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 a b s t r a c t

To simulate highly-resolved flow fields, we extend the Quantum Lattice Boltzmann Method (QLBM) to be able 
to simulate multiple time steps without state extraction or reinitialization. We adjust and extend given QLBM 
approaches from the literature to completely remove the need to measure or reinitialize the flow field in between 
the simulation time steps. Therefore, our algorithm does not require to sample the entire flow field at any time. 
We solve the linear advection-diffusion problem with periodic boundary conditions and derive all necessary 
equations and build the corresponding quantum circuit diagrams, including details on the QLBM blocks and 
explicitly drawing the circuit gates. We discuss the general decay of a QLBM step and how that effects our 
algorithm. The new algorithm is verified on 1D and 2D test cases using the shot method of IBMs Qiskit package. 
We show excellent agreement and convergence between our QLBM and the classical Lattice Boltzmann method. 
The conclusion section includes a discussion on the advantages of our algorithm as well as limitations and to 
what extent it is more efficient.

1.  Introduction

The effort in developing quantum algorithms has increased rapidly 
in recent years. But the idea of using quantum particles as operation 
units in machines, similar as the classical bit in a computer, is not new 
at all. Richard Feynman as one famous example, has already published 
first ideas on Quantum Mechanical Computers [1] back in the 1980s, and 
first important quantum algorithms have been developed in 1990s, the 
well known Shor’s [2] and Grover’s [3] algorithms. But with the advance-
ments in quantum hardware after the year of 2000, also the interest has 
become more and more present. With the increase of usable qubits, es-
pecially the promise of an exponential system size scaling in quantum 
operation units raised a large interest in scale resolving fluid flow sim-
ulations.

The first ideas in approaching computational fluid dynamics (CFD) 
problems with quantum algorithms were proposed by Meyer [4] and 
Yepez [5] with quantum lattice gas approaches. Improved models by 
the lattice Boltzmann methods (LBM) have been developed further by 
the pure fluid transport with a collisionless Boltzmann equation [6,7] 
using a quantum streaming operation. Further work included a quan-
tum collision step by separation of the collision procedure into a sum 
of unitary operations [8–10]. These algorithms represent the first “fully 
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quantum" LBM algorithms for a single LBM time step. But such a full 
LBM routine as presented in the literature requires a full state extrac-
tion and reinitialization in between every time step. This again results 
in a complete loss of its quantum advantage in system size scaling, since 
a full state extraction scales linear in the grid resolution with the num-
ber of shots needed to resolve the flow field. That being said, literature 
claiming to develop a “fully quantum” LBM algorithm has to be judged 
carefully, since this can mean that a quantum LBM is developed only for 
a single time step.

Additionally to the LBM algorithms of linear advection-diffusion 
problems, the nonlinearity of the collision operator has been approached 
using a Carleman linearization within the LBM by Itani et al. [11,12] and 
for the Burgers equation by Liu et al. [13]. However, the linearization 
comes at the cost of temporal instability for large nonlinearities as they 
commonly occur in typical aerospace problems. Since our paper will not 
cover nonlinearities, the topic itself has to be addressed in future work.

In this paper, we present our algorithm of a quantum lattice Boltz-
mann method (QLBM) for a linear advection-diffusion equation for mul-
tiple time steps which does not require measurement or reinitialization 
at any time in between the simulation time steps. This is to the best of 
the authors knowledge the first algorithm of its kind that can perform 
multiple QLBM time steps without any kind or mid-circuit measurement, 
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$RY$


$\Phi $


\begin {equation}\label {eq:ADE} \frac {\partial \Phi }{\partial t} + u_j\frac {\partial \Phi }{\partial x_j} = D\frac {\partial ^2 \Phi }{\partial x_j^2},\end {equation}


$u_j$


$D$


$j \in \{1,2,3\}$


$f$


$f(\mathbf {x}, \mathbf {v}, t)$


$\mathcal {H}$


$S_\text {coll}(f)$


\begin {equation}\label {eq:Boltzmanneq} \frac {\partial f}{\partial t} + v_j \frac {\partial f}{\partial x_j} + F_j \frac {\partial f}{\partial v_j} = S_\text {coll}(f),\end {equation}


$j \in \{1,2,3\}$


$F_j$


$F_j = 0$


\begin {equation}\label {eq:SBGK} S_\text {BGK}(f) = -\frac {1}{\tau }\left ( f - f^\text {eq} \right ),\end {equation}
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$f^\text {eq}$


$D$


$\mathbf {e}_i$


$\mathbf {e}_i$


$\mathbf {e}_i$


$f_i$


\begin {equation}\frac {1}{\Delta t}\left ( f_i(\mathbf {x}+\mathbf {e}_i\Delta t, t + \Delta t) - f_i(\mathbf {x}, t) \right ) = -\frac {1}{\tau }\left ( f_i(\mathbf {x}, t) - f^\text {eq}_i(\mathbf {x}, t) \right ). \label {Xeqn4-4}\end {equation}


$f_i^\text {eq}$


$\Phi $


$\mathbf {u}$


$i$


\begin {equation}\label {eq:feq} f_i^\text {eq} = w_i \left (1 + \frac {\mathbf {u}\cdot \mathbf {e}_i}{c_s^2}\right )\Phi ,\end {equation}


$k_i$


\begin {equation}\label {eq:ki} k_i \equiv w_i \left (1 + \frac {\mathbf {u}\cdot \mathbf {e}_i}{c_s^2}\right ).\end {equation}


$D$


$c_s$


$w_i$


$\hat {f}_i$


\begin {equation}\label {eq:fhat} \hat {f}_i(\mathbf {x}, t) = \left ( 1 - \frac {\Delta t}{\tau }\right ) f_i(\mathbf {x}, t) + \frac {\Delta t}{\tau } f^\text {eq}_i(\mathbf {x}, t),\end {equation}


$t + \Delta t$


$\hat {f}_i$


\begin {equation}f_i(\mathbf {x}+\mathbf {e}_i\Delta t, t + \Delta t) = \hat {f}_i(\mathbf {x}, t). \label {Xeqn8-8}\end {equation}


$f_i$


\begin {equation}\Phi = \sum _i f_i. \label {Xeqn9-9}\end {equation}
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$\mathrm {d}x$


$\mathrm {d}t$


\begin {equation}D = c_s^2 \left (\tau - \frac {\Delta t}{2}\right ). \label {Xeqn10-10}\end {equation}


$\tau $


$\tau = \Delta t = 1$


$c_s^2$


$w_i$


$N$


$Q$


$f_1$


$\Phi = f_1$


\begin {equation}\label {eq:stateinit} F = \begin {pmatrix} f_1^1\\ \vdots \\ f_1^N\\ f_2^1\\ \vdots \\ f_2^N\\ f_Q^1\\ \vdots \\ f_Q^N \end {pmatrix} = \begin {pmatrix} \Phi ^1\\ \vdots \\ \Phi ^N\\ 0\\ \vdots \\ 0\\ 0\\ \vdots \\ 0 \end {pmatrix},\end {equation}


\begin {equation}\label {eq:stateinitshortnotation} F = (f_1,\ f_2,\ \hdots ,\ f_Q)^T = (\Phi ,\ 0,\ \hdots ,\ 0)^T.\end {equation}
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$\lceil \log _2(N) \rceil $


$\lceil \log _2(N) \rceil ^N$


$\lceil \cdot \rceil $


$Q$


$\# q_\text {dir}$


\begin {equation}N_Q = 2^{\# q_\text {dir}} \geq Q, \label {Xeqn13-13}\end {equation}


$N\cdot Q$


$N \cdot N_Q$


$(f_1,\ f_2,\ \hdots ,\ f_{N_Q})^T = (\Phi ,\ 0,\ \hdots ,\ 0)^T$


$N_Q - Q$


$f_i$


$N$


$i$


\begin {equation}\label {eq:D1Q2enc} F_\text {D1Q2} = (f_1, f_2)^T,\end {equation}


\begin {equation}\label {eq:D1Q3enc} F_\text {D1Q3} = (f_1, 0, f_2, f_3)^T\end {equation}


$x$


$y$


\begin {equation}\label {eq:D2Q9enc} F_\text {D1Q3} = (f_1, 0, f_2, f_3, 0, 0, 0, 0, f_4, 0, f_6, f_7, f_5, 0, f_8, f_9)^T.\end {equation}
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$\Delta t / \tau = 1$


$f^\text {eq}$


$\tau $
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$w_i$
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$Q$


$N\cdot Q$


$F = (f_1^1,\ \dots ,\ f_1^N,\ \dots ,\ f_Q^1,\ \dots ,\ f_Q^N)^T$


$f_i^n$


$i \in [1, Q]$


$n \in [1, N]$


\begin {equation}\hat {F} = AF, \label {Xeqn17-17}\end {equation}


$A$


$A$


$A = (B_1 + B_2)/2$


$B_{1,k,k} = A_{k,k} + i\sqrt {1 - A_{k,k}^2}$


$B_{2,k,k} = A_{k,k} - i\sqrt {1 - A_{k,k}^2}$


$\ket {a}$


$B_1$


$B_2$


$\ket {a}$


$B_1$


$\ket {a} = \ket {0}$


$B_2$


$\ket {a} = \ket {1}$
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$U_\text {coll}$


$\Delta t / \tau = 1$


$\Phi $


$\Phi $


$\Phi = \sum _i f_i$


$\Phi $


$U_\text {coll}$


$A$


$U_\text {coll}$


$Q=2$


$F = (f_1^1,\ \dots ,\ f_1^N,\ f_2^1,\ \dots ,\ f_2^N)^T$


$A$


\begin {equation}A = \begin {pmatrix} A_1 & A_2 \\ A_3 & A_4 \\ \end {pmatrix}, \label {Xeqn18-2.4.1}\end {equation}


$A_i$


$N \times N$


$A_2$


$A_4$


$a_i$


$A_i$


\begin {equation}A = \left (\begin {array}{ccc|ccc} a_1 & & & a_2 & & \\ & \ddots & & & \ddots &\\ & & a_1 & & & a_2\\ a_3 & & & a_4 & & \\ & \ddots & & & \ddots &\\ & & a_3 & & & a_4\\ \end {array}\right ) = \begin {pmatrix} a_1 & a_2 \\ a_3 & a_4 \\ \end {pmatrix} \otimes \mathbb {1}_N. \label {Xeqn19-2.4.1}\end {equation}
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$RY(\theta )$
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$\mathbb {1}$


$N$


$a_i$


$a_1$


$a_3$


$a_2$


$a_4$


\begin {equation}\left (\begin {array}{cc} a_1 & a_2 \\ a_3 & a_4 \end {array}\right ) = \left (\begin {array}{rr} \cos (\theta / 2) & -\sin (\theta / 2) \\ \sin (\theta / 2) & \cos (\theta / 2) \end {array}\right ) \equiv RY(\theta ), \label {Xeqn20-20}\end {equation}


$\theta $


$a_i$


$\Phi $


$f^\text {eq}$


\begin {align}a_1 &= k_1 \equiv w_1 \left (1 + \frac {u\cdot e_1}{c_s^2}\right ) \overset {!}{=} \cos (\theta / 2), \\ a_3 &= k_2 \equiv w_2 \left (1 + \frac {u\cdot e_2}{c_s^2}\right ) \overset {!}{=} \sin (\theta / 2).\end {align}


