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Energy scenario analysis with optimization approaches rarely goes beyond a
small number of scenarios. Disadvantages include limited coverage of uncer-
tainties and assumptions, and a limited ability to provide robust policy advice.
We present an approach that enables the multi-criterial evaluation of more
than 11,000 scenarios and demonstrate it for the German power system. We
vary both a wide range of input parameters and method choices. The resulting
scenarios are assessed through a number of indicators on affordability, supply-
security and sustainability. The most significant impacts on the results stem

from considering multiple weather years. Furthermore, we estimate the
number of runs required for robust energy systems analyses - well over

100 scenarios are needed. Nevertheless, fewer scenarios may be sufficient for
limited scopes. Our analysis also underlines a challenge for future energy
system design: cost-efficient decarbonization while conserving natural

resources.

Scenario analysis is crucial for making informed decisions about future
energy systems, but established modeling approaches are subject to
massive uncertainties that are often not considered'. These uncer-
tainties are diverse and influence various aspects of the models. First,
uncertainties affect input data, relying on assumptions made by
modelers. Second, each model approach only considers a few aspects
of the real world. For instance, optimization models minimize costs,
yet many other aspects are relevant to decision-makers. Therefore, it is
important to consider a broad set of indicators for describing desired
future pathways. Third, there are uncertainties related to how a certain
model approach is applied, i.e., the method choices taken. One
example is using different weather years or not.

Consequently, decision makers cannot consider the uncertainties
caused by differences in modeling approaches, and modelers lack a
systematic understanding of the effects of typical method choices.
While modelers are aware that a variety of uncertainties exist,
addressing every uncertainty is often impractical. Hence, it is neces-
sary to develop a better understanding which factors have a high
impact. However, uncertainty factors are often studied independently

in the literature, and comprehensive evaluations are rarely done due to
the high computational effort required. Particularly in studies with
only a few model runs, biases remain largely unnoticed”. Nevertheless,
the impact of uncertainties and the influence of methodological
choices on scenario results are considerable.

Energy scenario analysts typically use capacity expansion
models®, which we refer to as energy system optimization models
(ESOMs). These cost-minimizing models* usually have normative
constraints and many interdependencies. Modelers must also cope
with many uncertain parameters'. For this reason, analyzing broad sets
of scenarios is often only possible for small problems, and is estab-
lished in operation planning® and investment planning’ for local sys-
tems, such as residential neighborhoods® or industrial areas’. Such
applications are computationally manageable since their scope is
limited. However, ESOMs become disproportionately complex for
research on large-scale systems, making large-scale simulations chal-
lenging. As a consequence, such ESOMs are difficult to compute™*™°,
High-performance computing (HPC) can address this issue and is
standard in related research areas such as climate modeling. However,
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although it is the best practice, it is not yet applied in many energy
scenario analyses.

Presenting the results also comes with challenges. Since the pur-
pose of scenario studies is typically to support human decision
makers, the results must be summarized. Of the thousands of calcu-
lated scenarios, only a high level of aggregation or just a few repre-
sentative scenarios can usually be communicated”. This results in a
lack of incentive to calculate more than a few scenarios, given the large
amount of computational resources required. In fact, even prominent
large-scale energy supply studies examine only few scenarios. For
example, the TYNDP 2024 Scenarios'” consider one weather year for
capacity expansion planning and three weather years for dispatch
planning, as well as just two different sets of cost assumptions. Simi-
larly, although the National Renewable Energy Laboratory (NREL) cal-
culated 100 scenarios for their National Transmission Planning Study,
only the weather years 2007-2013 were used for modeling®.

Consequently, we must combine efficient computing of complex
optimization models with systematic variations of input data
assumptions to create a space of plausible scenarios, i.e., having sen-
sible combinations of input parameters that can be communicated. In
summary, we see a need for performing more robust scenario analyses
that address many different system aspects. Parallel computing of
many scenarios using HPC can address these needs. Accordingly, the
overarching questions of this paper are: First, how can energy scenario
analysis using large-scale ESOMs benefit from establishing modeling
workflows in HPC environments? Second, what impact do required
methodological choices have on the robustness of scenario analyses?

Our first main contribution is to inform decision-makers and non-
modeling experts by raising awareness about uncertainties in the
context of decision-support on future energy supply strategies. We do
this by investigating the robustness of recommendations based on
complex modeling approaches. To achieve this, we quantify uncer-
tainties related to both data (parametric uncertainty) and model
building (methodological uncertainty). We address these uncertainties
by calculating a large number of scenarios with sampled input. In
particular, this paper compares the impact of five method choices ona
scenario space resulting from Monte Carlo simulations® for model
parameters. Additionally, this paper analyses the number of runs
necessary to ascertain the desired robustness of results for energy
scenario analyses. Through a multi-criteria ex-post assessment, we
enable different users, such as energy infrastructure planners or pol-
icymakers, to better understand if simple sensitivity analyses are suf-
ficient or if extensive exploration of scenario spaces is necessary.

Our second main contribution is enabling other researchers to
estimate the influence of five common methodological choices on
results, as such systematic investigations are rare. We demonstrate this
influence with more than 11,000 scenarios, thereby increasing the
robustness of results and trustworthiness of such models. Finally,
applying different model types can help to combine different model-
ing perspectives. Specifically, we couple an ESOM, REMix, with an
agent-based simulation model (ABM) called AMIRIS. AMIRIS models

the main actors in the electricity market and addresses the short-
comings of ESOMs, such as the feasibility of optimal solutions in a real
world with competing actors. It also allows us to analyze a broader set
of indicators, avoiding blind spots, e.g., for markets, as part of a multi-
criteria ex-post assessment of seven core indicators. Using this
method, we obtain least-cost future power systems and test opera-
tional feasibility on the electricity market. We also assess important
environmental impacts and security of supply. Although our study is
based on data from the German power system, we cannot claim to
provide scenario results ready for policy advice (e.g., due to the
absence of up-to-date, normative policy targets). However, we provide
many different methodological and parametric choices for Germany
for 2030.

