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This paper introduces a versatile approach for computing the risk of collision specifically tailored for scenarios
featuring low relative encounter velocities, but with potential applicability across a wide range of situations. The
technique employs Differential Algebra (DA) to express the non-linear dynamical flow of the initial distribution
in the primary-secondary objects relative motion through high-order Taylor polynomials. The entire initial un-
certainty set is subdivided into subsets through Automatic Domain Splitting (ADS) techniques to control the
accuracy of the Taylor expansions. The methodology samples the initial conditions of the relative state and
evaluates the polynomial expansions for each sample while retaining their temporal dependency. The classical
numerical integration of the initial statistics over the set of conditions for which a collision occurs is thus reduced
to an evaluation of mono-dimensional time polynomials. Specifically, samples reaching a relative distance below
a critical value are identified along with the time at which this occurs. The approach is tested against a Monte
Carlo (MC) simulation for various literature test cases, yielding accurate results and a consistent gain in
computational time. Specifically, the time reduction can reach up to 99.9 %, depending on the dynamics and the
number of samples employed in the analysis, while the estimated final Probability of Collision (Pc), for long-term

scenarios, deviates from the reference by no more than 0.018 %.

1. Introduction

With the continuous advancement of space technology, the fre-
quency of spacecraft launches has increased steadily, leading to growing
congestion in Earth's orbital environment. Over recent decades, this
congestion has become increasingly hazardous to spacecraft operations,
primarily due to the rising accumulation of space debris. Projections
indicate that this trend will intensify, particularly with the deployment
of large-scale satellite constellations, which will further saturate the
most frequently used orbital regimes. Consequently, spacecraft opera-
tors are confronted with a growing number of close approach alerts and
are required to perform an increasing number of Collision Avoidance
Maneuvers (CAMs) to safeguard mission integrity [1,2].

A key aspect of managing these events is the assessment of their
criticality, which mainly relies on evaluating the Probability of Collision
(Pc) between the objects involved [3]. In the literature and collision

* Corresponding author.

avoidance practice, these are referred to as the primary (typically the
controlled asset of interest) and the secondary object (the one it
encounters).

The methods for computing collision risk have been tailored for
different conjunction types. Close approaches between satellites are in
fact typically classified as either short-term or long-term encounters [4].
Short-term encounters involve objects with significantly different orbits,
resulting in encounter velocities reaching several kilometers per second
near the point of closest approach. These encounters last only a few
seconds at most. Throughout the encounter, the relative velocity vector
remains constant in both intensity and direction, leading to a
straight-line relative trajectory. Moreover, the relative velocity uncer-
tainty is deemed negligible in comparison to its pronounced mean.
Consequently, the position error combined ellipsoid remains stable
throughout the encounter since the positional uncertainties of the ob-
jects can be defined by two uncorrelated constant covariance matrices.
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Vrel = Vs-Vp

B-plane

Collision tube

Fig. 1. representation of short-term (a) and long-term (b) encounter scenarios. By convention, the combined covariance position ellipsoid is centered on the primary
object (P), while a sphere of radius equal to the Hard-Body Radius (HBR) is centered on the secondary object (S), accounting for the dimensions of both objects. In
long-term encounters, the topological points on the hard-body sphere's surface at t, evolve into an ellipsoid as the combined covariance rotates and deforms

over time.

Various methods are available in the literature to compute the collision
probability for the short-term case. The problem has been, in fact,
extensively studied by Foster [5], Patera [6,7], Alfriend et al. [8], Afano
[9], Chan [10,11], and more recently by Serra et al. [12].

Typically, as illustrated in Fig. 1-(a), the collision risk is calculated by
integrating the Probability Density Function (PDF) of the combined
positional uncertainty over the volume defined by the combined hard-
body sphere [6], as it moves along the relative trajectory. Given that
this trajectory is rectilinear, the swept volume can be approximated as
an infinite cylinder aligned with the direction of the relative velocity.
This allows the 3D integral to be reduced to a 2D one, since the inte-
gration along the direction of relative velocity yields unity. As a result,
the PDF is usually evaluated on a plane perpendicular to the relative
velocity vector, commonly referred to as the B-plane.

The other type of encounter occurs between two satellites traveling
along neighboring orbits, such as between two GEO satellites at adjacent
longitude positions or, more generally, during close satellite operations,
including rendezvous, formation, and cluster flights. It is worth noting
that similar geometries can also occur naturally, albeit less frequently.
These close approaches are characterized by a low relative velocity,
typically on the order of a few meters per second. In such scenarios, the
two objects remain in close proximity for an extended duration,
approximately on the order of the orbital period. As shown in Fig. 1-(b),
unlike in short-term close approaches, the relative velocity vector is not
constant; it evolves over time in both direction and magnitude. For that,
the relative trajectory usually bends and becomes non-linear. The un-
certainty in the relative state can no longer be assumed constant; it also
changes over time rotating and deforming. Additionally, the uncertainty
associated with the relative velocity must be accounted for and cannot
be neglected anymore. This results in a time-dependent, evolving com-
bined covariance matrix during the encounter, and the collision tube can
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exhibit complex, highly non-linear geometries that are very difficult to
integrate.

The collision risk for long-term encounters has not been as thor-
oughly investigated as it has been for short-term encounters. A first
category of methods, as in Refs. [13-15], tries to solve the bending
tendency of the collision tube. The key concept is to discretize the
collision tube into small subsections and to consider that for each
segment the assumptions of a short-term encounter still hold. A better
characterization of the collision volume is outlined in the works of Chan
[16,17], where the swept-volume of the hard-body is described as an
envelope of ellipsoids. However, it is important to note that these
methods do not account for velocity uncertainties in the formulation of
the problem. Coppola [18], on the other hand, presents a comprehensive
mathematical framework that, for the first time, incorporates velocity
uncertainties into the formulation. This marks one of the most extensive
efforts to address the collision probability problem in a general manner.
In this case, the intricate integration volume is continually mapped over
time through the dynamic evolution of the initial conditions on the 3D
surface of the hard-body sphere. However, the assumptions made do not
accommodate for multiple encounters within the analysis timeframe,
making the method not suitable for complex intersections of the inte-
gration volume.

As highlighted in Ref. [19], there is a notable absence in the litera-
ture of a general method capable of simultaneously characterizing the
swept volume, especially when its shape is intricate, and computing the
subsequent integral of the full relative state vector gaussian PDF over
such a volume. In their work, it is suggested to approximate the swept
volume using a Polynomial Superlevel Set (PSS) followed by a Monte
Carlo integration to calculate the Pc.

So far, the most comprehensive methodologies capable of simulta-
neously accounting for uncertainties in both position and velocity, while
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handling complex encounter geometries, are Monte Carlo (MC) tech-
niques [20,21]. These methods offer a straightforward problem formu-
lation and an intuitive approach to computing the Pc, without requiring
an explicit mathematical characterization of the integration volume.
Although MC simulations are often regarded as the standard for vali-
dating new Pc estimation methods due to their high accuracy, their
primary drawback remains the significant computational cost. To
address this, several studies have focused on speeding up the MC
approach through techniques such as subset simulation [22] and line
sampling [23] which use stepwise procedures based on Markov Chains
to reduce the number of samples required for a given confidence level.

