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Symbolverzeichnis

1. Einleitung
Der zunehmende Einsatz von Faserverbundwerkstoffen, insbesondere karbonfaserverstärkten
Kunststoffen (CFRP), ermöglicht im Leichtbau eine wesentliche Massenreduktion bei höheren
spezifischen Eigenschaften wie Steifigkeit und Festigkeit gegenüber herkömmlichen metallischen
Werkstoffen wie z. B. Aluminium [1]. Diese Vorteile führen dazu, dass CFRP heute in sehr unter-
schiedlichen ingenieurtechnischen Anwendungen eingesetzt wird, die von Luft- und Raumfahrt-
strukturen bis hin zu erneuerbaren Energiesystemen wie Windenergieanlagen reichen. Besonders
ausgeprägt ist dieser Trend in der Luft- und Raumfahrtindustrie, da das eingesparte Gewicht
die Gesamtauslegung des Systems beeinflusst und sich auf Treibstoffverbrauch und Leistungsfä-
higkeit auswirkt. Ein anschauliches Beispiel stellt das Verkehrsflugzeug Boeing 787 dar, bei dem
über 50% der Strukturmasse auf Verbundwerkstoffen entfallen. Der 787 enthält insgesamt rund
35 Tonnen Verbundwerkstoffen, wovon etwa 23 Tonnen auf CFRP entfallen. Diese Werkstoffe
werden großflächig in Rumpf, Flügeln sowie weiteren primären und sekundären Strukturen ein-
gesetzt [2].

Vor diesem Hintergrund stellen experimentelle Untersuchungen ein notwendiges Mittel zur Cha-
rakterisierung von Verbundwerkstoffen dar und bilden die Grundlage für den Entwurf von neu-
artigen Verbundstrukturen. Rein experimentelle Entwicklungsansätze erweisen sich bei kom-
plexen Verbundstrukturen als zeit-und kostenintensiv, weshalb der ergänzende Einsatz numeri-
scher Methoden im Entwicklungs- und Auslegungsprozess erforderlich ist [3]. Die Reduzierung
der Entwicklungs- und Zertifizierungsdauer von Verbundstrukturen stellt seit vielen Jahren ein
wichtiges Ziel der Luft- und Raumfahrtindustrie dar. Daher gewinnen numerische Verfahren
zunehmend an Bedeutung, um experimentelle Untersuchungen zu unterstützen oder teilweise
zu ersetzen [4]. Das grundsätzliche Ziel ist dabei die zuverlässige Vorhersage von Schädigung
in Faserverbundlaminaten unter Berücksichtigung von unterschiedlichen Belastungsarten. Da-
bei stellen Druckbelastungen wie z. B. die Drucktragfähigkeit nach Aufprall (CAI. compression
After Impact) eine herausfordernde Nachweisgröße dar.

Zur Schädigungsmodellierung in Faserverbundwerkstoffen werden verschiedene numerische Stra-
tegien verwendet, darunter die Kontinuums-Schädigungsmechanik (CDM. Continuum Damage
Mechanics), Kohäsivzonenmodelle (CZM. Cohesive Zone Models), die erweiterte Finite-Elemente-
Methode (XFEM. Extended Finite Element Method), Phasenfeldmodelle (PFM, Phase-Field
Models) sowie die Peridynamik (PD. Peridynamics). Aufgrund der Vielzahl unterschiedlicher
Schädigungsmechanismen in Faserverbundstrukturen und deren maßgeblichem Einfluss auf die
strukturelle Leistungsfähigkeit ist der Einsatz einer progressiven Schädigungsanalyse (PDA. Pro-
gressive Damage Analysis) unerlässlich. Sie ermöglicht eine strukturierte numerische Abbildung
der Schädigungsentstehung, -fortentwicklung und -wechselwirkung innerhalb des Verbundsys-
tems, welches aus mehreren Lagen besteht. Üblicherweise werden dabei zwei voneinander ge-
trennte Schädigungsbereiche unterschieden und getrennt modelliert: Schädigungen innerhalb
der Lagen bzw intralaminare Schädigung sowie Schädigungen durch Aufspaltung der Lagen bzw
interlaminare Schädigung.

Im Rahmen dieser Arbeit wird ein CDM-Ansatz im Rahmen der PDA für rein uniaxial druck-
belastete Prüfkörper auf Couponebene verwendet. Dabei wird ausschließlich die intralaminare
Schädigung berücksichtigt. Untersucht werden die Einflüsse wesentlicher Modellbestandteile wie
das Versagenskriterium und Plastizitätsansatz. Grundlage der Untersuchungen bildet ein dreidi-
mensionales elastoplastisches Materialmodell, das von Völkerink [5] entwickelt und von Makiela
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1. Einleitung

[6] erweitert wurde. Besonders relevante Fragestellung dieser Arbeit ist die Untersuchung der Be-
rücksichtigung plastischer Effekte bei Proben auf Couponebene, welche experimentell mehrfach
nachgewiesen wurden [7–9]. Darauf aufbauend wird der Verifizierungs- und Validierungsrahmen
(V&V Framework) [10] zur Überprüfung der technischen Reife des Materialmodells verwendet
und die Prognosegüte mit bewährten Materialmodellen aus der Literatur verglichen. Als Refe-
renzwerkstoff wird IM7/8552 verwendet, ein häufig eingesetztes Luft- und Raumfahrtmaterial
[11]. Eine weitere ebenso relevante Fragestellung, die behandelt wird, ist die Erarbeitung einer
effizienten und pragmatischen Modellierungsstrategie, welche den Einfluss der Elementenwahl
bei der Vernetzung der Finite-Elementen-Modellen untersucht. Dabei werden Handlungsemp-
fehlungen vorgeschlagen, die für weiterführenden Studien relevant sein könnten.
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2. Modellierungsstrategien
Faserverbundwerkstoffe werden häufig in Form von mehrschichtigen Laminaten mit unidirektio-
naler Faserausrichtung eingesetzt. Durch geeignete Kombination der Lagenorientierungen lassen
sich die anisotropen Eigenschaften, d.h. die richtungsabhängigen mechanischen Eigenschaften
der Laminate, an die vorherrschenden Belastungen anpassen. Gleichzeitig stellt dies den Ent-
wurfsprozess vor Herausforderungen, da die mechanische Antwort des Materials durch komplexe
Wechselwirkungen zwischen Faser und Matrix bestimmt wird. In diesem Kapitel erfolgt eine
Übersicht der Modellierungsstrategien, welche dem Bausteinansatz unterliegen. Folglich werden
Modellierungsansätze erörtert, die Ergebnis einer umfassenden Literaturrecherche sind, welche
hier implizit über mehrere Abschnitte vermittelt wird.

2.1. Der Bausteinansatz und Abstraktionsebenen
Bei der Entwicklung von Bauteilen aus Verbundwerkstoffen wird üblicherweise ein umfassendes
Konstruktionsprogramm durchgeführt, das die strukturelle Leistungsfähigkeit des Designs vor
der Anwendung überprüft [12]. In der Luftfahrtindustrie kommt dabei häufig der sogenannte
Bausteinansatz (BBA. Building Block Approach) zum Einsatz, der ein hierarchisches Vorge-
hensmodell zur Entwicklung, Analyse, Verifizierung und Validierung von Faserverbundstruktu-
ren beschreibt [13]. Dabei werden mehrere aufeinander aufbauende Prüf- und Analyseebenen
durchlaufen, beginnend mit der Material- bzw. Coupon-Ebene über Strukturelemente und Teil-
strukturen bis hin zu vollständigen Bauteilen oder Gesamtstrukturen, siehe Abb. 2.1. Jede dieser
Ebenen liefert Erkenntnisse, die zur Kalibrierung und Validierung numerischer Modelle beitragen
und als Grundlage für die Freigabe der nächsthöheren Ebene dienen. Durch dieses stufenwei-
se Vorgehen können Entwicklungsrisiken reduziert, Testumfänge optimiert und Kosten gesenkt
werden, während gleichzeitig die strukturelle Integrität und Zuverlässigkeit der Verbundkon-
struktion sichergestellt wird [13].

Abbildung 2.1: Der Bausteinansatz: experimentelle und virtuelle Versuchspyramiden. [12]

Abbildung 2.1 veranschaulicht, wie der Bausteinansatz experimentelle Tests (Experimental test
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pyramid) und numerische Methoden (virtual test pyramid) zu einem integrierten Validierungs-
prozess kombiniert. Dies ermöglicht eine abgesicherte Vorhersage des Strukturverhaltens. Der
BBA-Ansatz basiert auf der Betrachtung von Faserverbunden auf unterschiedlichen Abstrak-
tionsebenen: Mikro-, Meso- und Makroebene. Demnach erfolgt eine erste Kategorisierung der
Modellierungsstrategien. Wie in der Einleitung eingeführt, werden in dieser Arbeit ausschließlich
Proben auf Couponebene untersucht, welche die Grundlage der experimentellen Versuchspyra-
mide bilden. In der virtuellen versuchspyramide, definiert der BBA zwei mögliche Modellierungs-
strategien, die der Coupon-Ebene in dem experimentell Pyramide gegenüber stehen: Mikro- und
Mesoskaligemodellierungsstrategien. Höhere Pyramidenstufen sind mit einer steigenden Modell-
komplexität verbunden, gehen jedoch mit einer geringeren Genauigkeit der unteren Stufen ein-
her.

2.1.1. Mikroebene

Eine detaillierte Betrachtung der Fasern und der Matrix eines Faserverbunds als unterschiedliche
Werkstoffe mit jeweils eigenem Materialverhalten ist nur auf der Mikroebene möglich. Mikrome-
chanische Modelle ermöglichen die Abbildung lokaler Schädigungsmechanismen wie beispielswei-
se der Ablösung von Fasern und Matrix. Grundlage solcher Modelle ist meist ein repräsentatives
Volumenelement (RVE), das die reale Mikrostruktur hinsichtlich Faseranordnung und Volumen-
anteil möglichst genau widerspiegelt [12]. Aus wissenschaftlicher Sicht zielen mikromechanische
Analysen darauf ab, die Zusammenwirkung von Faser-Faser- und Faser-Matrix-Interaktionen
besser zu verstehen. Aus industrieller Perspektive werden Untersuchungen auf dieser Ebene zur
Bestimmung verschmierter Eigenschaften für die Mesoskala genutzt. Verschmierte Eigenschaften
bzw. Homogenisierungsmethoden sowie Mehrskalenansätze sind hierbei notwendig, da die expli-
zite bzw. vollständige Darstellung der Mikrostrukturen kompletter Bauteile den Speicherbedarf
bzw. Rechenaufwand aktueller Rechnereinheiten überlasten würde [5].

2.1.2. Mesoebene

In der Mesoebene werden die mechanischen Eigenschaften von Fasern und Matrix einer einzel-
nen Schicht als verschmiert betrachtet und auf das gesamte Volumen übertragen. Dies führt
dazu, dass die Lage als homogenes und anisotropes Material beschrieben werden kann. Die Be-
stimmung der verschmierten Eigenschaften kann durch Untersuchungen auf der Mikroebene,
experimentell oder mithilfe analytischer Mischungsregeln erfolgen [14]. Das Materialkoordina-
tensystem wird so gewählt, dass die Richtung (1) entlang der Fasern verläuft, die Richtung (2)
senkrecht dazu in der Schichtebene liegt und die Richtung (3) die Dickenrichtung beschreibt,
siehe Abbildung 2.2.

Abbildung 2.2: Abstraktionsebenen: a) Mikro-, b) Meso- und c) Makroebene [15]
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Aufgrund der wesensbedingten Richtungen – parallel und senkrecht zur Faserrichtung – zeigt
eine unidirektionale Laminatschicht im Allgemeinen ein transversal-isotropes Materialverhalten
[15]. Wird die Annahme der transversalen Isotropie getroffen, welche gleiche Eigenschaften in der
(2)- und (3)-Richtung voraussetzt, reduziert sich die Anzahl der erforderlichen Parameter zur Be-
schreibung des Materialverhaltens. Im Fall eines linear-elastischen Materialverhaltens sind dies
lediglich fünf unabhängige Parameter. Eine weitere oft verwendete Vereinfachung bei mesoska-
ligen Modellierungen betrifft die Annahme eines ebenen Spannungszustands. Dabei werden alle
Spannungen außerhalb der 1-2-Ebene vernachlässigt. Dieser Ansatz wird mit der Schalentheorie
begründet und findet Einsatz in numerischen Methoden, die auf der Äquivalente-Einzellage-
Theorie basieren [5], siehe Abschnitt 2.2.1.

2.1.3. Makroebene

Auf der Makroebene wird die Betrachtung auf den Mehrschichtverbund ausgeweitet, der aus
gestapelten Einzellagen mit unterschiedlicher Faserorientierung besteht. Dabei wird die Stapel-
reihenfolge der Lagen als Materialeigenschaft verstanden, die durch die Schichtdicken und -winkel
definiert wird. Das globale Verhalten des Verbunds lässt sich durch verschmierte Eigenschaften
beschreiben. Diese können analytisch oder numerisch aus den mesoskaligen Eigenschaften der
Einzellagen, der Faserorientierung und der Verbundgeometrie bestimmt werden. Analysen auf
dieser Ebene geben Aufschluss über die durchschnittliche Antwort des gesamten Verbunds [5].
Es ist anzumerken, dass die makromechanische Modellierung Spannungsfelder in Dickenrich-
tung nicht korrekt abbilden kann. So können beispielsweise bei ausgeprägten dreidimensionalen
Spannungsfeldern Berechnungsungenauigkeiten auftreten [16].

2.2. Modellierungsansätze für Faserverbunde
Unter Berücksichtigung der Meso- und Makroebene werden für die Modellierung von Faser-
verbunden in einer FE-Software grundsätzlich zwei Ansätze verwendet: Äquivalente Einzellage
(ESL, Equivalent Single-Layer) Theorien und Lagenweise Theorien (LW, Layer-Wise). Diese
werden im Folgenden kurz eingeführt, um eine Übersicht der Vor- und Nachteile zu geben, auf
deren Grundlage eine Auswahl für den Zweck dieser Arbeit erfolgen wird.

2.2.1. Äquivalente Einzellage Theorien

FVS sind typischerweise dünnwandig im Vergleich zu ihrer Länge und Breite, weshalb es ge-
rechtfertigt ist, sie auf eine 2D-Problemstellung bzw. Schalenmodell zu reduzieren. Diese Ver-
einfachung basiert auf Annahmen hinsichtlich der Deformations- und Spannungsverteilung in
der Dickenrichtung des Laminats [17]. Die Dickenkoordinate wird durch Integration entlang
der Dicke eliminiert [18]. In diesem Zusammenhang erlauben ESL-Theorien die Darstellung ei-
nes Faserverbunds mit nur einem Element in Dickenrichtung. Die Stapelanordnung, die Dicke
und die Orientierung der einzelnen Schichten werden numerisch zu Materialeigenschaften in der
FEA [5]. Der Ansatz eignet sich für Schalen- und Kontinuumsschalenelemente. Die notwendige
Integration in Dickenrichtung kann über die Anzahl der Integrationspunkte gesteuert werden,
um die gewünschte Auflösung von Spannungen und Dehnungen zu erreichen [15]. ESL-Theorien
sind rechnerisch effizient, aber häufig ungenau bei dicken Laminaten oder beim Auftreten stark
variierender Eigenschaften zwischen Einzellagen [16]. Deuschle [15] weist darauf hin, dass ESL-
Modelle auf die Beschreibung des globalen strukturellen Verhaltens beschränkt sind. Deshalb
werden diese in dieser Arbeit nicht weiter berücksichtigt.
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2.2.2. Lagenweise Theorie

Die LW-Theorie basiert auf der vollständigen dreidimensionalen anisotropen Elastizität und wird
auf der Mesoskala angewandt [17]. Dabei wird jede Einzellage hinsichtlich Material- und Geo-
metrieeigenschaften individuell definiert und mit mindestens einem Element in Dickenrichtung
diskretisiert. Anders als bei ESL-Theorien, bei denen der Aufwand vor allem in der Materialbe-
schreibung liegt, entsteht der Aufwand bei der LW-Theorie durch die geometrische Darstellung
[15]. Im Allgemeinen liefert dieser Ansatz genauere Ergebnisse, jedoch auf Kosten eines hö-
heren Rechenaufwands, der von der gewünschten Auflösung abhängt. Zudem ermöglicht der
Ansatz die Kombination mit Modellen, die Delaminationen als diskrete Schäden darstellen. Die
LW-Modellierung eignet sich für Kontinuumsschalen- und Volumenelemente. Für eine vertiefte
Übersicht zur Entwicklung der LW-Theorie, deren numerischer Implementierung und Anwen-
dung wird auf Liew et al. [16] verwiesen.

2.3. Elementtypen
In diesem Abschnitt werden die Elemente eingeführt, die in der FEA berücksichtigt werden:
Kontinuumsschalen- und Volumenelemente. Auf eine Einführung in klassische Schalenelemente
wird verzichtet, da sie für die LW-Modellierung ungeeignet sind. Eine ausführliche Beschreibung
der Elemente ist im Abaqus Manual [19] zu finden.

2.3.1. Kontinuumsschalenelemente

Kontinuumsschalenelemente übernehmen die vereinfachte Verformungskinematik konventionel-
ler Schalen (Mindlin–Reissner-Annahmen), obwohl sie geometrisch wie 3D-Volumen aufgebaut
sind. Sie liefern robuste und genaue Ergebnisse sowohl für dünne als auch für dicke Schalen-
probleme. Diese Elemente eignen sich für ebene und Biegeprobleme sowie für schubdominierte
Belastungen senkrecht zur Schalenebene. Transversale Schubspannungen und Spannungen in Di-
ckenrichtung können im Post-Processing über Gleichgewichtsbedingungen berechnet werden [5].
Es wird empfohlen, sie nur in Fällen einzusetzen, in denen die Dickenänderung weniger als 10%
beträgt [19]. Die Abbildung eines komplexen dreidimensionalen Materialverhaltens erfordert die
Vernetzung mit Volumenelementen.

2.3.2. Volumenelemente

Volumenelemente erfassen die vollständige dreidimensionale Geometrie eines Körpers, ohne dass
vereinfachende theoretische Annahmen notwendig sind. Dadurch können alle räumlichen Spannungs-
und Dehnungsgrößen direkt ausgewertet werden, was jedoch mit erhöhtem Rechenaufwand ver-
bunden ist. Bei sachgemäßer Anwendung ermöglichen sie aufgrund der vollständigen Erfassung
des Spannungs- und Dehnungsfeldes sehr genaue und detaillierte Ergebnisse.
In der mesomechanischen Modellierung entstehen häufig sehr dünne Schichten, weshalb bei Vo-
lumenelementen unbedingt auf geeignete Seitenverhältnisse geachtet werden muss, da ihre Ge-
nauigkeit bei zu starker Verzerrung der Elementgeometrie abnimmt.

2.4. Mesoskalige Modellierung von Laminaten
Im Rahmen der mesoskaligen Modellierung wird jede Einzellage eines Faserverbundlaminats
als homogenes, transversalisotropes Kontinuum betrachtet. Durch diese Annahme werden mi-
kroskopische Spannungs- und Dehnungsfelder innerhalb der Faser- und Matrixbereiche nicht
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Abbildung 2.3: Skalenbezogene Elementformulierungen [20].

explizit aufgelöst. Der wesentliche Vorteil dieses Ansatzes liegt in seiner guten Übertragbarkeit
auf die Makroebene, weshalb die Mesoskala in ingenieurwissenschaftlichen Anwendungen eine
bevorzugte Modellierungsebene darstellt.

Abbildung 2.4: Laminat mit globalen und lagenweise lokalen x-y-z-Koordinaten [21]

Zur Beschreibung des mechanischen Verhaltens einer Einzellage wird zusätzlich zum globa-
len x-y-z-Koordinatensystem ein lokales Lagenkoordinatensystem eingeführt. Dieses ist mit den
Hauptmaterialrichtungen der jeweiligen Lage verknüpft und orientiert sich entlang der Faser-
richtung (1-Richtung), quer dazu (2-Richtung) sowie in Dickenrichtung (3-Richtung), vgl. Ab-
bildung 2.4. Die für die mesoskalige Beschreibung erforderlichen Materialparameter werden in
der Regel experimentell bestimmt. Dabei ist zu berücksichtigen, dass das Versagensverhalten
einer isolierten Lage nicht dem einer in ein Laminat eingebetteten Lage entspricht. Eingebettete
Lagen zeigen erfahrungsgemäß höhere Festigkeiten als isolierte UD-Lagen. Dieser Effekt, häufig
als In-Situ-Effekt bezeichnet [22], ist bei dünnen Lagen besonders ausgeprägt. Das Versagen der
Einzellage kann nur mithilfe geeigneter Versagenskriterien erfasst werden, die Spannungen oder
Verzerrungen auswerten, siehe Abschnitt 3.3.