We present the results of a fully automated HPC workflow (see
Fig. 1), which couples an ESOM with an ABM. This allows us to statis-
tically evaluate the impact of different methodological choices on the
results, the scenarios, using Python scripts. These scenarios are eval-
uated through a variety of indicators on affordability, supply-security
and sustainability.

Results

Energy system optimization models optimize the expansion and
operation of the energy system from a central planner’s perspective
typically by minimizing total system costs. Optimization results heavily
rely on the input data, such as weather and techno-economic data. The
uncertainties within these techno-economic parameters are sampled
based on a literature review, where minimum, maximum, median and
mean values are identified"*. However, optimization also depends on
the methodological choices. Therefore, we evaluate the impact of five
frequent methodological choices on the scenario space: (I.) Probability
distribution function for input parameter sampling (truncated normal
vs. uniform). (Il.) Abstraction of power grids in terms of spatial reso-
lution (small, medium, large and xI-systems). (lll.) Capacity expansion
approach (brownfield vs. greenfield). (IV.) Number of historical
weather years considered (1 vs. 24). (V.) Network vulnerability in terms
of permanent unavailability of network components (with and
without).

While sometimes one option may be more realistic than its
alternative - e.g., brownfield vs. greenfield - the core idea is to isolate
and quantify the influence of the most important method choices in
existing scenario studies. As a consequence, modelers can evaluate the
influence of their method choices and, in the future, choose in a more
informed way.

For each method choice, multiple sets of 100-3000 scenarios
(runs) are computed (see Supplementary Table 3 for an overview).
Each set represents a defined combination of the method choices (I.)-
(V.). The focus is the future power supply of Germany for the target
year 2030, which is modeled in two ways: as a market where interac-
tions between decentralized actors are simulated and as an optimiza-
tion of operation and investment planning from a central planner’s
perspective.

v

Scenario Model Instance LP Solver Indicator
Generator Generator Models
Parameter : :
. Scenario Scenario
Parameter Scenario N CPLEX Solution Results AMIRIS
Data (CSV) AND Data (GDX) REMix Model OR (GDX) (GDX) AND
Instance
Parameter PIPS-IPM++ Python Scripts
Sampling

Fig. 1| Workflow of coupled models on high-performance computer. The
parameter sampling is done in the first step of the workflow, the scenario generator.
The scenario data is fed into the model instance generator and the indicator

models. The REMix results are another input to the indicator models. The indicator
models calculate the seven core indicators for all considered scenarios.
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Fig. 2 | Carbon emissions evaluated for the complete scenario space (all model
instances). Horizontal lines show different available emission budgets for reaching
actual policy targets in Germany. Colors refer to scenario groups computed with a
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specific combination of methodological choices. On the right-hand side, the dis-
tribution of carbon emission over all scenarios is illustrated.

Scenario space for the German power system

Figure 2 shows the resulting direct CO, emissions from our runs and
the annual CO,-budgets of notable scenarios for Germany as hor-
izontal lines. Since total life-cycle GHG-emissions (provided in CO,
equivalents) and direct CO, emissions are highly correlated (p =0.97)
across all scenarios, we treat them as interchangeable. We consider
penalty costs for CO, emissions, similar to CO, emission prices used as
political instrument to reduce carbon emissions®”. Budgets for CO,
emissions are often discussed in politics but, so far, they are rather
used as benchmark than a strict limitation. By sampling the CO,
emission price as one of many parameter uncertainties we analyze the
effect of different CO, prices in combination with other parameter
variations on the cost and carbon emissions for each modeling run.

Remarkably, 99.9% of scenarios stay below the UBA (German
Federal Environmental Agency) 2017 budget'®, and 94% stay below the
Climate Action Law’s threshold”. These studies use a broader scope
compared to our focus on the electricity sector only. According to the
German Federal Environment Agency, electricity production con-
tributed 223 Mt to the 642 Mt of emission of the energy sector in
20228, Note that annual budgets in climate research decrease over
time compared to the year of study, since emissions in elapsed years so
far did not fall as expected. If the Contraction and Convergence (C&C)
approach is applied to achieve the net-zero emission goal until 2050,
the German carbon budget in the electricity sector in 2030 is limited to
43.2 Mt”. The C&C approach first aligns the national emission per
capita globally until 2035 and then reduces the global emissions to
achieve net-zero in 2050. This can only be achieved by 36% of all
scenarios.

Second, for energy scenario analysis, capacities of power gen-
erating technologies are one main result. In Fig. 3, we present the
differences in expanded generation capacities, if only one method
choice (1.)-(V.) is switched, while all others are kept constant. Differ-
ences in method choices are calculated against the benchmark sce-
narios, i.e., the grey group in Fig. 2. This group is considered a
benchmark because the attribute set of these scenarios — uniform
distribution of inputs, brownfield approach, medium sized grid reso-
lution, 24 weather years, no grid outage — resembles a robust com-
bination of modeling choices the most.

As can be seen, the probability distribution (I. = normal) has the
biggest impact on the structure of the energy system. With a normal
distribution, significantly less capacities are expanded. A greenfield

approach (lll. = green) leads to a shift from wind to photovoltaics
power plants. In contrast, spatial resolution (II. = large) has a negligible
impact on infrastructure requirements. Just considering one weather
year (IV. = weather) results in an energy system that might be insuffi-
cient for years with less hours of sunshine and wind. If particular net-
work nodes in the transmission grid are considered to be unavailable
(V. = outage), more power generation technologies (especially pho-
tovoltaics) are installed.