$RY(\theta )$
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$\theta $


$(\Phi , 0)^T$


$(k_1 \Phi , k_2 \Phi )^T$


$\theta $


$k_1/k_2$


$(\cos (\theta / 2) \Phi , \sin (\theta / 2) \Phi )^T$


$\theta $


\begin {equation}\label {eq:thetaD1Q2} \frac {k_1}{k_2} = \frac {\cos (\theta / 2)}{\sin (\theta / 2)} \Longleftrightarrow \theta = 2 \arccos \underbrace {\left ( \frac {k_1}{\sqrt { k_1^2 + k_2^2}} \right )}_{\equiv n} = 2 \arcsin \left ( \frac {k_2}{\sqrt { k_1^2 + k_2^2}} \right ).\end {equation}
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$n \equiv k_1/\sqrt {k_1^2 + k_2^2}$


$k_2/\sqrt {k_1^2 + k_2^2}$


$Q=3$


$N_Q = 2$


$(f_1^{1},\ \hdots , f_1^{N})$


$\theta _1$


$n_1$


$n'_1$


$(\Phi , 0, 0, 0)^T \rightarrow (n_1 \Phi , 0, n'_1 \Phi , 0)^T$


$n_1$


$RY$


$\theta _2$


$(n_1 \Phi , 0, n'_1 \Phi , 0)^T \rightarrow (n_1 \Phi , 0, n_2 \Phi , n_3 \Phi )^T$


\begin {align}\theta _{1} = 2 \arccos \underbrace {\left ( \frac {k_1}{\sqrt { k_1^2 + k_2^2 + k_3^2}} \right )}_{\equiv n_{1}} , \ \ \
\theta _{2} = 2 \arccos \underbrace {\left ( \frac {k_2}{\sqrt { k_2^2 + k_3^2}} \right )}_{\equiv n_{2}}.\end {align}


$(\Phi , 0, \hdots , 0)^T \rightarrow (n_1 \Phi , n' \Phi , \hdots , 0)^T \rightarrow \hdots \rightarrow (n_1 \Phi , n_2 \Phi , \hdots , n_Q \Phi )^T$


\begin {equation}\label {eq:thetacollDxQx} \theta _{i} = 2 \arccos \left ( \frac {k_i}{\sqrt { \sum _{j=i}^Q k_j^2 }} \right ).\end {equation}


$k_j$


$k_i$


\begin {equation}\label {eq:thetacollkeepmultsubspaces} \theta _{i} = 2 \arccos \left ( \frac { \sqrt { \sum _{\text {keep}} k_\text {keep}^2 } }{ \sqrt { \sum _{\text {inv}} k_\text {inv}^2 } } \right ),\end {equation}


$k_\text {keep}$


$k_i$


$k_\text {inv}$


$k_i$


$n_i$


$\arccos (\cdot )$


\begin {equation}\label {eq:ni} n_i \equiv \frac { \sqrt { \sum _{\text {keep}} k_\text {keep}^2 } }{ \sqrt { \sum _{\text {inv}} k_\text {inv}^2 } } .\end {equation}
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$\ket {q_4 q_3 q_2 q_1}_\text {dir} = \ket {q_4 q_3}_y\ket {q_2 q_1}_x$
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$(f_1, f_2)^T = (f_{\rightarrow }, f_{\leftarrow })^T$


$(f_1, 0, f_2, f_3)^T = (f_\text {rest}, 0, f_{\rightarrow }, f_{\leftarrow })^T$


$y$


$+1$


$-1$


$2N$


$N$


$\ket {\Psi } = (\Psi _1^1, \hdots , \Psi _1^N, \Psi _2^1, \hdots , \Psi _2^N)^T$


$\ket {\Psi _1}, \ket {\Psi _2}$


\begin {equation}\ket {\Psi } = \ket {0}\otimes \ket {\Psi _1} + \ket {1}\otimes \ket {\Psi _2} \equiv (\Psi _1, \Psi _2)^T. \label {Xeqn25-28}\end {equation}
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$(\Phi , 0)^T$


$(\Phi _{1/2}, \Phi _{1/2})^T$


$H$


$(\Phi , 0)^T \overset {H}{\longleftrightarrow } (\Phi _{1/2}, \Phi _{1/2})^T$


\begin {align}\label {eq:sumbyHgate} &H\ket {a}\otimes \ket {\Psi } = H\ket {0}\otimes \ket {\Psi _1} + H\ket {1}\otimes \ket {\Psi _2}\nonumber \\& =\sqrt {\frac {1}{2}}\left ( \ket {0}\otimes \ket {\Psi _1 + \Psi _2} + \ket {1}\otimes \ket {\Psi _1 - \Psi _2} \right ),\end {align}


$\sqrt {1/2}$
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$\theta $


$\ket {0}$


$\ket {1}$


$\theta $


$RY$


\begin {equation}RY(\theta ) \equiv \left (\begin {array}{rr} \cos (\theta / 2) & -\sin (\theta / 2) \\ \sin (\theta / 2) & \cos (\theta / 2) \end {array}\right ) = \left (\begin {array}{rr} \cos (-\theta / 2) & \sin (-\theta / 2) \\ -\sin (-\theta / 2) & \cos (-\theta / 2) \end {array}\right ). \label {Xeqn27-30}\end {equation}


$\theta $


$\ket {\Psi _1}$


$\ket {\Psi _2}$


$RY$


\begin {equation}\label {eq:sumbyRYgate} \begin {split} RY(\theta )\ket {a}\otimes \ket {\Psi } = \ket {0}&\otimes \ket {\cos (-\theta / 2)\Psi _1 + \sin (-\theta / 2)\Psi _2} \\ + \ket {1}&\otimes \ket {\cos (-\theta / 2)\Psi _2 - \sin (-\theta / 2)\Psi _1}. \end {split}\end {equation}
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$\Psi = (f_\text {rest}, 0, f_{\rightarrow }, f_{\leftarrow })^T$
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$(\sqrt {1/3},\ 0, \sqrt {1/3}, \sqrt {1/3})$


\begin {equation}\begin {aligned} &RY(\theta )\bigg \vert _{\ket {q_{\text {dir},1}}=\ket {0}} H\bigg \vert _{\ket {q_{\text {dir},2}}=\ket {1}} \Psi \\ = &\left (\begin {array}{rrrr} \cos \left (-\frac {\theta }{2}\right ) & 0 & \sin \left (-\frac {\theta }{2}\right ) & 0 \\ 0 & 0 & 0 & 0 \\ -\sin \left (-\frac {\theta }{2}\right ) & 0 & \cos \left (-\frac {\theta }{2}\right ) & 0 \\ 0 & 0 & 0 & 0 \end {array}\right )\\ & \left (\begin {array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt {1/2} & \sqrt {1/2} \\ 0 & 0 & \sqrt {1/2} & -\sqrt {1/2} \end {array}\right ) \begin {pmatrix} f_\text {rest} \\ 0 \\ f_{\rightarrow } \\ f_{\leftarrow } \end {pmatrix} \\ &= \left (\begin {array}{cccc} \cos \left (-\frac {\theta }{2}\right ) & 0 & \sin \left (-\frac {\theta }{2}\right )\sqrt {\frac {1}{2}} & \sin \left (-\frac {\theta }{2}\right )\sqrt {\frac {1}{2}} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end {array}\right ) \begin {pmatrix} f_\text {rest} \\ 0 \\ f_{\rightarrow } \\ f_{\leftarrow } \end {pmatrix}, \end {aligned}\end {equation}


$(\sqrt {1/3}f_\text {rest}+0+ \sqrt {1/3}f_{\rightarrow }+ \sqrt {1/3}f_{\leftarrow }, \ \cdot , \ \cdot , \ \cdot )^T$


\begin {align}& \cos \left (-\frac {\theta }{2}\right ) \overset {!}{=} \sqrt {\frac {1}{3}} \hspace {0.2cm} \land \hspace {0.2cm} \sin \left (-\frac {\theta }{2}\right )\sqrt {\frac {1}{2}} \overset {!}{=} \sqrt {\frac {1}{3}} \\ & \Longleftrightarrow \theta = - 2 \arccos \left (\sqrt {\frac {1}{3}}\right ) = - 2 \arcsin \left (\sqrt {\frac {2}{3}}\right ) \label {eq:thetamacro}.\end {align}
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\begin {equation}\label {eq:re-prepstate} \textsc {re-prep:} \begin {pmatrix} f_1\\ f_2\\ \vdots \\ f_{N_Q}\\ 0\\ 0\\ \vdots \\ 0 \end {pmatrix} \longrightarrow \begin {pmatrix} 0\\ 0\\ \vdots \\ 0\\ f_1\\ f_2\\ \vdots \\ f_{N_Q} \end {pmatrix} \longrightarrow \begin {pmatrix} f_1\\ 0\\ \vdots \\ 0\\ 0\\ f_2\\ \vdots \\ f_{N_Q} \end {pmatrix},\end {equation}
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\begin {equation}\label {eq:L2} L_2 = \sqrt {\sum _{i=1}^N (\Phi _\text {QLBM} - \Phi _\text {LBM})^2}.\end {equation}


$L_2$


$\sigma = 2.0$


$D = 1/3$


$\mathbf {u} = (1/6, 1/12)^T$


$RY$


$f_1$


$f_i$


$i>\frac {1}{2}N_Q$


\begin {equation}\label {eq:D1Q2re-prep} \left (\begin {array}{c} \ket {0}_\text {time}\ket {0}_\text {dir}\\ \hdashline \ket {0}_\text {time}\ket {1}_\text {dir}\\ \ket {1}_\text {time}\ket {0}_\text {dir}\\ \ket {1}_\text {time}\ket {1}_\text {dir} \end {array}\right ): \left (\begin {array}{c} f_1\\ \hdashline f_2\\ 0 \\ 0 \end {array}\right ) \xrightarrow {\text {D1Q2} \textsc {re-prep}} \left (\begin {array}{c} f_1\\ \hdashline 0 \\ 0 \\ f_2 \end {array}\right )\end {equation}


\begin {equation}\label {eq:D1Q3re-prep} \left (\begin {array}{c} \ket {0}_\text {time}\ket {00}_\text {dir}\\ \ket {0}_\text {time}\ket {01}_\text {dir}\\ \hdashline \ket {0}_\text {time}\ket {10}_\text {dir}\\ \ket {0}_\text {time}\ket {11}_\text {dir}\\ \ket {1}_\text {time}\ket {00}_\text {dir}\\ \ket {1}_\text {time}\ket {01}_\text {dir}\\ \ket {1}_\text {time}\ket {10}_\text {dir}\\ \ket {1}_\text {time}\ket {11}_\text {dir} \end {array}\right ): \left (\begin {array}{c} f_1\\ 0\\ \hdashline f_2\\ f_3\\ 0 \\ 0 \\ 0 \\ 0 \end {array}\right ) \xrightarrow {\text {D1Q3} \textsc {re-prep}} \left (\begin {array}{c} f_1\\ 0\\ \hdashline 0 \\ 0 \\ 0 \\ 0 \\ f_2\\ f_3 \end {array}\right ).\end {equation}


$+N_Q$


$\ket {1}$


$+1$


$\ket {1}$
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state extraction or reinitialization of the quantum state. Our new algo-
rithm can perform all QLBM time steps up to the end of the simulation, 
without the need to ever having to extract the flow field at any time. For 
verification reasons, we show in our result section that our algorithm 
reproduces the correct full flow field up to a certain sampling error. But 
in contrast to other algorithms, our algorithm allows to be used in such 
a way, that for the flow field properties you are interested in, quantities 
can be calculated without ever having to extract the flow field, not even 
at the end of the simulation. This way, a simulation of a body in the flow 
field could return a scalar value like a lift or drag coefficient value, while 
the entire fully resolved flow field was never measured. Our algorithm 
is a first approach to an actually fully quantum algorithm for multiple 
time steps, even when still limited in the total number of simulation 
time that is feasible to simulate.