Rather than relying on a traditional MC approach, this work employs
Differential Algebra (DA) [24] to efficiently characterize the collective
behavior of subsets of sampled initial conditions. This approach builds
upon the work of Morselli et al. [25], who first applied DA to estimate
the Pc by expressing both the Time of Closest Approach (TCA) and the
relative distance as Taylor expansions of the initial condition un-
certainties, and then sampling these initial conditions to compute the Pc
through MC evaluation of the DA representation of the miss distance.
While their approach is elegant and influential, it is specifically tailored
to short term encounters and the resulting Pc computation remains
limited to a local analysis centered around a single TCA. Our study
consolidates and extends recent developments by the authors [26], with
the goal of adapting and generalizing the methodology in Ref. [25] for
long-term encounter scenarios, including cases in which multiple close
approaches may occur within the screening interval. In details, we
propose to compute the dynamical evolution of the initial conditions as a
patched 7D continuum, where each patch is represented by a high-order
Taylor expansion in both time and the initial conditions at ty. The
integration accuracy of the dynamical flow is controlled by the Auto-
matic Domain Splitting (ADS) algorithm [27], which adaptively splits
the initial domain of the combined covariance to ensure precision of the
Taylor approximation. Subsequently, the PDF, defined in the initial
relative state space, is sampled to generate specific realizations. Each
patch is evaluated accordingly, resulting in a time-dependent Taylor
expansion of the miss distance. Collision probability is computed as the
fraction of samples for which the miss distance falls below a predefined
threshold, determined by identifying the real roots of the corresponding
Taylor polynomials.

On the one hand, compared with research approaches that diverge
from MC-based formulations, the proposed methodology relaxes
restrictive assumptions such as the neglect of velocity uncertainty and it
is able to robustly manage complex intersections of the collision volume
that arise from multiple close approaches within the computation in-
terval. Moreover, it can accommodate any form of initial uncertainty
without requiring the assumption of a Gaussian distribution. On the
other hand, the methodology offers an inherent advantage over standard
MC simulations: instead of performing a classical sample-by-sample
propagation to check for collisions, it relies on a polynomial represen-
tation of the covariance evolution over time. By evaluating one-
dimensional time polynomials, we achieve a substantial reduction in
computational cost while also offering a flexible framework naturally
suited for parallel implementation. This efficiency gain is achieved
through a reformulation of the problem enabled by DA, and it remains
fully compatible with common MC acceleration techniques such as [22,
23], since the sampling MC component remains an essential step within
our algorithm.

The proposed methodology forms part of the authors' broader effort
to extend and enhance the capabilities of the DLR German Space Op-
erations Center's (GSOC) Collision Avoidance System (CAS) [28], pre-
paring it for the challenges posed by an increasingly congested orbital
environment. In particular, it is designed with direct applicability to
GEO assets under their control, which may at times experience
long-term encounters with neighboring satellites.

The paper is structured as follows: Section 2 introduces the mathe-
matical formulation commonly used to compute the Pc with a MC
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approach. Section 3 presents the core methodology, detailing how DA
and ADS are employed to model the dynamical evolution of initial
conditions, and how root-finding in the resulting polynomial expres-
sions is used to determine collision events. Section 4 provides bench-
mark test cases from the literature, along with a comparison of
computational performance against an equivalent standard MC simu-
lation. Sub-section 4.3 applies the proposed approach to a real-world
long-term conjunction scenario, offering practical guidance for opera-
tional implementation. Finally, Section 5 reports the conclusions and
outlines directions for future work.

2. Problem description

Building on the derivation in Ref. [18], the statistical event for which
a collision occurs is introduced as follows: given the initial distribution
of the state for two space resident objects at time tj, the Hard-Body
Radius HBR = R; + Ry [6], where R; and R, are the radii of spheres
whose diameters correspond to the maximum dimensions of the primary
and secondary objects, and a maximum period of interest T, a collision
between two objects is deemed to occur if there exists a time t, within the
interval I = [to,to + TJ, such that the norm of the relative distance vector
d(t), is less than or equal to HBR. To assess the likelihood of this event
occurring, and consequently characterize the Pc in a comprehensive and
general manner, we introduce the relative state vector of the two objects
engaged in the encounter, x(t), which is a function of time. This vector is
defined as

( d(t)

Vrel(t)

in which v, is the relative velocity of the secondary object with respect
to the primary. It is important to emphasize that x(t) is defined as the
difference, expressed in an inertial reference frame, between the indi-
vidual states of the two objects involved in a close approach denoted as
Xxp(t) and x,(t), respectively. These two quantities represent six-
dimensional general multivariate random variables, which may follow
arbitrary distributions. However, within the scope of this study, they are
assumed to be statistically independent, implying that their cross-
covariance is zero:

x(t) = @

COV/(x,,%;) =COV(x5, x,) =0 2

This assumption is widely adopted in the literature and is not overly
restrictive, as x,(t) and x,(t) are typically obtained through separate
orbit determination processes. These processes are often independent,
relying on distinct dynamical models, measurement data, and associated
uncertainties.

For notation simplicity, at the initial time t, = O, the relative state
vector is denoted as x(ty) = xo. Defining the PDF of the relative state
vector at ty as py(xo,to), we can, without loss of generality, define Pc as:

Pc=Pr(xo V)= /po (0, to)dxo 3)
\'4

where V C R® represents the initial set for which a collision occurs at
some future time t. For long-term encounters, the time evolution of the
set V represents the same integration volume modelled in Refs. [16,17,
19]. The set V can be interpreted as a sub-region of the
multi-dimensional space R® wherein every realization of the random
vector X, inevitably leads to the violation of the condition ||d(t)|| < HBR
at a future time t. In mathematics:

V={xoeR®:3tel:|d(t)]|—HBR<O0} 4

By definition of PDF, the 6D integral of the initial statistic over the set
V gives, in fact, the likelihood that xo € V. Notably, the integrand in Eq.
(3) represents the PDF of an arbitrary distribution. Hence, the method-
ology outlined in the following section is capable of handling the
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dynamical evolution of any statistical distribution, provided that its
form is known a priori at t,. Although the approach is not limited to any
specific distribution, for the purposes of the present analysis, p, (X0, to) is
modelled as Gaussian. This choice is justified by the fact that, at least at
ty, the relative state xo typically results from an orbit determination
process, for which the Gaussian assumption is generally considered
reasonable. Thus:

<*%(xo —#9)"Po 1 (xo *ﬂo))
e

(27)°

Po(Xo0,to) = 5)

[[Po]|

where p, and P, represent respectively the mean and the covariance
matrix of xg.