Methodological choices
To get a deeper understanding of the differences resulting from
methodological choices, we use seven core indicators considered as
most relevant for future energy systems: System costs, (life-cycle)
greenhouse gas emissions (in CO, equivalents), maximum energy not
served, average electricity price, land use, dissipated water, and
minerals and metals required. They cover the essentials of the energy
supply-sustainability, affordability and system security. More details
can be found in ref. 20, as well as Table 1 and Supplementary Table 4.
Figure 4 shows the normalized distributions of the indicators
resulting from our scenario generation approach. Within Fig. 4, each
method choice is represented by one subplot comparing two scenario
ensembles which are characterized as shown in the legends. The
attributes (in the legend) stand for a different method choice,
respectively.

Parametric uncertainty of core indicators

In particular, two indicators - land use and maximum energy not
served - already show a large range of values independent of
method choice. For the latter, this is due to the selected modeling
approach, which assigns high penalty costs to supply interruptions
and thus, ensures a high level of security of supply for most
scenarios. However, a few scenarios show very significant supply
interruptions, resulting in a long tail of values (see Fig. 4f). The system
cost indicator, which is minimized, shows the smallest range of values.
Uncertainties regarding environmental impacts and electricity prices
vary more widely, as does the indicator for greenhouse gas
emissions (GHG).

Changing the probability distribution function (I.)
Previous scenario research has shown that results heavily depend on
the assumptions of input variables?*. Instead of trying to get to more
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Fig. 3 | Mean capacity differences for different methodological choices com-
pared to reference case. The reference case (E6) consists of a uniform distribution,
medium-size instance, brownfield optimization, 24 weather years, and no network
unavailability. The capacity differences are shown for model instances where only
the mentioned methodological choice differs from the reference case. A normal
instead of a uniform distribution for the parameter sampling results in significantly

lower total capacities. The impact of the spatial resolution is comparatively small. A
greenfield optimization results in more expansion of closed-cycle gas turbines,
photovoltaics and lithium-ion batteries. Wind power plants are expanded to a lower
extent. Considering only one weather year might result in an undersized energy
system. Network unavailability results in more decentral power generation.

specific values, we draw from distributions of 80 scalar input para-
meters based on a literature review. This review contains real scenario
studies that do not focus on generating extreme values. Thus, the
given maximum/minimum values are actual extremes within the
screened literature, suggesting that still more extreme scenarios are
conceivable but not very plausible. Two distributions, truncated nor-
mal and uniform, are investigated.

If a normal distribution instead of a uniform distribution is cho-
sen, keeping all other methodological choices the same, significantly
less power generation capacities are expanded. Power generation
decreases with few exceptions (closed-cycle gas turbines +31.6%). As a
result, less CO, is emitted (Fig. 4a). Due to the smaller variance of the
truncated normal distribution, the spread of the system costs is
smaller compared to the uniform distribution. Overall system costs are
approximately 25% lower with a truncated normal distribution while
other core indicators also exhibit smaller values (see Supplementary
Table 5).

The reason for this is a larger total electricity demand as an input
parameter: The value for Germany’s total demand results from the
summation of the demands across all network nodes. The nodal
demands are subject to parameter sampling and thus, are directly
influenced by the selected probability distribution. The truncated
normal distribution of the annual demand in Germany is skewed to the
right, i.e., higher demand values have a smaller probability (see Sup-
plementary Table 1). As a result, with a mean of 715.8 TWh, we observe
much greater total electricity demands when using uniform distribu-
tions compared to 636 TWh in case of sampling with truncated normal
distributions.

In summary, the use of truncated normal distributions leads to a
less extreme scenario sampling. Hence, more scenarios meet dec-
arbonized future energy pathways in a cost-effective manner.

Impact of abstracting the power grid (Il.)

To keep computational times at a manageable level, model size is often
adapted by varying the temporal or spatial resolution. Hence, we vary
this key factor for German scenarios as well, between a small (fully
resolved only for one part of the high-voltage grid in North Rhine-
Westphalia and aggregated for the rest of Germany), medium (fully
resolved only for the high-voltage grid in North Rhine-Westphalia),
large (high-voltage grid highly resolved in half of Germany) and a very
large model (high-voltage grid of Germany fully resolved). Resulting
computational times vary dramatically. While calculating 1300 small
models took just 92,000 core hours on average (the 5400 models
actually calculated are at 380,000 core hours), the 1300 medium ones
are already at 280,000 core hours on average (11,700 models actually
calculated are at 2.3 million core hours), the large ones would be at
12.8 million core hours (820 models actually calculated are at 2.9
million core hours) and the very large models would use up 13.7 million
core hours for 1300 runs (300 models actually calculated are at 3.2
million core hours). An overview of the computational times and data
usage is shown in the Supplementary Table 3.

The spatial resolution of model instances has a rather small
impact on the optimization results. If the spatial resolution increases,
some wind offshore power plants are replaced by more decentral wind
onshore power plants. The grid-related curtailment increases and
therefore, gas-fueled power plants are dispatched to a higher extent.
At the same time, CO, emissions and the total system cost increase.
Furthermore, the spatial resolution impacts the maximum energy not
served and water use (see Fig. 4b).

Of these indicators, only system cost is highly significantly dif-
ferent, with high spatial resolution scenarios having a much higher
overall cost for an optimal system (see Supplementary Table 5). The
reason behind that is simple: The coarser the spatial resolution, the
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Table 1| Selection of most relevant indicators for assessing affordability, security and sustainability

Indicator

Reported unit

Description

System costs

1000 €

The optimization is performed by minimizing the overall economic expenses associated with the
operation, maintenance, and infrastructure development of the energy system. These expenses
include fuel procurement, power generation, transmission, and energy storage costs.

