
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Quantum lattice boltzmann method for multiple time steps without
reinitialization for linear advection-Diffusion problems

Aaron Nagel a,b,∗, Johannes Löwe a
aGerman Aerospace Center (DLR), Bunsenstrasse 10, Göttingen, D-37073, Lower Saxony, Germany
bUniversity of Göttingen, Faculty of Physics, Friedrich-Hund-Platz 1, Göttingen, D-37077, Lower Saxony, Germany

a r t i c l e i n f o

Editor: Dr W Jong
Keywords:
Quantum computing
Quantum lattice boltzmann method
Fluid dynamics
Linear advection-Diffusion.

 a b s t r a c t

To simulate highly-resolved flow fields, we extend the Quantum Lattice Boltzmann Method (QLBM) to be able
to simulate multiple time steps without state extraction or reinitialization. We adjust and extend given QLBM
approaches from the literature to completely remove the need to measure or reinitialize the flow field in between
the simulation time steps. Therefore, our algorithm does not require to sample the entire flow field at any time.
We solve the linear advection-diffusion problem with periodic boundary conditions and derive all necessary
equations and build the corresponding quantum circuit diagrams, including details on the QLBM blocks and
explicitly drawing the circuit gates. We discuss the general decay of a QLBM step and how that effects our
algorithm. The new algorithm is verified on 1D and 2D test cases using the shot method of IBMs Qiskit package.
We show excellent agreement and convergence between our QLBM and the classical Lattice Boltzmann method.
The conclusion section includes a discussion on the advantages of our algorithm as well as limitations and to
what extent it is more efficient.

1. Introduction

The effort in developing quantum algorithms has increased rapidly
in recent years. But the idea of using quantum particles as operation
units in machines, similar as the classical bit in a computer, is not new
at all. Richard Feynman as one famous example, has already published
first ideas on Quantum Mechanical Computers [1] back in the 1980s, and
first important quantum algorithms have been developed in 1990s, the
well known Shor’s [2] and Grover’s [3] algorithms. But with the advance-
ments in quantum hardware after the year of 2000, also the interest has
become more and more present. With the increase of usable qubits, es-
pecially the promise of an exponential system size scaling in quantum
operation units raised a large interest in scale resolving fluid flow sim-
ulations.

The first ideas in approaching computational fluid dynamics (CFD)
problems with quantum algorithms were proposed by Meyer [4] and
Yepez [5] with quantum lattice gas approaches. Improved models by
the lattice Boltzmann methods (LBM) have been developed further by
the pure fluid transport with a collisionless Boltzmann equation [6,7]
using a quantum streaming operation. Further work included a quan-
tum collision step by separation of the collision procedure into a sum
of unitary operations [8–10]. These algorithms represent the first “fully

∗ Corresponding author.
 E-mail address: aaron.nagel@dlr.de (A. Nagel).

quantum" LBM algorithms for a single LBM time step. But such a full
LBM routine as presented in the literature requires a full state extrac-
tion and reinitialization in between every time step. This again results
in a complete loss of its quantum advantage in system size scaling, since
a full state extraction scales linear in the grid resolution with the num-
ber of shots needed to resolve the flow field. That being said, literature
claiming to develop a “fully quantum” LBM algorithm has to be judged
carefully, since this can mean that a quantum LBM is developed only for
a single time step.

Additionally to the LBM algorithms of linear advection-diffusion
problems, the nonlinearity of the collision operator has been approached
using a Carleman linearization within the LBM by Itani et al. [11,12] and
for the Burgers equation by Liu et al. [13]. However, the linearization
comes at the cost of temporal instability for large nonlinearities as they
commonly occur in typical aerospace problems. Since our paper will not
cover nonlinearities, the topic itself has to be addressed in future work.

