3.21 showcases the surface roughness image generated for a section
of the A2 motorway in Braunschweig, incorporating a bridge. Analysis reveals a lower
roughness level on the bridge and its westward connecting road, evident from the preva-
lence of blue colour, while the eastward connecting road displays cyan to green colours,
indicating increased roughness. Consistent with previous observations, contrast changes
in the GE image align with transitions in surface roughness. It is also interesting to note
that the bridge appears slightly displaced into the river in the overlaid surface roughness
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Figure 3.21: Road surface roughness image generated for a bridge on the A2 motorway in Braunschweig.

image, this is most likely due to elevation errors in the digital elevation model (DEM)
used for SAR data focusing.

In both Figures 3.20 and 3.21, the east-westmotorway appears noisy due to its alignment
with the F-SAR system’s azimuth/flight direction, which introduces distortions in the
SAR image caused by moving vehicles. These distortions result fromDoppler shifts in
the backscattered signals generated by vehicles moving in the azimuth direction, leading
to image smearing and positional displacement of the moving vehicles in the SAR image
[26].

It is worth noting that the regions depicted in Figures 3.19, 3.20, and 3.21 were not the
primary test sites of this study. Therefore, the results obtained in these areas demonstrate
the efÏciency of the new semi-empiricalmodel andprocessing chain in accurately estimat-
ing road surface roughness across diverse regions, thereby facilitating the identification
of areas with varying roughness and material compositions.

The surface roughness image in GeoTIFF format for the Kaufbeuren test site generated
from the road surface roughness estimation processing chain is visualised in Figure 3.22.
TheGeoTIFF surface roughness image is a single-band representation containing surface
roughness values estimated using the new semi-empirical model without any scaling
applied. Each pixel representing the surface roughness values also has the latitude and
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Figure 3.22: Visualisation of the GeoTIFF format surface roughness image generated for the Kaufbeuren
test site.

longitude information, allowing precise location of surface roughness pixels on the
ground (see x and y axes). The availability of road surface roughness results in GeoTIFF
format ensures compatibility and integration with advanced GIS software, enhancing
its utility for further analysis.

3.3.3 Influence of 𝜎𝑜 and SNR

As already discussed in section 3.2.2, an upper 𝜎𝑜 masking and a lower SNRmasking
are required to remove the unreliable and noisy ℎrms values from the surface roughness
images.

Figure 3.23 shows the surface roughness image generated using the newmodel for the
Wolfsburg motorway intersection at Braunschweig, Germany, without performing 𝜎𝑜
and SNRmasking. The zoomed view in the figure shows a portion of the motorway
where a change in surface roughness can be observed. This sudden change in surface
roughness at the motorway may be due to maintenance work done in that region. In the
zoomed view, it can be seen that two red stripes are present across the road indicating
high surface roughness values. These red stripes are caused by the strong backscatter
signal from the overhead signboard present there and do not correspond to the actual
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Figure 3.23: Surface roughness image of theWolfsburg motorway intersection at Braunschweig without
performing upper 𝜎𝑜 and lower SNRmasking.

surface roughness of that location. Also, the green to yellow colours present between the
two lanes of the motorway are caused due to the strong reflection from the lane dividers
separating the two roads. An upper 𝜎𝑜 threshold masking can be done to remove this
kind of anomaly from the surface roughness image.

Figure 3.24 shows the surface roughness image generated after performing the upper 𝜎𝑜
threshold masking. In Figure 3.24, all the pixels with 𝜎𝑜 values higher than -10.96 dB
were masked out to remove strong reflections from signboards, lane dividers, etc. By
comparing the zoomed view shown in Figure 3.24with the zoomed view shown in Figure
3.23, it can be observed that the two red stripes present in Figure 3.23 due to the strong
reflection from the signboards are not visible in Figure 3.24 after upper 𝜎𝑜 threshold
masking. Also, it can be seen that the green to yellow colours present in between the lanes
due to the reflection from the lane dividers are also removed in Figure 3.24. So, the upper𝜎𝑜 masking technique is an effective way to mask out unreliable pixels from the surface
roughness image caused due to strong reflecting targets. Even after upper 𝜎𝑜 threshold
masking, the low SNR pixels can still lead to unreliable/noisy surface roughness values.
So, all the pixels with SNR less than 5.98 dBweremasked out from the surface roughness
image. Figure 3.25 shows the surface roughness image after performing both upper 𝜎𝑜
threshold masking and lower SNR threshold masking. By comparing Figure 3.24 with
Figure 3.25, it can be seen that some of the pixels corresponding to the blue colour got
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Figure 3.24: Surface roughness image of the Wolfsburg motorway intersection at Braunschweig after
performing upper 𝜎𝑜 masking.

Figure 3.25: Surface roughness image of the Wolfsburg motorway intersection at Braunschweig after
performing both upper 𝜎𝑜 and lower SNRmasking.
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removed in Figure 3.25. These pixels had an SNRof less than 5.98 dB. This is also visible
in the surface roughness images shown for the Kaufbeuren test site in Figure 3.18. Both
upper 𝜎𝑜 threshold masking and low SNR threshold masking can be applied together
to minimise the unreliable and noisy ℎrms values from the surface roughness images.

3.3.4 Multi-dataset Fusion

The surface roughness images generated from single datasets may have unreliable or
missing ℎrms values, which are affected by shadow areas, speckle, low SNR regions and
incidence angles. Fusing surface roughness images from multiple individual datasets
obtainedwith different data acquisition geometries into a single surface roughness image,
using methods such as highest SNR and multi-dataset averaging (see section 3.2.2), help
to mitigate these errors and produce a more robust single surface roughness image.

Figure 3.26 shows the fused surface roughness images generated using the highest SNR
multi-dataset fusion method for the Kaufbeuren test site. Figure 3.26(a) depicts the
fused surface roughness image generated using the PS02, PS03, PS04, PS05 and PS12
F-SAR datasets acquired at 3 km altitude (cf. Table A.2 on page 174), while Figure
3.26(b) displays the fused surface roughness image from the PS01, PS02, PS03 and PS04
F-SAR datasets acquired at 2.2 km altitude (cf. Table A.3 on page 175). By comparing
the Figures 3.26(a) and (b) with the surface roughness images generated from single
datasets (PS03 and PS05) shown in Figures 3.18(a) and (b), it can be observed that much
finer details on the runway are visible in the surface roughness images generated using
the highest SNR multi-dataset fusion method. More details of the runway, such as
minor cuts and repair work, can be seen more clearly in the zoomed-in views in Figures
3.26(a) and (b) compared to the single dataset results. Furthermore, it can be seen that
the missing pixels visible in Figures 3.18(a) and (b), which were caused by the upper 𝜎𝑜
and the lower SNRmasking, were filled with valid ℎrms values from other datasets in
the two fused surface roughness images in Figures 3.26(a) and (b). However, the effect
of local backscatter variations appears to be more dominant in the fused surface images
generated by the highest SNRmethod leading to a more grainy/noisy appearance. These
local backscatter variations may be due to the orientated features on the road surface,
which can lead to high backscatter only from certain viewing (aspect) angles. The finer
details are slightly more apparent in Figure 3.26(b) compared to Figure 3.26(a), which
may be due to the lower flight altitude and higher SNR of the datasets used to generate
Figure 3.26(b).

The fused surface roughness images produced through the multi-dataset averaging
method are presented in Figure 3.27. Figure 3.27(a) is generated using the PS02, PS03,
PS04, PS05 and PS12 F-SAR datasets acquired at 3 km altitude (cf. Table A.2 on page
174), while Figure 3.27(b) is from the PS01, PS02, PS03 and PS04 F-SAR datasets
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(a)

(b)

Figure 3.26: Comparison of fused surface roughness images for the Kaufbeuren test site generated using
the highest SNRmethod from F-SAR data acquired at different altitudes. (a) Using the PS02, PS03, PS04,
PS05 and PS12 F-SAR datasets acquired at 3 km altitude. (b) Using the PS01, PS02, PS03 and PS04 F-SAR
datasets acquired at 2.2 km altitude.
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(a)

(b)

Figure 3.27: Comparison of fused surface roughness images for the Kaufbeuren test site generated using
the multi-dataset averaging method from F-SAR data acquired at different altitudes. (a) Using the PS02,
PS03, PS04, PS05 and PS12 F-SAR datasets acquired at 3 km altitude. (b) Using the PS01, PS02, PS03
and PS04 F-SAR datasets acquired at 2.2 km altitude.
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acquired at 2.2 km altitude (cf. Table A.3 on page 175). A comparison with both Fig-
ures 3.18 and 3.26 reveals that the multi-dataset averaging images exhibit a smoother
appearance compared to both the highest SNR method-based fused images and the
surface roughness images from single datasets. Local variabilities present in Figures 3.18
and 3.26 are mitigated through this averaging process. In the zoomed views presented
in Figure 3.27, the results are notably superior to those in Figures 3.18 and 3.26. The
runway repair works are visible in cyan to red, while the surrounding regions predomi-
nantly appear in blue without significant variations. Finer details, including the smaller
cuts on the runway, are visible in the multi-dataset averaged image, similar to the fused
image based on the highest SNRmethod. The multi-dataset averaging process has also
reduced the grainy appearance caused by the locally orientated features, and may also be
due to the residual speckle in the surface roughness image. Similar to the highest SNR
method-based fusion, finer details on the runway are more visible in the multi-dataset
averaged image shown in Figure 3.27(b), as low altitude F-SAR datasets were used to
generate this image.

Figure 3.28: Comparison of ℎrms plots from the highest SNR and multi-dataset averaging fusion methods
with the GT ℎrms plot and also with the ℎrms plot from a single dataset.

Figure 3.28 presents a comparison among ℎrms values obtained from the new semi-
empirical model using a single dataset, the highest SNR fusion method, and the multi-
dataset averaging fusion method, alongside the GT ℎrms plot. The black plot shows the
GT ℎrms plot created for the eight GT spots at the Kaufbeuren test site. The orange plot
shows the ℎrms plot for the new semi-empirical model using the PS03 dataset (testing
dataset) which is used to generate the surface roughness image shown in Figure 3.18
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(b). A comparison of this plot with the GT ℎrms plot shows a very good agreement and
results in an RMSE of 0.37 mm.

The purple plot exhibits ℎrms values estimated for the GT spots using the highest SNR
multi-dataset fusionmethodwith the PS02, PS03, PS04, PS05 and PS12 F-SAR datasets
acquired at 3 km altitude (cf. Figure 3.26(a) and Table A.2 on page 174). Noticeable
overestimation of ℎrms values is evident, resulting in a higher RMSE of 0.50 mm com-
pared to the single dataset RMSE of 0.37 mm. This overestimation is attributed to
the increased sensitivity of the highest SNRmethod to speckle and local variations in
datasets. Conversely, the magenta plot shows ℎrms values using the highest SNRmulti-
dataset fusion method with the PS01, PS02, PS03 and PS04 F-SAR datasets acquired
at 2.2 km altitude (cf. Figure 3.26(b) and Table A.3 on page 175). This plot exhibits a
lower RMSE of 0.31, showcasing an improvement over the single dataset (orange plot).
The deviation between the purple andmagenta plots underscores the dependency of the
highest SNRmulti-dataset fusion method on data acquisition geometry, flight altitude
and SNR.

The blue plot illustrates ℎrms values generated by the multi-dataset averaging method
using the PS02, PS03, PS04, PS05 and PS12 F-SAR datasets acquired at 3 km altitude
(see Figure 3.27(a) and Table A.2 on page 174). This plot aligns well with the GTℎrms plot, exhibiting a lower RMSE of 0.27 mm. The green plot, depicting ℎrms values
generated by the multi-dataset averaging method using the PS01, PS02, PS03 and PS04
F-SAR datasets at 2.2 km altitude (see Figure 3.27(b) and Table A.3 on page 175), also
demonstrates a lowerRMSEof 0.27mmwith theGTℎrms plot. The blue and greenplots
suggest that the multi-dataset averagingmethod can offer reliable road surface roughness
estimates and improve RMSE results without being influenced by data acquisition
geometry and SNR, provided that individual surface roughness images used for multi-
dataset averaging undergo upper 𝜎𝑜 and lower SNR thresholding to remove invalid and
noisy ℎrms values before averaging.

From Figures 3.26, 3.27 and 3.28, it can be summarised that the surface roughness
images generated from the 3 km and 2.2 km altitude F-SAR datasets are nearly identical,
with low RMSE values. This similarity is due to the significantly higher backscatter
values in the co-polarisation channels of the F-SAR datasets at both altitudes, well
above the system’s NESZ (cf. Figure 3.1 on page 32), resulting in a very high SNR
and minimal noise influence. Nonetheless, for road surface roughness estimation, it is
generally advisable to use SAR datasets acquired at lower altitudes, as they provide a
better SNR for road surfaces and may reveal finer details that might be less visible in
higher-altitude datasets.
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Figure 3.29: Circular SAR data acquisition geometry using F-SAR system.

3.3.5 Investigations using Circular SAR Data

The orientation of particles or grains within road construction materials like asphalt
and concrete, influenced by the construction method, may introduce variability in road
surface roughness estimates obtained from SAR datasets acquired along linear flight
tracks. This is primarily due to the SAR antenna imaging the road surface from a specific
aspect angle. Additionally, features such as cracks, cuts, and potholes can contribute
to variations in roughness values when estimated from SAR datasets acquired from
different sides of the road.

To explore the possibility of an aspect angle dependency in road surface roughness
estimation, airborne circular SAR (CSAR) data can be used [84, 109, 147]. Figure
3.29 illustrates the CSAR data acquisition geometry using the F-SAR system, where
the aircraft follows a circular flight track around the area of interest which needs to be
imaged. This approach differs from the typical linear flight tracks depicted in Figure 3.2
on page 34. In CSAR, the same region is imaged at various aspect angles, generating
multiple sub-aperture SAR datasets. For the specific CSAR dataset acquired over the
Kaufbeuren test site utilised in this study (refer to Table A.3 on page 175), an azimuth
integration angle of 5 degrees was chosen, resulting in a sub-aperture SAR image every 5
degrees around the complete 360-degree circular flight track. Therefore, a single CSAR
dataset comprises 72 sub-aperture SAR images. It is essential to note that, compared to
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the linear flight track F-SAR datasets in this study, the flight altitude during CSAR data
acquisition was increased to 4 km due to operational constraints, potentially impacting
the dataset’s SNR performance negatively.

Figure 3.30: Fused surface roughness image for the Kaufbeuren test site generated from the CSAR dataset
using the multi-dataset averaging method.

The 72 sub-aperture SAR images of the CSAR dataset were considered as individual
SAR datasets and they were processed according to the algorithm and processing chain
explained in section 3.2 to generate 72 surface roughness images using the new semi-
empirical model. The fused surface roughness image obtained from these 72 images
using the multi-dataset averaging method is shown in Figure 3.30. A comparison with
surface roughness images obtained from linear F-SAR datasets (Figures 3.18, 3.26 and
3.27) shows significant noise in the fused CSAR roughness image, which distorts the
finer details on theKaufbeuren runway andparking areas. This noise canbe attributed to
the reduced SNR in the CSAR dataset, due to the increased flight altitude, as mentioned
earlier. To investigate the variations in the ℎrms and SNR values in the sub-aperture
images, a 10 x 10 window was applied to a smooth asphalt area on the runway (area
marked by the yellow ’∗’ symbol in Figure 3.30). The mean ℎrms values and SNR across
all 72 sub-aperture images were then extracted for the pixels within this window.
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(a)

(b)

Figure 3.31: ℎrms and SNR plots generated from the CSAR dataset across all the sub-aperture images for
the area of the Kaufbeuren runway marked by the yellow ’∗’ symbol in Figure 3.30. (a) ℎrms plot. (b) SNR
plot.
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Figure 3.31 shows the ℎrms and SNR plots for the smooth asphalt region within the
aforementioned 10 x 10 window over the 72 sub-aperture images. When looking at theℎrms plot in Figure 3.31(a), it is clear that the plot exhibits significant noise, showing
substantial ℎrms variations from around 0.50 mm to 2.5 mm across the sub-aperture
images. A reference to GT ℎrms data in Table A.6 on page 180 shows an expected ℎrms
value of approximately 0.70 mm for a smooth asphalt surface. However, the model-
estimated ℎrms values from the CSAR dataset show an overestimation, which is clearly
visible in Figure 3.31(a). Conversely, Figure 3.31(b) shows the SNR plot, which shows
fluctuations from below -2 dB up to about 8.5 dB for different sub-aperture images.
It should be noted here that the SNR for most sub-aperture images is below 5.98 dB,
which is the minimum SNR threshold required for reliable ℎrms estimation with the
new semi-empirical model (see black dashed line in Figure 3.31(b)). Consequently, the
two Figures 3.31(a) and (b) show that the SNR of the acquired CSAR dataset used for
this investigation is insufÏcient for the road surface roughness estimation. Therefore, no
conclusive findings on the possibility of an aspect angle dependency in the road surface
roughness estimation can be derived from these datasets.

For future investigations, the use of an airborne SAR system with an electronically
steerable antenna that can direct the antenna beam to a fixed point on the ground during
the entire circular data acquisition flight path, in combinationwith a lower flight altitude
to improve SNR, could provide better results.

3.4 Chapter Summary and Conclusion

In this chapter, a novel semi-empirical model for estimating road surface roughness
from airborne X-band F-SAR datasets was presented. The model relies on co-polar 𝜎𝑜
backscatter and the local incidence angle (𝜃) images as input parameters. Experimental
results from the Kaufbeuren, duraBASt and Braunschweig test sites demonstrated the
superior performance of this model compared to state-of-the-art roughness estimation
models and showed a close agreement with the ground truth data.

However, there are chances of getting low radar backscatter from road surfaces due to
various reasons like specular reflections at very smooth regions, shallow incidence angles
or increased flight altitude all of which can result in low SNR. Therefore, it is recom-
mended to perform additive and multiplicative noise estimation and minimisation on
the SARdatasets before using them for road surface roughness estimation. Furthermore,
a post-processing step with an upper 𝜎𝑜 and a lower SNR thresholding procedure is
essential to eliminate invalid and noisy surface roughness estimates.

This chapter also explored the potential of fusing multiple surface roughness images
generatedwith the newmodel fromdatasets having different data acquisition geometries.
This fusion, particularly through the multi-dataset averaging method, proved to be an

74



3.4 Chapter Summary and Conclusion

effective strategy forminimising errors arising from shadows, low SNR, speckle, oriented
features on the road surface and different incidence/aspect angles.

Additionally, the integration of the road extraction and Google Earth visualisation
techniques improved the interpretability of the surface roughness results by displaying
surface roughness values that correspond exclusively to the road surfaces in Google
Earth.

Finally, an attempt was made to investigate the possibility of an aspect angle dependency
in road surface roughness estimation with the help of a circular SAR dataset, however,
this approach faced challenges due to the very low SNR of the single CSAR dataset
available for this study resulting from the higher flight altitude during data acquisition.
Improved results can be expected with a CSAR dataset acquired using an airborne SAR
system equipped with an electronically steerable antenna and higher SNR.

Based on the experimental findings presented in this chapter, it is advisable to use VV-
polarised SAR data, preferably with steeper incidence angles in the 30 to 35 degrees
range, for reliable road surface roughness estimation. Analysis of the PolSAR datasets in
this chapter revealed that most road pixels in the VV-polarisation channel have an SNR
above 5.98 dB, which is the minimum SNR required by the new semi-empirical model.
Additionally, whenever possible, employing the multi-dataset averaging technique is
recommended to minimise errors by fusing surface roughness estimates frommultiple
datasets.
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4 Road Surface Roughness Estimation using
Machine Learning Approaches

This chapter explores the application of machine learning-based models for road sur-
face roughness estimation using high-resolution polarimetric SAR datasets. While the
effectiveness of the newly developed semi-empirical model for road surface roughness
estimation was presented in chapter 3, its usefulness is limited within the validity condi-
tions of themodel. Therefore, it is useful to investigate howwell state-of-the-artmachine
learning-based models, that can learn and adapt to the statistics of the data [118], can
estimate the road surface roughness. Parts of the contents presented in this chapter have
already been published in [P5, P8] and also in the bachelor thesis [S2]1.