One way of computing the integral in Eq. (3) is via a MC-based
method. In fact, in such cases, the initial conditions xp are sampled
and trajectories over the time interval [ty, ty +T] are computed according
to some dynamical model that propagates the relative state from time t;
to T. The dynamics are usually expressed as an Ordinary Differential
Equation (ODE) of the form:

(6)

=

(to) = Xo

where the vector u(t) represents an eventually modelled maneuver in
the relative dynamics.

Even when the initial conditions are modelled as Gaussian, their
propagation through the dynamics described in Eq. (6), which, in the
context of long-term encounters, are nonlinear, generally leads to a loss
of Gaussian properties in the state distribution at future times t. Unlike
approaches such as [18], the proposed methodology does not require the
assumption that the statistical distribution remains Gaussian throughout
the time interval I.

Finally, to compute the Pc, each sample trajectory is analyzed to
verify if, at some future time, a collision occurs. If one hit is recorded for
a specific sample, it means that it originally belonged to the set V. The
probability is then computed by evaluating the ratio between the
number of samples that produced a hit over the total number of samples.

3. Methodology
3.1. DA to express the dynamical evolution of xo

As outlined in the preceding section, our methodology employs DA
techniques to express the dynamical evolution of the initial relative
conditions. DA provides a computational framework that enables the
treatment of functions as nth order Taylor polynomial expansions within
a computer environment, rather than handling them solely as floating-
point values. This framework holds considerable potency as it allows
to extract more information on a function rather than its mere raw
values [24]. Within this context, the time t can be expressed as a DA
variable 7 and scaled with respect to the maximum time of interest T,
such that 7 € [— 1,1]:

2(t—to)
T

T= -1 7)

Before introducing a vector of DA variables that corresponds to the
variation of the initial relative state vector from its mean at t,, we
perform a rotation to the space in which x(t) is defined. This last may be,
in general, either an inertial reference frame or a frame co-moving with
the target along its trajectory. Such frames are commonly employed to
express relative dynamics. Regardless of the chosen initial frame, which
can be arbitrary, a transformation is applied to align the state space with
the principal axes of the initial combined covariance matrix P,. Specif-
ically, the transformation is based on the eigen-decomposition of Py,
such that
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Po=QAQ", (8)
where Q € R®® is an orthogonal matrix, whose columns are the eigen-
vectors of Py, and A € R®® is a diagonal matrix containing the corre-
sponding eigenvalues. This decomposition enables the mapping of a
vector m € R® from the original reference frame into an equivalent
vector m € R®, expressed in a coordinate system aligned with the
principal axes of the uncertainty ellipsoid defined by Py, according to:

)]

From this point onward, all references to the relative state vector and
its DA representation will be made in the transformed coordinate sys-
tem. To avoid overly pedantic notation, we deliberately omit the prime
symbol ().

At this point, consistently with the DA variable 7, we introduce a
vector of DA variables, §xp, representing the deviation of the initial
relative state vector from p,. Each component is normalized by the
maximum expected variation, Axg, such that it is defined within the
interval [ — 1,1]. This is

m = Q' (m—p,)

Xo — Ko
0Xg=—7—+
0 AX()

©)

The relative state at a given scaled instant 7, can now be computed
via integration of the dynamics described in Eq. (6) and expressed in the
DA framework as:

X=.7 x(7,6X0) 10)

That is a vector of high order polynomials that are functions of the
deviations of the scaled time 7 and the initial normalized relative sta-
tistics, 6xo. The Taylor map .7, establishes a relationship between the
perturbed initial state vector and the corresponding state vector at a
specified time within I, utilizing the dynamical model defined in (6).
This mapping from the initial set to the final one bears conceptual
similarity to the mathematical notion of a manifold well described in
Ref. [29]. Within the context of this research, the employed dynamical
model may be arbitrarily complex and may include highly nonlinear
relative motion. The only requirement is that it must be described by an
analytical law that establishes a functional relationship between the
state at time t and the initial conditions at t,.

Utilizing DA in this context offers several advantages. Firstly, it en-
ables the representation of an infinite set solely through its Taylor
expansion coefficients. This preserves a specific analytical structure in
contrast to a mere point-wise set representation. Secondly, and perhaps
most significantly, it allows the propagation of entire sets through a
function using straightforward DA arithmetic operations. Unlike a
standard MC simulation, where the ODE flow of equation (6) is inte-
grated for each sample, in this scenario, only a single integration is
required. The resulting DA expansion represents the outcome of prop-
agating all points from the initial domain through the ODE in (6).

3.2. ADS to control integration accuracy

The challenging part of this approach arises from the nonlinear dy-
namics involved usually in long-term encounters. When the Taylor map
needs to approximate a strongly non-linear function, the convergence of
the ODE expansion across the domain becomes inaccurate. Conse-
quently, the DA map, which is a local representation of the function,
poorly represents the actual evolution of the whole domain, even though
the description is accurate in the vicinity of the center of the expansion.

To address this issue, we employ the technique proposed in Ref. [27].
The ADS algorithm identifies instances where the ODE flow expansion
over the initial conditions no longer accurately describes the dynamics.

Once such a scenario is detected, the domain of the original poly-
nomial expansion is divided along one of the expansion variables into
two domains, each half the size of the original. By re-expanding the
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® sub-domain center/expansion point
3 definition domains of(xi, x2)
fix1, x2)
@ Taylor expansion of fix, x2)

[ ]

*“
X1

(b)

Fig. 2. ADS algorithm illustration. (a) Taylor expansion of f(x;,x2) around initial domain's midpoint. (b) Taylor expansions of f(x1, x2) recalculated around the new

domain centers.

sample evaluated in ty

Fig. 3. Dynamical flow evolution of the initial conditions xp.

polynomials around the new center points, two separate polynomial
expansions are generated.

To aid the reader's understanding and provide a visual interpretation
of the concept, this process is illustrated in Fig. 2 -(a) and (b). In the
visualization, a 2D function f(x;,x2) is depicted alongside the defined
domain of the variables (x;,x2). Additionally, Taylor expansion centered
around the domain's midpoint is displayed to approximate f(x1,xz). The
accuracy of the approximation is high near the center but diminishes
towards the domain edges. To ensure accuracy, the algorithm iteratively
splits the initial domain into two segments whenever the Taylor series
representation diverges from the actual function by a user-defined
margin e. Subsequently, the expansions are recalculated around the
new centers, and this process continues until all expansions accurately
represent the function within the specified threshold e.

In a similar fashion, in our case the initial 7D domain, defined by the
variables 7 and 8xy is split into different sub-domains. The dynamical
evolution of the initial condition assumes the shape of a patched 7D
continuum, mathematically defined as a manifold object [30]. Fig. 3
attempts to give a visual representation of this last, considering only the

sample piece-wise time evolution

For representation purposes, only spatial coordinates are shown.

position components of the relative state vector and the time. To each
patch at a given time corresponds a Taylor expansion, function of = and
of dxp, that approximates locally the dynamical flow. Once a single
integration has been performed and the evolution of the initial condition
is approximated by patched polynomials, our methodology proceeds to
calculate the function d* within the DA framework:

&*=.7 p(z,6x0) an
Here, d? is a high order polynomial representation of the relative dis-
tance squared expressed as function of time and initial state. It is again
piece-wise defined, and its definition interval depends on the ADS ac-
curacy control algorithm.

