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A B S T R A C T

This paper introduces a versatile approach for computing the risk of collision specifically tailored for scenarios 
featuring low relative encounter velocities, but with potential applicability across a wide range of situations. The 
technique employs Differential Algebra (DA) to express the non-linear dynamical flow of the initial distribution 
in the primary-secondary objects relative motion through high-order Taylor polynomials. The entire initial un
certainty set is subdivided into subsets through Automatic Domain Splitting (ADS) techniques to control the 
accuracy of the Taylor expansions. The methodology samples the initial conditions of the relative state and 
evaluates the polynomial expansions for each sample while retaining their temporal dependency. The classical 
numerical integration of the initial statistics over the set of conditions for which a collision occurs is thus reduced 
to an evaluation of mono-dimensional time polynomials. Specifically, samples reaching a relative distance below 
a critical value are identified along with the time at which this occurs. The approach is tested against a Monte 
Carlo (MC) simulation for various literature test cases, yielding accurate results and a consistent gain in 
computational time. Specifically, the time reduction can reach up to 99.9 %, depending on the dynamics and the 
number of samples employed in the analysis, while the estimated final Probability of Collision (Pc), for long-term 
scenarios, deviates from the reference by no more than 0.018 %.

1. Introduction

With the continuous advancement of space technology, the fre
quency of spacecraft launches has increased steadily, leading to growing 
congestion in Earth's orbital environment. Over recent decades, this 
congestion has become increasingly hazardous to spacecraft operations, 
primarily due to the rising accumulation of space debris. Projections 
indicate that this trend will intensify, particularly with the deployment 
of large-scale satellite constellations, which will further saturate the 
most frequently used orbital regimes. Consequently, spacecraft opera
tors are confronted with a growing number of close approach alerts and 
are required to perform an increasing number of Collision Avoidance 
Maneuvers (CAMs) to safeguard mission integrity [1,2].

A key aspect of managing these events is the assessment of their 
criticality, which mainly relies on evaluating the Probability of Collision 
(Pc) between the objects involved [3]. In the literature and collision 

avoidance practice, these are referred to as the primary (typically the 
controlled asset of interest) and the secondary object (the one it 
encounters).

The methods for computing collision risk have been tailored for 
different conjunction types. Close approaches between satellites are in 
fact typically classified as either short-term or long-term encounters [4]. 
Short-term encounters involve objects with significantly different orbits, 
resulting in encounter velocities reaching several kilometers per second 
near the point of closest approach. These encounters last only a few 
seconds at most. Throughout the encounter, the relative velocity vector 
remains constant in both intensity and direction, leading to a 
straight-line relative trajectory. Moreover, the relative velocity uncer
tainty is deemed negligible in comparison to its pronounced mean. 
Consequently, the position error combined ellipsoid remains stable 
throughout the encounter since the positional uncertainties of the ob
jects can be defined by two uncorrelated constant covariance matrices. 
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Various methods are available in the literature to compute the collision 
probability for the short-term case. The problem has been, in fact, 
extensively studied by Foster [5], Patera [6,7], Alfriend et al. [8], Afano 
[9], Chan [10,11], and more recently by Serra et al. [12].

Typically, as illustrated in Fig. 1-(a), the collision risk is calculated by 
integrating the Probability Density Function (PDF) of the combined 
positional uncertainty over the volume defined by the combined hard- 
body sphere [6], as it moves along the relative trajectory. Given that 
this trajectory is rectilinear, the swept volume can be approximated as 
an infinite cylinder aligned with the direction of the relative velocity. 
This allows the 3D integral to be reduced to a 2D one, since the inte
gration along the direction of relative velocity yields unity. As a result, 
the PDF is usually evaluated on a plane perpendicular to the relative 
velocity vector, commonly referred to as the B-plane.

The other type of encounter occurs between two satellites traveling 
along neighboring orbits, such as between two GEO satellites at adjacent 
longitude positions or, more generally, during close satellite operations, 
including rendezvous, formation, and cluster flights. It is worth noting 
that similar geometries can also occur naturally, albeit less frequently. 
These close approaches are characterized by a low relative velocity, 
typically on the order of a few meters per second. In such scenarios, the 
two objects remain in close proximity for an extended duration, 
approximately on the order of the orbital period. As shown in Fig. 1-(b), 
unlike in short-term close approaches, the relative velocity vector is not 
constant; it evolves over time in both direction and magnitude. For that, 
the relative trajectory usually bends and becomes non-linear. The un
certainty in the relative state can no longer be assumed constant; it also 
changes over time rotating and deforming. Additionally, the uncertainty 
associated with the relative velocity must be accounted for and cannot 
be neglected anymore. This results in a time-dependent, evolving com
bined covariance matrix during the encounter, and the collision tube can 

exhibit complex, highly non-linear geometries that are very difficult to 
integrate.

The collision risk for long-term encounters has not been as thor
oughly investigated as it has been for short-term encounters. A first 
category of methods, as in Refs. [13–15], tries to solve the bending 
tendency of the collision tube. The key concept is to discretize the 
collision tube into small subsections and to consider that for each 
segment the assumptions of a short-term encounter still hold. A better 
characterization of the collision volume is outlined in the works of Chan 
[16,17], where the swept-volume of the hard-body is described as an 
envelope of ellipsoids. However, it is important to note that these 
methods do not account for velocity uncertainties in the formulation of 
the problem. Coppola [18], on the other hand, presents a comprehensive 
mathematical framework that, for the first time, incorporates velocity 
uncertainties into the formulation. This marks one of the most extensive 
efforts to address the collision probability problem in a general manner. 
In this case, the intricate integration volume is continually mapped over 
time through the dynamic evolution of the initial conditions on the 3D 
surface of the hard-body sphere. However, the assumptions made do not 
accommodate for multiple encounters within the analysis timeframe, 
making the method not suitable for complex intersections of the inte
gration volume.

As highlighted in Ref. [19], there is a notable absence in the litera
ture of a general method capable of simultaneously characterizing the 
swept volume, especially when its shape is intricate, and computing the 
subsequent integral of the full relative state vector gaussian PDF over 
such a volume. In their work, it is suggested to approximate the swept 
volume using a Polynomial Superlevel Set (PSS) followed by a Monte 
Carlo integration to calculate the Pc.

So far, the most comprehensive methodologies capable of simulta
neously accounting for uncertainties in both position and velocity, while 

Fig. 1. representation of short-term (a) and long-term (b) encounter scenarios. By convention, the combined covariance position ellipsoid is centered on the primary 
object (P), while a sphere of radius equal to the Hard-Body Radius (HBR) is centered on the secondary object (S), accounting for the dimensions of both objects. In 
long-term encounters, the topological points on the hard-body sphere's surface at t0 evolve into an ellipsoid as the combined covariance rotates and deforms 
over time.
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handling complex encounter geometries, are Monte Carlo (MC) tech
niques [20,21]. These methods offer a straightforward problem formu
lation and an intuitive approach to computing the Pc, without requiring 
an explicit mathematical characterization of the integration volume. 
Although MC simulations are often regarded as the standard for vali
dating new Pc estimation methods due to their high accuracy, their 
primary drawback remains the significant computational cost. To 
address this, several studies have focused on speeding up the MC 
approach through techniques such as subset simulation [22] and line 
sampling [23] which use stepwise procedures based on Markov Chains 
to reduce the number of samples required for a given confidence level.

