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ESA’s Huygens probe had only one attempt to successfully enter Titan’s atmosphere. Due to
large uncertainties, it was crucial to ensure the mission’s robustness during the development
phase. Common methods like Monte-Carlo simulations are computationally expensive and
provide only a lower bound for worst case values. Therefore, this paper presents a robustness
analysis method that determines the upper bound to complement Monte-Carlo simulation
results and to increase the confidence in the mission’s robustness. The developed method is
based on linear time-varying systems and quadratic constraints to describe deviations from the
nominal trajectory resulting from a set of uncertain initial conditions.

I. Introduction
In January 2005 as part of NASA/ESA’s Cassini-Huygens mission, the Huygens probe landed on Titan, Saturn’s

largest moon, to conduct scientific measurements in its atmosphere and on its surface [1]. The lander was separated
from the orbiter Cassini three weeks prior to the entry flight without having an active control system to stabilize
and maneuver the vehicle to its target location. As a result, Huygens’ atmospheric entry flight was subject to large
uncertainties [2, 3]. Missions such as Huygens are expensive and take a lot of time due to its interplanetary voyage of
several years. Therefore, it is crucial to analyze the robustness of the system with respect to expected uncertainties
extensively during the development phase to ensure a successful mission.

The robustness analysis of a nonlinear system analyzes the deviation from its nominal trajectory under uncertainties
in order to validate compliance with mission requirements. There are many different methods to analyze the robustness of
a system, e.g. stochastic methods and worst-case optimizations. The most common method is Monte-Carlo simulations
that solve the dynamics for numerous uncertainty combinations. A key advantage of Monte-Carlo simulations is that they
simulate the full nonlinear system, thus, they do not necessarily make simplifications and every state and output can be
analyzed. However, this fact also renders Monte-Carlo simulations computationally expensive and time consuming, as a
large number of simulations is usually required for statistical significance. Additionally, they only provide a lower bound
for the requirements, since the actual worst case can only be theoretically found by an infinite amount of simulations.
In summary, this slows down the overall development process especially if many design iterations are required. The
analysis method developed in this paper addresses these shortcomings by providing worst-case bounds in a fraction of
time. The approach linearizes the nonlinear system along its nominal trajectory and re-includes the nonlinear terms by
bounds. Therefore, it complements Monte-Carlo simulations by accelerating the development process of the system and
providing the upper bound to constrain the worst case from both sides.

There exist already many similar robustness analysis methods [4–8] that, however, are usually based on different
assumptions or focus on other objectives. For instance, the paper [4] analyzes discrete-time, uncertain linear time-varying
systems (LTV) under unknown initial conditions over a short time period by solving a linear matrix inequality (LMI).
The references [5] and [6] consider LTV systems along uncertain trajectories. The former focuses on performance
measures at the end of the trajectory due to uncertain parameters and external disturbances, whereas the latter determines
a bound for the entire finite time horizon. The publications [7] and [8] concentrate on linear parameter varying systems.
In contrast, this paper develops a robustness analysis method that analyzes an autonomous uncertain LTV system under
unknown initial conditions over a long time period. Therefore, the robustness condition is solved by integrating a Riccati
differential equation backwards in time.
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Section II describes the necessary theoretical preliminaries, e.g. linear time-varying systems or quadratic constraint
interconnection, and preparatory steps, e.g. calculating a linear model or bounding the nonlinearities, which are
necessary to develop and perform the linear robustness analysis. Thereafter, Section III derives the theorem that allows
for determining upper bounds for the system’s states and outputs and shortly describes how to solve the theorem. In
Section IV, Huygens’ atmospheric entry flight is introduced by outlining the relevant properties of Titan and Huygens as
well as the assumptions made to derive the nonlinear equations of motion. Subsequently, the linear robustness analysis
results of Huygens’ entry flight, which are divided in two parts, are discussed in Section V. First, the theorem is solved
for the nominal linear model. Thereafter, the full theorem is solved by considering quadratic constraints as well.