We further derive a quantum collision routine only using controlled 
𝑅𝑌  gates, which turned out to be a similar approach as in for example 
Xu et al. [14] and Wawrzyniak et al. [15]. However, our algorithm is 
formulated in a generalized way which can be directly applied for ar-
bitrary LBM velocity set stencils. Both of these papers also avoid the 
reinitialization in each time steps, but the main difference of our paper 
are no mid-circuit measurements, i.e. no non-unitary projections, but 
instead solely unitary QLBM blocks and a fully unitary re-prep block as 
preparation for the next time step. Since the idea of the re-prep block 
is a streaming of velocity subspaces, its complexity essentially scales 
similar to the streaming block.

The paper is structured as follows: the Methods section starts with 
a short overview of the lattice Boltzmann method (LBM) that is used 
which will be translated into a quantum lattice Boltzmann method 
(QLBM) for an advection-diffusion problem. Further subsections de-
scribe the necessary quantum state amplitude encoding structure, the 
quantum collision step that is used, the quantum streaming step that is 
adopted from the literature, the procedure to calculate the macroscopic 
values as a quantum state and finally the quantum re-preparation step to 
make the algorithm work for multiple time steps. The subsections lead 
through the mathematical derivations and show the implementation of 
the quantum circuit blocks explicitly by quantum gates. The decay of the 
quantum state amplitude for multiple time steps is quantified in a final 
subsection. The following Verification section shows 1D and 2D results of 
an advection-diffusion process and verifies the QLBM to recover the cor-
rect LBM solution using the shot method of IBMs simulator Qiskit [16]. 
For the 2D test cases, deviations and convergence of QLBM to LBM are 
discussed. In the final Conclusion section, a discussion on the advantage 
of the algorithm and limitations are included.

2.  Methods

2.1.  The advection-diffusion equation

In this paper, we focus on solving linear transport equations with the 
lattice Boltzmann method (LBM), in particular the advection-diffusion 
equation of a scalar Φ:
𝜕Φ
𝜕𝑡

+ 𝑢𝑗
𝜕Φ
𝜕𝑥𝑗

= 𝐷𝜕2Φ
𝜕𝑥2𝑗

, (1)

with a uniform constant flow velocity 𝑢𝑗 and a constant diffusion coeffi-
cient 𝐷, using the Einstein’s index summation notation over the spacial 
directions 𝑗 ∈ {1, 2, 3}. An extension of a spacially variable flow veloc-
ity is generally possible with our approach by conditioning the collision 
operations on different grid locations. This will be addressed in future 
work.

2.2.  The lattice boltzmann method

Boltzmann methods generally describe the dynamics of fluids from a 
statistical perspective of a particle ensemble description of the fluid. This 
comes with advantages because it allows to describe the fluid dynamic 

with distinct streaming and collision steps to determine the change and 
the transport of the fluid property in time. These two steps are evaluated 
in two fully separated steps, which then can be developed individually 
to a quantum algorithm to account for the desired physics modeling.

In this work, we will use the lattice Boltzmann method (LBM) using a 
fairly simple collision description by the Bhatnagar-Gross-Krook (BGK) 
collision operator to develop our algorithm.

The Boltzmann equation [17,18] is a transport equation that deter-
mines the change of a velocity distribution function 𝑓 , which is a prob-
ability density function for a local particle ensemble of positions and 
velocities 𝑓 (𝐱, 𝐯, 𝑡) in phase space . The Boltzmann equation describes 
the change of the local fluid quantity by the advective transport on the 
left hand side and the change due to the collision by the collision oper-
ator 𝑆coll(𝑓 ):
𝜕𝑓
𝜕𝑡

+ 𝑣𝑗
𝜕𝑓
𝜕𝑥𝑗

+ 𝐹𝑗
𝜕𝑓
𝜕𝑣𝑗

= 𝑆coll(𝑓 ), (2)

which implies the Einstein’s index summation notation over the spacial 
directions 𝑗 ∈ {1, 2, 3} and where 𝐹𝑗 can be some additional external 
acceleration.

We assume no external forces 𝐹𝑗 = 0 and use a collision relaxation 
by the BGK operator [17]

𝑆BGK(𝑓 ) = −1
𝜏
(

𝑓 − 𝑓 eq
)

, (3)

where 𝜏 is the relaxation time towards a local equilibrium 𝑓 eq, which 
is determined by the diffusion coefficient 𝐷. In further simplifications, 
we will choose a fixed relaxation time and model the diffusion by the 
weight parameters of the LBM.

The position space is discretized on a grid and the velocity is dis-
cretized to a set of vectors 𝐞𝑖 that span the velocity space, which are not 
necessarily linear independent vectors only. The vectors 𝐞𝑖 are chosen 
in length and direction such that they point exactly onto neighbouring 
lattice nodes. Each discrete velocity direction 𝐞𝑖 models a distribution 
function 𝑓𝑖, which has its own local equilibrium to relax to. The dis-
cretized Boltzmann equation results in
1
Δ𝑡

(

𝑓𝑖(𝐱 + 𝐞𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖(𝐱, 𝑡)
)

= −1
𝜏
(

𝑓𝑖(𝐱, 𝑡) − 𝑓 eq𝑖 (𝐱, 𝑡)
)

. (4)

The equilibrium distribution 𝑓 eq𝑖  is approximated linearly for an advec-
tion diffusion process. For a single grid node, a scalar quantity Φ with 
constant background velocity 𝐮 on that grid node determines the equi-
librium distribution in the 𝑖-th discrete velocity direction by [17]

𝑓 eq𝑖 = 𝑤𝑖

(

1 +
𝐮 ⋅ 𝐞𝑖
𝑐2𝑠

)

Φ, (5)

which defines the factor 𝑘𝑖 for the collision matrix used by the QLBM 
algorithm

𝑘𝑖 ≡ 𝑤𝑖

(

1 +
𝐮 ⋅ 𝐞𝑖
𝑐2𝑠

)

. (6)

Here, the diffusivity 𝐷 enters the equilibrium distribution via the speed 
of sound 𝑐𝑠 that determines the discretization weights 𝑤𝑖. This allows 
to calculate the change of the distribution function 𝑓𝑖 for the next time 
step due to collision

𝑓𝑖(𝐱, 𝑡) =
(

1 − Δ𝑡
𝜏

)

𝑓𝑖(𝐱, 𝑡) +
Δ𝑡
𝜏
𝑓 eq𝑖 (𝐱, 𝑡), (7)

and the streaming to neighbouring nodes for the next time step 𝑡 + Δ𝑡 for 
every updated velocity direction 𝑓𝑖
𝑓𝑖(𝐱 + 𝐞𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝐱, 𝑡). (8)

With the updated distribution functions on each node, the macroscopic
scalar quantity on each node can by re-calculated by the sum of the 
distribution functions 𝑓𝑖 [17]
Φ =

∑

𝑖
𝑓𝑖. (9)
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2.2.1.  Diffusion and lattice boltzmann weights
For the velocity distribution functions in different velocity direc-

tions, the equilibrium function of each discrete velocity direction 𝑓 eq𝑖
scales with a weighting factor 𝑤𝑖. These weighting factors are obtained 
by evaluating moment equations of different orders to ensure conserva-
tion properties [17]. The resulting equations relate the weighting factors 
with the speed of sound, and therefore indirectly the diffusion constant. 
Using a Chapman-Enskog expansion, a relation between diffusion 𝐷 and 
relaxation time 𝜏 with the speed of sound 𝑐𝑠 for discretization param-
eters d𝑥 and d𝑡 within the LBM can be derived [18], which leads to a 
diffusion of
𝐷 = 𝑐2𝑠

(

𝜏 − Δ𝑡
2

)

. (10)

The diffusion is typically modeled with the relaxation time 𝜏, but the 
algorithm design only allows for a full relaxation within one time step 
yet, i.e. 𝜏 = Δ𝑡 = 1 as the literature proposes [8,14,15]. For a simulation 
that is scaled in such a way that the distribution functions relax fully to 
their equilibrium within one time step, the diffusion is either fixed or 
can only be modeled by scaling the speed of sound 𝑐2𝑠  of the simulation. 
To scale the speed of sound, the weighting factors 𝑤𝑖 are adjusted ac-
cordingly. With sets of weighting factors other than the standard set, the 
moment equations may only be fulfilled up to a certain order. Depend-
ing on the physical system, this may or may not violate conservation 
symmetries, depending on the given order of symmetry that our system 
shows [17]. Whether a set of weights, other than the standard set is 
physically justified has to be decided by the end user for the specific 
problem of interest. Independently of that choice, our algorithm is ca-
pable of utilizing arbitrary sets of weights.

For our linear, isotropic advection-diffusion problem, we test on the 
standard weight set and additionally on weight sets that fulfill the mo-
ment equations up to order four, which allows us to model different 
diffusion constants.

2.3.  Quantum state encoding and initial state

To encode the flow field with 𝑁 grid points in 𝑄 velocity directions, 
amplitude encoding is used to generate the quantum state that the QLBM 
algorithm will operate on. In order to make the algorithm work for mul-
tiple time steps with collision, streaming and calculation of the macro-
scopic quantities, we build on an initial state vector that contains the 
scalar grid information only in the first velocity direction 𝑓1 while all 
other velocity directions have zero state amplitudes. So we explicitly 
choose an initial state, where all the scalar grid values are stored in the 
first velocity component, so for a grid node this means Φ = 𝑓1, and the 
full grid states is

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 1
1
⋮
𝑓𝑁
1
𝑓 1
2
⋮
𝑓𝑁
2
𝑓 1
𝑄
⋮
𝑓𝑁
𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ1

⋮
Φ𝑁

0
⋮
0
0
⋮
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

which will also be referred in short notation grouping the grid into sep-
arate velocity direction subspaces:
𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑄)𝑇 = (Φ, 0, … , 0)𝑇 . (12)

Note that for 𝑁 grid points, we need at least ⌈log2(𝑁)⌉ qubits, generating 
⌈log2(𝑁)⌉𝑁  grid points, where ⌈⋅⌉ is the ceiling function. Similarly, for 
a stencil with 𝑄 velocity directions, we need as many direction qubits 
#𝑞dir, such that they generate as many states as is at least the number of 
velocity directions needed, so
𝑁𝑄 = 2#𝑞dir ≥ 𝑄, (13)

Table 1 
Arrangement of the D1Q2 velocity direction 
subspaces with one direction qubit.

|𝑞⟩dir,𝑥 |0⟩ |1⟩
direction 𝑓𝑖 𝑓1 𝑓2

 = |0⟩ |1⟩
→ ←

Table 2 
Arrangement of the D1Q3 velocity direction subspaces with two direction 
qubits.

|𝑞2𝑞1⟩dir,𝑥 |00⟩ |01⟩ |10⟩ |11⟩
direction 𝑓𝑖 𝑓1 − 𝑓2 𝑓3

= |00⟩ |01⟩ |10⟩ |11⟩
rest − → ←

Table 3 
Arrangement of the D2Q9 velocity directions for the two 𝑥-direction qubits 
denoted by |𝑞2𝑞1⟩𝑥 and the two 𝑦-direction qubits denoted by |𝑞4𝑞3⟩𝑦, re-
spectively.

|00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥 |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1  - 𝑓2 𝑓3 |00⟩𝑦  rest  - → ←

|01⟩𝑦  -  -  -  -  = |01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 𝑓7 |10⟩𝑦 ↑  - ↗ ↖

|11⟩𝑦 𝑓5  - 𝑓8 𝑓9 |11⟩𝑦 ↓  - ↘ ↙

which will expand the state vector from dimension 𝑁 ⋅𝑄 to 𝑁 ⋅𝑁𝑄, i.e. 
(𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇 = (Φ, 0, … , 0)𝑇 , with 𝑁𝑄 −𝑄 zero entries in the 
short velocity direction subspace notation.

