Journal of Computational and Applied Mathematics 481 (2026) 117308

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Memory - and compute-optimized geometric multigrid GMGPolar
for curvilinear coordinate representations — Applications to fusion
plasma

Julian Litz®!, Philippe Leleux ¥ ", Carola Kruse ¥ ¢, Joscha Gedicke @ 9,
Martin J. Kiihn & &¢*

2 German Aerospace Center (DLR), Institute of Software Technology, Department for High-Performance Computing, Linder Hohe, Cologne, 51147,
Germany

b Laboratoire d’Analyse et d’architecture des Systémes (LAAS), équipe TSF, 7 avenue du Colonel Roche Toulouse cedex 4, 31031, BP 54200, France
¢ Parallel Algorithms Team, CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique), 42 Avenue Gaspard Coriolis,
Toulouse Cedex 01, 31057, France

d Institut fiir Numerische Simulation, Universitit Bonn Friedrich-Hirzebruch-Allee, 7, Bonn, 53115, Germany

¢ Life & Medical Sciences Institute (LIMES) and Bonn Center for Mathematical Life Sciences, University of Bonn, Bonn, 53115, Germany

ARTICLE INFO ABSTRACT
2010 MSC: Tokamak fusion reactors are actively studied as a means of realizing energy production from
68Q25 plasma fusion. However, due to the substantial cost and time required to construct fusion reac-
Z:ii(s) tors and run physical experiments, numerical experiments are indispensable for understanding
65N55 plasma physics inside tokamaks, supporting the design and engineering phase, and optimizing
65N06 future reactor designs. Geometric multigrid methods are optimal solvers for many problems that
65B99 arise from the discretization of partial differential equations. It has been shown that the multigrid
solver GMGPolar solves the 2D gyrokinetic Poisson equation in linear complexity and with only
ﬁe}’ll"{or"i:i: small memory requirements compared to other state-of-the-art solvers. In this paper, we present a
ultigri

completely refactored and object-oriented version of GMGPolar which offers two different matrix-
free implementations. Among other things, we leverage the Sherman-Morrison formula to solve
cyclic tridiagonal systems from circular line solvers without additional fill-in and we apply re-
ordering to optimize cache access of circular and radial smoothing operations. With the Give
approach, memory requirements are further reduced and speedups of four to seven are obtained
for usual test cases. For the Take approach, speedups of 16 to 18 can be attained. In an addi-
tionally experimental setup of using GMGPolar as a preconditioner for conjugate gradients, this
speedup could even be increased to factors between 25 and 37.

Scientific computing
Parallel computing
Performance optimization
Fusion plasma

1. Introduction

Tokamak fusion reactors are one of the most promising approaches for realizing energy production from plasma fusion. However,
due to substantial cost and time to construct fusion reactors and run physical experiments, numerical experiments are indispensable

* Corresponding author.
E-mail address: martin.kuehn@dlr.de (M.J. Kiihn).
1 Current address: Institute of Climate and Energy Systems - Energy Systems Engineering (ICE-1), Forschungszentrum Jiilich GmbH,
52425 Jiilich, Germany

https://doi.org/10.1016/j.cam.2025.117308
Received 15 July 2025; Received in revised form 8 October 2025

Available online 26 December 2025
0377-0427/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam

$\theta $

\begin {equation}\label {eq:poisson} \begin {alignedat}{3} -\nabla \cdot (\alpha \nabla u) + \beta u &= f &&\quad \text {in}\quad &&\Omega ,\\ u &= u_D &&\quad \text {on} \quad &&\partial \Omega , \end {alignedat}\end {equation}

F

$\Omega \subset \mathbb {R}^2$

$f:~\Omega \rightarrow \mathbb {R}$

$f \in \mathcal {C}^0(\overline {\Omega })$

$\alpha , \beta :~\Omega \rightarrow \mathbb {R}$

$\alpha \in \mathcal {C}^1(\Omega) \cap \mathcal {C}^0(\overline {\Omega })$

$\beta \in \mathcal {C}^0(\overline {\Omega })$

$u_D \in \mathcal {C}^0(\partial \Omega)$

\begin {equation}\label {eq:functional} J(u):=\int _{\Omega }\frac {1}{2}\alpha |\nabla u|^2+\frac {1}{2}\beta u^2-fu \, \d (x,y),\end {equation}

$J(u)$

u_D

F_g

$g\in \{S,C\}$

$(r, \vartheta) \in [r_1, 1.3] \times [0, 2\pi)$

r

$\vartheta $

(x, y)

\begin {align}\label {eq:shafranov} F_S(r,\vartheta):=\left (\begin {aligned} x(r, \vartheta) \\ y(r, \vartheta) \end {aligned} \right) = \left (\begin {aligned} &x_0 + (1 - \kappa)r\,\cos \vartheta - \delta r^2 \\ &y_0 + (1 + \kappa)r\,\sin \vartheta \end {aligned} \right);\end {align}

$[r_1,1.3]\times [0,2\pi]$

$F_S:[r_1,1.3]\times [0,2\pi]\rightarrow \mathbb {R}^2$

$F_C:[r_1,1.3]\times [0,2\pi]\rightarrow \mathbb {R}^2$

\begin {align}\label {eq:czarny} F_C(r,\vartheta):=\left (\begin {aligned} x(r, \vartheta) \\ y(r, \vartheta) \end {aligned} \right) = \left (\begin {aligned} &\frac {1}{\varepsilon } \left (1 - \sqrt {1 + \varepsilon \left (\varepsilon + 2\,r\,\cos \vartheta \right)} \right) \\ &y_0 + \frac {\textnormal {e}\, \xi \, r\,\sin \vartheta }{2 - \sqrt {1 + \varepsilon \left (\varepsilon + 2\,r\,\cos \vartheta \right)}} \end {aligned} \right),\end {align}

F_S^{-1}

F_C^{-1}

$r_1>0$

$\kappa $

$\delta $

$x_0=y_0=0$

$\kappa =0.3$

$\delta =0.2$

$\varepsilon $

$\textnormal {e}$

$\xi =1/\sqrt {1 - \varepsilon ^2/4}$

$y_0 = 0$

$\varepsilon = 0.3$

$\textnormal {e}= 1.4$

$r_1=0$

F_g^{-1}

$g\in \{S,C\}$

F_g

$g\in \{S,C\}$

$(0,\vartheta)$

r_1

$0<r_1\ll 1$

r_1,\ldots ,r_{n_r}

$0<r_1\ll 1$

$r_{n_r}=1.3$

$\vartheta _1,\ldots ,\vartheta _{n_{\vartheta }+1}\in [0,2\pi]$

$\vartheta _1=0$

$\vartheta _{n_{\vartheta }+1}=2\pi $

\begin {align}\label {eq:definition_nr_ntheta} \begin {aligned} h_i := r_{i+1} - r_i ,\quad i\in \{1,\ldots ,n_r-1\},\quad k_j := \vartheta _{j+1} - \vartheta _j,\quad j\in \{1,\ldots ,n_{\vartheta }\}. \end {aligned}\end {align}

\begin {align}\label {eq:assumption_nr_ntheta} \begin {aligned} n_r\textnormal { odd}, \quad &h_{2i} = h_{2i-1},\quad &i\in \{1,\ldots ,(n_r-1)/2\},\\ n_{\vartheta }\textnormal { even}, \quad &k_{2j} = k_{2j-1},\quad &j\in \{1,\ldots ,n_{\vartheta }/2\}. \end {aligned}\end {align}

h_i

k_j

\begin {equation}0<h_{\min }\leq h_i \leq h\quad \text {and}\quad 0<k_{\min }\leq k_j\leq k,\end {equation}

$0<\tau <\infty $

$h=\tau k$

$J(u)$

$R_{ij}:=[r_i,r_i+h_i]\times [\vartheta _j,\vartheta _j+k_j]$

\begin {align}\begin {aligned} J_{R_{i,j}}(u):&=\int _{R_{i,j}}\left (\frac {1}{2}\alpha |DF_g^{-T}\nabla _{(r,\vartheta)}u|^2+\frac {1}{2}\beta u^2-{f}{u}\right)|\det DF_g|\d (r,\vartheta), \end {aligned}\end {align}

DF_g

F_g

$DF_g^{-T}:=(DF_g^{T})^{-1}$

$g\in \{S,C\}$

$\beta =0$

$\beta \neq 0$

\begin {align}\label {eq:squarejacobian} \begin {aligned} \frac {1}{2}\alpha DF_g^{-1}DF_g^{-T}|\det DF_g| =:\begin {pmatrix} a^{rr} & \frac {1}{2}a^{r\vartheta }\\ \frac {1}{2}a^{r\vartheta } & a^{\vartheta \vartheta } \end {pmatrix}. \end {aligned}\end {align}

$J_{R_{i,j}}(u)$

$\widetilde {J}_{R_{i,j}}(u)$

$u_{s,t}$

\begin {align}\label {eq:discretederivative} \begin {aligned} \sum _{i=1}^{n_{r}-1}\sum _{j=1}^{n_{\vartheta }}\frac {\partial }{\partial u_{s,t}}\widetilde {J}_{R_{i,j}}(u)\overset {!}{=}0. \end {aligned}\end {align}