4.1 Machine Learning Models and Techniques

The machine learning-based models and techniques used later in road roughness estima-
tion are comprehensively summarised in this section. The main concepts and assump-
tions of the Support Vector Regression (SVR), Decision Trees, Random Forest Regres-
sion (RFR) and Artificial Neural Networks (ANN) approaches are explained here.
Given the limited availability of ground truth surface roughness data for training these
models, methods like cross-validation and bagging are implemented in this study to
avoid overfitting, which could otherwise compromise the reliability of the models in
estimating the road surface roughness. The key principles of these techniques and their
significance in connection with the road surface roughness estimation are also discussed
in this section.

4.1.1 K-fold Cross Validation

In situations where the ground truth data are limited, as it is typically the case for road
surface roughness estimation due to the difÏculty in obtaining measurements from
operational and busy roads, it becomes difÏcult to provide a validation set for evaluating
the predictive performance of the model. This limitation can affect the effectiveness
of the model and lead to potential overfitting and reduced reliability [55]. To mitigate
this challenge, techniques such as cross-validation are used to increase reliability and
minimise the variance of the results [66].

1 The doctoral student (Arun Babu) supervised the bachelor student, and the cited bachelor thesis is
mainly based on his ideas.
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TestIteration 1 Train Train Train Train

TrainIteration 2 Test Train Train Train

TrainIteration 3 Train Test Train Train

TrainIteration 4 Train Train Test Train

TrainIteration 5 Train Train Train Test

Figure 4.1: Scenario example for K-fold cross-validation in which 𝐾 = 5.
The K-fold cross-validation technique uses part of the available data to fit the model
and a different part to test it. The data is split into 𝐾 pieces of approximately equal size.
Figure 4.1 illustrates a scenario in which 𝐾 = 5. For the 𝑘th part, the model is fitted to
the other 𝐾 − 1 parts of the data and calculates the prediction error of the fitted model
when predicting the 𝑘th part of the data. This is done for 𝑘 = 1, 2, ..., 𝐾 and the 𝐾
estimates of prediction errors are combined.

4.1.2 Bagging

Another useful technique when less ground-truth data are available is bagging, which is
a general-purpose procedure for reducing the variance of a statistical learning method.
It basically consists of taking many training sets from the population, training a separate
prediction model using each training set, and then averaging the resulting predictions.
In other words, the bagging comprises computing ̂𝑓1(𝑥), ̂𝑓2(𝑥), ..., ̂𝑓𝐵(𝑥) using 𝐵
separate training sets, and average them in order to obtain a single low-variance statistical
learningmodel, given by ̂𝑓avg(𝑥) = 1𝐵 ∑𝐵𝑏=1 ̂𝑓𝑏(𝑥) [66]. This architecture is illustrated
in Figure 4.2.

Bagging is particularly beneficial for decision trees as they are prone to high variance.
In this technique, 𝐵 regression trees are created using 𝐵 bootstrap training sets and
the predictions are averaged. These trees are grown deeply without clipping, resulting
in high variance but low bias for each individual tree. By averaging these 𝐵 trees, the
variance is effectively reduced. Bagging has been shown to significantly improve accuracy
by combining hundreds or even thousands of trees into a single uniform procedure.
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Figure 4.2: Scenario example illustrating the Bagging technique.

4.1.3 Support Vector Regression

A Support Vector Machine (SVM) is a powerful and versatile machine learning model,
capable of performing linear or nonlinear classification, regression, and even outlier
detection. This technique is an extension of the support vector classifier that results
from enlarging the feature space using kernels, implicitly mapping their inputs into
high-dimensional feature spaces [66]. The SVM can also be adapted to solve regression
problems, in which case it is called Support Vector Regression (SVR). Essentially, it
provides the flexibility to define howmuch error is acceptable in the model and it will
find an appropriate line (or hyperplane in higher dimensions) to fit the data. In this
study, the Radial Basis Function (RBF) kernel was adopted, which can be described by:
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𝐾(𝒙, 𝒙’) = 𝑒−𝛾‖𝒙−𝒙’‖ , (4.1)

where ‖𝒙 − 𝒙’‖ is the squared Euclidean distance between two feature vectors (𝒙 and𝒙’) and 𝛾 is a coefÏcient that defines howmuch influence a single training example has
[55]. For this study, 𝛾was set to 1/(𝑛features𝜎2), in which 𝜎2 stands for the variance and𝑛features is the number of features in the model. Moreover, another important parameter
for the SVRmodel is the regularisation parameter 𝐶, which is responsible for avoiding
possible overfitting of the model. After testing several values, this parameter was set to𝐶 = 1 for this study.

4.1.4 Decision Trees

Decision Trees can also be applied to both regression and classification problems. Tree-
based methods partition the feature space into a set of rectangles and then fit a simple
model to each one. They are conceptually simple yet powerful. However, since isolated
decision trees have a high variance, they typically are not competitive with the best-
supervised learning approaches. For this reason, as already mentioned in section 4.1.2,
decision trees are the ideal candidates for bagging [66], whose main idea is to average
many noisy but relatively unbiased models, and therefore, reduce the variance.

4.1.5 Random Forest Regression

Random forest is known as an ensemble machine learning technique that involves the
creation of hundreds of decision tree models. Essentially, the random forest algorithm
takes advantage of the bagging technique, constructing multiples of individual decision
trees for each sample and averaging the results, generating a final output with reduced
variance. This way, it is possible to capture complex interaction structures in the data,
and if grown sufÏciently deep, have relatively low bias [55, 66]. However, to prevent the
trees from being too deep and to avoid overfitting, the maximum depth for the Random
Forest Regression (RFR) model was set to 5. Moreover, another relevant parameter
in this model is the criterion (loss function) to be used during the training [66]. This
parameter is responsible for measuring the quality of a split. For this work, the Mean
Squared Error (MSE) was chosen, which is equal to variance reduction as a feature
selection criterion.

4.1.6 Artificial Neural Network

The Artificial Neural Network (ANN), which applies both for regression and classifica-
tion problems, is often represented by a network diagram as shown in Figure 4.3. The
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basic idea behind this model is to extract linear combinations of the inputs as derived
features and then model the target as a non-linear function of these resulting features
[60]. For regression models, normally 𝐾 = 1 and there is only one output unit 𝑌1 at
the top. Derived features𝑍𝑚 are created from linear combinations of the inputs𝑋, and
then the target 𝑌𝑘 is modelled as a function of linear combinations of the 𝑍𝑚, as given
by [66]:

𝑍𝑚 = 𝜎 (𝛼0𝑚 + 𝛼𝑇𝑚𝑋) , 𝑚 = 1, ..., 𝑀,𝑇𝑘 = 𝛽0𝑘 + 𝛽𝑇𝑘 𝑍, 𝑘 = 1, ..., 𝐾, (4.2)𝑓𝑘 (𝑋) = 𝑔𝑘 (𝑇) , 𝑘 = 1, ..., 𝐾
where 𝑍 = (𝑍1, 𝑍2, ..., 𝑍𝑀) represents the vector of derived features also known as
hidden units, 𝑇 = (𝑇1, 𝑇2, … , 𝑇𝐾) represents the vector of outputs of the hidden
layer, and 𝑌 denotes the target variable. In the context of this neural network, 𝑌 typically
comprises either the predicted values in regression tasks or the class probabilities in
classification tasks. 𝛼𝑚 and 𝛽𝑘 denote the weights for the inputs 𝑋 and for the hidden
layers, respectively. The activation function 𝜎(𝑣) is usually chosen to be the sigmoid
function 𝜎(𝑣) = 1/(1 + 𝑒−𝑣) [55, 66]. In addition to the sigmoid function, there are
also other activation functions broadly used in deep learning, such as logistic sigmoid,
hyperbolic tangent (tanh), rectified linear units (ReLU), exponential linear unit (ELU),
and scaled exponential linear unit (SELU) [60]. Finally, the output function 𝑔𝑘(𝑇 )
facilitates the final transformation of the hidden layer outputs 𝑇 into the predicted
values for the target variable 𝑌. For regression problems, usually, the identity function𝑔𝑘(𝑇 ) = 𝑇𝑘 is adopted.

After testing several ANN architectures, as well as comparing the performance of differ-
ent activation functions, the final architecture for this model was chosen, as shown in
Figure 4.4. The final model is a Multi-Layer Perceptron (MLP), containing 2 hidden
layers with 30 units each (without considering the bias unit). In addition, the first two
layers used the Hyperbolic Tangent activation function, while the last layer used the
linear function.

To evaluate the model’s performance, the Root Mean Squared Error (RMSE) is used as
a reference parameter:

RMSE = √ 1𝑛 𝑛∑𝑖=1 ( ̂𝑦𝑖 − 𝑦𝑖)2 . (4.3)
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Figure 4.3: Example diagram of a single-hidden-layer neural network.

Figure 4.4: Multi-layer perceptron architecture chosen for the Artificial Neural Network model.
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4.2 Structure of the Processing Chain

This section outlines the methodology employed for road surface roughness (ℎrms)
estimation using machine learning-based regression models with fully polarimetric
airborne X-band F-SAR data. The PolSAR datasets must be pre-processed before they
can be used for road surface roughness estimation. As already discussed in the previous
chapter (refer to section 3.2.1 on page 38), these steps include the generation of the 𝑻4
matrix, the estimation and minimisation of additive noise, speckle filtering with the 3x3
refined Lee speckle filter, radiometric calibration and 𝜎𝑜 image generation.

4.2.1 Features Extraction and Data Preparation

After performing the pre-processing of the F-SAR datasets, the next step involves identi-
fying features that are correlated with the ground-truth surface roughness (GT ℎrms)
values and can be used as inputs to machine learning-based regression models. For
this purpose, a variety of disparity parameters, texture parameters, and polarimetric
parameters were derived from the pre-processed F-SAR data, as shown in Table 4.1.

The texture parameters are calculated individually for each pixel, using amovingwindow
of size 3 x 3. These features are shown in (4.4) to (4.7), where 𝑓2, 𝑓3, 𝑓4, and 𝑓7 represent
contrast, correlation, homogeneity, and dissimilarity of a Gray Level Co-occurrence
Matrix (GLCM), respectively [65, 127]. The GLCM, denoted as 𝑷, is a matrix that
represents the frequency of co-occurring intensity values of pixel pairs at a specific spatial
relationship within the moving window. Each element 𝑝(𝑖, 𝑗) in 𝑷 is computed by
normalizing these frequencies to form a probability matrix. The parameters (𝜇𝑥, 𝜇𝑦)
and (𝜎𝑥, 𝜎𝑦) are the mean and standard deviation of the marginal probability matri-
ces obtained by summing the rows and columns of 𝑷, respectively. The remaining
parameters obtained from the GLCM do not indicate any correlation and are therefore
discarded from further analyses.

𝑓2 = 𝑁−1∑𝑖,𝑗=0 [|𝑖 − 𝑗|2𝑝 (𝑖, 𝑗)] (4.4)𝑓3 = ∑𝑖 ∑𝑗 (𝑖𝑗) 𝑝 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝜎𝑥𝜎𝑦 (4.5)𝑓4 = ∑𝑖 ∑𝑗 11 + (𝑖 − 𝑗)2 𝑝 (𝑖, 𝑗) (4.6)𝑓7 = ∑𝑖 ∑𝑗 |𝑖 − 𝑗|𝑝 (𝑖, 𝑗) (4.7)
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Table 4.1: List of the features extracted from the pre-processed F-SAR data.

Parameter Description𝜎𝑜 Calibrated 𝜎0 images for the HH and VV
polarisations𝜃 Local incidence angle during data acquisition𝑓2 (Contrast) A measure of local variation𝑓3 (Correlation) A measure of the linear dependency of

gray levels of neighboring pixels𝑓4 (Homogeneity) A measure of local homogeneity𝑓7 (Dissimilarity) A measure of local dissimilarity

Mean Average between neighboring pixels

Standard deviation Standard deviation between neighboring pixels

Entropy Measure of the randomness of the scattering

Anisotropy
Relation between the secondary

scattering processes𝛼 Characterizes the scattering mechanism𝛽 Characterizes the dominant polarization

Besides that, the mean and the standard deviation of a 3 x 3 moving window over the
HH and VV amplitude images are considered. At last, the parameters entropy (𝐻),
anisotropy (𝐴), 𝛼, and 𝛽, obtained from the Cloude-Pottier Decomposition [37], are
calculated.

In statistics, the two important correlation coefÏcients often used to measure the cor-
relation between two variables are Pearson and Spearman [66]. Thus, after further
analysis of the correlation of these variables, the parameters that do not present a direct
correlation (Pearson |𝑟| ≲ 0.3) with the previously measured ground-truth surface
roughness (GT ℎrms) values are discarded. In addition, variables that show a high cor-
relation (Spearman |𝜌| ≳ 0.7) with other remaining variables are also removed, given
that multicollinearity can compromise the performance of machine learning algorithms
[10].

Likewise, the analysis of the NESZ presented in section 3.1 on page 31, which is a
measure of the sensitivity of the SAR system to areas of low radar backscatter, showed
that the data derived from the HV&VH channels are highly noisy, given that there is
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only a tiny backscatter from these channels. Therefore, the anisotropy, entropy, alpha,
and other similar parameters which require the cross-polarisation channels are discarded
from further analysis. As a result, the relevant features that are used as input to the
machine learning models are shown in Table 4.2.

Table 4.2: List of features selected as input to the machine learning regression models.

Parameter Description𝜎0 Calibrated 𝜎0 images for the HH and VV
polarisations𝜃 Local Incidence angle during data acquisition

Mean
3x3 moving window average between neighbouring pixels

of the HH and VV amplitude images

Standard deviation
3x3 moving window standard deviation between

neighbouring pixels of the HH and VV amplitude images

Following the features selection, the 11 available F-SAR datasets (see Table A.2 on page
174) are divided into training and test datasets. In particular, 8 datasets are intended
for training purposes, while the remaining 3 datasets are used for testing purposes.
Subsequently, the features are scaled to ensure that features with different magnitudes
do not influence or dominate the trained model. These scaled features are then used to
train and test the machine learning-based regression models described in section 4.1 to
predict ℎrms values for the road surfaces. The block diagram of the processing chain used
to train the machine learning-based models and to estimate the ℎrms values is shown in
Figure 4.5.

4.3 Experimental Results and Discussion

This section presents the road surface roughness results obtained using the machine
learning-based regressionmodels (SVR, RFR andANN) for the Kaufbeuren, duraBASt
and Braunschweig test sites. In the case of the Kaufbeuren test site , these results are
compared with both the ground truth surface roughness (GT ℎrms) values and also with
the surface roughness results obtained from the new semi-empirical model. For the
duraBASt and Braunschweig test sites, however, the results are compared exclusively
with those from the new semi-empirical model, as no ground truth data are available.
Further details on these test sites and the collection of ground-truth data are available in
Appendix A on page 178.
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Figure 4.5: Block diagram of the processing chain used to train the machine learning-based models and to
estimate the road surface roughness.

4.3.1 Kaufbeuren Test Site

After training the SVR, RFR, and ANNmodels with the eight training datasets, these
models were then applied to the three testing datasets (PS03, PS11, PS14 datasets listed
in Table A.2 on page 174) for calculating the road surface roughness (ℎrms) values. For
evaluating the performance of these models, the ℎrms values were estimated for the GT
spots. Then the RMSE between the model estimated ℎrms and the GT ℎrms values were
calculated for both the training and testing datasets.

Figure 4.6 shows the RMSE values obtained for the SVR, RFR, and ANNmodels from
the three testing datasets. For the PS03 dataset, which has a 45∘ flight track w.r.t. the
Kaufbeuren runway, the RFRmodel has the lowest RMSE of 0.33 mm. The highest
RMSE of 0.37 mm is observed for the SVRmodel. For the PS11 dataset, which was
acquired with a flight track parallel to the runway and also with an incidence angle of
approximately 39∘ at the runway, the RFRmodel has the lowest RMSE of 0.35 mm and
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Figure 4.6: RMSE values estimated from the testing datasets for the machine learning models at the
Kaufbeuren test site.

the highest RMSE of 0.38 mm is obtained for the ANNmodel. The PS14 dataset was
also acquired with a flight track parallel to the runway and with an incidence angle of
approximately 45∘ at the runway. For this dataset, the lowest RMSE of 0.41 mmwas
observed for the SVRmodel and the highest RMSE of 0.43 mmwas observed for the
RFRmodel.

From Figure 4.6, it can be seen that the RMSE for the models varies depending on
the datasets. However, from all test datasets and models, it can be seen that the lowest
RMSE is 0.33 mm and the highest RMSE is 0.43 mm, which is not a large variation.
Table 4.3 summarises themeanRMSE values, by taking themean frommultiple datasets
for both the training set and the testing set. It can be seen that for the training set, the
lowest RMSE is 0.32 mm for the SVRmodel and the highest RMSE is 0.36 mm for the
RFR model. In the case of the testing set, the lowest RMSE of 0.37 mm is obtained
for the ANNmodel and the highest RMSE of 0.39 mm is obtained for both the SVR
and RFRmodels. It can be seen from both Figure 4.6 and Table 4.3 that the RMSE
variations for all the models are very low, which shows the consistency of the models in
estimating the ℎrms values.

Figure 4.7 and Figure 4.8 show the surface roughness (ℎrms) images generated from the
PS14 and PS03 test datasets, respectively. As mentioned before, the PS14 dataset was
acquired with a flight track parallel to the runway with an incidence angle of approxi-
mately 45∘, and the PS03 dataset was acquired with a 45∘ flight track w.r.t. the runway
and the incidence angle varies from 29∘ to 55∘ from one end of the runway to the other
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Table 4.3: Mean RMSE values for the GT spots at the Kaufbeuren test site.

Machine learning models
Mean RMSE

training datasets
(mm)

Mean RMSE
testing datasets

(mm)

Artificial Neural Network (ANN) 0.35 0.37

Support Vector Regression (SVR) 0.32 0.39

Random Forest Regression (RFR) 0.36 0.39

(cf. Table A.2 on page 174). Figures 4.7(a) and 4.8(a) were generated using the ANN
model, Figures 4.7(b) and 4.8(b) using the SVR model. The RFR model results are
shown in Figures 4.7(c) and 4.8(c). It is important to note that in these figures the areas
outside the runway, taxiway, and parking space are not valid, but were not cut out since
no geocoding was done.

Figure 4.8(d) shows the ℎrms generated using the new semi-empirical model (refer to
section 3.1 on page 31) for the PS03 dataset. In contrast to Figure 4.7 and Figure 4.8(a-c),
this image was geocoded and had the irrelevant regions removed. By comparing all theℎrms images shown in Figure 4.7 and Figures 4.8(a-c) with Figure 4.8(d), it can be seen
that the ℎrms images generated by the ANN, SVR, and RFRmodels are matching with
the ℎrms image generated by the new semi-empirical model. In all the images, the asphalt
regions appear primarily in blue colour indicating roughness values in the 0.5 to 1.0
mm range. The concrete regions at both ends of the runway appear in yellow colour
indicating higher surface roughness in the 1.0 to 1.5 mm range. Also, the concrete areas
with repeated cuts on the top end of the runway are appearing in green colour indicating
higher roughness (1.5 to 2.0 mm range) compared to the other concrete regions without
cuts. This is more evident in the PS03 dataset due to its 45∘ flight track to the runway
which resulted in a higher backscattering from the cuts in the concrete. By further
comparing the results with the GE image of the Kaufbeuren test site shown in Figure
A.1 on page 170 and also with the information about the GT spots listed in Table A.6
on page 180, it can be observed that the ANN, SVR, and RFR models were able to
distinguish the different compositions in the runway structure.

It is interesting to note that some areas of the taxiway, such as the region in the upper
right corner in Figure 4.8(d), show colour differences compared to Figures 4.8(a)-(c).
This mismatch arises from the ℎrms values estimated for these regions by the new semi-
empirical model, which were slightly less than 0.5 mm, resulting in a purple colour
visualisation. In contrast, for the same region, the ℎrms values estimated by the machine
learning-basedmodelswere slightly above 0.5mm, resulting in a blue colour visualisation.
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(a)

(b)

(c)

Figure 4.7: Surface roughness images for the Kaufbeuren test site generated using (a) artificial neural
network, (b) support vector regression and (c) random forest regression with the PS14 testing dataset.

This discrepancy is attributed to the use of the discrete colour bar for visualisation of
the surface roughness results.