In einem mehrlagigen Laminat führt das Versagen der ersten Lage (FPF, First Ply Failure) je-
doch nicht zwangsläufig zum strukturellen Versagen des Gesamtsystems (LPF, Last Ply Failure),
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weil bei geeigneter Faserorientierung die Last umverteilt werden kann. Dies ist beispielsweise bei
Matrixversagen der Fall, bei dem die Fasern weiterhin in der Lage sind, höhere Lasten zu tragen.
Abbildung 2.5 zeigt schematisch den Verlauf einer Kraft-Dehnungskurve unter Berücksichtigung
von FPF und LPF. Der Bereich zwischen FPF und LPF wird durch eine progressive Schädigungs-
analyse beschrieben. Dadurch können sowohl Nichtlinearitäten, die bereits vor FPF auftreten, als
auch Lastumverteilungen erfasst werden. Beide Ansätze haben spezifische Anwendungsbereiche
und können modular kombiniert werden [5].

Abbildung 2.5: Schematische Darstellung des Kraft-Verschiebungsverlaufs zur Verdeutlichung des Un-
terschieds zwischen FPF und LPF.

Mehrere umfassende Studien [23–26] zeigten die Leistungsfähigkeit von FPF-Theorien, die Schü-
cker et al. [21] als die am häufigsten verwendete Methode zur Versagensvorhersage von Faserver-
bunden bezeichneten. Die weite Verbreitung dieser Theorien wird auf ihre hohe Recheneffizienz
und die geringe Anzahl erforderlicher Materialparameter zurückgeführt. Zudem liefern mecha-
nismenbasierte bzw. phänomenologische Versagenskriterien zuverlässige Festigkeitsvorhersagen
und Informationen über die zu erwartende Versagensart.

2.5. Intralaminares Verhalten
Eine möglichst realitätsnahe Modellierung von Faserverbunden muss die experimentell beob-
achtete Materialantwort berücksichtigen. Zur experimentellen Charakterisierung von Faserver-
bundlaminaten kommen üblicherweise zwei Vorgehensweisen zum Einsatz: Entweder wird der
Spannungs-Dehnungs-Verlauf eines bereits geschädigten Laminats analysiert oder die Entste-
hung und Ausbreitung von Zwischenfaserbrüchen systematisch erfasst. Die Erfassung des glo-
balen Laminatverhaltens liefert lediglich eine gemittelte Steifigkeitsabnahme und erlaubt keine
eindeutige Zuordnung zu einer bestimmten Versagensart, da verschiedene nichtlineare Materi-
almechanismen ursächlich sein können. Die Beobachtung einzelner Schädigungsereignisse setzt
hingegen sichtbare Risse voraus, weshalb meist nur durchgehende Risse über die Dicke einer La-
ge gezählt werden. Der Rissfortschritt wird typischerweise mikroskopisch untersucht – entweder
in situ mittels zerstörungsfreier Verfahren oder nach dem Versuch anhand entnommener Proben
[27].

Das intralaminare Verhalten beschreibt die mechanischen Eigenschaften einer einzelnen Lage bis
zu deren Versagen. Entlang der Faserrichtung bestimmen vor allem die Festigkeitseigenschaften
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der Fasern das Antwortverhalten, während quer zur Faser sowie im Schub die Matrixeigenschaf-
ten dominieren. Grundsätzlich treten zwei Versagensmechanismen auf: Faserbruch (FF, Fiber
Failure) und Zwischenfaserbruch (IFF, Inter Fiber Failure). Diese Mechanismen sind für Zug-,
Druck- und Schubbelastungen definiert und werden in Abbildung 2.6 dargestellt.

Abbildung 2.6: Versagensarten in einer UD-Lage [20]

Es ist anzumerken, dass Faserbruch aufgrund der in der Regel spröden Faserwerkstoffe sehr
schlagartig eintritt und häufig weitere gravierende Schädigungen in angrenzenden Lagen sowie
ein nachfolgendes Strukturversagen verursacht. Die zusätzliche Lastaufnahme zwischen FPF
und LPF ist daher meist gering, weshalb die detaillierte Modellierung von Faserbruch in vielen
Anwendungen als nachrangig bewertet wird [21]. In dieser Arbeit werden jedoch unidirektionale
Faserverbunde mit unterschiedlichen Schrägfaserwinkeln untersucht. Dementsprechend ist eine
ausführliche Analyse des faser- und matrixdominierten Verhaltens sinnvoll und Gegenstand des
nächsten Abschnitts.

2.5.1. Faserdominiertes Verhalten

Unter Faserbruch wird nicht das frühzeitige, statistische Reißen einzelner Fasern verstanden,
das bereits bei etwa 50–70% der maximalen Faserfestigkeit auftreten kann, sondern das nahezu
gleichzeitige Versagen eines Großteils der Fasern innerhalb einer Lage. Dieser Modus führt zu
einem abrupten Versagen entlang einer zur Faserrichtung orientierten Ebene. Wird die Lage als
homogenisiertes Material betrachtet, beziehen sich Faserbruchkriterien auf die maximal tragfä-
hige longitudinale Belastung. In Faserrichtung zeigt die Lamina ein deutlich unterschiedliches
Verhalten unter Zug- bzw. Druckbelastung. Unter Zugbeanspruchung entsteht der Bruch auf ei-
ner zur Faserrichtung senkrechten Ebene, wobei die Lastaufnahme überwiegend durch die Fasern
erfolgt. Dabei lassen sich teilweise leichte Steifigkeitszunahmen beobachten, die auf verschiedene
Mechanismen wie geometrisch bedingte Dehnungseffekte oder eine verbesserte Orientierung der
Graphitstrukturen in Kohlenstofffasern zurückgeführt werden [20].

Das Verhalten der Fasern unter Druck ist im Vergleich zur Zugbeanspruchung weniger umfas-
send untersucht. In den meisten Fällen bauen Fasern Drucklast nicht durch Bruch, sondern durch
Instabilitäten (Knicken) ab. Je nach Materialsystem und Faservolumenanteil kann dieser Me-
chanismus auf unterschiedlichen Größenskalen auftreten – von lokal begrenztem Mikroknicken
bis hin zu makroskopischem Kinking, bei dem größere Faserareale gemeinsam ausknicken.
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Abbildung 2.7: Kinkbande in IM7/8551-7 [28].

Schultheisz et al. [28] führten eine detaillierte Analyse des Faserverhaltens unter Druck durch.
Mikroknicken wurde dabei als häufigste Versagensart in Verbundwerkstoffen mit steifen Fasern
und Matrix identifiziert. Zudem wurde festgestellt, dass Mikroknicken bei Verbundwerkstoffen
mit hohem Faseranteil primär durch die Schubsteifigkeit der Matrix bestimmt wird. Anders als
im Zugversagensfall, bei dem die Fasern die Tragfähigkeit dominieren, hat unter Druckbeanspru-
chung insbesondere die stützende Wirkung der Matrix einen wesentlichen Einfluss auf das Last-
abtragverhalten [15]. Es konnte gezeigt werden, dass Fertigungsdefekte wie Faserfehlstellungen
Mikroknicken begünstigen [29]. Hierfür wurden Proben mittels optischer Mikroskopie vermessen
und lokale Faserwinkel bestimmt; die Methode wurde später auf CT-Bildgebung ausgeweitet
[30]. Die Ergebnisse zeigten, dass Prepreg-Verfahren im Vergleich zu Injektionsmethoden eine
bessere Faserausrichtung erzielen.

Faserfehlstellungen lassen sich je nach Größenordnung in Lagenfehlstellungen und Einzelfaser-
fehlstellungen unterscheiden. Lagenfehlstellungen, häufig als Faser- oder Lagenwelligkeit sowie
Faltenbildung bezeichnet, treten in Dickenrichtung deutlich hervor und werden meist in klar
definierten geometrischen Formen wie Sinuswellen modelliert [31]. Fedulov et al. [32] zeigten
mittels Finite-Elemente-Analysen eine Drucksteifigkeitsreduktion von bis zu 49% für CFRP.
Experimentelle Untersuchungen von Wilhelmsson et al. [33] bestätigten ähnliche Ergebnisse bei
einer Faserfehlausrichtung von 6°. Eine umfassende Übersicht fertigungsbedingter Defekte und
deren Auswirkungen findet sich in [34].

2.5.2. Matrixdominiertes Verhalten

Zwischenfaserbrüche werden sowohl durch Zug- und Druckbelastungen orthogonal zur Faserrich-
tung als auch durch Schubbeanspruchungen verursacht. Sie bezeichnen makroskopische Rissbil-
dungen, die sich als faserparallel orientierte Trennflächen über die gesamte Dicke einer Lage
ausbreiten und erst an versetzt angeordneten Fasern benachbarter Lagen gestoppt werden [20].
Die Ursache liegt auf mikroskopischer Ebene in der Ablösung von Fasern aus der Matrix oder
der Initiierung kleiner Mikrorisse. Diese entstehen häufig bereits während des Aushärtungspro-
zesses der Matrix: Die Schrumpfung des Harzes sowie die unterschiedlichen thermischen Aus-
dehnungskoeffizienten von Faser und Matrix erzeugen Eigenspannungen, die Mikrorissbildung
begünstigen. Diese Mikrorisse können sich unter Belastung weiter ausbreiten (siehe Abbildung
2.8). Die resultierenden Aufweitungen der Risse führen zu einer Reduktion der Steifigkeit, was
die Gefahr von Delaminationen an Lagenübergängen erhöht [35].
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Abbildung 2.8: In-situ-Beobachtung des Wachstums eines Mikroschadens mittels Laser-Rastermikroskop
(a bis c), der schließlich zu einem Zwischenfaserbruch infolge einer Zugspannung σ2 führt
(d); Nahaufnahmen: (i) REM-Aufnahme vor der Rissspitze, (ii) beginnende Mikrodella-
minierung [15].

Puck [36] zeigte, dass geneigte Risse nur entstehen, wenn das Verhältnis aus transversaler Druck-
spannung zu Schubspannung einen kritischen Grenzwert überschreitet. Die größte Neigung der
Bruchfläche tritt bei reiner transversaler Druckspannung auf und liegt typischerweise zwischen
45° und 55°. Das Verhalten wird durch die Orientierung der Bruchebene charakterisiert und die
Richtung der Rissaufweitung in der Literatur [15, 36] durch den Bruchwinkel θfp beschrieben,
siehe Abbildung 2.10. Höhere Neigungswinkel werden nur unter triaxialen Spannungszuständen
beobachtet.

Abbildung 2.9: Matrixdominiertes Versagen in einer Einzellage unter Druck und Orientierung der Bruch-
ebene [21].

Ähnlich wie bei Faserbrüchen bedeutet das Auftreten von Zwischenfaserbrüchen nicht zwangs-
läufig einen sofortigen Verlust der strukturellen Integrität. Dieser tritt erst ein, wenn das Lami-
nat in den Bereich der Entfestigung gelangt. Dieser Bereich ist nicht explizit in der Abbildung
2.10 dargestellt, wird jedoch durch eine steile Entfestigung nach dem Punkt C vorgestellt. Der
Bereich der Entfestigung ist nicht Gegenstand der Forschung dieser Arbeit, weshalb hier nicht
tiefer darauf eingegangen wird. Wie bereits erwähnt, treten Zwischenfaserbrüche nicht schlagar-
tig sondern bauen sich allmählich auf. Die Entwicklung matrixdominierter Schädigung in einer
Laminatlage lässt sich in drei Abschnitte gliedern. Zunächst zeigt die Lage trotz vorhandener
Mikrodefekte ein nahezu elastisches Verhalten. Das ist schematisch bis Punkt A in Abbildung
2.10) dargestellt. Je nach Laminataufbau können jedoch bereits erste Abweichungen von der
Linearität auftreten.
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Abbildung 2.10: Schematische Darstellung zur Aufweitung von Rissen in der Matrix: A) bestehende und
wachsende Mikrorisse, B) erster Makroriss, C) Totalversagen.

Mit zunehmender Beanspruchung setzt ab Punkt A ein deutlich nichtlineares Verhalten ein, das
durch die Ausbreitung bestehender Mikrorisse, zusätzliche Matrixschädigungen sowie plastische
Deformationen verursacht wird. Die fortschreitende Mikrostrukturdegradation führt schließlich
zu Punkt B, an dem der erste makroskopisch erkennbare Zwischenfaserbruch entsteht. Bei weiter
steigenden Dehnungen nimmt die Anzahl dieser Makrorisse zu, wodurch die Steifigkeit weiter
abfällt, bis in Punkt C das vollständige Versagen der Laminatlage eintritt. In diesem fortge-
schrittenen Stadium können zudem Delaminationen initiiert werden, bevorzugt an Bereichen
mit erhöhten interlaminaren Spannungen, etwa an freien Kanten, Krafteinleitungszonen oder
stark gekrümmten Laminaten [37]. Delaminationen werden ferner durch Spannungsspitzen und
reduzierte Steifigkeiten in den Schichtgrenzen begünstigt, die wiederum auf Fertigungsfehler zu-
rückzuführen sind [38]. Einige experimentelle Studien [39, 40] zeigen, dass Delaminationen unter
monotoner Druckbelastung vernachlässigbar klein sind – insbesondere in sublaminatskalierten
Verbunden [41]. Dieser Effekt wird in der vorliegenden Arbeit nicht untersucht.

2.6. Intralaminare Nichtlinearitätsmechanismen
Ein Begriff, der in der Literatur häufig im Zusammenhang mit Nichtlinearitäten vor dem Versa-
gen auftaucht, ist die Pseudoplastizität. Experimentelle Beobachtungen zu nichtlinearem Mate-
rialverhalten vor dem Versagen sind vielfach dokumentiert [7, 9, 42–44]. Die Pseudoplastizität
ist auf Matrixeigenschaften, Faserrotationen und Mikrorisse zurückzuführen [27]. In seiner Dis-
sertation entwickelte Taubert [27] ein nichtlineares Konstitutivmodell, das das Verhalten von
CFRP in multidirektionalen Laminaten beschreibt. Drei von ihm identifizierte Nichtlinearitäts-
mechanismen werden nachfolgend kurz vorgestellt.
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Faserrotation

Experimentelle Daten in [27] zeigen, dass große Deformationen und die damit verbundene Ro-
tation der Fasern einen wesentlichen Einfluss auf die Steifigkeit besitzen. Auch Fuller et al.
[45] beschreiben einen intrinsischen Verstärkungseffekt, der auf die verformungsabhängige Neu-
ausrichtung der Fasern zurückzuführen ist. Eine Vernachlässigung dieses Effekts kann das vor-
hergesagte Spannungs-Dehnungs-Verhalten deutlich verfälschen. Darüber hinaus ist eine präzise
Erfassung lokaler Dehnungen in den einzelnen Lagen entscheidend, um die tatsächlich wirkenden
Spannungen korrekt abzuleiten und potenzielle Schädigungsmechanismen verlässlich beurteilen
zu können. Gleichzeitig beeinflusst die Faserrotation unmittelbar die Interpretation des nichtli-
nearen Laminatverhaltens, wodurch eine Fehleinschätzung anderer Materialmechanismen drohen
kann.

Nichtlineare longitudinale Elastizität

Experimente an kohlenstofffaserverstärkten Epoxiden zeigen ein nicht-hooke’sches Spannungs-
Dehnungs-Verhalten, das auf materialspezifische Eigenschaften der Fasern zurückzuführen ist
und in der Literatur ausführlich dokumentiert wurde [46–48]. Taubert argumentiert daher für
die Notwendigkeit, die belastungsabhängige Veränderung des longitudinalen Steifigkeitsmoduls
in das Konstitutivmodell zu integrieren [27]. Er verwendete hierfür einen empirischen Ansatz,
bei dem die Steifigkeit als Funktion der Dehnung in Längsrichtung berechnet wird.

Abbildung 2.11: Auswirkung des nicht-hooke’schen longitudinalen E-Moduls auf die Spannung-
Dehnungs-Vorhersage eines unidirektionalen 0°-Laminats [27].

Demnach steigt der Steifigkeitsmodul in Faserrichtung einer Einzellage proportional mit zu-
nehmender Zugdehnung und sinkt bei Druckdehnung entsprechend ab. Dieses Verhalten ist
reversibel [49].

Plastizität der Matrix

In dem hier untersuchten Faserverbundwerkstoff IM7-8552 beträgt der Matrixanteil im ausge-
härteten Zustand rund 40%, sodass die plastischen Mechanismen des duroplastischen Polymers
einen maßgeblichen Einfluss auf das nichtlineare Lagenverhalten besitzen. Das Strecken und Ent-
wirren der Polymerketten unter Last führt zu irreversiblen Formänderungen, die nach Entlastung
bestehen bleiben. Unter ebenem Spannungszustand wird die plastische Deformation jedoch nicht
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nur durch das isolierte Wirken der transversalen Spannung σ22 und der longitudinalen Schub-
spannung τ12 bestimmt, sondern hängt zusätzlich von deren möglicher Wechselwirkung ab.

Abbildung 2.12: Verschiedene Fließvorgänge in einer Einzellage in Abhängigkeit der Belastung [27].

Eine Vielzahl etablierter Plastizitätskriterien – etwa die von Hill [50] oder Drucker-Prager [51]
– beschreibt das Fließen auf Basis deviatorischer und hydrostatischer Spannungsterme und geht
damit von einem vollständig interagierenden Verhalten der Spannungsanteile aus. Für Faser-
verbunde mit hohem Faseranteil zeigt sich jedoch, dass die Fließprozesse je nach Lastrichtung
unterschiedlichen Mechanismen folgen, da plastische Verschiebungen zwischen den Fasern auf
getrennten Ebenen stattfinden. Dementsprechend können transversale Normalspannungen und
longitudinale Schubspannungen eigenständige Fließvorgänge auslösen, deren Beiträge zur plas-
tischen Dehnungsakkumulation getrennt zu betrachten sind. Modelle, die diese Trennung be-
rücksichtigen, ordnen den beiden Mechanismen spezifische Schub- bzw. Gleitebenen zu, die sich
an den für unidirektionale Laminate bekannten Bruchebenen orientieren. Während ein hydro-
statischer Druckzustand das Schubgleiten im Allgemeinen verzögert und somit die effektive
Schubfestigkeit erhöht, ist der Einfluss einer überlagerten transversalen Normalspannung auf das
Schubfließen experimentell nicht eindeutig belegt. Einige Studien zeigen eine erkennbare Modi-
fikation des nichtlinearen Schubverhaltens durch σ22, während andere Untersuchungen keinen
solchen Zusammenhang finden. Die Auswertung wird zusätzlich dadurch erschwert, dass Ne-
beneffekte wie Faserrotation das gemessene nichtlineare Verhalten überlagern können. Für die
Modellierung der Plastizität einer Einzellage bedeutet dies, dass sowohl interagierende als auch
voneinander getrennte Fließmechanismen berücksichtigt werden müssen, um plastische Dehnun-
gen unter multiaxialen Spannungszuständen zuverlässig vorherzusagen.
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3. 3D elastoplastisches Kontinuumsschädigungsmodell
Basierend auf dem dreidimensionalen Materialmodell von Völkerink et al. [3] werden in diesem
Kapitel die Bestandteile des Materialmodells erläutert. Dieses Modell ermöglicht die Abbil-
dung des nichtlinearen Materialverhaltens durch plastische Mechanismen sowie die Erkennung,
Auslösung und Berücksichtigung von Schädigungen einschließlich der damit verbundenen Stei-
figkeitsreduktion.

1 2 3

Dehnung

Sp
an
nu
ng

Abbildung 3.1: Allgemeines Materialverhalten aufgeteilt in Bereiche des Materialmodells

Das Materialverhalten kann grundsätzlich in drei Bereiche unterteilt werden, wie in Abbildung
3.1 dargestellt. Im ersten Bereich zeigt das Material ein linear-elastisches Antwortverhalten, das
mit steigender Belastung in den zweiten, plastisch dominierten Bereich übergeht. Die Plastizität
der Matrix wird mithilfe des Plastizitätsmodells nach Sun und Chen [52] beschrieben. Das Auf-
treten von Faser- und Zwischenfaserbrüchen wird durch das Versagenskriterium nach Cuntze [53]
erkannt, woraufhin die Steifigkeitsdegradation im dritten Bereich ausgelöst wird. Basierend auf
diesen drei Bereichen beschreiben die folgenden Abschnitte die zugrunde liegenden theoretischen
Konzepte der Modellbausteine zusammenfassend.

3.1. Konstitutives Modell
Das Materialmmodell wird zur Untersuchung makroskopischer Strukturen verwendet, weshalb
keine diskrete Schädigung in den einzelnen Lagen modelliert wird, sondern der Schädigungs-
ansatz von Kachanov [54] bevorzugt wird. Der Kontinuumsschädigungsansatz nach Kachanov
beschreibt Schädigungen eines Materials als homogen über ein betrachtetes Volumen verteilt.
Die Schädigung wird als isotrop angenommen und durch eine homogenisierte Reduktion der
Steifigkeit beschrieben. Die nominale Spannung σ ergibt sich im uniaxialen Fall aus der auf die
ungeschädigte Fläche A0 wirkenden Last P zu σ = P/A0.