In this paper, D1Q2 and D1Q3 as well as D2Q9 stencils are used. 
They are arranged as shown in the following equations, where each 𝑓𝑖
represents a group of 𝑁 gird points in direction 𝑖. For D1Q2, the state 
es encoded by one velocity qubit to span the two velocity directions
𝐹D1Q2 = (𝑓1, 𝑓2)𝑇 , (14)

for D1Q3, 2 velocity qubits generate the state given by
𝐹D1Q3 = (𝑓1, 0, 𝑓2, 𝑓3)𝑇 (15)

and for D2Q9, 4 velocity qubits (2 for the 𝑥- and 2 for the 𝑦-direction) 
generate the space for the 9 velocity directions arranged by
𝐹D1Q3 = (𝑓1, 0, 𝑓2, 𝑓3, 0, 0, 0, 0, 𝑓4, 0, 𝑓6, 𝑓7, 𝑓5, 0, 𝑓8, 𝑓9)𝑇 . (16)

The arrangements are represented in Tables 1, 2 and 3.

2.4.  The quantum lattice boltzmann method

To solve the advection-diffusion Eq.  (1) with a quantum algorithm, 
the individual steps of the lattice Boltzmann method are solved by quan-
tum algorithms, i.e. collision, streaming and updating the macroscopic 
values as shown in Fig. 1.

The data is encoded in the complex amplitude coefficients of the 
states of the grid qubits |𝑞grid⟩, which for 𝑁 grid qubits generate space 
for 2𝑁  scalar values. For multiple dimensions, it is separated into groups 
of grid qubits for each dimension. For the collision operation, additional 
qubits |𝑞dir⟩ are added, to enable to duplicate the grid in order to oper-
ate for the different LBM directions, given by the specific choice of the 
velocity set (LBM stencil). Also the streaming is then performed condi-
tioned on the different direction qubits to transport in the corresponding 
directions. The macroscopic step finally merges the different directions 
to recalculate the new macroscopic quantities to update for a new lo-
cal scalar quantity and local equilibrium. This QLBM routine generally 
requires all velocity subspaces but the first one to have zero probabil-
ity amplitude in order to obtain the correct assignment by the collision 
step, as will be discussed in further subsections. Hence, the reinitializa-
tion QLBM algorithms reinitialize the state vector accordingly in each 
time step.

Our goal is to construct a scheme for a QLBM step that does not re-
quire a state extraction and reinitialization in between the time steps. 
Therefore, we propose a new extended scheme with a re-prep block 
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Fig. 1. Quantum circuit for a single quantum lattice Boltzmann time step.

Fig. 2. Our quantum circuit extension of the QLBM routine for multiple quantum lattice Boltzmann time steps without state extraction or reinitialization.

Fig. 3. Full quantum circuit of the QLBM simulation with the extension of the 
QLBM routine for 𝑇  time steps without state extraction or reinitialization from 
Fig. 2.

and additional time qubits |𝑞time⟩ as shown in Fig. 2, to enable a fully 
quantum algorithm for all time steps from start to end without a mea-
surement of the state at any time in between. The full quantum circuit of 
all building block, including initialization, time loop and measurement, 
is shown in Fig. 3. Corresponding pseudocode referring to the building 
blocks is shown in the appendix in Section A.1.

2.4.1.  The collision step
The collision step in the context of the LBM determines how each 

of the velocity probability distribution function 𝑓𝑖 relaxes towards its 
local equilibrium for that specific velocity direction 𝑖. Assuming a full 
relaxation within a time step, i.e Δ𝑡∕𝜏 = 1, the collision step is directly 
determined by the equilibrium distribution 𝑓 eq in Eq.  (5). Although the 
diffusion usually dictates the relaxation time 𝜏, this does not restrict the 
diffusion to a fixed value because we can model the diffusion by the 
modeled speed of sound 𝑐𝑠 and weights 𝑤𝑖 as described in Section 2.2.1.

For 𝑁 grid points and 𝑄 velocity directions, our total state has di-
mension 𝑁 ⋅𝑄, for which we have to calculate the relaxation for each en-
try. Collecting this in a state vector 𝐹 = (𝑓 1

1 , … , 𝑓𝑁
1 , … , 𝑓 1

𝑄, … , 𝑓𝑁
𝑄 )𝑇 , 

the collision operation for each 𝑓 𝑛
𝑖 , 𝑖 ∈ [1, 𝑄], 𝑛 ∈ [1, 𝑁] as dictated by 

Eq.  (7) can be written as the linear system
𝐹 = 𝐴𝐹 , (17)

where 𝐴 is the diagonal collision matrix. The collision matrix is gen-
erally not unitary and thus can not be decomposed into a series of

available unitary operations of a quantum computer. Therefore, Budin-
ski [8] separates 𝐴 into a sum of diagonal unitary matrices 𝐴 = (𝐵1 +
𝐵2)∕2 with 𝐵1,𝑘,𝑘 = 𝐴𝑘,𝑘 + 𝑖

√

1 − 𝐴2
𝑘,𝑘 and 𝐵2,𝑘,𝑘 = 𝐴𝑘,𝑘 − 𝑖

√

1 − 𝐴2
𝑘,𝑘, fol-

lowing a linear combination of unitaries (LCU) approach. The idea of the 
LCU approach is to add an additional ancilla qubits |𝑎⟩ and duplicate the 
grid coefficients up to a norm factor into the new ancilla generated sub-
space. Now, 𝐵1 and 𝐵2 can operate separately on the two subspaces by 
conditioning the operations on the ancilla state |𝑎⟩. To do so, 𝐵1 op-
erates conditioned on |𝑎⟩ = |0⟩ and while 𝐵2 is performed conditioned 
where |𝑎⟩ = |1⟩ and the results in the two subspaces are summed in a 
last step (for summation, cf. the summation in Section 2.4.3).

After the LCU summation step, there remains a significant amount 
of amplitude of the complex amplitude coefficient of the states in the 
additional LCU ancilla subspace, that results in a loss of probability that 
we want to avoid for our algorithm. So instead of using the LCU, we 
want to mimic the distribution into the multiple directions dictated by 
𝐴 by a unitary collision operation 𝑈coll in the first place.

The idea is to start a time step in a state that has all the scalar in-
formation in one velocity direction subspace (cf. Section 2.3) and then 
mimic the distribution of the collision operation along the velocity di-
rections by a unitary matrix. To achieve starting in this state, the state 
is re-prepared at the end of each time step by the re-prep block as de-
scribed in Section 2.4.4 and as sketched in Fig. 2. The choice of this state 
is made possible by our choice of Δ𝑡∕𝜏 = 1 because after the collision the 
state relaxes fully into the equilibrium state, which only depends on Φ
of the node, independent of how Φ is distributed along the different di-
rections in the first place (recap Φ =

∑

𝑖 𝑓𝑖 for a specific grid point). So 
if Φ is fully captured by one velocity direction, we can make sure that 
our desired operation 𝑈coll operates on these states according to the 
corresponding entries in 𝐴, while the remaining entries can be chosen 
arbitrarily, but in particular such that our desired matrix 𝑈coll becomes 
unitary.

To find a general collision description, we start with the simplest 
QLBM stencil and generalize to arbitrary stencils further in the subsec-
tion. The simplest case for a QLBM collision is given by a D1Q2 stencil, 
so by one spacial dimension and two velocity directions 𝑄 = 2, leading 
to a state vector 𝐹 = (𝑓 1

1 , … , 𝑓𝑁
1 , 𝑓 1

2 , … , 𝑓𝑁
2 )𝑇 . Here, the collision 

matrix 𝐴 has the following form:

𝐴 =
(

𝐴1 𝐴2
𝐴3 𝐴4

)

, (18)

where the 𝐴𝑖 are diagonal 𝑁 ×𝑁 matrices. With the state prepared as 
in Eq.  (11), 𝐴2 and 𝐴4 do not contribute to the collision calculation. 
Additionally, according to Eq.  (5), all the diagonal entries 𝑎𝑖 inside an 
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𝐴𝑖 are all equal and we can write:

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1 𝑎2
⋱ ⋱

𝑎1 𝑎2
𝑎3 𝑎4

⋱ ⋱
𝑎3 𝑎4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

𝑎1 𝑎2
𝑎3 𝑎4

)

⊗ 𝟙𝑁 . (19)

This can be represented by a quantum operation using a 2 × 2 rotational 
gate, the 𝑅𝑌 (𝜃)-gate, on one qubit and no operation (≡ identity opera-
tion 𝟙) on 𝑁 qubits. So the rotation operation has to fit the coefficients 
𝑎𝑖, but only for 𝑎1 and 𝑎3, since our state is prepared in such a way that 
𝑎2 and 𝑎4 do not contribute
(

𝑎1 𝑎2
𝑎3 𝑎4

)

=
(

cos(𝜃∕2) − sin(𝜃∕2)
sin(𝜃∕2) cos(𝜃∕2)

)

≡ 𝑅𝑌 (𝜃), (20)

leading to the conditions for choosing 𝜃 such that the 𝑎𝑖 correspond to 
map the vector Φ from Eq.  (11) to 𝑓 eq in Eq.  (5) of the corresponding 
velocity direction:

𝑎1 = 𝑘1 ≡ 𝑤1

(

1 +
𝑢 ⋅ 𝑒1
𝑐2𝑠

)

!
= cos(𝜃∕2), (21)

𝑎3 = 𝑘2 ≡ 𝑤2

(

1 +
𝑢 ⋅ 𝑒2
𝑐2𝑠

)

!
= sin(𝜃∕2). (22)

So applying 𝑅𝑌 (𝜃) to the state as prepared in Eq.  (11), this operation 
effectively shifts a certain fraction from all Φ in the first velocity direc-
tion to the second velocity direction, such that the ratio of 𝑘1∕(𝑘1 + 𝑘2)
is kept in the first velocity subspace while moving 𝑘2∕(𝑘1 + 𝑘2) into the 
second subspace. So essentially, we want to choose 𝜃, such that we dis-
tribute our state (Φ, 0)𝑇  to (𝑘1Φ, 𝑘2Φ)𝑇 , but this can not be achieved 
by unitary operation in general. So instead, we choose 𝜃, such that we 
keep the proportion of 𝑘1∕𝑘2 for (cos(𝜃∕2)Φ, sin(𝜃∕2)Φ)𝑇 . This leads to 
our condition and single solution for the argument 𝜃:

𝑘1
𝑘2

=
cos(𝜃∕2)
sin(𝜃∕2)

⟺ 𝜃 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘1
√

𝑘21 + 𝑘22

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡𝑛

= 2 arcsin

⎛

⎜

⎜

⎜

⎝

𝑘2
√

𝑘21 + 𝑘22

⎞

⎟

⎟

⎟

⎠

.