Subsequently, the initial set x¢ is sampled. Each realization Xy; of the
random vector is linked to its respective initial patch and evaluated only
in space and velocity. This evaluation reduces the dimensions of the d?
polynomials, resulting in a set of one-dimensional Taylor expansions
depending solely on time:
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START

|

EVALUATE IN INTERVAL CENTER t,

.

.

fa e >0 ] ‘ fo(t) <0 J
BUDAN-FOURIER ( Recorf 1 hit )

STOP: continue with next sample

[ n° of sing change: even ]

v
[ n°® of sing change: odd ]

[ n° of sing change: zero ]

STURM [

Record 1 hit ) ( Record 0 hit )

[ n°® of real roots on ] [

n® of real roots on ]

Interval: >0 Interval: = 0
v
[ Record 1 hit ][ Record 0 hit ]

=

STOP: continue with next sample

1=

STOP: continue with next sample

STOP: continue with next Interval

v v

STOP: continue with next Interval

Fig. 4. Roots-finding algorithm to individualize the zeros of high order mono-dimensional time polynomials.

& =T p (1,6x0 =Xoi) =7 2(7), 12)
This expansion holds significant importance as it is analyzed by the

algorithm to determine if a collision occurs for a specific sample. Spe-

cifically, this process is reduced to the task of locating the roots of

fa=d? —HBR? = 7, (1) 13
within the defined bounds of the Taylor expansion. This process is again
illustrated in Fig. 3, where a sample is evaluated within the split initial
set, resulting in a subset of one-dimensional polynomials that approxi-
mate the time evolution of the trajectory highlighted in red.

3.3. Finding the roots of high order one-dimensional time polynomials

At this stage, the task of determining whether a given sample tra-
jectory results in a collision, and thus contributes to the cumulation of
Pc, is reformulated as a problem of finding the roots of high-order uni-
variate polynomials that depend solely on time. This is accomplished
through the application of a series of analytical theorems, following a
methodology analogous to that employed in a different context in
Ref. [31]. The root-finding algorithm is detailed in Fig. 4. After evalu-
ating the sample and computing the DA expression in Eq. (13), we
iterate through all the polynomials that define a sample trajectory. For
each Taylor expansion and its corresponding definition interval, we
initially verify if its center falls into the negative range to rule out the
possibility of finding no roots due to the segment trajectory already
being below the collision threshold. Subsequently, we determine the
number of sign changes of the polynomial coefficients using the
Budan-Fourier theorem [32]. This theorem considers the number of
roots by examining the sequence of coefficient sign variations in the
polynomial. Specifically, if the number of sign changes is odd, it in-
dicates the presence of at least one real root within the polynomial's
interval. In such cases, the algorithm registers a hit and proceeds to
analyze the next sample. If there are no sign changes (i.e., the count is
zero), we conclude that the polynomial has no real root in the interval.
Thus, the algorithm proceeds to analyze the adjacent Taylor expansion
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as time progresses along the trajectory.

The situation differs when the number of sign changes is even. In
such instances, the theorem does not provide conclusive results because
the number of roots can be a multiple of an even number, potentially
including zero. Therefore, the workflow further investigates using the
Sturm algorithm [33]. This algorithm is a robust root isolation method
that precisely determines the number of roots of a high-order poly-
nomial within an interval by recursively performing Euclidean divisions
to construct a sequence of polynomials. The sign variations in this
sequence are analyzed to ascertain the number of roots. As before, if
there are no roots, the algorithm proceeds to analyze the neighboring
polynomials. However, if at least one root is found, a hit is recorded, and
the polynomial approximation of the subsequent trajectory is studied.

The procedure described above is executed for each sample within a
loop over the ADS-defined intervals. To improve the efficiency of the
algorithm, the intervals are sorted in ascending order of their initial
time. Before testing whether a given interval covers the sample, the al-
gorithm verifies that its initial time is not earlier than the final time of
the previously analyzed interval; if it is, the interval is skipped without
further checks.

3.4. Monte Carlo tool for validation

To verify our methodology and measure the efficiency of our
approach, we compare the results obtained with those generated by a
standard, in-house MC simulation. To this end, the initial distribution is
sampled in an analogous manner and each sample is propagated from t,
to T. A grid of equally time-spaced points in miss distance is created,
followed by interpolation where the real roots of a localized cubic
polynomial are extracted. To elaborate, curve fitting is executed using a
technique called parabolic blending [34,35], where a set of four equally
spaced points is utilized to construct a third-order polynomial by
merging two quadratic polynomials generated from the initial three
points and the last three points. The minimum of the fitted curve is then
determined by extracting the roots of the polynomial's first derivative.
The MC process then assesses whether a collision occurs for a given
sample by checking if the relative distance at any point within the
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Algorithm 1 DA polynomial evaluation technique

1: DA variable initialisation.
2: Perform ODE integration with ADS control. > eq. (10)
3: for each sample X; i=1:N do
4: Evaluate fy(7,dz¢g = X(;) within the split initial set. > eq. (13)
5: Get subset of polynomials that approximate sample trajectory fg,(t)
6: for f4,(t), I in sample trajectory do
(a) 7 procedure ROOT FINDING ALGORITHM( fy, (), 1) > Fig. 4
8 if n°real roots > 0 then
9: record 1 Hit
10: end if
11: end procedure
12: end for
13: end for

14: Compute P, as:

nHils
nsamples

Algorithm 2 Monte Carlo

Initialize At and time grid.

2: for each sample i=1:N do

Propagate sample V¢

4: Compute the relative distance ||d(t)|

procedure PARABOLIC BLENDING INTERPOLATION(t, ||d(t)||)

6: if Interpolated ||d(t)|| < HBR then

(b)
record 1 Hit
8: end if
end procedure
10: end for

Compute P, as: nifits

nsamples

Fig. 5. High-level algorithm description for (a) DA polynomial evaluation technique and (b) standard MC tool to compute Pc.

timeframe is equal to or less than the HBR. Fig. 5: High-level algorithm
description for (a) DA polynomial evaluation technique and (b) standard
MC tool to compute Pc outlines the primary distinctions between our DA
approach and a conventional MC-based method for computing the Pc.
Essentially, our technique requires only a single integration to generate
the 7D manifold and a series of polynomial evaluations for each sample.
Instead, in a standard MC method, one must initially perform numerical
propagation of each sample and then interpolate the grid of discrete
points in relative distance.

