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A B S T R A C T

Shallow eruptions of submarine volcanoes can hamper navigation of ships and alter the biological response of 
marine ecosystems. Satellite remote sensing can provide timely and continuous information about volcanic ac
tivity around dangerous sites contributing to the assessment of pre-, syn- and post eruptive phenomena. Among 
these, sea-water discoloration is one of the most significant indicators of underwater volcanic activity as its 
accurate and timely detection may help in revealing possible precursor processes of submarine volcanic erup
tions. In this framework, we proposed a novel spectrally-derived method to detect and map discolored plumes 
around submarine volcanoes in oligotrophic oceans by integrating Sentinel 2A/B-MSI and Landsat 8/9-OLI 
satellite data. The developed method, combining two discoloration algorithms, was tested around a represen
tative test case, namely the Kavachi Volcano (Solomon Islands, Southwest Pacific Ocean), by using a yearly 
(2022) MSI-OLI integrated dataset. It exhibited satisfactory validation metrics thus recording overall accuracies 
(OAs) close to 90% for both the single and integrated (multi-sensor) configuration. Despite the omission errors 
ranging (OEs) from 18 to 20%, the very low (around 2%) commission (CEs) demonstrated its high level of 
reliability in mapping discolored waters of volcanic origin. Furthermore, the proven exportability of this method 
to the Kaitoku Volcano (Japan, Western Pacific Ocean) confirms its capability in detecting underwater volcanic 
activities regardless of different features of sea-water discoloration (e.g., chemical composition). This method 
could represent an automated early warning tool to support the operational monitoring of submarine volcanoes 
arranged by maritime surveillance systems.

1. Introduction

Most volcanic eruptions on Earth (around 80%) occur in the oligo
trophic oceans in both convergent and divergent plate margins 
(Mitchell, 2012; Urai, 2014). Although most underwater eruptions are 
deep enough to be unknown or undetected (O'Malley et al., 2014; Tepp 
and Dziak, 2021), shallow eruptions have been widely investigated as 
they can hamper navigation of ships and alter the biological responses of 
marine ecosystems (González-Vega et al., 2020; Sakuno, 2021). Hy
drothermal plumes, discolored waters and ongoing venting materials 
can occur for weeks affecting the optical properties of the water column 
(Baker et al., 2012). Submarine eruptions are usually recorded and 

monitored by subaerial displays (Baker et al., 2002), fortuitous under
water observations (Rubin et al., 2012), deployments of hydro-acoustic 
(Dziak et al., 2011) or seismic arrays (Schlindwein et al., 2005). How
ever, most of these methods are usually time-consuming, expensive and 
can be difficult to perform close to an eruption (Barone et al., 2022; 
Fraile-Nuez et al., 2012; Sakuno et al., 2023). Furthermore, they are 
generally used when eruptions have begun, and volcanic products have 
already spread on sea-surface thus preventing the investigation of the 
pre-eruptive volcanic processes (Green et al., 2013).

Satellite remote sensing may provide timely and continuous infor
mation on volcanic activity around hazardous locations enabling pre-, 
syn- and post-eruptive phenomena to be recognized (Eugenio et al., 
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2014; Sakuno et al., 2023; Falconieri et al., 2025; Plank et al., 2025).
Among them, sea-water discoloration is one of the most significant 

indicators of underwater volcanic activity (Mantas et al., 2011; Urai and 
Machida, 2005) as its timely detection can provide advance warning of 
submarine volcanic eruptions (Sakuno et al., 2023).

Several studies were performed to investigate and track discolored 
water plumes through the assessment of their colors (Sakuno, 2021; 
Sakuno et al., 2023), chemical compositions and reflectance patterns by 
using Ocean Colour (OC) data (Coca et al., 2014; Mantas et al., 2011; 
Urai and Machida, 2005). Urai and Machida (2005) exploited the 
Advanced Spaceborn Thermal Emission and Reflection Radiometer 
(ASTER) reflectance products to investigate sea-water discoloration due 
to the Satsuma-Iwojima (Japan) submarine eruption, discriminating two 
shades of discolored water. Other works demonstrated the suitability of 
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance 
data in identifying discolored water types, with differences in terms of 
spatial distribution and spectral features during submarine eruptions in 
the Southwest Pacific Ocean (Mantas et al., 2011; Shi and Wang, 2011). 
Shi and Wang (2011) analyzed reflectance spectra of an ash-laden patch 
after the Tonga volcanic eruption in 2009, discovering unique optical 
features which differ from those of clear, productive, and turbid waters.

Subsequent studies combined reflectance pattern analyses with sat
ellite retrievals of different optical parameters, such as downwelling 
diffuse attenuation coefficient at 490 nm (kd 490), chlorophyll-a con
centration (chl-a), particulate back-scattering coefficient (bbp(λ)) and/or 
physical variables like sea surface temperature (SST) (Coca et al., 2014; 
Eugenio et al., 2014; O'Malley et al., 2014). Coca et al. (2014) developed 
a classification scheme based on MODIS-derived kd 490 and reflectance 
ratios to investigate the spatio-temporal dynamics of submarine volcanic 
plumes at the island El Hierro (Canary Islands). O'Malley et al. (2014)
developed a Level 3 (L3) MODIS-based index for detecting submarine 
volcanic eruptions by seeking infrequent increases in chl-a and bbp(λ) 
following each event.

The most recent studies highlighted the need to integrate multi- 
sensor and multispectral OC data acquired by MODIS, Visible Infrared 
Imaging Radiometer Suite (VIIRS) and Sentinel-3 Ocean and Land Color 
Instrument (OLCI) (Whiteside et al., 2021) to better estimate timing and 
duration of submarine eruptions and characterize discolored patches in 
terms of extent and suspended matter volume (Whiteside et al., 2023; 
Kelly et al., 2024). The above-mentioned sensors were mostly used to 
detect discolored plumes after huge eruptions (e.g., Hunga Tonga- 
Hunga Ha'apai Volcano in January 2022) thanks to their wide spatial 
coverage and high revisiting time. However, their coarse spatial reso
lution makes them unsuitable for accurately mapping pumice rafts 
(Jutzeler et al., 2020; Chen et al., 2022; Zheng et al., 2022; Fauria et al., 
2023) or sea-water discoloration drifting from submarine volcanoes 
(Caballero et al., 2022). Since most discolored patches have small di
mensions, irregular and elongate shapes, higher resolution satellite data 
are required to better detect and accurately map their spatial features 
that are at approximately ten- or hundred-meter scale (Caballero et al., 
2022; Fauria et al., 2023; Urai and Machida, 2005). The improved 
spatial resolution of the Operational Land Imager (OLI) and Multi
Spectral Instrument (MSI), onboard the Landsat 8/9 (L8/9-OLI) and 
Sentinel-2A/B (S2A/B-MSI) satellite platforms provide significant op
portunities to detect spatial heterogeneity of aquatic environments, 
although both MSI and OLI were initially designed for terrestrial ap
plications (Ciancia et al., 2020; Page et al., 2019; Pahlevan et al., 2019). 
Furthermore, the combined use of these multi-platform sensors can 
allow sea-water discoloration to be monitored at rates that have never 
been possible before because of their improved temporal coverage at 
10–60 m spatial resolution (Caballero et al., 2022).