In this paper, we present our algorithm of a quantum lattice Boltz-
mann method (QLBM) for a linear advection-diffusion equation for mul-
tiple time steps which does not require measurement or reinitialization
at any time in between the simulation time steps. This is to the best of
the authors knowledge the first algorithm of its kind that can perform
multiple QLBM time steps without any kind or mid-circuit measurement,

https://doi.org/10.1016/j.cpc.2026.110040
Received 22 October 2025; Received in revised form 9 January 2026; Accepted 16 January 2026

Computer Physics Communications 321 (2026) 110040

Available online 18 January 2026
0010-4655/© 2026 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cpc
https://www.elsevier.com/locate/cpc
https://orcid.org/0000-0002-4790-7115

RY

$\Phi $

\begin {equation}\label {eq:ADE} \frac {\partial \Phi }{\partial t} + u_j\frac {\partial \Phi }{\partial x_j} = D\frac {\partial ^2 \Phi }{\partial x_j^2},\end {equation}

u_j

D

$j \in \{1,2,3\}$

f

$f(\mathbf {x}, \mathbf {v}, t)$

$\mathcal {H}$

$S_\text {coll}(f)$

\begin {equation}\label {eq:Boltzmanneq} \frac {\partial f}{\partial t} + v_j \frac {\partial f}{\partial x_j} + F_j \frac {\partial f}{\partial v_j} = S_\text {coll}(f),\end {equation}

$j \in \{1,2,3\}$

F_j

$F_j = 0$

\begin {equation}\label {eq:SBGK} S_\text {BGK}(f) = -\frac {1}{\tau }\left (f - f^\text {eq} \right),\end {equation}

$\tau $

$f^\text {eq}$

D

$\mathbf {e}_i$

$\mathbf {e}_i$

$\mathbf {e}_i$

f_i

\begin {equation}\frac {1}{\Delta t}\left (f_i(\mathbf {x}+\mathbf {e}_i\Delta t, t + \Delta t) - f_i(\mathbf {x}, t) \right) = -\frac {1}{\tau }\left (f_i(\mathbf {x}, t) - f^\text {eq}_i(\mathbf {x}, t) \right). \label {Xeqn4-4}\end {equation}

$f_i^\text {eq}$

$\Phi $

$\mathbf {u}$

i

\begin {equation}\label {eq:feq} f_i^\text {eq} = w_i \left (1 + \frac {\mathbf {u}\cdot \mathbf {e}_i}{c_s^2}\right)\Phi ,\end {equation}

k_i

\begin {equation}\label {eq:ki} k_i \equiv w_i \left (1 + \frac {\mathbf {u}\cdot \mathbf {e}_i}{c_s^2}\right).\end {equation}

D

c_s

w_i

$\hat {f}_i$

\begin {equation}\label {eq:fhat} \hat {f}_i(\mathbf {x}, t) = \left (1 - \frac {\Delta t}{\tau }\right) f_i(\mathbf {x}, t) + \frac {\Delta t}{\tau } f^\text {eq}_i(\mathbf {x}, t),\end {equation}

$t + \Delta t$

$\hat {f}_i$

\begin {equation}f_i(\mathbf {x}+\mathbf {e}_i\Delta t, t + \Delta t) = \hat {f}_i(\mathbf {x}, t). \label {Xeqn8-8}\end {equation}

f_i

\begin {equation}\Phi = \sum _i f_i. \label {Xeqn9-9}\end {equation}

$f^\text {eq}_i$

w_i

D

$\tau $

c_s

$\mathrm {d}x$

$\mathrm {d}t$

\begin {equation}D = c_s^2 \left (\tau - \frac {\Delta t}{2}\right). \label {Xeqn10-10}\end {equation}

$\tau $

$\tau = \Delta t = 1$

c_s^2

w_i

N

Q

f_1

$\Phi = f_1$

\begin {equation}\label {eq:stateinit} F = \begin {pmatrix} f_1^1\\ \vdots \\ f_1^N\\ f_2^1\\ \vdots \\ f_2^N\\ f_Q^1\\ \vdots \\ f_Q^N \end {pmatrix} = \begin {pmatrix} \Phi ^1\\ \vdots \\ \Phi ^N\\ 0\\ \vdots \\ 0\\ 0\\ \vdots \\ 0 \end {pmatrix},\end {equation}

\begin {equation}\label {eq:stateinitshortnotation} F = (f_1,\ f_2,\ \hdots ,\ f_Q)^T = (\Phi ,\ 0,\ \hdots ,\ 0)^T.\end {equation}

N

$\lceil \log _2(N) \rceil $

$\lceil \log _2(N) \rceil ^N$

$\lceil \cdot \rceil $

Q

$\# q_\text {dir}$

\begin {equation}N_Q = 2^{\# q_\text {dir}} \geq Q, \label {Xeqn13-13}\end {equation}