Es wird angenommen, dass die wirksam zur Kraftübertragung verbleibende Querschnittsflä-
che im Zuge der fortschreitenden Schädigung kleiner wird. Dadurch ergibt sich eine erhöhte
effektive Spannung σ̃ = P/Aeff, da dieselbe äußere Last P auf eine reduzierte Tragfläche Aeff
wirkt.
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Das darauf aufbauende Schädigungsmodell nach Matzenmiller et al. [55] nutzt dieses Verhältnis
zwischen nominaler und effektiver Spannung zur Beschreibung der Schädigungsevolution und
der damit verbundenen Steifigkeitsabnahme. Dieser Ansatz wird von den meisten Kontinuums-
schädigungsmodellen in der Literatur verwendet [3]. Die effektive Spannung ergibt sich über den
Schadensoperator M(d) aus der nominalen Spannung:

σ̃ = M(d) σ (1)

und in Voigt-Notation:

σ =



σ11
σ22
σ33
τ12
τ23
τ13


, σ̃ =



σ̃11
σ̃22
σ̃33
τ̃12
τ̃23
τ̃13


(2)

Der in dieser Arbeit verwendete laminatspezifische Schadensoperator besitzt die Form:

M(d) = diag
[

1
1 − df

,
1

1 − dm
,

1
1 − dm

,
1

1 − ds
,

1
1 − ds

,
1

1 − dm

]
(3)

Dabei beschreiben df und dm die Schädigung aufgrund von Faserbruch bzw. Zwischenfaserbruch
unter transversaler Belastung; ds erfasst Zwischenfaserbrüche unter Schubbeanspruchung. Die
skalaren Schadensvariablen liegen zwischen 0 (ungeschädigt) und 1 (vollständig geschädigt).
Numerisch wird d auf maximal 0,99 begrenzt, um Singularitäten durch Division durch Null zu
vermeiden. Zudem unterscheiden df und dm zwischen Zug- und Druckschädigung. Reinoso et al.
[56] formulierten hierfür folgende verschmierte Schadensgrößen:

df = dft + dfc − dftdfc (4)

dm = dmt + dmc − dmtdmc (5)

Das mechanische Verhalten des Laminats wird neben der Schädigung auch durch plastische
Effekte beeinflusst. Die Gesamtdehnung ε wird daher in einen elastischen und einen plastischen
Anteil zerlegt:

ε = εe + εp (6)

Die effektive Spannung ergibt sich aus dem elastischen Dehnungsanteil über den ungeschädigten
Steifigkeitstensor C0:

σ̃ = C0 εe (7)

Unter Berücksichtigung von Gl. (1) und (7) ergibt sich die nominale Spannung zu:

σ = M(d)−1C0εe (8)
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

σ11
σ22
σ33
τ12
τ13
τ23


= M(d)−1



C1111 C1122 C1133 0 0 0
C2222 C2233 0 0 0

C3333 0 0 0
sym. C1212 0 0

C1313 0
C2323





εe
11

εe
22

εe
33

γe
12

γe
13

γe
23


Die Steifigkeitseinträge der C0 lauten:

C1111 = E11(1 − ν23ν32) Γ (9)
C2222 = E22(1 − ν13ν31) Γ (10)
C3333 = E33(1 − ν12ν21) Γ (11)
C1122 = E11(ν21 − ν31ν23) Γ = E22(ν12 − ν32ν13) Γ (12)
C1133 = E11(ν31 − ν21ν32) Γ = E33(ν13 − ν12ν23) Γ (13)
C2233 = E22(ν32 − ν12ν31) Γ = E33(ν23 − ν21ν13) Γ (14)
C1212 = G12 (15)
C1313 = G13 (16)
C2323 = G23 (17)

mit

Γ = 1
1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13

. (18)

3.2. Intralaminares Plastizitätsmodell
Die Gesamtdehnung wird wie in Gl. (6) in elastische und plastische Anteile zerlegt, wobei εp

die irreversiblen Verformungen beschreibt. Die plastischen Dehnungen sowie die unter Berück-
sichtigung der Plastizität korrigierten Spannungen werden mithilfe eines transversal-isotropen
Plastizitätsmodells mit assoziierter Fließregel bestimmt [52]. Es wird angenommen, dass plasti-
sche Dehnungen entlang der Faserrichtung vernachlässigbar sind und die transversale Isotropie
in der 2-3-Ebene gilt. Das plastische Potenzial im dreidimensionalen Fall lautet [57]:

f(σij) = 1
2
[
(σ22 − σ33)2 + 4τ2

23 + 2a(τ2
13 + τ2

12)
]

(19)

Das Potenzial basiert auf Sun und Chens mikromechanischen Beobachtungen [52], die zeigten,
dass hydrostatische Spannungen keine plastischen Verformungen verursachen. Der Parameter a
quantifiziert das Verhältnis zwischen plastischer Dehnung infolge von Schub- bzw. Normalspan-
nungsanteilen quer zur Faserrichtung und wird als anisotroper Parameter bezeichnet [52, 58].
Zur Unterscheidung zwischen elastischem und plastischem Verhalten dient die Fließbedingung:

f(σ̃, p̃) =
√

3 f − σ̄y(p̃) ≤ 0 (20)

In Matrixform gilt [59]:

F (σ̃, p̃) = 1
2 σ̃T : P : σ̃ − σ̃2

y(p̃) (21)
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mit

P =



0 0 0 0 0 0
3 −3 0 0 0

3 0 0 0
6a 0 0

sym. 6a 0
12


(22)

Die plastischen Dehnungsinkremente ergeben sich aus der assoziierten Fließregel:

dεp
ij = ∂f

∂σij
dλ (23)

Plastizität ist vollständig irreversibel und hängt von der akkumulierten plastischen Dehnung p̃
ab, da UD-Werkstoffe mit nichtlinearem Verhalten keinen klaren Streckgrenzwert zeigen [57].
Die Fließgrenze folgt einem Verfestigungsgesetz:

σ̄y(p̃) = β p̃α (24)

Damit lässt sich das plastische Verhalten eines transversal isotropen Materials mithilfe von nur
drei Parametern beschreiben, die aus Off-Axis-Versuchen bestimmt werden können. Für UD-
Druckversuche wird das Vorgehen im nächsten Abschnitt erläutert.

3.3. Versagenskriterien
Versagenskriterien definieren mathematisch, unter welchen Spannungszuständen eine Struktur
versagt. Sie ermöglichen eine nachvollziehbare Analyse möglicher Versagenszustände auf Basis
der auftretenden Spannungen. Während sich isotrope Materialien häufig an Vergleichsspannun-
gen wie Mises orientieren, erfordern anisotrope Materialien eine richtungsabhängige Formulie-
rung. Für unidirektionale Lagen wird das Versagen über eine Funktion der Form F (σ, ε, R)
beschrieben; Versagen tritt ein, wenn F ≥ 1.
In der Literatur werden differenzierende und pauschale Versagenskriterien unterschieden. Diffe-
renzierende Kriterien, wie jene von Hashin, Puck oder Cuntze, erlauben die physikalisch plausible
Trennung verschiedener Versagensmodi. Pauschalkriterien sind einfacher, jedoch weniger präzise,
werden allerdings in der Industrie aufgrund ihrer leichten Implementierbarkeit bevorzugt. Eine
umfassende Übersicht findet sich in [60]. Im Folgenden werden Hashins und Cuntzes Kriterien
vorgestellt.

3.3.1. Hashin

Hashin [61, 62] entwickelte Kriterien zur Unterscheidung von Faser- und Zwischenfaserbruch
und differenzierte später zwischen Zug- und Druckbelastung. Die Gleichungen für den 3D-
Spannungszustand lauten:
Faserbruch (FF) bei σ11 > 0: (

σ11

R
(+)
11

)2

+ τ2
12 + τ2

13
R2

12
= 1 (25)

Faserbruch (FF) bei σ11 ≤ 0:
− σ11

R
(−)
11

= 1 (26)
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Zwischenfaserbruch (IFF) bei σ22 + σ33 ≥ 0:

(σ22 + σ33)2

R
(+)2
22

+ τ2
23 + σ22σ33

R2
23

+ τ2
12 + τ2

13
R2

12
= 1 (27)

Zwischenfaserbruch (IFF) bei σ22 + σ33 < 0:

(σ22 + σ33)2

4R2
23

+ τ2
23 + σ22σ33

R2
23

+ τ2
12 + τ2

13
R2

12
+ σ22 + σ33

R
(−)
22

(
R

(−)2
22

4R2
23

− 1
)

= 1 (28)

Es ist anzumerken, dass Hashin [62] in der Formulierung des Versagenskriteriums für Zwischen-
faserbrüche auf die Überlegungen von Mohr-Coulomb basierte, welche bei Puck und Cuntze
ähnlich berücksichtigt sind. In derselben Veröffentlichung [62] hat Hashin Versagenskriterien
vorgestellt, die auf Spannungsinvarianten basieren, jedoch auf Kalibrierung durch Kurvenan-
passung und keinen physikalischen Hintergund stützten. Das World-Wide Failure Exercise II
(WWFE-II), berichtete, dass das Versagenskriterium von Hashin weniger genau als das von
Puck und Cuntze ist [63], wobei die beiden im Verlgiech mit anderen 3D-Versagenskritieren,
die höchshte Vorhersagefähigkeiten zeigten. Völkerink zeigte in seiner Arbeit [3], dass Pucks
Methode vergleichsweise ähnliche Genauigkeit mit Cuntze bei der Detektion der Schädigungsin-
itiierung liefert, jedoch deutlich längere Simulationszeiten benötigt. Aus diesem Grund wird auf
Puck hier nicht weiter eingegangen.

3.3.2. Cuntze

Cuntze und Freund [53] entwickelten das Failure Mode Concept (FMC), ein interaktives Versa-
gensmodell, das fünf unabhängige Versagensmodi für UD-Laminate unterscheidet: zwei Faser-
versagen (FF1 Zug, FF2 Druck) und drei Zwischenfaserversagen (IFF1 Zug, IFF2 Druck, IFF3
Schub).

Abbildung 3.2: Versagensmodi einer transversal isotropen UD-Lage unter dreidimensionaler Belastung
[64]

Jeder Modi wird durch eine entsprechende Festigkeit (Rt
‖, Rc

‖, Rt
⊥, Rc

⊥, R⊥‖) und eine äquivalente
Spannung, die für das Einzelversagen verantwortliche Spannung gekennzeichnet σ

‖σ
eq , σ

‖τ
eq , σ⊥σ

eq , σ⊥τ
eq , σ

⊥‖
eq .
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Es ist anzumerken, dass in der ursprünglichen Version die equivalenten Spannungen in Form von
Invarianten angegeben worden sind. In dieser Arbeit wird die Formulierung von Petersen et. al.
[64] verwendet. Jedem Modi wird ein Materialanstrengungswert (engl. Effort) Eff (mode) zuge-
ordnet.

FF1: Eff‖σ = σ1
Rt

‖
= σ

‖σ
eq

Rt
‖

(29)

FF2: Eff‖τ = σ1
Rc

‖
= σ

‖τ
eq

Rc
‖

(30)

IFF1: Eff⊥σ =
(σ2 + σ3) +

√
(σ2 − σ3)2 + 4τ2

23

2Rt
⊥

=
σ⊥σ

eq

Rt
⊥

(31)

IFF2: Eff⊥τ =
b⊥⊥

√
(σ2 − σ3)2 + 4τ2

23 + (b⊥⊥ − 1)(σ2 + σ3)
Rc

⊥
=

σ⊥τ
eq

Rc
⊥

(32)

IFF3: Eff⊥‖ =


√

b2
⊥‖I2

23−5 + 4R2
⊥‖(τ2

13 + τ2
12)2 + b⊥‖I23−5

2R3
⊥‖

1/2

= σ
⊥‖
eq

R⊥‖
(33)

mit

I23−5 = 2σ2τ2
12 + 2σ3τ2

13 + 4τ23τ13τ12.

Dabei werden die Indizes σ, τ absichtlich anstelle von t und c verwendet, um zu verdeutlichen,
dass die versagensauslösende Spannung in der äquivalenten Spannung den Brucharten Nor-
malbruch bzw. Schubbruch zugeordnet ist. Die Parameter b⊥⊥ und b⊥‖ beschreiben die innere
Reibung und werden experimentell kalibriert.
Der Beitrag eines einzelnen Versagenmodi Eff (mode) zur globalen Materialanstrengung Eff
lässt sich berechnen zu:

Effm =
5∑

i=1
Eff (mode) =

(
σ

‖σ
eq

Rt
‖

)m

+
(

σ
‖τ
eq

Rc
‖

)m

+
(

σ⊥σ
eq

Rt
⊥

)m

+
(

σ⊥τ
eq

Rc
⊥

)m

+
(

σ
⊥‖
eq

R⊥‖

)m

(34)

Der Parameter m, welcher die Interaktion der einzelnen Versagensmodis ermöglicht, verknüpft
die mechanische und probabilistische Effekte. Dessen Wert wird nicht direkt aus Materialpa-
rametern abgeleitet, sondern durch Anpassung an experimentelle Daten. Cuntze empfiehl aus
nummerischen Gründen eine ungerade Zahl zwischen 2.5 und 4, wobei in dem Bereich niedrige
Werte auf der sicheren Seite liegen sollte. Dafür wird von dem Author auch die Begrifflichkeit
- Abrundungskoeffizient auf der sicheren Seite - [53] verwendet. Solange Effm < 1 ist, gilt das
Material als intakt und verhält sich elastoplastisch. Sobald der Wert Effm ≥ 1 an einem Inte-
grationspunkt erreicht wird, wird der Schadensbeginn ausgelöst und die Steifigkeit des Materials
schrittweise reduziert. Zunächst werden die Steifigkeiten jener Versagensmodi abgebaut, deren
einzelne Materialanstrengung am höchsten ist. Sobald zusätzliche Einzelmaterialanstrengungen
ebenfalls den Wert 1 erreichen, werden auch die zugehörigen Steifigkeiten reduziert. Welche
Steifigkeiten den jeweiligen Versagensmodi zugeordnet sind, ist in der Tabelle 3.1 dargestellt
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Tabelle 3.1: Zuordnung von Versagenmodi zu Schädigungsvariablen [5]
Versagensmodi FF1 FF2 IFF1 IFF2 IFF3

Schädigungsvariable dft dfc dmt dmc ds

Durch den kontinuierlichen Ansatz des CDM wird der Schaden nicht mehr als lokalisierter Riss,
sondern als auf das jeweilige Finite-Element verteilte Größe beschrieben, welche sich auf die
räumliche Ausdehnung bezieht. Dadurch lassen sich reale Risspfade nur indirekt erfassen, indem
ganze Elemente schrittweise steifigkeitsgemindert bzw. gelöscht werden, was die makroskopische
Ausbreitung eines Risses approximiert. Im nächsten Abschnitt wird erörtert, wie die Schädi-
gungsvariablen formuliert werden.

3.4. Dehnungsgesteuerte Schadensprogression
In der Fachliteratur zur Schadensprogression in Faserverbunden wird der Fortschritt der Schä-
digung häufig über die Entwicklung der Versagensindizes der jeweiligen Initiierungskriterien ge-
steuert [56, 65–67]. Die meisten Versagenskriterien sind spannungsbasiert [68], weshalb auch die
Schädigungsprogression in der Regel spannungsgesteuert ist. Bei Berücksichtigung der Plastizi-
tät werden jedoch die maximalen effektiven Spannungen durch das Fließverhalten des Materials
eingeschränkt, siehe Gl. (21). Dies würde wiederum die Progression der Schädigung einschrän-
ken, weshalb die Schadensprogression in dieser Arbeit dehnungsgesteuert wird.
Sobald im Faserverbundwerkstoff Schädigung einsetzt, verteilt sich die Deformation nicht län-
ger homogen über das Bauteil. Stattdessen konzentrieren sich die Dehnungsinkremente zuneh-
mend in lokal begrenzten Bereichen, während große Teile der Struktur nur noch gering belastet
werden. Dieses lokalisierte Deformationsverhalten führt zur Notwendigkeit der korrekten Abbil-
dung der dissipierten Energie insbesondere in der Bruchzone. Diese Anforderung wird in der
klassischen Finite-Elemente-Theorie nicht ohne Weiteres erfüllt, weil die dissipierte Energie mit
zunehmender Verfeinerung der Vernetzung künstlich abnimmt [69]. Damit einhergehend ist eine
deutliche Abhängigkeit der Lösung von der Elementgröße ersichtlich. Kleinere Elemente führen
nicht zwangsläufig zu einer konvergenten oder physikalisch sinnvollen Antwort.
Um diese Problematik zu vermeiden, wird die Energiefreisetzungsrate über den Rissband-Ansatz
(CBA. Crack Band Approach) nach Bažant [70] regularisiert, ähnlich wie bei dem Berechnungs-
modell von Lapczyk und Hurtado [71]. Die material- und modusspezifische Energiefreisetzungs-
rate gM beschreibt die Energie, die für die Ausbreitung eines Risses erforderlich ist bzw. wäh-
renddessen freigesetzt wird:

gM = GM

Lc
mit M ∈ {ft, fc, mt, mc, s} (35)

Dabei ist GM der Bruchwiderstand für den Modus M und LC die charakteristische Elementlänge,
welche folgendermaßen berechnet wird:

Lc,abq =
√

Vel
tLage

(36)

Das Volumen des Elements Vel sowie die Dicke einer Lage tLage sind bekannte Modellgeometrien.
Darüber wird die äquivalente und elementspezifische Dehnung berechnet:

δ = ε

Lc
(37)
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Jede Schädigungsvariable wird mit der folgenden Gleichung berechnet:

dM =
δf

M,eq

(
δM,eq − δ0

M,eq

)
δM,eq

(
δf

M,eq − δ0
M,eq

) with δ0
M,eq ≤ δM,eq ≤ δf

M,eq. (38)

Dabei beschreibt die äquivalente Dehnung δ0
M die Dehnung bei der die die Schädigungsinitierung

erfolgt. Folglich wird die effektive Spannung mit Gl. (37) berechnet. Die äquivalente Dehnung
beim totalen Versagen δf

M,eq, welche dem dM = 1 entspricht, lässt sich berechnen:

δf
M,eq = 2GM

σ0
M Lc

. (39)

In der Abbildung 3.3 lassen sich diese Zusammenhänge vereinfacht darstellen.

Dehnung

Sp
an
nu
ng

Abbildung 3.3: Schematischer Verlauf der effektiven Spannung und äquivalenten Dehnung unter Berück-
sichtigung einer linearen Steifigkeitsdegradation

Der Verlauf vor dem Schädigungsinitiierungspunkt ist rein elastisch und sobald die Dehnung den
Wert der äquivalenten Dehnung δ0

M erreicht, degradiert die Steifigkgeit in einer linearen Weise
zur Versagensdehnung δf

M
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4. Numerische Implementierung und Verifizierung
Das Konstitutivgesetz, das im Rahmen dieser Arbeit verwendet wird, ist als nutzerdefiniertes
Materialmodell VUMAT für Abaqus programmiert. Der Vorteil von expliziten Modellen im Ver-
gleich zu impliziten Lösungsverfahren besteht darin, dass ausgeprägtes nichtlineares Verhalten
bei relativ geringem Implementierungsaufwand stabil abgebildet werden kann. Dabei ist zu be-
achten, dass die Konvergenz bei expliziten Verfahren nur bei ausreichend kleinen Zeitschritten
gewährleistet ist. In diesem Abschnitt erfolgt die Beschreibung des von Völkerink [3] entwickelten
Materialmodells mit den Erweiterungen, die von Makiela [6] vorgeschlagen wurden. Zur Vali-
dierung wird das Material IM7/8552 verwendet, welches häufig in der Luftfahrt eingesetzt wird.
Die dazugehörigen Materialparameter werden ausführlich im nächsten Abschnitt beschrieben.

4.1. Einbindung der VUMAT in den expliziten Berechnungsprozess
Bei der expliziten Zeitintegration werden die Bewegungsgleichungen zunächst zum Zeitpunkt
tn formuliert und anschließend zur Bestimmung des Systemzustands zum darauffolgenden Zeit-
punkt tn+1 fortgeschrieben. Die Festlegung der zulässigen Zeitschrittgröße erfolgt automatisch
durch die FE-Software und hängt unter anderem vom Elastizitätsmodul, der kleinsten Element-
kante, der Materialdichte sowie gegebenenfalls von der Querkontraktionszahl ab.

Im Verlauf der Simulation wird die Berechnungsroutine für jedes Element, in jedem Inkrement
und an jedem Integrationspunkt aufgerufen. Ziel dieser Routine ist es, die mechanische Antwort
des Elements auf die anliegende Verformung zu bestimmen. Hierfür erhält die VUMAT verschie-
dene Eingabeparameter wie Materialdaten, den Deformationsgradienten sowie gegebenenfalls
Dehnungen, Dehnungsinkremente und interne, lösungsabhängige Zustandsvariablen (SDV, Sta-
te Data Variables). Nach der Ausführung der in der VUMAT implementierten Berechnungslogik
werden die resultierenden Spannungen und aktualisierten SDV an die FE-Software zurückgege-
ben und in den weiteren Berechnungsschritten berücksichtigt. Die Funktionsweise der VUMAT
innerhalb eines expliziten FE-Berechnungsverfahrens ist in Abbildung 4.1 schematisch darge-
stellt.