II. Background on Uncertain Linear Time-Varying Systems

A. Autonomous Nonlinear System and its Nominal Trajectory
An autonomous nonlinear system can be described by

¤̃𝑥 = 𝑓 (𝑥, 𝑝)
𝑦̃ = 𝑥.

(1)

The differential function 𝑓 depends on the system states 𝑥(𝑡) ∈ R𝑛𝑥 and some parameters 𝑝 and defines the time
derivatives ¤̃𝑥(𝑡). In this paper, the states are taken as outputs, i.e. 𝑦̃(𝑡) = 𝑥(𝑡). To simplify the notation, the time
dependency of the state and output vectors is omitted. The more general case with a nonlinear algebraic function as
outputs is described in [9]. Furthermore, nominal initial conditions result in the nominal trajectory of System (1), which
is denoted by 𝑛, e.g. 𝑥𝑛 and 𝑦̃𝑛.

B. Linear Time-Varying System with Uncertain Initial States
A linear time-varying (LTV) system with uncertain initial conditions is defined by

¤𝑥 = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢
𝑦 = 𝐶 (𝑡)𝑥 + 𝐷 (𝑡)𝑢

(2)

𝑥(0) = Γ𝜉. (3)

Here, 𝑥(𝑡) ∈ R𝑛𝑥 , 𝑦(𝑡) ∈ R𝑛𝑦 , and 𝑢(𝑡) ∈ R𝑛𝑢 are the state, output, and input vectors, whereas 𝐴, 𝐵, 𝐶, and
𝐷 represent matrix valued functions of time as the system, input, output, and feed-through matrices of appropriate
dimensions, e.g. 𝐴(𝑡) ∈ R𝑛𝑥×𝑛𝑥 . Furthermore, the uncertain initial states 𝑥(0) in Eq. (3) follow the proposed method
in [4]. The vector 𝜉 ∈ R𝑎 with 𝑎 ≤ 𝑛𝑥 contains the uncertain initial states and each component 𝜉𝑖 with 𝑖 ∈ (1, . . . , 𝑎)
is normalized to the interval [−1, 1]. In addition, each uncertain state is considered independently, i.e. it fulfills the
constraint |𝜉𝑖 | ≤ 1. Thus, the matrix Γ defines the shape of the uncertainty set as a cuboid.

C. Linearization along Trajectory
The proposed robustness analysis investigates the deviation from the nominal trajectory based on an LTV model

defined on the finite time interval [0, 𝑇]. Therefore, the nonlinear system of Huygens’ entry flight, which can be
expressed by Eq. (1), is linearized along its nominal trajectory. The resulting dynamics of the trajectory deviation can
be described by

¤𝑥 = 𝑓 (𝑥 + 𝑥𝑛) − 𝑓 (𝑥𝑛) = 𝐴(𝑡)𝑥 + 𝜀 𝑓

𝑦 = 𝑥 + 𝑥𝑛 − 𝑥𝑛 = 𝑥,
(4)

using the state and output deviations 𝑥 = 𝑥 − 𝑥𝑛 and 𝑦 = 𝑦̃ − 𝑦̃𝑛. Here, 𝐴(𝑡)𝑥 is the LTV model as in Eq. (2), whereas
𝜀 𝑓 (𝑡) ∈ R𝑛𝑥 represents higher order terms. The time dependency of 𝜀 𝑓 is also omitted in this paper. The linear model
should only include slow instead of high frequency dynamics, e.g. high frequency oscillatory modes, which result from
linearizing at untrimmed conditions. Therefore, oscillating states on the nominal trajectory are replaced by trimmed
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conditions resulting in 𝑥𝑡 and the LTV model is then calculated by 𝐴(𝑡) = 𝜕 𝑓 /𝜕𝑥 | 𝑥̃𝑡 . Thereafter, the higher order terms
can be determined by

𝜀 𝑓 = 𝑓 (𝑥 + 𝑥𝑛) − 𝑓 (𝑥𝑛) − 𝐴(𝑡)𝑥, (5)

showing that 𝜀 𝑓 is a function of the states 𝑥 and time 𝑡. Finally, a strictly time-dependent matrix function 𝐴 is
obtained by determining 𝐴 on a sufficiently high grid on the relevant time interval [0, 𝑇] and interpolating values in
between with a piecewise cubic Hermite interpolation, e.g. the modified Akima interpolation [10].