$N\cdot Q$

$N \cdot N_Q$

$(f_1,\ f_2,\ \hdots ,\ f_{N_Q})^T = (\Phi ,\ 0,\ \hdots ,\ 0)^T$

$N_Q - Q$

f_i

N

i

\begin {equation}\label {eq:D1Q2enc} F_\text {D1Q2} = (f_1, f_2)^T,\end {equation}

\begin {equation}\label {eq:D1Q3enc} F_\text {D1Q3} = (f_1, 0, f_2, f_3)^T\end {equation}

x

y

\begin {equation}\label {eq:D2Q9enc} F_\text {D1Q3} = (f_1, 0, f_2, f_3, 0, 0, 0, 0, f_4, 0, f_6, f_7, f_5, 0, f_8, f_9)^T.\end {equation}

x

$\ket {q_2 q_1}_x$

y

$\ket {q_4 q_3}_y$

$\ket {q_\text {grid}}$

N

2^N

$\ket {q_\text {dir}}$

$\ket {q_\text {time}}$

T

f_i

i

$\Delta t / \tau = 1$

$f^\text {eq}$

$\tau $

c_s

w_i

N

Q

$N\cdot Q$

$F = (f_1^1,\ \dots ,\ f_1^N,\ \dots ,\ f_Q^1,\ \dots ,\ f_Q^N)^T$

f_i^n

$i \in [1, Q]$

$n \in [1, N]$

\begin {equation}\hat {F} = AF, \label {Xeqn17-17}\end {equation}

A

A

$A = (B_1 + B_2)/2$

$B_{1,k,k} = A_{k,k} + i\sqrt {1 - A_{k,k}^2}$

$B_{2,k,k} = A_{k,k} - i\sqrt {1 - A_{k,k}^2}$

$\ket {a}$

B_1

B_2

$\ket {a}$

B_1

$\ket {a} = \ket {0}$

B_2

$\ket {a} = \ket {1}$

A

$U_\text {coll}$

$\Delta t / \tau = 1$

$\Phi $

$\Phi $

$\Phi = \sum _i f_i$

$\Phi $

$U_\text {coll}$

A

$U_\text {coll}$

$Q=2$

$F = (f_1^1,\ \dots ,\ f_1^N,\ f_2^1,\ \dots ,\ f_2^N)^T$

A

\begin {equation}A = \begin {pmatrix} A_1 & A_2 \\ A_3 & A_4 \\ \end {pmatrix}, \label {Xeqn18-2.4.1}\end {equation}

A_i

$N \times N$

A_2

A_4

a_i

A_i

\begin {equation}A = \left (\begin {array}{ccc|ccc} a_1 & & & a_2 & & \\ & \ddots & & & \ddots &\\ & & a_1 & & & a_2\\ a_3 & & & a_4 & & \\ & \ddots & & & \ddots &\\ & & a_3 & & & a_4\\ \end {array}\right) = \begin {pmatrix} a_1 & a_2 \\ a_3 & a_4 \\ \end {pmatrix} \otimes \mathbb {1}_N. \label {Xeqn19-2.4.1}\end {equation}

2×2

$RY(\theta)$

$\equiv $

$\mathbb {1}$

N

a_i

a_1

a_3

a_2

a_4

\begin {equation}\left (\begin {array}{cc} a_1 & a_2 \\ a_3 & a_4 \end {array}\right) = \left (\begin {array}{rr} \cos (\theta / 2) & -\sin (\theta / 2) \\ \sin (\theta / 2) & \cos (\theta / 2) \end {array}\right) \equiv RY(\theta), \label {Xeqn20-20}\end {equation}

$\theta $

a_i

$\Phi $

$f^\text {eq}$

\begin {align}a_1 &= k_1 \equiv w_1 \left (1 + \frac {u\cdot e_1}{c_s^2}\right) \overset {!}{=} \cos (\theta / 2), \\ a_3 &= k_2 \equiv w_2 \left (1 + \frac {u\cdot e_2}{c_s^2}\right) \overset {!}{=} \sin (\theta / 2).\end {align}