(Life-cycle) GHG emissions

1000 t

This indicator refers to the total amount of emissions of CO, equivalents generated by the power
system. If not indicated otherwise, we report the life-cycle greenhouse gas emissions that include
all stages of the life cycle, from raw material extraction and processing, manufacturing, trans-
portation, and use, to disposal or recycling.

Maximum energy not
served

GW

The balance between energy production and demand in the power system is crucial for ensuring
energy security and reliability. In the optimization, a slack variable is employed to supply energy
at a very high cost when there are no other economically feasible options for delivering elec-
tricity. The maximum value of this indicator signifies the extent and timing of potential threats to
the energy system.

Average electricity price

€ MWh”'

This indicator represents the electricity price at the energy exchange, weighted by the amount of
energy, and averaged over one simulation year. It is directly related to household and industry
electricity prices and serves as an indicator of consumer costs for electricity.

Land use

Dimensionless, aggregated
index*®

Land use denotes the extent to which land is utilized by energy generation plants, taking into
consideration potential conflicts with other land uses, such as agriculture. Accordingly, low land
use is desirable for a sustainable energy system.

Dissipated water m°® watereq Dissipated water refers to the water requirements during the production and operation of the
energy system. With increasing concerns related to climate change and declining groundwater
levels due to excessive use, water resources have become increasingly important.

Minerals and metals kg Sbeq The depletion of minerals and metals reflects the total resource consumption associated with the

construction and operation of power plants across all types of minerals and metals (in kg anti-
mony-equivalents).

System costs

GHG Emissions

Average Electricity Price

Land Use

Dissipated Water

Minerals and Metals

a (I.) Probability distribution b (Il.) Spatial resolution c (lll.) Capacity expansion
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Fig. 4 | Comparison of key indicators for different method choices. For each
subfigure and indicator, the median value over both scenario groups is calculated
and the plot is normalized accordingly. The dashed lines represent the median
value of each scenario group and indicator. a Probability distributions. A uniform
distribution results in higher system costs and higher greenhouse gas emissions.
b Spatial resolution. The impact on most indicators is rather limited in comparison
to other methodological choices. ¢ Capacity expansion approach. A greenfield
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However, the carbon emissions increase in average. d Number of weather years.
Considering 24 instead of only one weather years has a significant impact on all
considered indicators. e Unavailability of network components. Considering net-
work unavailability leads to reduced carbon emissions since decentral renewable
energy technologies are utilized to a higher extent. f Impact of the five method
choices on the maximal energy not served. Few scenarios show very significant
supply interruptions. See Supplementary Table 6-10 for the respective t-tests.

approach results in lower system costs compared to a brownfield approach.
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smaller the model, hence less transmission lines are considered. They
can be subject to congestion and thus either make investments into
grid infrastructure or power generation units at sub-optimal
locations necessary. Similar observations have already been made
in Refs. 23 and 24.

However, a remarkable finding in this study are the insignificant
differences of the remaining indicators. Accordingly, simple models
are already sufficient to develop useful estimates of the performance
of energy scenarios, e.g., with regard to their sustainability.

Changing the capacity expansion approach (Ill.)

Although we are looking at scenarios for 2030, which speaks in favor of
a brownfield approach for existing power plant capacities, a greenfield
approach enables the modeler to analyze more extreme scenarios.
While a brownfield approach presents a more realistic consideration of
preexisting capacities, a greenfield approach can show optima that are
hidden behind today’s system structures®.

With a greenfield instead of a brownfield approach, the number of
conventional coal, lignite and gas power plants is reduced below the
capacities that are available today. These missing power plants are
compensated by additional closed-cycle gas turbines (CCGT), photo-
voltaics power plants, and further lithium-ion batteries to balance the
generation peaks of photovoltaics. However, on average, about 25%
less wind onshore capacities are available, since photovoltaics power
plants are a cheaper zero-emission alternative for Germany. This also
means that in around half of the greenfield scenarios less wind onshore
capacities are available than today. Since photovoltaics yield is highly
time-dependent compared to onshore wind, an alternative in the form
of CCGT and battery storage is required for sunless hours of the day.
Therefore, while the total costs decrease since more degrees of free-
dom are available, compared to the brownfield approach, CO, emis-
sions increase.

The results for the other indicators are as expected: Since the
most cost-efficient technologies can be built, greenfield systems tend
to be less costly and are more desirable in terms of sustainability
indicators. For example, open-cycle gas turbines are replaced by
closed-cycle gas turbines. Figure 4c shows the significant difference in
land use for small-sized model instances. The same holds true for
medium-sized model instances, making the results robust, since both
directions and significances are almost identical for small and medium
instances for all variables that are highly significant (see Supplemen-
tary Table 8). However, security of supply is worse in greenfield sys-
tems, since there is less need for thermal power plants providing firm
capacity. Accordingly, costly uncovered demand, as expressed by the
indicator maximum energy not served, is accepted by the optimizer, if
particularly high specific investment expenditures result from the
parameter sampling.

Weather years (IV.)

Despite the common knowledge that using a large set of historical
weather years is necessary, this is still not common practice. Since
weather-dependent renewable energies will increase and finally dom-
inate the energy system, this is a severe limitation, limiting the
robustness of results. The only exceptions are studies in which the
effects of changing weather time series are specifically investigated by
means of sensitivity analysis®. The distinctive aspect of our analysis is
the use of a large set of weather years combined with additional
parameters. Therefore, our fourth method choice compares scenario
ensembles for a single weather time series with an ensemble that
samples from 24 different weather years (1995-2018).