Seite 23



4. Numerische Implementierung und Verifizierung

Abbildung 4.1: Flussdiagramm eines expliziten Berechnungsverfahrens angelehnt an [6]

4.2. Berechnungsalgorithmus bei Annahme kleiner Dehnungen
Zu Beginn jedes Inkrements werden die elastische Dehnung εe

n und die plastische Dehnung εp
n

sowie das Dehnungsinkrement ∆ε, die äquivalente plastische Dehnung p̃n und die Spannung aus
dem vorherigen Inkrement σn herangezogen. Darauf aufbauend wird die effektive Spannung zum
Zeitpunkt n durch Gl. (1) berechnet. Aus diesen Informationen wird ein elastischer Prädiktor
bestimmt, der eine Testdehnung εtrial

n+1 und eine zugehörige Testspannung σ̃trial
n+1 umfasst.

Die Testspannung dient der Überprüfung des Fließkriteriums. Liegt ein elastisches Inkrement
vor, werden die Spannungen und Dehnungen für den Zustand n + 1 direkt aus dem Prädiktor
übernommen. Tritt plastisches Verhalten auf, müssen hingegen die tatsächliche effektive Span-
nung σ̃n+1 sowie die im Inkrement akkumulierte plastische Dehnung neu berechnet werden. Die
effektive Spannung ergibt sich als Funktion der Testdehnung:

σ̃n+1 = (I + ∆λ DeMP )−1 σ̃trial
n+1 (40)

Dabei bezeichnet I die Identitätsmatrix, ∆λ den plastischen Multiplikator und De die elas-
tische Nachgiebigkeitsmatrix. Die äquivalente plastische Dehnung des Inkrements n + 1 wird
anschließend anhand einer ergänzenden Gleichung bestimmt. Die zuvor formulierte Spannungs-
aktualisierung bildet die Grundlage für die Bestimmung der äquivalenten plastischen Dehnung
im Inkrement n + 1. Hierzu wird der Wert des vorangegangenen Schritts um einen zusätzlichen
Beitrag erweitert, der vom plastischen Multiplikator ∆λ sowie den effektiven Spannungsgrößen
abhängt. Dieser Beitrag ergibt sich aus der folgenden Beziehung:

p̃n+1 = p̃n + ∆λ
√

(P · σ̃n+1)T : Z : (P · σ̃n+1). (41)

Seite 24



4. Numerische Implementierung und Verifizierung

Dabei beschreibt die Matrix Z eine Abbildungsgröße, welche die relevanten Spannungsanteile
in skalierte Komponenten überführt. Sie weist eine symmetrische Struktur auf:

Z =



0 0 0 0 0 0
2
3 −1

6 −1
6 0 0 0

2
3 −1

6 −1
6 0 0 0

1
3a 0 0

sym. 1
3a 0

1
6


. (42)

Da der plastische Multiplikator ∆λ in allen zuvor eingeführten Ausdrücken als einzige unbe-
kannte Größe verbleibt, wird für seine Bestimmung ein Return-Mapping-Algorithmus (RMA)
eingesetzt. Dieser wurde für zweidimensionale Spannungszustände in [67] verwendet und ur-
sprünglich in [59] entwickelt. Der plastische Multiplikator ∆λ dient zur Korrektur des elasti-
schen Prädiktors, sodass sowohl elastische als auch plastische Effekte konsistent berücksichtigt
werden. Unabhängig davon, ob das betrachtete Inkrement elastisch bleibt oder eine plastische
Anpassung erfährt, wird im nächsten Schritt das Versagenskriterium eingeleitet. Im Laufe die-
ser Arbeit wurde festgestellt, dass das Versagenskriterium von Cuntze die Schädigung besser
abbilden kann. Die Erkenntnisse dazu werden im Abschnitt 4.11 detailliert erläutert. In die-
sem Zusammenhang wird im Flussdiagramm in Abbildung 4.2 nur auf Cuntze angedeutet. Die
Schädigungsvariablen dft, dfc, dmt, dmc und ds werden nur dann aktualisiert, wenn die globale
Materialanstrengung Effm gleich oder größer als 1 wird. Danach werden die elastischen sowie
plastischen Dehnungsanteile bestimmt und der nominale Spannungsvektor σn+1 unter Berück-
sichtigung der aktualisierten Schädigungsgrößen neu berechnet. Abschließend gibt die Routine
die aktualisierten Zustandsvariablen zurück. In der nächsten Abbildung wird der Berechnungs-
ablauf für jedes Inkrement an jedem Integrationspunkt dargestellt.
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Abbildung 4.2: Flussdiagramm der VUMAT-Subroutine in Anlehnung an [3].
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In der Abbildung 4.2 werden die notwendigen Rechenschritte der VUMAT-Subroutine darge-
stellt. Diese Schritte müssen an jedem Integrationspunkt für jedes Inkrement der Simulation
durchlaufen werden. Die grauen Kästchen beschreiben den RMA-Algorithmus, welcher wesent-
licher Bestandteil der oben dargestellte VUMAT-Subroutine ist. Eine ausführliche Herleitung
der Abbildungsmatrix Z sowie der genannten Gleichungen ist nicht Anspruch dieser Arbeit und
lässt sich in [67] finden.

4.3. Bestimmung von Materialparametern
Die Überprüfung der Fähigkeiten des Materialmodells bedarf möglichst genauer Materialpara-
meter. Diese umfassen die Materialkennwerte sowie die Plastizitäts- und Reibungsparameter.
Im Folgenden wird eine Übersicht dieser Parameter und deren Herkunft dargestellt.

4.3.1. Materialkennwerte

Im Rahmen dieser Arbeit konnten keine experimentellen Versuche durchgeführt werden, deshalb
stellte sich eine sorgfältige Aufbereitung der Materialparameter aus verschiedenen Quellen als
notwendig heraus. Die Ergebnisse zur Verifizierung und Validierung des Materialmodells werden
in Tabelle 4.1 dargestellt:

Tabelle 4.1: Materialparameter IM7/8552

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23
154,5 GPa 8,4 GPa 5,6 GPa 2,8 GPa 0,34 0,49

[72] [73] [73] [73] [73] [73]

Rt
‖ Rc

‖ Rt
⊥ Rc

⊥ R⊥‖
2560,0 MPa 1017,0 MPa 73,0 MPa 255,0 MPa 89,0 MPa

[73] [72] [73] [73] [73]

Gft Gfc Gmt Gmc Gs

92,0 N/mm 80,0 N/mm 0,24 N/mm 0,739 N/mm 0,739 N/mm
[72] [73] [74] [74] [74]

4.3.2. Plastizitätsparameter

Das Besondere am Plastizitätsmodell von Sun und Chen [52] ist die pragmatische Art, das plas-
tische Verhalten bei Berücksichtigung der transversalen Isotropie mit lediglich einem Parameter
abzubilden. Das Modell wurde für 3D-Spannungszustände von Weeks und Sun [57] erweitert und
zeigte gute Übereinstimmung mit experimentellen Versuchen an zugbelasteten Prüfkörpern, wie
bei [3] dargestellt wurde. Der Plastizitätsparameter wird durch eine iterative Methode mittels
Kurvenanpassung an experimentelle Versuche bestimmt. Es ist zu erwähnen, dass ein explizites
Verfahren zur Berechnung dieses Parameters in [39] vorgestellt wird, jedoch wenig von anderen
Autoren behandelt wird [20]. Deshalb wird in dieser Arbeit die iterative Methode verwendet,
die auch dem Standardvorgehen von Sun und Chen entspricht. Im nächsten Abschnitt wird das
Verfahren zur Berechnung der Plastizitätsparameter a66 anhand von Daten aus Versuchen an
druckbelasteten Prüfkörpern mit Schrägfaserwinkeln (OAC, Off-Axis-Compression) [7] beschrie-
ben.

Seite 27



4. Numerische Implementierung und Verifizierung

0.00 0.02 0.04 0.06 0.08
Dehnung [%]

0

50

100

150

200

250

300

350

400
Sp

an
nu

ng
 [M

Pa
]

15°
30°
45°
60°
75°
90°

Abbildung 4.3: Experimentelle Kurven für Schrägfaserwinkelversuche, extrahiert aus [7]

Diese Kurven stellen jedoch keine streng gemittelten Werte dar, da sie mithilfe des Tools Web-
PlotDigitizers extrahiert wurden. So fällt z. B. auf, dass der Verlauf für den Schrägfaserwinkel
θoff = 45° im Bereich 1–2 % Dehnung über zwei Knicke verfügt. Nichtsdestotrotz werden sie für
eine erste Bewertung des Parameters a66 als solche angesehen und nach Durchführung eigener
Versuche angepasst.

Parameterbestimmung nach Sun & Chen

Unter Berücksichtigung des Schrägwinkels θoff lassen sich die in Lastrichtung gemessenen Span-
nungen σx in das Materialkoordinatensystem überführen:

σ11 = cos2(θoff)σx, σ22 = sin2(θoff)σx, σ12 = − sin(θoff) cos(θoff)σx (43)

Für den ebenen Spannungszustand lassen sie sich zur effektiven Spannung σ̃ zusammenfassen:

σ̃ =
√

3
2
(
σ2

22 + 2a66σ2
12
)

(44)

Durch Einsetzen von Gl. 43 in 44 lässt sich über die Transformationsfunktion h(Θoff , a66) der
Zusammenhang herstellen:

σ̃ = h(Θoff , a66) σx (45)

mit:

h(Θoff , a66) =
√

3
2
(
sin4(Θoff) + 2a66 sin2(Θoff) cos2(Θoff)

)
(46)
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In ähnlicher Weise lassen sich die gemessenen Dehnungen in das Materialkoordinatensystem
überführen. Unter Berücksichtigung der Zerlegung der Dehnungsanteile wie in Gl. (6) sowie des
Elastizitätsmoduls Ex in Lastrichtung lassen sich die plastischen Dehnungen wie folgt berechnen:

εp
x = εx − σx

Ex(θoff ) (47)

Es ist anzumerken, dass Ex das Elastizitätsmodul in Belastungsrichtung für den jeweiligen
Schrägfaserwinkelversuch beschreibt. Die plastische Dehnung in Belastungsrichtung lässt sich
ins Materialkoordinatensystem überführen:

ε̃ p = εp
x

h(θoff , a66) (48)

Mithilfe von Gl. (45) und (48) sowie der Transformationsfunktion lassen sich für die experimen-
tellen Datenpaare (σx, εx) sechs transformierte und winkelunabhängige Kurven der Form σ̃(ε̃p)
herleiten. Bei idealer Betrachtung fallen diese Kurven zu einer Masterkurve zusammen [3]. Zur
Ermittlung der Masterkurve wird ein Potenzgesetz verwendet, welches die isotrope Verfestigung
beschreibt:

ε̃p = A σ̃n, (49)

Die Koeffizienten A und n werden mithilfe der Methode der kleinsten Quadrate bestimmt,
und das Skript dazu lässt sich im Anhang finden. Die Güte der Regression wird basierend auf
dem Bestimmtheitskoeffizienten R2 für den Parametersatz (a66, A, n) bewertet, wobei A und
n als Koeffizienten angesehen werden, welche aus dem optimalen Plastizitätsparameter a66,opt

ermittelt werden:

a66,opt → R2(a66, θ, A, n)max, a66 ∈ [a66,min, a66,max]. (50)

Die Parameter der Verfestigungsfunktion α und β beschreiben die Verfestigung als Potenzgesetz.
Dabei wird die effektive Spannung in Abhängigkeit von der effektiven plastischen Dehnung
beschrieben:

σ̃(ε̃ p) = A−1/n (ε̃ p)1/n = β (ε̃ p)α (51)

Das Vorgehen wird anhand von Abb. 4.4 verdeutlicht. Die Bereichsbestimmung stellt die erste
Aufgabe dar. Durch Trial-and-Error kann überprüft werden, ob sich ein Maximum der Re-
gressionsgüte einstellt. Tritt ein Randmaximum auf, ist der Bereich zu erweitern. Der Bereich
wird anschließend durch genügend Punkte diskretisiert, und die effektive plastische Dehnung
εp sowie die zugehörige effektive Spannung werden aus den Gleichungen (44) und (48) mithilfe
der Transformationsfunktion bestimmt. Danach erfolgt die Kurvenanpassung an Gleichung (49)
durch Variation der Parameter (A, n) nach der Methode der nichtlinearen kleinsten Quadrate.
Die Python-Bibliotheken Scipy und sklearn wurden hierzu verwendet.
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Abbildung 4.4: Flussdiagramm zur iterativen Bestimmung von a66,opt

Es ist anzumerken, dass sich die Regressionsgüte als Funktion des Plastizitätsparameters a66
darstellen lässt, wie in Abb. 4.6 gezeigt.
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Abbildung 4.5: Darstellung der Parameterbestimmung in Zusammenhang mit der Regressionsgüte

Die maximale Regressionsgüte beträgt ca. 90 %. An dieser Stelle beträgt der Plastizitätspara-
meter etwa a66,opt = 4.2, woraufhin auch die Parameter der Verfestigungsfunktion α und β
ermittelt werden können. Eine weitere nützliche Darstellung bezieht sich auf die oben genann-
te Masterkurve. Die transformierten Kurven sollen bei idealer Betrachtung in die Masterkurve
fallen.
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Abbildung 4.6: Masterkurve des Plastizitätsmodells beim berechneten Plastizitätsparameter a66,opt = 4.2

Zur Verifizierung dieses Vorgehens wurden mit den ermittelten Materialparametern 1-Element-
Versuche durchgeführt. Dabei werden aus der Literatur [73] folgende Parameter herangezogen:

Tabelle 4.2: Plastizitätsparameter IM7/8552 [73]

a66 α β
2.6 0.25 950.1

Ein Volumenelement, siehe Abb. 4.8, wird unter transversaler Druckbelastung geprüft. Der Ein-
fluss der Plastizitätsparameter auf die Materialantwort wird in Abb. 4.9 dargestellt:
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Abbildung 4.7: 1-Element-Modell unter transversaler Druckspannung

Es scheint, als ob das Materialmodell mit den Plastizitätsparametern aus der Literatur [73]
die experimentellen Werte des Prüfkörpers unter transversaler Druckbelastung besser abbildet.
Die Abweichung kann grundsätzlich mit der Art der Extrahierung der experimentellen Daten
durch das Tool WebPlotDigitizer begründet werden. Bei sorgfältiger Verwendung des Tools und
korrekter Implementierung des Kalibrierungalgorithmus, siehe Abb. 4.4, lassen sich Abweichun-
gen in den berechneten Plastizitätsparametern lediglich durch Abweichungen in den experimen-
tell ermittelten Spannungsantworten begründen. Im Rahmen dieser Arbeit weder vom Author
noch von anderen DLR-Beschäftigten keine eigene Experimente zu rein uniaxial druckbelasteten
IM7/8552-Proben, weshalb die Daten aus der Literatur mithilfe von WebPlotDigizer extrahiert
worden sind. Zur Verifizierung des Kalibrierungsalgorithmus wurden weitere Untersuchungen
mit Messdaten aus zugbelasteten Prüfkörpern herangezogen, die hier nicht berichtet worden
sind. Es konnte gezeigt werden, dass die Verwendung des Webplotdigitizers keinen wesentlichen
Einfluss auf die Ermittlung von möglich genauen Plastizitätsparametern hat, wie sie bei Ver-
wendung von explizit gemessenen Spannungsantworten erwartet werden.

Es ist erwähnenswert, dass Xue et al. ein auf Drucker–Prager basiertes Fließkriterium verwen-
deten, welches hydrostatische Druckspannungen berücksichtigt. Zudem wurde der Effekt der
Zug- und Druckasymmetrie im Fließkriterium berücksichtigt und damit weitere Materialpara-
meter eingeführt. Diese beeinflussen sich gegenseitig hinsichtlich der Bestimmung der Regres-
sionsgüte und des anisotropischen Parameters. Im Abschnitt 4.5 wird die Simulationsmethode
von 1-Element-Versuchen als Verifizierungsmittel verwendet, um Erkenntnisse darüber zu er-
halten, welcher anisotropischer Plastizitätsparameter experimentelle Ergebnisse besser abbildet.
Eine systematische Untersuchung der Plastizitätsparameter durch Simulationen von 1-Element-
Versuchen ist erst bei Festlegung der Cuntze Parameter möglich.

4.4. Parameterbestimmung von Cuntze-Reibwerten
Für das Versagenskriterium von Cuntze werden zusätzliche materialabhängige Parameter be-
nötigt. Diese beziehen sich neben den üblichen Festigkeiten auf die innere Reibung. Petersen
et al. [64] führten Arcan-Versuche durch, damit im Material möglichst reine IFF2- und IFF3-
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Spannungszustände entstehen. In den fünf Versagensformulierungen von Cuntze ist der Einfluss
der Reibungsparameter nur in den beiden genannten Versagensmodi vorhanden. Bis zum Zeit-
punkt der Verfassung dieser Arbeit wurden keine experimentellen Versuche zur Ermittlung die-
ser Parameter für das Material IM7/8552 durchgeführt. Nichtsdestotrotz konnte Völkerink [5]
in seiner Dissertation zeigen, dass die von Petersen et al. [64] ermittelten Werte für das Material
M21-T700GC sich grundsätzlich auch für IM7/8552 eignen, da beide Materialien eine gehärtete
Epoxidmatrix besitzen. Die zur Berücksichtigung der Reibung benötigten Materialparameter in
Cuntzes Versagenskriterium sind in der folgenden Tabelle dargestellt:

Tabelle 4.3: Cuntzes Parameter für IM7/8552

b⊥‖ b⊥⊥ m

2.6 0.25 950.1

4.5. Modellverifizierung durch 1-Element-Versuche
Das Ziel der 1-Element-Versuche (SET, Single Element Testing) ist die Überprüfung der Fä-
higkeit des Modells, die analytische Bruchkurve zum Matrixversagen abzubilden. Aufbauend
auf diesem Zweck erfolgt die grundlegende Modellverifizierung anhand isolierter, repräsentativer
Einzelelemente, die als vereinfachte Spezialfälle dienen. Durch die Untersuchung eines einzel-
nen Elements können die verschiedenen Modellbestandteile getrennt bewertet werden, wodurch
mögliche Inkonsistenzen besonders schnell und eindeutig identifiziert werden können.

K1K2

K3 K4

K5K6

K7 K8
x, 0°

y, 90°
z

RP

Abbildung 4.8: Darstellung eines 1-Element-Modells

Für diese Validierung wird ein einzelnes C3D8R-Volumenelement mit einer Kantenlänge von
1 mm herangezogen (vgl. Abbildung 4.8). Die Simulation erfolgt mit variabler Zeitschrittweite,
wobei maximale und minimale Inkrementgrößen vorgegeben werden. Um im Element möglichst
reine eindimensionale Spannungszustände zu realisieren, werden periodische Randbedingungen
zur kontrollierten Umsetzung von Lagerung und Belastung eingesetzt. Für die Implementierung
dieser Randbedingungen wird das Abaqus-Plug-In EasyPBC nach Omairey et al. [75] verwendet.
Dieses koppelt die Freiheitsgrade der relevanten Knotenpunkte sowohl untereinander als auch
mit einem Referenzpunkt RP , über dessen Verschiebung die äußere Last eingeleitet wird.
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1

2

Abbildung 4.9: Darstellung eines 1-Element-Modells unter Druckbelastung und periodischen Randbedin-
gungen

Die Knotenverschiebungen und Randbedingungen, die über den Referenzpunkt eingeleitet wer-
den, sind in Abbildung 4.9 dargestellt. Dabei beschreibt φ0 die Faserausrichtung zur Belastung
bzw. den Schrägfaserwinkel, welcher von 0° bis 90° in 15°-Schritten variiert wird. Im vorheri-
gen Abschnitt wurde die Materialantwort unter transversaler Druckbelastung betrachtet. Im
Folgenden werden die Materialantworten weiterer Schrägfaserwinkelversuche dargestellt:

Seite 34



4. Numerische Implementierung und Verifizierung

0.00 0.01 0.02 0.03
Dehnung in %

0

50

100

150

200

250

300

350
Sp

an
nu

ng
 in

 M
Pa

30° (a= 4.2)
30° (a=2.6)
Experiment

0.00 0.02 0.04 0.06 0.08
Dehnung in %

0

50

100

150

200

250

Sp
an

nu
ng

 in
 M

Pa

45° (a= 4.2)
45° (a=2.6)
Experiment

0.00 0.02 0.04
Dehnung in %

0

50

100

150

200

250

Sp
an

nu
ng

 in
 M

Pa

60° (a= 4.2)
60° (a=2.6)
Experiment

0.00 0.01 0.02 0.03 0.04
Dehnung in %

0

50

100

150

200

250

Sp
an

nu
ng

 in
 M

Pa

75° (a= 4.2)
75° (a=2.6)
Experiment

Abbildung 4.10: Experimentelle und numerische Ergebnisse für unidirektionale Faserverbunde mit un-
terschiedlichen Schrägfaserwinkeln basierend auf 1-Element-Modellen

Die blaue Kurve, welche die Literaturparameter darstellt, scheint die experimentelle Kurve in
Schwarz grundsätzlich besser abzubilden. Dies ist mit Ausnahme der 60°-Probe in Abbildung
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4.10 ersichtlich. Bei der 30°-Probe wird die Steifigkeit nicht getroffen, und die Versagensspannung
überschätzt. Unterschätzt wird die Versagensspannung bei den 45°- und 60°-Proben, während
die 75°- und 90°-Proben (vgl. Abb. 4.9) gut approximiert werden. Es ist erwähnenswert, dass
Simulationen von 1-Element-Modellen nur Verifizierungszwecken dienen. Sie liefern jedoch die
Erkenntnis, dass der Parameter a66 = 2.6 in den meisten der hier betrachteten Fälle eine bes-
sere Abbildungsfähigkeit besitzt als der berechnete Parameter. Die weiteren Untersuchungen
beschäftigen sich mit der Validierung des Materialmodells auf Couponebene.