D. Quadratic Constraints
The system (4) can be written in a linear fractional representation (LFR) as shown in Fig. 1a. Here, 𝐺 represents

the nominal time variant dynamics and Δ the nonlinear function (5) as the perturbation of the nominal dynamics. In
order to include the nonlinearities in the robustness analysis, the system needs to be transformed into the quadratic
constraint (QC) framework [11–13] resulting in the interconnection depicted in Fig. 1b. Thus, the Δ block is excluded
from the interconnection, the higher order terms 𝜀 𝑓 are considered as inputs, and the Δ block’s input and output signals
are combined to a new output 𝑧. The QC interconnection is mathematically described by

¤𝑥 = 𝐴(𝑡)𝑥 + 𝐵𝜀 𝑓

𝑦 = 𝑥

𝑧 = 𝐶𝑥 + 𝐷𝜀 𝑓 ,
(6)

with 𝐵 being the identity matrix or the appropriate columns, if not all components of 𝜀 𝑓 are used. The matrices 𝐶
and 𝐷 concatenate 𝑥 and 𝜀 𝑓 to the vector 𝑧. Additionally, a time dependent quadratic constraint on the output 𝑧 over the
relevant time interval [0, 𝑇] is defined by

𝑧𝑇𝑀 (𝑡)𝑧 ≥ 0, 𝑀 = 𝑀𝑇 (7)

to bound the input/output behavior of the nonlinear function (5). Each higher order term component 𝜀 𝑓 ,𝑘 with

𝑘 ∈ (1, . . . , 𝑛𝑥) is bounded individually by 𝑧𝑘 =

[
𝑥𝑇 𝜀 𝑓 ,𝑘

]𝑇
and

𝑀𝑘 =

[
𝑀11,𝑘 𝑀12,𝑘

𝑀𝑇
12,𝑘 −1

]
, 𝑀11,𝑘 = 𝑀𝑇

11,𝑘 . (8)

The individual constraints are also defined as local, thus, they only bound the 𝜀 𝑓 components correctly in a certain
region around the nominal trajectory. The values of the matrix 𝑀11,𝑘 and the vector 𝑀12,𝑘 are determined by the
following linear optimization:

min
𝑀11,𝑘 ,𝑀12,𝑘

𝑏∑︁
𝑗=1

𝑧𝑇𝑗

[
𝑀11,𝑘 𝑀12,𝑘

𝑀𝑇
12,𝑘 −1

]
𝑧 𝑗

s.t. 𝑧𝑇𝑗

[
𝑀11,𝑘 𝑀12,𝑘

𝑀𝑇
12,𝑘 −1

]
𝑧 𝑗 ≥ 0 ∀ 𝑗 ∈ {1, . . . , 𝑏}

𝑀11,𝑘 = 𝑀𝑇
11,𝑘 .

(9)

Firstly, the considered region around the nominal trajectory is approximated by 𝑏 evaluation points with each
providing a 𝑧 𝑗 vector. Furthermore, the optimization problem is subject to the desired quadratic constraint being imposed
on every evaluated point and 𝑀11,𝑘 being symmetric. Lastly, the sum of the desired quadratic constraint applied to
the evaluated points is minimized to obtain the least conservative quadratic constraint 𝑀𝑘 . Thereafter, the vector 𝑧
and the matrix 𝑀 in Eq. (7) are obtained by concatenating the individual vectors 𝑧𝑘 to one vector 𝑧 and the matrices
𝑀𝑘 to a block diagonal matrix 𝑀 = 𝑑𝑖𝑎𝑔

(
𝑀1, . . . , 𝑀𝑛𝑥

)
with 𝑘 ∈ (1, . . . , 𝑛𝑥). To reduce conservatism, the quadratic

constraint (7) is time dependent. Similarly to Subsection II.C, this is achieved by calculating the quadratic constraints
on a grid of the relevant time interval [0, 𝑇] and determining values in between with a modified Akima interpolation.
To conclude, System (6) and the quadratic constraint (7) form an appropriate LTV model for the robustness analysis.
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Fig. 1 (a) linear fractional representation, (b) QC interconnection