$r_1=0$

$0<r_1\ll 1$

$r_1\approx 0$

$r_{n_r}=1.3$

$k/h_ir_i>1$

16×32

8×4

$k=k_j$

$j=1,\ldots ,n_{\vartheta }$

a^{rr}

$a^{r \vartheta }$

$a^{\vartheta \vartheta }$

$\det DF_g$

$12n$

$5n$

$6.7n$

$n = n_r \cdot n_\vartheta $

$9n$

$12n$

$4n + \mathcal {O}(1)$

$5n + \mathcal {O}(1)$

$12n + \mathcal {O}(1)$

$a^{rr}, a^{r\vartheta }, a^{\vartheta \vartheta }$

$\alpha $

$\beta $

\begin {equation}\alpha (r) = \exp \left [-\tanh \left (\frac {\frac {r(x, y)}{R_{max}} - r_p}{\delta _r} \right) \right],\quad {\beta (r)} = \frac {1}{\alpha (r)}, \label {eq:alpha_zoni}\end {equation}

A

$A^{(i)}$

$i\in \{0,\ldots ,L-1\}$

$i\in \{0,\ldots ,L-1\}$

$A^{(i)}$

$f^{(i)}$

$u^{(i)}$

\begin {equation}\label {eq:relaxation} A^{(i)}_{s_cs_c}u^{(i)}_{s_c} = f^{(i)}_{s_c} - A^{(i)}_{s_cs_c^{\perp }}u^{(i)}_{s_c^{\perp }} ,\end {equation}

s

c

$A^{(i)}_{s_cs_c}$

$u^{(i)}_{s_c}$

$f^{(i)}_{s_c}$

$A^{(i)}_{s_cs_c^{\perp }}$

$u^{(i)}_{s_c^{\perp }}$

W

F

W

F

V

W

V

W

$\alpha $

$\beta $

\begin {equation}\label {eq:sol_polar6} u(x, y) = 0.4096 \left (\frac {r(x, y)}{R_{max}} \right)^6 \left (1 - \frac {r(x, y)}{R_{max}} \right)^6 \cos (11\vartheta (x,y)).\end {equation}

$\alpha $

$\beta $

$\delta _r = 0.05$

$r_p = {0}.7$

$R_{\max }=1.3$

193×256

$6\,145\times 8\,192$

$\alpha $

$\|\cdot \|_{\ell _2}$

\begin {align*}\|v\|_{\ell _2} = \sqrt {{\frac {1}{n}}\sum _{i=1}^n v_i^2}.\end {align*}

6145×8192

$1e8$

$\mathbf {6145 \times 8192}$

$\mathbf {193\times 256}$

$\mathbf {6\,145\times 8\,192}$

n_r

$n_\vartheta $

$\alpha $

$\beta $

a^{rr}

$a^{r \vartheta }$

$a^{\vartheta \vartheta }$

$\det DF_g$

$\times $

$\times $

$1e8$

n_r

$n_\vartheta $

$\mathbf {769 \times 1\,024}$

$\mathbf {6\,145 \times 8\,192}$

$\mathbf {3073 \times 4096}$

$1e8$

$\mathbf {6145 \times 8192}$

$1e8$

$1e8$

$\times $

$\times $

3073×4096

$V-$

W

F

V

W

F

6145×8192

$1e-16$

$\mathbf {6145 \times 8192}$

$1e-16$

V

F

$\mathbf {769 \times 1\,024}$

\begin {equation}\label {eq:pcgsystem} M^{-1}A_{ex}u=M^{-1}f_{ex},\end {equation}

A_{ex}

f_{ex}

$r_0=f_{ex}-A_{ex}u_0$

M^{-1}

$Mz_0=r_0$

$M=A$

$M=A_{ex}$

$M z_k = r_k$

$\mathbf {6145 \times 8192}$

$1e-16$

$\mathbf {769 \times 1\,024}$

https://orcid.org/0000-0002-3760-4698
https://orcid.org/0000-0002-4142-7356
https://orcid.org/0000-0002-8448-0608
https://orcid.org/0000-0002-0906-6984
mailto:martin.kuehn@dlr.de
https://doi.org/10.1016/j.cam.2025.117308
https://doi.org/10.1016/j.cam.2025.117308
http://creativecommons.org/licenses/by/4.0/

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Fig. 1. Particular solution of (1) on a 3D tokamak with Culham geometry. The figure shows a 3D tokamak geometry spanning over 220 degrees
in toroidal direction and clipped over the remaining 140 degrees. It furthermore show several 2D cross sections in the clipped part of the geometry.

to understand plasma physics inside tokamaks, to support and speed up the engineering phase, and to optimize future reactor designs.
To model and simulate the particular physics, the gyrokinetic framework is used by many authors; see, e.g., [1-6]. The corresponding
five-dimensional problem to be solved contains three dimensions for the torus geometry and two dimensions for the velocity [5]. At
each time step, the simulation requires solving a 5D Vlasov equation for each species, along with a 3D Poisson-like equation that
enforces quasi-neutrality. While of smaller dimension, computing the solution of this three-dimensional system can deteriorate the
overall performance and scaling of simulation codes [5]. While some solvers, such as GENE-3D [1], COGENT [2], or EUTERPE [3],
solve this system directly, other codes such as GYSELA [5], and ORB5 [4] solve a large number of two-dimensional equations on
cross sections of the tokamak; cf. Fig. 1 for a visualization of a tokamak geometry with several cross sections. The type and form of
the 2D cross sections differ for various publications (see also the next section). As the formulation by curvilinear coordinates poses
an additional difficulty at the section of the separatrix, recently, in [7], a multi-patch geometry for a decomposed domain with an
X-point was presented.

In [8], the taylored geometric multigrid method GMGPolar was proposed to efficiently solve the resulting subproblems on hundreds
or thousands of cross sections, repeated over thousands or millions of time steps. From the beginning, GMGPolar has been designed
to be scalable, allow higher order approximations, and reduce the memory footprint to a minimum. In [9], a matrix-free C+ +
implementation using shared memory parallelism through OpenMP was presented. It was furthermore shown that the GMGPolar
algorithm is optimal in the sense that it has linear asymptotic complexity, i.e., the number of floating point operations (FLOP) for
the solution process is a linear function of the number of degrees of freedom. In [10], GMGPolar was compared to other state-of-the-
art solvers for the gyrokinetic Poisson-like equation on tokamak cross sections. GMGPolar was found to have the smallest memory
requirements and to offer a compromise between relatively fast execution and high order of approximation.

In this article, we present a completely refactored version 2 of GMGPolar [11]. The novel version aligns the multigrid components
with cache lines, optimizes the compromise between the storage and recomputation of (costly) function evaluations, underwent low
level performance engineering through, e.g., function inlining, and boosts the parallel scalability through a substantial reduction of
synchronization and waiting times. In addition, GMGPolar now implements F-cycles and full multigrid to speed up the convergence.

The article is structured as follows. In Section 2, we present the considered model problem together with the mathematical
background and multigrid components of GMGPolar. In Section 3, we present the object-oriented design of the geometric multigrid
algorithm. Here, we focus particularly on optimizing memory usage and cache accesses, improving parallel scalability, and on new
multigrid features such as full multigrid. We provide extensive numerical results in Section 4 before concluding with Section 5.

2. Model problem and principles of GMGPolar
2.1. Model problem and geometry

With some simplifications, as explained in [10], we consider the following model problem for a 2D Poisson-like equation
-V-@Vu)+pu=f in Q

u=up on 0Q,

1)

which arises in the description of quasi-neutrality. Here, Q c R? is a disk-like domain, and f : Q — R, with f € C°(Q), is the right-
hand side. The functions a,f : Q — R are coefficients corresponding to density profiles, with « € C'(Q) n Co(ﬁ) and g € Co(ﬁ). Fur-
thermore, we prescribe Dirichlet boundary conditions with u;, € C°(9Q).

We next introduce the energy functional

J(w) :=/1a|vM|2+ Lo~ ru y, @)
02 2 :

from which we obtain a symmetric linear system after a finite difference discretization as described further below. We note that the
weak formulation of problem (1) is equivalent to the minimization of the energy functional J(«) in (2) over a suitable Sobolev space,
prescribing the boundary conditions u,.

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

y y
W
(r,2m) (1.3,2m) 4
C
PEEERS
~_"
F,
(r1,0) (13,07 ¢
(-1,-1.5) v (-1.1, -1.6) v

Fig. 2. Visualization of the Shafranov and Czarny cross section geometries of a tokamak. As both geometries can be described in curvilinear
coordinates, mappings from a rectangular grid [r,, 1.3] X [0, 27] (center) to the considered geometries are indicated. The Shafranov geometry (left)
is given by the mapping Fg : [r;,1.3]1 x [0,27] — R? and the Czarny geometry (right) is given by the mapping F : [r,, 1.3]1 X [0,27z] — R?; see (3)
and (4). For the existence of the invertible mappings F;' and F_', we need r, > 0. The depicted grids are symbolically refined at 2/3 of the
generalized radius.