$RY(\theta)$

$\Phi $

$k_1/(k_1+k_2)$

$k_2/(k_1+k_2)$

$\theta $

$(\Phi , 0)^T$

$(k_1 \Phi , k_2 \Phi)^T$

$\theta $

k_1/k_2

$(\cos (\theta / 2) \Phi , \sin (\theta / 2) \Phi)^T$

$\theta $

\begin {equation}\label {eq:thetaD1Q2} \frac {k_1}{k_2} = \frac {\cos (\theta / 2)}{\sin (\theta / 2)} \Longleftrightarrow \theta = 2 \arccos \underbrace {\left (\frac {k_1}{\sqrt { k_1^2 + k_2^2}} \right)}_{\equiv n} = 2 \arcsin \left (\frac {k_2}{\sqrt { k_1^2 + k_2^2}} \right).\end {equation}

k_1

k_2

$n \equiv k_1/\sqrt {k_1^2 + k_2^2}$

$k_2/\sqrt {k_1^2 + k_2^2}$

$Q=3$

$N_Q = 2$

$(f_1^{1},\ \hdots , f_1^{N})$

$\theta _1$

n_1

n'_1

$(\Phi , 0, 0, 0)^T \rightarrow (n_1 \Phi , 0, n'_1 \Phi , 0)^T$

n_1

RY

$\theta _2$

$(n_1 \Phi , 0, n'_1 \Phi , 0)^T \rightarrow (n_1 \Phi , 0, n_2 \Phi , n_3 \Phi)^T$

\begin {align}\theta _{1} = 2 \arccos \underbrace {\left (\frac {k_1}{\sqrt { k_1^2 + k_2^2 + k_3^2}} \right)}_{\equiv n_{1}} , \ \ \
\theta _{2} = 2 \arccos \underbrace {\left (\frac {k_2}{\sqrt { k_2^2 + k_3^2}} \right)}_{\equiv n_{2}}.\end {align}

$(\Phi , 0, \hdots , 0)^T \rightarrow (n_1 \Phi , n' \Phi , \hdots , 0)^T \rightarrow \hdots \rightarrow (n_1 \Phi , n_2 \Phi , \hdots , n_Q \Phi)^T$

\begin {equation}\label {eq:thetacollDxQx} \theta _{i} = 2 \arccos \left (\frac {k_i}{\sqrt { \sum _{j=i}^Q k_j^2 }} \right).\end {equation}

k_j

k_i

\begin {equation}\label {eq:thetacollkeepmultsubspaces} \theta _{i} = 2 \arccos \left (\frac { \sqrt { \sum _{\text {keep}} k_\text {keep}^2 } }{ \sqrt { \sum _{\text {inv}} k_\text {inv}^2 } } \right),\end {equation}

$k_\text {keep}$

k_i

$k_\text {inv}$

k_i

n_i

$\arccos (\cdot)$

\begin {equation}\label {eq:ni} n_i \equiv \frac { \sqrt { \sum _{\text {keep}} k_\text {keep}^2 } }{ \sqrt { \sum _{\text {inv}} k_\text {inv}^2 } } .\end {equation}

RY

$\ket {q_\text {grid}}$

RY

x

y

$\ket {q_4 q_3 q_2 q_1}_\text {dir} = \ket {q_4 q_3}_y\ket {q_2 q_1}_x$

$\theta $

$\theta $

RY

RY

$\ket {q_\text {grid}}$

RY

$\ket {q_\text {dir}}$

$2N$

$\log _2(N)$

N

$3N$

$4 N$

x

x

$RY(\theta)$

$N_Q = 4$

$Q = 9$

RY

$\rightarrow $

$\leftarrow $

$\uparrow $

$\downarrow $

$+1$

-1

$+1$

-1

-1

-1

$+1$

-1

$+1$

-1

$+1$

-1

$(f_1, f_2)^T = (f_{\rightarrow }, f_{\leftarrow })^T$

$(f_1, 0, f_2, f_3)^T = (f_\text {rest}, 0, f_{\rightarrow }, f_{\leftarrow })^T$

y

$+1$

-1

$2N$

N

$\ket {\Psi } = (\Psi _1^1, \hdots , \Psi _1^N, \Psi _2^1, \hdots , \Psi _2^N)^T$