This study aims to evaluate the potential of integrated S2A/B-MSI 
and L8/9-OLI observations in characterizing sea-water discoloration 
originating from submarine volcanoes. The submarine Kavachi Volcano 
(Solomon Islands, South Pacific Ocean) is used as a representative test 
case since observations of the discolored water plumes were 

intermittently reported from October 2021 (Global Volcanism Program, 
2021). In this context, the key objectives of this work are to: (1) derive 
the spectral features of discolored sea-water around Kavachi using a 
yearly (2022) MSI-OLI integrated dataset and (2) develop a semi- 
automated method for MSI and OLI data capable of detecting and 
mapping discolored plumes around submarine volcanoes in oligotrophic 
oceans.

2. Data

2.1. Study area

Kavachi is one of the most active volcanoes in the Solomon Islands 
arc in the Southwest Pacific Ocean (Phillips et al., 2016). It is located 
south of Gatokae and Vangunu Islands (within the New Georgia Island 
Group) 30 km northeast of the convergent boundary, where the 
Australian plate subducts beneath the Pacific plate (Fig. 1b). Kavachi 
(8◦59′37″S, 157◦58′21″E) is a submarine volcano that is also character
ized by phreatomagmatic (explosive water-magma interactions) and 
occasional subaerial eruptions that form ephemeral islands; these 
eruptions eject steam, ash and incandescent bombs (Phillips et al., 
2016).

From 1939 to 1991, several eruptive periods were recorded, with 
ephemeral islands forming in, for example, 1970, 1976, 1978 and 1991 
(Global Volcanism Program, 1976, 1978, 1991). The most recent erup
tions occurred in 2000, 2004 and 2014 when observers from research 
vessels reported conspicuous discolored plumes, ejected ash and in
candescent lava blocks that reached heights of about 70 m above the sea 
surface (Global Volcanism Program, 2000, 2005, 2017). During these 
years summit of Kavachi was in a constant state of flux, as eruptions 
continuously formed islands that were soon eroded away (Phillips et al., 
2016).

Based on independent in-situ bathymetric measurements by Philips 
et al., 2016, the summit has a shallow oblong crater that measures 
approximately 120 m × 75 m and rises to an average depth of 24 m 
below sea level (b.s.l.). Kavachi has a conical shape characterized by 
almost uniform flanks with 18◦ slopes that descend to depths >1000 m 
b.s.l. (Phillips et al., 2016). In this work, due to the lack of in-situ 
measurements, the bathymetry of the area around Kavachi (Fig. 1c) 
was obtained from the Global Multi-Resolution Topography (GMRT) 
base map (Ryan et al., 2009). To ensure a continuous bathymetric layer, 
the “gdal_fillnodata” algorithm (available in the Quantum Geographic 
Information System (QGIS)) was used to interpolate and fill data gaps 
where high-resolution detail was unavailable.

From an oceanographic point of view, the study area shows oligo
trophic conditions and typical characteristics of the West Pacific Warm 
Pool (WPWP) with warm surface waters (annual sea surface tempera
ture > 28 ◦C), thick mixed layer and a deep thermocline (~200 m) (Bali 
et al., 2020; Baker et al., 2002).

2.2. Satellite data

To identify and map sea-water discoloration around submarine vol
canoes both S2A/B-MSI and L8/9-OLI data were analyzed to create an 
integrated dataset of analysis. The S2A/B-MSI platforms ensure a 5-day 
revisit time (at the equator) in paired operations delivering optical data 
in 13 bands in the 440–2200 nm spectral range with a 10–60 m spatial 
resolution. L8/9-OLI provides multispectral imagery in 9 bands in the 
same spectral domain, with a 30 m spatial resolution enabling up to 8- 
day revisit frequency in the combined mode (Table 1).

In addition, PlanetScope-SuperDove8 (PS-SD8) data were exploited 
with the aim of performing a cross-checking validation procedure. 
PlanetScope is a constellation of approximately 130 commercial satel
lites designed for imaging the Earth's land surface and coastal waters 
every day at meter scale resolution (Planet Developer Center, 2024). PS- 
SD8 is the third-generation sensor acquiring optical imagery in 8 bands 
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in the 444–866 nm spectral domain with a 3 m spatial resolution 
(Table 1) (Vanhellemont, 2023).

In this work, the OLI Level-1T (L1T) and MSI Level-1C (L1C) data 
(geo-located and radiometrically calibrated top of atmosphere (TOA) 
reflectance) were provided by the United States Geological Survey 
(USGS) web portal (USGS Web Portal, 2024) and the Copernicus 
browser (Copernicus browser, 2024), respectively. All the OLI-L1T and 
MSI-L1C tiles covering the Kavachi Volcano subset (Fig. 1c) from 2022 
were downloaded. After excluding imagery affected by over 50% cloud 
cover, straylight effects and sea roughness, a total of 30 images were 
processed, 15 for L8/9-OLI (089 Path – 066 Row, 23:36 UTC acquisition 
time) and 15 for S2A/B-MSI (T57LUL granule, 23:49 UTC acquisition 
time).

Concerning the PS-SD8 data, only the satellite image of 14 May 2022 
was processed and retained for the cross-checking validation. In detail, 
the eight-band imagery was obtained as orthorectified TOA radiances 
(TOAR, bundle name anlytic_8b_udm2) with 3 × 3 m pixel size from the 
Planet Explorer website (Planet Developer Center, 2024).

2.2.1. Atmospheric correction and data processing
We processed satellite data to retrieve the atmospherically corrected 

remote sensing reflectance Level 2 (L2) Rrs(λ). These are the input 
variables of the spectrally-derived method for detecting sea-water 
discoloration.

All the Level-1 (L1C, L1T and TOA) data were processed to L2 Rrs(λ) 
using the ACOLITE toolbox (version 20220222) (ACOLITE software, 
2024), a free software specifically developed to support processing of 
meter-scale satellite data in aquatic applications (Satriano et al., 2024; 
Ciancia et al., 2023).

Within the ACOLITE software, the multi-band “Dark Spectrum 
Fitting” (DSF) algorithm (Vanhellemont and Ruddick, 2018) was 
implemented to perform the atmospheric correction chain. The DSF 
inherent rationale is to dynamically select the reference “dark band” on 
which the atmospheric path reflectance (ρpath) is determined and 
assumed constant over the tile of interest (Vanhellemont, 2019). DSF 
uses the acquired TOA reflectance (ρt) over dark targets (with sea sur
face reflectance ρs ≈ 0) in the scene or subscene to derive a “dark 
spectrum” (ρdark) and compute the aerosol optical depth (τa at 550 nm) 
for each band in this dark spectrum (Vanhellemont, 2020). To identify 
the most appropriate aerosol model, DSF selects the one minimizing the 
difference between ρdark and ρpath in the two bands with the lowest τa 
estimation. After selecting τa and the aerosol model, all the required 
atmospheric parameters, namely ρpath, two-way total transmittance (Td 
and Tu) and the spherical albedo of the atmosphere (S) are derived from 
a lookup table (LUT). Considering a uniform Lambertian target, surface 
reflectance, ρs(λ) or Rrs(λ) (i.e., obtained as ρs/π) can be estimated from 
ρt, as: 

ρt

Tg
= ρpath +

ρs*TdTu

1 − ρs*S
(1) 

Fig. 1. Study area. a) Large map of the Oceania region showing the Solomon Islands. Box and arrow define area shown in b). b) Map of the Santa Isabel Island and the 
New Georgia Island Group in the Solomon Islands showing position of the Kavachi Volcano. Box defines area shown in c). c) Bathymetry of the study area around the 
Kavachi Volcano. The bathymetric data was obtained from the Global Multi-Resolution Topography (GMRT) base map (Ryan et al., 2009) with GeoMapApp 
(GeoMapApp tool, 2009).