Additionally, Table 4.4 lists the ℎrms values estimated at each GT spot for the different
models examined in this study. The obtained surface roughness from this investigation
was calculated by taking the average of three test datasets. By comparing the results,
it can be seen that the machine learning models were consistent with the new semi-
empirical model, displaying similar results. Moreover, among the machine learning
models, although the Random Forest Regression did not have the lowest RMSE value,
it produced the best visually accurate results. In fact, this can be seen in the surface
roughness images (Figure 4.7(c) and Figure 4.8(c), in which this model presented the
lowest noise when compared to the others.
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(a) (b) (c)

(d)

Figure 4.8: Surface roughness images for the Kaufbeuren test site generated using (a) artificial neural
network, (b) support vector regression, (c) random forest regression (all in the slant range geometry without
geocoding) and (d) new semi-empirical model with the PS03 testing dataset (geocoded and overlaid in GE).
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Table 4.4: Comparison of surface roughness results at GT spots by averaging multiple datasets.

GT
spot

GTℎrms

(mm)

New
Semi-empirical

Model

ANN
Model

SVR
Model

RFR
Model

1 2.36 1.78 1.50 1.42 1.37

2 0.99 1.14 1.09 1.05 1.10

3 0.66 0.60 0.69 0.68 0.72

4 0.88 1.40 1.29 1.32 1.26

5 0.68 0.80 1.00 0.89 0.77

6 0.98 0.79 0.93 0.82 0.79

7 1.09 1.28 1.30 1.31 1.21

8 0.61 0.59 0.65 0.69 0.72

RMSE
(mm)

0.299 0.365 0.388 0.389

4.3.2 duraBASt Test Site

Likewise, the ℎrms images generated using the ANN, SVR, and RFR models for the
duraBASt test site are shown in Figure 4.9. The duraBASt test site is highlighted with a
white border in Figures 4.9(a)-(d) and with a yellow border in Figure 4.9(e). This test
site proved to be much noisier than the previous one. This happens because, unlike the
previous test site, there is intense vehicle trafÏc in the region, which interferes with the
data obtained by the SAR system. In the same way, the vegetation close to the highway
also generates shadow regions harming performance of the models [111].

Nonetheless, it is still possible to compare the performance of the machine learning-
based models with the new semi-empirical model. The ℎrms images generated using the
ANN, SVR, and RFR models are shown in Figures 4.9(a), (b), and (c), respectively.
Figure 4.9(d) shows the ℎrms image generated using the new semi-empirical model. It
can be seen that the surface roughness results estimated by the ANN, SVR, and RFR
models are matching with the new semi-empirical model result. The smooth areas on
the duraBASt test site are appearing in blue colour indicating low surface roughness and
the rougher regions are appearing in yellow colour indicating higher values of surface
roughness. In addition, a sudden change in surface roughness can be noticed in the
nearby highway indicated by the colour change from blue to yellow and green, which is
probably due to a different material composition. In fact, also the GE image in Figure
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(a) (b) (c)

(d) (e)

Figure 4.9: Surface roughness results for the duraBASt test site (white and yellow border), with results
obtained using (a) artificial neural network, (b) support vector regression, (c) random forest regression,
and (d) new semi-empirical models. (e) Corresponding Google-Earth image.
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4.9(e) shows a change in the appearance of the road surface in the smooth and rough
regions both on the duraBASt test site and on the highway.

It is important to note that the red regions visible outside the road surfaces in Figure
4.9(d) are predominantly displayed in green in Figures 4.9(a)-(c). This suggests a distinct
and relatively lower estimation of surface roughness by the machine learning-based
models compared to the new semi-empirical model for these regions. The reason behind
this is that both the machine learning-based models and the new semi-empirical model
were exclusively trained for road surfaces. Consequently, the ℎrms values estimated by
these models beyond the road surfaces can vary betweenmodels and are invalid and need
to be discarded.

4.3.3 Braunschweig Test Site

(a) (b)

(c) (d)

Figure 4.10: Surface roughness image generated for the Wolfsburg motorway intersection at Braunschweig
using (a) artificial neural network, (b) support vector regression, (c) random forest regression and (d) new
semi-empirical models.

Figures 4.10(a-c) show the surface roughness images generated using theANN, SVR and
RFRmodels for the Braunschweig test site. Specifically, Figure 4.10(a) shows the ℎrms
image generated with the ANNmodel, Figure 4.10(b) shows the ℎrms image from the
SVRmodel, and Figure 4.10(c) illustrates the estimatedℎrms image from theRFRmodel.

93



4 Road Surface Roughness Estimation usingMachine Learning Approaches

Notably, most parts of the motorway appear in blue, indicating ℎrms values in the 0.5
mm to 1.0 mm range. However, in the zoomed view area, a clear transition from blue to
yellow can be observed, indicating increased surface roughness in the 1.0 mm to 1.5 mm
range. This sharp change indicates a possible variation in road construction materials
during a maintenance operation and underlines the ability of the ANN, SVR and RFR
models to recognise different road materials with varying roughness. Furthermore, the
results of the machine learning model are consistent with the new semi-empirical model,
as shown in Figure 4.10(d).

4.4 Chapter Summary

This chapter presented a novel machine learning-based approach for road surface rough-
ness estimation using a fully polarimetric airborne SAR system. For this purpose, three
different machine learning models, namely support vector regression (SVR), random
forest regression (RFR) and artificial neural network (ANN)-based regression, were
investigated. To overcome the challenge of limited ground truth (GT) data for training,
bagging and cross-validation techniques were used to prevent overfitting.

Experimental road surface roughness results of the SVR, RFR and ANNmodels using
airborne F-SAR datasets collected over the Kaufbeuren, duraBASt and Braunschweig
test sites showed good agreement with both the new semi-empirical model results dis-
cussed in chapter 3 and GT ℎrms data. While all models had similar RMSE values
compared to the GT data, the results of the RFRmodel appeared to be visually superior
due to its less noisy appearance.

It is worth noting that the new semi-empirical model still gives slightly better results,
and is also more computationally efÏcient and faster compared to machine learning-
based models. However, the performance of the semi-empirical model is limited to
the validity conditions assumed during its development. On the other hand, machine
learning models can adapt to variations in data and environments. Therefore, the new
semi-empirical model can be a good option for road surface roughness estimation when
the input data satisfy the model’s validity conditions requiring ℎrms < 12.43 mm for
X-band and 𝜃 > 30𝑜, with a preference for incidence angles less than 35∘ for ensuring
high SNR. In other situations, especially when datasets with 𝜃 < 30𝑜 need to be used,
machine learning-based models may be more suitable for reliable road surface roughness
estimation.
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5.1 Need for Spaceborne SAR-based Road Condition
Monitoring

The chapters 3 and 4 emphasised the potential of airborne SAR systems, particularly
the fully polarimetric X-band F-SAR system, for estimating road surface roughness
using the new semi-empirical model and machine learning-based regression models.
However, airborne SAR systems face constraints such as high operational costs, the
need for precise flight planning and limited coverage, which makes them unsuitable for
periodic global-scale road surface roughness estimation.

To address these limitations, spaceborne SAR systems emerge as a promising alternative.
These systems enable cost-effective, repetitive data acquisition across any global location.
In contrast to airborne SAR systems, state-of-the-art spaceborne SAR systems in general
need to be operated in spotlight mode for achieving a comparably high spatial resolution
as airborne SAR systems, but this generally limits them to a smaller scene size per
acquisition. Moreover, the lower SNR of the spaceborne SAR datasets due to the
higher platform altitude increases the challenge of utilising spaceborne SAR datasets
for low SNR applications such as road roughness estimation. A future high-resolution
wide-swath (HRWS) spaceborne SAR system is needed to overcome these limitations.

This chapter explores the potential of high-resolution X-band spaceborne SAR data
acquired by the TerraSAR-X (TS-X) satellite of Germany for road surface roughness
estimation. The Kaufbeuren and Braunschweig test sites utilised for the airborne SAR-
based investigations were also used for this study and the TS-X datasets were acquired
over these test sites. Further details about these test sites and an overview of the TS-X
system can be found in Appendix A on pages 169 and 175, respectively. The use of
spaceborne SAR datasets acquired in X-band allows for a direct comparison of road
surface roughness results with those obtained from the airborne X-band F-SAR system
discussed in chapters 3 and 4. Parts of the contents discussed in this chapter have already
been published in [P6, P7] and also in the master thesis [S1]1.

1 The doctoral student (Arun Babu) supervised the master student, and the cited master thesis is mainly
based on his ideas.
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5.2 Selection of Spaceborne SAR Imaging Mode

The TS-X satellite operates in several imaging modes, with higher spatial resolutions
available in the staring spotlight (ST), high-resolution spotlight (HS), and stripmap
(SM) modes (refer to Table A.4 on page 177). These modes provide different spatial
resolutions, with ST offering the highest resolution of approximately 0.24 x 0.60 m
(azimuth x range). HS mode offers a spatial resolution of 1.1 x 1.2 m, while SMmode
provides a spatial resolution of 3.3 x 1.2 m. Additionally, each mode has different swath
coverages, with ST covering approximately 3.7 x 4 km, HS covering 5 x 10 km, and SM
covering 50 x 30 km (azimuth x range).

Figure 5.1: Comparison of TS-X imaging modes. (a) GE image of the Kaufbeuren runway. TS-X intensity
images in (b) SM, (c) HS, and (d) ST modes.

Figure 5.1(a) illustrates aGoogle Earth (GE) image depicting a section of theKaufbeuren
runway. Correspondingly, Figures 5.1(b), (c), and (d) showcase TS-X HH polarised
intensity images of the same runway segment, captured in SM, HS, and ST imaging
modes, respectively. The SM and ST images have a scene centre incidence angle of
approximately 44 degrees, while the HS image has a scene centre incidence angle of 53
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degrees (an HS mode dataset with a similar incidence angle range to SM and ST images
was unavailable from the TS-X archive). Upon comparing the TS-X intensity images
with the GE image, it becomes evident that SAR backscatter variations from the runway,
attributable to changes in runway construction materials, are distinguishable only in
the ST mode intensity image due to its highest spatial resolution. The runway itself
is less distinguishable in the SM andHSmode intensity images. The HSmode image
appears to be of inferior quality compared to the SMmode image due to its shallower
incidence angle of 53 degrees, resulting in a significantly degraded SNR. Consequently,
it can be inferred from Figure 5.1 that only TS-X datasets acquired in ST imaging mode
are suitable for road surface roughness estimation. Several TS-X STmode datasets were
taken from the archive and also newly acquired for road surface roughness estimation
across the Kaufbeuren and Braunschweig test sites, with their details provided in Table
A.5 on page 178.

5.3 Structure of the Processing Chain

The methodology adopted to estimate the road surface roughness using the TS-X ST
mode datasets is discussed in this section. The block diagram of the processing chain is
shown in Figure 5.2.

5.3.1 Radiometric Calibration and Multilooking

The first step of road surface roughness estimation utilising TS-X data involves pre-
processing the TS-X STmode data for using them as input for the surface roughness
estimation model. The pre-processing of the data starts by performing the radiometric
calibration to generate the calibrated 𝜎𝑜 backscatter image and it is carried out as follows
[6]: 𝜎𝑜 = (𝑘s ∗ |DN|2 − NEBN) ∗ sin 𝜃 (5.1)

where 𝑘s is the calibration and processor scaling factor, DN values are the pixel intensity
values, NEBN represents the noise equivalent beta nought values and 𝜃 is the local
incidence angle. The 𝜎𝑜 values are estimated on a pixel-by-pixel basis and the NEBN
values, which are a measure of the system noise, are estimated and subtracted at this
stage to minimise the additive noise present in the data [6, P6].

The NEBN values for a TS-X dataset can be calculated using the information available
in the annotation file delivered with the datasets. Within the annotation file, NEBN is
expressed in the form of polynomials, which are scaledwith the calibration and processor
scaling factor (𝑘s). These polynomials describe the noise power as a function of range
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Figure 5.2: Block diagram of the processing chain used for road surface roughness estimation using TS-X
STmode data.

time, spanning from near range to far range, and are determined at various azimuth
positions (azimuth time) of the TS-X satellite during data acquisition.

Figure 5.3 illustrates an examplewhere theNEBNis calculated at three azimuthpositions:
the initial measurement at the beginning of data acquisition, the second measurement
midway through data acquisition, and the final measurement at the end of data acquisi-
tion. Each noise polynomial for a specific range position at any of the azimuth positions
of the TS-X system can be expressed as follows:

NEBN = 𝑘s ⋅ 𝑑𝑒𝑔∑𝑖=0 coeff 𝑖 ⋅ (𝜏 − 𝜏ref)𝑖 , 𝜏 ∈ ⌊𝜏min, 𝜏max⌋ , (5.2)

where 𝑑𝑒𝑔 denotes the degree of the noise polynomial, while coeff stands for the coefÏ-
cients of the noise polynomial. 𝜏ref represents the reference point in the range direction,
whereas 𝜏min and 𝜏max indicate the minimum validity range point (near range) and the
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Figure 5.3: Illustration of the noise (NEBN) estimation.

maximum validity range point (far range), respectively, where the NEBNmeasurement
remains valid.

Thus, in the scenario depicted in Figure 5.3, NEBN values are estimated for all pixels in
the range direction between the first pixel (𝜏min) and the last pixel (𝜏max) for the three
azimuth positions. Linear interpolation is used to estimate NEBN values between these
three azimuth positions, resulting in an NEBN image with dimensions matching those
of the SAR image. Pixel-wise subtraction of these NEBN values is performed during
radiometric calibration (as in (5.1)) to generate the 𝜎𝑜 backscatter image withminimised
additive noise.

After radiometric calibration and NEBN subtraction, spatial domain multilooking is
applied to the 𝜎𝑜 backscatter image. Spatial domain multilooking is used to reduce
speckle in the data while increasing the SNR, but at the cost of degradation in spatial
resolution. This degradation of spatial resolution inmultilooking results from the spatial
averaging of neighbouring pixels in both the range and azimuth directions. To achieve
this, a sliding window is used to perform spatial averaging over all pixels of the input
image, where the window size is determined based on the smallest multilooking factors
required in the azimuth and range directions to produce approximately square pixels
[29].

Given the different spatial resolutions of the TS-X ST mode datasets in azimuth and
range directions (see Table A.4 on page 177), distinct multilooking factors are selected
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in these directions for performing the spatial domain multilooking. For example, a
sliding window size of 5x1 (azimuth x range) is selected for the ST mode dataset with an
incidence angle of 43.7 degrees (cf. Figure 5.1(d)). Following the multilooking, the 𝜎𝑜
image and the local incidence angle (𝜃) image are provided as inputs to the road surface
roughness estimation model.

5.3.2 Adaptation of the New Semi-empirical Model for Spaceborne
SAR Case

The new semi-empirical model presented in chapter 3 for road surface roughness using
airborne X-band F-SAR datasets has been adapted to make it compatible with the TS-X
ST-mode datasets for reliable road surface roughness estimation.

Since theTS-X ST-mode datasets have different characteristics as they are single-polarised
with coarser spatial resolution compared to the fully polarimetric F-SAR datasets, a
new set of model coefÏcients (𝛿, 𝛽, and 𝜀) needs to be derived for fitting the new semi-
empirical model expressed in (3.2) on page 33. Using TS-X ST mode datasets, these
coefÏcients are determined by a least square-based curve fitting algorithm. This proce-
dure uses TS-X 𝜎𝑜 values for the HH or VV polarisations, corresponding 𝜃 values and
GT ℎrms values from the eight GT spots (cf. Table A.6 on page 180).

A unique aspect of this adaptation is the possibility to include the reliable ℎrms values
derived from F-SAR datasets using the original version of the semi-empirical model as
additional secondary ground truth surface roughness values. Consequently, the multi-
dataset averaged F-SAR ℎrms values with the lowest RMSE of 0.30 mm (see Figures 3.27
and 3.28 on pages 68 and 69, respectively) were used as secondary GT ℎrms values.

For the extractionofℎrms values from the F-SARsurface roughness image, a randompath
along the Kaufbeuren runway was plotted on GE, covering both asphalt and concrete
surfaces (a portion of this path is shown in Figure 5.4). Approximately 100 locations
along this path were selected and the ℎrms values at these locations were extracted from
the geocoded multi-dataset averaged F-SAR surface roughness image covering the entire
length of the runway, using the coordinates of these 100 points obtained from GE.
Corresponding 𝜎𝑜 values for HH or VV polarisations and 𝜃 values for these 100 points
were also extracted from TS-X datasets. These values, together with the actual eight GTℎrms values and the TS-X 𝜎𝑜 and 𝜃 values for these eight GT points, were passed into a
least square-based curve fitting algorithm for estimating the model coefÏcients 𝛿, 𝛽 and𝜀. The model coefÏcients were estimated separately for HH and VV polarisations and
their values are listed in Table 5.1. As the scattering assumptions remain unchanged in
the adapted model, the validity conditions are the same as those of the original model
(𝑘𝑠 < 2.5 and 𝜃 > 30𝑜) [P6].
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Figure 5.4: A portion of the random path drawn along the Kaufbeuren runway on GE for extracting ℎrms
values from the F-SAR surface roughness image.

Table 5.1: Model coefÏcients estimated for the TS-X STmode data.

Model CoefÏcients
Polarisation

HH VV𝛿 0.16373946 0.17887929𝛽 -0.10682052 -3.95021343𝜀 1.99490104 3.38223192

5.3.3 Upper 𝜎𝑜 and Lower SNR Thresholding

Similar to the case of airborne SAR data presented in section 3.2.2 on page 42, the
surface roughness (ℎrms) values obtained from the TS-X datasets using the adapted
semi-empirical model need to be upper 𝜎𝑜 and lower SNR thresholded to remove the
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(a) (b)

Figure 5.5: TS-X ST 𝜎𝑜 images for a motorway section at the Braunschweig test site. (a) without upper 𝜎𝑜
thresholding and (b) after masking out all the pixels with 𝜎𝑜 values above -10 dB (masked out pixels in
white colour).

invalid high ℎrms values and the unreliable noisy ℎrms values, respectively, from the final
surface roughness image [P4].

In the case of the TS-X data, Figure 5.5(a) shows the 𝜎𝑜 image for a motorway section
at the Braunschweig test site. Figure 5.5(b) shows the 𝜎𝑜 image of the same region after
masking out pixels with 𝜎𝑜 values higher than -10 dB. A comparison between these two
figures shows that all pixels of the road surface have 𝜎𝑜 values below -10 dB. Conversely,𝜎𝑜 values above -10 dB on the road surface come from strong backscatter sources such
as overhead signboards and flyover walls that are not related to the road surface. Conse-
quently, during the upper 𝜎𝑜 thresholding process, all ℎrms pixels corresponding to 𝜎𝑜
values above -10 dB are masked from the final ℎrms image, effectively removing high and
invalid ℎrms estimates [P6].

In order to perform the lower SNR thresholding, the SNR of the TS-X datasets must
first be estimated. The SNR estimation procedure for the TS-X datasets is as follows
[51]:

SNR = 𝜎𝑜 − NESZ
NESZ

, (5.3)

where NESZ represents the noise equivalent sigma zero, and it can be estimated from
the available noise equivalent beta nought (NEBN) values as NESZ = NEBN ⋅ sin 𝜃
[6].
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Figure 5.6: Surface roughness (ℎrms) vs. SNR plot for lower SNR threshold estimation.

After estimating the SNR of the TS-X dataset, an area on the Kaufbeuren runway
with high SNRwas selected. Starting from this current SNR value, the SNRwas then
reduced by gradually adding randomGaussian noise to the data. For each SNR level,
the ℎrms value was also calculated and an SNR vs. ℎrms plot was created.

Figure 5.6 shows the ℎrms vs. SNR plot. From the plot, it can be seen that the SNR has
been varied from the original value of 10.5 dB down to -1 dB. The ℎrms value remains
almost stable at 1.3 mm until the SNR reaches a lower value of 2.5 dB. Below the SNR
value of 2.5 dB, a steep increase in ℎrms is observed. Based on this observation, all pixels
with SNR below 2.5 dB were masked out from the final surface roughness image to
improve the credibility of the results.