$\ket {\Psi _1}, \ket {\Psi _2}$

\begin {equation}\ket {\Psi } = \ket {0}\otimes \ket {\Psi _1} + \ket {1}\otimes \ket {\Psi _2} \equiv (\Psi _1, \Psi _2)^T. \label {Xeqn25-28}\end {equation}

H

$(\Phi , 0)^T$

$(\Phi _{1/2}, \Phi _{1/2})^T$

H

$(\Phi , 0)^T \overset {H}{\longleftrightarrow } (\Phi _{1/2}, \Phi _{1/2})^T$

\begin {align}\label {eq:sumbyHgate} &H\ket {a}\otimes \ket {\Psi } = H\ket {0}\otimes \ket {\Psi _1} + H\ket {1}\otimes \ket {\Psi _2}\nonumber \\& =\sqrt {\frac {1}{2}}\left (\ket {0}\otimes \ket {\Psi _1 + \Psi _2} + \ket {1}\otimes \ket {\Psi _1 - \Psi _2} \right),\end {align}

$\sqrt {1/2}$

RY

$\theta $

$\ket {0}$

$\ket {1}$

$\theta $

RY

\begin {equation}RY(\theta) \equiv \left (\begin {array}{rr} \cos (\theta / 2) & -\sin (\theta / 2) \\ \sin (\theta / 2) & \cos (\theta / 2) \end {array}\right) = \left (\begin {array}{rr} \cos (-\theta / 2) & \sin (-\theta / 2) \\ -\sin (-\theta / 2) & \cos (-\theta / 2) \end {array}\right). \label {Xeqn27-30}\end {equation}

$\theta $

$\ket {\Psi _1}$

$\ket {\Psi _2}$

RY

\begin {equation}\label {eq:sumbyRYgate} \begin {split} RY(\theta)\ket {a}\otimes \ket {\Psi } = \ket {0}&\otimes \ket {\cos (-\theta / 2)\Psi _1 + \sin (-\theta / 2)\Psi _2} \\ + \ket {1}&\otimes \ket {\cos (-\theta / 2)\Psi _2 - \sin (-\theta / 2)\Psi _1}. \end {split}\end {equation}

$f_{\rightarrow }$

$f_{\leftarrow }$

$\Psi = (f_\text {rest}, 0, f_{\rightarrow }, f_{\leftarrow })^T$

RY

$f_\text {rest}+f_{\rightarrow }+f_{\leftarrow }$

$(1,0,1,1)^T$

$(\sqrt {1/3},\ 0, \sqrt {1/3}, \sqrt {1/3})$

\begin {equation}\begin {aligned} &RY(\theta)\bigg \vert _{\ket {q_{\text {dir},1}}=\ket {0}} H\bigg \vert _{\ket {q_{\text {dir},2}}=\ket {1}} \Psi \\ = &\left (\begin {array}{rrrr} \cos \left (-\frac {\theta }{2}\right) & 0 & \sin \left (-\frac {\theta }{2}\right) & 0 \\ 0 & 0 & 0 & 0 \\ -\sin \left (-\frac {\theta }{2}\right) & 0 & \cos \left (-\frac {\theta }{2}\right) & 0 \\ 0 & 0 & 0 & 0 \end {array}\right)\\ & \left (\begin {array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt {1/2} & \sqrt {1/2} \\ 0 & 0 & \sqrt {1/2} & -\sqrt {1/2} \end {array}\right) \begin {pmatrix} f_\text {rest} \\ 0 \\ f_{\rightarrow } \\ f_{\leftarrow } \end {pmatrix} \\ &= \left (\begin {array}{cccc} \cos \left (-\frac {\theta }{2}\right) & 0 & \sin \left (-\frac {\theta }{2}\right)\sqrt {\frac {1}{2}} & \sin \left (-\frac {\theta }{2}\right)\sqrt {\frac {1}{2}} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end {array}\right) \begin {pmatrix} f_\text {rest} \\ 0 \\ f_{\rightarrow } \\ f_{\leftarrow } \end {pmatrix}, \end {aligned}\end {equation}

$(\sqrt {1/3}f_\text {rest}+0+ \sqrt {1/3}f_{\rightarrow }+ \sqrt {1/3}f_{\leftarrow }, \ \cdot , \ \cdot , \ \cdot)^T$