Table 1 
Central wavelength [nm] and (spatial resolution [m]) of the S2A/B-MSI, L8/9- 
OLI and PS-SD8 bands used in this work.

Sensor Blue1 Blue2 Green Red NIR SWIR1 SWIR2

MSI 443 
(60)

492 
(10)

560 
(10)

665 
(10)

865 
(10)

1614 
(20)

2202 
(20)

OLI 443 
(30)

483 
(30)

561 
(30)

655 
(30)

865 
(30)

1609 
(30)

2201 
(30)

SD8 444 
(3)

492 
(3)

566 
(3)

666 
(3)

866 
(3)

– –
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where Tg is the band average gas transmittance, estimated by adopting 
variable concentrations of water vapour and ozone (Vanhellemont, 
2023). Within a first processing phase, pixels with high ρt in the SWIR2 
or NIR bands were discarded to avoid false identifications of land or 
clouds. To this aim, a site-tuned filtering of non-water pixels was applied 
using fixed thresholds in the SWIR2 band for S2A/B-MSI and L8/9-OLI 
data (ρt > 0.06) and in the NIR one (ρt > 0.05) for PS-SD8. Negative 
ρs(λ) values were also removed to exclude data affected by issues in the 
atmospheric correction (overestimation of atmospheric reflectance) or 
the satellite imagery itself.

To further account for sunglint contamination, a semi-automated 
correction was implemented on the imagery acquired within the 
austral spring-summer period. In detail, a SWIR1-based threshold 
approach (pixels with ρs < 0.11 were subjected to glint correction) was 
performed only on the S2A/B-MSI and L8/9-OLI data due to the lack of 
the SWIR bands within the PS-SD8 spectral configuration.

Finally, the S2/B-MSI and L8/9-OLI Rrs(λ) were generated at 30 m 
spatial resolution after resampling the S2A/B-MSI Rrs(λ) (nominal 

spatial resolution of 10–60 m) by the nearest neighbor method. On the 
contrary, PS-SD8 Rrs(λ) were processed and retained at their native 
spatial resolution (3 m).

3. Method

3.1. Generation of the reference Rrs(λ)

Developing a spectrally derived method for detecting sea-water 
discoloration requires a preliminary analysis to define the reference 
Rrs(λ) of clear and discolored oceanic waters. Starting from direct visual 
inspections of S2A/B-MSI and L8/9-OLI imagery we identified reference 
discolored/clear waters using band combinations in true colors.

Among all the reported observations of sea-water discoloration 
originating from Kavachi (Global Volcanism Program, 2022; Global 
Volcanism Program, 2023b), we examined a total of 20 RGB (Red, 
Green, Blue2) images during 2022, including ten for S2A/B-MSI and ten 
for L8/9-OLI. For each image, we randomly selected three locations 

Fig. 2. Reference Rrs(λ). a) Rrs(λ) averages derived from the 20 images (i.e., ten for S2A/B-MSI and ten for L8/9-OLI) for each water type considered (i.e., C, D, HD). 
Rrs(λ) standard deviations are the black continuous (for S2A/B-MSI) and dashed (for L8/9-OLI) bars, respectively. b,c) Example of a random selection of three pins 
related to clear (C), discolored (D) and highly discolored (HD) waters on the RGB images of L8-OLI (19 March 2022) and S2A-MSI (13 August 2022) resampled at 30 
m spatial resolution. The location of Kavachi is depicted by the white triangle.
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showing conditions of clear, discolored and highly discolored waters to 
compute Rrs(λ) average for each condition, with distinction between 
S2A/B-MSI and L8/9-OLI data. In Fig. 2a the major spectral discrep
ancies are between clear waters and the two discolored classes (e.g., 
discolored and highly discolored). The average Rrs(λ) values of clear 
waters show the typical shape of oligotrophic oceanic waters with a peak 
in the Blue1 band and decreasing values at increasing wavelengths. On 
the contrary, discolored waters display the opposite spectral pattern 
(increasing phase) compared with the clear ones in the Blue1-Green 
spectral domain. Discolored waters exhibit a reflectance peak shifting 
from Blue2 to Green for increasing discoloration levels usually detected 
closest to the volcano. There are no appreciable differences in the Rrs(λ) 
averages between S2A/B-MSI and L8/9-OLI data. However, the Rrs(λ) 
average values of L8/9-OLI are slightly higher than those of S2A/B-MSI, 

especially in the Blue1-Green spectral range (Fig. 2c).

3.2. Comparison between S2A/B-MSI and L8/9-OLI in the Green band

The spectral comparison between S2A/B-MSI and L8/9-OLI served as 
the basis to assess their integrated use. An image-based MSI-OLI com
parison in a specific band was performed with the aim of setting a 
common spectral threshold on both S2A/B-MSI and L8/9-OLI for 
detecting discolored waters of volcanic origin. For this purpose, we 
compared the MSI and OLI Rrs(λ) data in the Green band (see Table 1) 
because it has the highest spectral sensitivity to ash-laden discolored 
waters (Sakuno et al., 2023). Within the year of analysis, we selected 
that date characterized by near-simultaneous (time difference < 15 min) 
overpasses between S2A/B-MSI and L8/9-OLI to assume similar aerosol/ 

Fig. 3. MSI-OLI intercomparison. a,b) L8-OLI (23:36 UTC) and S2B-MSI (23:49 UTC) images of 9 July 2022 in true colors at 30 m spatial resolution. The continuous 
red line delimits the RGB-derived discolored area around the Kavachi Volcano depicted by the white triangle. c) Frequency histograms of Rrs(Green) over the 
discolored area detected in the panels (a-b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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atmospheric conditions and ensure a more accurate comparison.
We compared the corresponding Rrs(λ) values in the Green band 

over the common discolored area for the S2B-MSI and L8-OLI acquisi
tions on 9 July 2022. The continuous red line in Fig. 3a-b encloses the 
common RGB-based discolored area for images acquired 13-min apart 
on 9 July 2022. The S2B-MSI and L8-OLI frequency histograms exhibit 
similar Rrs(Green) fluctuations (Fig. 3c) over such a discolored area. The 
median Rrs(Green) values differ by ~5% (equal to 0.0004 sr− 1 absolute 
difference) between L8-OLI and S2B-MSI with absolute values of 0.0082 
and 0.0078 sr− 1, respectively.