Rather than relying on a traditional MC approach, this work employs 
Differential Algebra (DA) [24] to efficiently characterize the collective 
behavior of subsets of sampled initial conditions. This approach builds 
upon the work of Morselli et al. [25], who first applied DA to estimate 
the Pc by expressing both the Time of Closest Approach (TCA) and the 
relative distance as Taylor expansions of the initial condition un
certainties, and then sampling these initial conditions to compute the Pc 
through MC evaluation of the DA representation of the miss distance. 
While their approach is elegant and influential, it is specifically tailored 
to short term encounters and the resulting Pc computation remains 
limited to a local analysis centered around a single TCA. Our study 
consolidates and extends recent developments by the authors [26], with 
the goal of adapting and generalizing the methodology in Ref. [25] for 
long-term encounter scenarios, including cases in which multiple close 
approaches may occur within the screening interval. In details, we 
propose to compute the dynamical evolution of the initial conditions as a 
patched 7D continuum, where each patch is represented by a high-order 
Taylor expansion in both time and the initial conditions at t0. The 
integration accuracy of the dynamical flow is controlled by the Auto
matic Domain Splitting (ADS) algorithm [27], which adaptively splits 
the initial domain of the combined covariance to ensure precision of the 
Taylor approximation. Subsequently, the PDF, defined in the initial 
relative state space, is sampled to generate specific realizations. Each 
patch is evaluated accordingly, resulting in a time-dependent Taylor 
expansion of the miss distance. Collision probability is computed as the 
fraction of samples for which the miss distance falls below a predefined 
threshold, determined by identifying the real roots of the corresponding 
Taylor polynomials.

On the one hand, compared with research approaches that diverge 
from MC–based formulations, the proposed methodology relaxes 
restrictive assumptions such as the neglect of velocity uncertainty and it 
is able to robustly manage complex intersections of the collision volume 
that arise from multiple close approaches within the computation in
terval. Moreover, it can accommodate any form of initial uncertainty 
without requiring the assumption of a Gaussian distribution. On the 
other hand, the methodology offers an inherent advantage over standard 
MC simulations: instead of performing a classical sample-by-sample 
propagation to check for collisions, it relies on a polynomial represen
tation of the covariance evolution over time. By evaluating one- 
dimensional time polynomials, we achieve a substantial reduction in 
computational cost while also offering a flexible framework naturally 
suited for parallel implementation. This efficiency gain is achieved 
through a reformulation of the problem enabled by DA, and it remains 
fully compatible with common MC acceleration techniques such as [22,
23], since the sampling MC component remains an essential step within 
our algorithm.

The proposed methodology forms part of the authors' broader effort 
to extend and enhance the capabilities of the DLR German Space Op
erations Center's (GSOC) Collision Avoidance System (CAS) [28], pre
paring it for the challenges posed by an increasingly congested orbital 
environment. In particular, it is designed with direct applicability to 
GEO assets under their control, which may at times experience 
long-term encounters with neighboring satellites.

The paper is structured as follows: Section 2 introduces the mathe
matical formulation commonly used to compute the Pc with a MC 

approach. Section 3 presents the core methodology, detailing how DA 
and ADS are employed to model the dynamical evolution of initial 
conditions, and how root-finding in the resulting polynomial expres
sions is used to determine collision events. Section 4 provides bench
mark test cases from the literature, along with a comparison of 
computational performance against an equivalent standard MC simu
lation. Sub-section 4.3 applies the proposed approach to a real-world 
long-term conjunction scenario, offering practical guidance for opera
tional implementation. Finally, Section 5 reports the conclusions and 
outlines directions for future work.

2. Problem description

Building on the derivation in Ref. [18], the statistical event for which 
a collision occurs is introduced as follows: given the initial distribution 
of the state for two space resident objects at time t0, the Hard-Body 
Radius HBR = R1 + R2 [6], where R1 and R2 are the radii of spheres 
whose diameters correspond to the maximum dimensions of the primary 
and secondary objects, and a maximum period of interest T, a collision 
between two objects is deemed to occur if there exists a time t, within the 
interval I = [t0,t0 + T], such that the norm of the relative distance vector 
d(t), is less than or equal to HBR. To assess the likelihood of this event 
occurring, and consequently characterize the Pc in a comprehensive and 
general manner, we introduce the relative state vector of the two objects 
engaged in the encounter, x(t), which is a function of time. This vector is 
defined as 

x(t)=
(

d(t)
vrel(t)

)

(1) 

in which vrel is the relative velocity of the secondary object with respect 
to the primary. It is important to emphasize that x(t) is defined as the 
difference, expressed in an inertial reference frame, between the indi
vidual states of the two objects involved in a close approach denoted as 
xp(t) and xs(t), respectively. These two quantities represent six- 
dimensional general multivariate random variables, which may follow 
arbitrary distributions. However, within the scope of this study, they are 
assumed to be statistically independent, implying that their cross- 
covariance is zero: 

COV
(
xp,xs

)
=COV

(
xs, xp

)
=0 (2) 

This assumption is widely adopted in the literature and is not overly 
restrictive, as xp(t) and xs(t) are typically obtained through separate 
orbit determination processes. These processes are often independent, 
relying on distinct dynamical models, measurement data, and associated 
uncertainties.

For notation simplicity, at the initial time t0 = 0, the relative state 
vector is denoted as x(t0) = x0. Defining the PDF of the relative state 
vector at t0 as ρ0(x0, t0), we can, without loss of generality, define Pc as: 

Pc=Pr(x0 ∈V)=

∫

V

ρ0(x0, t0)dx0 (3) 

where V ⊆ R6 represents the initial set for which a collision occurs at 
some future time t. For long-term encounters, the time evolution of the 
set V represents the same integration volume modelled in Refs. [16,17,
19]. The set V can be interpreted as a sub-region of the 
multi-dimensional space R6 wherein every realization of the random 
vector x0 inevitably leads to the violation of the condition ‖d(t)‖ ≤ HBR 
at a future time t. In mathematics: 

V =
{
x0 ∈R6 : ∃ t ∈ I : ‖d(t)‖ − HBR≤0

}
(4) 

By definition of PDF, the 6D integral of the initial statistic over the set 
V gives, in fact, the likelihood that x0 ∈ V. Notably, the integrand in Eq. 
(3) represents the PDF of an arbitrary distribution. Hence, the method
ology outlined in the following section is capable of handling the 
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dynamical evolution of any statistical distribution, provided that its 
form is known a priori at t0. Although the approach is not limited to any 
specific distribution, for the purposes of the present analysis, ρ0(x0, t0) is 
modelled as Gaussian. This choice is justified by the fact that, at least at 
t0, the relative state x0 typically results from an orbit determination 
process, for which the Gaussian assumption is generally considered 
reasonable. Thus: 

ρ0(x0, t0)=
e

(

−
1
2(x0 − μ0)

TP0
− 1(x0 − μ0)

)

̅̅̅̅̅̅̅̅̅̅̅̅

(2π)6
√ ̅̅̅̅̅̅̅̅̅̅

‖P0‖
√ (5) 

where μ0 and P0 represent respectively the mean and the covariance 
matrix of x0.