If only a single weather year is used for the optimization, the
resulting energy system might be undersized. Since the historical
weather year 2018, which we use for our analysis, was a particularly
good one in terms of solar power, significantly less photovoltaics and
wind capacities are necessary. For balancing purposes, more lithium-

ion batteries instead of biomass and CCGT power plants are expanded.
However, if several weather years are considered, the size and struc-
ture of the energy system differs significantly. Lombardi et al. also
identify weather variability as having the highest sensitivity for the
results when comparing different uncertainties”. Schlachtberger et al.
analyzed the impact of weather year uncertainties as well*>. While this
study also observes differences in the size and structure of the energy
system when comparing four different weather years, the effect is not
as prominent in comparison to our analysis of 24 weather years. This
emphasizes the importance of a broad consideration of weather years.

Remarkably, there is also a highly significant difference for all
indicators, e.g., the mean electricity price (Fig. 4d). As can be seen in
the Supplementary Table 9, all differences are significant at the
p<0.001 level, with more weather years associated with more CO,-
emissions and higher system costs. These results gain in importance
when considering that the standard is just one weather year.

Network vulnerability (V.)
The capacities resulting from least-cost optimization approaches
represent a lower bound in terms of system adequacy”. Consequently,
energy scenarios should account for cases when certain components
of the energy system are not available due to planned (e.g., power
plant revisions) or unplanned outages (e.g., due to an attack). In this
section, we test how the common approach of simply subtracting one
element from the system (n-1) influences scenario results (Fig. 4e).
Therefore, we define five network nodes in the transmission grid that
could be affected by outages. As a result, transmission capabilities for
electricity are more limited. This is why decentralized technologies
such as photovoltaics and onshore wind are being expanded and uti-
lized more intensively. As a consequence, conventional power plants
are dispatched less and CO, emissions decrease on average. We
observe the same trends for each of our key indicators. However, these
effects are not significant (see p-values in the Supplementary Table 10).
Note that we only consider permanent outages of network nodes
without generation units. Extending outages to generation units would
result in the trivial result that these missing units would just be
replaced by other, additional units. Hence, temporal outages and
testing for the unavailability for each of the network nodes may lead to
more significant observations.

Minimum number of runs needed for unbiased results

Apart from methodological choices as shown above, the number of
runs needed for robust, trustworthy results is highly relevant for
modelers. This number has a direct impact on the computational
resources required which, in most cases, are the limiting factor. Esti-
mates range from one hundred to several hundred runs, but the
number of scenarios is often said to be mainly dependent on the
desired confidence level'.

To assess the impact of sample size variations, the largest scenario
set with 3000 scenarios is set as benchmark by calculating the means
of our seven key indicators. A random sample of 100 scenarios is
drawn from the pool of 3000 scenarios, where the sample size
increases from 100 to 2900 for each draw. Each random sample (for
each size 0f 100-2900) is drawn 100 times to ensure robust draws and
eliminate bias.

In Fig. 5, we show how the indicator values of each sample differ
compared to the mean value of all 3000 scenarios. Each colored line
represents the difference of a sample mean to the overall mean of
3000 runs. The shadowed area shows the differences for the upper
and lower quartile. This gives us an accurate picture of the error made
by evaluating only small scenario sets:

As can be seen, for most indicator deviations lie between O and 5%.
This is different for the land use indicator (beige) and the maximal
energy not served (blue). For these indicators, a difference of less than
5% is reached with a scenario set size of about 400 and 1000 scenarios,
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Fig. 5 | Relative deviation of key indicator values compared to the mean value
for 3000 scenarios. Deviation of the seven key indicators for differently sized
scenario samples where each random sample is drawn 100 times to ensure robust
draws and to eliminate bias. For most indicators a sample size of 100 results in

difference of less than 5%. However, for the indicators “land use” and “maximum
energy not served” at least 400 and 1000 scenarios need to be calculated to achieve
a difference of less than 5%.

respectively. However, the largest error decrease is up to a set size of
400 with an underestimation of the energy not served of about 9%.

Hence, as long as up to 5% deviation for a majority of key indi-
cators and no more than 10% deviation for the maximal energy not
served is acceptable, a lower boundary of just 400 scenarios might just
be enough, if computational resources are scarce. However, this pre-
cision may not be enough for some applications. Since typically a few
hundred of scenario runs are deemed to be enough, this supports the
existing literature’. Note that these approaches determine the number
of runs statistically, calculating the 95% confidence interval but do not
explicitly present distributions of indicators like in Fig. 4.

Discussion

In this paper, we emphasize the importance of analyzing the impact of
different method choices on model results, as they are a source of
uncertainty. We assess these results using multiple indicators beyond
costs in energy systems analysis. A truly optimal system performs well
in at least a few indicators. However, one method choice we keep
constant is the system cost minimization, which affects the observed
variation of this core indicator. Hence, for each scenario we obtain the
best possible performance for this indicator. However, we find some
systems that perform well in 4 out of 7 indicators.

It is also possible to calculate Pareto fronts, as Fig. 6 shows, where
we depict the popular trade-off between system costs and greenhouse
gas emissions. It confirms previous findings in the literature: Close to
the cost-minimum exists a large spectrum of scenarios that perform
very heterogeneously in terms of other indicators, such as GHG
emissions. Remarkably, systems that perform well in terms of minerals
and metals use are neither close to the system cost minimum nor the
GHG minimum. Scenarios that serve desirable trade-offs between

these divergent indicators can be determined using multi-criteria
optimization. However, this method is computationally costly, which
underlines the need for further analyses such as this.

There are some limitations of our study. First, the analyzed
method choices represent only some of the decisions made by
modelers. Further candidates are the degree of abstraction for gen-
erators and storage units, or the impact of climate change (e.g., on
demand patterns). In addition, the analysis of parameter variations can
never be complete.