5.3.4 Geocoding, Multi-dataset Fusion, Road Extraction and Google
Earth Visualisation

After implementing the upper 𝜎𝑜 and lower SNR thresholding on the ℎrms values
estimated from the TS-X datasets, the subsequent post-processing steps, including
geocoding, multi-dataset fusion, road extraction and Google Earth (GE) visualisation,
were performed in a manner consistent with the procedures applied for the airborne
F-SAR case (as described in section 3.2.2 on page 42).

In the geocoding step, the surface roughness images derived from the TS-X datasets are
re-projected from the slant-range coordinate system to the geographic coordinate system.
Subsequently, the fusion of multiple datasets is performed using either the highest SNR
method or the multi-dataset averaging method (cf. section 3.2.2 on page 42), which is
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applied only when surface roughness images frommultiple TS-X datasets with different
acquisition geometries and incidence angles are available.

In thefinal step, road sections are extracted from the resultingℎrms images using theOpen
Street Map (OSM) road layer (cf. section 3.2.2 on page 47). Keyhole Markup Language
(KML) files are created to enable the visualisation of road surface roughness images
in GE. In addition, GeoTIFF images are created to ensure compatibility for various
investigations and visualisations with state-of-the-art GIS (Geographic Information
System) software (cf. Figure 5.13) [P6].

5.4 Experimental Results and Discussion

This section presents the experimental road surface results from the TS-X ST mode
datasets for the Kaufbeuren and Braunschweig test sites, which were obtained using the
processing chain described in the previous section.

Figure 5.7: SNR plot for the Kaufbeuren runway.

Figure 5.7 shows SNR plots created for the Kaufbeuren runway, showing the SNR
values at 40 randomly selected positions along the entire length of the runway. These
plots comprise various datasets with different incidence angles and polarisations. The
analysis of Figure 5.7 shows that the concrete surface has a higher SNR compared to the
asphalt surface. This observation indicates that the concrete surface has a rougher texture,
resulting in a stronger backscatter signal. It is noteworthy that the HH polarisation
dataset has the lowest SNR, especially in the asphalt regions, making it unsuitable for
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accurate road surface roughness estimation. In contrast, the VV polarisation data have a
significantly higher SNR, with the VV dataset at an incidence angle of 31.6𝑜 having the
highest SNR among the other shown datasets. Consequently, VV polarisation datasets
with incidence angles between 30 and 35 degrees are particularly suitable for an accurate
road surface roughness TS-X estimation. This selection ensures an SNRof at least 2.5 dB
in both concrete and asphalt areas, which is also consistent with the validity conditions
of the roughness estimation model, which requires incidence angles greater than 30
degrees (cf. section 3.1 on page 31).

Figure 5.8 presents the surface roughness (ℎrms) images of a section of the Kaufbeuren
runway. After road extraction and KML file creation, the images were overlaid on GE.
In Figure 5.8(a), the GE image shows the runway with areas of asphalt, smooth concrete,
and rough concrete with repeated cuts. The ℎrms image in Figure 5.8(b) is estimated
using the F-SAR dataset (resolution: approximately 25 x 25 cm). Comparing Figure
5.8(b) with Figure 5.8(a), asphalt areas appear blue indicating low ℎrms values, while
concrete areas appear rougher and are indicated by cyan. Concrete areas with repeated
cuts exhibit the highest roughness level, represented by yellow. Figure 5.8(c) displays
the ℎrms image generated using the TS-X HH polarisation dataset. Most pixels from
asphalt and smooth concrete areas are masked out due to an SNR lower than the 2.5 dB
threshold. In Figure 5.8(d), the shown ℎrms image was estimated using the TS-X VV
polarisation dataset. Figure 5.8(d) hasmore valid pixels compared to Figure 5.8(c) due to
the higher SNR provided by the VV polarisation dataset. Asphalt areas are indicated by
blue, while smooth concrete areas appear rougher in cyan. The concrete areas with cuts
have the highest roughness level, represented by yellow with a value of approximately
2.25 mm. These findings align with the ℎrms results from the F-SAR dataset in Figure
5.8(b). Figures 5.8(e) and (f) show the ℎrms images obtained by fusing multiple datasets
using the highest SNRmethod and the multi-dataset averaging method, respectively.
The fusion involves all three VV-polarised TS-X datasets acquired over the Kaufbeuren
test site listed in Table A.5 on page 178. In both images, asphalt areas are represented in
blue to cyan colours and smooth concrete areas appear entirely in cyan. Figure 5.8(e)
exhibits more yellow pixels in the concrete area with cuts compared to Figure 5.8(f),
indicating a higher level of surface roughness. In both cases, the results closely agree
with the F-SAR results.

Figure 5.9 shows the comparison of ℎrms plots from TS-X and F-SAR datasets with the
GT ℎrms plot. The black plot shows the GT ℎrms values for the eight GT spots, while
the blue plot shows the estimated ℎrms values for the GT spots from the F-SAR dataset.
Although the blue plot correlates with the GT ℎrms plot, over- and underestimations are
evident for someGT spots. Overall, the plots have anRMSE of 0.30mm. The green plot
represents ℎrms values estimated using the VV polarised TS-X dataset with an incidence
angle of 31.6 degrees, which closely matches the GT ℎrms plot with an RMSE of 0.32

105



5 Road Surface Roughness Estimation using Spaceborne SAR

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Images of the Kaufbeuren runway. (a) GE image. ℎrms images from (b) F-SAR, (c) TS-XHH
pol, (d) TS-X VV pol, multi-dataset fusion using (e) highest SNR method and using (f) multi-dataset
averaging method.
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Figure 5.9: Comparison of ℎrms plots generated using the TS-X data with the GT ℎrms plot.

mm. It should be noted that this dataset was used to estimate the model coefÏcients and
the F-SAR ℎrms data with an RMSE of 0.30 mmwere used as additional reference data.
Therefore, the RMSE of the TS-X roughness data cannot be smaller than 0.30 mm.
The orange plot generated by the multi-dataset fusion using the highest SNRmethod
shows an overestimation of the ℎrms values resulting in the highest RMSE of 0.51 mm,
which is probably due to the sensitivity to local backscatter variations. The purple plot,
produced by the multi-dataset averaging fusion method, has an RMSE of 0.42 mmwith
the GT ℎrms plot. In short, Figure 5.9 indicates that the TS-X VV polarised datasets can
reliably estimate the ℎrms values with a comparable RMSE to the F-SAR and GT data.

The combined ℎrms images generated for the entire Kaufbeuren test site using the multi-
dataset averaging method are shown in Figure 5.10. Figure 5.10(a) shows the ℎrms image
from the F-SAR datasets, while Figure 5.10(b) shows the ℎrms image from the TS-X
datasets. Both images show a higher surface roughness in the concrete areas at both ends
of the runway compared to the asphalt areas between them. In addition, the images
identify repair works carried out on the runway, especially in the zoomed-in views, where
these areas show a significant increase in surface roughness, probably due to the use of
materials with different compositions during the maintenance activities. The very small
cuts on the runway are most noticeable in Figure 5.10(a), which is due to the very high
spatial resolution of the F-SAR datasets (25 cm). Despite the relatively low number of
valid pixels in Figure 5.10(b), which is a consequence of the lower SNR of the TS-X
datasets compared to Figure 5.10(a), theℎrms values estimated with the F-SAR andTS-X
datasets are in the similar range, showing the consistency between them.
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(a)

(b)

Figure 5.10: Fused ℎrms images for the Kaufbeuren test site, generated using the multi-dataset averaging
method from (a) F-SAR and (b) TS-X datasets.
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(a)

(b)

Figure 5.11: ℎrms images for the Braunschweig test site, generated using (a) a single F-SAR dataset and
(b) by multi-dataset averaging two TS-X datasets with incidence angles of 25.5 and 26.5 degrees. The
approximate flight tracks for the TS-X datasets are indicated w.r.t. the geographical north.
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Figure 5.11 shows a comparative evaluation of the ℎrms images generated for the Wolfs-
burg motorway intersection using F-SAR and TS-X datasets. Figure 5.11(a) shows
the ℎrms image derived from a single F-SAR dataset, while Figure 5.11(b) shows the
fused ℎrms image generated using the multi-dataset averaging method with the two
VV-polarised TS-X datasets acquired over the Braunschweig test site listed in Table A.5
on page 178. Both images were generated after performing upper 𝜎𝑜 and lower SNR
thresholding to remove invalid and noisy pixels. In both visualisations, the motorway
extending in the east-west direction appears predominantly in blue, which indicates a
uniform road surface roughness. Towards the eastern end of the motorway, however,
a shift to cyan can be seen, indicating a sudden change in the road surface roughness.
This could be due to different construction materials or maintenance measures in this
region and is consistent with the observations in the GE image shown in Figure A.3 on
page 171 and also in the ℎrms images shown in both Figures 3.23 and 4.10 on pages 64
and 93, respectively. The high level of agreement between the F-SAR and TS-X ℎrms
results for the east-west motorway is evident.

Conversely, the ℎrms results derived from the TS-X datasets for the north-south motor-
way show increased noise compared to the F-SAR result. This noise is because the
north-south direction coincides with the azimuth direction of the TS-X satellite in its
sun-synchronous dusk-dawn orbit with an inclination of 97∘, as shown by the yellow-
coloured azimuth and range direction arrows for both ascending and descending passes
in Figure 5.11(b). The movement of vehicles in the azimuth direction generates distur-
bances in the SAR image. In contrast, the ℎrms result obtained from the F-SAR dataset
for the north-south motorway remains consistently smooth and matches the surface
roughness values observed for the east-west motorway (shown in blue). This is because
the north-southmotorway is not aligned with the azimuth/flight direction of the F-SAR
system during data collection, as indicated by the azimuth and range direction arrows in
Figure 5.11(a). To ensure reliable estimates of surface roughness for north-south orien-
tated roads with the TS-X satellite, data acquisition should therefore ideally take place
during low-trafÏc periods. Furthermore, the four loop-shaped and the 45∘-oriented
narrow motorway link roads exhibit increased and noisy surface roughness values in the
TS-X result compared to the F-SAR result. This discrepancy is attributed to two factors.
First, the TS-X dataset suffers from slight geocoding offsets, particularly for the four loop
roads with elevation changes. These offsets result in high ℎrms values from areas outside
the road boundaries being mapped onto the roads while performing road extraction
and GE visualisation. This issue arises from the use of a basic geocoding approach that
does not account for elevation variations. Second, for the narrow 45∘-oriented roads,
double-bounce scattering caused by metallic fences and nearby trees further contributes
to increased surface roughness values in the TS-X-derived ℎrms image.
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Figure 5.12: ℎrms image from a TS-XHH polarised dataset for the A2-A391 motorway crossing in Braun-
schweig.

The road surface roughness image for the A2-A391 motorway crossing in Braunschweig
generated using the TS-XHH polarised dataset is shown in Figure 5.12. Although this
region is not one of the primary test sites considered for this study, the estimation of road
surface roughness for this motorway crossing is conducted to assess the adapted semi-
empirical model and processing chain’s suitability for estimating road surface roughness
of any roads of interest using the TS-X STmode datasets. Due to the unavailability of
VV polarised datasets, a HH polarised dataset is used for this example. The lower SNR
thresholding is not applied to this image due to the low SNRof theHHpolarised dataset
for roads. As a result, the absolute values of ℎrms are less accurate. However, qualitative
comparisons of ℎrms values can still be made. The south-north highway exhibits a lowerℎrms (blueish colour) compared to the west-east highway, which shows a higher ℎrms
(primarily cyan). Zooming in on the bridge of the west-east highway reveals a lowerℎrms (blue) compared to the connecting roads at either end of the bridge (cyan). This
suggests a sharp change in ℎrms, potentially due to the use of materials with lower surface
roughness for bridge construction (see GE image in zoomed view).
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Figure 5.13: Visualisation of theGeoTIFF formatmulti-dataset averaged surface roughness image generated
for the Kaufbeuren test site using the TS-X STmode datasets.

The multi-dataset averaged surface roughness image in GeoTIFF format for the Kauf-
beuren test site generated from the road surface roughness estimation processing chain is
visualised in Figure 5.13. As already explained and visualised for the airborne SAR case
in chapter 3 on page 63, the GeoTIFF surface roughness image is a single-band represen-
tation containing surface roughness values estimated using the adapted semi-empirical
model without any scaling applied. Each pixel representing the surface roughness values
also has the latitude and longitude information, allowing precise location of surface
roughness pixels on the ground (see x and y axes). The availability of road surface rough-
ness results in GeoTIFF format ensures compatibility and integration with advanced
GIS software, enhancing its utility for further analysis.
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5.5 Chapter Summary

This chapter introduced an innovative approach for assessing the road surface roughness
utilising high-resolution spaceborne SAR datasets. Using the TS-X data acquired over
theKaufbeuren andBraunschweig test sites, it was found that theTS-Xdatasets acquired
in Staring Spotlight (ST) mode were necessary for this investigation, as road surfaces
were only clearly visible in ST mode. However, this high spatial resolution came at the
cost of reduced swath and single polarisation channel operation in the case of the TS-X
system. A future high-resolution wide-swath (HRWS) spaceborne SAR system with
a bandwidth of up to 1200 MHz and an improved NESZ can have the potential to
overcome these limitations and provide a better estimate of road surface roughness. The
large bandwidth of 1200MHz allows for finer spatial resolution, which is crucial for
accurately detecting and mapping small-scale features on the road surface.

The staring spotlight TS-X datasets used in the study demonstrated notable sensitivity
to surface variations, highlighting their potential for estimating large-scale road surface
roughness (ℎrms). The ℎrms results obtained using the adapted semi-empirical model
exhibited good agreement with both the F-SAR results (refer to chapters 3 and 4 for
more details) and GT data. Nevertheless, the low SNR of the TS-X data, especially for
the HH-polarised datasets, posed a serious challenge for road roughness estimation.

The most suitable TS-X datasets for road surface roughness estimation were the VV-
polarised TS-X datasets acquired in STmode with incidence angles in the range of 30 to
35 degrees. This choice was based on the fact that the highest possible spatial resolution
could be achieved through the use of the STmode and a steeper incidence angle, and
VV polarisation ensured higher SNR, both of which were essential for reliable ℎrms
estimation. Post-processing of the ℎrms images by applying upper 𝜎𝑜 and lower SNR
thresholds is essential to eliminate invalid ℎrms values. Additionally, the fusion of ℎrms
images generated frommultiple datasets with different incidence angles and acquisition
geometries can be performed using the multi-dataset averaging technique to improve
the quality of the results. Road extraction and Google Earth visualisation approaches
can help significantly in the interpretation of the results, as seen for the airborne F-SAR
case in chapter 3 on page 59.
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6 Cracks Detection and Road Width Estimation
using Airborne SAR

This chapter focuses on methods for detecting cracks on road surfaces, estimating their
orientation, and determining road width using airborne SAR data. The first section
examines how the flight heading angle of the airborne SAR data, acquired along linear
flight paths, affects cracks detection due to the oriented line-like nature of cracks. The
second section discusses the various methods investigated for cracks detection using
airborne SAR data and compares the results. The method developed for the cracks
orientation estimation is presented in the third section of this chapter. Additionally,
this chapter addresses the estimation of road width based on the observed differences in
SAR backscatter or surface roughness values between the road surface and surrounding
regions, with sharp changes occurring at the road boundaries. High-resolution airborne
X-band SAR datasets acquired with the F-SAR system (cf. Table A.2 on page 174) are
used for the investigations presented in this chapter.

6.1 Flight Heading Angle Dependency on Cracks Detection

Since road surface cracks are oriented line-like features, the flight heading angle of the
airborne SAR system greatly influences their visibility in the acquired datasets. Figure
6.1 shows an illustration demonstrating the flight heading angle dependency on the
backscatter response from a road crack.

Figure 6.1: Illustration of the flight heading angle dependency on the backscatter response from a road
crack.
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Figure 6.2: Images of a section of the Kaufbeuren runway illustrating how the flight heading angle affects
the crack visibility in airborne SAR datasets. (a) GE image. (b) Cracks assumed to be present on the runway.
Surface roughness images generated using the (c) PS05 and (d) PS04 F-SAR datasets.

116



6.2 Investigation on Cracks DetectionMethods

Figure 6.1(a) illustrates the data acquisition geometry for the F-SAR system when a
road crack is oriented parallel to the flight direction. In this scenario, the SAR antenna,
mounted on the side of the aircraft fuselage, illuminates the entire length of the crack
from a direction perpendicular to the crack’s orientation, resulting in a maximum
backscatter response from the crack edges. Therefore, it is expected that the cracks
are most visible in SAR images when the flight path is aligned with their orientation.
In contrast, as shown in Figure 6.1(b), if the flight direction is perpendicular or at an
oblique angle to the crack, the radar signal cannot illuminate the entire length of the
crack. Instead, most of the transmitted signal undergoes specular reflection from the
inside of the crack instead of being backscattered from the crack edges. This leads to
a reduced backscatter response and diminished visibility of the cracks in SAR images,
potentially causing an underestimation of the severity of the cracks.

Figure 6.2(a) presents a Google Earth (GE) image of a section of the Kaufbeuren runway,
where small cuts and repair patches are present. Figure 6.2(b) illustrates the main
cracks assumed to be present in this section (info. from ground truth data and Google
Earth), with purple lines indicating cracks aligned with the runway and green lines
indicating cracks perpendicular to it. The green lines mostly represent small cuts on
the runway. This study uses the bearing angle measured w.r.t. true north to estimate
the orientation of these cracks. The purple and green cracks have bearing angles of
approximately 21 degrees and 112 degrees, respectively. Figure 6.2(c) displays the surface
roughness (ℎrms) image for this runway section, generated using the F-SAR PS05 dataset
(cf. Table A.2, page 174). Here, the flight path is parallel to the small cuts, resulting in
strong backscattering and making these cuts visible as regions of high surface roughness.
Conversely, Figure 6.2(d) shows theℎrms image from thePS04dataset (cf. TableA.2, page
174), where the flight path is perpendicular to the small cuts, rendering them invisible.
This demonstrates that the flight heading angle significantly affects the detectability
of cracks in airborne SAR data, confirming the backscattering assumptions based on
crack orientation shown in Figure 6.1. Thus, the flight heading angle is crucial for cracks
detection, and the airborne SAR data should be acquired with a flight track parallel to
the orientation of the cracks of interest to ensure their visibility.

6.2 Investigation on Cracks Detection Methods

This section presents the potential methods investigated for cracks detection using the
airborne F-SAR datasets.

Figure 6.3 presents a generalised block diagram of the cracks detection and orientation
estimation methodology. The input for the cracks detection algorithms is either a SAR
backscatter image or a surface roughness image generated from the F-SAR data. The
output from the cracks detection step serves as the input for the cracks orientation
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Figure 6.3: Generalised block diagram illustrating the cracks detection and orientation estimation method-
ology.

estimation method. Finally, KML files are generated to visualise the cracks detection
results in terms of crack severity and the cracks orientation results in terms of bearing
angle in GE.

The cracks detection methods investigated in the following sub-sections use the Canny
edge detector, stationary wavelet transform (SWT), Radon transform, and a combina-
tion of adaptive thresholding with the Radon transform. Among these four methods,
the best-performing one will then be used in the final processing chain.

6.2.1 Cracks Detection using Canny Edge Detector

One simple and well known method to detect oriented line-like structures in digital
images is the edge detector. Among the various edge detectors available, this investigation
employs the Canny edge detector [30]. This highly effective algorithm involves several
steps: smoothing the image with a Gaussian filter to reduce noise, calculating intensity
gradients to identify edges, applying non-maximum suppression to thin the edges, and
using double thresholding to differentiate between strong and weak edges. Finally, edge
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tracking by hysteresis connects weak edges to strong ones [94]. Known for its accuracy
and ability to detect fine details while minimising noise, the Canny edge detector is a
promising candidate for detecting road cracks in SAR images.

Figure 6.4: Images of a section of the Kaufbeuren runway illustrating the Canny edge detector results. (a)
GE image. (b) Assumed cracks image. Canny edge detector outputs generated using the (c) PS05 and (d)
PS04 F-SAR datasets.
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Figure 6.4 displays the results of the Canny edge detector applied to a section of the
Kaufbeuren runway using the ℎrms images as input. Specifically, Figure 6.4(a) presents a
GE image of a section of the Kaufbeuren runway, where small cuts and repair patches
are present. Figure 6.4(b) illustrates the main cracks assumed to be present in this
section. Figure 6.4(c) shows results from the PS05 dataset, and Figure 6.4(d) shows
results from the PS04 dataset. When comparing these results with the GE image and
the assumed cracks image of the same region, it is evident that the Canny edge detector
fails to identify the cracks on the road surface most likely because of the noisy input
data. This suggests that the edge detection methods are not suitable for detecting road
cracks from the available X-band airborne F-SAR datasets used for this study, at least
not without sophisticated pre-processing of the input data.