III. Robustness Analysis for QC Interconnections

A. Theorem Derivation
The upper bound 𝛾 on worst-case values of the uncertain LTV system’s outputs 𝑦 in (4) at time point 𝑇 is defined

over the set of uncertain initial conditions 𝜉. This bound is expressed using the Euclidean norm as

sup
𝜉𝑖≤1∀𝑖∈ (1,...,𝑎)

∥𝑦(𝑇)∥ ≤ 𝛾. (10)

The following theorem provides sufficient conditions based on dissipation arguments to calculate the upper bound.

Theorem 1. Let Eq. (6) define the LTV system, 𝑥(0) be the uncertain initial state bounded by Eq. (3), and 𝑀 be the block
diagonal matrix 𝑀 = 𝑑𝑖𝑎𝑔

(
𝑀1, . . . , 𝑀𝑛𝑥

)
from Eq. (7). Assume there exists scalars 𝛾 ≥ 0, 𝑣𝑖 ≥ 0 for 𝑖 ∈ (1, ..., 𝑎)

with 𝑉0 = 𝑑𝑖𝑎𝑔(𝑣1, . . . , 𝑣𝑎), and 𝜆𝑘 ≥ 0 for 𝑘 ∈ (1, . . . , 𝑛𝑥) with Λ = 𝑑𝑖𝑎𝑔
(
𝜆1𝐼𝑛𝑥+1, . . . , 𝜆𝑛𝑥

𝐼𝑛𝑥+1
)
, together with a

continuous function 𝑃 : R → R𝑛𝑥×𝑛𝑥 . If the equations

¤𝑃 = −𝑃𝐴 − 𝐴𝑇𝑃 − 𝐶𝑇Λ𝑀𝐶 +
(
𝑃𝐵 + 𝐶𝑇Λ𝑀𝐷

) (
𝐷𝑇Λ𝑀𝐷

)−1 (
𝐵𝑇𝑃 + 𝐷𝑇Λ𝑀𝐶

)
∀𝑡 ∈ [0, 𝑇] (11)

𝐼 − 𝑃(𝑇) = 0 (12)[
Γ𝑇𝑃(0)Γ −𝑉0 0

0 𝑣1 + . . . + 𝑣𝑎 − 𝛾2

]
≤ 0 (13)

are satisfied, then, the following inequality holds

sup
𝜉𝑖≤1∀𝑖∈ (1,...,𝑎)

∥𝑦(𝑇)∥ ≤ 𝛾. (14)

Proof. The proof is based on the positive definite storage function 𝑉 (𝑥, 𝑡) = 𝑥𝑇𝑃(𝑡)𝑥. First, we perturb Eq. (11) with
an infinitesimal small positive scalar 𝜖 resulting in

¤𝑃 + 𝑃𝐴 + 𝐴𝑇𝑃 + 𝐶𝑇Λ𝑀𝐶 −
(
𝑃𝐵 + 𝐶𝑇Λ𝑀𝐷

) (
𝐷𝑇Λ𝑀𝐷

)−1 (
𝐵𝑇𝑃 + 𝐷𝑇Λ𝑀𝐶

)
− 𝐼𝑛𝑥

𝜖 ≤ 0. (15)

After applying the Schur complement [14] on Eq. (15) and left and right multiplying the resulting matrix inequality

with
(
𝑥𝑇 𝜀𝑇

𝑓

)
and

(
𝑥𝑇 𝜀𝑇

𝑓

)𝑇
, respectively, we obtain(

𝑥

𝜀 𝑓

)𝑇 [
𝐴𝑇𝑃 + ¤𝑃 + 𝑃𝐴 − 𝐼𝑛𝑥

𝜖 𝑃𝐵

𝐵𝑇𝑃 0

] (
𝑥

𝜀 𝑓

)
+

(
𝑥

𝜀 𝑓

)𝑇 (
𝐶 𝐷

)𝑇
Λ𝑀

(
𝐶 𝐷

) ( 𝑥
𝜀 𝑓

)
≤ 0. (16)