Second, since the consideration of sector integration was out of
scope, we can only hint at their impacts. For example, relying more on
variable renewable power generation, considering multiple weather
years becomes even more crucial. In contrast, stronger inter-
connectedness of energy sectors may strengthen a system’s resilience
against individual outages. More detailed research in this direction
becomes especially relevant in highly decarbonized future energy
systems, for which sector integration is even more important. Given
the high adaptability and modularity of the models, the workflow
could be adapted for scenarios with sector integration or other
specifications.

A third limitation of the modeling setup is that most scenarios
have a high resolution for one German federal state only (North Rhine-
Westphalia) and a lower resolution for the rest of Germany and
neighboring countries. A fourth limitation, as shown in the results
overview, the scenario space does not include scenarios with a share of
100% of renewables. However, we are well aware that there are more
ambitious scenarios'. Given abrupt changes in policies, market-related
indicators have been calculated without policy variations. Evaluating
different policy regimes is an obvious next step, alongside the con-
sideration of sector integration in a fully-decarbonized energy system.
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from dark blue (less consumption) to light blue (more consumption). The red dots
show the best performing scenario for each indicator named.

Finally, we did not consider any spatial interrelationships of
sampled parameter values. This mainly affected independently sam-
pled annual demands for every network node and can be seen as
implicit assumption: Annual demand of different regions develops into
opposite directions, which is only partially plausible (e.g., due to
urbanization). Endogenously modeling energy demands may resolve
this limitation. Besides such improvements, the robustness of energy
scenarios may be increased by integrating the target triangle of energy
supply into the ESOMs, i.e., via multi-criteria optimization of indica-
tors. As a use-case, we study the future German power system for
which we use greenhouse gas emissions, system cost, the maximum of
energy not served, land use, the use of minerals and metals, dissipated
water and the resulting average electricity price as key indicators for
scenario assessment. This also enables us to statistically quantify the
benefits of numerous scenarios by comparing ensembles of different
sizes. Our findings highlight the importance of using a large variety of
empirical time-series data that reflects the uncertainty of renewable
power feed-in. We find that all key indicators are significantly impacted
by this parameter.

System costs are significantly affected by four of the five
exemplary methodological choices (p-values <0.001 for each, para-
meter sampling approach, abstraction of grids, capacity expansion
approach, number of weather years), while the observed coefficient of
variation for greenhouse gas emissions is 48.3% for the full set of more
than 11,000 scenarios. This variation is even greater for the land use
sustainability indicator (124.2%), demonstrating the need for more
deliberate communication of the uncertainties involved.

The results demonstrate the importance of analyzing large
ensembles of energy scenarios to answer questions on CO, abatement
costs and security of supply. These questions are relevant, for exam-
ple, for generation capacity adequacy assessments. In numerical
terms: We observe large deviations in the security of supply indicator
of up to 30% for small scenario ensembles compared to large ones.
Therefore, studies emphasizing the determination of methodological
choices require well-founded assumptions.

For energy system modeling experts, we demonstrate how to
systematically evaluate large ensembles of energy scenarios using
workflows on a high-performance computer. The workflow we have
implemented represents an important step forward in overcoming the

current practical limitations that prevent energy scenario analyses
today from providing the same high-quality insights as climate
research. In this context, harnessing HPC becomes even more impor-
tant because for real-world policy support, our workflow would need
to incorporate even more data, such as normative policy targets or
coupling of all energy sectors.

For non-modeling experts, we demonstrate that analyzing
numerous scenarios is crucial for any study on future systems where
uncertainties might significantly impact the optimization results.
Additionally, we highlight key issues to consider when making deci-
sions based on typical modeling frameworks in the energy sector.
Using indicators that represent the target triangle of energy supply -
affordability, security, and sustainability - the impact of the uncer-
tainties considered is measured.

Methods

This section describes the complex setup in detail: a parallel solver
used within an automatized workflow coupling different energy sys-
tem models using High-Performance Computing.

The focus of our investigation is the future power supply in Ger-
many. In order to achieve a broad coverage of all essential aspects, we
coupled two complementary models. The first, REMix, is an ESOM, the
second, AMIRIS, is an agent-based simulation of electricity markets.
Accordingly, we model the German power system as an optimization
of operation and investment planning from a central planner’s per-
spective and as a market where interactions between decentralized
actors are simulated. The next two sub-sections shortly introduce both
models.

Energy system optimization model

REMix (Renewable Energy Mix) is a framework for energy system
optimization models (ESOMs). Different sectors, like power, heat and
transport as well as several technology groups (power plants, storage
and transport technologies) can be modeled within the optimization.
For this study we use it for linear optimization of one target year with
hourly resolution and perfect foresight. However, REMix provides
further features like path optimization, mixed-integer programming
and multi-objective optimization®®. Besides, the possibility to auto-
matically perform a spatial aggregation of input data, simple temporal
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model reduction (down-sampling of times series) is possible, too. The
input data includes weather and demand profiles as well as techno-
economic parameters like technology-specific capital and operational
expenditures, energy conversion efficiencies and life times.

Within this study, we focus on the power sector and therefore our
network model of Germany has a high spatial resolution, where each
node represents a transformer substation, taking imports and exports
to neighboring countries into account®. The total number of 488
nodes can be spatially aggregated in order to reduce the model size
and computing time of the model. For the reference case, only the
federal state of North Rhine-Westphalia is highly resolved and the rest
of Germany is aggregated. This results in our medium-sized model
instances consisting of 109 network nodes. The technological focus is
on the power sector with renewable and conventional power plants,
the electricity grid, battery and pumped-hydro storages considered.
Carbon emissions are penalized with additional CO, costs, which are
subject to the scenario sampling (see Section Scenario generation and
parameter sampling). For the power demand we use historical load
profiles for Germany from ENTSO-E. The future annual demand is
based on a literature review and disaggregated to the model nodes
according to population density. It considers conventional power
demand as well as power demand from other sectors (e-mobility, heat
pumps etc.).