6.2.2 Stationary Wavelet Transform-based Cracks Detection

The stationary wavelet transform (SWT) is a powerful signal-processing technique for
analyzing signals in both time and frequency domains. It decomposes a signal into
various frequency components, each representing a different scale or level of detail [41].
Wavelets, the core concept of SWT, are small, localised functions that can be scaled and
shifted to analyse different aspects of a signal, making SWT particularly suitable for
detecting localised features [1]. This makes it useful in fields such as image processing
[42], signal denoising [80] and pattern recognition [15].

Unlike traditional Fourier analysis, which decomposes signals into sinusoidal basis
functions, wavelet analysis uses wavelets that are localised in both time and frequency
domains. This allows it to capture transient and non-stationary features [1, 124]. For
example, the Haar wavelet, characterised by its step-like waveform, is often used for its
simplicity and effectiveness in detecting abrupt changes in signals. Mathematically, the
Haar wavelet function (𝜓(𝑡)) can be represented as follows [8]:

𝜓(𝑡) = ⎧{⎨{⎩1 for 0 ≤ 𝑡 < 12−1 for 12 ≤ 𝑡 < 10 otherwise
(6.1)

Other wavelets, such as Daubechies, Coiflets, and Symlets, have unique properties suited
for different signal analysis types [126].

In wavelet analysis, the scale determines the level of details captured. Smaller scales cap-
ture fine details, while larger scales capture broader features. The decomposition process
involves applying low-pass and high-pass filters to the signal, producing approximation
(low-frequency) and detail (high-frequency) coefÏcients. These coefÏcients represent
the signal’s energy across different frequency bands and orientations. Approximation
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coefÏcients capture the overall trend, while detail coefÏcients capture localised details.
In image processing applications, these detail coefÏcients can correspond to different
directional features, such as horizontal, vertical, or diagonal edges and can be used for
applications like edge detection and texture analysis [41].

One significant advantage of SWT is its effectiveness in noise suppression. By decom-
posing a signal into multiple scales, noise at different frequencies can be isolated and
filtered out without significantly affecting the underlying signal [80].

For cracks detection, the SWT analyses signals from sensors or imaging techniques to
identify local discontinuities or structural abnormalities. Decomposing the signal into
different scales and frequencies enhances crack visibility while suppressing noise, improv-
ing detection accuracy. SWT also extracts orientation information while preserving
spatial localisation.

In cracks detection using airborne F-SAR data, the process involves two steps: cracks
enhancement and cracks detection. First, SWT is applied to geocoded F-SAR 𝜎𝑜
backscatter images to enhance cracks detectability. Then, a thresholding algorithm
is applied to the cracks enhanced SWT output image to detect and classify the cracks.

1. Cracks Enhancement Procedure: The block diagram for the cracks enhance-
ment procedure using SWT is shown in Figure 6.5. The input is a geocoded 𝜎𝑜
backscatter image (either co-polar or cross-polar), with non-road regions masked
out using OSM road layers (cf. section 3.2.2, page 47). The Haar wavelet, known
for detecting abrupt changes, is applied for SWT across three scales. Scale 1 is the
most sensitive, focusing on cracks detection and localisation but exhibiting high
noise, while Scales 2 and 3 offer better noise reduction with less precise cracks
localisation. At each scale, detail coefÏcients (high-pass filter outputs) labelled 𝐻,𝑉, and 𝐷 are extracted, representing horizontal, vertical, and diagonal features,
respectively. An element-wise maximum operation on these coefÏcients creates
’𝑀𝑎𝑥𝑖’ images, consolidating information from all directions. This process is
repeated for all scales, resulting in 𝑀𝑎𝑥1, 𝑀𝑎𝑥2, and 𝑀𝑎𝑥3 images. Finally,
the element-wise product of these three ’𝑀𝑎𝑥𝑖’ images is computed, enhancing
cracks, suppressing noise, and eliminating small isolated discontinuities, yielding
the geocoded cracks-enhanced (GCE) image.

Figure 6.6 illustrates the cracks enhancement results for a section of the Kauf-
beuren runway. Specifically, Figure 6.6(a) shows the assumed cracks image, Figure
6.6(b) presents the𝜎𝑜

VV backscatter image used as input, and Figure 6.6(c) displays
the GCE image. The 𝜎𝑜

VV backscatter image is preferred for this analysis because
it has higher backscatter compared to the HH polarisation and in the case of
cross-polarisation (HV and VH) channels, the backscatter values for the road
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Figure 6.5: Cracks enhancement procedure using the SWT.

Figure 6.6: Cracks enhancement results for a section of the Kaufbeuren runway generated using the SWT-
based method. (a) Assumed cracks image. (b) 𝜎𝑜

VV backscatter image generated from the PS05 F-SAR
dataset. (c) Geocoded cracks-enhanced image.
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surfaces are lower than the NESZ, making them unsuitable for the cracks detec-
tion investigations (see 𝜎𝑜 vs NESZ plot in Figure 3.1 on page 32). Comparing
the GCE image with the assumed cracks image and the 𝜎𝑜

VV backscatter image
reveals that all cuts visible in the 𝜎𝑜

VV backscatter image are enhanced and more
clearly visible in the GCE image. However, a drawback of this approach is that
the cracks are spread out in the width direction, resulting from less precise crack
localisation at higher scales. Additionally, the rectangular concrete repair patches
on the runway, which have higher backscatter values than the surrounding asphalt
regions, are also enhanced. This enhancement can falsely lead to these regions
being detected as large cracks in subsequent steps.

2. Cracks Detection and Classification: The next step involves detecting and
classifying cracks using the Otsu automatic thresholding algorithm. This method
selects an optimal threshold to distinguish between foreground (cracks) and
background (non-cracks) regions by maximising between-class variance and min-
imising intra-class variance. The Otsu thresholding algorithm is particularly
effective for images with bimodal histograms, making it well-suited for tasks such
as object detection and segmentation [59]. Figure 6.7 shows the block diagram
of the cracks detection and classification methodology.

Figure 6.7: Cracks detection and classification procedure after cracks enhancement using the SWT.

Before applying the Otsu automatic thresholding algorithm to the GCE image, a
pre-processing step sets pixels with surface roughness (ℎrms) values below 0.40
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mm to zero, assuming that such smooth areas are free of cracks. This procedure
uses the geocoded surface roughness image as an additional input to improve the
thresholding performance. The modified GCE image is then subjected to the
Otsu thresholding procedure to determine the optimal threshold for separating
cracks from non-crack regions.

Figure 6.8: Cracks classification according to severity - the thresholds for each class were estimated empiri-
cally.

The resulting threshold is then used to categorise the cracks into low, medium,
and major severity classes through empirical adjustment. This involves using a
trial and error method, where multiplied values of the Otsu threshold serve as
thresholds for each class. The classified cracks are visually compared with those
in the GE optical image, and the thresholds are fine-tuned to match the observed
crack severity. In the GCE image, pixels below the Otsu threshold are classified
as non-crack regions, those between the threshold and three times its value as
low-severity cracks, those between three and six times as medium-severity cracks,
and those above six times as major cracks. This classification scheme is illustrated
in Figure 6.8.

Figure 6.9: Cracks detection and classification results for a section of the Kaufbeuren runway. (a) Assumed
cracks image. (b) 𝜎𝑜

VV backscatter image generated from the PS05 F-SAR dataset. (c) Cracks detection and
classification image obtained from the SWT-based method.

Figure 6.9(c) shows the cracks detection and classification results generated using
the SWT-based method overlaid in GE for a section of the Kaufbeuren runway.
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In this image, dark blue represents low-severity cracks, yellow indicates medium
severity, and red denotes major cracks. Comparing this with the assumed cracks
and 𝜎𝑜

VV backscatter images in Figures 6.9(a) and (b), it is evident that the SWT-
based method accurately detects the small cuts on the runway as cracks, with
some parts showing low severity and others showing major severity depending on
the backscatter signal strength. However, the method falsely detects most areas of
the smooth rectangular concrete repair patches as large cracks instead of just the
edges. Therefore, while the SWT-based approach can detect road surface cracks,
it is unreliable due to false crack detections in areas with increased backscatter
from different road construction materials.

6.2.3 Radon Transform-based Cracks Detection

The Radon transform is an integral transform commonly used in fields such as medi-
cal imaging, including computer tomography (CT) and nuclear magnetic resonance
(NMR) [40]. It works by calculating projections of an image along different angles
centred around the centre of the image, resulting in a series of line integrals. These line
integrals represent how the features of the image are distributed along certain directions,
allowing for comprehensive analysis. By integrating along specific directions, the Radon
transform creates a transformation space in which patterns related to specific features
become clearer [76].

The Radon transform projects the two-dimensional image function 𝑓(𝑥, 𝑦) from the(𝑥, 𝑦) plane into the (𝜃r, 𝑠) plane using multiple line integrals. A graphical represen-
tation of this process is illustrated in Figure 6.10. In the figure, the Radon transform
function𝑅(𝜃r, 𝑠) is represented as the line integral of 𝑓(𝑥, 𝑦) along the straight line ’𝑤’.
Here, the straight line ’𝑤’ is parameterised by two variables: 𝜃r, the projection/rotation
angle from the 𝑥 axis, and 𝑠, the distance from the origin along the projection line. The
Radon transform can be mathematically represented as follows [70]:𝑅(𝜃r, 𝑠) = ∫∞−∞ ∫∞−∞ 𝑓(𝑥, 𝑦)𝛿(𝑠 − 𝑥 cos 𝜃r − 𝑦 sin 𝜃r) 𝑑𝑥 𝑑𝑦 (6.2)

where, as already mentioned in the graphical representation, 𝜃r represents the projec-
tion/rotation angle, 𝑠 is the distance from the origin along the projection line, and 𝛿
denotes the Dirac delta function.

The ability of the Radon transform to detect and extract information about oriented
features from an image by capturing line integrals along different directions is used in
this study to detect the cracks on the road surfaces and also to estimate their orientation
[135]. The Radon transform is investigated in two ways for cracks detection: first, it
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Figure 6.10: Graphical representation of the Radon transform.

is applied to simulated road cracks images, and second, a sliding window version of
the Radon transform is applied to airborne F-SAR datasets. These investigations are
detailed below:

1. Investigations using simulated road cracks images: To test the capability
of the Radon transform to detect and estimate the orientation of the cracks on
the road surface from SAR backscatter or surface roughness images, multiple
5x5 noisy images simulating road cracks with different orientations are generated.
Each image contains random noise and a simulated line with a specified angle
relative to the x-axis. These images simulate road cracks in SARbackscatter images
with different orientations. The choice of the small 5x5 images is intentional
because when applied to real SAR images for crack detection, the Radon trans-
form has to be applied to small patches by using a sliding window. Therefore,
it is important to determine whether the Radon transform can work effectively
with a limited number of input pixels, such as the 25 pixels within a 5x5 window.
In the case of F-SAR datasets with a spatial resolution of 0.25 cm used for this
investigation, the 5x5 window covers an area of approximately 1.25 x 1.25 meters
on the road surface.
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Figure 6.11: Cracks detection and orientation estimation results obtained using simulated lines with added
background noise resembling cracks in a SAR backscatter image.
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Figure 6.11 shows these simulated lines representing road cracks with orientations
of 0, 20, 45 and 60 degrees. The Radon transform is then applied to each of these
images, and the resulting Radon output is visualised in the form of a sinogram,
which can also be seen in Figure 6.11. A sinogram provides a two-dimensional
representation of the Radon output, showing the intensity of the line integrals
of the image along different angles, w.r.t. a fixed axis (in this case the x-axis). The
x-axis of the sinogram represents the Radon projection/rotation (𝜃r) angle, while
the y-axis indicates the distance from the origin along the projection line (𝑠).
Analysis of the sinograms shows that they have maximum Radon values at 𝜃r
that match with the orientation angles of the simulated lines, in each case. In
addition, the plots in Figure 6.11 show theRadonmagnitude plots corresponding
to the y-axis index of the sinogram at which the maximum value for the Radon
transform is obtained. These plots also confirm that the maximum value for
the Radon transform occurs when 𝜃r coincides with the orientation angle of the
simulated line.

To understand the limitations of the Radon transform in detecting road cracks,
an additional experiment was conducted to test the case when there is only a
small crack present in the 5x5 image window, which covers only a single pixel.
From this experiment shown in the last row of Figure 6.11, it can be seen that the
Radon transform fails to detect the crack in this scenario and also shows incorrect
orientation angle measurements. To summarise, for the Radon transform to be
able to detect the crack and accurately estimate its orientation, the road crack in
the 5x5 image should cover at least two pixels. However, if there are two or more
separate small cracks within the 5x5 image, each occupying only a single pixel,
then these cracks will be incorrectly detected by the Radon transform as a single
crack with a wrong orientation angle.

From the investigations with the simulated cracks shown in Figure 6.11, it can
be concluded that the Radon transform can accurately detect and estimate the
orientation of cracks on a road surface from a noisy 5x5 image when there is only
a single crack occupying at least two pixels.

2. Direct application of windowed Radon transform on F-SAR generated
surface roughness images: A processing chain has been developed for detecting
the cracks and estimating their orientation from the SAR data based on the above-
discussed concept of utilising Radon maximummagnitudes and Radon rotation
angles. The block diagram of this processing chain is shown in Figure 6.12.

For this study, the geocoded surface roughness (ℎrms) image obtained from the
airborne F-SAR datasets is used as input for the Radon transform. It is chosen
instead of using the 𝜎𝑜 backscatter image because the surface roughness image
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Figure 6.12: Block diagram for the cracks detection and orientation estimation using Radon transform.

shows a sharp increase in ℎrms values at the cracked regions compared to the
surrounding smooth road surfaces. This relative increase is more pronounced
than what is observed in 𝜎𝑜 backscatter values, which can potentially improve
the performance of the Radon transform in cracks detection and orientation
estimation.

In Figure 6.11, it has already been shown that the Radon transform is capable of
accurately detecting the cracks and also estimating their orientation from small
5x5 simulated noisy images. Therefore, in this processing chain, the Radon trans-
form is iteratively applied over the large ℎrms image by using a 5x5 sliding window.
The use of a larger sliding windowmay overlap multiple cracks, leading to non-
detection of smaller cracks and also producing a blurred Radon output image.
Conversely, a very small window, like 3x3, lacks sufÏcient pixels for accurate crack
orientation estimation. Therefore, the use of a 5x5 sliding window ensures an
adequate number of pixels for the Radon transform, reducing the chances of
overlooking smaller cracks near major ones. Also, the sliding window is moved
across the input ℎrms image in an overlapping manner, increasing the likelihood
of detecting cracks that might be missed in the current position but detected in
the next slightly shifted position of the sliding window.

In each sliding window, the maximum value computed by the Radon transform
(indicative of a potential crack) and the Radon rotation angle (indicative of the
crack orientation (𝜃r)) corresponding to this maximum value are recorded. This
process generates the Radon maximummagnitude image and the Radon angle
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Figure 6.13: Images of a section of the Kaufbeuren runway illustrating the 5x5 Radon transform results.
(a) ℎrms image generated using the PS05 dataset. (b) Radon maximummagnitude image. (c) Radon angle
image.

image after applying the sliding window Radon transform over the entire input
image.

Figure 6.13 presents the results of applying the 5x5 sliding window Radon trans-
form to the ℎrms image of a section of the Kaufbeuren runway. Figure 6.13(a)
displays the ℎrms image generated from the PS05 dataset (cf. Table A.2 on page
174), where smooth areas of the road surface appear in blue, and regions with
cracks or repair work are shown in cyan, indicating increased surface roughness.
Figure 6.13(b) shows the Radon maximummagnitude image of the same region.
In this image, severe cracks appear in red, and minor cracks range from cyan to
yellow. However, maximumRadon magnitude values are present for all pixels,
including smooth road regions, which are indicated by the blue pixels. Two
rectangular patches on the runway, representing smooth areas with high surface
roughness, are incorrectly identified as large cracks with high Radon magnitudes.
Although the Radon transform enhances the cracks in the Radon maximum
magnitude image due to line integration, when the Radon transform is applied
directly to theℎrms image, the resultingRadonmaximummagnitude image closely
resembles the input ℎrms image, but with scaled magnitude values. Furthermore,
Figure 6.13(c) illustrates the Radon angle image corresponding to the maximum
Radon magnitudes. This image also shows that there is always a Radon angle
output for both cracked and smooth surfaces, resulting in a noisy appearance and
providing limited useful information.

Therefore, it can be summarised that the application of the Radon transform
directly on the SAR backscatter or ℎrms images is not suitable for the reliable
detection and orientation estimation of cracks on the road surface.
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6.2.4 Cracks Detection with the Combined Use of Adaptive
Thresholding and Radon Transform

Among the various cracks detection methods previously discussed in this section, it can
be observed that the Radon transform enhances cracks visibility by integrating along
their orientations (cf. Figure 6.13 on page 130) and also provides an accurate estimate
of their orientation angle (cf. Figure 6.11 on page 127). However, the challenge arises
when applying the Radon transform directly on the 𝜎o or ℎrms images, as it produces
Radon outputs for both cracked and smooth regions hindering the cracks detection
process.

To address this challenge, pre-processing the input ℎrms image can be performed to
mask out smooth, non-cracked regions generating a binary cracks detection map image.
This image can then be used to remove the ℎrms values of the non-cracked regions from
the ℎrms image generating the cracks roughness image. This image contains the ℎrms
values only for the cracked regions and can then be used as input for the windowed
Radon transform for estimating the crack severity and orientation. The methodology
for performing the adaptive thresholding and Radon transform are explained below:

1. Windowed adaptive thresholding algorithm for cracks detection: An
adaptive thresholding algorithm has been proposed that performs the above-
mentioned pre-processing step on the input ℎrms image thereby generating the
binary cracks detection map image and the cracks roughness image. The block
diagram of this thresholding algorithm is shown in Figure 6.14.

Figure 6.14 illustrates the adaptive thresholding process applied locally to the
input ℎrms image using an n x n sliding window. For each window, the n x n ℎrms
values are first filtered with amedian filter to reduce spikey noise that can interfere
with accurate threshold estimation. Then, the mean and standard deviation of
the filtered data are calculated, and the cracks detection threshold is determined
as the sum of the mean and standard deviation within each sliding window as
follows:

Threshold = Mean + Standard Deviation (6.3)

The center pixel within a sliding window is classified as a crack if it fulfils the
following conditions: Its ℎrms value is greater than or equal to the threshold value,
its value is also greater than or equal to 1.2 mm (determined by trial and error
approach), and the estimated mean value is greater than zero. Pixels that fulfil
these criteria are assigned the value ’1’ in the binary crack detection map, which
stands for cracks, while pixels that do not fulfil these criteria are assigned the value
’0’, which stands for smooth areas. The corresponding equation is given below:
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Figure 6.14: Block diagram of the windowed adaptive thresholding algorithm.

Binary cracks
detection output

= ⎧{{⎨{{⎩
1 if center pixel ℎrms value ≥ Threshold

and center pixel ℎrms value ≥ 1.2
and mean > 00 otherwise

(6.4)
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The resulting binary cracks detection map is then multiplied pixel by pixel with
the input ℎrms image, keeping the ℎrms values for cracked regions and setting the
values in smooth regions to ’0’. This resulting cracks roughness image is then
used as input to the Radon transform for estimating the severity and orientation
of the cracks.

Figure 6.15: Windowed adaptive thresholding results for a section of the Kaufbeuren runway. (a) Surface
roughness image generated using the PS05 dataset. Binary cracks detection maps generated using sliding
window sizes of (b) 5x5, (c) 15x15, (d) 25x25, (e) 35x35, and (f) 45x45.

For performing the n x n adaptive thresholding algorithm, it is necessary to choose
a suitable window size so that the cracks can be accurately detected. 5x5, 15x15,
25x25, 35x35 and 45x45 window sizes were evaluated in this study and the results
are shown in Figure 6.15.