In this paper, we consider three different geometries that represent cross sections of a tokamak; cf. [6,12,13]. Two of the three
geometries can be described by relatively short representations of curvilinear coordinates, i.e., based on a mapping F,, g € {S,C},
from the curvilinear coordinates (r,9) € [r, 1.3]1 X [0, 27), where r is the (generalized) radius and 9 the (generalized) angle to Cartesian
coordinates (x, y), defined as follows.

The Shafranov geometry is a deformed ellipse which is defined by the mapping

x(r,9 xo+ (1 = K)r cos 9 — 6%
Fyr,0) = (D) o (Fot (Emreos: ; ©)
»(r, 9) Yo+ +x)rsind
see Fig. 2 (left). Here, « is the elongation and & is the Shafranov shift; see [6,12]. For the parameters, we use x, = y, = 0, k = 0.3, and

6=0.2.
The Czarny geometry is a D-shaped geometry and adds triangularity to the shape; see Fig. 2 (right). It is defined by the mapping

1
<x(r’19)> ;(1 —V1+ee+2r cos&))
Fe(r,9) :=

= eérsind ’ Q)

y(r,9) Yo+

2—14/1+e(e+2rcosd)

where ¢ is the inverse aspect ratio, e the ellipticity, and & = 1/4/1 — €2 /4, see [12,14]. For the parameters, we use y, = 0, £ = 0.3, and
e=14.

Note that for r; = 0, the inverse mappings F, . 1 g€ {S,C}, do not exist as the functions F,, g € {S,C}, map the whole line (0, 9)
on the origin. This, however, is only of theoretical concerns as our method will use an interior radius r; such that 0 < r; < 1.

The third geometry, the nonanalytical Culham geometry [15] has been chosen to take into account more realistic geometries in
GYSELA. The rather lengthy development can be found in [10, Section 6.2]. For a visualization of the Culham cross sections in a 3D
tokamak; see Fig. 1.

2.2. Discretization

While a matrix-free implementation of iterative solvers based on finite element (FE) discretizations might be cumbersome, finite
differences (FD) offer a straightforward approach for matrix-free implementations. However, standard finite difference schemes ap-
plied to nonuniform meshes generally lead to nonsymmetric discretizations, even if the considered model problem is symmetric or,
more precisely, the considered operator self-adjoint. In [16], we presented a novel approach to derive symmetric FD discretizations
for nonuniform meshes. In this FE-inspired FD discretization, the energy functional is localized and discretized on the local elements.

Let us first introduce a nonuniform mesh in product format by ry,...,r, withO0<r «1landr, =13 aswell as 9,,....9,., €
[0,2x] with 8; = 0 and 19,,8 +1 = 2x. We define

hyi=rg—rn P€{ln =1}, k=9, -9, Jj€({l...,n). 5)

3

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Furthermore, we add an additional restriction for the discretization, i.e.,
n, Odd, h2i=h2i—l’ [E{l,...,(l’lr—l)/z},

ngeven, ky; =ky_j, JEfl,...,ng/2}.

(6)

Note that this restriction is neither needed for the FD discretization nor for the geometric multigrid in general. It will only be used
to raise the convergence order of the geometric multigrid via implicit extrapolation. For more details, see [8,16].
For theoretical purposes, we assume h; and k; to be uniformly bounded by

0< i <h, <h and 0<kyy, <k; <k)
as well as the existence of 0 < 7 < oo such that & = zk.
We now localize J(u) of (2), by considering the rectangular elements R;; := [r;,r; + h;]1 X [9;,8; + k;]. By transformation, the local

»o
energy functional writes

1 _ 1
Tr, W)t = /R <§a|DFg TV . oul* + iﬂuz - fu)l det DF,|(r. 9), 8)
i.j
where DF, is the Jacobian matrix of F, and DFg*T 1= (DFgT)’l, ge{S,C}.
For the sake of simplicity, we do not distinguish notations between functions defined on the logical and physical domain. For a full
derivation of the discretization, we refer to [8,16] with g = 0 and [9] for # # 0. In order to simplify the notation, we will furthermore
use

1 . r a’ lan‘)

— — . 5

SDF DET et DE =2 (1 24y).)
2

Discretizing the local energy components J &, () to T, R, (W) computing the derivative with respect to u,,, and searching for the
critical point, i.e., '

T, @) =0. (10)

yields the nine-point finite difference stencil and right hand side as provided by [9]. Note that in the implementation, the geometric
understanding has changed. While this does not change the stencil itself, the particular interpretation of, e.g., left and top differ
between the current codebase and [9].

In [8], we suggested a particular discretization across-the-origin to handle the artificial singularity at r; = 0, avoiding to have the
origin as a grid point. It could be shown that this approach performed almost identical to incorporating (artificial) Dirichlet boundary
conditions on an inner circle with generalized radius 0 < r; < 1.

2.3. Multigrid and GMGPolar basics

GMGPolar is a geometric multigrid method that has been optimized to satisfy three desired requirements for the integration in a
gyrokinetic framework such as GYSELA [5]: i) it achieves fast convergence for geometries represented in curvilinear or (generalized)
polar coordinates, ii) it provides a matrix-free approach with low memory requirements, and iii) it realizes higher order convergence
through implicit extrapolation. As a multigrid method, it additionally allows for good parallel scalability by design. In [9], it was
shown that the number of floating point operations and memory cost of GMGPolar depend, asymptotically, only linearly on the
number of degrees of freedom. In the following, we summarize very briefly GMGPolar’s mathematical core properties. For more
details and a pseudo-code description of GMGPolar, see [8,9].

2.3.1. Smoothing for curvilinear coordinate representations

Through the transformation of the model problem (1) to a curvilinear coordinate representation, the “strong connections” between
grid points change across the grid as we go from r| ~ 0 to r, = 1.3. This property strongly affects the choice for suitable smoothing
operations in the multigrid algorithm. In general, point-wise smoothers are not sufficient.

In [17], smoothing properties of particular circular and radial line smoothers were considered analytically for polar coordinate
representations. Strong connections lie on circular lines near the origin, circle smoothers were found to perform better in this part of the
disk-shaped domain. Closer to the boundary, strong connections lie on radial grid lines, and radial smoothers are more efficient. Based
on these findings, GMGPolar switches from circle to radial smoothing where k/h;r; > 1is satisfied; a schematic picture is given in Fig. 4
(left). Note that in most applications, we assume uniform discretization in the angular direction, i.e., k = k i =1 ng. Otherwise, a
more general switching condition or overlapping smoothers are needed. The implemented switching yields good smoothing behavior
on the whole domain by only treating every grid point once per smoothing iteration.

2.3.2. Coarsening and intergrid transfer operators

Coarsening in GMGPolar is done by standard coarsening, selecting every second node in each dimension. Except for the particular
handling of implicit extrapolation, as briefly mentioned in the next section, GMGPolar uses standard bilinear interpolation. With the
symmetry-preserving FD scheme, we can use the adjoint operator as restriction operator. Note that we do not need any additional
scaling constant between prolongation and restriction as our tailored FD scheme scales the right hand side locally with the surface
of the considered rectangle; see also [8, Section 4.2].

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

2.3.3. Higher order convergence through implicit extrapolation

When using the discretization from Section 2.2, implicit extrapolation allows to raise the convergence order towards the true
solution when refining the grid. For the considered model problems and geometries, increases from order 2 to approximately 3.6 - 4.0
were observed [16]. For implicit extrapolation to take effect, GMGPolar makes some adjustments to standard multigrid algorithms.
However, these changes only affect the finest two grid levels. All operations between grid levels below the second finest grid comply
with standard multigrid practices. For a complete description of the adjusted intergrid transfer operators and smoothing operations,
see [8, Section 4.3].

2.3.4. Take and give approaches

A straightforward way to implement the FD stencil is the node-wise computation of all available row entries of the stiffness
matrix. This approach has been denoted the A-take, or simply Take, approach in [9], as it takes the necessary values from the memory
locations of the neighboring nodes. From the structure of the stencil, it can be seen that many entries are recomputed with the
take approach. Alternatively, we can optimize the computation of the stencil values per node and distribute computed values to the
memory of neighboring nodes that need the same function evaluations. This approach was denoted A-give or Give. Both approaches
will be discussed in the sections on the refactored version of GMGPolar.

3. Object-oriented redesign and algorithmic optimization

The refactoring of GMGPolar represents a substantial transition from a functional programming style, which had been inherited
from the initial implementation of [8], to a structured and object-oriented design. With this shift, specific functionalities are now
better encapsulated in dedicated classes, clarifying the responsibilities of different components within the codebase - also ensuring
better maintenance and extension capabilities. The refactoring was essentially done during the master thesis of Julian Litz [18]. Here,
we outline the key aspects of the novel implementation.

Compared to the previous version 1 of GMGPolar, the data structure has been separated into more specialized classes, instead of
being inside a unique large multigrid Level class. A dedicated PolarGrid class will manage grid-related data, ensuring efficient access
and organization, while a separate LevelCache class will handle the storage and retrieval of precomputed data. The Interpolation
class manages intergrid transfer operations, separating the responsibilities of data movement between grid levels from other func-
tionalities of the solver. In addition, a custom LinearAlgebra class manages the fundamental operations on vectors and matrices. In
this class, we implemented tailored tridiagonal solver algorithms, which are crucial for the performance of the smoother.