Here, the right term is equal to Eq. (7), i.e. always ≥ 0, and can thus be removed from the above inequality. By
further rewriting the remaining left side of Eq. (16), we get
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(
𝑥

𝜀 𝑓

)𝑇 [
𝐴𝑇𝑃 + ¤𝑃 + 𝑃𝐴 𝑃𝐵

𝐵𝑇𝑃 0

] (
𝑥

𝜀 𝑓

)
− 𝜖𝑥𝑇𝑥 ≤ 0. (17)

The left term represents ¤𝑉 , whereas 𝜖𝑥𝑇𝑥 ≈ 0. Therefore, it results ¤𝑉 ≤ 0. Next, Eqs. (12) and (13) together with
¤𝑉 ≤ 0 are used to establish ∥𝑦(𝑇)∥ ≤ 𝛾. We first left and right multiply Eq. (12) with 𝑥𝑇 (𝑇) and 𝑥(𝑇), respectively, and
Eq. (13) with

(
𝜉𝑇 , 1

)
and

(
𝜉𝑇 , 1

)𝑇 , respectively. After adding both equations, we obtain

𝑥𝑇 (0)𝑃(0)𝑥(0) − 𝜉𝑇𝑉0𝜉 + 𝑥𝑇 (𝑇)𝑥(𝑇) − 𝑥𝑇 (𝑇)𝑃(𝑇)𝑥(𝑇) + 𝑣1 + . . . + 𝑣𝑎 − 𝛾2 ≤ 0. (18)

Since ¤𝑉 ≤ 0, we can exclude 𝑉 (0) − 𝑉 (𝑇) = 𝑥𝑇 (0)𝑃(0)𝑥(0) − 𝑥𝑇 (𝑇)𝑃(𝑇)𝑥(𝑇) ≥ 0 from the above inequality.
Furthermore, we replace 𝜉𝑇𝑉0𝜉 with the equivalent expression 𝑣1𝜉

2
1 + . . . + 𝑣𝑎𝜉

2
𝑎 and rearrange the terms to get

𝑣1

(
1 − 𝜉2

1

)
+ . . . + 𝑣𝑎

(
1 − 𝜉2

𝑎

)
≤ 𝛾2 − 𝑥𝑇 (𝑇)𝑥(𝑇). (19)

Due to 𝑣𝑖 ≥ 0 and |𝜉𝑖 | ≤ 1, the left hand side is nonnegative. Hence, the right hand side must also be nonnegative
and can, therefore, be written as

𝑥𝑇 (𝑇)𝑥(𝑇) ≤ 𝛾2. (20)

As shown in Eq. (6), we can replace 𝑥 by 𝑦 in the above equation, which results in the main statement (14) and, thus,
concludes the proof.

B. Solution Approach
In order to perform the robustness analysis, Theorem 1 needs to be transformed into a computational tractable

problem to solve for the least conservative worst-case upper bound 𝛾. Since the parameters 𝑣𝑖 , and 𝜆𝑘 can be chosen
freely, the goal is to optimize 𝛾 over these parameters. The optimization starts by using 𝑃(𝑇) from Eq. (12) as initial
condition for the Riccati differential equation (RDE) (11). The RDE is then integrated backwards in time from 𝑇

to 0 [15], which yields 𝑃(0). At each integration step, the 𝜆𝑘 values are determined analytically by minimizing the
contribution of the quadratic constraints. Finally, the linear matrix inequality (LMI) (13) is solved for 𝛾2 by using the
Yalmip toolbox [16] with Mosek∗ as a solver. Detailed information about the solution approach are given in [9].

IV. Problem Formulation
The developed robustness analysis is applied to the entry flight of NASA/ESA’s Cassini-Huygens mission from

2005. The Huygens lander is released from the Cassini orbiter three weeks prior to the entry into Titan’s atmosphere.
Since the capsule does not have a control system, the state at the Entry Interface Point (EIP), 1270 km above Titan’s
surface, is subject to large uncertainties. After the lander decelerates aerodynamically, the first parachute is opened
at an altitude of roughly 156 km [1, 3]. The flight phase from EIP to parachute deployment takes around 272 s and is
investigated in this paper.