Figure 6.15(a) shows the ℎrms image from the PS05 dataset, where smooth areas
without cracks appear in blue, and regions with cracks range from cyan to red
based on severity. Two rectangular repair patches appear predominantly in cyan
due to higher surface roughness, despite being smooth and crack-free. Figures
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6.15(b-f) present binary cracks detection maps generated by the adaptive thresh-
olding algorithm with different sliding window sizes applied to the ℎrms image in
Figure 6.15(a). For smaller slidingwindow sizes of 5x5 and 15x15 (Figures 6.15(b)
and (c)), many pixels in the smooth repair patches are incorrectly identified as
cracks, which is likely due to not enough pixels being available for accurate thresh-
old estimation. The 25x25 sliding window (Figure 6.15(d)) improves accuracy
by correctly identifying the edges of the repair patches and reducing false crack
detections within the smooth repair patches. Smaller cuts on the runway are also
accurately recognised as cracks. Larger window sizes of 35x35 and 45x45 (Figures
6.15(e) and (f)) show no significant improvement over 25x25, with crack edges
spreading to neighbouring pixels potentially enlarging smaller cracks. Consider-
ing these factors, the 25x25 sliding window is selected as the suitable window size
for performing the adaptive thresholding.

Figure 6.16: Windowed adaptive thresholding results for a smooth and almost cracks-free section of the
Kaufbeuren runway. (a) GE image. (b) Binary cracks detection map generated using the PS04 dataset.

An investigation has been carried out to evaluate the performance of the adap-
tive thresholding algorithm in a smooth, crack-free area. Ideally, no false crack
detections should occur in such a region. Figure 6.16(a) shows the GE image of a
smooth, nearly crack-free section of the Kaufbeuren runway with only minor
cuts present. The PS04 dataset (cf. Table A.2 on page 174) with a flight direction
parallel to this runway was selected to minimise the visibility of these cuts in theℎrms image. Figure 6.16(b) shows the binary cracks detection map generated by
applying the adaptive thresholding algorithm to this ℎrms image. Analysing this
image shows that only a few pixels are detected as cracks, while most of the image
shows no cracks. These few detected cracks could be due to local backscatter varia-
tions in the PS04 dataset caused by oriented construction particles on the runway
or by parts of the runway cuts that are still visible in the input ℎrms image. Overall,
this result indicates that the adaptive threshold algorithm effectively avoids false
crack detections.
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2. Windowed Radon Transform for Cracks Severity Estimation: The cracks
roughness image obtained from the adaptive thresholding algorithm is used as
input for theRadon transform to estimate the severity andorientationof cracks. A
windowedRadon transform-based algorithmhas been developed for this purpose,
and its block diagram is shown in Figure 6.17.

Figure 6.17: Block diagram of the windowed Radon transform used for estimating cracks severity from the
cracks roughness image generated by the adaptive thresholding algorithm.

FromFigure 6.17, it can be seen that similar to the direct application of theRadon
transform on the surface roughness image discussed in section 6.2.3, in this case
also, the Radon transform is applied in each sliding window. The maximum
Radon magnitude and the corresponding angle value are estimated and recorded
so that the maximumRadon magnitude and Radon angle images are obtained
after processing all the sliding windows. The maximumRadon magnitude image
is further processed for generating a KML file representing the crack severity
image that can be visualised on GE. The Radon angle image serves as input for
the cracks orientation estimation method, which is discussed later in section 6.3
on page 144.
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Figure 6.18: Windowed Radon transform results for a section of the Kaufbeuren runway. (a) Assumed
cracks image. (b) Surface roughness image generated using the PS05 dataset. (c) Cracks roughness image
obtained from the adaptive thresholding process. Radon maximummagnitude images generated using
sliding window sizes of (d) 5x5, (e) 7x7, and (f) 9x9.

Similar to the adaptive thresholding algorithm, selecting the suitable window size
is crucial for the windowed Radon transform. In this study, 5x5, 7x7, and 9x9
sliding window sizes were tested, and the results are presented in Figure 6.18. The
experiment with different window sizes for the Radon transform is carried out
for a section of the Kaufbeuren runway where small cuts and repair patches are
present. Figure 6.18(a) illustrates the main cracks assumed to be present in this
section. These cracks are visible as regions of high surface roughness in cyan to red
colour in the surface roughness image generated from the PS05 F-SAR dataset (cf.
Figure 6.18(b)). Figure 6.18(c) shows the cracks roughness image generated using
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the adaptive thresholding method. By comparing the Figures 6.18(b) and (c),
it can be seen that the cracks roughness image only contains the ℎrms values for
the cracks, with the smooth areas masked out. This image, as already mentioned
before is used as input for thewindowedRadon transform. TheRadonmaximum
magnitude image generated with a 5x5 sliding window is shown in Figure 6.18(d).
Comparing this image with the assumed cracks image in Figure 6.18(a) and theℎrms image in Figure 6.18(b), it becomes clear that most of the cracks present in
this section of the Kaufbeuren runway can be recognised in the Radonmaximum
magnitude image. The small cuts present on the runway which are shown by the
green coloured lines in Figure 6.18(a) appearmostly in cyan colourwith only some
redpoints indicating the low severity of these cuts. On the other hand, the edges of
the rectangular repair patches appear in yellow to red colours indicating their high
severity. This is because the concrete repair patches are expected to have a slightly
raised surface compared to the surrounding asphalt regions which resembles
large cracks. Figures 6.18(e) and (f) show Radon maximummagnitude images
generated with 7x7 and 9x9 sliding windows, respectively. When comparing
these images with Figure 6.18(d), no additional cracks can be found with larger
windows. However, the detected cracks appear wider andmore spread out, which
can make it challenging for localisation on GE. Also, more cracks appear in red
especially for the small cuts on the runway, indicating a higher severity, as more
pixels along the cracks’ orientation direction are available for integration during
the Radon transform. Considering all these factors, the window size of 5x5 is
selected for performing the Radon transform.

6.2.5 Cracks Detection Results and Discussion

This sectionpresents the cracks detection results generated using the previously discussed
methods with the airborne F-SAR data as input

Figure 6.19 shows the cracks detection results for the Kaufbeuren parking area where
several cracks and potholes are present. The GE image in Figure 6.19(a) confirms the
presence of these large cracks and potholes. Figure 6.19(b) illustrates the main directions
of the cracks assumed to be present in the area. The cracks detection results presented
in this figure were generated using the PS05 F-SAR dataset. Figure 6.19(c) presents the
results from using the Canny edge detector. Comparing this image with the GE image
and the assumed crack directions shows that the Canny edge detector identifies cracks
in both smooth and cracked regions, making it unsuitable for this study. Figure 6.19(d)
displays the results from the SWT-based detection method. This method accurately
detects the major cracks visible in the GE image. However, the detected cracks appear
larger than they are due to spatial averaging caused by using wavelets at multiple scales.
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Figure 6.19: Cracks detection results for the Kaufbeuren parking area generated using the PS05 F-SAR
dataset. (a) GE image. (b) Assumed cracks image. Cracks detection result generated using (c) Canny edge
detector, (d) SWT-based method, (e) Radon transform-based method and (f) combination of adaptive
thresholding and Radon transform.
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Additionally, several cracks visible in the GE image are not detected because the SWT-
based approach is sensitive only to horizontal, vertical, and diagonally oriented cracks,
missing those with other orientations. Thus, the SWT-based method is not reliable for
detecting road surface cracks. Figure 6.19(e) shows the results of applying the Radon
transform directly to the surface roughness image. The cracks are clearly identified,
with colours from cyan to red indicating their severity. However, since the Radon
transform produces outputs for both cracked and non-cracked regions, it is not suitable
for cracks detection. Finally, Figure 6.19(f) presents the results from combining an
adaptive thresholding algorithm with the Radon transform. This approach accurately
identifies most of the cracks visible in the GE image. Low-severity cracks appear in cyan,
while major cracks range from yellow to red. The shape and orientation of the detected
cracks also match those in the GE image. Therefore, among all the methods investigated,
the combined use of the adaptive thresholding and the Radon transform provides the
most reliable results for detecting cracks using X-band airborne F-SAR datasets.

The GE visualisation of the cracks detection results generated using the combined use
of the adaptive thresholding and the Radon transform for the Kaufbeuren parking
area is shown in Figure 6.20. Specifically, Figures 6.20(a), (c) and (e) show the surface
roughness images used as input for performing the cracks detection generated from the
PS05 dataset, multi-dataset averagingmethod and the highest SNRmethod, respectively,
with corresponding cracks severity images shown in Figures 6.20(b), (d), and (f). In
these cracks severity images, major cracks are highlighted in yellow to red, while minor
cracks appear in cyan. The number of detected cracks varies among these images due to
the dependency of cracks visibility on the flight heading angle, as discussed in section
6.1 on page 115. For example, Figure 6.20(b) shows more cracks detections from the
PS05 dataset compared to Figure 6.20(d), which uses the multi-dataset averaged surface
roughness image as input. The latter has fewer detected cracks because minor cracks
visible only from certain flight angles are smoothed out when combining datasets with
different headings using the multi-dataset averaging method (cf. Figure 6.20(c)). On the
other hand, the cracks severity image shown in Figure 6.20(f), which utilises the surface
roughness image generated by the highest SNRmethod, detects the highest number of
cracks. This is due to the high sensitivity of the highest SNRmethod to local backscatter
variations from oriented features on the road surface. However, this method also results
in a grainy/noisy surface roughness image (Figure 6.20(e)), increasing the likelihood of
false cracks detections and reducing reliability. Therefore, to achieve a comprehensive
view of cracks with different orientations, it is recommended to generate multiple cracks
severity images from individual SAR datasets acquired with different flight heading
angles. Additionally, zoomed-in views of two sections of the parking area, marked as
’Detail 1’ and ’Detail 2’ in Figure 6.20(b), are provided in the following figures for a
closer examination of the crack detection results.
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Figure 6.20: Cracks detection results generated using the combination of adaptive thresholding and Radon
transform for the Kaufbeuren parking area. Surface roughness images used as input for cracks detection
generated from (a) PS05 dataset, (c) multi-dataset averaging, and (e) highest SNRmethod. Corresponding
cracks severity images generated from (b) PS05 dataset, (d) multi-dataset averaging, and (f) highest SNR
method.
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Figure 6.21: Cracks detection results generated using the combination of adaptive thresholding and Radon
transform for the section of the Kaufbeuren parking area marked as ’Detail 1’ in Figure 6.20(b). Surface
roughness images used as input for cracks detection generated from (a) PS05 dataset, (b) multi-dataset
averaging, and (c) highest SNRmethod. Corresponding cracks severity images generated from (d) PS05
dataset, (e) multi-dataset averaging, and (f) highest SNRmethod.

Figure 6.21 displays the cracks detection results for the sectionmarked as ’Detail 1’ in the
Kaufbeuren parking area. Surface roughness images generated from the PS05 dataset,
multi-dataset averaging, and highest SNRmethods are shown in Figures 6.21(a), (b),
and (c), respectively. The corresponding cracks severity images are presented in Figures
6.21(d), (e), and (f). By comparing these surface roughness images with the cracks
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severity images, it is evident that cracks identifiable in the surface roughness images as
regions with increased surface roughness values are accurately identified as cracks in the
crack severity images. The detected cracks’ locations and shapes closely match those
visible in the underlying GE image. Large cracks are detected in yellow to red, indicating
high severity, while smaller cracks are detected in cyan to green, indicating lower severity.

Figure 6.22: Cracks detection results generated using the combination of adaptive thresholding and Radon
transform for the section of the Kaufbeuren parking area marked as ’Detail 2’ in Figure 6.20(b). Surface
roughness images used as input for cracks detection generated from (a) PS05 dataset, (b) multi-dataset
averaging, and (c) highest SNRmethod. Corresponding cracks severity images generated from (d) PS05
dataset, (e) multi-dataset averaging, and (f) highest SNRmethod.

Similarly, Figure 6.22 presents the results for the area marked as ’Detail 2’. Here, the
number of severe cracks detections is lower compared to ’Detail 1’, which is consistent
with the underlying GE image. The results shown in Figures 6.21 and 6.22 confirm that
the cracks detected by the combined use of the adaptive thresholding and the Radon
transform from the SAR images are indeed the actual cracks present on the road surface.
The severity representation provides insights into the size of the cracks. A slight shift
in the position of the detected cracks compared to their GE view can be attributed to
inaccuracies in the digital elevation model (DEM) used for geocoding the SAR images.

Figure 6.23 presents the cracks severity image for the entire Kaufbeuren runway. This
image was generated using the surface roughness image from the PS05 F-SAR dataset,
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Figure 6.23: Google Earth visualisation of the cracks severity image generated using the combination of
adaptive thresholding and Radon transform from the PS05 F-SAR dataset for the entire Kaufbeuren
runway.

with the flight track oriented perpendicular to the runway (see azimuth and range
direction arrows). The zoomed-in views in the figure reveal that small cuts on the
runway, edges between concrete and asphalt regions, and areas with repeated cuts in the
concrete at the top right end of the runway are accurately detected as cracks. The small
cuts on the runway are mostly identified as low severity, while the concrete edges and
repeated concrete cuts are detected with higher severity. Thus, it can be summarised
that the combination of adaptive thresholding and the Radon transform is effective for
detecting cracks and estimating their severity.

The cracks severity image for the Wolfsburg motorway intersection at Braunschweig is
shown in Figure 6.24. This area features a very smooth road surface without any cracks.
Additional details about this test site are provided in Appendix A.1.3 on page 170. By
examining Figure 6.24, it is evident that only the road borders, flyover walls, and lane
dividers are detected as cracks due to the increased backscatter from these materials.
The road boundaries appear in cyan to red colours, while the lane dividers are mostly
red, likely due to the very high backscattering from the metallic lane dividers. These
high reflecting materials like lane dividers are detected because the surface roughness
roughness image without performing upper 𝜎𝑜 and lower SNR masking (cf. Figure
3.23 on page 64) is used as input for generating the cracks severity image. No cracks
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Figure 6.24: Google Earth visualisation of the cracks severity image generated using the combination of
adaptive thresholding and Radon transform for the Wolfsburg motorway intersection at Braunschweig.

are detected on the road surface except for a few isolated blue pixels, which can be vali-
dated with the underlying GE view. This result demonstrates that the developed cracks
detection algorithm, which combines adaptive thresholding and the Radon transform,
is effective for real roads and does not produce a large number of false detections on
smooth surfaces.

6.3 Investigation on Cracks Orientation Estimation

The investigations presented in section 6.2 of this chapter recommended the combined
approach of using adaptive thresholding and Radon transform as the best choice for
cracks detection and severity estimation. Also, it was shown that Radon transform is
able to accurately estimate the orientation of cracks from simulated road cracks images
(cf. Figure 6.11 on page 127). Therefore, the combined approach of using adaptive
thresholding and Radon transform is further extended for estimating the orientation of
the detected cracks from the X-band airborne F-SAR images.

The Radon angle image obtained as one of the outputs by performing the windowed
Radon transform on the cracks roughness image as illustrated in the block diagram
shown in Figure 6.17 on page 135 is used as input for the cracks orientation estimation.

144



6.3 Investigation on Cracks Orientation Estimation

The block diagram of the methodology adopted for the cracks orientation estimation is
shown in Figure 6.25.

Figure 6.25: Block diagram of the methodology adopted for cracks orientation estimation.

The Radon angle image used as input for the cracks orientation estimation represents
the orientation angles (𝜃r) of the detected cracks in the Cartesian coordinate system
measured w.r.t. the x-axis. However, for a more meaningful representation of their
orientation, it is essential to measure the angles in the bearing angle (𝜃b) coordinate
system, where the angles are referenced to true north (cf. Figure 6.26). To achieve
this, a coordinate system conversion is applied to the Radon angle image, resulting in
the generation of the cracks bearing angle image. The coordinate system conversion is
performed through the following steps:𝜃b = (90∘ − 𝜃r − 𝜃road − 𝜃decl) mod 360∘ (6.5)

where 𝜃b denotes the bearing angle, 𝜃r is the Radon (orientation) angle of the cracks,𝜃road represents the road angle, indicating the inclination of the road w.r.t. true north,
determined using OSM data and 𝜃decl is the grid declination angle accounting for the
difference between true north and universal transverse mercator (UTM) grid north
[121]. 𝜃decl is included because the input ℎrms image used for performing the Radon
transform is geocoded into the UTM coordinate system. The integration of 𝜃decl into
the equation ensures a precise adjustment of the bearing angle and compensates for the
discrepancy between UTM north and true north. It is important to obtain 𝜃decl from
reliable sources for the specific location and time of data acquisition.
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Figure 6.26: Visualisation of the coordinate system conversion - Radon angle (𝜃r) to bearing angle (𝜃b).

In OSM, road segments are represented as ’edges’, which are essentially road lines con-
necting two end ’nodes’ (vertices) [28], as shown in Figure 6.27.

Figure 6.27: Road representation in OSM.

The road angle (𝜃road) can be calculated using the following method:𝜃road = arctan( 𝑌𝑋) (6.6)
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where 𝑌 and 𝑋 are computed using the latitude (𝐿𝑎𝑡1) and longitude (𝐿𝑜𝑛1) of Node
1, and the latitude (𝐿𝑎𝑡2) and longitude (𝐿𝑜𝑛2) of Node 2. These nodes are adjacent
nodes along the road centerline obtained fromOSM.

The values for 𝑌 and 𝑋 are calculated as follows:𝑌 = sin(𝐿𝑜𝑛2 − 𝐿𝑜𝑛1) cos(𝐿𝑎𝑡2) (6.7)

𝑋 = cos(𝐿𝑎𝑡1) sin(𝐿𝑎𝑡2) − sin(𝐿𝑎𝑡1) cos(𝐿𝑎𝑡2) cos(𝐿𝑜𝑛2 − 𝐿𝑜𝑛1) (6.8)

After performing the coordinate system conversion on the cracks Radon angle image,
it is then further processed for generating a KML file representing the cracks bearing
angle image that can be visualised on GE.

6.3.1 Cracks Orientation Estimation Results and Discussion

The cracks orientation estimation results estimated using the methodology discussed in
the previous section are presented here.

Two regions of the Kaufbeuren airfield, as shown in Figure 6.28, are selected to analyse
the cracks orientation estimation results. The first region is a section of the Kaufbeuren
runway, featuring repair patches and small cuts (see Figure 6.28(a)), and the second region
is the severely cracked parking area of the Kaufbeuren airfield (see Figure 6.28(c)). Both
of these regions were previously shown in this chapter for the cracks severity estimation.
Most cracks in these sections are found to have two orientations: longitudinal to the
runway and transverse to the runway. The assumed cracks images in Figures 6.28(b) and
(d) illustrate these main crack orientations, with purple lines indicating longitudinal
cracks and green lines indicating transverse cracks. The actual bearing angles of these
cracks, measured fromGE, are 21 degrees for longitudinal cracks and 112 degrees for
transverse cracks. These two bearing angles are considered the ground truth values for
validating the cracks orientations estimated from the airborne F-SAR data presented in
the following results.

Figure 6.29 displays the cracks orientation estimation results for the section of the
Kaufbeuren runway with repair patches and small cuts. Surface roughness images
generated from the PS05 dataset, multi-dataset averaging, and highest SNRmethods are
shown in Figures 6.29(a), (b), and (c), respectively. The corresponding cracks bearing
angle images are presented in Figures 6.29(d), (e), and (f). By comparing these surface
roughness images with the crack severity images, it is clear that regions with increased
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Figure 6.28: Regions of the Kaufbeuren airfield selected for analysing the cracks orientation estimation
results. (a) GE image of a section of the Kaufbeuren runway where repair patches and small cuts are present
and (b) shows the assumed cracks image for this section. (c) GE image of the Kaufbeuren parking area
where severe cracks are present and (d) shows the assumed cracks image for this region.

surface roughness values correspond to cracks visible in the cracks bearing angle images.
Cracks along the runway direction predominantly appear in purple, indicating a bearing
angle of around 20 degrees, while cracks perpendicular to the runway appear in yellow to
green, indicating a bearing angle of around 115 degrees. In all three images, the bearing

148



6.3 Investigation on Cracks Orientation Estimation

Figure 6.29: Cracks orientation estimation results for the section of the Kaufbeuren runway shown in
Figure 6.28(a). Surface roughness images used as input for cracks orientation estimation generated from (a)
PS05 dataset, (b) multi-dataset averaging, and (c) highest SNRmethod. Corresponding cracks bearing
angle images generated from(d) PS05 dataset, (e) multi-dataset averaging, and (f) highest SNRmethod.

angles estimated by the Radon transform-basedmethod closely match the actual bearing
angles of the cracks measured from GE, as indicated by the white arrows. However, the
number of detected cracks varies depending on the surface roughness image used as
input. Fewer cracks are detected in the multi-dataset averaged image, while more false
cracks are detected when the highest SNR fused surface roughness image is used as input.
It is also noteworthy that the bearing angles of 0 degrees and 180 degrees represent the
same orientation and are therefore displayed in the same colour (dark blue) using a cyclic
colour map.