To further modularize the design, distinct operator classes were created to handle specific computational tasks, such as computing
the Residual, solving the system coarse matrix via DirectSolver, and performing smoothing operations via Smoother. The refactored
layout is presented in Fig. 3. For an overview of particular settings with respect to geometry, multigrid, and particular problem settings,
see Table A.1. By adopting this more object-oriented approach, which also optimizes memory usage and enhances the multigrid cycle
methodology, we obtain a more flexible and efficient tool for large-scale gyrokinetic simulations.

The original GMGPolar code employed exclusively the Give approach for matrix-free computations and dynamically computed
transformation coefficients during matrix-vector operations, whereas the Take approach was only available with the assembled ma-
trix version. While the Give method minimizes memory usage, it introduces a computational overhead, particularly for complex
geometries. To provide greater flexibility, the refactored implementation supports, both, the Give and Take stencil implementations,
allowing to choose between storing or recomputing transformation coefficients o', a’?, a®® and det DF, from (9) based on specific
requirements. With this functionality, the solver adapts to a wider range of problem sizes and computational constraints. In the
following, we will present in depth the improvements that were undertaken in GMGPolar version 2.

3.1. Memory usage and cache efficiency

Memory and cache optimization was a key component to be considered in the refactoring phase. The matrix-free GMGPolar
implementation had already been designed with small memory requirements [9] compared to other state-of-the-art solvers [10].
Nevertheless, the previous implementation did not yet exploit the symmetry of the smoother matrices, relying instead on a full LU
decomposition that introduced additional fill-in. While the total memory consumption for the prior version was computed asymptoti-
cally linear as 12n [9] (accounting for all multigrid levels), the new Give variant reduces finest-level storage to just 5n (asymptotically
with all levels: 6.7n) by employing in-place symmetric Cholesky factorizations for the smoothers and eliminating redundant temporary
vectors. Here, n = n, - ny denotes the total number of grid nodes. The Take variant introduces four extra vectors (for arrays arr, att,
art, and detDF) to streamline data access, bringing its peak requirement to 9n (asymptotically with all levels: 12n).

The smoother constitutes a major computational component of the solver (see [9]); therefore, both the setup and solution phases
of the smoother matrices were improved. In the previous version, the assembled matrices were stored in Coordinate List (COO) format
and decomposed using a general LU decomposition. The smoother’s solver matrices naturally take the form of tridiagonal matrices
or cyclic tridiagonal matrices when using circle line smoothing with peridodic boundary conditions; cf. [8]. In the new implemen-
tation, we eliminate explicit row-column indices and exploit the symmetry, only storing the upper or lower half of the matrices and
additionally use specialized tridiagonal solvers suited to this structure. The tridiagonal matrices of the radial smoother are factorized
using Cholesky decomposition in 4n + (1) operations and solved via forward and backward substitution in 57 + O(1) operations. To
factorize the cyclic tridiagonal matrices of the circle smoother, we apply the Sherman-Morrison formula, which expresses the cyclic
tridiagonal matrix as a rank-one modification of a standard tridiagonal matrix, enabling efficient factorization without fill-in. The

5

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

InputFunctions GMGPolar — | Residual
DomainGeometry e setup() e computeResidual()
ProfileCoefficients ° Solve()
BoundaryConditions .
T — —— | InputFunctions .
. vector<Level> — | DirectSolver
ExactSolution . Qer
terpolation* .
nLerp on o directSolve()
Interpolation l SparseMatrix
- solver_matrix
e prolongation() Level MUMPS mumps_solver
e restriction() level_depth
e injection() — | LevelCache, PolarGrid
. — | Smoother
° Vectors:
FMG interpolation(solution, rhs, residual e smoothing)()
error_correction
Tridiag. solver matrices
LevelCache — Operations: &
Residualx* SparseMatrix
sin_theta, cos_theta i . .
DirectSolver* — inner_boundary_matrix
arr, att, art, detDF
Smootherx*

lpha, bet
a-pha, beta ExtrapolatedSmootherx*

— | ExtrapolatedSmoother

i — .
PolarGrid LinearAlgebra e extrapolatedSmoothing()
e inde idi i
lt)'(I()d () Vector () TI"1d1ag. solver matr'lces
e multilndex
u e SparseMatrix(n,m,nnz) Diagonal solver matrices
radii, angles, TridiagonalSolver(n) SparseMatrix
r_dist, theta_dist DiagonalSolver (n) inner_boundary_matrix

Fig. 3. Refactored class layout highlighting the modular structure and object-oriented design approach.

solution phase involves solving two independent tridiagonal systems and combining their results, requiring 12n + O(1) operations.
Although this new approach incurs a slightly higher cost in the solution phase compared to the adapted LU decomposition used
previously (cf. [9, Sec. 8.4]), it avoids the fill-in introduced in the last row and column, reducing memory footprint.

Moreover, we optimized the solution step of the smoother matrices on cache level by reordering grid indexing to align with the
smoother’s line patterns. For a visualization of a smoother-aligned indexing, see Fig. 4. This reorganization increases data locality
and improves cache line usage, consequently, leading to faster execution times.

Remark 1. For solving the circle smoothing system on the innermost circle with the default, across-the-origin, discretization, attention
has to be paid. Due to the across-the-origin approach, the corresponding submatrix is not tridiagonal. Therefore, we use the COO
format and MUMPS for the smoother on the innermost circle.

As sparse linear algebra applications are often memory-bound, improving memory access patterns is also promising for speeding up
the particular application. However, as first observed in [10], the matrix-free version of GMGPolar, replacing most memory accesses
by (re)computations, did not speed up our method as expected. This observation is a direct consequence of the complex domain
geometries of the tokamak cross sections. On these geometries, the evaluation of the sine and cosine functions as well as the factors
a”,a", a® were found to be relatively costly. In [9], we already stored sine and cosine evaluations for the different generalized
angles. In the novel version, these values are also stored. By default, the novel version also caches the values of « and # evaluations
from (1) and (13) for the Give approach. For the Take approach, we additionally cache the transformation coefficients from (9) —
which can also be stored for the Give approach upon selection by the user.

6

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Separation of the smoother sections

Fig. 4. Combined circle-radial smoother and indexing for the smoothing operations. Circle and radial lines colored black and white on a
grid of dimension 16 x 32 with eight circle lines of 32 nodes and 16 radial lines of eight nodes; for visualization simplification, the curvilinear lines
are shown without the nodes (left). Optimized grid indexing for a periodic grid of dimension 8 x 4 with four circle lines of four nodes and four
radial lines of four nodes. Vertical lines of the same color represent circular smoothers, while horizontal lines of the same color correspond to radial

\/\/\
\/\/\

Fig. 5. Dependency graph for the application of the system matrix A?, of multigrid level i € {0, ..., L — 1}, using the Give implementation.
Each vertex represents a task corresponding to a line of nodes. The edges visualize the dependencies between these tasks.

3.2. Parallelization

In the original implementation of [9], a task-based parallelism with dependencies was used. At runtime, the OpenMP threads
could pick up and perform tasks as they became available. While this approach might be advantageous for unstructured task sets
and largely differently sized task, we found that a loop-based parallelism yielded better results for the structured and similarly-sized
problems considered in GMGPolar. With the loop-based parallelism, we avoid dynamic scheduling and dependency management and
reduce synchronization overhead.

In order to avoid concurrent updates of memory locations when applying the system matrix A with the Give approach, GMGPolar
treats every third line in parallel; see [9] and Fig. 5.

For the smoothing operation on multigrid level i € {0, ..., L — 1}, we solve subsystems of the original system with matrix A%,
right hand side £, and solution u”). These systems write

A,) = 10 = A, an
c c

where s refers to the smoothing operation, either circle or radial, and ¢ to the color, either black or white. Furthermore, A(')g , u(')

and f;, @ correspond to the nodes to be smoothed and the complementary part A(') and u(') to the nodes connected, which contrlbute
[‘ C

to the rlght hand side of the system. In the Take approach, the complementary updates ‘to the right hand side can also be done in
parallel. While lines of the same smoother and color can be solved completely in parallel, several dependencies to update the right
hand sides have to be considered with the Give approach. Using the Give approach, we obtain a more complex parallelization pattern
as nodes change the values of their neighbors. In the prior (Give) implementation, the additional dependencies to be added to Fig. 5
can be found in [9, Fig. 8]. The novel implementation adopts a slightly less complex pattern as visualized in Fig. 6. In this approach,
the rows for the application of the complementary part are executed in parallel pattern of 2-4-4 with barriers in-between, meaning
that, first, every second line is treated, then, two sweeps of lines with a distance of four are executed before, eventually, the system
is solved for every second line in parallel.

3.3. Multigrid features

GMGPolar now also supports W - and F-cycles. The W -cycle performs additional coarse grid corrections by revisiting intermediate
levels during the upward traversal, yielding a more thorough error reduction on coarser grids. With the F-cycle, GMGPolar offers a
hybrid between the V-cycle and W -cycle. It combines the efficiency of the V-cycle with the robustness of the W-cycle by selectively
applying additional coarse-grid corrections; see [19,20].