One way of computing the integral in Eq. (3) is via a MC-based 
method. In fact, in such cases, the initial conditions x0 are sampled 
and trajectories over the time interval [t0, t0 +T] are computed according 
to some dynamical model that propagates the relative state from time t0 
to T. The dynamics are usually expressed as an Ordinary Differential 
Equation (ODE) of the form: 
{

ẋ(t) = f(x(t0),x(t),u(t), t)
x(t0) = x0

(6) 

where the vector u(t) represents an eventually modelled maneuver in 
the relative dynamics.

Even when the initial conditions are modelled as Gaussian, their 
propagation through the dynamics described in Eq. (6), which, in the 
context of long-term encounters, are nonlinear, generally leads to a loss 
of Gaussian properties in the state distribution at future times t. Unlike 
approaches such as [18], the proposed methodology does not require the 
assumption that the statistical distribution remains Gaussian throughout 
the time interval I.

Finally, to compute the Pc, each sample trajectory is analyzed to 
verify if, at some future time, a collision occurs. If one hit is recorded for 
a specific sample, it means that it originally belonged to the set V. The 
probability is then computed by evaluating the ratio between the 
number of samples that produced a hit over the total number of samples.

3. Methodology

3.1. DA to express the dynamical evolution of x0

As outlined in the preceding section, our methodology employs DA 
techniques to express the dynamical evolution of the initial relative 
conditions. DA provides a computational framework that enables the 
treatment of functions as nth order Taylor polynomial expansions within 
a computer environment, rather than handling them solely as floating- 
point values. This framework holds considerable potency as it allows 
to extract more information on a function rather than its mere raw 
values [24]. Within this context, the time t can be expressed as a DA 
variable τ and scaled with respect to the maximum time of interest T, 
such that τ ∈ [ − 1,1]: 

τ =2(t − t0)
T

− 1 (7) 

Before introducing a vector of DA variables that corresponds to the 
variation of the initial relative state vector from its mean at t0, we 
perform a rotation to the space in which x(t) is defined. This last may be, 
in general, either an inertial reference frame or a frame co-moving with 
the target along its trajectory. Such frames are commonly employed to 
express relative dynamics. Regardless of the chosen initial frame, which 
can be arbitrary, a transformation is applied to align the state space with 
the principal axes of the initial combined covariance matrix P0. Specif
ically, the transformation is based on the eigen-decomposition of P0, 
such that 

P0 =QΛ QT , (8) 

where Q ∈ R6x6 is an orthogonal matrix, whose columns are the eigen
vectors of P0, and Λ ∈ R6x6 is a diagonal matrix containing the corre
sponding eigenvalues. This decomposition enables the mapping of a 
vector m ∈ R6 from the original reference frame into an equivalent 
vector mʹ ∈ R6, expressed in a coordinate system aligned with the 
principal axes of the uncertainty ellipsoid defined by P0, according to: 

mʹ=QT(m − μ0) (9) 

From this point onward, all references to the relative state vector and 
its DA representation will be made in the transformed coordinate sys
tem. To avoid overly pedantic notation, we deliberately omit the prime 
symbol (′).

At this point, consistently with the DA variable τ, we introduce a 
vector of DA variables, δx0, representing the deviation of the initial 
relative state vector from μ0. Each component is normalized by the 
maximum expected variation, Δx0, such that it is defined within the 
interval [ − 1,1]. This is 

δx0 =
x0 − μ0

Δx0
(9) 

The relative state at a given scaled instant τ, can now be computed 
via integration of the dynamics described in Eq. (6) and expressed in the 
DA framework as: 

x=T x(τ, δx0) (10) 

That is a vector of high order polynomials that are functions of the 
deviations of the scaled time τ and the initial normalized relative sta
tistics, δx0. The Taylor map T x establishes a relationship between the 
perturbed initial state vector and the corresponding state vector at a 
specified time within I, utilizing the dynamical model defined in (6). 
This mapping from the initial set to the final one bears conceptual 
similarity to the mathematical notion of a manifold well described in 
Ref. [29]. Within the context of this research, the employed dynamical 
model may be arbitrarily complex and may include highly nonlinear 
relative motion. The only requirement is that it must be described by an 
analytical law that establishes a functional relationship between the 
state at time t and the initial conditions at t0.

Utilizing DA in this context offers several advantages. Firstly, it en
ables the representation of an infinite set solely through its Taylor 
expansion coefficients. This preserves a specific analytical structure in 
contrast to a mere point-wise set representation. Secondly, and perhaps 
most significantly, it allows the propagation of entire sets through a 
function using straightforward DA arithmetic operations. Unlike a 
standard MC simulation, where the ODE flow of equation (6) is inte
grated for each sample, in this scenario, only a single integration is 
required. The resulting DA expansion represents the outcome of prop
agating all points from the initial domain through the ODE in (6).

3.2. ADS to control integration accuracy

The challenging part of this approach arises from the nonlinear dy
namics involved usually in long-term encounters. When the Taylor map 
needs to approximate a strongly non-linear function, the convergence of 
the ODE expansion across the domain becomes inaccurate. Conse
quently, the DA map, which is a local representation of the function, 
poorly represents the actual evolution of the whole domain, even though 
the description is accurate in the vicinity of the center of the expansion.

To address this issue, we employ the technique proposed in Ref. [27]. 
The ADS algorithm identifies instances where the ODE flow expansion 
over the initial conditions no longer accurately describes the dynamics.

Once such a scenario is detected, the domain of the original poly
nomial expansion is divided along one of the expansion variables into 
two domains, each half the size of the original. By re-expanding the 
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polynomials around the new center points, two separate polynomial 
expansions are generated.

To aid the reader's understanding and provide a visual interpretation 
of the concept, this process is illustrated in Fig. 2 -(a) and (b). In the 
visualization, a 2D function f(x1, x2) is depicted alongside the defined 
domain of the variables (x1,x2). Additionally, Taylor expansion centered 
around the domain's midpoint is displayed to approximate f(x1,x2). The 
accuracy of the approximation is high near the center but diminishes 
towards the domain edges. To ensure accuracy, the algorithm iteratively 
splits the initial domain into two segments whenever the Taylor series 
representation diverges from the actual function by a user-defined 
margin ε. Subsequently, the expansions are recalculated around the 
new centers, and this process continues until all expansions accurately 
represent the function within the specified threshold ε.