The histograms for these cracks bearing angle images are shown in Figure 6.30. Specifi-
cally, Figure 6.30(a) presents the histogram from the PS05 dataset, (b) from the multi-
dataset averaging method, and (c) from the highest SNRmethod. All three histograms
indicate that the dominant bearing angles are in the ranges of 20 to 30 degrees and 110
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Figure 6.30: Histograms for the cracks bearing angle images shown in Figure 6.29. Generated from (a)
PS05 dataset, (b) multi-dataset averaging, and (c) highest SNRmethod surface roughness images.
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to 120 degrees. The 20 to 30 degrees range corresponds to the purple-coloured cracks,
matching the GE-measured ground truth value of 21 degrees. The 110 to 120 degrees
range corresponds to the green-coloured cracks, matching the ground truth value of 112
degrees. As previously discussed, the number of detected cracks varies depending on the
surface roughness image used as input. Therefore, these histograms demonstrate that
the cracks bearing angles estimated by the Radon transform-based method are in close
agreement with the ground truth bearing angles measured from GE. It is important to
note that the histograms are generated for bearing angles within the 0 to 180 degrees
range. Bearing angles outside this range are wrapped into this range during histogram
generation. This wrapping can be the reason for the higher pixel count in the 160 to
180 degrees range across all the histograms.

Figure 6.31: Cracks orientation estimation results for the Kaufbeuren parking area shown in Figure 6.28(c).
Surface roughness images used as input for cracks orientation estimation generated from (a) PS05 dataset,
(b) multi-dataset averaging, and (c) highest SNR method. Corresponding cracks bearing angle images
generated from (d) PS05 dataset, (e) multi-dataset averaging, and (f) highest SNRmethod.
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Figure 6.31 shows the cracks orientation estimation results for the Kaufbeuren parking
area. Similar to Figure 6.29, Figures 6.31(a), (b), and (c) present the input surface rough-
ness images generated from the PS05 dataset, multi-dataset averaging, and highest SNR
methods, respectively. The corresponding cracks bearing angle images are displayed in
Figures 6.31(d), (e), and (f). In these images, the detected cracks bearing angles predomi-
nantly appear in purple and green, indicating a close agreement with the GE-measured
values (21 and 112 degrees). The results for a zoomed-in region of the parking area,
marked as ’Detail 1’ in Figure 6.31(a), are shown in Figure 6.32 for a closer examination
of the cracks orientation estimation results for this parking area.

Figure 6.32: Cracks orientation estimation results generated for the section of the Kaufbeuren parking
area marked as ’Detail 1’ in Figure 6.31(a). Surface roughness images used as input for cracks orientation
estimation generated from (a) PS05 dataset, (b) multi-dataset averaging, and (c) highest SNR method.
Corresponding crack bearing angle images generated from (d) PS05 dataset, (e) multi-dataset averaging,
and (f) highest SNRmethod.
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Figure 6.33: Histograms for the cracks bearing angle images shown in Figure 6.32. Generated from (a)
PS05 dataset, (b) multi-dataset averaging, and (c) highest SNRmethod surface roughness images.
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By analysing the cracks bearing angle images shown in Figure 6.32 for the section of
the Kaufbeuren parking area marked as ’Detail 1’, it can be observed that the dominant
bearing angle for the cracks aligned in the north-east direction is around 20 degrees
(purple), and the cracks aligned in the east-south direction have a dominant bearing
angle of around 115 degrees (yellow to green). The location and shape of the cracks
also match with the underlying GE optical view of these cracks. The main cracks visible
in the GE image are accurately detected from the PS05 dataset while the number of
detected cracks are less when the multi-dataset averaged surface roughness image is used
as input. The cracks bearing angle image generated from the highest SNR fused surface
roughness images shows a large number of cracks, which can be false cracks detections
due to the grainy/noisy appearance of the surface roughness image. Therefore, the multi-
dataset averaged and the highest SNRmethod based surface roughness images are not
recommended for cracks detection and orientation estimation. The best approach will
be to generate multiple cracks bearing angle images from individual SAR datasets having
different flight heading angles.

Figure 6.33 shows the histograms for the cracks bearing angle images discussed in Figure
6.32. These histograms reveal that the dominant bearing angles fall within the 20 to 30
degrees (purple cracks) and 110 to 120 degrees (yellow to green cracks) ranges, which
closely match the GE-measured bearing angles of 21 and 112 degrees, respectively. Thus,
it can be concluded that the combined adaptive thresholding and Radon transform-
based method is a reliable approach for estimating the orientation of cracks on the road
surface. Similar to Figure 6.30, the histograms presented in this figure are also limited to
bearing angles within the 0 to 180 degrees range, with values outside this range wrapped
back into it. This wrapping likely accounts for the higher pixel count in the 160 to 180
degrees range.

Understanding the orientation of the cracks can aid in determining the causes of their
formation and facilitate corrective measures. For example, longitudinal cracks, shown
in purple, are aligned with the runway and are most likely caused by large tensile stresses
developing near the tyre shoulders [101]. Transverse cracks, on the other hand, which
are shown in yellow to green, are perpendicular to the runway and are caused mainly by
factors such as soil settlement/shrinkage, improper joint spacing and freeze-thaw cycles
during winter [31, 148].

However, it is important to note that the cracks detection, severity and orientation
estimation results presented in this chapter were validated only w.r.t. the cracks visible in
GE. Further comparisons and validations are required using very high-resolution optical
photos such as those acquired with drone cameras. A flight campaign has been planned
for this purpose, which is scheduled to take place in 2025.
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6.4 Road Width Estimation

The road surface roughness images typically haveℎrms values between 0 and 2mm for the
road surfaces, while regions outside the roads may have significantly higher or differentℎrms values. This study utilises the abrupt change in ℎrms values at the road boundaries
to develop a method for road width estimation. The road width estimation results are
intended as a byproduct of the cracks detection and orientation results.

Figure 6.34: Basic concept of the road width estimation method.

The basic concept involved in the road width estimation method used in this study is
illustrated in Figure 6.34. In this figure, the surface roughness image created for the
Kaufbeuren runway is shown together with a surface roughness plot for a small section
of the runway indicated using the red rectangle along the runway width (in transverse
direction). When analysing the surface roughness plot, it becomes clear that the runway
surface has low ℎrms values below 1.0 mm, with a sharp increase in ℎrms values up to
2.50 mm at the runway boundaries. By identifying these boundary/change points on
both sides of the road surface where this abrupt increase in ℎrms values occurs, the road
width can be estimated. The block diagram of the processing chain developed based on
this concept for road width estimation using the airborne F-SAR datasets is shown in
Figure 6.35.

In this processing chain, the geocoded road surface roughness image and the OSM road
layers are used as inputs for the roadwidth estimation. After determining the geographic
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Figure 6.35: Block diagram of the processing chain adopted for road width estimation.

extent of the geocoded surface roughness image, the road centreline is extracted for
the target roads within this geographic extent. Figure 6.27 on page 146 illustrates the
representation of roads by a centre line between two endpoints. Along this extracted
road centreline, evenly spaced points are generated at regular intervals (e.g. every 10
metres) for several estimates of the road width. Several vectors are then created between
these neighbouring road points. It is important to note that these vectors run along the
road centreline, and points perpendicular to these vectors are required to estimate the
road width.

For each vector, two points are created that are perpendicular to the vector and outside
the plausible road width. The next step is to extract surface roughness profiles (ℎrms)
between each pair of these perpendicular points. The analysis of each extracted ℎrms
profile is crucial to identify change points where ℎrms values undergo abrupt changes.
These identified change points for each ℎrms profile serve as road boundary points

156



6.4 RoadWidth Estimation

Figure 6.36: Graphical representation of the road width estimation methodology.

whose coordinates are extracted. The road width is then calculated by multiplying the
number of pixels between each pair of change points by the spatial resolution of the
input road surface roughness image. A KML file is then created to visualise the road
width measurements in GE. A graphical representation of the road width estimation
methodology is shown in Figure 6.36.

6.4.1 Road Width Estimation Results and Discussion

This section discusses the experimental road width estimation results generated from
the X-band airborne F-SAR datasets.

Figure 6.37 shows the road width measurements for the Kaufbeuren runway visualised
in GE using the geocoded surface roughness images from F-SAR datasets. The white
dots automatically overlaid in GE correspond to the measured road widths for specific
sections of the runway, and clicking on each dot shows the corresponding measured
road width value. The comparison in Figure 6.37 shows that the road width measured
with the F-SAR dataset is 29 m for a specific section of the Kaufbeuren runway, which
closely matches the actual value of 29.41 mmeasured with GE. This indicates a good
agreement between the road widths estimated by F-SAR and the actual values on the
ground. The surface roughness profile shown in the figure refers to the section of the
runway marked by the yellow line in the GE image. The examination of this profile
shows higher roughness values outside the runway, with clear spikes at the boundaries
of the runway. These change points, which correspond to an abrupt increase in surface
roughness, were used to determine the road width as shown in the GE image.

The road width measurements for Apfeltranger road near the Kaufbeuren test site are
shown in Figure 6.38(a). This road is a single-lane tertiary road. Similar to Figure 6.37,
the white dots shown inGE correspond to themeasured roadwidths for specific sections
of the road surface, and clicking on each dot displays the corresponding measured road
width value. It can be seen that the road width measured with the airborne F-SAR
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Figure 6.37: Road width estimation results for the Kaufbeuren runway visualised in GE.

dataset for this road surface is 6 m and the road width measured with GE for the same
region indicated by the yellow line is 6.34 m, demonstrating close agreement with each
other. Figure 6.38(b) shows the surface roughness image of the same section of the
Apfeltranger road overlaid in GE. From this figure, it can be seen that the road width
points are generated exactly at the road boundaries where the sharp change in surface
roughness occurs demonstrating the capability of the road width estimation algorithm
in estimating the surface roughness change points.

From both Figures 6.37 and 6.38, it can be summarised that the proposed road width
estimation method can provide reliable road width measurements with the airborne
F-SAR datasets for both wide runways and single lane narrow tertiary roads. However,
it can be observed in both figures that the white dots representing the measured road
widths do not perfectly align with the road boundaries visible in the underlying GE
image. This discrepancy arises primarily from slight geocoding offsets in the surface
roughness images generated from the F-SAR data, which serve as input to the processing
chain. Additionally, somewhite dots exhibit further offsets relative to their neighbouring
points, likely caused by fluctuations in the surface roughness profile, which can result
in minor offsets (a few pixels) in detecting the boundary points. Further investigations
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(a)

(b)

Figure 6.38: Roadwidth estimation results for theApfeltranger road near theKaufbeuren test site visualised
in GE. (a) Road width points. (b) Surface roughness image.
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are needed to fine-tune the robustness of this method and to extend the scope of this
processing chain to more complex scenarios such as multi-lane roads, intersections, etc.

6.5 Chapter Summary

In this chapter, methodologies for detecting cracks and estimating their orientation
on road surfaces, as well as a method for estimating road width, are presented. All the
analyses for this chapter were done using the fully polarimetric X-band airborne F-SAR
datasets.

Analysis of the surface roughness images from various F-SAR datasets showed that
crack visibility in SAR images depends on the flight heading angle due to the oriented
nature of cracks. Therefore, the flight heading angle for cracks detection and orientation
estimation should be chosen based on the orientation of the cracks of interest, such as
longitudinal or transverse cracks. SAR data acquisition with a flight track parallel to
the cracks orientation ensures the best visibility of the crack in the SAR backscatter and
surface roughness images.

The investigations with the Canny edge detector and the stationary wavelet transform
(SWT) showed that these methods are not suitable for reliable cracks detection using
the X-band airborne F-SAR data used in this study. While the Radon transform showed
promising results for estimating crack severity and orientation on simulated SAR images,
it has a significant limitation: it generates outputs for all pixels, regardless ofwhether they
correspond to cracked or smooth surfaces. This makes the Radon transform unsuitable
for direct application on 𝜎𝑜 backscatter or surface roughness images.

To solve this problem, a combined approach of an adaptive thresholding algorithm and
the Radon transform was proposed. The adaptive thresholding algorithm detects cracks
inF-SARsurface roughness images, while theRadon transformestimates the severity and
orientation of these cracks. This combined approach outperformed previous methods,
with results visually validated using cracks visible on GE. The Radon magnitude values
were used to colour-code the detected cracks showing their severity fromminor to severe,
and the estimated orientation angles closely agreed with the measurements from GE.

Fused surface roughness images produced by multi-dataset averaging or highest SNR
methods are not ideal for cracks detection, as they may either miss smaller cracks or
produce many false detections. The most effective input for accurate cracks detection
and orientation estimation is a surface roughness image generated from a single F-SAR
dataset. However, cracks with certain orientations might be undetected if they are
not well-visible in this single dataset. To address this limitation, it is recommended
to generate multiple cracks detection and orientation estimation results using several
F-SAR datasets acquired with different flight heading angles. Specifically, using at least
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two flight heading angles: one parallel and one perpendicular to the road. This will
help in detecting both longitudinal and transverse cracks, which are common on road
surfaces.

Additionally, a method for estimating road width based on surface roughness change
point detection was developed, yielding results closely aligned with measurements from
GE. All the results, including crack severity, orientation estimation and road width
estimation, were visualised in GE, providing a user-friendly way to interpret the results
without the need for expertise in SAR data analysis.
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7 Discussion and Outlook

This chapter provides an overview of the results presented in this doctoral thesis and pro-
vides an outlook for future research activities in the field of road condition monitoring
using airborne and spaceborne SAR systems.

7.1 Discussion

This doctoral thesis focused on the development of algorithms for road condition moni-
toring using focused SAR images acquired by high-resolution airborne and spaceborne
SAR systems. Within the scope of this research, processing chains were developed for
estimating the road surface roughness using both airborne and spaceborne SAR systems.
Furthermore, processing chains were developed for detecting cracks on the road surfaces,
determining the orientation of these cracks and estimating the width of roads of interest.

In Chapter 1, the importance of maintaining an optimal level of road surface roughness,
insights into the formation of cracks and potholes, and a brief discussion of the safety
issues caused by these parameters were discussed. This chapter also explored the state-
of-the-art technologies currently in use for road surface condition monitoring using
survey vehicles and the drawbacks associated with them, including the difÏculty in
performing nationwide monitoring, labour and cost intensiveness, and time-consuming
processes. Since SAR backscatter signals are sensitive to surface roughness and dielectric
changes, it is considered a suitable candidate for large-scale road condition monitoring.
The principles of SAR systems and the state-of-the-art roughness estimation models
developed for SAR systems were discussed in detail in Chapter 2.

When analysing fully polarimetric airborne X-band SAR data for road condition moni-
toring, in particular the data acquired using DLR’s F-SAR system, cross-polarisation
(HV and VH) channels exhibited an SNR below the noise floor (NESZ) of the SAR
system, rendering them unsuitable. Existing roughness estimation models, reliant on
these channels and also designed for soil roughness, were thus found to be ineffective
for road surfaces. Chapter 3 introduced a new semi-empirical roughness model tailored
for airborne X-band SAR data, utilising only co-polarisation channels (HH and VV)
for road surface roughness estimation. This model demonstrated superior performance
compared to the state-of-the-art roughness estimation models. It achieved an RMSE
of approximately 0.37 mm with the ground truth surface roughness data, effectively
discerning variations in surface roughness. Incorporating upper 𝜎𝑜 and lower SNR
thresholding techniques in the processing chain eliminated invalid surface roughness
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estimates. Fusion of surface roughness images frommultiple datasets using the multi-
dataset averaging technique minimised errors due to incidence and flight heading angle
variations, low SNR, and shadow regions, improving the RMSE to 0.27 mm. However,
this model is valid only under specified validity conditions: incidence angles greater than
30 degrees and surface roughness values less than 12.43 mm for the X-band SAR sys-
tem. Furthermore, it is recommended to use SAR datasets acquired in VV polarisation
with steeper incidence angles ranging from 30 to 35 degrees for reliable road roughness
estimation, ensuring the highest possible SNRwithin the validity range of the model.

Machine learning-based regression models were then evaluated for road surface rough-
ness estimation. The support vector regression (SVR), random forest regression (RFR)
and artificial neural network (ANN)models discussed inChapter 4 provided results that
were consistent with both the new semi-empirical model and the ground truth surface
roughness data. The highest RMSE observed for these models with the ground truth
data was 0.39 mm, indicating a comparable performance to the new semi-empirical
model. However, a major challenge lies in the limited ground truth data available for
training these machine learning-based models. Techniques such as bagging and cross-
validation can mitigate this problem up to some extent by preventing overfitting during
model training. However, it is worth noting that the new semi-empirical model still gives
slightly better results, and is also more computationally efÏcient and faster compared
to the machine learning-based models. Therefore, the use of machine learning-based
models is only recommended for scenarios where the new semi-empirical model is less
reliable, e.g., when it operates outside its validity conditions. Consequently, the new
semi-empirical model is a good option for road surface roughness estimation when the
input data meet its validity conditions, while in other situations machine learning-based
models may be more suitable for better road surface roughness estimation.

Chapter 5 presents investigations into road surface roughness estimation using space-
borne SAR systems. The analysis, conducted with the X-band data acquired by the
TerraSAR-X (TS-X) satellite, revealed challenges such as reduced SNR compared to
airborne SAR systems due to increased platform height. Techniques like additive noise
minimisation and multilooking were employed to enhance the SNR. The new semi-
empirical model, initially developed for airborne SAR, was adapted for spaceborne
SAR data, characterised by coarser spatial resolution and lower SNR. Results from
this adapted model exhibited good agreement with airborne SAR results and ground
truth values, demonstrating an RMSE of approximately 0.32 mm. Notably, X-band
spaceborne SAR in staring spotlight (ST) mode and VV polarisation with 30 to 35-
degree incidence angles provedmost suitable for road surface roughness estimation. The
ST-imaging mode offered the highest spatial resolution, while VV polarisation with
steeper incidence angles provided the necessary SNR. Challenges in road condition
monitoring with state-of-the-art spaceborne SAR systems includes reduced swath and
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single polarisation operation in ST mode, along with difÏculties in estimating road
surface roughness for north-south oriented roads during busy trafÏc times due to vehicle
movement in the azimuth direction of the SAR system in the sun-synchronous orbit.

Investigations on cracks detection, orientation estimation and road width estimation
are discussed in Chapter 6. Analysis of multiple road surface roughness images from
various F-SAR datasets revealed that cracks visibility in SAR images depends on the
flight heading angle, necessitating the selection of flight heading angle based on the
orientation of the cracks of interest. Investigations with the Canny edge detector and
the stationary wavelet transform (SWT) demonstrated their ineffectiveness for reliable
crack detection. The Radon transform showed promising results, however, it provided
estimates for all pixels regardless of whether they were cracked or not. To solve this
issue, a combined approach using an adaptive thresholding algorithm and the Radon
transform was proposed, which successfully detected cracks and estimated their severity
and orientation, with results validated usingGE.Additionally, the roadwidth estimation
results obtained by detecting sharp changes in surface roughness values at the road
boundaries also showed good agreement with the GEmeasurements.

Results for road surface roughness, crack detection, orientation estimation, and road
width estimation were geocoded and overlaid on GE for enhanced visualisation and
interpretation. This representation is expected to aid road maintenance authorities in
pinpointing issues on specific road sections without requiring SAR expertise.

The presented results confirm that this doctoral thesis has effectively fulfilled its research
objectives. Through the development of algorithms and processing chains, it has enabled
the estimation of road surface roughness utilising both DLR’s airborne X-band F-SAR
andGermany’s spaceborneTS-X systems. Moreover, methodologies for detecting cracks,
estimating orientation, and determining road width using the airborne X-band F-SAR
system have been devised.