AMIRIS (Agent-based Market model for the Investigation of
Renewable and Integrated energy Systems) is an electricity market
simulation model for Germany that incorporates many different
agents with complex decision strategies®. Its focus is on assessing the
impact of energy policy instruments on the economic performance of
power plant operators and marketers®, It has an hourly resolution and
computes electricity prices based on the bidding behavior of proto-
typed market actors based on the FAME framework>*. It is calibrated on
historical data. Different groups of actors are represented as individual
agents with varying degrees of uncertainty and limited rationality,
reflecting their heterogeneity. For example, renewable energy mar-
keters are defined in detail by their portfolios of contractually linked
renewable energy plants, cost structures, price and performance
forecasts, and capital stocks. Support instruments like market premia
are also considered, influencing the decisions made by actors involved
in renewable energy sources, such as plant operators and their mar-
keters. Regulatory frameworks governing these market interactions,
e.g., on the spot market and control energy market, for instance, are
calculated as well. One example are costs of technologies like feed-in
tariffs.

AMIRIS as used here is parametrized using the calibrated data for
Germany (https://gitlab.com/dIr-ve/esy/amiris/examples), with no
explicit policy modeling. Its main output, the mean electricity price as
well as all other market indicators, are calculated via a post-processing
script of REMix results. AMIRIS serves two main purposes. First, it acts
as a plausibility check for optimized energy systems as calculated by
REMix, which may be optimal in a macro-economic, but infeasible
from a micro-economic perspective. Actors will act for their own
economic benefit, which can be represented by AMIRIS. This means
that in comparison to REMix, the actors in AMIRIS optimize their own
profits without taking the optimal operation of the energy system into
account. Therefore, AMIRIS can be applied to better represent the
electricity market®. Second, it adds the market driven indicators to the
indicator set, e.g., electricity prices.

High-performance computing workflow

In order to be able to run thousands of scenarios while systematically

and automatically varying input parameters and methodological

choices, a fully automated workflow had to be developed on a high-

performance computing (HPC) facility, JUWELS* and JURECA-DC.
For this, a tool chain of coupled models and software packages

had to be linked allowing us to conduct numerous large-scale scenario

analyses. The model chain (Fig. 1) includes scenario generation, energy
system optimization using ESOM instances created with REMix*° and
mainly solved with PIPS-IPM++”, agent-based market simulation
through AMIRIS***, which is based on the FAME framework* and
FAME-I0%, and further post-processing for evaluation of results in
terms of a multi-dimensional indicator set. For an automatized and
systematic execution of this tool chain we used JUBE*’, a script-based
framework for running and benchmarking complex workflows. Finally,
the statistical evaluation of the resulting scenario space has been done
in R* using a desktop PC.

Within our interdisciplinary collaboration, the software packages
employed were developed by distinct teams and had not previously
been integrated to yield scientific results on an HPC system. As each
component is a sophisticated tool in its own right, achieving a seamless
workflow required meticulous planning and precise interface design.
Moreover, effective communication among team members was
indispensable to maintain overall system coherence. Technical
implementation details are provided in ref. 42.

Scenario generation and parameter sampling

The parameters, which are the basis for the workflow, are subject to
uncertainties. In other words, for robust scenario results, the inputs of
the model instances are crucial. Hence, we conducted an extensive
literature research considering approximately 50 literature sources
and derived statistical descriptors (min, median, max) for a selection of
important parameter values to be varied. This resulted in an extensive
parameter space™.

The considered parameter variations include fuel cost, invest-
ment cost, fixed and variable operation and maintenance (O&M) cost,
life- and amortization time, efficiency, annual biomass potential and
annual demand uncertainties (see Supplementary Table 1). The annual
demand considers the power sector demand and the electricity
demand from road transport and the heating sector. The annual bio-
mass potential and the annual demand are disaggregated to the con-
sidered model nodes according to today’s biomass and population
distribution, respectively. Additionally, the historic weather years from
1995-2018 are considered. The normalized historic load profile from
2006-2015 can be sampled independent from the annual demand.

Furthermore, we conducted interviews with experts in the field of
energy system analysis on the interrelations of all parameters within
the parameter space in order to derive a quantitative pseudo-
correlation matrix consisting of integer values ranging from -3 for
strongly anti-correlated to +3 for strongly correlated. For this, first an
empty matrix had to be filled by experts to identity the non-zero
interrelations between the parameters to be varied. Subsequently, in a
moderated survey (questionnaire), both online and in presence, the
assessment of the non-zero interrelations has been revised pairwise.
The dominating answer finally defined the interrelation value that was
selected. The matrix was required for plausible parameter sampling
results, e.g., to avoid the minimum cost for oil occurring simulta-
neously with the maximum cost for natural gas, considering that these
fuel prices are highly correlated today. Therefore, the pseudo-
correlation matrix also ensures that independently random sampling
of certain parameters (interrelation factor 0) is an explicit decision
rather than implicitly decided by ignorance. Both the parameter space
and the pseudo-correlation matrix have been fed to a tailor-made
scenario generator that automatically sampled parameter sets for the
subsequent workflow steps. The parameter sampling approach has
been applied to all scalar values of the parameter space and could vary
between uniform and truncated normal probability distributions. For
example, Kang et al. assume a normal distribution for cooling demand
and a uniform distribution for the gas price®. In our case, a truncated
normal distribution is created to assign a lower probability to extreme
values. For the expectation of the truncated normal distribution the
median value of the researched parameters is used. We use the range
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rule of thumb which approximates the standard deviation s = (max-
min)/4. Then, the normal distribution is cut off at the minimum and
maximum value to receive a truncated normal distribution. However,
since the development and therefore the actual probability distribu-
tion of future parameters is unknown, the truncated normal distribu-
tion is compared to a uniform distribution, where all possible values
have the same probability.