3.5. Parallelisation on multiple cores

The algorithm can be in principle divided in two stages. First, a single
DA integration is performed to capture the complete dynamical evolu-
tion from ¢y to T. The computational cost of this step is essentially fixed,
depending only on the system dynamics in (6) and the desired accuracy
required by the ADS algorithm. Second, the algorithm evaluates samples
in an MC-like fashion. Since each sample evolves independently, they
can be distributed across CPU cores in batches. The computational time
taken by the DA integration required to construct the patched manifold
is negligible compared to sample evaluation and is therefore handled by
the master thread. In contrast, the evaluation of sample trajectories and
the root-finding procedure (Section 3.3) are parallelized across multiple
CPU threads, with each thread processing a subset of samples. Finally,
the hit counts from all threads are combined via an atomic operation to
compute the Pc.

4. Testing

We examine the Pc values obtained by our approach using a set of
artificial test cases from Ref. [20], with full details provided in the annex
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of that reference. These test cases are widely used in the literature as a
benchmark for Pc computation methodologies, offering diverse sce-
narios suitable for both short-term and long-term analyses. Each test
case provides the primary and secondary distributions at TCA in an in-
ertial reference frame assuming a Gaussian distribution for the un-
certainties in position and velocities. Given our methodology's reliance
on relative dynamics, we compute the relative state and its related
combined covariance at TCA and then retrieve the conditions at tg.

In detail, in this research, the proposed methodology has been tested
using three different analytical models of relative dynamics. The first is
the Clohessy-Wiltshire model [36], which assumes a circular Keplerian
orbit for the primary. The second is the Yamanaka-Ankersen model
[37], which relaxes the circularity assumption on the primary's orbit and
allows accurate modeling of relative motion for any eccentricity. The
third is based on the Relative Orbital Elements (ROEs) theory developed
by D'Amico [38,39], which extends the Clohessy-Wiltshire formulation
to include the effects of the Earth's second zonal harmonic Js. All three
models integrate the differential equations in Eq. (6) analytically. For
the first two models, the initial relative state and combined covariance
are obtained by applying the inverse of the State Transition Matrix
(STM) to map the conditions at TCA back to the initial epoch t,. For the
third model, the procedure is conceptually similar but involves a more
elaborate transformation chain. Specifically, the primary and secondary
state vectors at TCA are first converted to osculating Keplerian elements,
which are then transformed into mean elements using a first-order
transformation that accounts for the Jp perturbation. The ROEs [38]
are subsequently computed and propagated backwards to ty, yielding
the relative state required for the analysis. The same transformation
chain is applied to the covariance using a Jacobian matrix, which is
computed in a computer environment through automatic differentia-
tion. A relevant example of this approach can be found in Ref. [40], for
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Fig. 6. (a) Samples of the combined covariance at to, with colliding samples and their trajectories shown in cyan for test case #1 (b) Evolution of the relative distance
d; (in magnitude) for each sample, with trajectories that violate the collision threshold highlighted in cyan. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Subdomains time evolution of relative state (a) first-component and (b) fifth -component. In orange all the subdomains associated to a given sample tra-
jectory. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

the interested reader.

Regardless of the dynamics employed to consistently derive the
conditions at ty, the workflow outlined in Fig. 5-(a) is followed in all
cases. First, Eq. (6) is integrated using the same dynamics adopted to
generate the initial conditions, followed by the sampling of the initial
statistic. The minimum number of samples required for statistical sig-
nificance is then determined using the same statistical bounding criteria
as presented in Ref. [20].

In the following discussion, we provide a detailed explanation of the
methodology, offering insights into its operation and presenting plots
corresponding to the first test cases based on Clohessy-Wiltshire dy-
namics. An overview of the complete set of tests conducted with
different dynamical models is then summarized in Table 2.

4.1. Test case #1 (Clohessy—Wiltshire)

The first test case considered involves two satellites in GEO having a
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non-rectilinear encounter. Fig. 6-(a) illustrates the combined positional
covariance sampled at the initial time. The cyan points represent a
subset of samples, denoted as V in Egs. (3) and (4), for which a collision
occurs within the timeframe of analysis. As depicted in Fig. 6-(b), the
test case was deliberately designed so that even the mean of the initial
distribution results in a collision, leading to a notably high final Pc
reference value of 2.1783E-01. This elevated Pc level necessitates fewer
than 16,000 Monte Carlo runs for the results to attain statistical signif-
icance with 5 % accuracy and 95 % confidence.

As described in section 3, the evolution of the initial condition gen-
erates a 7D manifold, with the initial sub-domains established by the
ADS routine. Fig. 7 illustrates how the domain in the first and fifth
components of the initial relative state and the time is split. Each sub-
domain defines the range of these variables for which a single Taylor
expansion can represent the relative state vector with the required ac-
curacy. The red line represents a particular determination of the initial
relative state component, based on which all the associated sub-domains
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Fig. 8. (a) Taylor expansions of f; evaluated at the centre of each time sub-domain for two “hit” samples and one “no-hit” sample. (b) TCA distribution for test

case #1.

are selected.

The evaluation of all these polynomials for a given sample of the
initial relative state allows computing the DA expansion outlined in Eq.
(13), which is a function only of the time. This is illustrated in Fig. 8-(a),
where the Taylor expansions of f; are evaluated at the center of each
sub-domain in time for three different samples. Two samples do not
result in a collision (cyan and green curves), and one does lead to a
collision (blue). The zoomed view in the figure highlights that the
polynomial identifying the sample as colliding is not the one with its
center below the zero line, but rather the one enclosed within the
rectangle.

The cumulative collision probability determined through the DA
polynomial evaluation method stabilizes at a value of 2.1783e-01,

mirroring the result obtained from our in-house Monte Carlo simula-
tion. Over the analysis period, the initial conditions evolve in a manner
that, on average, leads to an accumulation of Pc at two distinct times.
This test case illustrates the method's ability to address multiple con-
junctions and, consequently, multiple TCAs within the analysis time-
frame. Fig. 8-(b) depicts the TCA distribution in the form of a histogram,
clearly indicating that among the samples resulting in a collision, a
subset hits around 12,000 s after the start of the simulation. Succes-
sively, the Pc stops accumulating after about 2000 s, and then increases
again approximately 9500 s later. The computational time is compared
to that of the in-house Monte Carlo simulation with an integration time-
step of 5 s. As shown in Table 2, approximately 16,000 iterations are
completed in about 2.62E-01 s on an Intel(R) Core (TM) i9-14900K CPU
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1.0

0.8 1

0.6

0.4

0.2 4

0.0 -

le-8

le-7 le-6

le-5

—— optimum

le-4 le-3 le-2 le-1l

3
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Table 1
Description of test cases.
Test case Description
Case #2 It shares the same characteristics and relative motion as Case #1,
involving two GEO satellites; however, it features a smaller HBR,
resulting in a mean miss distance that does not intersect the
combined collision sphere.
Case #3 it also considers a GEO encounter but represents a short-term
conjunction, where the Pc accumulates instantaneously at TCA.
Case #4 It involves non-rectilinear relative motion between two GEO objects
and is designed to illustrate how the shape and orientation of the
relative covariance can lead to Pc accumulation occurring after TCA.
Case #5, #6, Cases #5, #6, and #7 correspond to LEO encounters, with each case

#7 representing progressively more pronounced non-linear relative
motion: from marginal non-linearity in Case #5 to strongly non-
linear conditions in Case #7.