3.3. Definition of discoloration algorithms

The spectral analyses (3.1 and 3.2 sections) defined the most suitable 
spectral tests and thresholds for the development of discoloration 
detection algorithms. In this work, we proposed two configurations of 
discoloration algorithms, namely the Spectrally Derived Discoloration 
(SDD) and the Spectrally-Derived High Discoloration (SDHD), to detect 
pixels with different intensity of discoloration around submarine vol
canoes in oligotrophic waters. Concerning SDD, pixels are detected as 
discolored if all the three spectral tests used are true, namely “Blue 
ratio”, “Green Threshold” and “Red NIR”, as follows:

- The “Blue ratio” spectral test: in oligotrophic clear waters the 
maximum Rrs(λ) is observed at 412–443 nm (i.e., Blue1) and decreases 
at increasing wavelengths (Hu et al., 2012; Mélin et al., 2016), while for 
moderate discolored waters Rrs(λ) peak shifts from 443 to 490 nm (i.e., 
Blue2) (Coca et al., 2014). Therefore, discolored pixels should be 
detected if: 

Rrs(Blue1)
Rrs(Blue2)

< 1 (2) 

- The “Green Threshold” spectral test: the Green band usually records 
the highest Rrs values in areas of discolored waters compared with 
normal ocean conditions (Whiteside et al., 2023). The common 
threshold value for S2A/B-MSI and L8/9-OLI was cautiously set below 
the average Rrs(Green) values of discolored pixels (Fig. 2c) and the 
median Rrs(Green) values observed within the frequency histograms of 

Section 3.2 (Fig. 3c). Discolored pixels should be detected if: 

Rrs(Green) > 0.0075 sr− 1 (3) 

- The “Red-NIR” spectral test: the rationale is to avoid potential de
tections of massive blooms of floating algae (e.g., Green Noctiluca scin
tillans, Trichodesmium or Microcystis species) whose Rrs(λ) display the 
typical red-edge shape within the Red-NIR range (Gernez et al., 2023; 
Spyrakos et al., 2018; Qi et al., 2020). Hence, discolored pixels should be 
detected if: 

Rrs(Red)
Rrs(NIR)

> 1 (4) 

Concerning the SDHD configuration, the first and third spectral tests 
are unchanged while the “Green Threshold” is replaced by the following 
one:

- The “Blue-Green ratio” spectral test: as turbidity increases Rrs(λ) 
values display a rising shape in the Blue1–Green range with a peak at 
about 560 nm (Di Polito et al., 2016; Doxaran et al., 2002; Jiang et al., 
2021; Jiang et al., 2023). Highly discolored pixels should be detected if: 

Rrs(Blue2)
Rrs(Green)

< 1 (5) 

Also, for SDHD, pixels are detected as highly discolored if the “Blue 
ratio”, “Blue-Green ratio” and “Red-edge” spectral tests are all true. 
Fig. 4 displays the flowchart for detecting discolored or highly dis
colored pixels from S2A/B-MSI and L8/9-OLI imagery through the 
adoption of the SDD and SDHD algorithms, respectively. For each al
gorithm configuration (SDD or SDHD) we generated a binary map where 
discolored or highly discolored pixels were set to 1, while other water 
pixels were set to 0.

The Sentinel Application Platform (SNAP) was used to implement the 
discoloration algorithms and QGIS software packages for complemen
tary elaborations.

Fig. 4. SDD and SDHD algorithms. Flowcharts of the SDD (a) and SDHD (b) algorithms implemented on both the S2A/B-MSI and L8/9-OLI Rrs(λ) data.
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3.4. Validation procedure and accuracy metrics

Establishing if a satellite pixel is truly discolored is not a simple task, 
especially if there are no direct field observations. According to a widely 
accepted practice (Chen et al., 2022; Coluzzi et al., 2018; Coluzzi et al., 
2025; Jutzeler et al., 2020), we determined the pixels representing the 
“sea-truth” by applying a manual method based on visual inspections of 
true-color (i.e., RGB) images under the supervision of a trained expert. 
Considering for validation the remaining images (five for S2A/B-MSI 
and five L8/9-OLI images) of the whole dataset, we, firstly, generated, 
for each image, the RGB-derived reference mask setting binary values of 
1 and 0 for discolored and other water pixels, respectively. Based on the 
binary maps obtained from the SDD and SDHD algorithms, we derived a 
per-image discolored mask. Discolored pixels detected by at least one of 
the two algorithms were assigned the value of 1, while other water pixels 
identified by both (i.e., SDD and SDHD) were assigned the value of 0. 
These discolored masks were then superimposed with the corresponding 
reference ones to obtain the validation maps and determine the confu
sion matrices (error matrices).

The validation maps that were generated display agreement and 
disagreement areas classified into the four categories of the confusion 
matrix. These are: a) True Positive (TP), i.e., agreements between dis
colored pixels), b) True Negative (TN), i.e., agreements between other 
water pixels, c) False Positive (FP), i.e., disagreements between other 
water pixels/discolored pixels (other water pixels in the reference mask, 
discolored pixels in the algorithm-derived one), d) False Negative (FN), 
i.e., disagreements between discolored/other water pixels (discolored 
pixels in the reference mask, other water pixels in the algorithm-derived 
one). From the confusion matrix, we computed the commission and 
omission errors, the overall accuracy and the Cohen's Kappa (K) 
coefficient.

The commission error (CE) describes the percentage of discolored 
pixels falsely classified in the algorithm-derived mask (overestimation) 
and can be defined as: 

CE(%) = 100 −

(
TP

TP + FP

)

*100 (6) 

The omission error (OE) is the percentage of discolored pixels in the 
RGB-derived reference mask that have been omitted in the algorithm- 
based one (underestimation), and it can be written as: 

OE(%) = 100 −

(
TP

TP + FN

)

*100 (7) 

The overall accuracy (OA) represents a similar estimation between 
the two masks, and it can be defined as: 

OA(%) =

[
(TP + TN)

(TP + FN + TN + FP)

]

*100 (8) 

K (Congalton, 1991) provides a more realistic indication about the 
probability that a pixel is correctly classified by including off-diagonal 
elements of the error matrix. K ranges between 0 and 1 with higher 
values indicating a closer agreement between the reference and the 
algorithm-derived masks. It can be written as: 

K =
2*(TP*TN − FN*FP)

(TP + FP)*(FP + TN) + (TP + FN)*(FN + TN)
(9) 

To estimate accuracy metrics, we did not perform statistics for every 
image to avoid oversampling issues. The number of other water pixels 
per image is significantly higher than the number of discolored ones thus 
determining an excessive predominance of potential TNs over the scene 
and consequently a less indicative OA for the algorithm performance. To 
overcome this limitation, we randomly selected from all available ten 
images, a total of 10,000 “true” pixels (i.e., 5000 for S2A/B-MSI and 
5000 for L8/9-OLI imagery) equally split into truly discolored (50%) 
and truly other water pixels (50%), following the approach of Chen et al. 

(2022).

4. Results

4.1. General performance of the SDD/SDHD algorithms

As a first step, we evaluated the performance of the proposed 
discoloration algorithms by visually comparing the RGB-based images 
with the corresponding SDD/SDHD derived maps. Fig. 5 shows these 
maps for six test dates (the remaining four are reported in Fig. S1) for 
which discolored plumes drifting from the Kavachi Volcano were inde
pendently reported (Global Volcanism Program, 2022, 2023a). The 
selected test cases are characterized by variable acquisition conditions 
and discolored plumes with differences in terms of extension and color 
shades.