The nonlinear equations of motion are based on [17]. Given the limited space, we only outline the necessary
assumptions and general approach. We refer the reader to [17] for an in depth discussion. First, the celestial body
Titan is assumed to be spherical with a homogeneous mass distribution, such that its gravity can be described by a
point mass. This is well suited for the atmospheric entry flight, since the aerodynamic forces and torques are the main
driver of the system’s dynamics. Titan also rotates with a constant angular velocity according to [18]. Furthermore,
the capsule’s heat shield ablation, which reduces the initial mass of 320 kg by roughly 10 kg during the entry flight,
is neglected resulting in a constant mass of the capsule [3]. The products of inertia, which are less than 0.7 % of the
diagonal elements (𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧), are neglected as well. We neither consider wind in the equations of motion, since
it would make the dynamics much more complex while having only a small impact on the flight due to the vehicle’s
high entry velocity. Last, Titan’s recommended atmospheric model is taken from [19], whereas Huygens’ aerodynamic
database is given in [20]. A summary of Huygens’ [3, 20] and Titan’s [3, 18] properties are listed below.

Next, we choose the set of states, in which the equations of motion are expressed. During the entry flight, the
vehicle covers a large range of the body’s surface, such that Titan cannot be assumed as flat. It is also easier to interpret

∗https://www.mosek.com
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Property Value

mass 𝑚 = 320 kg
moment of inertia 𝐽 = 𝑑𝑖𝑎𝑔

(
𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧

)
= 𝑑𝑖𝑎𝑔(127.75, 75.85, 71.9)kg m2

center of mass 𝑥𝑐𝑜𝑚 =

[
−0.47176 0.00153 0.00493

]𝑇
m

moment reference center 𝑥𝑚𝑟𝑐 =

[
−0.71383 0 0

]𝑇
m

reference area 𝐴𝑟𝑒 𝑓 = 5.73 m2

reference length 𝐿𝑟𝑒 𝑓 = 2.7 m
Table 1 Vehicle’s properties

Property Value

Gravitational constant 𝜇𝑇 = 8.98e12
Mean radius 𝑅𝑇 = 2575 km
Angular velocity Ω𝑇 = 4.56e−6 s−1

Table 2 Titan’s properties

spherical coordinates in combination with a spherical body. For these reasons, the translational motion is described by
spherical position and velocity states in the rotating frame of the central body. In addition, due to Titan’s significant
atmosphere, the translational and rotational motions of the entry flight are both strongly dominated by the aerodynamic
forces and torques, thus, we use states relative to the aerodynamic reference frame. As wind is excluded from the
analysis, the aerodynamic-based and flight-path-frame-based values are identical making it easy to obtain the former
values. Consequently, we use the aerodynamic angles angle of attack 𝛼, sideslip angle 𝛽, and bank angle 𝜇 together
with the body-fixed angular velocities 𝑝, 𝑞, and 𝑟 for the rotational motion. The states are summarized hereafter.