In a similar fashion, in our case the initial 7D domain, defined by the 
variables τ and δx0 is split into different sub-domains. The dynamical 
evolution of the initial condition assumes the shape of a patched 7D 
continuum, mathematically defined as a manifold object [30]. Fig. 3
attempts to give a visual representation of this last, considering only the 

position components of the relative state vector and the time. To each 
patch at a given time corresponds a Taylor expansion, function of τ and 
of δx0, that approximates locally the dynamical flow. Once a single 
integration has been performed and the evolution of the initial condition 
is approximated by patched polynomials, our methodology proceeds to 
calculate the function d2 within the DA framework: 

d2 =T d2 (τ, δx0) (11) 

Here, d2 is a high order polynomial representation of the relative dis
tance squared expressed as function of time and initial state. It is again 
piece-wise defined, and its definition interval depends on the ADS ac
curacy control algorithm.

Subsequently, the initial set x0 is sampled. Each realization X0i of the 
random vector is linked to its respective initial patch and evaluated only 
in space and velocity. This evaluation reduces the dimensions of the d2 

polynomials, resulting in a set of one-dimensional Taylor expansions 
depending solely on time: 

Fig. 2. ADS algorithm illustration. (a) Taylor expansion of f(x1,x2) around initial domain's midpoint. (b) Taylor expansions of f(x1,x2) recalculated around the new 
domain centers.

Fig. 3. Dynamical flow evolution of the initial conditions x0. For representation purposes, only spatial coordinates are shown.
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d2
i =T d2 (τ, δx0 =X0i)=T d2

i
(τ), (12) 

This expansion holds significant importance as it is analyzed by the 
algorithm to determine if a collision occurs for a specific sample. Spe
cifically, this process is reduced to the task of locating the roots of 

fdi = d2
i − HBR2 = T fdi

(τ) (13) 

within the defined bounds of the Taylor expansion. This process is again 
illustrated in Fig. 3, where a sample is evaluated within the split initial 
set, resulting in a subset of one-dimensional polynomials that approxi
mate the time evolution of the trajectory highlighted in red.

3.3. Finding the roots of high order one-dimensional time polynomials

At this stage, the task of determining whether a given sample tra
jectory results in a collision, and thus contributes to the cumulation of 
Pc, is reformulated as a problem of finding the roots of high-order uni
variate polynomials that depend solely on time. This is accomplished 
through the application of a series of analytical theorems, following a 
methodology analogous to that employed in a different context in 
Ref. [31]. The root-finding algorithm is detailed in Fig. 4. After evalu
ating the sample and computing the DA expression in Eq. (13), we 
iterate through all the polynomials that define a sample trajectory. For 
each Taylor expansion and its corresponding definition interval, we 
initially verify if its center falls into the negative range to rule out the 
possibility of finding no roots due to the segment trajectory already 
being below the collision threshold. Subsequently, we determine the 
number of sign changes of the polynomial coefficients using the 
Budan-Fourier theorem [32]. This theorem considers the number of 
roots by examining the sequence of coefficient sign variations in the 
polynomial. Specifically, if the number of sign changes is odd, it in
dicates the presence of at least one real root within the polynomial's 
interval. In such cases, the algorithm registers a hit and proceeds to 
analyze the next sample. If there are no sign changes (i.e., the count is 
zero), we conclude that the polynomial has no real root in the interval. 
Thus, the algorithm proceeds to analyze the adjacent Taylor expansion 

as time progresses along the trajectory.
The situation differs when the number of sign changes is even. In 

such instances, the theorem does not provide conclusive results because 
the number of roots can be a multiple of an even number, potentially 
including zero. Therefore, the workflow further investigates using the 
Sturm algorithm [33]. This algorithm is a robust root isolation method 
that precisely determines the number of roots of a high-order poly
nomial within an interval by recursively performing Euclidean divisions 
to construct a sequence of polynomials. The sign variations in this 
sequence are analyzed to ascertain the number of roots. As before, if 
there are no roots, the algorithm proceeds to analyze the neighboring 
polynomials. However, if at least one root is found, a hit is recorded, and 
the polynomial approximation of the subsequent trajectory is studied.

The procedure described above is executed for each sample within a 
loop over the ADS-defined intervals. To improve the efficiency of the 
algorithm, the intervals are sorted in ascending order of their initial 
time. Before testing whether a given interval covers the sample, the al
gorithm verifies that its initial time is not earlier than the final time of 
the previously analyzed interval; if it is, the interval is skipped without 
further checks.

3.4. Monte Carlo tool for validation

To verify our methodology and measure the efficiency of our 
approach, we compare the results obtained with those generated by a 
standard, in-house MC simulation. To this end, the initial distribution is 
sampled in an analogous manner and each sample is propagated from t0 
to T. A grid of equally time-spaced points in miss distance is created, 
followed by interpolation where the real roots of a localized cubic 
polynomial are extracted. To elaborate, curve fitting is executed using a 
technique called parabolic blending [34,35], where a set of four equally 
spaced points is utilized to construct a third-order polynomial by 
merging two quadratic polynomials generated from the initial three 
points and the last three points. The minimum of the fitted curve is then 
determined by extracting the roots of the polynomial's first derivative. 
The MC process then assesses whether a collision occurs for a given 
sample by checking if the relative distance at any point within the 

Fig. 4. Roots-finding algorithm to individualize the zeros of high order mono-dimensional time polynomials.
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timeframe is equal to or less than the HBR. Fig. 5: High-level algorithm 
description for (a) DA polynomial evaluation technique and (b) standard 
MC tool to compute Pc outlines the primary distinctions between our DA 
approach and a conventional MC-based method for computing the Pc. 
Essentially, our technique requires only a single integration to generate 
the 7D manifold and a series of polynomial evaluations for each sample. 
Instead, in a standard MC method, one must initially perform numerical 
propagation of each sample and then interpolate the grid of discrete 
points in relative distance.

3.5. Parallelisation on multiple cores

The algorithm can be in principle divided in two stages. First, a single 
DA integration is performed to capture the complete dynamical evolu
tion from t0 to T. The computational cost of this step is essentially fixed, 
depending only on the system dynamics in (6) and the desired accuracy 
required by the ADS algorithm. Second, the algorithm evaluates samples 
in an MC-like fashion. Since each sample evolves independently, they 
can be distributed across CPU cores in batches. The computational time 
taken by the DA integration required to construct the patched manifold 
is negligible compared to sample evaluation and is therefore handled by 
the master thread. In contrast, the evaluation of sample trajectories and 
the root-finding procedure (Section 3.3) are parallelized across multiple 
CPU threads, with each thread processing a subset of samples. Finally, 
the hit counts from all threads are combined via an atomic operation to 
compute the Pc.