\begin {align}& \cos \left (-\frac {\theta }{2}\right) \overset {!}{=} \sqrt {\frac {1}{3}} \hspace {0.2cm} \land \hspace {0.2cm} \sin \left (-\frac {\theta }{2}\right)\sqrt {\frac {1}{2}} \overset {!}{=} \sqrt {\frac {1}{3}} \\ & \Longleftrightarrow \theta = - 2 \arccos \left (\sqrt {\frac {1}{3}}\right) = - 2 \arcsin \left (\sqrt {\frac {2}{3}}\right) \label {eq:thetamacro}.\end {align}

$\ket {1}$

RY

$\theta = -\arccos (\sqrt {1/3})$

$\ket {0}$

$\theta $

RY

x

y

x

y

x

$\ket {\text {rest}}, \ket {\rightarrow }, \ket {\leftarrow }$

$\ket {\text {rest}}$

$\ket {\uparrow }, \ket {\nwarrow }, \ket {\nearrow }$

$\ket {\uparrow }$

$\ket {\downarrow }, \ket {\swarrow }, \ket {\searrow }$

$\ket {\downarrow }$

H

RY

$\ket {\text {rest}}, \ket {\uparrow }, \ket {\downarrow }$

$\ket {\text {rest}}$

y

$(f_1,\ f_2,\ \hdots ,\ f_{N_Q})^T = (\Phi ,\ 0,\ \hdots ,\ 0)^T$

N_Q

$(f_1,\ f_2,\ \hdots ,\ f_{N_Q})^T$

$(f_1,\ f_2,\ \hdots ,\ f_{N_Q},\ 0,\ \hdots ,\ 0)^T$

N_Q

$\ket {0}$

N_Q

$\ket {1}$

N_Q

$2N_Q$

N_Q+1

\begin {equation}\label {eq:re-prepstate} \textsc {re-prep:} \begin {pmatrix} f_1\\ f_2\\ \vdots \\ f_{N_Q}\\ 0\\ 0\\ \vdots \\ 0 \end {pmatrix} \longrightarrow \begin {pmatrix} 0\\ 0\\ \vdots \\ 0\\ f_1\\ f_2\\ \vdots \\ f_{N_Q} \end {pmatrix} \longrightarrow \begin {pmatrix} f_1\\ 0\\ \vdots \\ 0\\ 0\\ f_2\\ \vdots \\ f_{N_Q} \end {pmatrix},\end {equation}

$f_1 \sim \Phi $

f_1

N_Q

T

$\# q_\text {time} \sim \log (T)$

$\# q_\text {time}$

$T = 2^{\# q_\text {time}}$

$+N_Q$

$f_1^{t+1} = \Phi ^{t+1}$

f_1

f_i

n_1

$\Phi $

n'

f_2

k_1

f_1

n_1

f_1

\begin {equation}\label {eq:gammecoll} \gamma _{\text {coll},f_1} =\frac {1}{\sqrt { \sum _{i=1}^Q k_j^2 }}.\end {equation}

$\sqrt {1/Q}$

f_1

\begin {equation}\label {eq:gammemacro} \gamma _{\text {macro},f_1} =\sqrt {\frac {1}{ Q }}.\end {equation}

$\Phi $

f_1

f_1

$f_{i>1}$

f_1

f_1

\begin {equation}\label {eq:decay} \gamma _{\text {tot},f_1} =\frac {1}{\sqrt { \sum _{i=1}^Q k_j^2 }}\sqrt {\frac {1}{ Q }},\end {equation}