Discolored areas identified by the SDD and SDHD algorithms 
generally superimpose the visible yellow-green patches on the true color 
imagery. The SDHD algorithm detects the plume core that usually rep
resents the most discolored area closest to the volcano (Fig. 5b′, c′, d′, e′). 
The SDD algorithm identifies larger and less discolored areas up to 4–5 
km far from Kavachi, as shown in Fig. 5b′, f′. In some cases, the areas 
identified by the SDD and SDHD algorithms tend to completely overlap 
probably because of high discoloration level occurring at satellite 
acquisition time. On 19 February 2022 (Fig. 5 a, a′), both the algorithms 
identify most of the eastward dispersed plume with an 80% overlap 
between the SDHD and SDD-derived areas. On other test dates, the 
occurrence of underwater volcanic activity well before the satellite 
overpass causes the SDHD algorithm to identify fewer discolored pixels 
because of the plume attenuation. This leads to a significant decrease of 
this overlap, with the lowest value (~32%) being on 3 September 2022 
(Fig. 5 f′). However, SDD sometimes may (partially) fail to detect the 
most distal part of the plumes, for example, the northern greenish patch 
on 14 May 2022 (Fig. 5e′). Furthermore, most of the undetected pixels by 
SDD are located on the transition (buffer) zone between discolored 
plume core and clear waters, as on 21 March 2022 (Fig. 5 b′) and 20 
April 2022 (Fig. 5 c′, d′). On 20 April 2022 discolored areas exhibited 
identical features between the near-simultaneous acquisitions (<15 
min) of L8-OLI and S2B-MSI (Fig. 5 c, c′, d, d′) data. In both acquisitions 
SDHD mainly detects a plume drifting southward (with a slightly higher 
sensitivity from L8-OLI data; see red pixels) while the SDD also identifies 
a westward branch that is less discolored. With a more quantitative 
analysis, the SDD-detected areas range between 5.44 and 5.38 km2 while 
the SDHD-detected areas are between 4.16 and 3.6 km2 for L8-OLI and 
S2B-MSI, respectively.

Despite a slight difference between the corresponding SDHD- 
detected areas, the results confirm the inter-operability of the pro
posed algorithms regardless of the satellite-sensor system employed.

4.2. Accuracy assessment of the discoloration algorithm

Regarding the accuracy analysis, we considered a single discolor
ation algorithm (with a binary discolored/no discolored classifier) 
including both the SDD and SDHD configurations, as described in Sec
tion 3.4. Performance of the algorithm-derived discoloration masks was 
evaluated through validation maps showing agreement and disagree
ment areas labeled into four categories of error matrices (i.e., TP, TN, FP, 
FN). Fig. 6 displays validation maps for four representative test dates 
(the remaining six are reported in Fig. S2) under different performance 
conditions.

Among the considered test cases in Fig. 6, the L9-OLI acquisition of 
28 April 2022 shows the largest fraction of correctly discolored pixels 
(red), together with the smallest fraction of undetected ones (black). 
Furthermore, the agreement between discolored pixels (red) is observ
able also close to the less visible discolored patch at about 5 km north
west from the volcano (Fig. 6b, b′). Sometimes, the correct classification 
of discolored pixels occurs in the core of plumes and is lacking at their 
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edges, as shown in Fig. 6 a′, c′. In these cases, the fraction of truly dis
colored pixels overlaps just with the most visible greenish plume in the 
true-color imagery (Fig. 6 a, c). The portion of the undetected pixels 
characterizes the transition zone between the plume core and the clear 
water conditions where the discoloration effects tend to be smoothed. 
However, underestimation can also result along the plume core if the 
sea-surface conditions are not spatially homogeneous, as on 14 
November 2022. It is likely that the occurrence of sea-surface roughness 
determines the fragmentation of the discolored patches with relative 
discontinuities between truly discolored and undetected pixels over the 
greenish plume (Fig. 6 f′).

Table 2 summarizes the error metrics computed over all ten images 
of the validation dataset, according to the procedure described in Sec
tion 3.4. Statistics are reported with distinction between S2A/B-MSI (i. 
e., five images and 5000 pixels) and L8–9/OLI (i.e., five images and 
5000 pixels) data and considering an integrated multi-sensor dataset (i. 
e., ten images and 10,000 pixels).

Table 2 shows the good performance of the discoloration algorithm 
considering both the single and the integrated (multi-sensor) configu
ration. Although statistics related to L8/9-OLI data are slightly better 
than S2A/B-MSI, in all cases the error metrics are satisfactory thus 
exhibiting OAs close to 90%, CEs not exceeding 1% and K values always 
around 0.8. However, the higher OEs (approximately 18%) confirm the 
tendency for the algorithm to underestimate the truly discolored pixels 

especially over the buffer zones around the plume core, as shown in 
Fig. 6 a′. Conversely, the significantly low CEs certify the algorithm 
reliability highlighted by the negligible number of false detections.

4.3. Cross-checking for validation by PlanetScope data

Considering the lack of in-situ data for the validation analysis, we 
performed a cross-checking procedure by assuming the PS-SD8 data as 
“ground truth”, exploiting its very high (i.e., 3 m) spatial resolution. For 
this purpose, we used 14 May 2022 as the test date, because it was the 
only one characterized by near-simultaneous (time difference of 15 min) 
overpasses between L9-OLI and PS-SD8. After upsampling the L9-OLI 
Rrs(λ) data to 3 m spatial resolution by the nearest neighbor method, 
we obtained the algorithm-derived binary mask (discolored/no dis
colored classifier). This mask was then superimposed with the RGB 
reference one of PS-SD8 to obtain the validation map and error matrices. 
Fig. 7 displays the comparison between the PS-SD8 RGB image and the 
corresponding L9-OLI validation map for 14 May 2022 along with a 
spectral analysis of specific selected areas. Fig. 7c shows the Rrs(λ) av
erages over three 5 × 5-pixel boxes (randomly selected) centered on the 
correctly discolored areas, the undetected ones, and the clear water 
conditions.

Fig. 7 shows that the portion of correctly classified pixels (in red) 
concerns not only the most visible green plume but also some slightly 

Fig. 5. Discoloration maps by the SDD/SDHD algorithms. S2A/B-MSI and L8/9-OLI imagery in true color composite (Red, Green, Blue2) for the selected test dates (a, 
b, c, d, e, f). Discoloration maps derived by the SDD (green) and SDHD (red) algorithms for the corresponding test dates (a′, b′, c′, d′, e′, f′). The white pixels on the 
discoloration maps represent the discarded ones, namely cloudy/no data or other water pixels. The location of Kavachi is shown by the red and black triangles in the 
(a–f) and (a′–f′) panels, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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less discolored branches, which are in the middle-west part of the image. 
Conversely, the missed detections (in black) characterize mostly the 
transition zone between discolored and clear waters, where the intensity 
contrast between these sea-surface features is not particularly evident in 
the RGB image. Although the false detections (in green) are relatively 
low, they are confined to the eastern edge of the plume core and are 
likely due to errors in the upsampling procedure of the L9-OLI data.

Table 3 summarizes the error metrics computed considering all the 
pixels of the image given the lower occurrence of TNs.

The statistics shown in Table 3 agree with those of the previous 
analysis (Table 2), confirming the good performance of the discoloration 
algorithm. Values of OA (90.43%) and K (0.80) are satisfactory and 
almost the same as before, while CE records a slight increase up to 2.16% 
due to some FPs located on the eastern edge of the plume. Also in this 
case, the lack of true detections in the buffer zones determines an OE of 
approximately 21%, slightly higher than the computed value over the 
five images of the L8/9-OLI validation dataset (Table 2). This value 
confirms that the algorithm slightly underestimates both the less dis
colored and the most distal parts of the plumes due to the failure of the 
“Green Threshold” spectral test. The spectral analysis (Fig. 7c) clearly 
shows that the Rrs(Green) average for the undetected area (B2 UD in 
Fig. 7) is below the threshold value of 0.0075 sr− 1.