Case #8 It features a long-term encounter in MEO.
Case #9 Cases #9 and #10 involve encounters between satellites in highly
Case #10 eccentric orbits, with non-rectilinear relative motion and a mean

miss distance at TCA that exceeds the HBR. Due to the high
eccentricity of these orbits, only the Yamanaka-Ankersen model is
used to analyze these two cases.

@ 5.5 GHz, compared to roughly 14 s for the MC approach, resulting in a
gain in computational time of more than 5000 %.

Before extending the analysis to additional test cases and different
dynamical models, we present a sensitivity study on the splitting toler-
ance ¢ for test case #1. In the previous section, ¢ was introduced as a
user-defined parameter that controls how accurately the Taylor poly-
nomials reproduce the dynamical evolution of the initial conditions. Our
aim is to provide the reader with intuition and practical guidance on
how to select an appropriate value for this parameter. Intuitively, a
smaller value of ¢ requires a Taylor expansion of higher order to accu-
rately follow the dynamics, which in turn leads to a finer subdivision of
the initial domain into a larger number of subdomains. Conversely, a
larger ¢ allows the use of fewer subdomains and a lower-order poly-
nomial approximation, but at the cost of degrading the accuracy of the
estimated final Pc. This degradation occurs because, when the poly-
nomial representation does not sufficiently match the true trajectory
evolution, some samples that should result in a collision may no longer

Table 2

Test cases overview for different scenarios and different relative dynamical models.
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do so, and vice versa. Fig. 9 illustrates this trade-off through a para-
metric analysis of e¢. For each value of the splitting tolerance, we
compute the gain function G, defined as the product of the
computational-time reduction (relative to MC) and the Pc accuracy
percentage (relative to MC) normalized with respect to the highest ac-
curacy achieved. The gain function G highlights the values of ¢ that offer
the best balance between accuracy and computational efficiency. In
particular, values of G close to 1 correspond to an optimal choice of &,
whereas values approaching 0 indicate a suboptimal configuration. As
shown, values of ¢ between 1le-5 and 1e-4 provide the best balance be-
tween computational efficiency and estimation accuracy. Beyond 1le-3,
the gain function G decreases noticeably, even though the correspond-
ing error in Pc remains on the order of only 1-2 %. It is also worth noting
that, even for very small values of ¢, the reduction in computational time
remains significant, as indicated by G remaining close to 1. For case #1
and the test cases presented in the following subsections, a reference
value of 1le-4 has therefore been adopted.

4.2. Additional test cases: different dynamical models and computational
time

Additional test cases were examined to assess the performance of the
proposed method across a range of scenarios and with the dynamical
models introduced in the section above. A brief description of each case
is provided in Table 1 to give the reader an overview of its structure and
purpose.

Table 2 presents a comprehensive comparison of the DA-based
methodology against a standard MC approach across various dynam-
ical models. For each test case, the table reports the number of samples
used, the final Pc obtained, the percentage error in Pc relative to the MC
result, the respective computational times, and the time required by the
DA and ADS components to integrate Eq. (6). Test case #7 is included in
the description above (Table 1) for completeness, but it is not further
analyzed due to the elevated number of samples required and its
equivalence to cases #5 and #6. Moreover, cases #9 and #10 are only
applicable to the Yamanaka-Ankersen dynamics, since in both scenarios
the primary follows a highly eccentric orbit.

The results show that the DA-based methodology achieves excellent

Case n° Samples DA Polynomials Monte Carlo Pc err [%]
Pc Cmp. Time [s] ADS integration time [s] Pc Cmp. Time [s]
Clohessy-Wiltshire
#1 1.57E+04 2.1783439490e-01 2.2803e-01s 3.699e-03 2.1783439490e-01 1.3612e+01 0.0000
#2 6.52E+06 1.6044057777e-02 1.4247e+02 7.310e-03 1.6043137529e-02 5.2175e+03 0.0057
#3 9.54E+05 1.0017956031e-01 4.4498e+01 1.3565e-02 9.9781236209e-02 7.2086e+02 0.3991
#4 1.24E+06 7.4077658315e-02 1.6199e+01 3.1722e-03 7.4077658315e-02 1.1144e+03 0.0000
#5 2.30E+06 4.9284041611e-02 2.3036e+02 3.8621e-02 4.9277954638e-02 2.1331e+03 0.0123
#6 2.45E+07 3.2113120024e-02 4.4939%e+03 7.7043e-02 3.2113120024e-02 2.3475e+04 0.0000
#8 3.11E+06 3.5209770838e-02 9.8045e+01 7.0816e-03 3.5209770838e-02 3.0456e+03 0.0000
Yamanaka-Ankersen
#1 1.57E+04 2.1974522293e-01 7.7953e-01 7.8263e-02 2.1974522293e-01 2.4096e+02 0.0000
#2 6.52E+06 1.5625208494e-02 1.5904e+02 3.1008e-02 1.5623828121e-02 9.4998e+04 0.0088
#3 9.54E+05 1.0004958087e-01 7.8968e+01 4.9884e-02 9.9618761904e-02 1.3478e+04 0.4325
#4 1.24E4+06 7.3597818057e-02 1.9757e+01 4.5257e-02 7.3597818057e-02 1.8311e+04 0.0000
#5 2.30E+06 4.9344170491e-02 3.5407e+02 1.6887e-01 4.9335474794e-02 3.5586e+04 0.0176
#6 2.45E+07 3.2108784306e-02 5.1490e+03 3.0087e-01 3.2108784306e-02 4.4743e+05 0.0000
#8 3.11E+06 3.5504638603e-02 8.7062e+01 4.8339e-02 3.5504638603e-02 4.6758e+04 0.0000
#9 1.80E-+05 3.6322070245e-01 1.5878e+01 2.2812e-01 3.6322070245e-01 2.5490e+03 0.0000
#10 1.92E+05 3.6289961354e-01 1.6699e+01 2.1105e-01 3.6289961354e-01 2.6738e+03 0.0000
D'Amico ROEs (J2 only)
#1 1.57E+04 2.1229299363e-01 1.1358e+01 2.9052e-01 2.1229299363e-01 4.0226e+01 0.0000
#2 6.52E+06 1.5595278886e-02 5.0212e+03 2.9113e-01 1.5595278886e-02 1.6352e+04 0.0000
#3 9.54E+05 9.9111422782e-02 7.9797e+02 4.8696e-01 9.8611421210e-02 2.6991e+03 0.5070
#4 1.24E4+-06 7.3588081261e-02 1.0374e+03 2.8894e-01 7.3588081261e-02 3.1196e+03 0.0000
#5 2.30E+06 1.3047958428e-01 1.8123e+03 4.4447e+00 1.3046827989%¢-01 6.8514e+03 0.0087
#6 2.45E+07 3.214569346e-02 4.4890e+04 4.9542e+00 3.214569346e-02 2.6569e+05 0.0000
#8 3.11E+06 3.5636115989¢e-02 5.3679e+03 8.5806e-01 3.5635151356e-02 1.2422e+04 0.0027
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Fig. 10. Comparison of computational times for different test cases between the DA-based methodology and the corresponding MC simulation. The left axis shows
the computational time in logarithmic scale, while the right axis shows the associated computational time reduction.