(23)

Note, that instead of calculating the ratio of 𝑘1 and 𝑘2, only a normalized 
ratio with 𝑛 ≡ 𝑘1∕

√

𝑘21 + 𝑘22 and 𝑘2∕
√

𝑘21 + 𝑘22 is calculated, which will 
lead to a certain decay discussed in Section 2.4.5.

Generalization
Extending this idea to D1Q3 scheme, three velocity directions are 

modeled (𝑄 = 3) using 𝑁𝑄 = 2 direction qubits that span four veloc-
ity direction subspaces. Here, the first velocity direction is the resting 
node direction (𝑓 1

1 , … , 𝑓𝑁
1 ), while the second and third direction are 

the left and right streaming direction, respectively, which are arranged 
as shown in Table 2. In order to include the additional direction, the 
same idea is used, starting with an initial state vector as in Eq.  (11) 
and sequentially distributing to the additional direction subspaces. Now 
two steps are modeled: in the first step, an angle 𝜃1 is determined, 
such that the amount 𝑛1 is kept in the first (resting) direction while 
all remaining fraction 𝑛′1 is shifted to the second direction subspace 
(Φ, 0, 0, 0)𝑇 → (𝑛1Φ, 0, 𝑛′1Φ, 0)𝑇 . Note that 𝑛1 is the normalized correct 
amount of the first subspace while the second subspace now contains 
all remaining information, so for the second and third velocity direc-
tion. This remaining information still needs to be further distributed. 
Now by a second 𝑅𝑌  operation, an angle 𝜃2 is determined to distribute 
between the second and third subspace, according to the LBM weights: 

(𝑛1Φ, 0, 𝑛′1Φ, 0)𝑇 → (𝑛1Φ, 0, 𝑛2Φ, 𝑛3Φ)𝑇 . This results in two rotation oper-
ations with angles 

𝜃1 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘1
√

𝑘21 + 𝑘22 + 𝑘23

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝑛1

, 𝜃2 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘2
√

𝑘22 + 𝑘23

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡𝑛2

. (24)

For a 1D stencil, we shift all the information sequentially 
through each of the subspaces while keeping a fraction ac-
cording the LBM weights in the corresponding subspace
(Φ, 0,… , 0)𝑇 → (𝑛1Φ, 𝑛′Φ,… , 0)𝑇 → … → (𝑛1Φ, 𝑛2Φ,… , 𝑛𝑄Φ)𝑇 , where 
each operation is performed with a general angle for each of the 
rotation gates of

𝜃𝑖 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘𝑖
√

∑𝑄
𝑗=𝑖 𝑘

2
𝑗

⎞

⎟

⎟

⎟

⎠

. (25)

For multiple spacial dimensions, the sequential distribution of the signal 
through the velocity subspaces may have to be adjusted. If the signal 
may have to be kept for multiple directions 𝑘𝑗 in a certain subspace (as 
will be necessary in our D2Q9 distribution procedure), the value of 𝑘𝑖
has to be replaced by the Euclidean norm of all the directions that we 
want to keep in the subspace:

𝜃𝑖 = 2 arccos

⎛

⎜

⎜

⎜

⎝

√

∑

keep 𝑘
2
keep

√

∑

inv 𝑘
2
inv

⎞

⎟

⎟

⎟

⎠

, (26)

where 𝑘keep are the 𝑘𝑖 of the directions that (temporarily) remain in the 
direction subspace and 𝑘inv are all the subspaces involved in the oper-
ation, so those which are shifted to another subspace and those which 
will remain in the respective subspace. This defines the normalized 𝑘𝑖
factor 𝑛𝑖 used as the argument of the arccos(⋅) by

𝑛𝑖 ≡

√

∑

keep 𝑘
2
keep

√

∑

inv 𝑘
2
inv

. (27)

In this work, the D1Q2, D1Q3 and D2Q9 stencils are used. The details 
of the quantum circuit of the collision block from Fig. 2 is shown in 
Figs. 4(a) and (b) for the D1Q2 and the D1Q3 scheme, respectively, 
and for the D2Q9 scheme it is shown in Fig. 5. A spatially constant 
diffusion and flow velocity is assumed, so there is no dependence on the 
grid qubits. For a spatially varying diffusion, additional 𝑅𝑌  gates with 
controls on the grid qubits need to be used.

To represent the two velocity directions in the D1Q2 scheme, we 
use one direction qubit in the |𝑞dir⟩ register to span the state vector in 
Eq.  (11) of length 2𝑁 , where we already use log2(𝑁) qubits for the 
representation of the 𝑁 grid points.

For the D1Q3 scheme, we need a state vector in Eq.  (11) of length 
3𝑁 , so we need an second qubit in the direction register, as explained 
in Section 2.3. This will span our state space to 4𝑁 .

For the D2Q9 scheme, it is not feasible to distribute the velocity di-
rections in a sequential way, always shifting all the signal to the next 
direction subspace. Specifically, for the D2Q9 scheme used in this work, 
first the amplitude from the resting subspace will be distributed along 
the 𝑥-direction subspaces as for D1Q3, but in a second series of steps, 
the direction subspaces superposing the 𝑥-direction (including the rest-
ing direction) with up and down directions will get their corresponding 
signal. The details of the order on how the directions are distributed to 
their corresponding subspace is shown in the appendix in Section A.2 in 
Table A.5. For the distribution procedure, a set of eight 𝑅𝑌 (𝜃)-gate op-
erations are used and 𝑁𝑄 = 4 direction qubits generating 16 subspaces 
are used to accommodate for the 𝑄 = 9 velocity directions. To perform 
the operations only on the desired subspace, several controls are set to 
the 𝑅𝑌 -gates, which are shown in the collision circuit in Fig. 5.
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Fig. 4. Quantum circuit for the collision step in Fig. 2 for the D1Q2 scheme (Fig. 4(a)) and a the D1Q3 scheme (Fig. 4(b)) for spatially constant diffusion and flow 
velocity. For spatially varying diffusion or flow velocities, multiple 𝑅𝑌  gates with controls on the grid qubits |𝑞grid⟩ need to be used.

Fig. 5. Quantum circuit for the collision step in Fig. 2 for the D2Q9 scheme for spatially constant diffusion and flow velocity. Each 𝑅𝑌 -gate distributes the velocity 
distribution functions into their corresponding velocity direction subspace according to the procedure in Table A.5 in Section A.2 of the appendix. The argument 𝜃
for each 𝑅𝑌 -gate has to be chosen according to Eq.  (26). For additionally spatially varying diffusion or flow velocities, multiple 𝑅𝑌  gates with controls on the grid 
qubits |𝑞grid⟩ need to be used.

2.4.2.  The streaming step
The streaming for the stencils used in this work as indicated in the 

circuit in Fig. 2 are basic periodic right (→) and left (←) shift operations 
in 1D and additional up (↑) and down (↓) operations including diagonal 
superpositions of them, respectively, in 2D. This is done by a binary 
+1 and −1 operation with binary integer overflow, conditioned on the 
direction qubits. The quantum circuit for the binary shift operations is 
adapted from Todorova et al. [6] as presented in Figs. 6(a) and (b), 
where instead of changing the condition state of the control qubits for 
−1 compared to −1, we instead reverse the order of the gates of +1 to 
represent the −1 operation.

To perform the correct streaming direction in the corresponding di-
rection subspace, the +1 and −1 streaming operations are conditioned 
on the direction qubits, which depends on the velocity set chosen by 
the QLBM stencil. The conditions for our choice of direction subspaces 
as described in Section 2.3 are shown in Fig. 7, so every gate of the +1
and −1 operation in Fig. 6 has to have additional controls on the direc-
tion qubits. The controls are chosen in such a way that they shift the 
correct subspace of the state, which for the D1Q2 scheme is chosen to 
(𝑓1, 𝑓2)𝑇 = (𝑓→, 𝑓←)𝑇  and for the D1Q3 is chosen to be (𝑓1, 0, 𝑓2, 𝑓3)𝑇 =
(𝑓rest, 0, 𝑓→, 𝑓←)𝑇  (cf. Tables 1 and 2).

For the D2Q9 scheme, additional up and down streaming opera-
tions are performed on 𝑦-direction grid qubits with corresponding con-
trol states on the direction qubits to select the correct subspace like

arranged in Table 3. The diagonal streaming directions are performed 
by sequentially performing a left or right with an up or down operations 
on the same direction subspace, so with similar control states on the di-
rection register. The quantum circuits for the streaming of the directions 
in D2Q9 are shown in Fig. 8.

2.4.3.  Updating macroscopic variables
The summation of the distribution functions in the different sub-

spaces is basically done by reversing the steps of distributing the dis-
tribution functions along the subspaces as is done in the collision steps, 
so by collecting instead of distributing subspaces. Assuming a total stat-
evector of dimension 2𝑁 , which can be subdivided into two distribu-
tions of dimension 𝑁 , such that |Ψ⟩ = (Ψ1

1,… ,Ψ𝑁
1 ,Ψ1

2,… ,Ψ𝑁
2 )𝑇 , this can 

be represented by the two distributions |Ψ1⟩ , |Ψ2⟩ for different states of 
the last, the ancilla, qubits:
|Ψ⟩ = |0⟩⊗ |Ψ1⟩ + |1⟩⊗ |Ψ2⟩ ≡ (Ψ1,Ψ2)𝑇 . (28)

The Hadamard transformation 𝐻 can distribute from a distribution in 
one subspace to another subspace with zero probability (Φ, 0)𝑇  to two 
equal parts in both subspaces (Φ1∕2,Φ1∕2)𝑇 , while having to conserve 
the norm of the vector. The Hadamard transformation operation 𝐻 is its 
own inverse, so while distributing from one subspace to two subspaces, 
it also reverses the operation and collects information back into the first 
subspace (Φ, 0)𝑇

𝐻
⟷ (Φ1∕2,Φ1∕2)𝑇  when applied again. The Hadamard 
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Fig. 6. Binary +1 and −1 operations with overflow as the basis of the right, left, up and down operations in the QLBM circuit in Fig. 2.