4. Testing

We examine the Pc values obtained by our approach using a set of 
artificial test cases from Ref. [20], with full details provided in the annex 

of that reference. These test cases are widely used in the literature as a 
benchmark for Pc computation methodologies, offering diverse sce
narios suitable for both short-term and long-term analyses. Each test 
case provides the primary and secondary distributions at TCA in an in
ertial reference frame assuming a Gaussian distribution for the un
certainties in position and velocities. Given our methodology's reliance 
on relative dynamics, we compute the relative state and its related 
combined covariance at TCA and then retrieve the conditions at t0.

In detail, in this research, the proposed methodology has been tested 
using three different analytical models of relative dynamics. The first is 
the Clohessy–Wiltshire model [36], which assumes a circular Keplerian 
orbit for the primary. The second is the Yamanaka–Ankersen model 
[37], which relaxes the circularity assumption on the primary's orbit and 
allows accurate modeling of relative motion for any eccentricity. The 
third is based on the Relative Orbital Elements (ROEs) theory developed 
by D'Amico [38,39], which extends the Clohessy–Wiltshire formulation 
to include the effects of the Earth's second zonal harmonic J2. All three 
models integrate the differential equations in Eq. (6) analytically. For 
the first two models, the initial relative state and combined covariance 
are obtained by applying the inverse of the State Transition Matrix 
(STM) to map the conditions at TCA back to the initial epoch t0. For the 
third model, the procedure is conceptually similar but involves a more 
elaborate transformation chain. Specifically, the primary and secondary 
state vectors at TCA are first converted to osculating Keplerian elements, 
which are then transformed into mean elements using a first-order 
transformation that accounts for the J2 perturbation. The ROEs [38] 
are subsequently computed and propagated backwards to t0, yielding 
the relative state required for the analysis. The same transformation 
chain is applied to the covariance using a Jacobian matrix, which is 
computed in a computer environment through automatic differentia
tion. A relevant example of this approach can be found in Ref. [40], for 

Fig. 5. High-level algorithm description for (a) DA polynomial evaluation technique and (b) standard MC tool to compute Pc.
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the interested reader.
Regardless of the dynamics employed to consistently derive the 

conditions at t0, the workflow outlined in Fig. 5-(a) is followed in all 
cases. First, Eq. (6) is integrated using the same dynamics adopted to 
generate the initial conditions, followed by the sampling of the initial 
statistic. The minimum number of samples required for statistical sig
nificance is then determined using the same statistical bounding criteria 
as presented in Ref. [20].

In the following discussion, we provide a detailed explanation of the 
methodology, offering insights into its operation and presenting plots 
corresponding to the first test cases based on Clohessy–Wiltshire dy
namics. An overview of the complete set of tests conducted with 
different dynamical models is then summarized in Table 2.

4.1. Test case #1 (Clohessy–Wiltshire)

The first test case considered involves two satellites in GEO having a 

non-rectilinear encounter. Fig. 6-(a) illustrates the combined positional 
covariance sampled at the initial time. The cyan points represent a 
subset of samples, denoted as V in Eqs. (3) and (4), for which a collision 
occurs within the timeframe of analysis. As depicted in Fig. 6-(b), the 
test case was deliberately designed so that even the mean of the initial 
distribution results in a collision, leading to a notably high final Pc 
reference value of 2.1783E-01. This elevated Pc level necessitates fewer 
than 16,000 Monte Carlo runs for the results to attain statistical signif
icance with 5 % accuracy and 95 % confidence.

As described in section 3, the evolution of the initial condition gen
erates a 7D manifold, with the initial sub-domains established by the 
ADS routine. Fig. 7 illustrates how the domain in the first and fifth 
components of the initial relative state and the time is split. Each sub
domain defines the range of these variables for which a single Taylor 
expansion can represent the relative state vector with the required ac
curacy. The red line represents a particular determination of the initial 
relative state component, based on which all the associated sub-domains 

Fig. 6. (a) Samples of the combined covariance at t0, with colliding samples and their trajectories shown in cyan for test case #1 (b) Evolution of the relative distance 
di (in magnitude) for each sample, with trajectories that violate the collision threshold highlighted in cyan. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Subdomains time evolution of relative state (a) first-component and (b) fifth -component. In orange all the subdomains associated to a given sample tra
jectory. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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are selected.
The evaluation of all these polynomials for a given sample of the 

initial relative state allows computing the DA expansion outlined in Eq. 
(13), which is a function only of the time. This is illustrated in Fig. 8-(a), 
where the Taylor expansions of fd are evaluated at the center of each 
sub-domain in time for three different samples. Two samples do not 
result in a collision (cyan and green curves), and one does lead to a 
collision (blue). The zoomed view in the figure highlights that the 
polynomial identifying the sample as colliding is not the one with its 
center below the zero line, but rather the one enclosed within the 
rectangle.

The cumulative collision probability determined through the DA 
polynomial evaluation method stabilizes at a value of 2.1783e-01, 

mirroring the result obtained from our in-house Monte Carlo simula
tion. Over the analysis period, the initial conditions evolve in a manner 
that, on average, leads to an accumulation of Pc at two distinct times. 
This test case illustrates the method's ability to address multiple con
junctions and, consequently, multiple TCAs within the analysis time
frame. Fig. 8-(b) depicts the TCA distribution in the form of a histogram, 
clearly indicating that among the samples resulting in a collision, a 
subset hits around 12,000 s after the start of the simulation. Succes
sively, the Pc stops accumulating after about 2000 s, and then increases 
again approximately 9500 s later. The computational time is compared 
to that of the in-house Monte Carlo simulation with an integration time- 
step of 5 s. As shown in Table 2, approximately 16,000 iterations are 
completed in about 2.62E-01 s on an Intel(R) Core (TM) i9-14900K CPU 

Fig. 8. (a) Taylor expansions of fd evaluated at the centre of each time sub-domain for two “hit” samples and one “no-hit” sample. (b) TCA distribution for test 
case #1.

Fig. 9. Sensitivity analysis of the splitting tolerance ε
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@ 5.5 GHz, compared to roughly 14 s for the MC approach, resulting in a 
gain in computational time of more than 5000 %.