4.4. Evaluation of the algorithm exportability

An accurate assessment of the performance of discoloration algo
rithms over different geographic areas and test sites is crucial to evaluate 
their potential in providing information about underwater activity of 
other volcanoes. Therefore, we also examined a documented episode of 
sea-water discoloration occurring around the Kaitoku Volcano (with two 
primary peaks at an average depth of 95 m b.s.l.) located in the Izu- 
Ogasawara arc (Northwest Pacific Ocean) about 1000 km south of 
Tokyo (Japan) (Fig. 8a). Among the various episodes of sea-water 
discoloration reported by the Japan Meteorological Agency (JMA) 
since August 2022 (Global Volcanism Program, 2023b), we analyzed the 
event of November 2022, when the Japan Coast Guard (JCG) arranged 
also a specific aerial overflight over the area.

The JCG documented a bright plume of yellow-white discolored 
waters originating from the Kaitoku Volcano on 25 November 2022 
(Japan Coast Guard (JCG) Volcano Database, 2024). Fig. 8 displays the 
S2A/MSI discoloration map of 22 November 2022 (i.e., 23 November 
2022 10:20 LT) generated using the SDD and SDHD algorithms (Fig. 8c), 
together with the aerial photos (Fig. 8d, e) obtained by JCG two days 
after the S2A-MSI acquisition.

From an initial visual overview, spatial features of the discolored 
plume captured by the aerial overflight are comparable with those 
visible in the RGB image. Discolored areas identified by the SDD and 
SDHD algorithms are clearly superimposed with the visible white-green 
patches in the corresponding true color image (Fig. 8b, c). Also in this 
case, the SDHD algorithm enables the dome of the plume and the most 
reflective patches along track to be detected. Furthermore, the SDHD- 
detected dome of 300 m in diameter coincides with that observed dur
ing the aerial overflight two days later (Fig. 8e) (Global Volcanism 
Program, 2023b). The SDD algorithm, as expected, detected the south
westward portion of the plume, showing less discolored and fragmented 
features. By looking at the aerial photographs (Fig. 8 d, e), the whitish 
discolored waters around the Kaitoku Volcano suggests a change in the 
chemical composition of the seawater compared to the greenish 
seawater observed close to the Kavachi Volcano (Fig. 5). This analysis 

Fig. 6. Validation maps. S2A/B-MSI and L8/9-OLI imagery in true color composite (Red, Green, Blue2) of the selected test dates (a, b, c, d). Validation maps of the 
corresponding test dates (a′, b′, c′, d′). Validation maps highlight agreement between discolored pixels, TP (red), agreement between other water pixels, TN (blue), 
disagreements between other water pixels/discolored pixels, FP (green), and between disagreements discolored/other water pixels, FN (black). The location of 
Kavachi is defined by the red and yellow triangles in the (a–d) and (a′–d′) panels, respectively. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Table 2 
Accuracy metrics of the algorithm-derived discoloration masks. CE commission 
error (overestimation), OE omission error (underestimation), OA overall accu
racy and K Cohen's Kappa coefficient.

Satellite-sensor system CE (%) OE (%) OA (%) K

S2A/B-MSI 0.84 19.85 89.73 0.80
L8/9-OLI 1.06 17.84 90.64 0.81
S2A/B-MSI & 

L8/9-OLI
0.95 18.84 90.19 0.80
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demonstrates the capacity of the proposed algorithms to detect dis
colored plumes regardless of the different features of sea-water discol
oration (e.g., color shades and/or chemical composition) around 
submarine volcanoes.

5. Discussion

Monitoring submarine eruptions is not an easy task to achieve by 
conventional observation methods (e.g., hydro-acoustic, or seismic ar
rays) considering that eruptions are often short-lived remote events 
(Mantas et al., 2011). Most of the studies conducted so far by OC data 
were aimed at timely detecting discolored plumes (or pumice rafts) after 

Fig. 7. Validation map from cross-checking. a) PS-SD8 image in true color composite (Red, Green, Blue2) from 14 May 2022. b) L9-OLI validation map from the same 
test date (acquired 15 min later). c) Rrs(λ) averages and standard deviations (black continuous bars) computed over the three 5 × 5-pixel boxes (i.e., B1(D), B2(UD), 
B3(C) depicted by the cyan, yellow, and purple squares in the a-b panels, respectively. Validation maps highlight agreement between discolored pixels, TP (red), 
agreement between other water pixels, TN (blue), disagreements between other water pixels/discolored pixels, FP (green), and disagreements between discolored/ 
other water pixels, FN (black). The location of Kavachi is indicated by the black triangles in (a) and (b). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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huge submarine eruptions (Fauria et al., 2023; Jutzeler et al., 2020; Shi 
and Wang, 2011; Whiteside et al., 2023) or studying the biological 
response of marine ecosystems to volcanic inputs (Barone et al., 2022; 
Ciancia et al., 2016; Eugenio et al., 2014). Within a scientific framework 
where the focus is on the post eruptive phase, there is the need to 
investigate potential precursor signs of submarine volcanic eruptions, 
such as sea-water discoloration, to support warning and prediction 
systems (Sakuno et al., 2023).

Among the methods implemented on S2A/B-MSI and Landsat 8/9- 
OLI data to identify sea-water discoloration (and/or pumice rafts) 
(Chen et al., 2022; Caballero et al., 2022; Fauria et al., 2023), the Ma
chine Learning (ML) algorithms (e.g., Random Forest) are the most 
promising, as they can be automated and iteratively-improved (Zheng 
et al., 2022). Furthermore, deploying these algorithms on the S2A/B and 
L8/9 L2 reflectance products within the Google Earth Engine (GEE) 
platform would ensure global scale analysis can be run in a time- 
effective way without ingesting a large amount of data. However, 
their operational effectiveness is hampered by a not fully automated 
classification process that requires manual checks to filter out mis
classifications due to sun glint or light cloud cover (Zheng et al., 2022). 
This limitation underscores the critical need to adopt a water-designed 
atmospheric correction method to retrieve accurate Rrs(λ) estimations 
also under contamination effects. The atmospheric correction 

algorithms (e.g., Sen2cor) on which the GEE-derived L2 reflectance 
products (S2A/B and L8/9) are based usually fail in optically-complex 
waters (Kuhn et al., 2019) due to their land-optimized design. 
Conversely, the ACOLITE-based DSF method is specifically developed 
for aquatic remote sensing (particularly in turbid waters) and includes 
options to adjust for sun glint contamination (Vanhellemont, 2019). Its 
reliability in estimating and correcting this effect allow preventing po
tential Rrs(λ) overestimates that could falsify the spectral tests (e.g., 
“Green Threshold”) used for the algorithm configuration. By exploiting 
the assets of the ACOLITE-DSF tool, we proposed a novel spectrally- 
derived method to detect and map discolored plumes around subma
rine volcanoes in oligotrophic oceans, by integrating S2A/B-MSI and L8/ 
9-OLI observations.

5.1. Reliability, robustness and portability

Reliability, robustness, and portability are crucial aspects for the 
development of an automated method for detecting sea-water discol
oration around submarine volcanoes. The lack of in-situ data represents 
a critical issue for the validation of the proposed method. The assump
tion that satellite data at very high spatial resolution (i.e., PlanetScope) 
is a proxy of “ground truth” allowed us to overcome this limitation. Very 
high resolution (VHR), in fact, may allow for a better identification (and 
interpretation) of the observed discolored plumes and may represent a 
valid source for their validation. Although it is not always possible, this 
approach can be largely used, due to the increasing availability of VHR 
satellite data at low or even no cost (Lesiv et al., 2018).