4.6. Analytische Auswertung zum Einfluss der Elementwahl
Die Validierung des Materialmodells auf Couponebene bedarf zunächst Untersuchungsergeb-
nisse darüber, welche Elemente sich zur Modellierung am besten eignen: Kontinuumsschalen-
oder Volumenelemente. In diesem Zusammenhang erfolgt in diesem Abschnitt eine analytische
Auswertung zum Einfluss der Elementwahl. Diese basiert auf Simulationsergebnissen zu bei-
den Elementtypen. Die Ergebnisse werden im weiteren Verlauf der Arbeit (siehe 5) ausführlich
untersucht. Zum Zwecke der Untersuchung des Einflusses des Elementtyps sind die globalen
Versagensspannungen für die unterschiedlichen Schrägfaserwinkelversuche herangezogen worden.
Diese werden im Verhältnis zu einer Bruchkurve dargestellt, um das Potenzial der Elementwahl
sowie Auffälligkeiten zu erkennen.

Bruchkurven sind Funktionsdarstellungen, die zeigen, wie verschiedene Spannungsgrößen beim
Versagen miteinander zusammenhängen. Dafür werden üblicherweise zwei Spannungen ausge-
wählt und alle anderen auf Null gesetzt, sodass lediglich der Einfluss dieser beiden betrachte-
ten Spannungsanteile sichtbar wird. Eine Bruchkurve lässt sich als Grenze im Spannungsraum
auffassen, die den Bereich des sicheren Betriebs vom Bereich des Versagens trennt. Liegt ein
gegebener Spannungszustand innerhalb dieser Grenze, bleibt das Material intakt. Befindet er
sich jedoch außerhalb des abgegrenzten Bereichs, tritt Materialversagen ein. Zur Auswertung
von Simulationsergebnissen werden die Bruchkurven von Hashin und Cuntze herangezogen. Die
globalen Versagensspannungen sollen nahe an der analytischen Bruchkurve liegen und im op-
timalen Fall darunter. In der Abbildung 4.11 werden die Ergebnisse der Verifizierungsübung
mittels 1-Element-Versuchen (SET. Single-Element-Testing) für alle untersuchten OAC-Proben
dargestellt. Die experimentellen Versagensspannungen sind aus [76] herangezogen worden und
sind mit schwarzen Kreuzchen dargestellt. Die durchgezogenen Kurven stellen, die analytische
Lösungen zu den Bruchkruven von Hashin und Cuntze.
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Abbildung 4.11: Verifizierungsübung für OAC-Proben mittels SET

Auf dem Bild sind die experimentellen Versagensspannungen für alle OAC-Prüfkörper oberhalb
der Hashin-Bruchkurve, unabhängig von dem Elementtyp. Simulationen, die auf Hashins Ver-
sagenskriterium aufbauen würden, würden unterhalb dieser Kurve liegen und damit weiter von
den experimentellen Versagensspannungen entfernt sein. Die Ursache lässt sich durch die Berück-
sichtigung des Versagensmodus durch Schubspannungen erklären, welcher in Cuntze durch IFF3
beschrieben wird, in Hashin jedoch nicht spezifisch berücksichtigt wird. Diese Ergebnisse sind in
Übereinstimmung mit den Ergebnissen in der WWFE-Übung [63], die in dem Zusammenhang
darüber berichtet, das Cuntzes Versagenskriterium sich besser als das von Hashin zur Abbildung
von 3D-Spannungszuständen eignet. Deshalb sind keine Simulationen mit Hashins Versagens-
kriterium durchgeführt worden und weiterführenden Untersuchungen basieren nur auf Cuntzes
Versagenskriterium. Die durch Simulationen mit Volumenelementen vorhergesagten Versagens-
spannungen sind näher an den experimentellen Versagensspannungen. Die Simulationsergebnisse
zu den Prüfkörpern mit 15° und 30° Schrägfaserwinkel liegen oberhalb der Cuntze-Kurve. Dies
ist allerdings nur bei Simulationen der Fall, die auf Volumenelementen basieren. Deshalb scheint
es empfehlenswert, die Prüfkörper mit 15°- und 30°-Schrägfaserwinkel, welche als aufäälig be-
trachtet werden durch Kontinuumsschalen zu modellieren. Diese Auffälligkeit wird im nächsten
Kapitel behandelt.
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5. Validierung des Materialmodells für OAC-Prüfkörper
Im Abschnitt 4.8 wurde das Materialmodell durch 1-Element-Versuche verifiziert. Zudem wur-
den die Simulationsergebnisse zu den Versagensspannungen basierend auf der Bruchkurve aus-
gewertet. In diesem Kapitel wird der Aufbau der Simulationsmodelle von unidirektionalen (UD)
Prüfkörpern mit Schrägfaserwinkel bzw- OAC-Tests erläutert. Darüber hinaus erfolgt eine Aus-
wertung in Bezug auf Steifigkeiten, Bruchfestigkeiten sowie Schädigungs- und Plastizitätsver-
halten.

5.1. Modellierung der OAC-Prüfkörper
Die Modellierung von UD-Prüfkörpern mit Schrägfaserwinkeln θ = 15◦, 30◦, 45◦, 60◦, 75◦ sowie
von transversal druckbelasteten Prüfkörpern (90◦) basiert auf dem Teststandard ASTM D695
[77]. Die Modellierung longitudinaler Prüfkörper (θ = 0◦) basiert auf dem für quasistatische
Belastungen bewährten Teststandard ASTM D3410 [78]. In Tabelle 5.1 werden die Geometrie-
parameter der UD-Modelle dargestellt:

UD-Modelle Lagenaufbau Lagendicke Länge l Breite w Dicke t
[ ] in mm in mm in mm in mm

UD-0° [0°/0°/0°]2s 0,125 23 7 1,5
UD-15° [15°/15°/15°/15°]4s 0,125 20 10 4
UD-30° [30°/30°/30°/30°]4s 0,125 20 10 4
UD-45° [45°/45°/45°/45°]4s 0,125 20 10 4
UD-60° [60°/60°/60°/60°]4s 0,125 20 10 4
UD-75° [75°/75°/75°/75°]4s 0,125 20 10 4
UD-90° [90°/90°/90°/90°]4s 0,125 20 10 4

Tabelle 5.1: Geometrie- und Materialparameter der UD-Modelle.

Der Lagenaufbau sowie die Lagendicke sind entsprechend den beiden genannten Normen mo-
delliert. In der Literatur ist der Einfluss der Lagendicke auf das Druckverhalten von gekerbten
sowie ungekerbten Prüfkörpern von einigen Autoren untersucht worden [79–81]. Arteiro et al.
[80] zeigten, dass die Lagendicke bei quasistatisch druckbelasteten unidirektionalen Prüfkörpern
keinen wesentlichen Einfluss auf das Druckverhalten hat. Ausnahmen seien Versuche bei faser-
dominiertem Verhalten, bei denen Mechanismen wie Fasermikroknicken eine Rolle spielen. Die
Erkenntnis ist, dass dünnere Lagen grundsätzlich zu höherem Widerstand gegen Mikroknicken
führen.
In Abb. 5.1 wird das Simulationsmodell für druckbelastete UD-Prüfkörper schematisch darge-
stellt. Die Berücksichtigung der Schrägfaserwinkel erfolgt wie in Abschnitt 4.9 erläutert. Zur
Verringerung der Rechenzeit sind die Laminate aufgrund des symmetrischen Lagenaufbaus in
Dickenrichtung (z) sowie Breitenrichtung (y) halbiert. Coelho et al. [82] zeigten, dass eine weite-
re Symmetrieebene in Belastungsrichtung insbesondere für faserdominiertes Verhalten ein ver-
ändertes Spannungsfeld zur Folge haben könnte. Aus diesem Grund ist in x-Richtung keine
Symmetrieebene vorgesehen.
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Abbildung 5.1: Schematische Darstellung des Simulationsmodells für unidirektionale Prüfkörper und
Randbedingungen.

Abbildung 5.2: Materialzuordnung und Vernetzung.

Dem Modell werden numerisch betrachtet zwei Materialien zugeordnet. Normstandards wie in
[77, 78] nutzen Aufleimer, um eine gleichmäßige Krafteinleitung zu ermöglichen sowie frühzeitige
lokale Schäden zu vermeiden, die zu unzulässigen Versagensmodi führen können. In diesem Zu-
sammenhang werden in der Simulation die Randbereiche ohne Schädigung modelliert, während
Schädigung nur im mittleren Bereich auftreten dürfte. Überlegungen zur genauen Länge der
Randbereiche basieren auf Bildern der geschädigten Prüfkörper, die im Abschnitt 5.5 zu finden
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sind.

5.2. Einfluss der Plastizität
Ein wichtiger Schwerpunkt dieser Arbeit liegt in der Modellierung der Plastizität basierend auf
dem Sun-und-Chen-Modell [52]. In den Abschnitten 4.3.2 und 4.5 wurden die berechneten Para-
meter nach dem Standardvorgehen von Sun und Chen mit Literaturwerten verglichen, um ihre
Fähigkeit zur Vorhersage der Materialantwort auf 1-Element-Ebene zu beurteilen. Es stellte sich
heraus, dass der Literaturparameter a66 = 2.6 grundsätzlich bessere Ergebnisse lieferte, weshalb
dieser Wert für die weiteren Untersuchungen verwendet wurde. Darauf aufbauend wird in diesem
Abschnitt der Einfluss der Plastizität auf Coupon-Ebene analysiert. Simuliert wurden Prüfkörper
nach der Norm ASTMD695 [77] mit Schrägfaserwinkeln, jeweils mit und ohne Berücksichtigung
der Plastizität. Die Ergebnisse dazu werden in Abb. 5.4 dargestellt. Zunächst wird der Mate-
rialantwortverlauf des longitudinal belasteten Prüfkörpers gezeigt. Simulationen mit und ohne
Plastizität wurden durchgeführt, ebenso mit zwei Elementtypen: C3D8R (Volumenelemente)
und SC8R (Kontinuumschalenelemente) mit reduzierter Integration. Die reduzierte Integration
kann Hourglass-Effekte ermöglichen, weshalb diese Elemente mit einem Mechanismus versehen
werden, der eine Hourglass-Stabilisierung ermöglicht [19]. Es wird erwartet, dass hierbei keine
plastischen Effekte auftreten, da die Fasern spröde Eigenschaften besitzen. Die experimentel-
le Kurve ist hier ebenso mithilfe des Tools WebPlotDigitizer aus der Literatur [83] extrahiert
worden.
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Abbildung 5.3: Spannung-Dehnungs-Verlauf des longitudinal belasteten unidirektionalen Prüfkörpers

Das linear-elastische Verhalten ist in allen Simulationen sichtbar, unabhängig vom Elementtyp
und der Berücksichtigung von Plastizität. Die Steifigkeiten werden bis ca. 0,25 % Dehnung ge-
troffen. Danach tritt in den Experimenten der im Abschnitt 2.6 beschriebene Nichtlinearitätsme-
chanismus des nicht-hookeschen Verhaltens auf. Dabei sinkt der Steifigkeitsmodul bei erhöhten
Druckdehnungen. Denkbar wäre es, das Materialmodell zur Berücksichtigung des nichtlinearen
longitudinalen Elastizitätsverhaltens zu erweitern, um genauere Ergebnisse im faserdominier-
ten Verhalten abbilden zu können. Zwei Auffälligkeiten beziehen sich auf Knicke in den jeweils
grünen und schwarzen Kurven. Die erste stellt ein numerisches Artefakt dar, das zur besseren
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Erkennung der vier ähnlichen Kurven nicht entfernt wurde. Das Artefakt beschreibt dynami-
sche Effekte in der Simulation. Dieses Verhalten wurde auch von Makiela [6] beobachtet und
lässt sich mit der expliziten Zeitintegration begründen, welche zu plötzlichen Spannungsumla-
gerungen durch das Versagen von Elementen führen kann. Makiela [6] untersuchte diesen Effekt
und implementierte ein Elementlöschungskriterium, um zu verhindern, dass Elemente, die keine
physikalische Tragfähigkeit mehr besitzen, weiterhin im Modell verbleiben und durch ihre aus-
geprägten Verzerrungen Schwingungen auslösen. In dieser Arbeit konnte diese Auffälligkeit nur
für den longitudinal belasteten Prüfkörper beobachtet werden. Deshalb werden für weiterfüh-
rende Untersuchungen auf Erkenntnisse in der Arbeit von Makiela [6] hingewiesen. Die zweite
Auffälligkeit in der Abb. 5.3 ist der Knick in der experimentellen Kurve, der auf die Datenaufbe-
reitung aus [83] zurückzuführen ist. Aus den experimentellen Daten [83] ist für den in Abb. 5.3
dargestellt Verlauf, nur die mittlere Kurve extrahiert worden. Diese wurde dann nachträglich
so bearbeitet, dass nur die Versagensspannung der explizit angegebenen maximalen Spannung
entspricht. Zum besseren Vergleich der Kurven werden auch die Versagensspannungen angege-
ben. Basierend auf der in den Experimenten [83] angegebenen Standardabweichung von 53 MPa
lässt sich erkennen, dass beide Elementtypen die Versagensspannung gut abbilden. Zudem zeigt
sich, dass die Berücksichtigung der Plastizität, wie erwartet, keinen wesentlichen Einfluss auf die
Vorhersagefähigkeit hat. Wenn die Fasern eines UD-Prüfkörpers schräg zur Belastungsrichtung
orientiert sind, sollte die Berücksichtigung plastischer Effekte das Materialmodell zumindest
qualitativ näher an das experimentelle Verhalten heranführen. Dazu wurden Simulationen mit
unterschiedlichen Schrägfaserwinkeln durchgeführt und die Ergebnisse sind in der Abbildung 5.4
dargestellt. Die unterbrochene rote Linie stellt den Verlauf der simulierten Spannungsantwort
ohne Aktivierung der Plastizität dar, während die durchgezogene Linie die Berücksichtigung der
Plastizität zeigt. Die grünen Punkte entsprechen den experimentellen Daten, die mithilfe des
WebPlotDigitizer-Tools extrahiert wurden.
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Abbildung 5.4: Spannungs-Dehnungs-Verläufe bei unterschiedlichen Schrägfaserwinkeln belasteter unidi-
rektionaler Prüfkörper

Die Simulationsergebnisse legen nahe, dass die Berücksichtigung der Plastizität durch die In-
tegration des Plastizitätskriteriums in das Materialmodell realistischere Ergebnisse liefert. Die
Steifigkeiten werden bis auf die Simulation des Prüfkörpers mit 15° Schrägfaserwinkel gut ge-
troffen. Diese Simulationsergebnisse zu OAC-15° deuten darauf hin, dass hierzu keine Akkumu-
lation plastischer Dehnungen stattfinden konnte. die In den Experimenten [7] versagte dieser
Prüfkörper in neun von zwölf Versuchen durch Faserknicken – ein Versagensmodus, der im Ma-
terialmodell nicht berücksichtigt ist. In den drei weiteren Fällen versagte der Prüfkörper durch
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Schubspannungen bzw. durch den hier berücksichtigten Versagensmodus IFF3. Untersuchun-
gen von Kawai et al. [84] zeigten, dass Prüfkörper, die durch Schubspannungen versagten, eine
niedrigere Bruchfestigkeit hatten als diejenigen, die durch Faserknicken versagten. Dies konnte
Koerber et al. [7] in seinen Experimenten nicht bestätigen. Außerdem wurden in den experi-
mentellen Versuchen erhebliche Faserdrehungen beobachtet, die die Pseudoplastizität beeinflus-
sen und durch geeignete Modellierung des nichtlinearen Verhaltens besser abgebildet werden
könnten. Dies wäre beispielsweise durch die Integration von Makielas [6] Materialmodell zur
Berücksichtigung großer Deformationen möglich. Die Simulationen der Prüfkörper von 45° bis
90° deuten auf eine Unterschätzung der Versagensdehnung und -Spanung. Dies liegt vermut-
lich in der 3D-Formulierung des Sun und Chen [52] Kriteriums durch die Abbildungsmatrix
Z. Diese beeinflusst implizit die Einschränkung der effektiven Spannungen, wenn plastischen
Dehnungen größer werden, wie das bei OAC45-90° der Fall ist. Die Herleitung und Implementie-
rung dieser Matrix in einer 3D-Formulierung ist in weiterfürhenden Studie zu untersuchen. Eine
weitere Ursache könnte auch die Anhäufung von Fehlern durch vesrstärkte Poisson Effekte in
3D-Eleemnten. Dies könnte ein weiterer Untersuchungsgegenstand sein. Im folgenden Abschnitt
wird der Einfluss des Elementtyps auf das Spannungs-Dehnungs-Verhalten untersucht.

5.3. Netzkonvergenzanalyse
Zur Bewertung, ob eine weitere Verfeinerung des Finite-Elemente-Netzes zu wesentlichen Än-
derungen der vorhergesagten Spannungen führt, wurde eine systematische Netzkonvergenzana-
lyse durchgeführt. In Abb. 5.5 sind die resultierenden Bruchspannungen für drei gewählte Ele-
mentgrößen und verschiedene Schrägfaserwinkel den experimentell ermittelten Bruchfestigkei-
ten gegenübergestellt. Die Ergebnisse verdeutlichen, dass die berechneten Spannungen für alle
Netzgrößen denselben charakteristischen Verlauf mit abnehmender Festigkeit bei zunehmendem
Faserwinkel aufweisen und sich die Abweichungen zwischen den Netzen nur geringfügig unter-
scheiden. Besonders auffällig ist, dass die Spannungswerte des feinsten und des gröbsten Netzes
meist innerhalb eines engen Bereichs liegen, der kleiner ist als die experimentelle Streuung,
was auf eine numerische Stabilität der Simulationen hinweist. Die größten Unterschiede treten
bei kleinen Faserwinkeln auf; jedoch zeigen auch hier alle Netze denselben Trend, sodass die
qualitative Aussagefähigkeit unbeeinträchtigt bleibt.
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Abbildung 5.5: Darstellung der vorhergesagten Bruchfestigkeiten bei unterschiedlichen Schrägfaserwin-
keln im Vergleich zu experimentellen Bruchfestigkeiten

Ein Vergleich der Simulationen mit den experimentellen Daten zeigt außerdem, dass die Modell-
ergebnisse bei niedrigen Winkeln tendenziell höhere Festigkeiten vorhersagen, während sie bei
hohen Winkeln näher an die gemessenen Werte heranreichen oder diese leicht unterschreiten. Da
die Änderungen der Bruchspannungen zwischen den betrachteten Elementgrößen deutlich gerin-
ger ausfallen als die Abweichungen zu den Experimenten, würde eine weitere Netzverfeinerung
keine merkliche Verbesserung der Ergebnisgenauigkeit bewirken. Darüber hinaus ist zu erwar-
ten, dass zusätzlicher Rechenaufwand nicht in einem physikalischen Erkenntnisgewinn resultiert,
da das Modellverhalten bereits durch die untersuchten Netzgrößen ausreichend gut erfasst wird.
Daher kann das verwendete Netz als hinreichend fein angesehen werden, um die relevanten
Spannungsmechanismen über den gesamten Winkelbereich zuverlässig abzubilden. Die weiteren
Untersuchungen, werden mit einer Elementgröße von 0.4 mm durchgeführt.