Translational states Symbol

Radius 𝑅

Longitude 𝜏

Latitude 𝛿

Aerodynamic velocity 𝑉𝑎

Aerodynamic flight path angle 𝛾𝑎

Aerodynamic heading 𝜒𝑎

Table 3 Translational states

Rotational states Symbol

Angle of attack 𝛼

Sideslip angle 𝛽

Bank angle 𝜇

Roll rate 𝑝

Pitch rate 𝑞

Yaw rate 𝑟

Table 4 Rotational states

With these assumptions and definitions, we obtain the analytical nonlinear equations of motion for Huygens’
atmospheric entry flight. Since the derived dynamics represent a nonlinear uncontrolled system, they can be written
down in the form of Eq. (1). Here, Huygens’ and Titan’s properties listed in the Tables 1 and 2 define the parameters 𝑝,
whereas the states 𝑥 are given in the Tables 3 and 4. Furthermore, the nominal initial states of the nonlinear system
𝑥(0) are specified in Table 5. By investigating the nominal trajectory, high frequency oscillations are identified in
the rotational states 𝛼, 𝛽, 𝑞, and 𝑟. Therefore, Huygens’ nonlinear equations of motion are linearized according to
Subsection II.C with trimmed conditions for these states. Last, the uncertain initial states 𝜉 of the resulting LTV model
are defined in order to perform the robustness analysis. Although all initial states of the Huygens mission are subject to
uncertainties [2, 3], only a deviation of the initial radius of maximum Δ𝑅(0) = 30.73 km is considered to simplify the
problem, which corresponds to the 1𝜎 value of Huygens’ altitude at Entry Interface Point [3].
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State Initial value

Radius 𝑅(0) = 3845 km
Longitude 𝜏(0) = −185.43◦

Latitude 𝛿(0) = −8.61◦

Velocity 𝑉𝑎 (0) = 6047.23 m s−1

Flight path angle 𝛾𝑎 (0) = −64.85◦

Heading 𝜒𝑎 (0) = 259.96◦

Angle of attack 𝛼(0) = −3.46◦

Sideslip angle 𝛽(0) = 3.41◦

Bank angle 𝜇(0) = −135.04◦

Roll rate 𝑝(0) = −44.4 ◦ s−1

Pitch rate 𝑞(0) = −2.06 ◦ s−1

Yaw rate 𝑟 (0) = 2.39 ◦ s−1

Table 5 Initial state values

V. Results
The overall goal is to consider all initial states as uncertain and to include all the components of the higher order

term as quadratic constraints to account for the linearization errors. However, we only take an uncertain initial radius
and the higher order term component of the aerodynamic velocity’s time derivative ¤𝑉𝑎 into account here to show the
general functionality of the developed robustness analysis. Using the whole set of uncertainties and nonlinearities will
be considered in future research. Subsequently, the developed method is analyzed in two steps. First, only the effect of
an uncertain initial radius is investigated by assuming the linearized model dynamics to be accurate over the whole
state space; this refers to a nominal worst-case analysis. Thereafter, we extend the analysis by including the quadratic
constraint of the aerodynamic velocity’s time derivative. In both cases, the vector 𝑦 is reduced to the single component
𝑦𝑙 to obtain an individual upper bound on the final state.

For the nominal worst-case analysis, Theorem 1 simplifies significantly. The optimization problem contains only the
free parameter 𝑣1 and simplifies to

¤𝑃 = −𝑃𝐴 − 𝐴𝑇𝑃 ∀𝑡 ∈ [0, 𝑇] (21)

𝐼𝑇𝑙 𝐼𝑙 − 𝑃(𝑇) = 0 (22)[
𝑝11 (0) − 𝑣1 0

0 𝑣1 − 𝛾2

]
≤ 0. (23)

Here, 𝑝11 is the component in the first row and column of matrix 𝑃 and 𝐼𝑙 denotes the 𝑙-th row of the identity matrix.
Figure 2 shows the upper bound results for the states radius (Fig. 2a), aerodynamic velocity (Fig. 2b), and flight path
angle (Fig. 2c) over time. Since the theorem only determines 𝛾 at the time point 𝑇 , the upper bound is calculated at 30
different 𝑇 , which are equally spaced over the investigated flight phase, and is visualized by a dot marker. Additionally,
the figures also show linear and nonlinear envelopes, abbreviated with “lin” and “nonlin”, respectively. These curves are
obtained by performing perturbed simulations with the linear and nonlinear model and taking the absolute maximum
over the simulations. As shown in Fig. 2, the calculated upper bounds match the linear envelopes perfectly. This
validates the core of the developed robustness analysis method, i.e. finding a valid and preferably optimal upper bound
of the linear model. However, as expected, the calculated upper bounds are below the nonlinear envelopes in Fig. 2
demonstrating that these 𝛾 values are no valid bounds for Huygens’ atmospheric entry flight. Therefore, higher order
terms need to be considered in the analysis.