Before extending the analysis to additional test cases and different 
dynamical models, we present a sensitivity study on the splitting toler
ance ε for test case #1. In the previous section, ε was introduced as a 
user-defined parameter that controls how accurately the Taylor poly
nomials reproduce the dynamical evolution of the initial conditions. Our 
aim is to provide the reader with intuition and practical guidance on 
how to select an appropriate value for this parameter. Intuitively, a 
smaller value of ε requires a Taylor expansion of higher order to accu
rately follow the dynamics, which in turn leads to a finer subdivision of 
the initial domain into a larger number of subdomains. Conversely, a 
larger ε allows the use of fewer subdomains and a lower-order poly
nomial approximation, but at the cost of degrading the accuracy of the 
estimated final Pc. This degradation occurs because, when the poly
nomial representation does not sufficiently match the true trajectory 
evolution, some samples that should result in a collision may no longer 

do so, and vice versa. Fig. 9 illustrates this trade-off through a para
metric analysis of ε. For each value of the splitting tolerance, we 
compute the gain function G, defined as the product of the 
computational-time reduction (relative to MC) and the Pc accuracy 
percentage (relative to MC) normalized with respect to the highest ac
curacy achieved. The gain function G highlights the values of ε that offer 
the best balance between accuracy and computational efficiency. In 
particular, values of G close to 1 correspond to an optimal choice of ε, 
whereas values approaching 0 indicate a suboptimal configuration. As 
shown, values of ε between 1e-5 and 1e-4 provide the best balance be
tween computational efficiency and estimation accuracy. Beyond 1e-3, 
the gain function G decreases noticeably, even though the correspond
ing error in Pc remains on the order of only 1–2 %. It is also worth noting 
that, even for very small values of ε, the reduction in computational time 
remains significant, as indicated by G remaining close to 1. For case #1 
and the test cases presented in the following subsections, a reference 
value of 1e-4 has therefore been adopted.

4.2. Additional test cases: different dynamical models and computational 
time

Additional test cases were examined to assess the performance of the 
proposed method across a range of scenarios and with the dynamical 
models introduced in the section above. A brief description of each case 
is provided in Table 1 to give the reader an overview of its structure and 
purpose.

Table 2 presents a comprehensive comparison of the DA-based 
methodology against a standard MC approach across various dynam
ical models. For each test case, the table reports the number of samples 
used, the final Pc obtained, the percentage error in Pc relative to the MC 
result, the respective computational times, and the time required by the 
DA and ADS components to integrate Eq. (6). Test case #7 is included in 
the description above (Table 1) for completeness, but it is not further 
analyzed due to the elevated number of samples required and its 
equivalence to cases #5 and #6. Moreover, cases #9 and #10 are only 
applicable to the Yamanaka-Ankersen dynamics, since in both scenarios 
the primary follows a highly eccentric orbit.

The results show that the DA-based methodology achieves excellent 

Table 1 
Description of test cases.

Test case Description

Case #2 It shares the same characteristics and relative motion as Case #1, 
involving two GEO satellites; however, it features a smaller HBR,
resulting in a mean miss distance that does not intersect the 
combined collision sphere.

Case #3 it also considers a GEO encounter but represents a short-term 
conjunction, where the Pc accumulates instantaneously at TCA.

Case #4 It involves non-rectilinear relative motion between two GEO objects 
and is designed to illustrate how the shape and orientation of the 
relative covariance can lead to Pc accumulation occurring after TCA.

Case #5, #6, 
#7

Cases #5, #6, and #7 correspond to LEO encounters, with each case 
representing progressively more pronounced non-linear relative 
motion: from marginal non-linearity in Case #5 to strongly non- 
linear conditions in Case #7.

Case #8 It features a long-term encounter in MEO.
Case #9 Cases #9 and #10 involve encounters between satellites in highly 

eccentric orbits, with non-rectilinear relative motion and a mean 
miss distance at TCA that exceeds the HBR. Due to the high 
eccentricity of these orbits, only the Yamanaka-Ankersen model is 
used to analyze these two cases.

Case #10

Table 2 
Test cases overview for different scenarios and different relative dynamical models.

Case n◦ Samples DA Polynomials Monte Carlo Pc err [%]

Pc Cmp. Time [s] ADS integration time [s] Pc Cmp. Time [s]

Clohessy-Wiltshire
# 1 1.57E+04 2.1783439490e-01 2.2803e-01s 3.699e-03 2.1783439490e-01 1.3612e+01 0.0000
# 2 6.52E+06 1.6044057777e-02 1.4247e+02 7.310e-03 1.6043137529e-02 5.2175e+03 0.0057
# 3 9.54E+05 1.0017956031e-01 4.4498e+01 1.3565e-02 9.9781236209e-02 7.2086e+02 0.3991
# 4 1.24E+06 7.4077658315e-02 1.6199e+01 3.1722e-03 7.4077658315e-02 1.1144e+03 0.0000
# 5 2.30E+06 4.9284041611e-02 2.3036e+02 3.8621e-02 4.9277954638e-02 2.1331e+03 0.0123
# 6 2.45E+07 3.2113120024e-02 4.4939e+03 7.7043e-02 3.2113120024e-02 2.3475e+04 0.0000
# 8 3.11E+06 3.5209770838e-02 9.8045e+01 7.0816e-03 3.5209770838e-02 3.0456e+03 0.0000
Yamanaka-Ankersen
# 1 1.57E+04 2.1974522293e-01 7.7953e-01 7.8263e-02 2.1974522293e-01 2.4096e+02 0.0000
# 2 6.52E+06 1.5625208494e-02 1.5904e+02 3.1008e-02 1.5623828121e-02 9.4998e+04 0.0088
# 3 9.54E+05 1.0004958087e-01 7.8968e+01 4.9884e-02 9.9618761904e-02 1.3478e+04 0.4325
# 4 1.24E+06 7.3597818057e-02 1.9757e+01 4.5257e-02 7.3597818057e-02 1.8311e+04 0.0000
# 5 2.30E+06 4.9344170491e-02 3.5407e+02 1.6887e-01 4.9335474794e-02 3.5586e+04 0.0176
# 6 2.45E+07 3.2108784306e-02 5.1490e+03 3.0087e-01 3.2108784306e-02 4.4743e+05 0.0000
# 8 3.11E+06 3.5504638603e-02 8.7062e+01 4.8339e-02 3.5504638603e-02 4.6758e+04 0.0000
# 9 1.80E+05 3.6322070245e-01 1.5878e+01 2.2812e-01 3.6322070245e-01 2.5490e+03 0.0000
# 10 1.92E+05 3.6289961354e-01 1.6699e+01 2.1105e-01 3.6289961354e-01 2.6738e+03 0.0000
D'Amico ROEs (J2 only)
# 1 1.57E+04 2.1229299363e-01 1.1358e+01 2.9052e-01 2.1229299363e-01 4.0226e+01 0.0000
# 2 6.52E+06 1.5595278886e-02 5.0212e+03 2.9113e-01 1.5595278886e-02 1.6352e+04 0.0000
# 3 9.54E+05 9.9111422782e-02 7.9797e+02 4.8696e-01 9.8611421210e-02 2.6991e+03 0.5070
# 4 1.24E+06 7.3588081261e-02 1.0374e+03 2.8894e-01 7.3588081261e-02 3.1196e+03 0.0000
# 5 2.30E+06 1.3047958428e-01 1.8123e+03 4.4447e+00 1.3046827989e-01 6.8514e+03 0.0087
# 6 2.45E+07 3.214569346e-02 4.4890e+04 4.9542e+00 3.214569346e-02 2.6569e+05 0.0000
# 8 3.11E+06 3.5636115989e-02 5.3679e+03 8.5806e-01 3.5635151356e-02 1.2422e+04 0.0027
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agreement with the MC simulation across all dynamical regimes, 
consistently reproducing the Pc with high accuracy. In some cases, there 
is a negligible discrepancy in the final Pc with an error that never ex
ceeds 0.0176 %. These minor deviations are attributed to an inherent 
limitation of the DA framework: it requires setting a threshold for the 
uncertainty in the initial deviation δx0 to construct the patched 7D 
manifold. In this study, the threshold has been conservatively set to five 
standard deviations of the initial uncertainty. In rare cases, especially 
when a large number of samples is involved, a few may fall outside this 
5σ boundary at t0. Such samples are discarded and not included in the 
analysis, which can lead to a slight under-/or over-estimation of Pc 
compared to the complete MC reference. Nevertheless, the overall ac
curacy and efficiency of the DA approach remain robust across all test 
scenarios.