5.3.1. Einfluss der Elementwahl

Simulationen für verschiedene Schrägfaserwinkel wurden mit zwei Elementtypen durchgeführt:
Kontinuumschalenelementen und Volumenelementen mit reduzierter Integration. Die reduzierte
Integration macht die Simulationen recheneffizienter, jedoch auf Kosten potenzieller unphysika-
lischer Verzerrungen (engl. Hourglassing). Gegenüber vollintegrierten Elementen sind sie jedoch
robuster gegenüber Scher- und Volumenverriegelung (engl. shear/volumetric locking) [19]. Eine
erste Untersuchung bezieht sich auf einen Vergleich der Simulationszeiten beider Elementtypen.
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Abbildung 5.6: Vergleich der Rechenzeit der Simulationen mit Kontinuumschalen- und Volumenelemen-
ten

Die Abbildung 5.6 legt nahe – in Übereinstimmung mit den Ergebnissen in Völkerink et al. [85]
–, dass Volumenelemente recheneffizienter sind als Kontinuumschalenelemente. Für Modelle,
bei denen keine diskreten Informationen über Delaminationsflächen erforderlich sind (wie in
dieser Arbeit), wird deshalb empfohlen, Volumenelemente zu verwenden. In Abb. 5.7 werden die
Spannungs-Dehnungs-Verläufe von OAC-Simulationen für beide Elementtypen dargestellt:
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Abbildung 5.7: Einfluss der Elementwahl

Die Spannungs-Dehnungs-Verläufe deuten darauf hin, dass Kontinuumschalenelemente genauere
Ergebnisse liefern. Nur im Falle der 90°-Probe sehen die Ergebnisse sehr ähnlich aus. Diese
Erkenntnis hebt die Notwendigkeit hervor, die Herleitung und Implementierung der Z-Matrix
in weiterführenden Studien genauer zu untersuchen. Die bisherigen Ergebnissen verdeutlichen,
das für den biserigen Entwicklungsstand des VSS-Materialmodells Kontinuumsschalenelemente
genauere Ergebnisse für OAC-Proben liefern, jedoch zulasten der Rechenkapazität. Da einer
Schwerpunkt dieser Arbeit die effiziente Modellierung war, wird hier der Kompromiss getroffen
die Proben mit 3D-Volumenelemente zu modellieren. Dies könnte für komplexere Proben erparrte
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Rechenkapazitäten bedeuten, wie in Abbildung 5.6 gezeigt wurde.

5.4. Validierungsübung OAC
In diesem Abschnitt werden die Ergebnisse der Schrägfaserwinkelsimulationen zum entwickel-
ten Materialmodell, welches hier als VSS (Völkerink Small Strain) bezeichnet wird, mit Er-
gebnissen aus zwei bewährten Methoden zur progressiven Schädigungs- und Versagensanalyse
verglichen: EST (Enhanced Shapery Theory) [86] und CompDam [87]. Beide Modelle werden
im Abschnitt 6.1.1 ausführlich erläutert. Die Ergebnisse werden genutzt, um die technische
Reife des VSS zu bewerten. Die Simulationsergebnisse zu EST und CompDam wurden aus
Hyder et al. [88] entnommen, während die Simulationsergebnisse zum VSS aus den Simula-
tionen mit dem 3D-elastoplastischen Materialmodell stammen. Alle Simulationen wurden mit
Abaqus/Explicit durchgeführt und analysieren OAC-Modelle unter Verwendung der IM7/8552-
Materialeigenschaften, wobei die Materialkarte in Hyder et al. [88] nicht explizit angegeben ist.
Diese lässt sich jedoch in Rose et al. [89] finden und ist im Anhang dieser Arbeit aufgeführt.

EST wurde mit Schalenelementen des Typs S4R modelliert, während CompDam – analog zu VSS
– auf Volumenelemente des Typs C3D8R zurückgreift. EST und CompDam verwenden eine Ele-
mentgröße von 0,25 mm, VSS dagegen 0,40 mm. Die Vernetzungsstrategie von EST entspricht
im Wesentlichen derjenigen von VSS und basiert auf einem strukturierten Netz. CompDam
nutzt hingegen eine faserorientierte („fiber-aligned“) Vernetzung, die der lokalen Faserarchitek-
tur folgt. Diese Eigenschaften werden in Tabelle 5.2 dargestellt:

Tabelle 5.2: Überblick der verwendeten Modelle und Vernetzungsstrategien
EST CompDam VSS

Elementtyp S4R (Schalenelement) C3D8R (Volumenelement) C3D8R (Volumenelement)
Elementgröße 0,25 mm 0,25 mm 0,40 mm
Vernetzungsart strukturiertes Netz faserorientiertes Netz (fiber-aligned) strukturiertes Netz

Die Ergebnisse der OAC-Simulationen sind in Tabelle 5.3 dargestellt. Zur Bewertung wird der
Verifizierungs- und Validierungsrahmen (V&V Framework) [10] herangezogen. Hyder et al. [88]
verwendeten diesen Rahmen, um die Fähigkeiten von EST und CompDam zu bewerten. Als
Validierungsübung werden in dieser Arbeit die Systemantwortmerkmale Steifigkeit und Versa-
gensspannung betrachtet. Zum Vergleich der Versuchsdaten im VSS werden die Experimente
aus Koerber et al. [7] verwendet.

Tabelle 5.3: OAC-Validierungsübung: Vergleich mit EST und CompDam
OAC EST CompDam VSS

Steifigkeit Versagensspannung Steifigkeit Versagensspannung Steifigkeit Versagensspannung

15° 2 % -13 % -8% -25 % 65 18
30° -4% -14% 0% -23% 3 12
45° 1% -52% 3% -35% -3% 3%
60° 10% -38% 12% -21% 2% -19%
75° -12% -5% -12% 5% 1% -14%
90° -1% 2% -2% -2% -4% -3%

< 15% < 20% > 20% Abweichung von Versuchsdaten
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In Grün sind Simulationsergebnisse dargestellt, die eine Abweichung von weniger als 15% zu
den Versuchsdaten aufweisen, während Simulationsergebnisse mit mehr als 20% Abweichung
in hellem Rot hervorgehoben sind. Der Bereich zwischen 15–20% ist in Gelb dargestellt. Das
VSS zeigt gut vergleichbare Ergebnisse für das Steifigkeitskriterium; jedoch stellt sich der OAC-
15°-Prüfkörper als problematisch dar, da Faserrotationen im Modell nicht berücksichtigt sind.
Allgemein lassen sich gute Ergebnisse auch bei der Vorhersage der Versagensspannung zeigen,
wobei keine der Simulationen mehr als 20% Abweichung von den Versuchsdaten aufweist. Zu-
dem konvergiert VSS bei einer größeren Elementgröße, was in Verbindung mit C3D8R-Elementen
eine effizientere Modellierung hinsichtlich der Bewertungsmerkmale Steifigkeit und Versagens-
spannung ermöglicht. Es ist zu erwähnen, dass EST und CompDam in [88] auch hinsichtlich
des Bewertungsmerkmals Versagensdehnung verglichen wurden, wobei keine zufriedenstellenden
Ergebnisse erreicht wurden.

5.5. Versagensverhalten
Die experimentellen Ergebnisse [7] zeigen, dass das Versagensverhalten stark vom Schrägfaser-
winkel abhängt und sich die dominanten Mechanismen mit zunehmender Schrägstellung sys-
tematisch verändern. Für die 15°-Prüfkörper traten zwei Versagensmodi auf: das Kink-Band-
Versagen (engl. kink-band failure) und ein schubdominierter Versagensmodus in der Lamina-
tebene (engl. in-plane shear failure), was die Beobachtungen in Kawai et al. [84] bestätigt.
Auffällig war ein ausgeprägtes Stick-Slip-Verhalten, das auf erhöhte Reibung an den Endflächen
hinweist. Es wurde berichtet, dass dieses Verhalten die Spannungs-Dehnungs-Verläufe verfäl-
schen konnte [7], weshalb keine eindeutige Bestimmung der Streckgrenze erfolgte. Im Gegensatz
zu den Ergebnissen von Kawai [84] konnte in den hier untersuchten Versuchen weder eine hö-
here Festigkeit für im Kink-Band-Modus versagende Proben noch ein frühzeitig einsetzendes
plastisches Fließen der schubversagenden Proben bestätigt werden.
Bei einem Winkel von 30° dominierte das Schubversagen in der Laminatebene (engl. in-plane
shear failure), wobei die Bruchflächen auf eine geringe Beeinflussung durch matrixdominier-
tes Verhalten unter Druck (engl. transverse compression) hindeuteten; dabei trat vereinzelt
Stick-Slip auf. Für größere Schrägfaserwinkel zwischen 45° und 90° wurde ein matrixdominiertes
Versagen (engl. transverse-compression-dominated failure) beobachtet, das meist in der Nähe
der Lastlinie oder in der Probenmitte auftrat, jedoch ohne Einfluss auf die gemessene Bruch-
festigkeit. Insgesamt bestätigen die Ergebnisse den kontinuierlichen Übergang von schubdomi-
niertem (IFF2) zu druckdominiertem (IFF3) Versagen mit zunehmendem Faserwinkel, während
im niedrigen Winkelbereich Abweichungen zu früheren Studien vor allem auf Reibungseffekte
zurückzuführen sind.

Seite 48



5. Validierung des Materialmodells für OAC-Prüfkörper

Abbildung 5.8: Versagensverhalten aufgrund von IFF3: Drei Prüfkörper von oben nach unten: 15°, 30°
und 45°. Experimentelle Schädigungsbilder rechts aus [7] entnommen.

Simulationsergebnisse konnten die experimentellen Beobachtungen zum Versagensverhalten gut
abbilden. Der Verlauf der Schädigungsvariable (SDV11) bestätigt ein schubdominiertes Ver-
sagen bzw. einen Zwischenfaserbruch (IFF3), wobei beim 15°-Prüfkörper kein dominierendes
faserdominiertes Versagen in Form eines Kink-Bandes abgebildet werden konnte. Die Ursache
liegt in der Formulierung des Faserbruchkriteriums FF2 in Cuntzes Versagenskriterium, das
isoliert betrachtet das Abbilden eines Kink-Bandes nicht ermöglicht. Nichtsdestotrotz war bei
dieser Probe faserdominiertes Versagen der zweitdominante Mechanismus. Bei den Proben mit
30° und 45°-Faserrichtung dominierte auch in den Simulationen das Schubversagen, was teil-
weise die experimentellen Beobachtungen bestätigt, da die Bruchflächen auf matrixdominiertes
Verhalten hindeuteten.
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Abbildung 5.9: Versagensverhalten aufgrund von IFF2: Drei Prüfkörper von oben nach unten: 60°, 75°
und 90°. Experimentelle Schädigungsbilder rechts aus [7] entnommen.

Die 60°-, 75°- und 90°-Proben zeigten die beste Übereinstimmung mit den Experimenten hin-
sichtlich der vorhergesagten dominierenden Versagensmodi, Zwischenfaserbruch unter Druck
(IFF2). Dabei trat das Versagen bei den 60°- und 75°-Proben am Randbereich und in der Nähe
der Lastlinie auf, während es bei der 90°-Probe in der Mitte der Probe auftrat.
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6. Validierung des Materialmodells für OHC-Prüfkörper
FVS in Flugzeugen weisen eine große Anzahl an Bohrungen für Nieten und die Montage von Bau-
gruppen auf. Der OHC-Test dient dazu, die Druckfestigkeit von Verbundlaminaten mit solchen
Öffnungen zu analysieren. In den letzten 30 Jahren haben mehrere Forschende experimentelle,
analytische und numerische Untersuchungen zur PDA während OHC-Tests durchgeführt. Den-
noch sind die Versagensmechanismen von OHC-Präfkörper noch nicht vollständig geklärt und
ihre Aufklärung stellt eine Herausforderung dar. Eine zusammenfassende experimentelle und
numerische Studie über PDA zu OHC-Tests wurde in Higuchi et al. [90] durchgeführt.

6.1. Darstellung experimenteller Ergebnisse des Materialverhaltens von IM7/8552
während OHC-Tests

Die Validierung des Materialmodells anhand eines OHC Prüfkörpers stellt eine der komplexes-
ten Aufgaben dar, aufgrund von verschiedenen Versagensmechanismen, die über verschiedene
Lageorientierungen zusammenwirken sowie Spannungskonzentrationen am Lochrand. Experi-
mentelle Untersuchungen über das Verhalten von IM7//8552 während OHC-Tests wurden von
Lee et al. und Wisnom et al. [39, 91] unter Verwendung der ICSTM-Prüfvorrichtung basierend
auf der Norm AITM 1-0008[92] durchgeführt. Dabei untersuchten die Autoren Skalierungseffek-
te in Laminaten mit zwei quasi-isotropen Stapelreihen: Ply-Level-Skalierung (geblockte Lagen,
[45◦

n/90◦
n/-45◦

n/0◦
n]s) und Sublaminate-Level-Skalierung (ungeblockte Lagen, [45◦/90◦/–45◦/0◦]ns).

Bei sublaminat-skalierten Proben wurde ein spröder Bruch quer durch das Laminat beobachtet.
Um die progressive Schädigung und die Initiierung des Versagens beobachten zu können, wurden
die OHC-Proben bei 98% der finalen Last unterbrochen.

Abbildung 6.1: Unterbrochener OHC-Test an der Probe mit Laminataufbau [45◦/90◦/-45◦/0◦]4s, ange-
lehnt an [39].

Für eine bessere Vergleichbarkeit mit anderen Materialmodellen wird in dieser Arbeit der OHC-
Prüfkörper mit ungeblockten Lagen, [45◦/90◦/-45◦/0◦]4s) ausgewählt. Die Autoren der experi-
mentellen Studien berichteten [39, 91], dass dieser Prüfkörper hinsichtlich der Messqualität im
Vergleich mit den anderen Prüfkörpern der zuverlässigste war. Dabei wurde das Verhältnis der
gültigen zu der gesamten Anzahl der durchgeführten Versuche für ein Prüfkörper als Maßstab
zur Bewertung der Zuverlässigkeit der Messdaten verwendet. Allgemein stellten die Autoren in
ihren experimentellen Beobachtungen fest, dass die progressive Schädigung überwiegend durch
den Eintritt des Knickbandversagens in der 0°-Lage inittiert wurde. In diesem Zusammenhang,
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wurde auch keine makroskopische Vorwarnung vor dem katastrophalen Endversagen beobachtet
[39]. Somit wurden keine sichtbaren Nichtlinearitäten vor dem Versagen beobachtet, weshalb
das Materialverhalten bis zum Versagen als quasi-linear angenommen wird. Folglich haben die
Autoren keine Spannungs-Dehnungs-Verläufe veröffentlicht, jedoch die hinreichenden Messun-
gen zur Steifikgeit und Bruchfestigkeit bereitgestellt, die zur Validierung des Materialmodells
anhand eines OHC-Prüfkörpers im Rahmen dieser Arbeit einbezogen werden. Es ist anzumer-
ken, dass dem Autor zum Zeitpunkt der Verfassung dieser Arbeit keine weiteren experimentellen
Ergebnisse des Materialverhaltens von IM7/8552 während OHC-Tests bekannt sind.

6.1.1. Darstellung aktueller Modellierungsstrategien

In der Literatur wurden zwei bewährte und geeignete mesoskalige Ansätze zur progressiven
Schädigungsanalyse von OHC-Prüfkörpern identifiziert. Beide sind als benutzerdefinierte Mate-
rialmodelle (VUMAT) implementiert und basieren auf Konzepten der Kontinuumschädigungs-
mechanik. Das erste Modell ist das CompDam-Modell, entwickelt von Leone et al. [87, 89]. Der
Ansatz nutzt die Deformationgradientenzerlegung (DGD. Deformation Gradient Decompositi-
on), um die Gesamtverformung in eine Volumenverformung und einen kohäsiven Verschiebungs-
sprung zu zerlegen. Das CompDam-Materialmodell ist ein frei zugängliches NASA-Modell, das
speziell zur detaillierten Erfassung der Kinematik faserverstärkter Kunststoffe entwickelt wur-
de. Matrixrisse werden als kohäsive Risse innerhalb eines deformierbaren Volumens interpretiert,
wodurch die Rissöffnung und die volumetrische Antwort konsistent aus dem DGD-Ansatz be-
stimmt werden können. Ein wesentlicher Vorteil dieser Kinematik liegt in der unmittelbaren
Kopplung zwischen Rissorientierung und lokaler Schadensentwicklung, sodass gekoppelte Versa-
gensmodi direkt aus den Verschiebungssprüngen abgeleitet werden können. Das Verhalten vor
dem Versagen wird durch die Ramberg-Osgood-Gleichung beschrieben. Das spannungsbasierte
Versagenskriterium basiert auf LARC-04 [93]. Das Nach-Maximum-Verhalten berücksichtigt den
3D-Rissbandansatz, der ursprünglich von Bažant et al. [70] entwickelt wurde.

Das zweite Modell von Pineda et al. [86], bezeichnet als EST (Enhanced Shapery Theory),
basiert auf einer thermodynamisch gestützten Arbeitspotenzialtheorie und verwendet mehrere
interne Zustandsvariablen, um Schädigung und Versagen explizit voneinander zu trennen. Die
Schädigung beschreibt strukturelle Veränderungen wie Mikrorisse, die sich als Nichtlinearität
vor dem Versagen manifestieren und zu einer Degradation führen. Die Matrixmikroschädigung
wird mit einer einzigen Variable beschrieben, die die Shapery-Mikroschädigung repräsentiert.
Als Folge der Schädigungslokalisierung tritt Versagen auf, welches sich als Nach-Maximum-
Dehnungserweichung manifestiert. Dazu wird das dehnungsbasierte Versagenskriterium von
Hashin-Rotem [94] einbezogen und mit einem 2D-Rissbandansatz [70] verknüpft, der die charak-
teristische Länge in die Formulierung der Versagensvariablen einbezieht. Nach der Versagensin-
itiierung wird das Material nicht mehr als reines Kontinuum betrachtet, sondern als Kontinuum
mit einer eingebetteten Diskontinuität (engl. cohesive crack) [86]. Die Evolution des Versagens
wird dann durch Traktions-Separations-Gesetze gesteuert, die auf den entsprechenden Bruch-
energien des Materials basieren.

Hyder et al. [88] führten eine Bewertung beider Methoden hinsichtlich ihrer Fähigkeiten zur
progressiven Schädigungs- und Versagensanalyse durch, unter anderem an verschiedenen OHC-
Proben. Die Analyse ergab, dass beide Methoden (CompDam und EST) die elastische Steifigkeit
korrekt wiedergeben. Allerdings konnte keine der beiden Methoden die Versagensspannung und
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die Versagensdehnung konsistent vorhersagen. Die Ursache für diese Inkonsistenz lag darin, dass
beide Modelle diskrete Matrix-Splitting-Ereignisse nicht korrekt abbilden konnten. Diese diskre-
ten Schädigungsereignisse treten typischerweise in den Spannungskonzentrationsbereichen der
0°-Lagen auf, bevor es zum endgültigen Versagen kommt. Folglich wurden vorzeitige Versagens-
vorhersagen getroffen. Hyder et al. merkten an, dass die Erhaltung einer korrekten physikalischen
Reaktion des Materials die korrekte Freisetzung der Energie in Form dieser diskreten Matrix-
Splitting-Ereignisse im Modell erfordert.

Ding et al. [95] entwickelten ein 3D elastoplastisches Materialmodell, welches nichtlineare Verfor-
mungen objektiv abbilden kann. Dabei wird die Objektivität als Maß für die Berücksichtigung
dreidimensionaler Spannungszustände angesehen. Zudem wurden in das Materialmodell Plastizi-
tätseffekte berücksichtigt, wie sie durch OAC-Tests experimentell bekannt waren. Im Gegensatz
zu Sun und Chens Plastizitätskriterium [52], entwickelten die Autoren eine nicht-assoziertes
Fließregel, die mit dem Problem der unphysikalischen plastischen Dehnungen in Querrichtung
besser umgehen sollte [95]. In einer späteren Veröffentlichung [41] konnte gezeigt werden, dass
das Materialmodell für faserdominanten Lasten in Druckrichtung mit einem Versagenskriterium
erweitern lässt, welches Fasermikroknicken berücksichtigt. Dabei konnte eine gute Übereinstim-
mung mit experimentellen Daten und eine bessere Genauigkeit als beim Modell ohne Berück-
sichtgung der Plastizität gezeigt werden. Ihr Materialmodell ist als UMAT implementiert und
das Schädigungsgesetz im Koordinatensystem der Bruchebene definiert.

6.2. Modellierung der OHC-Probe
Zur Verringerung der Rechenzeiten wurde nach den Erkenntnissen von Coelho et al. [82] eine
Halbierung der Geometrie in y- und z-Richtung vorgenommen. Dies ist zulässig, weil die Lami-
nate in Dickenrichtung symmetrisch sind, weshalb auch keine Veränderung des Spannungsfeldes
im Material zu erwarten wäre. Damit wird die OHC-Probe ähnlich wie die OAC-Probe in Kapitel
5.1 als ein Viertel der Gesamtgeometrie modelliert und mit einer strukturierten Vernetzungsart
diskretisiert:

Abbildung 6.2: Darstellung der strukturierten Vernetzung und Modellierung des OHC-Modells, das in
dieser Arbeit verwendet wurde, als ein Viertel des Prüfkörpers.
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In dieser Arbeit wurden der OHC-Prüfkörper simuliert, welcher in der Norm AITM 1-0008[92]
definiert ist. Die Bezeichnung S2 wird der ursprünglichen experimentellen Quelle [91] entnom-
men. Die Materialzuordnung ist ähnlich dem OAC-Prüfkörper in 5.9.