There were two exceptions to the parameter sampling described
above: First, weather data which has been provided as spatially
resolved time series of potential power generation from renewable
energies derived from the COSMO-REA6 data**. Here, we always used a
uniform probability distribution to randomly pick one out of the 24
weather years available. Second, the unavailability of network nodes
has been conducted by constructing five violated network topologies,
where passive network nodes (without power generators or demands
assigned) have been manually removed together with their links. Each
of these outage topologies has been tested for the first 100 similar
parameter sets created with the scenario generator.

We deliberately decided not to use scenario reduction techniques
because scenario reduction leads to undesirable results. Ideally,
reducing the number of scenarios by 80% would retain 80% of the
important information. However, in our case, which should be rather
representative of scenario runs in general, the reduced scenarios
contain only 10% of the information. This is because our sampling
approach treats different parameter types differently: Time series are
drawn as complete data set and contain several thousands of numer-
ical values. Opposed to the comparably small number of individually
sampled scalar values (i.e., techno-economic data) their impact on
reduced scenarios would dominate. In other words, scenario reduction
would simply combine scenarios with the same selected time series
and marginalize variations of techno-economic data.

Furthermore, in case of very large model instances about 20% of
the started runs crashed. We do not fully understand which circum-
stances cause this failure and thus cannot exclude the possibility that a
specific group of parameter combinations is the reason or a numerical
instability in the solver at a very large scale. Therefore, we may not be
aware that a certain part of the parameter space is not evaluated for
large model instances.

Spatial aggregation

The spatial aggregation is based on clustering according to electrical
distance, to keep the most likely grid bottlenecks in the model. Parts of
the network are aggregated in clusters while the rest remains in the
original spatial resolution. We chose to model a technology-rich and
highly interconnected region within Germany with high spatial resolu-
tion. This allows us to analyze different types of conventional power
plants and their phase-out more precisely. Furthermore, the highly
resolved part enables us to consider a set of different security of
supply indicators and the unavailability of transformer substations.
Aggregation directly sums up power generation and demand within a
cluster, ignoring possible transmission constraints. For method choice
I, spatial abstraction of the German extra-high voltage grid, four dif-
ferent model sizes are defined: small (grid in a small part of Amprion’s
region fully resolved (n=44); the rest of Germany aggregated to 10
model nodes), medium (grid in North Rhine-Westphalia fully resolved
(n=99); rest of Germany aggregated to 10 model nodes), large (grid in
half of Germany fully resolved (n=264); the other half of Germany
aggregated to 6 model nodes), very large (grid of Germany fully
resolved (n =488)).

Resulting computing times vary dramatically. While calculating
1300 small models took just 92,000 core hours on average (5400
actually calculated are at 380,000 core hours), the 1300 medium ones
are already at 280,000 core hours on average (11,700 actually calcu-
lated are at 2.3 million core hours), the large ones 12.8 million core
hours (820 models actually calculated are at 2.9 million core hours)

and the very large models would use using up 13.7 million core hours
for 1300 runs (300 actually calculated are at 3.2 million core hours). In
total, this workflow produced millions of files (40 TB) in more than
366,000 directories.

Capacity expansion approach

In our case, the existing power plants are based on the installed
capacities in Germany in 2018. Additionally, we take the lifetime of
these power plants and political decision like the phase-out of nuclear
or coal-fired power plants into account. In the brownfield approach,
capacities of remaining power plants are from 2018. Further capacity
expansion is only possible for renewable and natural gas-fueled plants.
In contrast, the greenfield approach does not consider any preexisting
power plant capacities. All power plants can be expanded; however,
the maximum capacity of coal-fired plants is restricted to the existing
capacity in 2018, similar to the brownfield approach.

Indicators

Table 1 describes the selected core indicators. In order to broaden our
analysis of the scenarios we selected seven indicators that assess dif-
ferent aspects of affordability, security and sustainability. Further
details are provided in ref. 42 along with a much more comprehensive
list of indicators tested for our experiments.

Data availability

The scenario data generated in this study have been deposited in
b2share under accession code 7dfe93339c3e4e34bf4c47f880186466.
The model instances generated in this study have been deposited in
b2share under accession code 3717dab82cbb4de0a02726ab3ff7702e.
The techno-economic data used in this study are available in b2share
under accession code (4e5e2d11b8224fb8809cdc2d07eeff04). The
used modeling frameworks REMix and AMIRIS are published in JOSS at
(https://doi.org/10.21105/joss.06330) and (https://doi.org/10.21105/
j0ss.05041), respectively. The codes to obtain the REMix basic model
are published in Gitlab (https://gitlab.com/dIr-ve/esy/remix/projects/
powger).The codes for determining the indicators, the scenario gen-
erator tool and the configuration for controlling the HPC workflow
with jube are published in Gitlab (https://gitlab.com/dlr-ve/esy/remix/
projects/unseen). Data that supports the figures and other findings of
the study are provided in the Supplementary information (SI). Further
data, such as sampled model inputs and intermediate results are
maintained at the Jiillich Supercomputing Centre and can be made
accessible after registration in the JuDoor portal given the size (40 TB)
of the data sets generated.

Code availability

All individual components of the HPC workflow are published open
source’**>*, PIPS-IPM++ is available on (https://github.com/PIPS-
IPMpp/). The JUBE-software is openly available*’. The work flow man-
ager ioproc is available at (https://gitlab.com/dIr-ve/esy/ioproc). The
code for running the HPC workflow, and parts of the indicator pro-
cessing is available on (https://gitlab.com/dIr-ve/esy/remix/projects/
unseen). The code for the statistical evaluation will be made available

upon request.
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