$\gamma _{\text {tot},f_1}^2$

T

T

$\gamma _{\text {tot},f_1}^T$

T

$N_\text {shots}$

$N_\text {shots}$

T

$T \cdot N_\text {shots}$

$\gamma _{\text {tot},f_1}$

$N_\text {shots} / \gamma _{\text {tot},f_1}$

T

$N_\text {shots} / \gamma _{\text {tot},f_1}^T$

$N_\text {shots}$

$\gamma _{\text {tot},f_1}$

$\Delta t = \Delta \tau = 1$

$\Delta x = 1$

w_i

D

X

$D = 1/3$

$\times $

$\sigma = 2.0$

$u = 0.2$

$x_0 = 16$

$\sigma = 6.0$

$o = 0.1$

$N = 64$

$\#q_\text {grid} = 6$

$t = 128$

$\#q_\text {time} = 7$

$\#q_\text {dir} = 1$

$\#q_\text {dir} = 2$

$3.4 \cdot 10^7$

$c_s^2 = 1$

$D = 1/2$

$\gamma = 0.98$

$\gamma ^2 = 0.96$

$c_s^2 = 2/3$

$D = 1/3$

$\gamma = 0.97$

$\gamma ^2 = 0.94$

16×16

$\#q_\text {grid} = 4 + 4$

x

y

$\sigma = 2.0$

$Q = 9$

$N_Q = 16$

$\#q_\text {dir} = 4$

$\#q_\text {time} = 6$

$T = 48$

$1.3 \cdot 10^8$

$w_i = 1/9 \ \forall i \in [1,9]$

$c^2_s = 2/3$

$D = 1/3$

k_i

$\mathbf {u} = (1/4, 0)^T$

$\gamma = 0.96$

$\gamma = 0.91$

$\mathbf {u} = (1/6, 1/12)^T$

$\gamma = 0.97$

$\gamma = 0.95$

L_2

\begin {equation}\label {eq:L2} L_2 = \sqrt {\sum _{i=1}^N (\Phi _\text {QLBM} - \Phi _\text {LBM})^2}.\end {equation}

L_2

$\sigma = 2.0$

$D = 1/3$

$\mathbf {u} = (1/6, 1/12)^T$

RY

f_1

f_i

$i>\frac {1}{2}N_Q$

\begin {equation}\label {eq:D1Q2re-prep} \left (\begin {array}{c} \ket {0}_\text {time}\ket {0}_\text {dir}\\ \hdashline \ket {0}_\text {time}\ket {1}_\text {dir}\\ \ket {1}_\text {time}\ket {0}_\text {dir}\\ \ket {1}_\text {time}\ket {1}_\text {dir} \end {array}\right): \left (\begin {array}{c} f_1\\ \hdashline f_2\\ 0 \\ 0 \end {array}\right) \xrightarrow {\text {D1Q2} \textsc {re-prep}} \left (\begin {array}{c} f_1\\ \hdashline 0 \\ 0 \\ f_2 \end {array}\right)\end {equation}

\begin {equation}\label {eq:D1Q3re-prep} \left (\begin {array}{c} \ket {0}_\text {time}\ket {00}_\text {dir}\\ \ket {0}_\text {time}\ket {01}_\text {dir}\\ \hdashline \ket {0}_\text {time}\ket {10}_\text {dir}\\ \ket {0}_\text {time}\ket {11}_\text {dir}\\ \ket {1}_\text {time}\ket {00}_\text {dir}\\ \ket {1}_\text {time}\ket {01}_\text {dir}\\ \ket {1}_\text {time}\ket {10}_\text {dir}\\ \ket {1}_\text {time}\ket {11}_\text {dir} \end {array}\right): \left (\begin {array}{c} f_1\\ 0\\ \hdashline f_2\\ f_3\\ 0 \\ 0 \\ 0 \\ 0 \end {array}\right) \xrightarrow {\text {D1Q3} \textsc {re-prep}} \left (\begin {array}{c} f_1\\ 0\\ \hdashline 0 \\ 0 \\ 0 \\ 0 \\ f_2\\ f_3 \end {array}\right).\end {equation}

$+N_Q$

$\ket {1}$

$+1$

$\ket {1}$

mailto:aaron.nagel@dlr.de
https://doi.org/10.1016/j.cpc.2026.110040
https://doi.org/10.1016/j.cpc.2026.110040
http://creativecommons.org/licenses/by/4.0/

A. Nagel and J. Löwe

state extraction or reinitialization of the quantum state. Our new algo-
rithm can perform all QLBM time steps up to the end of the simulation,
without the need to ever having to extract the flow field at any time. For
verification reasons, we show in our result section that our algorithm
reproduces the correct full flow field up to a certain sampling error. But
in contrast to other algorithms, our algorithm allows to be used in such
a way, that for the flow field properties you are interested in, quantities
can be calculated without ever having to extract the flow field, not even
at the end of the simulation. This way, a simulation of a body in the flow
field could return a scalar value like a lift or drag coefficient value, while
the entire fully resolved flow field was never measured. Our algorithm
is a first approach to an actually fully quantum algorithm for multiple
time steps, even when still limited in the total number of simulation
time that is feasible to simulate.