OHC-Modell Lagenaufbau Lagendicke Länge l Breite w Dicke t
[ ] in mm in mm in mm in mm

OHC-S2 [45°/90°/-45°/0°]4s 0,125 32 32 4

Tabelle 6.1: Geometrieparameter des untersuchten OHC-Modells nach Norm AITM 1-0008

6.3. Spannungs-Dehnungs-Verläufe in OHC-Simulation
In diesem Abschnitt werden die Spannung-Dehnungs-Verläufe von zwei Simulationen dargestellt.
Dabei wird das in dieser Arbeit entwickelte Materialmodell VSS verwendet, um den OHC-Test
zu simulieren. Die Ergebnisse werden mit einer Referenzkurve, welches Produkt der Simulation
von Ding et al. [41] ist. Die Referenzkurve ist mithilfe des Tools WebPlotDigitizers extrahiert
worden, basierend auf der Abbildung in [41] bei dem der Verlauf dargestellt wird.
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Abbildung 6.3: Spannung-Dehnungs-Verläufe in der OHC-Simulation

Die berechnete Abweichung der E-Module bei einer Dehnung von 0,1% beträgt 4,8%. Diese
Abweichung lässt sich durch leichte Unterschiede in den verwendeten Materialkarten erklären. Da
weder in Lee et al. [91] noch in Wisnom et al. [39] explizite Werte zu den E-Modulen angegeben
worden sind, lassen sich hierzu keine weiteren objektive Aussagen treffen. Der Referenzverlauf
aus der Arbeit von Ding et al. [41] zeigt eine gute Ähnlichkeit mit dem Verlauf von VSS. In der
Abbildung 6.3 sind für den Verlauf durch VSS drei Punkte dargestellt, welche basierend auf den
modusabhängigen sowie globalen Materialanstrengungswert Em

ff die progressive Schädigung bis
zum totalen Versagen abbilden. Numerisch wurden diese Punkt durch eine Untersuchung der
moduspezifischen für die Materialanstregung verantwortlichen Zustandsvariablen bestimmt.
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Punkt Lage Versagensmodi

A 0° FF2
B 45° IFF3
C 90° IFF2

Tabelle 6.2: Darstellung der aufgetretenen Versagensmodi in den einzelnen Lagen durch drei wesentlichen
Punkten

Punkt A beschreibt die Schädigungsinitiierung, welche in der äußersten Einzellage mit 0° Faser-
richtung stattfindet. Dabei wurde festgestellt, dass die Materialanstrengung FF2, als Erste den
Grenzwert 1 erreicht. Experimentellen Beobachungen zufolge beginnt der Schaden am Lochrand
in der 0°-Lage durch Bildung von Mikrofaserknicken an, weshalb der lokale Faserbruch durch
Knickinitiierung der dominierende Mechanismus sei. Dies konnte auch in der Simulation bestä-
tigt werden, da die Materialanstrengung FF2 den Grenzwert 1 als Erstes erreicht. Am Punkt B
versagt die äußerste 45°-Lage als nächstes augrund des matrixschubdominanten Versagensmo-
di IFF3. Am Punkt C folgt der matrixdruckdominante Versagensmodi IFF2 an der äußersten
90°-Lage. Unmittelbar danach erfolgt das Totalversagen, welches im Abschnitt 6.4 näher erör-
tert wird. Die durch VSS vorhergesagten Versagenmodis für die entsprechenden Lagen stimmen
gut mit den experimentellen Beobachungen [39, 91] überein. Es ist anzumerken, dass die hier
bezeichneten Punkten A, B und C nicht experimentell nach bestimmten Dehnungswerten be-
stimmt worden sind, weil wie bereits erwähnt, der Schaden sprödartig ist. Nichtsdestotrotz zeigen
die Punkte die Reihenfolge sowie Zusammenwirkung von dominanten Versagensmechanismen,
welche experimentell beobachtet worden sind.

6.4. Versagensverhalten
In Ergänzung zu den modusabhängigen Materialanstrengungen, die bei Grenzwertüberschrei-
gung, auf die Initiierung der Schädigung durch einen bestimmten Versagensmodi hindeuten,
beschreiben die entsprechenden Schädigugnsvariablen die Evolution der Schädigung, die durch
die jeweilige Versagensmodi hervorgerufen wird. In diesem Abschnitt wird die Vorhersagefähig-
keit des Modells hinsichtlich der Abbildung der im Abschnitt 6.3 berichteten drei dominanten
Versagensmechanismen untersucht. Dabei werden die Verhältnisse der drei Schädigungsvariablen
kurz vor (oberste Reihe) und unmittelbar nach dem Lastabfall (unterste Reihe) in der Abbildung
6.4 dargestellt:
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Abbildung 6.4: Darstellung des Schädigungsverhaltens in den Lagen 90°, 0° und 45° von links nach rechts
kurz vor dem Lastabfall (oberste Reihe) und unmittelbar nach dem Lastabfall (unterste
Reihe)

Die Schadensinitiierung erfolgt am Lochrand für alle drei dominierenden Versagensmechanismen.
Die Schädigung breitet sich in einem geraden Pfad senkrecht zur Belastungsrichting in Richtung
der freien Kanten des Laminats aus. Das ist sowohl für die 90°- als auch für die 0°-Lage der Fall.
Dieses Verhalten ist in guter Übereinstimmung mit den experimentellen Ergebnissen, zumindest
für die beobachtbare 0°-Lage, dargestellt in Abb. 6.1. Im Vergleich mit den Ergebnissen von
Ding et al. [41] ist die vorhergesagte Ausbreitung der Schädigung sehr ähnlich. Bei dem Vergleich
ist auffällig, dass die Ausbreitung der Schädigungsvariable ds zum Versagensmodi IFF3 nicht
wiederholbar ist. Nichtsdestotrotz lassen sich in den experimentellen Studien [39, 91], keine
Referenzdaten dazu finden, wie die Schädigung in den 45°- und 90°-Lage ausbreitet.

6.5. Erste OHC Validierungsübung und Einfluss der Elementwahl in VSS
In diesem Abschnitt erfolgt eine Übersicht der vorhergesagten Versagensfestigkeiten durch VSS
bei Modellierung mit Kontinuumschalen- und Volumenelemente, sowie der Simulationsergebnisse
von Ding et al.[41] und der experimentellen Ergebnissen für die S2-Probe [91]. Die Simulations-
ergebnisse sind mit den Genauigkeitsabweichungen versehen, die als Referenz die experimentell
ermittelte Bruchfestigkeit verwenden. Selbst die Referenz ist mit einem Variationskoeffizienten
versehen, welcher als Maß für die Streuung der Ergebnisse angesehen wird.

VSS (C3D8R) VSS (SC8R) Ding Experiment
in MPa in MPa in MPa in MPa

347.1 (1.1%) 292.12 (20.2%) 359 (2.3 %) 351 (a 2.9%)
a Variationskoeffizient.

Tabelle 6.3: Vergleich der vorhergesagten Versagensfestigkeit durch VSS mit Kontinuumschalen- und
Volumenelemente, Ding und Experiment.

Die gewählte Modellierungsstrategie für die VSS mit Volumenelementen scheint auch für OHC-
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Prüfkörüer die beste Vorhersagefähigkeit zu zeigen. Das Modell mit Kontinuumschalenelemente
unterschätzt die Bruchfestigkeit mit ca. 20% und bedarf einen größeren Rechenaufwand. Eine
visuell einfachere Darstellung zur Verdeutlichung der Fähigkeiten der unterschiedlichen Model-
lierungsstrategien wird in der Abb. 6.5 gezeigt.
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Abbildung 6.5: Spannung-Dehnungs-Verläufe in der OHC-Simulation

Sowohl das Modell von Ding als auch VSS mit Volumenelementen zeigen sehr gute Überein-
stimmung mit den experimentellen Daten. Die berechneten Versagensspannungen liegen unter
Berücksichtigung der Streuung der experimentellen Daten innerhalb der experimentellen Unsi-
cherheitsgrenzen.

6.6. Zweite OHC Validierungsübung
Die Validierung eines PDA-Modells anhand eines einzelnen Lagenaufbaus stellt zwar eine sinnvol-
le Übung dar, ist jedoch nicht ausreichend, um die Robustheit des Materialmodells zu bewerten.
Eine zweite Validierungsübung, die im Rahmen dieser Arbeit durchgeführt wurde, bezieht sich
auf drei unterschiedliche OHC-Prüfkörper, die auf der Norm ASTM D6484 definiert werden [96].

6.6.1. Modellbeschreibung

In Abschnitt 5.2 konnte gezeigt werden, dass OAC-Simulationen mit SC8R-Elemente im Ver-
gleich zu OAC-Simulationen mit C3D8R-Elementen längere Rechenzeiten benötigen. Darauf
aufbauend zeigte die erste Validierungsübung, dass die Vernetzung der OHC-Probe mit C3D8R
Elementen genauere Ergebnisse als mit SC8R liefert, siehe Abschnitt 6.5. Deshalb sind die hier
betrachteten OHC-Proben auch mit Volumenelemente modelliert. Eine Darstellung des ver-
wendeten Finite-Elemente-Modells unter Berücksichtigung einer strukturierten Vernetzung mit
C3D8R-Elementen ist in der Abbildung 6.6 dargestellt.
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Abbildung 6.6: Übersicht des Finite Elementen Models in der x-y-Ebene und Darstellung des verwende-
ten Materialverhaltens.

Die Modellbreite und der Lochdurchmesser sind den nominalen Dimensionen der Prüfkörper
nach der Norm ASTM D6484 [96] entsprechend. Die Modellänge wurde reduziert, da es nicht
notwendig ist die gesamte Länge außerhalb des Schädigungsbereiches zu modellieren. Dies hat
den Grund zur Folge, dass Versagen ausschliesslich im Schädigungsbereich auftritt. Auf diese
Reduktion wird auch in Bergan et al. [97] hingewiesen. Der modellierte Schädigungsbereich ist
in der Abbildung 6.6 in grün dargestellt. Hierbei werden die Elemente durch ein elastoplasti-
sches Materialverhalten charakterisiert. In rot werden die Elemente durch ein linear-elastisches
Verhalten beschrieben, wobei keine Schädigung zulässig ist. Es ist anzumerken, dass weiterfüh-
rende numerischen Untersuchungen notwendig sind, um den Einfluss der nominalen Probenlänge
auf die Vorhersagekraft des Materialmodells zu bewerten. Die drei verwendeten Proben werden
wie in Abschnitt 6.2 für den ersten Validierungsversuch begründet, als ein Viertel der Gesamt-
geometrie modelliert. Zur Modellierung der Proben sind in Anlehnung an Bergan et al.[97] die
Geometrieparameter bestimmt, welche in der Tabelle 6.4 dargestellt sind.

Tabelle 6.4: Geometrieparameter der untersuchten OHC-Modelle nach Norm ASTM D6484
Probenbezeichnung Lagendicke Länge l Breite w Messlänge
Lochdurchmesser

in mm in mm in mm in mm
in mm
Hard, Quasi, Soft 0.183 55 38.1 24
6.35

Die Materialkarte ist aus Wanthal et al. [98] entnommen, da sie eine grundsätzliche Vergleichbar-
keit mit den Modellen ermöglichen kannn, die Hyder et al. [88] untersuchten. Es ist anzumerken,
dass Bergan et al. [97] die gleichen Laminataufbauten verwendete, jedoch andere Bezeichnun-
gen verwendet. In dieser Arbeit werden die OHC Modellen nach den Probenbezeichungen von
Bergan et al. [97] genannt.
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Tabelle 6.5: Probenbezeichnungen und Laminataufbau der auf Norm ASTM D6484 basierten OHC-
Proben [97]

Probe Laminataufbau % Lagen 0/±45/90

Hard [(45/ − 45/02)3]s 50/50/0
Quasi [(45/0/ − 45/90)3]s 25/50/25
Soft [45/ − 45/0/45/ − 45/90/(45/ − 45)2]s 10/80/10

Die Probenbezeichnung Hard, Quasi und Soft lassen sich grundsätzlich anhand des Anteils der 0°-
Lagen im Laminataufbau einordnen. Während die Probe Hard aus 50% 0°-Lagen besteht, was sie
spröder macht, hat die Probe Soft einen akkumulierten Anteil von 90% an ±45° und 90°-Lagen.
Die Laminataufbauten der quasiisotropischen (Quasi) und der spröderen Probe (Hard) bestehen
aus 24 Lagen, während die etwas weichere Probe (Soft) über 20 Lagen verfügt. In der Tabelle 6.6
werden die in Bergan et al. [97] experimentell gemittelten Steifigkeiten, Versagensspannungen
und Versagendehnungen angegeben.

Tabelle 6.6: Experimentelle gemittelte Kennwerte der untersuchten Proben [97].

Laminataufbau Steifigkeit [GPa] Versagensspannung [MPa] Versagensdehnung [%]

Hard 79.7 456.2 0.63
Quasi 51.4 334.0 0.71
Soft 33.9 280.5 1.12

6.6.2. Einfluss der Berücksichtigung der Plastizität

Die Berücksichtigung der Plastizität im Materialmodell VSS zeigte für OAC-Proben eine Ver-
besserung der Vorhersagefähigkeit, siehe Abschnitt 5.2. Durch diese Validierungsübung soll der
Einfluss der Berücksichtigung der Plastizität auf die Vorhersagefähigkeit der Materialkennwer-
ten von OHC-Proben untersucht werden. Die drei modellierten OHC-Proben - Hard, Quasi und
Soft - wurden mit und ohne Aktivierung der Plastizität simuliert. Bei Aktivierung der Plastizi-
tät stellt sich ein elastoplastisches Materialverhalten ein, während bei Nichtaktivierung ein rein
elastisches Verhalten vorliegt. In der Abbildung 6.7 werden die Spannungs-Dehnungs-Verläufe
für alle sechs simulierten OHC-Modellen dargestellt:
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Abbildung 6.7: Spannungs-Dehnungs-Verläufe für OHC-Proben - Hard, Quasi, Soft - bei Modellierung
mit und ohne Plastizität

Die erste Auffälligkeit bezieht sich auf das nichtlineare Verhalten der Simulationen, bei denen
keine Plastizität berücksichtigt wird. In OAC-Simulationen, die keine Plastizität berücksichtigt
haben, war das Verhalten durchgängig rein-elastisch. Die OAC-Proben bestanden allerdings
nur aus unidirektionalen Lagen, weshalb FPF und LPF aus Symmetriegründen gleichzeitig am
Versagenspunkt auftreten. Die OHC-Proben bestehen aus multidirektionalen Lagen, und die
Schädigung fängt vor dem totalen Versagen an wie in der Abbildung 6.3 durch die Punkte A, B
und C gezeigt wurde. Folglich wird die Steifigkeit schrittweise reduziert und führt zu einem frühen
nichtlinearen Verhalten. Grundsätzlich verstärkt die Berücksichtigung der Plastizität bei allen
Simulationen das nichtlineare Verhalten. Dies macht sich bemerkbar in der OHC-Soft-Probe
durch den Vergleich der braunen und lilanen Kurve in der Abbildung 6.7. Eine quantitative
Auswertung der Ergebnisse ist in der Tabelle 6.7 dargestellt. Dabei wurde die Steifigkeit bei
0.1% Dehnung ausgewertet, die Versagensspannung bei der maximal erreichten Spannung σmax

und die Versagensdehnung εmax am selben Punkt bestimmt.

Tabelle 6.7: Übersicht der Abweichungen zwischen Simulationsergebnisen und Experimenten unter Be-
rücksichtigung ausschließlich elastischen sowie elastoplastischen Materialverhalten.

OHC-Simulationsmodell Materialverhalten ∆E [%] ∆σmax [%] ∆εmax [%]

Hard Elastoplastisch -17.7 4 35.4
Elastisch -20.8 5.1 33.5

Quasi Elastoplastisch -8.6 10.1 24.8
Elastisch -11.2 10.8 24.2

Soft Elastoplastisch -7.4 15.8 28.4
Elastisch -9.7 23.1 28.5
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Das in dieser Arbeit untersuchte elastoplastische Materialmodell VSS weist für alle OHC- Si-
mulationsmodelle geringere Abweichungen ∆E der Steifigkeit auf. Auch bei der Versagensspan-
nung sind die Abweichungen ∆σmax bei Berücksichtigung der Plastizität geringer für alle hier
betrachteten OHC-Modelle. Für die Versagensdehnung ∆εmax ergeben sich hingegen keine ein-
heitlichen Vorteile des elastoplastischen Ansatzes. Zudem deuten die Abweichungen in den Ver-
sagensdehnungen darauhin, dass der Versagenspunkt überschätzt wird. Das lässt sich durch die
positiven Abweichungen der Versagensspannungen auch bestätigen. Die Simulationsergebnisse
weisen auf eine systematische Unterschätzung der Steifigkeit für alle untersuchten Proben hin.
Eine mögliche Ursache ist die reduzierte Modelllänge des linear-elastischen Bereichs, in dem
keine Schädigung zugelassen ist. Eine Verlängerung dieses Bereichs in Längsrichtung könnte zu
einem erhöhten globalen Steifigkeitsverhalten führen, da die an den Messabschnitt angrezen-
den Bereiche durch eine größere Anzahl von Elementen steifer wirken. Grundsätzlich deuten
die Ergebnisse daraufhin, dass eine Untersuchung des Einflusses der Elementgröße mittels eine
Netzkonvergenzanalyse künftig notwendig ist. Vergleichliteraturen [88, 97] nutzen geringere Ele-
mentgrößen, insbesondere am Lochrandbereich, die tendenziell zu besseren Ergebnissen führen
könnten. Zudem ist der Einfluss von Elementlöschungskriterien als Maßnahme zur Verbesserung
der Vorhersagefähigkeit anzusehen und muss in weiterführenden Untersuchungen behandelt wer-
den. Denkbar wäre es statt nur die Steifigkeit nach dem Schädigungsbeginn zu reduzieren, die
Elemente ab einem bestimmten Schädigungswert zu löschen. Dies würde zu einem früheren Ver-
sagenspunkt und geringeren Abweichungen führen. Damit wurde eine wesentliche Fragestellung
dieser Arbeit behandelt, welche den Einfluss der Berücksichtigung der Plastizität auf die Quali-
tät der numerischen Vorhersagen von Steifigkeit, Versagensspannung und -dehnung in uniaxial
druckbelasteten OHC-Proben aufgreift.

6.7. Vergleich des Materialmodells mit EST und CompDam
Die Ergebnisse der OHC-Simulationen bei elastoplastischem Materialverhalten aus Tabelle 6.7
werden neben den Ergebnissen der zwei bewährten Materialmodelle EST und CompDam in
Abbildung 6.8 dargestellt, welche aus Hyder et al. [88] entnommen wurden. Die farbliche Kenn-
zeichnung verdeutlicht die Güte der Übereinstimmung: grün kennzeichnet Abweichungen unter
15%, gelb Abweichungen unter 20% und rot Abweichungen über 20%. Zur Gewährleistung der
Vergleichbarkeit der Ergebnisse wird derselbe Farbcode wie in Hyder et al. [88] verwendet.

Tabelle 6.8: Zweite OHC-Validierungsübung: Vergleich mit EST und CompDam
OAC EST CompDam VSS

∆E [%] ∆σmax [%] ∆εmax ∆E [%] ∆σmax [%] ∆εmax ∆E [%] ∆σmax [%] ∆εmax

Hard 2 -4% -13% 2 -23% -31 -17.7 4 35.4
Quasi -2% -23% -41% 3 -11 -32 -8.6 10.1% 24.8
Soft 3% -16% -22% 3% -30% -35% -7.4 15.8% 28.4

< 15% < 20% > 20% Abweichung von Versuchsdaten

EST und CompDam treffen die Steifigkeit insgesamt mit einer höheren Güte als VSS, welches
diese möglicherweise aufgrund der reduzierten Modelllänge im linear-elastischen Bereich unter-
schätzt, siehe Abschnitt 6.6.2. Hinsichtlich der Versagensspannung weist VSS jedoch eine bessere
Übereinstimmung mit den Versuchsdaten auf als EST und CompDam, auch wenn diese insbe-
sondere bei der Soft-Probe leicht überschätzt wird. EST und CompDam neigen demgegenüber zu
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einer ausgeprägteren Unterschätzung der Versagensspannung. Alle drei Materialmodelle zeigen
die größten Abweichungen bei der Vorhersage der Versagensdehnung. Hyder et al. [88] berichte-
ten, dass die Unterschätzung der Versagensdehnung in CompDam und EST auf die mangelnde
Fähigkeit zur Abbildung diskreter Matrixrisse zurückzuführen ist. Diese Risse traten experimen-
tell in den 0°-Lagen auf und entlasteten Spannungskonzentrationen am Lochrand, wodurch das
endgültige Versagen verzögert wurde. Ein numerischer Versuch zur Abbildung der Matrixrisse in
OHC-Proben wurde in Iyer et al. [99] durchgeführt. Diese nutzten einen semi-diskreten Model-
lierungsansatz, welcher auf Kontinuumschädigungs- und Bruchmechanik basiert, um erfolgreich
Versagensmechanismen wie z. B. Matrixrisse sowie Versagensfestigkeit abzubilden. Es konnten
dabei keine Erkenntnisse darüber gewonnen werden, ob die Abbildung der Matrixrisse eine er-
höhte Güte bei der Vorhersage der Versagensdehnung liefert.