Another relevant aspect that deserves to be thoroughly evaluated is 
whether a discolored plume of volcanic origin can be distinguished from 
a biological one (e.g., phytoplankton bloom). Since we did not find any 
information about the occurrence of a phytoplankton bloom within the 
study area from previous studies, we performed a confutation analysis 

Table 3 
Accuracy metrics of the algorithm-derived discoloration mask for the 14 May 
2022 test date shown in Fig. 7. CE commission error (overestimation), OE 
omission error (underestimation), OA overall accuracy and K Cohen's Kappa 
coefficient.

Satellite-sensor system CE (%) OE (%) OA (%) K

L9-OLI 2.16 20.91 90.43 0.80

Fig. 8. Algorithm exportability. a) Location of the Kaitoku Volcano (Izu-Ogasawara arc, Northwest Pacific Ocean) over the bathymetric data obtained from the 
GEBCO (GEBCO Catalogue, 2024). b) S2A-MSI image in true color composite (Red, Green, Blue2) on 22 November 2022. c) Discoloration map derived by the SDD 
(green) and SDHD (red) algorithms on 22 November 2022 (23 November 2022 10:20 LT). d, e) Aerial photos acquired (from the west and north, respectively) by the 
Japan Coast Guard on 25 November 2022 (Japan Coast Guard (JCG) Volcano Database, 2024). The location of Kaitoku is depicted by the red triangles in (a) and (b) 
and the black triangle in (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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by investigating an anomalous bloom over the Southern Pacific Ocean 
(similar oligotrophic waters) to assess the robustness of the proposed 
discoloration method toward such kind of possible “look-alike” (i.e., 
similar effects originating from different, not volcanic, causes). The 
investigated phytoplankton bloom was likely triggered by the severe 
2019–2020 Australian wildfires and started around October 2019 with a 
peak in January 2020 (Tang et al., 2021). In this case, chlorophyll-a (chl- 
a) reached concentrations never observed in a 22-year satellite time 
series from the ESA's Ocean Colour Climate Change Initiative (ESA OC- 
CCI) (Tang et al., 2021). For the confutation analysis, we considered the 
Level 3 monthly chl-a product (version 6) and the corresponding Rrs(λ) 

data at 443, 490, 560 and 665 nm for January 2020 at 4 km spatial 
resolution from the ESA OC-CCI database (ESA OC-CCI Dataset, 2025). 
In this context, we evaluated the reliability of two spectral tests in 
avoiding detection of potential discolored pixels due to a phytoplankton 
bloom in oligotrophic oceans. Fig. 9 shows the variability of the “Blue 
ratio” and Rrs(Green) along a transect (of about 5000 km) crossing the 
monthly chl-a map for January 2020 over the Southern Pacific area of 
interest.

Fig. 9 shows that most of the area investigated was affected by an 
anomalous phytoplankton bloom, since chl-a reaches concentrations up 
to 0.6 mg/m3, significantly higher than the climatological value of 0.08 

Fig. 9. Confutation analysis. a) Monthly RGB (665, 560, 443) map for January 2020 over the Southern Pacific subset delimited by the red rectangle on the inset in 
the top left. b) Monthly Chl-a map for January 2020 over the same study area as a). c) Profiles of Blue ratio (Rrs(443)/Rrs(490)) and Rrs(Green) along the A-B 
transect. The continuous and dashed black lines are the reference value for the Blue ratio and the threshold value (0.0075 sr− 1) for Rrs(Green), respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mg/m3 for this area (Tang et al., 2021). Along the 5000 km transect (A- 
B) crossing the main chl-a patterns, the Blue ratio is about 1.3 close to A 
and then it ranges between 1.2 and 1 (Fig. 9b). Since the Blue ratio is 
always above the threshold value of 1, the SDD or SDHD would not have 
detected any discolored pixels, despite such an extreme bloom for 
oligotrophic waters.

The Rrs(Green) is almost always around 0.0025–0.003 sr− 1 except 
for a peak of ~0.005 sr− 1 corresponding to the highest chl-a values (0.6 
mg/m3), but it always remains well below the threshold value of 0.0075 
sr− 1 (Fig. 9b). The adoption of the Rrs(Green) threshold, specifically 
designed to characterize ash-laden waters, would enable the possible 
discolored waters of biological origin to be excluded from detection. 
Thus, these analyses indicate that the proposed method (integrating 
information from SDD and SDHD algorithms) can discriminate dis
colored waters of biological origin from those associated with under
water volcanic activity in oligotrophic water conditions.

5.2. Findings and future perspectives

The interpretation of the detected discolored plumes is another 
relevant aspect that should be considered. In this work, the SDD and 
SDHD showed a good capacity to detect pixels with different discolor
ation intensities around the Kavachi Volcano. In more detail, the SDHD 
was effective for the plume cores with higher intensity of discoloration 
ranging from green to yellow-brown close to the volcano. The SDD 
allowed for the detection of larger and less discolored areas, with pre
vailing greenish shades that shifted to green-blue further away. The 
predominant color of a volcanic discolored plume may reveal informa
tion on the main substances released, specifically those based on iron 
(Fe), aluminum (Al), and silicon (Si) (Nogami et al., 1993; Onda, 2003; 
Sakuno et al., 2023; Urai and Machida, 2005). A higher proportion of Fe 
usually produces mostly green shades and/or yellow brown colors, 
whereas a higher proportion of Al or Si generates whitish tones of color 
(Sakuno, 2021). Considering the prevalent green shades (with some 
yellow-to-brown transitions) of the observed discolored plumes around 
the Kavachi Volcano, it is reasonable to assume a predominance of iron 
released by the underwater volcanic activity. However, these assump
tions should be supported by physical-chemical analysis of sub-surface 
water samples to measure changes in water properties due to inor
ganic ash particles and emitted gases from the volcano (Olgun et al., 
2013; Matsuo et al., 2025).

Turning to the analysis of accuracy, the single discoloration algo
rithm, including both the SDD and SDHD configurations, reliably iden
tified truly discolored pixels considering the negligible numbers of false 
detections (with CEs around 2%). Despite its robustness, the algorithm 
slightly lacks sensitivity and tends to underestimate the less discolored 
plume regions. Using a threshold approach (i.e., in the Green band) may 
reduce sensitivity, resulting in the failure to identify truly discolored 
pixels in the most distal part of the plume and/or the core edges.

However, the method's capability to minimize false detections plays 
a key role in an early warning system for monitoring submarine volcanic 
activity. Furthermore, the assessed exportability of the method in areas 
with a different sea-water discoloration (e.g., color shades and/or 
chemical composition) is another crucial asset for its operational usage. 
National environmental (or meteorological) agencies could exploit these 
strengths to arrange different early warning levels for possible subaerial 
eruptions by monitoring discolored plumes around submarine vol
canoes. Increases in intensity and spatial extent of discolored plumes 
due to a higher release of volcanic matter may heighten the probability 
of an impending subaerial eruption. To this aim, the Japan Meteoro
logical Agency (JMA) established two-level of alerts (i.e., “Volcanic 
Forecast” and “Volcanic Warning, Sea Area”) for submarine volcanoes 
based on the observations/photos of discolored plumes provided by the 
Japan Coast Guard (JCG) during ad-hoc monitoring overflights (Global 
Volcanism Program, 2025). It is therefore of paramount importance to 
develop systems capable of providing timely and reliable information 

about seawater discoloration before submarine eruptions transition to 
subaerial eruptions.