In case #3, across all dynamics, the error with respect to the refer
ence never exceeds 0.5 %, as the test case essentially represents a 2D 
encounter. In such situations, the Pc accumulates almost instantaneously 
at TCA, requiring the algorithm to perform a large number of splits 
around that time to properly capture the dynamical evolution, with a 
corresponding reduction in the splitting tolerance ε. This leads to a loss 
in computational efficiency, highlighting the inevitable trade-off be
tween runtime and Pc estimation accuracy in 2D cases. However, this 
limitation is not particularly critical, since for short-term encounters the 
use of a MC based approach is generally not recommended, since far 
more efficient methods exist to compute Pc with high accuracy.

In terms of computational speed, it is important to note that the DA 
integration consistently requires significantly less time, often by several 
orders of magnitude, than the evaluation of the individual samples, to 
the point where its contribution becomes practically negligible. This 
highlights a fundamental strength of the methodology: it captures the 
full evolution of the initial condition set through a single, efficient 
integration. For a visual comparison of computational times between the 
DA-based approach and the MC method, the reader is referred to Fig. 10. 
All computational times were obtained using the same hardware 
configuration described in the previous section.

The plot displays computational time on the left axis (in logarithmic 
scale) and the percentage time reduction in computational time relative 
to the corresponding MC simulation on the right axis. Overall, the DA- 
based approach outperforms the MC method across all test cases and 
dynamical models, with computational time reductions ranging from a 
minimum of approximately 55 % to nearly 99.9 %. Notably, the gap in 
computational efficiency between the DA-based method and the MC 
approach widens as the complexity of the underlying dynamics in
creases. While the MC method may benefit from slightly faster sample 
propagation in simpler models, such as Clohessy–Wiltshire or the 
D'Amico formulation, the DA-based approach becomes significantly 
more advantageous as the dynamics involve more complex trans
formations, as in the case of Yamanaka-Ankersen.

Fig. 10. Comparison of computational times for different test cases between the DA-based methodology and the corresponding MC simulation. The left axis shows 
the computational time in logarithmic scale, while the right axis shows the associated computational time reduction.
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4.3. Real test case

We now consider a real conjunction scenario, as the test cases pre
sented in Ref. [20], while academically relevant, are not operationally 
realistic due to their extremely high Pc. The event involves a close 
approach between an asset in GEO and a secondary object in a very 
similar orbit, with a relative distance of 1.83 km and an HBR of 27.05 m. 
The encounter features a normal component of just 81 m and a relative 
velocity at TCA of approximately 3 m/s, classifying it as a long-term 
conjunction.

For this event, the TCA conditions are summarized in Table 3. Spe
cifically, the state vectors are provided in an ECI frame, while the cor
responding covariance matrices are expressed in the RTN frame for each 
object. Fig. 11-(a) illustrates the evolution of the relative distance be
tween the two objects over a 2-day period centered on the TCA. This 
interval reveals multiple close approaches, indicated by local minima in 
the relative distance. In addition to the situation at TCA, two notable 
minima (shown in the plot as local minimum A and B) occur approxi
mately 24 h before and after the closest approach. In the first one, the 
objects reach a separation of 10 km with a normal component of 178 m; 
in the second, the normal separation is 221 m. The instantaneous Pc, 
computed using the 2D methodology reported in Ref. [3], peaks at 
1.42E-04 at TCA, while at the other minima, it is roughly an order of 
magnitude lower.

The methodology proposed in this work is tested on this scenario, 
and the results are compared to a MC simulation as done for the other 
test cases. Based on the Instantaneous Pc at TCA, the required number of 
samples has been estimated: approximately 3.0E+07 are needed to 
achieve statistical relevance with 5 % accuracy and 95 % confidence. 
The resulting Pc evolution is given in Fig. 11-(b) and (c). As it can be seen 
the Pc accumulates first around the first minimum, reaching the value of 

1.76E-06, then accumulates for a period of 20 min, bracketing TCA and 
then accumulates again at the third minimum, settling to a value of 
1.4173E-04. All the samples that are producing a hit in the MC simu
lation are producing a hit also in the DA methodology reaching a 0.0 % 
estimation error while being approximately 87.8 times faster.

5. Conclusion and future work

We presented a general methodology for computing the Pc between 
two space objects, particularly suited for long-term encounters with 
relative velocities on the order of meters per second, yet in principle 
applicable to two-dimensional scenarios as well. The approach employs 
DA to capture the non-linear time evolution of the multivariate initial 
relative state vector. This last is modelled as a patched 7D continuum, 
where each patch is represented by a high-order Taylor expansion in 
both time and the initial conditions at t0. The integration accuracy of the 
dynamical flow is controlled by the ADS algorithm, which adaptively 
splits the initial domain of the combined covariance to ensure precision 
of the Taylor approximation. The initial PDF is then sampled and each 
patch is evaluated in a specific state-vector realization to definitively 
determine the time evolution of a given sample. The identification of 
collisions is reduced to finding the real roots of the DA approximation of 
the miss distance.

The proposed methodology retains all the advantages of a MC 
simulation while offering a substantial improvement in computational 
speed, owing to its DA foundation. In principle, it can be applied to any 
form of initial uncertainty, provided that the initial PDF is known a 
priori, without requiring the restrictive assumption of Gaussianity at t0 
or throughout the evolution of the initial conditions. Moreover, the 
approach can incorporate uncertainties in velocity and naturally ac
counts for multiple conjunctions occurring within the screening interval. 
Additionally, while this study has focused on three specific dynamical 
models, the technique is applicable to any form of relative or absolute 
dynamics, provided that an analytical formulation of the dynamics is 
available.

The technique has been extensively validated against benchmark test 
cases from the literature. In all scenarios, the estimated Pc shows 
excellent agreement with the corresponding MC simulations used for 
validation. The percentage reductions in computational time are 
consistently significant, ranging from approximately 55 % to nearly 
99.9 %, with the gap in efficiency between the DA-based method and the 
MC approach increasing as the complexity of the underlying dynamics 
grows.