agreement with the MC simulation across all dynamical regimes,
consistently reproducing the Pc with high accuracy. In some cases, there
is a negligible discrepancy in the final Pc with an error that never ex-
ceeds 0.0176 %. These minor deviations are attributed to an inherent
limitation of the DA framework: it requires setting a threshold for the
uncertainty in the initial deviation éx¢ to construct the patched 7D
manifold. In this study, the threshold has been conservatively set to five
standard deviations of the initial uncertainty. In rare cases, especially
when a large number of samples is involved, a few may fall outside this
56 boundary at ty. Such samples are discarded and not included in the
analysis, which can lead to a slight under-/or over-estimation of Pc
compared to the complete MC reference. Nevertheless, the overall ac-
curacy and efficiency of the DA approach remain robust across all test
scenarios.

In case #3, across all dynamics, the error with respect to the refer-
ence never exceeds 0.5 %, as the test case essentially represents a 2D
encounter. In such situations, the Pc accumulates almost instantaneously
at TCA, requiring the algorithm to perform a large number of splits
around that time to properly capture the dynamical evolution, with a
corresponding reduction in the splitting tolerance €. This leads to a loss
in computational efficiency, highlighting the inevitable trade-off be-
tween runtime and Pc estimation accuracy in 2D cases. However, this
limitation is not particularly critical, since for short-term encounters the
use of a MC based approach is generally not recommended, since far
more efficient methods exist to compute Pc with high accuracy.
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In terms of computational speed, it is important to note that the DA
integration consistently requires significantly less time, often by several
orders of magnitude, than the evaluation of the individual samples, to
the point where its contribution becomes practically negligible. This
highlights a fundamental strength of the methodology: it captures the
full evolution of the initial condition set through a single, efficient
integration. For a visual comparison of computational times between the
DA-based approach and the MC method, the reader is referred to Fig. 10.
All computational times were obtained using the same hardware
configuration described in the previous section.

The plot displays computational time on the left axis (in logarithmic
scale) and the percentage time reduction in computational time relative
to the corresponding MC simulation on the right axis. Overall, the DA-
based approach outperforms the MC method across all test cases and
dynamical models, with computational time reductions ranging from a
minimum of approximately 55 % to nearly 99.9 %. Notably, the gap in
computational efficiency between the DA-based method and the MC
approach widens as the complexity of the underlying dynamics in-
creases. While the MC method may benefit from slightly faster sample
propagation in simpler models, such as Clohessy-Wiltshire or the
D'Amico formulation, the DA-based approach becomes significantly
more advantageous as the dynamics involve more complex trans-
formations, as in the case of Yamanaka-Ankersen.
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Table 3

State vectors and associated uncertainties of real test case scenario.

Real long-term conjunction scenario

State vector and covariance at epoch time

Primary object

Secondary object

X = 35037.184606 [km]

Y = —23466.448768 [km]

Z = 15.784810 [km]

X_DOT = 1.710187 [km/s]

Y_DOT = —2.554690 [km/s]

Z_.DOT = —0.001790 [km/s]

CR_R = 1.341040E+03 [m**2]

CTR = —1.285933E+02 [m**2]

CT_T = 2.221449E+04 [m**2]

CNR = 1.062929E+04 [m**2]

CN_T = 2.613577E+02 [m**2]

CN.N = 8.435330E+04 [m**2]

CRDOT_R = 0.000000E+00 [m**2/s]

CRDOT._T = 0.000000E+00 [m**2/s]

CRDOT_N = 0.000000E-+00 [m**2/s]

CRDOT_RDOT = 0.000000E-+00 [m**2/
§%%2]

CTDOT._R = 0.000000E+00 [m**2/s]

CTDOT.T = 0.000000E-00 [m**2/s]

CTDOT.N = 0.000000E--00 [m**2/s]

CTDOT_RDOT = 0.000000E-00 [m**2/
s¥%2]

CTDOT_TDOT = 0.000000E+00 [m**2/
§%%2]

CNDOT R = 0.000000E~+00 [m**2/s]

CNDOT.T = 0.000000E--00 [m**2/s]

CNDOT.N = 0.000000E+00 [m**2/s]

CNDOT_RDOT = 0.000000E+00 [m**2/
$¥%2]

CNDOT_TDOT = 0.000000E--00 [m**2/
§+*2]

CNDOT_NDOT = 0.000000E+00
[m**2/s%*2]

X = ~35035.891661 [km]

Y = ~23467.794741 [km]

Z = 15.864584 [km]

X_DOT = 1.709784 [km/s]

Y_DOT = —2.554927 [km/s]

Z_DOT = 0.000755 [km/s]

CRR = 1.353645E+05 [m**2]

CTR = —3.104145E+05 [m**2]

CT.T = 2.118139E+07 [m**2]

CNR = 5.530171E+02 [m**2]

CN_T = ~2.019151E+03 [m**2]

CN_N = 4.600785E+04 [m**2]
CRDOTR = 1.620946E-+01 [m**2/s]
CRDOT.T = —1.582021E+03 [m**2/s]
CRDOT.N = 1.073235E-01 [m**2/s]
CRDOT_RDOT = 1.189744E-01 [m**2/
§%%2]

CTDOTR = —~9.649515E+00 [m**2/s]
CTDOT.T = 1.190034E+01 [m**2/s]
CIDOT.N = —3.914278E-02 [m**2/s]
CTDOT_RDOT = —3.817790E-04
[m**2/s%*2]

CTDOT_TDOT = 6.930053E-04 [m**2/
§++2]

CNDOT.R = —2.373264E-02 [m**2/s]
CNDOT.T = —4.966605E-01 [m**2/s]
CNDOT N = ~3.501316E-01 [m**2/s]
CNDOT_RDOT = 4.222343E-05 [m**2/
§*%2]

CNDOT_TDOT = 1.972771E-06 [m**2/
++2]

CNDOT_NDOT = 9.341607E-05 [m**2/
5++2]

4.3. Real test case

We now consider a real conjunction scenario, as the test cases pre-
sented in Ref. [20], while academically relevant, are not operationally
realistic due to their extremely high Pc. The event involves a close
approach between an asset in GEO and a secondary object in a very
similar orbit, with a relative distance of 1.83 km and an HBR of 27.05 m.
The encounter features a normal component of just 81 m and a relative
velocity at TCA of approximately 3 m/s, classifying it as a long-term
conjunction.