Fig. 7. Arrangement of the controls on the direction qubits for the streaming 
operations of the D1Q2 scheme (7)(a) and D1Q3 scheme (7)(b).

transformation calculates the equally weighted sum in the first subspace, 
while at the same time, the difference of the distributions is kept in the 
second subspace
𝐻 |𝑎⟩⊗ |Ψ⟩ = 𝐻 |0⟩⊗ |Ψ1⟩ +𝐻 |1⟩⊗ |Ψ2⟩

=
√

1
2
(

|0⟩⊗ |Ψ1 + Ψ2⟩ + |1⟩⊗ |Ψ1 − Ψ2⟩
)

, (29)

where we notice, that we calculate the sum in the first subsection up to 
a normalization factor of 

√

1∕2, which will account for another loss of 
signal, as also further taken into account in Section 2.4.5.

The Hadamard transformation as used here calculates the equally 
weighted sum and difference up to a normalization of the two distri-
butions. The same holds in general for the 𝑅𝑌  gate with corresponding 
choice if 𝜃, which we understand as mixing in between the subspaces as 
has been explained in Section 2.4.1. Note that in order to maintain the 
sum and the difference in the corresponding subspaces |0⟩ and |1⟩, we 
need to choose 𝜃 negative, such that the cosine remains the same but 
the sine flips its sign and the difference shifts to the bottom line in the 
𝑅𝑌  matrix

𝑅𝑌 (𝜃) ≡
(

cos(𝜃∕2) − sin(𝜃∕2)
sin(𝜃∕2) cos(𝜃∕2)

)

=
(

cos(−𝜃∕2) sin(−𝜃∕2)
− sin(−𝜃∕2) cos(−𝜃∕2)

)

.

(30)

The result of the difference state is of no further interest. With choosing 
different angles of 𝜃, the sum can be calculated with different weights. 
It is important to avoid including zero subspaces that do not contain 

any distribution function because this would lead to a significant addi-
tional decay of the solution. For the sequential summation of different 
subspaces we have to account for different weightings in each summa-
tion step, due to the general norm preservation of a quantum state. The 
weighted summation of two subspaces |Ψ1⟩ and |Ψ2⟩ using the 𝑅𝑌 -gates 
results in
𝑅𝑌 (𝜃) |𝑎⟩⊗ |Ψ⟩ = |0⟩⊗ |cos(−𝜃∕2)Ψ1 + sin(−𝜃∕2)Ψ2⟩

+ |1⟩⊗ |cos(−𝜃∕2)Ψ2 − sin(−𝜃∕2)Ψ1⟩ .
(31)

For the D1Q2 scheme, one equally weighted sum is needed. This is done 
with the Hadamard gate as demonstrated in Eq.  (29). The circuit is 
shown in Fig. 9(a).

For the D1Q3 scheme, at first, only the third and fourth subspaces, 
so 𝑓→ and 𝑓← in Ψ = (𝑓rest, 0, 𝑓→, 𝑓←)𝑇 , are summed equally weighted 
by a Hadamard gate, which leaves its sum in the third subspace. After-
wards, a 𝑅𝑌  gate is used to sum the first and third subspace where the 
sum results in the first subspace. We need the final sum to be an equally 
weighted sum of the first, third and fourth subspace, so 𝑓rest + 𝑓→ + 𝑓←, 
meaning a weighting of the statevector with (1, 0, 1, 1)𝑇 . Due to normal-
ization, we need the weights to be (

√

1∕3, 0,
√

1∕3,
√

1∕3), which is fine 
as long as the weights remain equal. To apply the gates as summation 
operations on these isolated subspaces, controls need to placed accord-
ingly. The quantum circuit with corresponding controls are shown in 
Fig. 9(b). For these two controlled operations, the total summation op-
eration on the two direction subspaces is:

𝑅𝑌 (𝜃)
|

|

|

||𝑞dir,1⟩=|0⟩
𝐻
|

|

|

||𝑞dir,2⟩=|1⟩
Ψ

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

cos
(

− 𝜃
2

)

0 sin
(

− 𝜃
2

)

0
0 0 0 0

− sin
(

− 𝜃
2

)

0 cos
(

− 𝜃
2

)

0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0

√

1∕2
√

1∕2
0 0

√

1∕2 −
√

1∕2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑓rest
0
𝑓→
𝑓←

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

− 𝜃
2

)

0 sin
(

− 𝜃
2

)
√

1
2 sin

(

− 𝜃
2

)
√

1
2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑓rest
0
𝑓→
𝑓←

⎞

⎟

⎟

⎟

⎟

⎠

,

(32)

which will fulfill our demand of an equally weighted summation 
(
√

1∕3𝑓rest + 0 +
√

1∕3𝑓→ +
√

1∕3𝑓←, ⋅, ⋅, ⋅)𝑇  by the condition:

cos
(

− 𝜃
2

) !
=
√

1
3

∧ sin
(

− 𝜃
2

)

√

1
2

!
=
√

1
3

(33)
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Fig. 8. Implementation of the D2Q9 streaming operations in different directions as a combination of +1 and −1 operations from Fig. 6 with corresponding controls 
on the direction qubits as in Table 3.
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Fig. 9. Update of the macroscopic variables as the sum of all distributions into the first subspace for D1Q2 (Fig. 9(a)) and D1Q3 (Fig. 9(b)).

Fig. 10. Update of the macroscopic variables as the sum of all distributions into the first subspace for the D2Q9 scheme using 𝜃 from Eq.  (34) for the 𝑅𝑌  gates, 
following the order schematically shown in Table A.7.

⟺ 𝜃 = −2 arccos

(
√

1
3

)

= −2 arcsin

(
√

2
3

)

. (34)

So for the calculation of the D1Q3 macroscopic quantities with its result 
in the first subspace, a Hadamard gate on the first direction qubit with 
a control on the second direction qubit being in state |1⟩ and a 𝑅𝑌  ro-
tation gate with 𝜃 = −arccos(

√

1∕3) on the second direction qubit with 
control on the first direction qubit being in state |0⟩ is used, as shown 
in Fig. 9(b).

To calculate the macroscopic values in the D2Q9 scheme, the sum-
mation is done in a similar way with the same summation weights as 
in the D1Q3 scheme, which is shown in the circuit in Fig. 10 with 
the summation order shown in Table A.7 in the appendix. For the 
D2Q9 scheme, the summation is done in 𝑥- and 𝑦-direction, respec-
tively, by the same operations as in the D1Q3 summation step. First, 
the 𝑥-direction summation operations perform the summations of the 
directions |rest⟩ , |→⟩ , |←⟩ into |rest⟩ directions, the |↑⟩ , |↖⟩ , |↗⟩ direc-
tion into |↑⟩ direction and |↓⟩ , |↙⟩ , |↘⟩ directions into |↓⟩ direction with 
the Hadamard gate 𝐻 and rotation gate 𝑅𝑌  as in D1Q3. After that, the 
final summations of |rest⟩ , |↑⟩ , |↓⟩ into|rest⟩ are done similarly but on 
the 𝑦-qubits.

2.4.4.  Re-prepare state for next time step
In order to create a fully quantum algorithm for multiple quantum 

lattice Boltzmann steps without reinitialization, the state vector has to 
be re-prepared to the state that contains the scalar grid information only 
in the first direction subspace while all other direction subspaces have 
to have zero state amplitudes, i.e. (𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇 = (Φ, 0, … , 0)𝑇

(cf. Section 2.3). As we see in Eq.  (29), with the summation of sub-
spaces also comes a subtraction result. So after the calculation of the 
macroscopic quantities, there is the sum in the first subspace but gen-
erally also left over information in all other used direction subspaces. 
But in order to make the algorithm work for multiple time steps with 
collision, streaming and calculation of the macroscopic quantities, the 
state requires to have only the grid results in the first velocity direc-
tion subspace and all other velocity direction subspaces need to have 
zero probability amplitude, as stated in Eq.  (11). So a way is needed to 
set these probabilities to zero, without destroying the system quantum 
state.

The idea is to introduce additional qubits as part of the time 
qubit register, which is shown in Fig. 2. The first additional time 
qubit doubles the number of direction subspaces, so for 𝑁𝑄 direc-
tion subspaces, the statevector expands from (𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇  to 

(𝑓1, 𝑓2, … , 𝑓𝑁𝑄
, 0, … , 0)𝑇 . This statevector now contains 𝑁𝑄 addi-

tional subspaces with states of probability zero, because the additional 
time qubit, as long as not operated on, remains in state |0⟩, so in the 
state of the first 𝑁𝑄 direction subspaces and never takes |1⟩ in the sec-
ond 𝑁𝑄 direction subspaces. The key part is to shift all 2𝑁𝑄 periodically 
and switching the 𝑁𝑄 + 1 subspace with the first subspace again:

re-prep:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
𝑓2
⋮

𝑓𝑁𝑄
0
0
⋮
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⟶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
⋮
0
𝑓1
𝑓2
⋮

𝑓𝑁𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⟶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
0
⋮
0
0
𝑓2
⋮

𝑓𝑁𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (35)

where after the collision, streaming and macroscopic calculation steps, 
the first subspace contains the gird 𝑓1 ∼ Φ up to a known normaliza-
tion factor. The norm of 𝑓1 will decrease in every time step due to the 
left over results of the subtraction in the other subspaces. This decay 
is further discussed in Section 2.4.5. Since the collision, streaming and 
macroscopic calculation steps only act within a group of every 𝑁𝑄 sub-
spaces, the state after the re-preparation at the end of Eq.  (35) can 
be used for the next time step. For multiple time steps, further time 
qubits are added, where each additional time qubits doubles the num-
ber of zero-probability-subspaces. Therefore, the number of time qubits 
needed scales logarithmically with the number of simulated time steps 
𝑇 , so #𝑞time ∼ log(𝑇 ), meaning that #𝑞time time qubits can simulate up to 
𝑇 = 2#𝑞time  time steps. The periodic shifting +𝑁𝑄 of the entries of state 
vector can be realized in a similar way as the streaming operation. The 
quantum circuit is shown in Fig. 11.

For some specific lattice Boltzmann stencils, the re-prep circuit as 
shown in Fig. 11 can be simplified. For the D1Q2 and D1Q3 stencil a 
simplification of the re-prep circuit is shown in the appendix in Sec-
tion A.4.

2.4.5.  Decay of quantum state amplitude of solution per time step
The updated grid values for the next time step in the first subspace 

𝑓 𝑡+1
1 = Φ𝑡+1 undergoes a certain decay of its coefficient amplitude at 
two points in the algorithm: the collision operation and the calculation 
of the macroscopic variables. The first decay comes from the collision 
operation, that distributes the full grid in the first subspace 𝑓1 to the 
velocity distributions 𝑓𝑖. In this step, only the normalized fraction 𝑛1
of Φ is kept in the first subspace and the remaining signal 𝑛′ is moved 
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Fig. 11. Quantum circuit of the re-prep step in Fig. 2 to prepare the state vector for the next time step in order to allow a fully quantum algorithm for all simulation 
time steps without the need of reinitialization or mid-circuit measurements.