7.2 Future Work and Outlook

The following research concepts are proposed for the further advancement in the field
of road condition monitoring using airborne and spaceborne SAR systems:

1. International Roughness Index (IRI) Estimation: The IRI is a widely used
measure to assess the unevenness of road surfaces. It is determinedby analysing the
longitudinal profile of road surfaces and is used by highway authorities worldwide
as a functional indicator of the flatness of roads, a crucial aspect that affects driving
comfort and safety. Roads are often categorised based on their IRI measurements.
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To estimate the IRI with SAR systems, a very-high resolution digital elevation
model (DEM) generated from interferometric SAR data can be used. The DEM
can, for example, be produced by using the interferometric X-band SAR data
from DLR’s F-SAR system. This radar-derived DEM facilitates the extraction of
both the longitudinal and, with high-resolution data, even the transversal profiles
of the road surface, enabling the accurate estimation of IRI values.

2. Clustering of theCracksDetected on theRoad Surface: The cracks detection
method presented in Chapter 6 of this thesis, works on a pixel-by-pixel basis. As
a next step, it is recommended to cluster these identified cracks pixels.

Clustering these cracks pixels after detection improves the ability to recognise spa-
tial patterns and distributions, providing a more comprehensive understanding
of the cracks severity and damage extent. In addition, clustering facilitates the
extraction of key features such as cracks length, size and shape, which are critical
for developing accurate predictive models and prioritising maintenance actions.
The Density-based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm and machine learning-based clustering algorithms can be considered as
potential candidates for this purpose.

3. Advancement of the Road Width Estimation Method: The road width
estimation method discussed in Chapter 6, which is based on the detection of
change points in surface roughness values, is currently limited to simple situations
such as a single road. It is not suitable for more complex scenarios with multiple
parallel roads, intersections etc. One approach to extend the applicability to these
complex scenarios could be to collect additional data fromOSM. Even though
road width information is generally not available in OSM, details such as the
type of roads, the number of lanes, information about road intersections, etc.
can be obtained fromOSM. This additional information could then be used to
customise the search criteria or conditions for identifying the change points of
the surface roughness values.

4. Airborne Polarimetric Ka-band SAR for Road Condition Monitoring: A
very-high resolution airborne SAR system operating in the Ka-band is expected to
exhibit increased sensitivity to road surface roughness and damages, such as cracks
and potholes. This increased sensitivity is attributed to its smaller wavelength,
approximately 1 cm, in contrast to the X-band SAR system used in this thesis,
which has a wavelength of approximately 3 cm.

The use of a Ka-band SAR system is anticipated to result in higher backscat-
tering from even minor undulations at the millimetre level on the road surface,
enhancing the capability of the SAR system in capturing fine road surface details.
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Additionally, there is potential for utilising the Ka-band SAR system for estimat-
ing the IRI parameter. An airborne polarimetric Ka-band SAR of this kind is
currently under development at DLR.

5. Future High Resolution Wide Swath (HRWS) Spaceborne SAR System
for Road Condition Monitoring: Chapter 5 highlighted the challenges of
assessing road surface roughness with spaceborne SAR. These challenges arise
from the low SNR and the requirement to operate state-of-the-art SAR systems
such as TerraSAR-X in high-resolution imaging modes such as ST mode, which
limits data acquisition to a single polarisation and reduces the swath coverage.

Looking forward, thedevelopmentof a future high-resolutionwide-swath (HRWS)
spaceborne SAR system with a bandwidth of up to 1200MHz and an improved
noise equivalent sigma zero (NESZ) holds promise for improving the accuracy of
road surface roughness estimation.
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A Overview of Test Sites and Data Collection Activities

A.1 Test Sites

To investigate the potential of SAR to reliably estimate road surface roughness as well as
to detect cracks and potholes and thereby obtain information about the overall condition
of the road surface, test sites with surfaces made of typical road construction materials
with different surface roughness values, such as concrete, asphalt or comparablematerials,
as well as some unrepaired sections with cracks and potholes are needed. For this study,
three such test sites were identified whose surfaces consist of materials with different
surface roughness, namely the Kaufbeuren airfield, duraBASt and Braunschweig test
sites. In addition, Kaufbeuren airfield has some sections with cracks and potholes. The
following sub-sections explain the details of the individual test sites.

A.1.1 Kaufbeuren Airfield Test Site

The Kaufbeuren airfield, situated in Bavaria, Germany, is a former military airfield
featuring runways, taxiways, and parking areas. As a decommissioned facility, it lacks
regular maintenance, resulting in the presence of rough and cracked surfaces. Figure
A.1 displays the Google Earth (GE) image of this test site.

A close examination of Figure A.1 shows that the two ends of the runway are most likely
made of concrete, as indicated by the yellow rectangles, while the section in between is
asphalt. The photo on the top left of Figure A.1 shows an area that is most likely made
of concrete, with both smooth concrete and concrete areas with repeated cuts. Similarly,
the photo on the bottom right of Figure A.1 shows an asphalt area in the centre of
the runway where repair work has been carried out using a rougher material, which
may most likely be concrete. The presence of various surface types, including smooth,
rough, and cracked surfaces composed of different materials, makes Kaufbeuren airfield
an ideal test site for this study [P4, P6, P8]. Furthermore, ground truth (GT) surface
roughness values (GT ℎrms) were collected at this test site, which are used to train the
new semi-empirical and machine learning models and also to validate the road surface
roughness results estimated using these models. Further details regarding the GT data
collection process are discussed in sub-section A.4 of this Appendix. In addition, the
SAR datasets obtained over this test site were used for crack and pothole detection
leveraging the presence of the severe cracks and potholes present here.
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Figure A.1: Kaufbeuren airfield test site.

A.1.2 duraBASt Test Site

The “Demonstrations-, Untersuchungs- und Referenzareal der BASt (duraBASt)” test
site, situated near the Cologne-East motorway intersection in Germany, is managed by
the Federal Highway Research Institute, known as ”Bundesanstalt für Straßenwesen
(BASt)”. Figure A.2 displays the GE image of the Cologne motorway intersection
and the duraBASt test site. The duraBASt area, depicted within the yellow ellipse in
the zoomed view, exhibits varied colours in the GE image due to the use of diverse
constructionmaterials with differing surface roughness values. This characteristic makes
the site suitable for this study [P4, P8].

A.1.3 Braunschweig Test Site

The third test site is the Wolfsburg motorway intersection in Braunschweig, Germany,
chosen for its long motorway stretch without disturbances from trees or buildings.
Figure A.3 displays the GE image of this location. While the GE image suggests a
relatively uniform road surface roughness for most of the test site, a noticeable change
in the colour shade at the right end indicates potential repair work using asphalt with a
different material composition, suggesting a variation in surface roughness in this region
[P4, P8].
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Figure A.2: duraBASt test site.

Figure A.3: Braunschweig test site.
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A.2 F-SAR System and Data Acquisition

The high-resolution fully polarimetric SAR data acquired with the airborne F-SAR
(Flugzeug-SAR) system of the German Aerospace Center (DLR) over the test sites
Kaufbeuren, duraBASt and Braunschweig are used for this study. An overview of the F-
SAR system and information about the datasets acquired over the test sites are discussed
in the following sub-sections.

A.2.1 Overview of the F-SAR System

The F-SAR system, developed and operated by DLR’s Microwaves and Radar Institute,
is one of themost advanced airborne SAR systems capable of performing interferometric
and polarimetric imaging in various frequency bands [113]. It is the successor to the
former E-SAR (Experimental SAR) system developed and operated by DLR [119]. The
F-SAR system was developed using commercial, off-the-shelf hardware components.
The antennas for the different frequency bands were developed at DLR. The platform
used for the F-SAR system is a Dornier DO 228-212 (D-CFFU) aircraft (cf. Figure A.4)
[114].

Figure A.4: DLR research aircraft Dornier DO 228-212 equipped with the F-SAR system. The highlighted
detail shows the antenna carrier mounted on the fuselage.

The F-SAR system is capable of acquiring fully polarimetric SAR data in the X, C, S, L
and P frequency bands, with the added capability of simultaneous data acquisition in
different frequency bands. The antenna mount for the X, C, S and L-bands is installed
in the fuselage of the aircraft on the right side and carries three X-band, one C-band,
two S-band and one L-band planar antennas (see zoomed view in Figure A.4), and the
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P-band antenna is mounted under the aircraft body. Antenna pairs X1, X2 and S1, S2
can be used for cross-track interferometric (XTI) data acquisition in X-band and S-band,
respectively. Antenna pairX2, X3 forX-band can be used for along-track interferometric
(ATI) data acquisitions. The main technical parameters of the F-SAR system are listed
in Table A.1 [113, 114].

Table A.1: Technical parameters of the F-SAR system in different frequency bands [113, 114].

Band X C S L P

Frequency [GHz] 9.60 5.30 3.25 1.325 0.35
Bandwidth [MHz] 760 400 300 150 100
Pulse Repetition Frequency (PRF) [kHz] 5 5 5 10 12
Transmit Power [kW] 2.50 2.20 2.20 0.70 0.70
Range Resolution [m] 0.2 0.4 0.5 1.0 1.5
Azimuth Resolution [m] 0.2 0.3 0.35 0.4 1.5
Channels 4 2 2 2 2
Polarisation Fully polarimetric (Quad-Pol)
SwathWidth [km] 12.5 (at max. bandwidth and max.

flight altitude
)

A.2.2 F-SAR Datasets used for this Study

The choice of SAR parameters is an important decision that affects the accuracy and
effectiveness of road surface roughness estimation and also the detection of cracks and
potholes. The road surface, which is inherently smooth and has millimetre-scale surface
irregularities, when observed with SAR sensors at different wavelengths, shows an inter-
esting phenomenon. As the wavelength increases compared to the surface irregularities,
the surface appears smoother and smoother due to the increased specular reflection that
redirects the transmitted electromagnetic (EM) signals away from the radar, resulting in
less backscatter and a lower signal-to-noise ratio (SNR). On the other hand, the same
surface appears rougher to a SAR system operating at a shorter wavelength, resulting in
more backscatter towards the SAR antenna and thus a higher SNR [140]. Therefore,
the shortest available wavelength should be used to ensure the most accurate estimation
of road surface roughness and the detection of very fine road details. In the case of the
F-SAR system, this is the X-band with a wavelength of about 3 cm. In addition, the
spatial resolution of the SAR system plays a critical role in identifying fine road surface
features, and F-SAR offers the highest possible spatial resolution in the X-band with
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an azimuth and range resolution of 0.2 m (cf. Table A.1) [75]. Considering all these
factors, the fully polarimetric F-SAR datasets acquired in X-band are the best available
choice for road surface roughness estimation and for cracks and potholes detection.

The Kaufbeuren airfield was selected as the primary test site for this study because of the
availability of the long runway and taxiway without vehicle trafÏc, which also provided
the opportunity to collect ground truth surface roughness data. For the road condition
monitoring, the data acquisition should be done on dry days to avoid any backscatter
variations due to rain water filling the voids or cracks on the road surface. Two flight cam-
paigns were conducted at the Kaufbeuren airfield test site to acquire the high-resolution
X-band F-SAR datasets. Multiple datasets were acquired with different incidence angles
and aspect angles w.r.t. the Kaufbeuren runway to understand the effects of incidence
angle and look direction changes in the road surface roughness estimation and also in
the detectability of cracks and potholes. The first flight campaign was conducted on04th September 2020 with the aircraft flown at an altitude of approximately 3 km. The
details about the acquired datasets are given in Table A.2.

Table A.2: F-SAR data sets acquired over Kaufbeuren airfield during the first flight campaign.

Dataset
ID

Incidence angle
at the runway

Flight track
w.r.t. runway

Flight heading
angle

PS02 23∘ to 51∘ 45∘ 91.18∘
PS03 29∘ to 55∘ 45∘ 91.20∘
PS04 30∘ approx. Parallel 201.71∘
PS05 32∘ to 55∘ Across 291.69∘
PS06 32∘ approx. Parallel 21.70∘
PS08 35∘ approx. Parallel 201.72∘
PS10 34∘ approx. Parallel 21.70∘
PS11 39∘ approx. Parallel 201.71∘
PS12 40∘ approx. Parallel 21.70∘
PS13 45∘ approx. Parallel 201.72∘
PS14 45∘ approx. Parallel 21.70∘
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Table A.3: F-SAR datasets acquired over Kaufbeuren airfield during the second flight campaign.

Dataset
ID

Incidence angle
at the runway

Flight track
w.r.t. runway

Flight heading
angle

Flight
altitude

PS01 11∘ to 57∘ Across 111.87∘ 2.2 km
PS02 22∘ to 60∘ Across 291.87∘
PS03 36∘ to 40∘ Parallel approx. 201.83∘
PS04 37∘ approx. Parallel 21.81∘
PS05 40∘ to 50∘ approx. Circular 0 to 360∘ 4.4 km

In the second flight campaign, both linear and circular flight paths were used. The linear
flight paths were flown on 31st May 2022, and this time the flight altitude was lowered
to about 2.2 km to test whether this could improve the SNR of the cross-polarisation
channels (HV and VH). The circular SAR (CSAR) datasets were acquired on 08th June
2022 to test the dependency of the aspect angle on the road surface roughness estimation.
However, in the case of the CSAR datasets, the flight altitude was increased to 4.4 km
due to operational constraints for circular flight path. Table A.3 shows the information
about the acquired datasets.

In addition, several F-SARdatasets were collected from the duraBASt and Braunschweig
test sites to test the applicability of the methods developed in this study on real roads.
The flight campaign at the duraBASt test site was conducted on 10th September 2019
and the flight campaign at the Braunschweig test site was conducted on 31st August
2020.

A.3 TerraSAR-X System and Data Acquisition

This study also investigated the possibility of estimating road surface roughness using
spaceborne SARdata. For this purpose, the high-resolutiondata acquiredby theGerman
satellite TerraSAR-X (TS-X) and its twin satellite TanDEM-X (TD-X) over the test sites
Kaufbeuren and Braunschweig were utilised. The following sub-sections provide an
overview of the TS-X system as well as information about the TS-X datasets used for
this study.

A.3.1 Overview of the TS-X System

The TS-X and TD-X satellites were developed by Airbus Defense and Space (former
EADS Astrium) and operated by DLR in the framework of a Public Private Partnership
(PPP).TheTS-X satellitewas launched in June 2007 and theTD-X satellitewas launched
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Figure A.5: Artistic illustration of the TerraSAR-X satellite with main components marked.

in June 2010. Both satellites are flying in a close helix formation in a sun-synchronous
repeat orbit with the major aim to perform single pass interferometry to generate a
high-resolution digital elevation model (DEM) [18]. Since both satellites are identical,
no distinction is made between them in this study, instead, they are collectively referred
to as the TS-X system.

The TS-X system operates in X-band, with a centre frequency of 9.65 GHz. It employs
a right-looking, active electronically steerable phased array antenna with a maximum
chirp bandwidth of up to 300MHz. The system supports both single and dual polarised
data acquisitions, depending on the selected imagingmode [100]. The spatial resolution
and the extent of the swath covered by the TS-X system also vary according to the
imaging mode chosen [7, P6]. Information about the available imaging modes and their
corresponding data acquisition parameters are given in Table A.4.
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Table A.4: TerraSAR-X imaging modes.

ImagingMode

Swath
Coverage
(Azimuth x
Range) [km]

Spatial
Resolution
(Azimuth x
Range) [m]

Polarisa-
tion

Inci-
dence
Angle
[𝑜]

Staring
SpotLight (ST) 3.7 x 4 0.24 x 0.6 Single HH

or VV 20-45

HighRes
SpotLight (HS) 5 x 10 1.1 x 1.2

Single HH
or
VV

20-55

2.2 x 1.2 Dual HH
and VV

SpotLight (SL) 10 x 10 1.7 x 1.2
Single HH

or
VV

20-55

3.4 x 1.2 Dual HH
and VV

StripMap (SM) 50 x 30 3.3 x 1.2
Single HH

or
VV

20-45

50 x 15 6.6 x 1.2

Dual HH
and VV,
HH and
HV or VV
and VH

ScanSAR (SC) 150 x 100 18.5 x 1.2 Single HH
or VV 20-45

Wide ScanSAR
(WS) 200 x 270 40 x (1.7-3.3)

Single HH
, HV, VH
or VV

15.6-49

A.3.2 TS-X Datasets used for this Study

In this study, mainly X-band datasets acquired by the TS-X satellite in staring spotlight
(ST) imaging mode were used to investigate the feasibility of global road condition
monitoring using spaceborne SAR.The choice of STmode is to achieve the best possible
spatial resolution, which is approximately 0.24 x 0.60 m (azimuth x range) and a swath
coverage of 3.7 x 4 km in azimuth and range directions, respectively (cf. Table A.4) [7,
P6]. Details of the datasets acquired over the Kaufbeuren and Braunschweig test areas
are listed in Table A.5.
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Table A.5: TS-X datasets acquired in staring spotlight (ST) mode.

Test site
Date of
acquisition

Polarisation
Incidence angle
at the runway

Kaufbeuren 16.03.2014 HH 43.7∘
Kaufbeuren 13.08.2022 VV 31.6∘
Kaufbeuren 23.09.2022 VV 43.7∘
Kaufbeuren 29.09.2022 VV 31.0∘
Braunschweig 14.02.2023 VV 26.5∘
Braunschweig 21.02.2023 VV 25.5∘

A.4 Ground Truth Surface Roughness Data Collection

Aground truth (GT) surface roughness (GTℎrms) data collection activitywas performed
on 3rd September 2020 at the Kaufbeuren airfield test site to validate the surface rough-
ness values (ℎrms) estimated from the F-SAR and TS-X datasets using state-of-the-art
roughness estimation models as well as to develop and train new models. Similar to
the SAR data collection, the GT data collection were also performed on a dry, sunny
day to avoid any measurement errors. Eight locations on the runway and taxiway in
Kaufbeuren, each with an area of 1 m2, were identified for the GT ℎrms data collection.
The photos and locations of these GT spots are shown in Figure A.6. From the photos it
can be seen that GT data were collected from different surface types, i.e., smooth, rough
and cracked surfaces as well as surfaces with different material compositions.

A handheld laser scanner with the capability to measure vertical surface undulations
with a micrometre level accuracy was used to scan each of the GT spots. Figure A.7(a)
shows the laser scanning process at GT spot 1. The output of the laser scanner is an
”xyz” file in which the x and y values represent the row and column coordinates of the
measurement points within each GT spot and the z values represent the corresponding
surface undulation value for each measurement point. The surface undulation image
generated forGT-spot 1 is shown in Figure A.7(b). This spot is most probably a concrete
area with repeated cuts, which can be clearly seen in the surface undulation image. A
single GT ℎrms value was then generated for each GT spot from the surface undulation
values using (2.11) given on page 22. All information on the individual GT spots,
including the calculated GT ℎrms values , can be found in Table A.6.
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Figure A.6: Photos and locations of the ground truth spots at Kaufbeuren airfield.

(a) (b)

Figure A.7: (a) GT data collection process. (b) Surface undulation image for GT spot 1, which is the only
spot that contains repeated cuts.
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Table A.6: Information about the ground truth spots, each with a dimension of 1 m x 1 m.

GT spot
Latitude

(°)
Longitude

(°)

Surface undulation
(mm)

GT ℎrms

(mm)
Characteristics

Min Max

1 47.87000278950265 10.61914390509984 -7.09 2.73 2.36
Concrete area with

repeated cuts

2 47.86848751709891 10.61825671660665 -3.00 2.27 0.99 Smooth concrete area

3 47.86231983316981 10.61474126700445 -2.53 1.70 0.66 Smooth asphalt area

4 47.86230525205922 10.61480184484127 -4.34 1.66 0.88
Smooth area - repair work

done most probably
using concrete

5 47.857180781816 10.61153339982374 -2.45 2.26 0.68 Smooth asphalt area

6 47.85721718838993 10.61139022882151 -4.14 2.01 0.98 Smooth concrete area

7 47.85446597169599 10.61009957476967 -3.03 2.62 1.09 Smooth concrete area

8 47.86190571408042 10.61604281732041 -2.38 1.91 0.61 Concrete, very smooth
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