This work also presents a real-case scenario involving an encounter 
between two GEO asset involved in a long-term conjunction. The pro
posed methodology successfully captures multiple conjunction events 
and the corresponding Pc accumulation occurring in different intervals 
within the computation window.

In future work, we plan to enhance the fidelity of the dynamics by 
extending the presented models to include additional orbital perturba
tions, particularly those relevant to the GEO environment.

While the reduction in computational time is evident, a key objective 
remains the adaptation of the methodology for operational use at GSOC. 
Having successfully passed an extensive validation phase, the next goal 
is its full integration into the CAS, enabling the handling of long-term 
conjunctions across multiple missions simultaneously. In doing so, the 
system will be capable of providing outputs that function as reliable 
decision-support tools for flight dynamics engineers in real-world 
encounter scenarios, ultimately contributing to the safe operation of 
more than 40 satellites.
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Table 3 
State vectors and associated uncertainties of real test case scenario.

Real long-term conjunction scenario

State vector and covariance at epoch time

Primary object Secondary object

X = 35037.184606 [km] X = − 35035.891661 [km]
Y = − 23466.448768 [km] Y = − 23467.794741 [km]
Z = 15.784810 [km] Z = 15.864584 [km]
X_DOT = 1.710187 [km/s] X_DOT = 1.709784 [km/s]
Y_DOT = − 2.554690 [km/s] Y_DOT = − 2.554927 [km/s]
Z_DOT = − 0.001790 [km/s] Z_DOT = 0.000755 [km/s]
CR_R = 1.341040E+03 [m**2] CR_R = 1.353645E+05 [m**2]
CT_R = − 1.285933E+02 [m**2] CT_R = − 3.104145E+05 [m**2]
CT_T = 2.221449E+04 [m**2] CT_T = 2.118139E+07 [m**2]
CN_R = 1.062929E+04 [m**2] CN_R = 5.530171E+02 [m**2]
CN_T = 2.613577E+02 [m**2] CN_T = − 2.019151E+03 [m**2]
CN_N = 8.435330E+04 [m**2] CN_N = 4.600785E+04 [m**2]
CRDOT_R = 0.000000E+00 [m**2/s] CRDOT_R = 1.620946E+01 [m**2/s]
CRDOT_T = 0.000000E+00 [m**2/s] CRDOT_T = − 1.582021E+03 [m**2/s]
CRDOT_N = 0.000000E+00 [m**2/s] CRDOT_N = 1.073235E-01 [m**2/s]
CRDOT_RDOT = 0.000000E+00 [m**2/ 

s**2]
CRDOT_RDOT = 1.189744E-01 [m**2/ 
s**2]

CTDOT_R = 0.000000E+00 [m**2/s] CTDOT_R = − 9.649515E+00 [m**2/s]
CTDOT_T = 0.000000E+00 [m**2/s] CTDOT_T = 1.190034E+01 [m**2/s]
CTDOT_N = 0.000000E+00 [m**2/s] CTDOT_N = − 3.914278E-02 [m**2/s]
CTDOT_RDOT = 0.000000E+00 [m**2/ 

s**2]
CTDOT_RDOT = − 3.817790E-04 
[m**2/s**2]

CTDOT_TDOT = 0.000000E+00 [m**2/ 
s**2]

CTDOT_TDOT = 6.930053E-04 [m**2/ 
s**2]

CNDOT_R = 0.000000E+00 [m**2/s] CNDOT_R = − 2.373264E-02 [m**2/s]
CNDOT_T = 0.000000E+00 [m**2/s] CNDOT_T = − 4.966605E-01 [m**2/s]
CNDOT_N = 0.000000E+00 [m**2/s] CNDOT_N = − 3.501316E-01 [m**2/s]
CNDOT_RDOT = 0.000000E+00 [m**2/ 

s**2]
CNDOT_RDOT = 4.222343E-05 [m**2/ 
s**2]

CNDOT_TDOT = 0.000000E+00 [m**2/ 
s**2]

CNDOT_TDOT = 1.972771E-06 [m**2/ 
s**2]

CNDOT_NDOT = 0.000000E+00 
[m**2/s**2]

CNDOT_NDOT = 9.341607E-05 [m**2/ 
s**2]
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Appendix 

Nomenclature

List of abbreviations
ADS Automatic Domain Splitting
CAM Collision Avoidance Maneuver
CAS Collision Avoidance System
DA Differential Algebra
GEO Geostationary Orbit
GSOC German Space Operations Center
HBR Hard Body Radius
LEO Low Earth Orbit
MC Monte-Carlo
ODE Ordinary Differential Equation
Pc Probability of Collision
PDF Probability Density Function
PSS Polynomial Superlevel Set
ROEs Relative Orbital Elements
STM State Transition Matrix
TCA Time of Closest Approach
List of symbols
t0 Initial time
T Maximum period of interest and end of simulation time
I Screening interval in which the methodology computes the Pc
d(t) Relative distance vector between Primary and Secondary objects
R1 Radius of a sphere whose diameter correspond to the maximum dimension of the primary object.
R2 Radius of a sphere whose diameter correspond to the maximum dimension of the secondary object.
HBR Radius of the combined sphere that accounts for both primary and secondary dimensionality
x(t) Relative state vector between Primary and Secondary objects at time t
x0 Relative state vector at initial time t0
vrel(t) relative velocity of the secondary object with respect to the primary
xp(t) State vector of the primary object
xs(t) State vector of the secondary object
COV

(
xp ,xs

)
Cross-covariance of the two random variables xp and xs

ρ0(x0, t0) PDF of relative state vector at t0
V Integration volume to compute the Pc
μ0 Mean of the relative state distribution at t0
P0 Covariance matrix of the relative state distribution at t0
u(t) Input maneuver modelled in the relative dynamics
τ Simulation time expressed as DA variable
Q Orthogonal matrix whose columns are the eigenvectors of P0

Λ Diagonal matrix containing the eigenvalues of P0

m Given vector expressed in an initial reference frame that can either be inertial or co-moving with the primary object.
mʹ Vector m transformed to a reference frame aligned with the principal axes of P0

δx0 Vector of DA variables representing the deviation of x0 from μ0.
Δx0 Vector containing maximum expected deviation of each component of x0

x Relative state at a given scaled instant τ expressed in the DA framework
T x Taylor map that links the deviations δx0 at t0 and x
ε Splitting tolerance
d2 DA representation of the relative distance squared
T d2 Taylor map that links the deviations δx0 at t0 and d2

X0i Given realization of δx0

d2
i One-dimensional Taylor polynomial depending solely on time representing d2 after sample evaluation

fdi DA expression representing the difference between d2
i and HBR squared used to check for collisions

G Gain function introduced to individualize the optimum of ε
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