For this event, the TCA conditions are summarized in Table 3. Spe-
cifically, the state vectors are provided in an ECI frame, while the cor-
responding covariance matrices are expressed in the RTN frame for each
object. Fig. 11-(a) illustrates the evolution of the relative distance be-
tween the two objects over a 2-day period centered on the TCA. This
interval reveals multiple close approaches, indicated by local minima in
the relative distance. In addition to the situation at TCA, two notable
minima (shown in the plot as local minimum A and B) occur approxi-
mately 24 h before and after the closest approach. In the first one, the
objects reach a separation of 10 km with a normal component of 178 m;
in the second, the normal separation is 221 m. The instantaneous Pc,
computed using the 2D methodology reported in Ref. [3], peaks at
1.42E-04 at TCA, while at the other minima, it is roughly an order of
magnitude lower.

The methodology proposed in this work is tested on this scenario,
and the results are compared to a MC simulation as done for the other
test cases. Based on the Instantaneous Pc at TCA, the required number of
samples has been estimated: approximately 3.0E+07 are needed to
achieve statistical relevance with 5 % accuracy and 95 % confidence.
The resulting Pc evolution is given in Fig. 11-(b) and (c). As it can be seen
the Pc accumulates first around the first minimum, reaching the value of

189

Acta Astronautica 242 (2026) 178-192

1.76E-06, then accumulates for a period of 20 min, bracketing TCA and
then accumulates again at the third minimum, settling to a value of
1.4173E-04. All the samples that are producing a hit in the MC simu-
lation are producing a hit also in the DA methodology reaching a 0.0 %
estimation error while being approximately 87.8 times faster.

5. Conclusion and future work

We presented a general methodology for computing the Pc between
two space objects, particularly suited for long-term encounters with
relative velocities on the order of meters per second, yet in principle
applicable to two-dimensional scenarios as well. The approach employs
DA to capture the non-linear time evolution of the multivariate initial
relative state vector. This last is modelled as a patched 7D continuum,
where each patch is represented by a high-order Taylor expansion in
both time and the initial conditions at t;. The integration accuracy of the
dynamical flow is controlled by the ADS algorithm, which adaptively
splits the initial domain of the combined covariance to ensure precision
of the Taylor approximation. The initial PDF is then sampled and each
patch is evaluated in a specific state-vector realization to definitively
determine the time evolution of a given sample. The identification of
collisions is reduced to finding the real roots of the DA approximation of
the miss distance.

The proposed methodology retains all the advantages of a MC
simulation while offering a substantial improvement in computational
speed, owing to its DA foundation. In principle, it can be applied to any
form of initial uncertainty, provided that the initial PDF is known a
priori, without requiring the restrictive assumption of Gaussianity at ty
or throughout the evolution of the initial conditions. Moreover, the
approach can incorporate uncertainties in velocity and naturally ac-
counts for multiple conjunctions occurring within the screening interval.
Additionally, while this study has focused on three specific dynamical
models, the technique is applicable to any form of relative or absolute
dynamics, provided that an analytical formulation of the dynamics is
available.

The technique has been extensively validated against benchmark test
cases from the literature. In all scenarios, the estimated Pc shows
excellent agreement with the corresponding MC simulations used for
validation. The percentage reductions in computational time are
consistently significant, ranging from approximately 55 % to nearly
99.9 %, with the gap in efficiency between the DA-based method and the
MC approach increasing as the complexity of the underlying dynamics
grows.

This work also presents a real-case scenario involving an encounter
between two GEO asset involved in a long-term conjunction. The pro-
posed methodology successfully captures multiple conjunction events
and the corresponding Pc accumulation occurring in different intervals
within the computation window.

In future work, we plan to enhance the fidelity of the dynamics by
extending the presented models to include additional orbital perturba-
tions, particularly those relevant to the GEO environment.

While the reduction in computational time is evident, a key objective
remains the adaptation of the methodology for operational use at GSOC.
Having successfully passed an extensive validation phase, the next goal
is its full integration into the CAS, enabling the handling of long-term
conjunctions across multiple missions simultaneously. In doing so, the
system will be capable of providing outputs that function as reliable
decision-support tools for flight dynamics engineers in real-world
encounter scenarios, ultimately contributing to the safe operation of
more than 40 satellites.
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Appendix
Nomenclature
List of abbreviations
ADS Automatic Domain Splitting
CAM Collision Avoidance Maneuver
CAS Collision Avoidance System
DA Differential Algebra
GEO Geostationary Orbit
GSOC German Space Operations Center
HBR Hard Body Radius
LEO Low Earth Orbit
MC Monte-Carlo
ODE Ordinary Differential Equation
Pc Probability of Collision
PDF Probability Density Function
PSS Polynomial Superlevel Set
ROEs Relative Orbital Elements
STM State Transition Matrix
TCA Time of Closest Approach
List of symbols
to Initial time
T Maximum period of interest and end of simulation time
1 Screening interval in which the methodology computes the Pc
d(t) Relative distance vector between Primary and Secondary objects
Ry Radius of a sphere whose diameter correspond to the maximum dimension of the primary object.
Ry Radius of a sphere whose diameter correspond to the maximum dimension of the secondary object.
HBR Radius of the combined sphere that accounts for both primary and secondary dimensionality
x(t) Relative state vector between Primary and Secondary objects at time t
Xo Relative state vector at initial time ¢y
Vrer(t) relative velocity of the secondary object with respect to the primary
Xp(t) State vector of the primary object
xs(t) State vector of the secondary object
COV(xP,xs) Cross-covariance of the two random variables x, and x
Po(xo,to) PDF of relative state vector at to
\4 Integration volume to compute the Pc
Ho Mean of the relative state distribution at t,
Py Covariance matrix of the relative state distribution at t,
u(t) Input maneuver modelled in the relative dynamics
T Simulation time expressed as DA variable
Q Orthogonal matrix whose columns are the eigenvectors of Py
A Diagonal matrix containing the eigenvalues of Py
m Given vector expressed in an initial reference frame that can either be inertial or co-moving with the primary object.
m Vector m transformed to a reference frame aligned with the principal axes of Py
X0 Vector of DA variables representing the deviation of xo from p,.
Axg Vector containing maximum expected deviation of each component of xo
x Relative state at a given scaled instant 7 expressed in the DA framework
Tx Taylor map that links the deviations éxo at t, and x
e Splitting tolerance
d? DA representation of the relative distance squared
T @ Taylor map that links the deviations dxo at ty and d?
Xoi Given realization of dxo
@ One-dimensional Taylor polynomial depending solely on time representing d? after sample evaluation
fa DA expression representing the difference between d? and HBR squared used to check for collisions
G Gain function introduced to individualize the optimum of €
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