Fig. 12. Comparison of the total number of shots over time for reinitialization 
methods (dashed line) and our method for different decay factors.

to subspace 𝑓2. Instead of keeping the full amount 𝑘1 in subspace 𝑓1, 
as would be dictated by the non-unitary collision operation in Eq.  (5), 
only the normalized amount of 𝑛1 is kept. This normalization leads to 
the first signal decay in 𝑓1 as determined in Eq.  (25)

𝛾coll,𝑓1 = 1
√

∑𝑄
𝑖=1 𝑘

2
𝑗

. (36)

The second decay arises from the last summation step when calculating 
the macroscopic variables. As shown in the Section 2.4.3, a summation 
of subspaces comes with a subtraction as well. While there is the sum 
of two subspaces in one subspace, there is the subtraction result in the 
other subspace. The resulting subtraction is some left over, unusable 
signal in the other subspaces. The last summation step is weighted with 
√

1∕𝑄 to take into account previous sequentially summations of velocity 
subspaces. So the decay due to the summation of the last subspaces that 
includes the 𝑓1 subspace is

𝛾macro,𝑓1 =
√

1
𝑄
. (37)

By determining only the decay of the macroscopic value Φ, which 
is calculated in subspace 𝑓1, only the collision decay and macroscopic 
variable calculation decay for 𝑓1 need to be taken into account. Further 
decays due to the collision and summation in further velocity subspaces 
𝑓𝑖>1 do not change the decay in the first subspace. Only when 𝑓1 is 
included in the operations 𝑓1 decays further. This results in a total decay 
of

𝛾tot,𝑓1 = 1
√

∑𝑄
𝑖=1 𝑘

2
𝑗

√

1
𝑄
, (38)

which is the signal loss of the complex amplitude coefficients of the 
macroscopic grid variables in the first velocity subspace per time step. 
For the decay of probability amplitude, the square of the decay value 
𝛾2tot,𝑓1  determines the signal loss. In order to reconstruct the grid after 
𝑇  time steps, that is encoded in the complex amplitude coefficients, the 
magnitude of the complex amplitude coefficients need to be multiplied 
by the decay factor for 𝑇  time steps 𝛾𝑇tot,𝑓1 .

2.4.6.  Comparison to methods that use reinitialization
Our algorithm avoids the necessity to measure and reinitialize the 

quantum state after every single time step by adding the re-prep block. 
For a single time step, our method and methods that require reinitial-
ization are similar, i.e. both initialize and perform collisions, stream-
ing and the macroscopic step. Performing many time steps, methods 
that require reinitialization have to contain the initialization block 
in every time step while our method initializes only once and contains 
the re-prep block in every time step instead. When considering many 
time steps, the computational cost of the single initialization block 
in our method becomes negligible. Therefore, the difference between a 
method with reinitialization and our method without reinitialization are 
the reinitialization block and the re-prep block. Comparing these 
two blocks to compare methods with and without reinitialization can 
not be done in general, since the initialization highly depends on the 
flow field to encode. However, the total number of samplings required 
to resolve the flow to a certain level after 𝑇  time steps can be compared 
for both methods.

Assuming a requirement of 𝑁shots shots for a desired resolution, a 
reinitialization method needs to resolve the entire flow field with 𝑁shots
in every time step. So for 𝑇  time steps, the total number of shots scales 
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Fig. 13. Fully Quantum Lattice Boltzmann method without reinitialization for the 1D linear advection-diffusion equation solved with a D1Q2 scheme in Fig. 13(a) 
and a D1Q3 scheme in Fig. 13(b).

Fig. 14. Fully Quantum Lattice Boltzmann method without reinitialization for the 2D linear advection-diffusion equation solved with a D2Q9 scheme with periodic 
boundary conditions and a diffusion constant of 𝐷 = 1∕3. The cross (×) indicates the initial position of the gaussian with a standard deviation of 𝜎 = 2.0. Two different 
times and velocities are simulated in Figs. 14(a) and (b).

linearly by 𝑇 ⋅𝑁shots. Our methods decays by the decay factor 𝛾tot,𝑓1
in every time step (cf. Eq.  (38), Section 2.4.5), so to compensate the 
decay, the number of samples need to be 𝑁shots∕𝛾tot,𝑓1 . For 𝑇  time steps, 
this means a total number of 𝑁shots∕𝛾𝑇tot,𝑓1  is required. Removing the 
arbitrary factor 𝑁shots, the total relative number of shots required for a 
reinitialization method and our method is shown in Fig. 12 for different 
decay values 𝛾tot,𝑓1 .

3.  Verification

To verify our proposed algorithm, we model the advection-diffusion 
process of a gaussian distributed concentration in one and two dimen-
sions for multiple time steps without reinitialization. We use our quan-
tum lattice Boltzmann method (QLBM) with a D1Q2, D1Q3 and D2Q9 
stencil and compare it to classical lattice Boltzmann (LBM) results. All 

simulations are performed such that each velocity distribution func-
tion fully relaxes to its local equilibrium within one time step, i.e. 
Δ𝑡 = Δ𝜏 = 1. Further, a spacial discretization of Δ𝑥 = 1 is used. With 
different sets of lattice Boltzmann weights 𝑤𝑖 different diffusion con-
stants 𝐷 are modeled ensuring conservation of moment equations at 
least up to order four (cf. Section 2.2.1). For the simulation of our quan-
tum algorithm, the shot method of the Qiskit package [16] from IBM is 
used. The number of quits and the number of gates for the Qiskit simula-
tions for the different stencils, i.e. D1Q2, D1Q3 and D2Q9, are listed in
Table 4.

3.1.  1D Advection-Diffusion equation

The simulation of a one-dimensional gaussian hill following the ADE 
is done with a D1Q2 stencil and D1Q3. For both 1D test cases, a uni-
form velocity of 𝑢 = 0.2 and periodic boundary conditions are used. The
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Fig. 15. Contour plots of the 2D linear advection-diffusion simulation showing results of the fully Quantum Lattice Boltzmann method without reinitialization from 
Figs. 15(a) and (b) (dashed lines) and the results from the classical Lattice Boltzmann implementation (solid lines).

Fig. 16. Comparison of QLBM and LBM method for a D2Q9 test case in Fig. 14(b) with an initial gaussian distribution of standard deviation of size 𝜎 = 2.0 at a 
diffusion of 𝐷 = 1∕3 for a velocity of 𝐮 = (1∕6, 1∕12)𝑇 .

Table 4 
Number of qubits (grid, direction, time) and gates (𝑋, ) used for the not-transpiled simulation of 
the results shown for D1Q2 in Fig. 13(a), D1Q3 in Fig. 13(b) and D2Q9 in Figs. 14(a) and (b).
 stencil  Figures  qubits 𝑋 𝐶𝑋 𝑀𝐶𝑋 𝐻 𝐶𝐻 𝑅𝑌 𝐶𝑅𝑌 𝑀𝐶𝑅𝑌

 D1Q2 13(a)  14 (6, 1, 7)  0  3  16  1  0  1  0  0
 D1Q3 13(b)  15 (6, 2, 7)  0  1  18  0  1  1  2  0
 D2Q9 14(a)  15 (4+4, 4, 3)  1  1  50  0  2  1  4  5
 D2Q9 14(b)  18 (4+4, 4, 6)  1  1  53  0  2  1  4  5

gaussian hills are initialized at position 𝑥0 = 16 with a standard devi-
ation of 𝜎 = 6.0 and a global offset of 𝑜 = 0.1. The grid is discretized 
on 𝑁 = 64 grid points by #𝑞grid = 6 grid qubits. For a maximum simu-
lation time of 𝑡 = 128, a number of #𝑞time = 7 qubits in the time qubit 
register are used. The D1Q2 stencil requires #𝑞dir = 1 direction qubit for 
its two velocity directions, whereas the D1Q3 stencil requires #𝑞dir = 2
direction qubits for its three velocity directions. The simulations are per-

formed with 3.4 ⋅ 107 shots in total. The results are shown in Figs. 13(a) 
and (b).

For the D1Q2 stencil, the standard LBM weights are used, i.e. [1/2, 
1/2], which results in a squared speed of sound of 𝑐2𝑠 = 1 and there-
fore a diffusion of 𝐷 = 1∕2 is modeled. This results in a decay per 
time step to 𝛾 = 0.98, which reduces the probability per time step
to 𝛾2 = 0.96.
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The simulation with the D1Q3 stencil uses the non-standard weight 
set of [1/3, 1/3, 1/3] which results in a squared speed of sound of 𝑐2𝑠 =
2∕3 and therefore a simulated diffusion of 𝐷 = 1∕3. This setting results in 
a decay per time step to 𝛾 = 0.97, so a probability reduction to 𝛾2 = 0.94
per time step.

The results show that our QLBM is capable of reproducing the LBM 
results overall very accurately. For more time steps, the probability of 
measuring the correct states becomes less likely, which is due to the 
decay of the probability function in our algorithm. This results in an in-
creasing noise of the solution for larger time steps. Performing the sim-
ulation with more shots in total reduces the noise, as will be discussed 
in more detail for the 2D test case in Section 3.2.

3.2.  2D Advection-Diffusion equation

To verify our algorithm for two-dimensions, we again propagate a 
gaussian hill, now in 2D, following the advection-diffusion equation us-
ing the D2Q9 stencil with periodic boundary conditions. The results for 
two different advection velocities are shown in Figs. 14(a) and (b). Con-
tour plots of the results in Figs. 14(a) and (b) with comparison to the 
classical Lattice Boltzmann solutions are shown in Figs. 15(a) and (b).

The gaussians are discretized on 16 × 16 nodes using #𝑞grid = 4 + 4
grid qubits for the 𝑥 and 𝑦 directions. The concentrations have a standard 
deviation of 𝜎 = 2.0 and no global offset. The D2Q9 stencil requires 𝑄 =
9 velocity directions, so 𝑁𝑄 = 16 velocity direction subspaces need to be 
generated, which is done using #𝑞dir = 4 velocity direction qubits. With 
#𝑞time = 6 time qubits, up to 𝑇 = 48 time steps are simulated. The flow 
field is sampled at the end of the simulation with 1.3 ⋅ 108 shots.

Since the decay is smaller for smaller difference of the values of the 
weights, we choose a weight set of equal weights. For the test cases, a 
set of 𝑤𝑖 = 1∕9 ∀𝑖 ∈ [1, 9] is used which results in the minimal decay of 
our solution. This set of weights simulates a squared speed of sound of 
𝑐2𝑠 = 2∕3 and thus a diffusion of 𝐷 = 1∕3 is simulated. The decay has a 
dependence on the advection velocity since it is part of the 𝑘𝑖 factors in 
the decay in Eq.  (2.4.5). So for the test case in Fig. 14(a), an advection 
velocity of 𝐮 = (1∕4, 0)𝑇  is used, resulting in a decay of 𝛾 = 0.96 per time 
step, so a probability decay to 𝛾 = 0.91 per time step. For the test case in 
Fig. 14(b), the smaller advection velocity of 𝐮 = (1∕6, 1∕12)𝑇  results in 
a decay of 𝛾 = 0.97 per time step, so a probability decay to 𝛾 = 0.95 per 
time step. The results show very good agreement with the expectations, 
including deviations due to sampling noise. To verify the agreement 
with the classical LBM solutions, especially regarding expected sampling 
deviations, a more detailed look comparing QLBM with LBM is done: to 
quantify the difference the results by our QLBM compared to a classical 
LBM, we calculate the 𝐿2 error as

𝐿2 =

√

√

√

√

𝑁
∑

𝑖=1
(ΦQLBM − ΦLBM)2. (39)

Due to an increasing decay of our solution for more time steps, we ex-
pect that for a fixed number of shots, fewer shots resolve our flow field in 
the correct subspace. Therefore, we expect increase deviation for an in-
creasing number of simulated time steps between QLBM and LBM, since 
the flow field is effectively resolved with fewer shots. This is confirmed 
by calculating the 𝐿2 error for more time steps, as is shown in Fig. 16(a). 
Now this also means, that the error should decrease to zero for a fixed 
number of time steps with more sampling shots, meaning that the QLBM 
solution converges towards the LBM solution. This in fact can be verified 
by Fig. 16(b), which shows the convergence of QLBM solution towards 
the LBM solution for different simulation time lengths. This means that 
our QLBM algorithm can approximate the LBM solution arbitrarily close 
even for longer simulation times if the decay can be compensated with 
more total simulation shots.