Die systematische Überschätzung der Versagensspannung und -dehnung bei VSS legt nahe,
dass der gezielte Einsatz von Elementlöschungskriterien eine höhere Güte hinsichtlich dieser
beiden Kennwerten ermöglichen könnte. Darüber hinaus könnte die Berücksichtigung von CZM
zur Abbildung von Delaminationen, insbesondere bei Skalierung auf Lagenebene bzw. unge-
blockten Lagen, weiteres Untersuchungspotenzial bieten. Sowohl EST als auch CompDam ha-
ben CZM implementiert, allerdings ist es bisher unklar, inwiefern die Prognosegüte dadurch
verbessert werden kann. Experimentell [91] konnte gezeigt werden, dass im Fall einer Skalie-
rung auf Lagenebene Delaminationen zwar häufiger auftreten, jedoch selten den initierenden
Versagensmechanismus darstellen. Zudem stellt der Einfluss der Elementgröße einen relevanten
Untersuchungsgegenstand für zukünftige Arbeiten dar. Es ist erneut anzumerken, dass in EST
und CompDam kleinere Elementgrößen als in VSS verwendet worden sind.
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7. Zusammenfassung und Ausblick
Ziel dieser Arbeit war die Untersuchung eines elastoplastischen Materialmodells zur Beschrei-
bung des progressiven Schädigungs- und Versagensverhaltens unidirektionaler und multidirek-
tionaler Faserverbundlaminate unter uniaxialer Druckbelastung. Der Fokus lag dabei auf der
Abbildung des intralaminaren Schädigungsverhaltens für OAC- und OHC-Prüfkörpern, da diese
Lastfälle für strukturelle Anwendungen in der Luftfahrt von besonderer Relevanz sind und gleich-
zeitig hohe Anforderungen an die numerische Modellierung stellen. In diesem Zusammenhang
wurde eine umfassende Recherche über die Modellierungsstrategien von Faserverbundlaminaten
durchgeführt und die Ergebnisse in Kapitel 2 bereitgestellt. Dabei wurde der mesoskalige Ansatz
zur Modellierung der OAC- und OHC-Proben bestimmt. Weiterhin wurde der Verifizierungs-
und Validierungsrahmen zur Bewertung der technischen Reife des Materialmodells VSS ver-
wendet, welches im Kapitel 3 eingeführt wurde. Dessen numerische Implementierung wurde in
Kapitel 4 erörtert.

Das Materialmodell VSS wurde zunächst anhand von 1-Element-Simulationen untersucht, um
die Fähigkeit der Abbildung von analytisch bekannten Lösungen nachzuweisen. Dabei zeigte das
Versagenskriterium von Cuntze eine bessere Prognosegüte als das Versagenskriterium von Hashin
in Bezug auf experimentellen Ergebnissen. In diesem Zusammenhang konnte VSS bei Berück-
sichtigung von Cuntze gute Ergebnisse hinsichtlich der Verifizierungsübung. Außerdem wurde
für das Plastizitätsmodell ein Kalibrierungsalgorithmus entwickelt, welcher die Bestimmung des
Plastizitätsparameters a66 ermöglichten. Bei der Durchfürung von 1-Element-Simulationen zur
Untersuchung des Einflusses dieses Parameters stellte sich fest, dass Literaturwerte geringfügig
bessere Übereinstimmungen mit experimentellen Daten lieferten, weshalb die hier verwendete
Materialkarte den Literaturwert berücksichtigt.

Im Kapitel 5 zeigte die Berücksichtigung des Plastizitätsmodells für alle simulierten OAC-Proben
eine realistischere Abbildung des nichtlinearen Materialverhaltens. Besondere Schwierigkeiten
zeigten sich bei der OHC-15° Probe, bei der die Steifigkeit nicht zufriedenstellend vorherge-
sagt werden konnte. Dieses Verhalten wird auf die in den Experimenten beobachteten ausge-
prägten Faserrotationen zurückgeführt, die im aktuellen Modellierungsansatz nicht abgebildet
werden. Insbesondere für schub- und matrixdominierte Lastzustände zeigte sich eine erhöhte
Prognosegüte im vergleich zu Simulationsergebnissen mit rein-elastischem Materialverhalten.
Für longitudinal belastete Prüfkörper bestätigte sich erwartungsgemäß, dass plastische Effekte
nur eine untergeordnete Rolle spielen. Darüber hinaus konnte der Einfluss der Elementwahl un-
tersucht werden. Dabei zeigte sich für OAC-Proben, dass Volumenelemente des Typs C3D8R
zwar recheneffizienter, jedoch weniger genau in der Vorhersage der Versagensspannung als Konti-
nuumschalenelemente des Typs SC8R sind. Die durchgeführte Netzkonvergenzanalyse bestätigte
die numerische Stabilität der Simulationen und zeigte, dass eine weitere Netzverfeinerung keine
wesentliche Erhöhung der Prognosegüte erwarten lässt. Schließlich wurden hier zwei bewährten
PDA-Modelle aus der Literatur wie CompDam und EST zu einem Vergleich mit VSS bei gezo-
gen. VSS zeigte bei der Modellierung von OAC-Proben eine leicht bessere Prognosegüte bei der
Versagensspannung als die Literaturmodelle.

Im Kapitel 6 wurde das Materialmodell auf OHC-Prüfkörper übertragen, die aufgrund von Span-
nungskonzentrationen am Lochrand und des Zusammenwirkens mehrerer Versagensmechanis-
men eine deutlich höhere Komplexität aufweisen. Am zunächst betrachteten OHC-S2-Prüfkörper
nach AITM 1-0008 konnte gezeigt werden, dass das VSS-Materialmodell sowohl die Reihenfolge

Seite 63



7. Zusammenfassung und Ausblick

als auch die Art der dominanten Versagensmechanismen (FF2, IFF3, IFF2) in guter Überein-
stimmung mit den experimentellen Beobachtungen abbildet. Die vorhergesagte Versagensfes-
tigkeit stimmte bei Verwendung von Volumenelementen gut mit den experimentellen Werten
überein, während Kontinuumschalenelemente die Versagensspannung systematisch unterschätz-
ten. Eine zweite Validierungsübung auf Basis von drei OHC-Prüfkörpern (Hard, Quasi, Soft)
nach ASTM D6484 ermöglichte eine differenzierte Bewertung der Modellrobustheit. Dabei zeigte
sich, dass die Berücksichtigung der Plastizität systematisch zu einer verbesserten Vorhersage der
Steifigkeit und der Versagensspannung führt. Die Versagensdehnung konnte hingegen nicht mit
vergleichbarer Güte abgebildet werden und wurde überwiegend überschätzt. Die dazugehörige
Überschätzung der Versagenspannung zeigt einen plausiblen Ansatzpunkt zur Verbesserung der
Prognosegüte durch den gezielten Einsatz von Elementlöschungskriterien. Im Vergleich mit den
etablierten Materialmodellen EST und CompDam zeigte VSS eine insgesamt gute Leistungsfä-
higkeit, insbesondere bei der Vorhersage der Versagensspannung, während EST und CompDam
die Steifigkeit tendenziell besser abbildeten. Weiterführende Arbeiten sollten hierbei den Ein-
fluss der Modelllänge im elastischen Bereich untersuchen, in dem keine Schädigung zugelassen
ist. Dadurch könnte eine höhere Güte in der Steifigkeitsvorhersage erreicht werden.

Zusammenfassend konnte gezeigt werden, dass das entwickelte Materialmodell VSS durch Be-
rücksichtigung des Cuntze-Versagenkriteriums eine physikalisch plausible Beschreibung des uniaxia-
len Druckverhaltens auf Couponebene für OAC- und OHC-Proben zeigt. Die Berücksichtigung
des Plastizitätsmodells zeigt eine systematische verbesserte Vorhersage der Versagensspannung.
Das war der Fall auch in den OHC-Proben und insbesondere in der OHC-Soft Probe. Weiterfüh-
rende Arbeiten zu OHC-Proben sollten hierbei den Einfluss der Modelllänge im elastischen Be-
reich untersuchen, in dem keine Schädigung zugelassen ist. Dadurch könnte eine höhere Güte in
der Steifigkeitsvorhersage erreicht werden. Zudem sollte der Einfluss von Elementlöschungskrite-
rien bei OHC-Proben nähter untersucht werden, da sie die Prognosegüte zur Versagensspannung
und -dehnung erhöhen könnten. Ein weiterer Ansatzpunkt für weiterführenden Untersuchungen
könnte die Untersuchung einer nachvollziehbaren Herleitung und Implementierung der Abbil-
dungsmatrix Z in das Plastizitätsmodell, da diese bei Modellierung der OAC-Proben durch
Volumenelemente Verbesserungspotenzial zeigt. Eine Erweiterung des VSS-Materialmodells zur
Berücksichtigung von Faserrotationen könnte insbesondere für die OAC-15°-Probe zu einer er-
höhten Prognosegüte beitragen.
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Anhang

Anhang

A. Evaluierung von Versagenskriterien
Bruchkurven dienen der grafischen Darstellung von Zusammenhängen zwischen Spannungszu-
ständen beim Materialversagen. Dafür werden in der Regel zwei Spannungsgrößen variiert, wäh-
rend alle übrigen Komponenten auf null gesetzt werden, sodass ausschließlich der Einfluss der
ausgewählten Spannungen berücksichtigt wird. Eine solche Bruchkurve lässt sich als Grenze
im Raum der Spannungszustände interpretieren, welche die Bereiche von Versagen und Nicht-
versagen voneinander trennt. Liegt ein gegebener Spannungszustand innerhalb des durch die
Kurve abgegrenzten Bereichs, bleibt das Material intakt; liegt er außerhalb, ist ein Versagen zu
erwarten.

A.1. Bruchkurve Cuntze

Bruchkurve τ12(σ22) bei Druckbelastung

Das grundsätzliche Vorgehen zur Bestimmung von Bruchkurven besteht darin, zunächst die
Gleichung der globalen Gesamtanstrengung (34) auf den Wert Eins zu setzen, da dieser Punkt
den Übergang vom sicheren Bereich zum Versagen markiert. Anschließend werden alle nicht
relevanten Spannungsgrößen auf null gesetzt. In diesem Zusamhang werden die Spannungen σ1,
σ3, τ31 und τ32 genullt. Da σ2 < 0 lauten die Anstrengungen:

Eff(IFF1) = 0
Rt

⊥
= 0 (52)

Eff(IFF2) = −σ2
Rc

⊥
> 0 (53)

Eff(IFF3) = τ21

√√√√√√b2
⊥‖σ2

2 +
(
R⊥‖

)2
+ b⊥‖σ2(

R⊥‖
)3 (54)

Durch einsetzen von (53) und (54) in (34) und auflösen nach τ12 ergibt sich der Zusammenhang
für die Bruchkurve:

τ21(σ2) =

√√√√√ R3
⊥‖√

b2
⊥‖σ2

2 + R2
⊥‖ + b⊥‖σ2

·
(

1 −
(

−σ2
Rc

⊥

)m) 1
m

(55)

B. Programmcode zur Berechnung des Plastizitätparameters

1 #Ziel: Bestimmung der Materialparameter a66, alpha und beta für das Sun &
Chen Modell

2 #Author: Keidi Zyka
3 #Datum: Oktober 2025
4

5 import numpy as np
6 import pandas as pd
7 import matplotlib.pyplot as plt
8 from scipy.optimize import curve_fit
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9 from sklearn.metrics import r2_score
10

11 # ------------------------------------------------------------
12 # 0. Experimentelle Daten inititalisieren
13 # ------------------------------------------------------------
14 folder_path = "C:\\Users\\...\\02_Experimente"
15 angles = [15, 30, 45, 60, 75]
16

17

18 data = {
19 angle: pd.read_csv(f"{folder_path}\\UD_{angle}.csv", sep=';', header=

None, names=["epsilon_x", "sigma_x"])
20 .apply(lambda x: x.str.replace(',', '.').astype(float))
21 .sort_values(by="sigma_x")
22 .reset_index(drop=True)
23 for angle in angles
24 }
25

26

27 E_x = {
28 15: 55284,
29 30: 21691,
30 45: 13084,
31 60: 9790,
32 75: 8818
33 }
34

35

36

37 #===================FUNKTIONEN================================
38

39 # ------------------------------------------------------------
40 # 1. Transformationsfunktion
41 # ------------------------------------------------------------
42

43 def h(theta_off_deg , a66):
44 """Transformation function h�(_off, a66) from Eq. (4.59)."""
45 theta = np.deg2rad(theta_off_deg)
46 s = np.sin(theta)
47 c = np.cos(theta)
48 return np.sqrt(1.5 * (s**4 + 2 * a66 * s**2 * c**2))
49

50 # ------------------------------------------------------------
51 # 2. Isotrope Verfestigungsfunktion
52 # ------------------------------------------------------------
53

54 def eps_p_eff_model(sigma_eff , A_SC, n_SC):
55 """Power law: �̃_p = A_SC * �̃^n_SC"""
56 return A_SC * sigma_eff ** n_SC
57

58

59 # ------------------------------------------------------------
60 # 3. Effektive Spannungs - und Dehnungswerte berechnen
61 # ------------------------------------------------------------
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62

63 def compute_effective_values(data, a66, E_x_values):
64 results = []
65 for theta, df in data.items():
66 h_val = h(theta, a66)
67 sigma_eff = df["sigma_x"] * h_val
68 eps_p_x = df["epsilon_x"] - df["sigma_x"] / E_x_values[theta]
69 eps_p_eff = eps_p_x / h_val
70 mask = eps_p_eff > 0 # remove negatives
71 results.append((sigma_eff[mask].values, eps_p_eff[mask].values))
72 return results
73

74 # ----------------------------------------------------------------------
75 # 4. Berechne den optimalen Parametersatz R²(a66, theta, A_SC, n_SC) -

Methoden der kleinsten Quadrate
76 # ----------------------------------------------------------------------
77

78 a66_values = np.linspace(3, 7, 40)
79 A_SC_list = []
80 n_SC_list = []
81 r2_values = []
82

83 for a66 in a66_values:
84 eff_data = compute_effective_values(data, a66, E_x)
85 sigma_eff_all = np.concatenate([d[0] for d in eff_data])
86 eps_p_eff_all = np.concatenate([d[1] for d in eff_data])
87

88 # --- CLEAN AND FILTER THE DATA ---
89 mask = (
90 np.isfinite(sigma_eff_all) &
91 np.isfinite(eps_p_eff_all) &
92 (sigma_eff_all > 0) &
93 (eps_p_eff_all > 0)
94 )
95 sigma_eff_all = sigma_eff_all[mask]
96 eps_p_eff_all = eps_p_eff_all[mask]
97

98 # Skip if too few valid points
99 if len(sigma_eff_all) < 10:

100 print(f"� Not enough valid data for a66 = {a66:.2f}")
101 r2_values.append(np.nan)
102 continue
103

104 # --- FIT MODEL ---
105 try:
106 popt, _ = curve_fit(
107 eps_p_eff_model ,
108 sigma_eff_all ,
109 eps_p_eff_all ,
110 maxfev=10000
111 )
112 except RuntimeError:
113 print(f"� Fit did not converge for a66 = {a66:.2f}")
114 r2_values.append(np.nan)
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115 continue
116

117 # --- COMPUTE PREDICTIONS AND R² ---
118 eps_p_pred = eps_p_eff_model(sigma_eff_all , *popt)
119

120 #eps_p_pred = eps_p_eff_model(sigma_eff_all , A_SC, n_SC)
121 A_SC, n_SC = popt
122 A_SC_list.append(A_SC)
123 n_SC_list.append(n_SC)
124 r2 = r2_score(eps_p_eff_all , eps_p_pred)
125 r2_values.append(r2)
126

127

128 # ------------------------------------------------------------
129 # 5. Ausgabe der besten Parameter
130 # ------------------------------------------------------------
131

132 best_idx = np.argmax(r2_values)
133 best_a66 = a66_values[best_idx]
134 A_best = A_SC_list[best_idx]
135 n_best = n_SC_list[best_idx]
136 R2=np.max(r2_values)
137

138 alpha = 1.0 / n_best
139 beta = A_best ** (-1.0 / n_best)
140

141 print(f"R2 = {R2:.3f}")
142 print(f"a66 = {best_a66:.3f}")
143 print(f"A_SC = {A_best:.6e}")
144 print(f"n_SC = {n_best:.6f}")
145 print(f"alpha = {alpha:.6f}")
146 print(f"beta = {beta:.6e}")
147

148

149 # ------------------------------------------------------------
150 # 5. Plot R² vs a66
151 # ------------------------------------------------------------
152

153 plt.figure(figsize=(6, 4))
154

155 plt.plot(a66_values , r2_values , 'o', color='blue', markersize=6)
156 plt.plot(a66_values , r2_values , '-', color='blue', linewidth=1.2)
157

158 # --- Axis styling to match paper ---
159 plt.xlabel(r"$a_{66}$", fontsize=12)
160 plt.ylabel(r"$R^2$", fontsize=12)
161 plt.title(r"Goodness of fit for different $a_{66}$ values", fontsize=13)
162

163 textstr = (
164 f"$R^2$ = {R2:.3f}\n"
165 f"$a_{{66}}$ = {best_a66:.1f}\n"
166 f"$\\alpha$ = {alpha:.3f}\n"
167 f"$\\beta$ = {beta:.1f}"
168 )
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169

170

171 # Thinner gridlines similar to the paper
172 plt.grid(True, which='both', linestyle='-', linewidth=0.5, color='gray',

alpha=0.5)
173

174 # Optional: clean axes look (ticks only at bottom and left)
175 plt.tick_params(direction='in', top=False, right=False)
176

177 # --- Optional annotations ---
178 best_idx = np.argmax(r2_values)
179 plt.scatter(a66_values[best_idx], r2_values[best_idx], color='red', zorder

=5)
180

181 plt.gca().text(
182 0.95, 0.95, textstr,
183 transform=plt.gca().transAxes ,
184 fontsize=11,
185 verticalalignment='top',
186 horizontalalignment='right',
187 bbox=dict(boxstyle="round,pad=0.4", facecolor="white", alpha=0.7)
188 )
189

190 plt.tight_layout()
191 plt.show()
192

193

194

195

196 # ------------------------------------------------------------
197 # Plot Master Curve
198 # ------------------------------------------------------------
199 best_a66 = best_a66 # from your R² optimization
200 eff_data_best = compute_effective_values(data, best_a66 , E_x)
201 for i, (sigma_eff , eps_p_eff) in enumerate(eff_data_best):
202 # Remove nonpositive or invalid data
203 mask = (sigma_eff > 0) & (eps_p_eff > 0) & np.isfinite(sigma_eff)
204 sigma_eff = sigma_eff[mask]
205 eps_p_eff = eps_p_eff[mask]
206

207 # Sort by strain for smooth plotting
208 order = np.argsort(eps_p_eff)
209 sigma_eff = sigma_eff[order]
210 eps_p_eff = eps_p_eff[order]
211

212 eff_data_best[i] = (sigma_eff , eps_p_eff)
213

214 eff_data_best = compute_effective_values(data, best_a66 , E_x)
215 sigma_eff_all = np.concatenate([d[0] for d in eff_data_best])
216 eps_p_eff_all = np.concatenate([d[1] for d in eff_data_best])
217

218 # Filter valid values
219 mask = (eps_p_eff_all > 0) & (sigma_eff_all > 0)
220 sigma_eff_all = sigma_eff_all[mask]
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221 eps_p_eff_all = eps_p_eff_all[mask]
222

223

224

225 colors = ["#000000","#b30b0b",'#2ca02c',"#0864DBFF",'#9467bd','#8c564b',"#5
a0841"]

226

227 plt.figure(figsize=(7, 5))
228

229 linestyles = [
230 ("-", "s"),
231 ("-", "o"),
232 ("-", "^"),
233 ("-", "v"),
234 ("-", "D"),
235 ("-", "P"),
236 ("-", "*")
237 ]
238

239 for (angle, (sigma_eff , eps_p_eff)), color, (ls, marker) in zip(zip(data.
keys(), eff_data_best), colors, linestyles):

240 mask = (sigma_eff > 0) & (eps_p_eff > 0) & np.isfinite(sigma_eff)
241 sigma_eff = sigma_eff[mask]
242 eps_p_eff = eps_p_eff[mask]
243 order = np.argsort(eps_p_eff)
244 sigma_eff = sigma_eff[order]
245 eps_p_eff = eps_p_eff[order]
246

247 plt.plot(eps_p_eff , sigma_eff ,
248 linestyle=ls,
249 color=color,
250 linewidth=1.2,
251 marker=marker,
252 markersize=3,
253 label=f"{angle}° transformed")
254

255 # --- Add master fit curve ---
256 eps_p_fit = np.linspace(min(eps_p_eff_all), max(eps_p_eff_all), 200)
257 sigma_fit = beta * eps_p_fit ** alpha
258 plt.plot(eps_p_fit , sigma_fit , 'r-', linewidth=3.5, label=r'Fit: $\tilde{\

sigma} = \beta\,(\tilde{\varepsilon}^p)^{\alpha}$')
259

260 # --- Styling ---
261 plt.xlabel(r'Effective plastic strain $\tilde{\varepsilon}^p$')
262 plt.ylabel(r'Effective stress $\tilde{\sigma}$ [MPa]')
263 plt.title('Masterkurve', fontsize=13)
264 plt.legend(frameon=False)
265 plt.grid(True, linestyle='--', alpha=0.5)
266 plt.tight_layout()
267 plt.show()

Listing 1: Auswertung der Plastizitätsparameter
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