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

. . Radial Section
Circle Section

© 6 06 60
3 AVAWAVARAN
g Apply Ascsé ®r\ ;\®r\ n@
é \\@/// \\@//
3 AVERVAN
Solve system { 8 p O—
\N/N/N/N/
. ® OO 0
Z /NN \ \
= | Apply A, . o o o
% ’\\\O// \‘g’//
© VAVERVAN AVERVAN
Solve system {

Fig. 6. Parallelization of the smoother using the Give approach. The figure represents a grid which consists of nine circular and eight radial
smoother. In this example, inner- and outermost circle smoothed with a circle pattern are colored black. Vertices represent computational tasks cor-
responding to a line of nodes. Solid edges visualize dependencies between tasks as given by Eq. (11). Dashed edges represent synthetic dependencies
introduced to avoid concurrent updates of the same memory location and ensure conflict-free execution during parallel processing. .

In addition, GMGPolar now provides support for a full multigrid cycle (FMG). FMG uses nested iterations to compute a refined
initial approximation before standard multigrid cycles are applied. With this approach, we significantly accelerate the convergence
process, as shown in Section 4.

4. Numerical results

In this section, we will present numerical results for the model problem (1). The coefficients a« and f as well as the manufactured
solution are inspired by the simulation of plasma in tokamak fusion reactors and taken from prior benchmarks in [9,10]. We consider
a Polar solution with oscillations aligned with the polar grid

rx,) \° r(x,9)\°

u(x, y) = 0.4096<—’y> <1 - —y> cos(119(x,). (12)
max Rmax

Fig. 7 illustrates the solution for the Shafranov (left), Czarny (center), and Culham (right) geometries. Note that for the nonanalytical

Culham geometry, no exact, manufactured solution is supplied. For the coefficients « and 8, we set

o) _ .

(r) = exp| — tanh | Rre©)= - a13)
a(r) = exp an 5—r , ﬂ(r—m,

where §, = 0.05 and r, =07, as in [9,10], and R, = 1.3 as in [8,9].

Our experiments were run on an AMD EPYC 7601, 2.2 GHz, node with two 32-Core sockets and 128 GB DDR4 RAM of the
supercomputer CARA at the German Aerospace Center as well as on Intel Xeon “Skylake” Gold 6132, 2.60 GHz, node with four
14-Core sockets with 384GB DDR4 RAM of a small internal cluster. As for coarse level solver, we use MUMPS v5.5.1 [21]. We use
LIKWID [22,23] for measuring performance in MFLOPs/s and data transfer in MBytes/s.

We allow a grid-adapted maximum number of levels yielding six multigrid levels for a grid of size 193 x 256 and 11 levels for a
grid of size 6 145 x 8 192. As in prior publications [8,9], we use an anisotropic grid refinement, approximately where the gradient of
coefficient « attains its minimum,; [8, Fig. 1] or, symbolically, in Fig. 2. This setup demonstrates that GMGPolar is also capable of
handling anisotropic grids efficiently. The absolute or relative convergence criteria were selected depending on the purposes of the
individual, following subsections. Convergence is measured in the weighted | - ll,,-norm

lloll, =

In Section 4.1, we provide roofline model results. In Section 4.2, we consider the memory requirements. In Section 4.3, we provide
weak scaling results. In Section 4.4, we show strong scaling results. In Section 4.5, we provide results on FMG and different cycle

8

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

1.06-04 1.06-04 8.5-08
—5e-5 — 5e-5
)
~0 ~0
_ 565 _ 565 -5e-8
-9.06-08
1,004 1,004

Fig. 7. Illustration of the manufactured solution (12). Visualized solutions for the Shafranov (left), Czarny (center), and Culham (right)
geometries.

16384

o Take
4+ Give

1024

s no SIMD

644 A

Performance [GFLOPS]

16 4

serial

11/64 32 116 8 4 12 1 2 4 8 16 32 64 128
Operational Intensity [FLOPS/Byte]

Fig. 8. Roofline model of GMGPolar. Czarny geometry with Take and Give stencil implementation and problem size 6145 x 8192.

types to obtain algorithmic speedups. Eventually, in Section 4.6, we provide some experimental results when using GMGPolar as a
preconditioner for conjugated gradients.

4.1. Roofline model

In this first subsection, we provide a roofline model for GMGPolar. Our roofline model uses the benchmarked peak performance
against the operational intensity. This model shows the hardware limitations and the potential benefit in optimizing computational
or memory aspects of the considered implementations. We use LIKWID [22,23] for measuring double precision computations in
MFLOPs/s, the memory bandwidth in MBytes/s as well as the operational intensity in FLOPs/Byte. We use the roofline model com-
puted on a full node (56 cores) of an Intel Xeon “Skylake” Gold 6132, 2.60 GHz, with four 14-Core sockets. The peak flops of 1256.6
GFlops/s were quantified with the LIKWID benchmark peakflops_avx with settings N:1792kB:56. The value of 1792 kB was obtained
from 32kB for each of the 56 hardware threads so that each vector chunk fits into the L1 cache of one core. The maximum memory
bandwith of 272 GBytes/s was obtained with the LIKWID benchmark stream mem_avx_fma with settings N:2GB:56. As a test case, we
consider the Czarny geometry with a resolution of 6145 x 8192 nodes. As a convergence criterion, we choose a relative reduction of
the initial residual by 1e8.

As indicated by our first findings in [9,10] and although being a sparse matrix-free implementation, we see that GMGPolar has a
rather elevated computational intensity and is not memory bound; cf. Fig. 8. Aside from the potential through AVX SIMD operations
which is not yet exploited, we see that in particular the Give approach comes close to the compute limit. We thus see that the
matrix-free implementation benefits from storing several expensive function evaluations on the transformed geometry.

4.2. Memory requirements

In this section, we consider the memory requirement of GMGPolar, comparing the novel implementation against the previous one.
We compare the new Give implementation where either nothing (Min. cache), profile coefficients (Coeff.), geometry transformations
(Geom.), or profile coefficients and geometry transformations (Coeff. & Geom.) are cached and with the Take approach where coeffi-

9

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Table 1

Memory requirements of different novel GMGPolar implementations with comparison to old implementa-
tion. Czarny geometry from grid size 193 x 256 to grid size 6 145 x 8192. n, provides the resolution in the
first dimension, n, provides the resolution in the second dimension. Min. chache stands for the evaluations
of sine and cosine functions in one dimension which are always cached. Coeff. stands for caching of « and
p evaluations from (1) and (13) and Geom. stands for caching transformation coefficients from (9).

n, Xy 193x 256 385x512 769x1024 1537x 2048 3073x4096 6145 x 8192
GMGPolar vl
Estimate 4.74MB 18.92MB 75.60MB 302.19MB 1208.35MB 4832.62MB
(Min. cache)
Give , ,

' 4.96 MB 18.86MB 73.96MB 294.97 MB N/A’ N/A’
(Min. cache)
GMGPolar v2
Estimate 2.64MB 1051MB 42.00MB 167.88MB 671.31 MM 2684.79 MB
(Min. cache)
Give 3.22MB 12.24MB 47.56 MB 189.04 MB 754.03 MB 3015.47 MB
(Min. cache)
?C‘Z:H) 3.22MB 12.25MB 47.58MB 189.09 MB 754.13MB 3015.65MB
Give 5.19MB 20.08MB 78.89MB 314.19MB 1254.33MB 5016.03MB
(Geom.)
Give 5.20MB 20.09MB 78.90MB 314.21MB 1254.38MB 5016.12MB
(Coeff. & Geom.)
Take 5.20MB 20.09MB 78.90MB 314.21 MB 125438MB 5016.12MB

(Coeff. & Geom.)
* This run was canceled / not executed as it took too long with the massif memory tool.

cients and geometries transformations are both cached; see the end of Section 3.1. We, furthermore, provide estimates on the expected
memory requirements as laid out in Section 3.1. For these experiments, the direct solver MUMPS has been replaced by a custom-made
solver as it could otherwise not be measured with valgrind’s tool massif [24,25]. Furthermore, we replaced the right hand side by
a constant vector equal to one and only three iterations were conducted. It has to be noted that the corresponding custom-made
solver was not designed to replace MUMPS for a performance-oriented execution but only provides a fallback implementation. With
this fallback implementation, the measured memory of the Give approach increases from approximately five vectors (on the finest
level) to be stored to 5.6 vectors and for the Take approach from nine vectors to be stored to 9.4 vectors. An optimized version of the
custom-build solver is already available with a new pull request of GMGPolar.

From Table 1, we see that the memory requirements of the Give approach were reduced by approximately 36 %, when compared
to the prior implementation. On the other hand, the implementation of the Take approach in the novel version 2 comes close to the
requirements of the prior Give implementation. We also see that the caching of the density profile coefficients from (1) and (13) is
almost negligible with respect to memory requirements while the caching of the domain geometry transformations o™, a"’, a*’, and
det DF, from (9) leads to a relevant memory increase.