The second step of the analysis includes one quadratic constraint in addition to the uncertain initial radius. Therefore,
the free parameters are 𝑣1 and 𝜆1 and Eq. (11) has to be solved, whereas Eqs. (12) and (13) still simplify to Eqs. (12)
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(a) (b)

(c)

Fig. 2 Upper bound by simplified theorem for different states in comparison to linear and nonlinear envelopes.
(a) Radius, (b) aerodynamic velocity, and (c) flight path angle.

and (23) due to a single uncertain initial state. In addition, the higher order term component of the aerodynamic velocity’s
time derivative is used as a quadratic constraint, since an uncertain initial radius mostly impacts the aerodynamic
deceleration through the atmospheric density. As mentioned in Subsection II.D, a region around the nominal trajectory,
expressed by upper bounds of the states, is necessary to determine the local quadratic constraint. Since finding the
optimal constraint over many dimensions is computationally expensive and since the atmospheric density depends
solely on the radius, the local quadratic constraint is calculated by using only the radius deviation from the nominal
trajectory. However, the upper bound of the radius is unknown a priori. Therefore, the upper bound from the first step of
the analysis, which is shown in Fig. 2a as 𝛾, is used as an initial deviation. The robustness analysis as well as finding the
optimal quadratic constraint are repeated iteratively until the upper bound result of the analysis is lower or equal to the 𝛾
values of the radius, that was used to determine the quadratic constraint. This is usually achieved after few iterations.

The robustness analysis results of the second step are shown in Fig. 3. These figures augment Fig. 2 by adding the
upper bounds of three iterations that include the quadratic constraint. The additional upper bounds are denoted by 𝛾𝑄𝐶,𝑛

with 𝑛 indicating the iteration number. First, the 𝛾𝑄𝐶,1 values are located above or at the same level as the 𝛾 values at
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every investigated time point. The same is true for each upper bound compared to its preceding iteration. This behavior
matches the expectation, since adding a quadratic constraint to the analysis results in covering more dynamical variety,
which itself leads to higher upper bounds. In addition, a quadratic constraint always contains its preceding constraint,
since the previous region around the nominal trajectory is still included when the region is extended. Therefore, the
upper bound also increases with each iteration. Next, the results 𝛾𝑄𝐶,2 and 𝛾𝑄𝐶,3 overlap, indicating that the iteration
process has converged and the final solution with respect to the simplified analysis is found. As shown in Fig. 3, the
upper bounds 𝛾𝑄𝐶,3 describe the shape of the nonlinear envelopes well, which demonstrates that Theorem 1 is set up
and solved correctly. However, the 𝛾 values exceed the nonlinear envelope significantly at the end of the flight in Fig. 3a
and around 200 s in Fig. 3b, indicating some conservatism.

(a) (b)

(c)

Fig. 3 Upper bound 𝛾𝑄𝐶 by Theorem 1 and upper bound 𝛾 by simplified theorem for different states in
comparison to linear and nonlinear envelopes. (a) Radius, (b) aerodynamic velocity, and (c) flight path angle.
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VI. Conclusion
This paper presents a robustness analysis method for a nonlinear system under uncertain initial states. It is based

on a linear time-varying model and local quadratic constraints that are optimized for the relevant region around the
nominal trajectory. The individual steps to set up an LTV model and the local quadratic constraints for the analysis are
outlined and the relevant theorem is derived. The method is applied to a simplified case of Huygens’ atmospheric entry
flight to show its proper functionality. The results show, that Theorem 1 is set up and solved correctly. Subsequent
research will focus on obtaining less conservative results to improve the performance and extending the analysis to all
uncertain initial states and quadratic constraints to obtain valid upper bounds for Huygens’ entry flight. Overall, the
proposed method has the potential to complement the flight dynamics analysis by providing upper bounds to system
states and to accelerate the development process. Furthermore, there are ongoing missions similar to Huygens like
NASA’s Dragonfly mission [21], which is scheduled to launch in 2028 and will enter Titan’s atmosphere in 2034,
underlining the importance of efficient robustness analysis tools for systems influenced by uncertain initial conditions.
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