4.  Conclusion

In this paper, an extension of the Quantum Lattice Boltzmann 
Method (QLBM) is proposed and verified, such that multiple time steps 
can be performed without the need of state measurement or reini-
tialization in between the time steps. This extension is valid for gen-
eral lattice Boltzmann velocity stencils and tested on D1Q2, D1Q3 and 
D2Q9 stencils using the shot methods of the Qiskit simulation pack-
age. The algorithm is proposed and discussed in detail, giving the 
mathematical description as well as the quantum circuit diagrams. For 
the extended QLBM algorithm, we discuss our required initialization 
state, the collision and streaming step, calculation of macroscopic vari-
ables and a re-preparation step for the next time step, all as fully 
quantum algorithm blocks with corresponding quantum circuit gate
diagrams.

The extension is tested on a linear advection-diffusion equation 
(ADE) in one and two dimensions and compared to classical lattice Boltz-
mann (LBM) reference solutions. We show excellent agreement and a 
convergence of our QLBM to LBM for any desired accuracy. For very 
large, highly-resolved grids, a state extraction of the full grid may be 
infeasible. The main advantage of our algorithm is that there is no need 
to extract the full flow field at any time. While other algorithms requires 
measurements and state reinitialization of the full flow field, our algo-
rithm can perform all time steps without any measurements or reinitial-
ization. When only interested in surface integrals or scalar properties, 
our algorithm would allow to calculate these quantities without ever 
having to extract the flow field at any time at all. This overcomes the 
scaling issues of algorithms in the literature that require state extraction 
where the computational effort, given by the number of shots, scales 
with the grid resolution. Future work is dedicated to reduce the decay 
by such techniques like amplitude amplification and to tackle nonlinear-
ities to be able to solve fluid flow equations like the Burgers equations. 
Further, the method is supposed to include the flow around bodies and 
different boundary conditions than periodic.

4.1.  Discussion of our algorithms advantages

Our goal is to investigate possible quantum algorithm approaches 
and improve these algorithms such that they may be suitable and us-
able for applications in Aerospace science. Since we are looking for al-
gorithms that can deal with very large grids with extremely high resolu-
tion, it is important to find an algorithm where the computational cost 
scales efficiently with the grid resolution. These computational costs are 
essentially the number of shots and the number of gates required. An 
algorithm that requires to sample the fully resolved grid cannot fulfill 
these requirements. Therefore, we propose a method that can perform 
the full simulation without the need of state extraction at any time and 
still obtain the results that we are interested in. These can be mainly 
reduced quantities like lift, drag, or other body surface properties.

Our algorithm can perform multiple time steps more efficient in 
terms of the number of shots required than those which require state 
extraction in between every time step, although this efficiency holds 
only for a limited number of time steps. In terms of efficiency, one could 
think of combining our algorithm with state extraction algorithms, but 
for our purposes, we want to avoid a state extraction for the aforemen-
tioned reasons at all and only extract our reduced quantities. How to 
extract these reduced quantity is completely unclear yet and remains an 
open question.

A large computational advantage of our algorithm is that we can 
avoid having to reinitialize a very complex flow field in between the 
time steps, which generally will require a large number of gates to tune 
the statevector accordingly. For a fluid flow simulation around a body, 
we could basically initialize a uniform velocity field which is achieved 
with very few gates.

While our algorithm can be more efficient in the initialization 
and number of shots, we do not reduce the gate count compared to 
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other QLBM algorithms. In fact, our algorithm without state extraction
produces a very large circuit depth which may cause coherence time 
issues. Additionally, the noise induces due to errors of the gate opera-
tions significantly limits the number of feasible time steps. This depends 
highly on the hardware and large improvements are to expect in the up-
coming years.
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Appendix A.  Appendix

A.1.  Pseudocode of simulation blocks

A pseudocode showing the structure of the entire simulation using 
the corresponding QLBM block from the methods section is shown in 
Algorithm 1. It shows essentially the structuring of the program corre-
sponding to Fig. 3. Each of the functions representing a QLBM block 
list the gates of their corresponding quantum circuit figure as explicitly 
depicted in the respective methods subsection.

A.2.  D2Q9 Collision step distribution of velocity direction distribution 
functions

The distribution of the D2Q9 velocity distribution functions is eas-
ier to handle if not distributed directly in a sequential way. The order 
of the procedure of distributing the velocity distribution function into 
the corresponding direction subspaces by several 𝑅𝑌 -gate operations is 
shown in Table A.5.

A.3.  D2Q9 Summation step of velocity direction distribution functions

The order of the summation of the D2Q9 velocity distribution func-
tions is shown in Table A.7 of the corresponding circuit in Fig. 10.

Algorithm 1 Main structure of QLBM simulation program, abbreviate 
quantum-circuit by qc, list of control qubits by ctrls and list of target qubits
by targets.
1: PARAMETER declaration
2:
3: def collision: ⊳ choose for velocity set stencil
4:  while 𝑖 in subspaces do
5:  𝜃𝑖 ← calculate 𝜃𝑖 from Eq. 26
6:  qc.append(𝜃𝑖, ctrls, targets)
7:  end while
8:
9: def streaming: ⊳ cf. Figures 6, 7 and 8
10:  while 𝑖 in directions do
11:  stream_direction(qc, ctrls, targets)
12:  end while
13:
14: def macros: ⊳ cf. Figures 9 and 10
15:  call_H_or_RY_gates(qc, ctrls, targets)
16:
17: def re_prep: ⊳ cf. Figure11
18:  streaming_+1(qc, |𝑞time⟩ )
19:  bring_back_first_subspace(qc, ctrls, target = |𝑞time, 1⟩ )
20:
21: init vector← flatten initial flow field
22: init vector← normalize flattened state
23: init quantum state←call Qiskit’s initialize(init vector) function
24:
25: while 𝑡 ≤ 𝑇  do ⊳ build entire quantum circuit
26:  collision()
27:  streaming()
28:  macros()
29:  re_prep()
30: end while
31: measure

A.4.  Re-prepare state for D1Q2 and D1Q3

For the D1Q2 and D1Q3 stencil, the re-prep circuit shown in Fig. 11 
can be simplified. In these stencils, all the velocity subspaces but the first 
one are located in the second half of all subspaces, so 𝑓1 is in subspace 
one and all velocity subspaces 𝑓𝑖 are in subspace with index 𝑖 > 1

2𝑁𝑄. 
This is shown in Eqs.  (A.1) and (A.2), where the dashed line indicates 
the split into half of the velocity direction subspaces and the solid sep-
aration line the split to the additional subspaces due to the added time 
qubits. This results in a re-prep step for the D1Q2 scheme of
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and for the D1Q3 scheme of
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0
0
0
𝑓2
𝑓3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.2)

In these arrangements it is sufficient to move only the second half of 
all velocity subspaces. With this arrangement of the velocity direction 
subspaces, this re-preparation can be achieved by a +𝑁𝑄 operation on all 
subspaces where the most significant qubit is in state |1⟩ or equivalently 
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Table A.5 
Distributing the D2Q9 velocity distribution functions along the 
velocity direction subspaces. The division of the four direction 
qubits is done such that the first two qubits form the 𝑥-directions 
and the last two qubits form the 𝑦-directions, so |𝑞4𝑞3𝑞2𝑞1⟩dir =
|𝑞4𝑞3⟩𝑦 |𝑞2𝑞1⟩𝑥. The index of 𝜃 contains the state with decimal rep-
resentation of the binary states. The series of tables continues in 
Table A.6.

|00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1 , … , 𝑓9  -  -  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦  -  -  -  -
|11⟩𝑦  -  -  -  -
𝜃
|0⟩→|2⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓4 , 𝑓5  - 𝑓2 , 𝑓3 , 𝑓6 , 𝑓7 , 𝑓8 , 𝑓9  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦  -  -  -  -
|11⟩𝑦  -  -  -  -
𝜃
|2⟩→|3⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓4 , 𝑓5  - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦  -  -  -  -
|10⟩𝑦  -  -  -  -
|11⟩𝑦  -  -  -  -
𝜃
|0⟩→|8⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4 , 𝑓5  -  -  -
|11⟩𝑦  -  -  -  -
𝜃
|8⟩→|12⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  -  -  -
|11⟩𝑦 𝑓5  -  -  -

Table A.6 
Continuation of Table A.5.

𝜃
|2⟩→|10⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1  - 𝑓2 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 , 𝑓8  -
|11⟩𝑦 𝑓5  -  -  -
𝜃
|3⟩→|11⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 𝑓3
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 , 𝑓8 𝑓7 , 𝑓9
|11⟩𝑦 𝑓5  -  -  -
𝜃
|10⟩→|14⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 𝑓3
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 𝑓7 , 𝑓9
|11⟩𝑦 𝑓5  - 𝑓8  -
𝜃
|11⟩→|15⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 𝑓3
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 𝑓7
|11⟩𝑦 𝑓5  - 𝑓8 𝑓9

a +1 operation on all time qubits conditioned on the most significant 
direction qubit to be in state |1⟩. This circuit is shown in Fig. A.17.

Table A.7 
Summation order of the D2Q9 velocity distribution func-
tions first in 𝑥-direction and then in 𝑦-direction.

𝐻
|11⟩𝑥→|10⟩𝑥

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1  - 𝑓2 𝑓3
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 𝑓7
|11⟩𝑦 𝑓5  - 𝑓8 𝑓9
𝐻

|11⟩𝑥→|10⟩𝑥
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1  - 𝑓2 , 𝑓3  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4  - 𝑓6 , 𝑓7  -
|11⟩𝑦 𝑓5  - 𝑓8 , 𝑓9  -
𝑅𝑌

|10⟩𝑥→|00⟩𝑥
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓2 , 𝑓3  -  -  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4 , 𝑓6 , 𝑓7  -  -  -
|11⟩𝑦 𝑓5 , 𝑓8 , 𝑓9  -  -  -
𝐻

|11⟩𝑦→|10⟩𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓2 , 𝑓3  -  -  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦 𝑓4 , 𝑓6 , 𝑓7  -  -  -

𝑓5 , 𝑓8 , 𝑓9
|11⟩𝑦  -  -  -  -
𝑅𝑌

|10⟩𝑦→|00⟩𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , … , 𝑓9  -  -  -
|01⟩𝑦  -  -  -  -
|10⟩𝑦  -  -  -  -
|11⟩𝑦  -  -  -  -

Fig. A.17. Simplified quantum circuit of re-prep step from Fig. 11 for the D1Q2 
and D1Q3 state arrangements.
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