4.3. Weak scaling

In this section, we provide weak scaling experiments going from a single core to 64 cores on CARA. We start with a geometry of
769 x 1024 nodes and end with a grid of size 6145 x 8192, effectively scaling from approximately 800 000 to 50 million nodes. For
the Give stencil implementation, we use the default setting of caching the profile coefficient values. For the Take implementation,
profile coefficient and geometry values are cached. As a convergence criterion, we choose a relative reduction of the initial residual by
1e8. From Table 2, we obtain weak scaling efficiencies of 25.64 % and 41.06 % for the Shafranov and Czarny geometry and the Give
implementation. The corresponding values were 29.71 % and 46.14 % for a very similar test case in the previous implementation;
cf. [9]. However, with the algorithm itself substantially sped up by a factor of two to four (cf. Fig. 10), the results appear acceptable.
For the Culham geometry, we obtain a weak scaling efficiency of 72.95 % from one to 64 cores. From one to 16 cores, we obtain
weak scaling efficiencies of 69.91 to 91.50 % for the three different geometries. For the Take implementation, we obtain worse weak
scaling results but can substantially speed up the computation by factors of 2.7 to 14.6. As indicated by the roofline model, we see
that the Take approach, where more information is stored in memory, is the more advantageous the more complex the geometry is.

4.4. Strong scaling

In this section, we first present strong scaling results for the novel GMGPolar implementation on different geometries. Eventually,
we also provide a comparison with respect to scaling behavior of our prior implementation of [9,10]. As a convergence criterion, we
choose a relative reduction of the initial residual by 1e8. Our experiments were again run on CARA. We double the number of cores
from one to 64 and consider the strong scaling behavior solver timings of GMGPolar v2 and, in comparison, setup and solver timings
of the novel implementation against GMGPolar v1.

10

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Table 2

Weak scaling of GMGPolar for different geometries and the two different stencil implementations.
n, provides the resolution in the first dimension, ny provides the resolution in the second dimension,
Cores provides the numbers of cores used, Time provides the total solver time, Eff. provides the weak
scaling efficiency computed with respect to the single core run on grid size 769 x 1024 and 64 cores
on 6145 x 8192, and G/T provides the speedup obtained by using the Take approach instead of the
Give approach.

Shafranov geometry

n, X ng Cores Stencil Time Eff. Stencil ~ Time Eff. G/T

769x1024 1 32.42s 100 % 11.83s 100 % 2.74
1537 x 2048 4 Give 34.67 s 93.51 % Take 13.39s 88.35% 258
3073x409 16 46.37 s 69.91 % 25.98s 4554% 1.78
6145x8192 64 126.41s 25.64 % 112.32s 10.53% 1.12

Czarny geometry

n, X ng Cores Stencil Time Eff. Stencil Time Eff. G/T

769x1024 1 41.77 s 100 % 9.18 s 100 % 4.55
1537 x 2048 4 Give 43.60 s 95.80 % Take 10.16 s 90.35% 4.29
3073x409 16 53.00 s 78.81 % 19.48 s 47.12% 272
6145 x 8192 64 101.72's 41.06 % 77.89 s 11.78 % 1.30

Culham geometry

n, X ng Cores Stencil Time Eff. Stencil ~ Time Eff. G/T
769 %1024 1 115.52s 100 % 7.90s 100 % 14.62
1537 x2048 4 Give 118.38s 97.58 % Take 8.64s 91.43% 13.70
3073 x 4096 16 126.26 s 91.50 % 15.40 s 51.29 % 8.19
6145x 8192 64 158.36s 72.95% 63.29 s 12.48% 2.50

10%

—a— Shafranov, Give (Min. cache)
-#- Shafranov, Give (Coeff.)

—4— Shafranov, Take (Coeff. & Geom.)
—=— Czarny, Give (Min. cache)

-#- Czarny, Give (Coeff.)

—4- Czarny, Take (Coeff. & Geom.)
—a— Culham, Give (Min. cache)

-#- Culham, Give (Coeff.)

—4— Culham, Take (Coeff. & Geom.)

103

Execution time [s]

1024

8
Number of cores

Fig. 9. Strong scaling and runtime comparison of GMGPolar for different geometries and stencil and caching implementations. Visualiza-
tion of strong scaling for Shafranov, Czarny, and Culham geometry with Give and Take stencil implementations on problem size 6145 x 8192 with
convergence criterion of a relative reduction of the initial residual by 1e8.

In Fig. 9, we provide computing times and strong scaling of the novel GMGPolar on Shafranov, Czarny, and Culham geometry,
respectively, with a grid size of 6145 x 8192, i.e., approximately 50 million degrees of freedom. We first see that additional caching
of the profile coefficients in the Give approach, which only minimally increases the requirement memory (see Table 1), substantially
reduces the runtime of the Give approach. Additionally, the Take approach, where coefficients and geometry information is stored,
drastically reduces the runtime — at the cost of approximately 66 % of additional memory. However, we also see that the different
geometries benefit differently from storing coefficient and geometry information. Intuitively, the more complex the geometry, the
less beneficial is the sole caching of the coefficients, recomputing geometry-dependent values. For the faster Take implementation,
we see that parallelization stagnates after 16 cores. This means that not enough data is available with 6145 x 8192 nodes for the
compute parallelism offered through 32 to 64 cores and that, at best, four of these cross sections could be computed on a single node;
cf. Fig. 1.

11

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

641 ---- Ideal Speedup L
1034 —=— Original solve (task-based) L
32 Refactored solve (task-based) ///
—=— Refactored solve (loop-parallelism) //'
2
o 102 o 16
£ 2
c o 8
g g
5 0
9 10t —=— Original solve (task-based) 4
5 =— Refactored solve (task-based)
- —=— Refactored solve (loop-parallelism)
“‘*x\‘ -#- Original setup 2
100 “T~--. -=- Refactored setup
e — — . L
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of cores Number of cores

Fig. 10. Strong scaling and runtime comparison of old and new implementation of GMGPolar. Solver execution time in seconds (left) and
speedup of solver times (right). Czarny geometry with Give stencil implementation and problem size 3073 x 4096 with convergence criterion of a
relative reduction of the initial residual by 1e8.

Additionally, we compare old and new implementations on the Czarny geometry with a resolution of 3073 x 4096 nodes. We
consider the Give stencil implementation which was chosen for Version 1 in [9]. In an intermediate step, we also compare the
novel GMGPolar implementation with a task-based parallelism for the multigrid smoothers, which was implemented in Version 1.
From Fig. 10, we see first that both, setup and solve, timings could be substantially reduced. For the setup phase we obtain a speedup of
86 and 26 for one and 64 cores, respectively. For the solve phase we obtain speedups of 2.2 and 3.8 for one and 64 cores respectively.
We can furthermore state that the task-based parallelism reaches its limit of optimal performance with 16 to 32 cores and that the
loop-based parallelism is better suited for the structured parallelism that we exploit in GMGPolar. With 66 % efficiency from one to
32 cores, the novel version scales very well for this test case.

4.5. Multigrid cycles, smoothing steps, and full multigrid initialization

After having considered scaling properties and computational performance in the previous sections, we now consider the novel
algorithmic features available with GMGPolar v2. Therefore, we compare multigrid V' —cycles with newly implemented W- and F-
cycles. Furthermore, we compare methods initialized by zero with an FMG initialization with either 1, 2, or 3 cycles of type V, W, or
F. As the Take implementation of the stencil performed best with respect to compute time, with reasonable increase in memory needs,
we consider it here. As a test case, we consider the Czarny geometry with a resolution of 6145 x 8192 nodes. For a fair comparison
with and without FMG, we require the iteration to reach an absolute residual of 1e — 16.

While we see from Table 3 that without FMG, the V-cycle with just one pre- and postsmoothing step performs best with respect
to the solve time, we can speed up the algorithm by a factor of three when using FMG with two initial F-cycles.

Eventually, in Table 4, we provide the speedup for the Czarny geometry with a smaller grid size of approximately 780k nodes,
as also considered in [10]. With the newly refactored GMGPolar, also using new multigrid features such as optimized initialization
through FMG, we obtain substantial speedups compared to the old version. With the Give approach, the speedup ranges between four
and seven (for one to 16 cores) and with the Take approach between 16 and 18 (for one to 16 cores). While the Take approach uses
approximately the same amount of memory as the Give implementation in Version 1, the Give implementation of version 2 reduces
the memory by approximately one third (36 %).

4.6. GMGPolar in preconditioned conjugate gradients

In our prior publications as well as in the previous sections, GMGPolar was used as a standalone multigrid solver. However, in
order to speed up convergence through an optimized construction of iterates, we can also use Krylov subspace methods such as the
conjugate gradient (CG) method. In this section, we present preliminary and experimental results using GMGPolar as a preconditioner
for CG (PCG-GMGPolar). In this setting, we consider the system

M Ay u=M""f,, (14)

where A,, and f,, are the extrapolated system and right hand side, as described briefly above and in more detail around [16,
Eq. (4.10)] and [9, Eq. (32)].