In this direction, both the OLI and MSI sensors open new perspectives 
to identify and track fine-scale discolored features drifting from vol
canoes. Moreover, their combined use may enable the monitoring of 
discolored plumes at unprecedented rates, with a potential revisit time 
of 2–3 days on a global scale (Pahlevan et al., 2017). The detected dis
colored plume around the Kaitoku Volcano at the end of November 2022 
represents an example of the method capability in supporting the 
monitoring actions by satellite data integration.

From a future perspective, it would be worth testing the applicability 
of the method also in higher productivity oceans and shallow coastal 
waters, by improving the SDD/SDHD algorithm (e.g., with specific 
spectral test and/or thresholds). For instance, the adopted “Blue ratio” 
test could result ineffective in discriminating volcano-ash pixels from 
shallow waters where the Rrs(Blue1) is generally lower than Rrs(Blue2) 
due to sea-bottom contribution (Arabi et al., 2020). Furthermore, there 
would need to be a better characterization of underwater volcanic ac
tivity by providing satellite estimations of water quality indicators, such 
as turbidity (or suspended matter concentrations), kd (490) or bbp(λ), on 
the SDD/SDHD-detected discolored plumes. These parameters could be 
used to perform correlation analyses with seismic array data to establish 
potential relationships for predictive purposes. For instance, it is 
reasonable to assume that the largest extent of SDHD-detected plume 
and/or the corresponding maximum value of turbidity could be asso
ciated with the highest seismic activity recorded within a certain time 
lag. However, correlating sea-discoloration parameters with data from 
seismic arrays requires daily satellite revisits. The exportability of the 
proposed method on Ocean Land Colour Instrument (OLCI), onboard 
Sentinel 3 (S3) satellite-platform, could minimize satellite acquisition 
gaps, improving the temporal coverage.

An integrated multi-sensor satellite system, exploiting S2A/B-MSI, 
L8/9-OLI and S3-OLCI observations, will enable the development of 
an automated tool for detecting, mapping, and monitoring sea-water 
discolored plumes addressing the observational gaps in the investiga
tion of submarine volcanoes.

6. Conclusions

In this work, we proposed a novel spectrally-derived method to 
detect and map discolored plumes around submarine volcanoes in 
oligotrophic oceans by integrating Sentinel 2 A/B-MSI and Landsat 8/9- 
OLI data.

We investigated 20 discoloration episodes that occurred in 2022 
around the Kavachi Volcano (Solomon Islands, Southwest Pacific 
Ocean), to characterize the reference spectral shapes (i.e., Rrs(λ)) of 
clear, discolored and highly discolored waters. Based on differences 
between these reference Rrs(λ), we defined a set of spectral tests/ 
thresholds to develop a method to identify discolored plumes of volcanic 
origin. To account for different discoloration intensities, we proposed 
two algorithm configurations, namely the SDD and the SDHD. The SDHD 
usually enabled the identification of the plume cores of higher intensity 
of discoloration, while SDD performed an effective detection of larger 
and less discolored areas in the more distal parts of the plume.

The developed method, combining the two discoloration algorithms, 
exhibited satisfactory metrics thus recording OAs close to 90%, CEs not 
exceeding 1% and K values of about 0.8 for both the single and inte
grated (multi-sensor) configuration. Despite OEs ranging from 18 to 
20%, which may be ascribed to a lower sensitivity over plume edges (or 
transition zones), the very low CEs (around 2%) demonstrate the high 
reliability level of this method in mapping discolored waters associated 
with the submarine volcanic activity.

The proven exportability of the method in other areas, such as Kai
toku, confirms its capability in detecting underwater volcanic activity 
regardless of different features of sea-water discoloration (e.g., color 
shades and/or chemical composition).
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The developed satellite sea-water discoloration method may, then, 
represent a valid tool to support the operational monitoring of subma
rine volcanoes. In the framework of early warning systems, it will be 
capable of providing continuous and timely information about sea-water 
discoloration before submarine eruptions transition to subaerial 
eruptions.
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Gernez, P., Zoffoli, M.L., Lacour, T., Fariñas, T.H., Navarro, G., Caballero, I., Harmel, T., 

2023. The many shades of red tides: Sentinel-2 optical types of highly-concentrated 
harmful algal blooms. Remote Sens. Environ. 287, 113486.

Global Volcanism Program, 1976. Report on Kavachi (Solomon Islands). In: Squires, D. 
(Ed.), Nat. Sci. Event Bull, 1:12. Smithsonian Institution. https://doi.org/10.5479/si. 
GVP.NSEB197609-255060.

Global Volcanism Program, 1978. Report on Kavachi (Solomon Islands). In: Squires, D. 
(Ed.), Sci. Event Alert Netw. Bull, 3:7. Smithsonian Institution. https://doi.org/ 
10.5479/si.GVP.SEAN197807-255060.

Global Volcanism Program, 1991. Report on Kavachi (Solomon Islands). In: 
McClelland, L. (Ed.), Bull. of the Glob. Volcan. Netw, 16:4. Smithsonian Institution. 
https://doi.org/10.5479/si.GVP.BGVN199104-255060.

Global Volcanism Program, 2000. Report on Kavachi (Solomon Islands). In: 
Wunderman, R. (Ed.), Bull. of the Glob. Volcan. Netw, 25:4. Smithsonian Institution. 
https://doi.org/10.5479/si.GVP.BGVN200004-255060.

Global Volcanism Program, 2005. Report on Kavachi (Solomon Islands). In: 
Wunderman, R. (Ed.), Bull. of the Glob. Volcan. Netw, 30:3. Smithsonian Institution. 
https://doi.org/10.5479/si.GVP.BGVN200503-255060.

Global Volcanism Program, 2017. Report on Kavachi (Solomon Islands). In: Venzke, E. 
(Ed.), Bull. of the Glob. Volcan. Netw, 42:3. Smithsonian Institution. https://doi.org/ 
10.5479/si.GVP.BGVN201703-255060.

Global Volcanism Program, 2021. Report on Kavachi (Solomon Islands). In: Bennis, K.L., 
Andrews, B. (Eds.), Bull. of the Glob. Volcan. Netw, 46:11. Smithsonian Institution. 
https://doi.org/10.5479/si.GVP.BGVN202111-255060.

Global Volcanism Program, 2022. Report on Kavachi (Solomon Islands). In: Bennis, K.L., 
Venzke, E. (Eds.), Bull. of the Glob. Volcan. Netw, 47:8. Smithsonian Institution.

Global Volcanism Program, 2023a. Report on Kavachi (Solomon Islands). In: Bennis, K. 
L., Venzke, E. (Eds.), Bull. of the Glob. Volcan. Netw, 48:3. Smithsonian Institution.

Global Volcanism Program, 2023b. Report on Kaitoku Seamount (Japan). In: Bennis, K. 
L., Venzke, E. (Eds.), Bull.of the Glob. Volcan. Netw, 48:2. Smithsonian Institution. 
https://doi.org/10.5479/si.GVP.BGVN202302-284100.

Global Volcanism Program, 2025. Report on Kaitoku Seamount (Japan). In: Sennert, S. 
(Ed.), Wkly. Volc. Act. Rep., 26 February-4 March 2025. Smithsonian Institution and 
US Geological Survey.
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