In PCG, we first compute ry = f,, — A, and then either apply M~ or solve Mz, = r, to obtain the preconditioned residual,
which is used to initialize the search direction for solving (14). In our experiments, we use the nonextrapolated system matrix M = A
as the preconditioner, as it resulted in a shorter time-to-solution than M = A,,. Within each PCG iteration, an approximate solution
to Mz, =r, is obtained by performing a single FMG 1xF-cycle iteration. This provides a computationally efficient yet sufficiently
accurate solution to the preconditioning step.

12

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Table 3

Performance of different multigrid settings with and without full multigrid (FMG). Czarny ge-
ometry with Take stencil implementation and problem size 6145 x 8192. The Initial cycle column
provides the cycle used with FMG initialization with the corresponding number of iterations. The
Cycle column provides the cycle used in the multigrid iteration with the number of pre- and post-
smoothing iterations. The its column provides the number of iterations until convergence of the
multigrid scheme. The Time (Init) column provides the time for the FMG initialization and the Time
(MG) column provides the time of the multigrid scheme with convergence checks for an absolute
residual smaller than le — 16.

Initialization Initial cycle Cycle its Time (Init) Time (MG)
- v(@a,1) 48 - 77.64s
- w(,1) 38 - 117.44 s
- FQ1,1) 38 - 79.78 s

No FMG - V(2,2) 39 - 89.97 s
- Ww(2,2) 28 - 138.30s
- F(2,2) 28 - 83.63s
1IxV v(,1) 31 1.50 s 36.21s
1IxW v(1,1) 21 4.24s 3381s
1xF v(,1) 21 2.59s 33.99s
2xV v(,1) 18 3.50s 28.12s

FMG 2x W v(,1) 13 8.39s 21.02s
2x F v(,1) 13 5.01s 21.00s
3xV v(,1) 15 5.29s 24.44 s
3x W v(1,1) 12 12.62 s 19.31s
3xF v(1,1) 12 7.48 s 19.53 s

Table 4

Speedup of the novel GMGPolar. Czarny geometry with Take and Give stencil implementa-
tion and problem size 769 x 1024. Solver timings shown for 1, 4, and 16 cores for the novel
GMGPolar (v2) compared to the prior version (v1) in seconds and speedup shown between
parentheses in bold face.

Cores 1 4 16
Version
vl, Give 83.96 s 27.81s 13.79 s
v2, Give, FMG (2x F) 20.21 s (4.15) 5.61 s (4.96) 1.955(7.07)
v2, Take, FMG (2x F) 4.835(17.38) 1.64 s (16.96) 0.88 5 (15.67)
107 —— GMGP
olar No FMG
" —=— GMGPolar 1xF FMG
10 +— GMGPolar 2xF FMG
1010 —+— GMGPolar 3xF FMG
\ --+- PCG-GMGPolar No FMG
10-11 ‘.\ --#- PCG-GMGPolar 1xF FMG
\. *- PCG-GMGPolar 2xF FMG
o | PCG-GMGPolar 3xF FMG
=
10712
10714
1071
-16 W 1M
" Oi&;%zs.zzpjz_wégm;, 93435 82.67s

0 10 20 40 50 60

30
Iteration

Fig. 11. Comparison of the experimental branch of standalone GMGPolar and GMGPolar in PCG. The plot shows the convergence behavior
in terms of the norm of the residual and the number of PCG iterations. Solver execution time in seconds shown after the last iteration. Shafranov
geometry with Take stencil implementation and problem size 6145 x 8192 with convergence criterion of an absolute residual smaller than le — 16.

In the following, we present results for standalone GMGPolar and PCG-GMGPolar using an initial approximation that is either set
to zero or obtained via 1, 2, or 3 FMG iterations prior to the start of the multigrid or CG iterations. In Fig. 11, we observe that the
algorithm can achieve computational speedups of approximately 1.8 to 2.5, particularly when the initial FMG iterations alone are
insufficient to reach the required tolerance.

13

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

Table 5

Speedup of the experimental branch of standalone GMGPolar and GMGPolar in PCG. Czarny
geometry with Take stencil implementation and problem size 769 x 1024. Solver timings
shown for 1, 4, and 16 cores compared to the prior version (v1) in seconds and speedup
shown between parentheses in bold face; cf. Table 4.

Cores 1 4 16
Version
v2.2-experimental, Take, FMG (2x F) 4.08 s (20.57) 1.435(19.45) 0.78 s (17.68)

v2.2-experimental-PCG, Take, FMG (2x F) 2.26 5 (37.15) 0.88 5 (31.60) 0.55 5 (25.07)

In contrast to the prior results which have been fully merged to the productive main branch, using GMGPolar with PCG is still
experimental and available on development branch v2_paper_conjugate_gradient!. In between production version 2.0 and this
branch some other minor adaptations and optimizations have taken place. A direct comparison with the prior release version has
thus to be conducted with care. In Table 5, we have thus recomputed the row of the Take approach from Table 4 and additionally
evaluated the PCG version of GMGPolar. First of all, we observe some minor speedups from approximately 16-17 before to 17-20
with the minor improvements. However, we also see that the additional speedup through PCG yields an overall speedup of more than
37 in serial execution and more than 25 in 16-core execution.

5. Conclusion

In this paper, we presented a completely refactored version of GMGPolar, an optimized state-of-the-art matrix-free multigrid solver
that has been designed for complex 2D cross sections of tokamaks. GMGPolar has been developed to minimize the memory footprint,
to allow fast and scalable execution for curvilinear coordinate representations and to achieve higher order approximations on tensor
product structured grids.

With the improved stencil Give implementation, GMGPolar minimizes the already small memory requirements by reducing it
by approximately 36 %. This yields an 8- to 14-fold reduction of memory compared to the spline solver, as demonstrated in [10],
efficiently allowing to compute many different cross sections on a single compute node. With improved weak and strong scaling,
both stencil implementations, Take and Give, realize substantial speedups compared to the prior implementation. For a use case as
considered in [10], the Give implementation attains speedups between four and seven while the Take implementation attains speedups
of approximately 16 to 18. In an experimental setting, we additionally considered GMGPolar as a preconditioner in the conjugate
gradient method, which yielded an additional speedup factor of 1.8 to 2.5. In this experimental setup, we obtained speedups of more
than 37 in serial execution and of more than 25 when executing on 16 cores.

While in [10], GMGPolar was found to represent “a compromise between relatively fast execution and high order of approxima-
tion”, when compared to other state-of-the-art solvers, the novel version of GMGPolar combines an even reduced memory footprint
with faster execution and better scalability. It can directly be used for domains without X-points, such as described in Fig. 7, or
in a multipatch decomposition for a fast and precise computation on the core part of the domain as presented in [7]. In addition,
GMGPolar’s object-oriented redesign offers a more intuitive use of the taylored geometric multigrid for physicists and plasma fusion
engineers. Future research will include porting the application to GPU accelerators and considering domains with X-points.

Data availability
Data generation scripts and program code is fully available on zenodo and github.
Acknowledgements & Funding

The authors gratefully acknowledge the scientific support and HPC resources provided by the German Aerospace Center (DLR).
The HPC system CARA is partially funded by “Saxon State Ministry for Economic Affairs, Labour and Transport” and “Federal Ministry
for Economic Affairs and Climate Action”.

This project has received funding from the European High Performance Computing Joint Undertaking under grant agreement
n°101144014.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the EuroHPC JU. Neither the European Union nor the granting authority can be held responsible
for them.

Co-funded by the % EuroHPC

European Union Joint Undertaking

E:C::E

VA \

1 https://github.com/SciCompMod/GMGPolar/tree/paper_v2_conjugate_gradient

14

https://github.com/SciCompMod/GMGPolar/tree/paper_v2_conjugate_gradient

J. Litz et al.

Appendix A

Journal of Computational and Applied Mathematics 481 (2026) 117308

For potential users, we provide the most important simulation parameters in Table A.1.

Table A.1
Summary of simulation parameters with descriptions.
Type Parameter Description
verbose Controls output verbosity.
paraview Enables Paraview output files.
maxOpenMPThreads Maximum OpenMP threads.
stencilDistributionMethod Stencil distribution: ‘Take’ or ‘Give’.
General X s . -
cacheProfileCoefficients Caches profile coefficients « and $.
cacheDomainGeometry Caches transformation coefficients a””, ¢’ and a*’.
DirBC_Interior Interior boundary condition: Across-the-origin or Dirichlet.
RO Generalized radius of the innermost circle.
Rmax Generalized radius of the outermost circle.
nr_exp Number of discretization points in radial dimension.
Polar Grid ntheta_exp Number of discretization points in angular dimension.

anisotropic_factor
divideBy2

Anisotropic refinement radius.
Refines grid globally divideBy2 times to obtain identical grids for scaling experiments.

FMG Enables full multigrid / nested iteration for initial approximation.
FMG_iterations Number of FMG iterations.
FMG_cycle FMG Cycle type: V-, W-, or F-cycle.
extrapolation Extrapolation: None, implicit or full grid smoothing.
maxLevels Maximum multigrid levels.
preSmoothingSteps Pre-smoothing steps.

Multigrid Settings postSmoothingSteps Post-smoothing steps.
multigridCycle Multigrid Cycle type:V-, W-, or F-cycle.
residualNormType Residual norm type: || - ||, weighted || - [|,,, or || - Il -
maxIterations Maximum multigrid iterations.
absoluteTolerance Absolute tolerance for convergence.
relativeTolerance Relative tolerance for convergence.
geometry Cross section shape: Shafranov, Czarny, Culham, etc.
alpha_jump Radius of rapid decay for density profile.
kappa_eps Geometry elongation.

Test Problem delta_e Outward radial displacement of flux center.
problem Defines the solution: Cartesian, Polar, Multi-scale.

alpha_coeff
beta_coeff

Alpha coefficient: Poisson, Sonnendrucker, Zoni.
Beta coefficient: Zero or inverse of alpha_coeff.

References

[1]
[2]
[3]

[4

=

[5]

[6]
[71
(8]
[91
[10]

[11]
[12]

[13]
[14]
[15]

M. Maurer, A. Baién Navarro, T. Dannert, M. Restelli, F. Hindenlang, T. Gorler, D. Told, D. Jarema, G. Merlo, F. Jenko, GENE-3D: a global gyrokinetic turbulence
code for stellarators, J. Comput. Phys. 420 (2020) 109694. https://doi.org/10.1016/].jcp.2020.109694

M. Dorf, M. Dorr, Progress with the 5D full-F continuum gyrokinetic code COGENT, Contrib. Plasma Phys. 60 (5-6) (2020) €201900113. https://doi.org/10.
1002/ctpp.201900113

R. Hatzky, T.M. Tran, A. Konies, R. Kleiber, S.J. Allfrey, Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven
modes in #-pinch geometry, Phys. Plasmas 9 (3) (2002) 898-912. https://doi.org/10.1063/1.1449889

S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. Mcmillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC code in magnetic
coordinates, Comput. Phys. Commun. 177 (5) (2007) 409-425. https://doi.org/10.1016/j.cpc.2007.04.006

V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, et al., A 5D gyrokinetic
full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun. 207 (2016) 35-68. https://doi.org/10.1016/j.cpc.2016.
05.007

N. Bouzat, C. Bressan, V. Grandgirard, G. Latu, M. Mehrenberger, Targeting realistic geometry in Tokamak code Gysela, ESAIM Proc. Surv. 63 (2018) 179-207.
https://doi.org/10.1051/proc/201863179

P. Vidal, E. Bourne, V. Grandgirard, M. Mehrenberger, E. Sonnendriicker, Local cubic spline interpolation for Vlasov-type equations on a multi-patch geometry,
(2025). https://doi.org/10.48550/arXiv.2505.22078

M.J. Kiihn, C. Kruse, U. Riide, Implicitly extrapolated geometric multigrid on disk-like domains for the gyrokinetic Poisson equation from fusion plasma appli-
cations, J. Sci. Comput. 91 (1) (2022) 1-27. https://doi.org/10.1007/s10915-022-01802-1

P. Leleux, C. Schwarz, M.J. Kiihn, C. Kruse, U. Riide, Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear
coordinates representations from fusion plasma applications, J. Parallel Distrib. Comput. (2025) 105143. https://doi.org/10.1016/j.jpdc.2025.105143

E. Bourne, P. Leleux, K. Kormann, C. Kruse, V. Grandgirard, Y. Giicli, M.J. Kiihn, U. Riide, E. Sonnendriicker, E. Zoni, Solver comparison for Poisson-like
equations on tokamak geometries, J. Comput. Phys. 488 (2023) 112249. https://doi.org/10.1016/].jcp.2023.112249

J. Litz, P. Leleux, C. Kruse, U. Riide, M.J. Kithn, GMGPolar v2.0.1, Zenodo, 2025. https://doi.org/10.5281/zenodo.15732483

E. Zoni, Y. Giiglii, Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elements, J.
Comput. Phys. 398 (2019) 108889.

E. Zoni, Theoretical and Numerical Studies of Gyrokinetic Models for Shaped Tokamak Plasmas, Ph.D. Thesis, Technische Universitdt Miinchen, 2019.

O. Czarny, G. Huysmans, Bézier surfaces and finite elements for MHD simulations, J. Comput. Phys. 227 (16) (2008) 7423-7445.

J.W. Connor, S.C. Cowley, R.J. Hastie, T.C. Hender, A. Hood, T.J. Martin, Tearing modes in toroidal geometry, Phys. Fluids 31 (3) (1988) 577-590.

15

https://doi.org/10.1016/j.jcp.2020.109694
https://doi.org/10.1016/j.jcp.2020.109694
https://doi.org/10.1002/ctpp.201900113
https://doi.org/10.1002/ctpp.201900113
https://doi.org/10.1002/ctpp.201900113
https://doi.org/10.1002/ctpp.201900113
https://doi.org/10.1063/1.1449889
https://doi.org/10.1063/1.1449889
https://doi.org/10.1016/j.cpc.2007.04.006
https://doi.org/10.1016/j.cpc.2007.04.006
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1051/proc/201863179
https://doi.org/10.1051/proc/201863179
https://doi.org/10.48550/arXiv.2505.22078
https://doi.org/10.48550/arXiv.2505.22078
https://doi.org/10.1007/s10915-022-01802-1
https://doi.org/10.1007/s10915-022-01802-1
https://doi.org/10.1016/j.jpdc.2025.105143
https://doi.org/10.1016/j.jpdc.2025.105143
https://doi.org/10.1016/j.jcp.2023.112249
https://doi.org/10.1016/j.jcp.2023.112249
https://doi.org/10.5281/zenodo.15732483
https://doi.org/10.5281/zenodo.15732483
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0012
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0012
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0013
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0014
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0015

J. Litz et al. Journal of Computational and Applied Mathematics 481 (2026) 117308

[16]

[17]
[18]

[19]
[20]

[21]
[22]
[23]

[24]
[25]

M.J. Kiihn, C. Kruse, U. Riide, Energy-minimizing, symmetric discretizations for anisotropic meshes and energy functional extrapolation, SIAM J. Sci. Comput.
43 (4) (2021) A2448-A2473. https://doi.org/10.1137/21M1397520

S.R.M. Barros, The Poisson equation on the unit disk: a multigrid solver using polar coordinates, Appl. Math. Comput. 25 (2) (1988) 123-135.

J. Litz, Parallel Matrix-Free Computation of the Gyrokinetic Poisson Equation from Fusion Plasma Applications using Extrapolated Geometric Multigrid, 2025.
University of Bonn. URL: https://elib.dlr.de/214029/.

U. Trottenberg, C.W. Oosterlee, A. Schiiller, Multigrid, Academic Press, London San Diego, London San Diego, 2001.

W. Hackbusch, Multi-Grid Methods and Applications, 4 of Springer Series in Computational Mathematics, Springer Berlin / Heidelberg, Berlin, Heidelberg, 1
edition, Berlin, Heidelberg, 1985.

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, C. Weisbecker, Improving multifrontal methods by means of block low-rank representations,
SIAM J. Sci. Comput. 37 (3) (2015) A1451-A1474. https://doi.org/10.1137/120903476

G. Hager, G. Wellein, J. Treibig, LIKWID: a lightweight performance-oriented tool suite for x86 multicore environments, in: 2012 41st International Conference
on Parallel Processing Workshops, IEEE Computer Society, Los Alamitos, CA, USA, 2010, pp. 207-216. https://doi.org/10.1109/ICPPW.2010.38

T. Gruber, J. Eitzinger, G. Hager, G. Wellein, LIKWID v5.2.2, Zenodo, 2022. https://doi.org/10.5281/zenodo0.4275676

N. Nethercote, J. Seward, Valgrind: a framework for heavyweight dynamic binary instrumentation, ACM Sigplan Not. 42 (6) (2007) 89-100.

N. Nethercote, R. Walsh, J. Fitzhardinge, Building workload characterization tools with valgrind, in: 2006 IEEE International Symposium on Workload Charac-
terization, IEEE, 2006, pp. 2.

16

https://doi.org/10.1137/21M1397520
https://doi.org/10.1137/21M1397520
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0017
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0018
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0018
https://elib.dlr.de/214029/
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0019
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0020
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0020
https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.5281/zenodo.4275676
https://doi.org/10.5281/zenodo.4275676
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0024
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0025
http://refhub.elsevier.com/S0377-0427(25)00820-9/sbref0025

	Memory - and compute-optimized geometric multigrid GMGPolar for curvilinear coordinate representations – Applications to fusion plasma
	1 Introduction
	2 Model problem and principles of GMGPolar
	2.1 Model problem and geometry
	2.2 Discretization
	2.3 Multigrid and GMGPolar basics
	2.3.1 Smoothing for curvilinear coordinate representations
	2.3.2 Coarsening and intergrid transfer operators
	2.3.3 Higher order convergence through implicit extrapolation
	2.3.4 Take and give approaches

	3 Object-oriented redesign and algorithmic optimization
	3.1 Memory usage and cache efficiency
	3.2 Parallelization
	3.3 Multigrid features

	4 Numerical results
	4.1 Roofline model
	4.2 Memory requirements
	4.3 Weak scaling
	4.4 Strong scaling
	4.5 Multigrid cycles, smoothing steps, and full multigrid initialization
	4.6 GMGPolar in preconditioned conjugate gradients

	5 Conclusion
	A