We further derive a quantum collision routine only using controlled
𝑅𝑌 gates, which turned out to be a similar approach as in for example
Xu et al. [14] and Wawrzyniak et al. [15]. However, our algorithm is
formulated in a generalized way which can be directly applied for ar-
bitrary LBM velocity set stencils. Both of these papers also avoid the
reinitialization in each time steps, but the main difference of our paper
are no mid-circuit measurements, i.e. no non-unitary projections, but
instead solely unitary QLBM blocks and a fully unitary re-prep block as
preparation for the next time step. Since the idea of the re-prep block
is a streaming of velocity subspaces, its complexity essentially scales
similar to the streaming block.

The paper is structured as follows: the Methods section starts with
a short overview of the lattice Boltzmann method (LBM) that is used
which will be translated into a quantum lattice Boltzmann method
(QLBM) for an advection-diffusion problem. Further subsections de-
scribe the necessary quantum state amplitude encoding structure, the
quantum collision step that is used, the quantum streaming step that is
adopted from the literature, the procedure to calculate the macroscopic
values as a quantum state and finally the quantum re-preparation step to
make the algorithm work for multiple time steps. The subsections lead
through the mathematical derivations and show the implementation of
the quantum circuit blocks explicitly by quantum gates. The decay of the
quantum state amplitude for multiple time steps is quantified in a final
subsection. The following Verification section shows 1D and 2D results of
an advection-diffusion process and verifies the QLBM to recover the cor-
rect LBM solution using the shot method of IBMs simulator Qiskit [16].
For the 2D test cases, deviations and convergence of QLBM to LBM are
discussed. In the final Conclusion section, a discussion on the advantage
of the algorithm and limitations are included.

2. Methods

2.1. The advection-diffusion equation

In this paper, we focus on solving linear transport equations with the
lattice Boltzmann method (LBM), in particular the advection-diffusion
equation of a scalar Φ:
𝜕Φ
𝜕𝑡

+ 𝑢𝑗
𝜕Φ
𝜕𝑥𝑗

= 𝐷𝜕2Φ
𝜕𝑥2𝑗

, (1)

with a uniform constant flow velocity 𝑢𝑗 and a constant diffusion coeffi-
cient 𝐷, using the Einstein’s index summation notation over the spacial
directions 𝑗 ∈ {1, 2, 3}. An extension of a spacially variable flow veloc-
ity is generally possible with our approach by conditioning the collision
operations on different grid locations. This will be addressed in future
work.

2.2. The lattice boltzmann method

Boltzmann methods generally describe the dynamics of fluids from a
statistical perspective of a particle ensemble description of the fluid. This
comes with advantages because it allows to describe the fluid dynamic

with distinct streaming and collision steps to determine the change and
the transport of the fluid property in time. These two steps are evaluated
in two fully separated steps, which then can be developed individually
to a quantum algorithm to account for the desired physics modeling.

In this work, we will use the lattice Boltzmann method (LBM) using a
fairly simple collision description by the Bhatnagar-Gross-Krook (BGK)
collision operator to develop our algorithm.

The Boltzmann equation [17,18] is a transport equation that deter-
mines the change of a velocity distribution function 𝑓 , which is a prob-
ability density function for a local particle ensemble of positions and
velocities 𝑓 (𝐱, 𝐯, 𝑡) in phase space . The Boltzmann equation describes
the change of the local fluid quantity by the advective transport on the
left hand side and the change due to the collision by the collision oper-
ator 𝑆coll(𝑓):
𝜕𝑓
𝜕𝑡

+ 𝑣𝑗
𝜕𝑓
𝜕𝑥𝑗

+ 𝐹𝑗
𝜕𝑓
𝜕𝑣𝑗

= 𝑆coll(𝑓), (2)

which implies the Einstein’s index summation notation over the spacial
directions 𝑗 ∈ {1, 2, 3} and where 𝐹𝑗 can be some additional external
acceleration.

We assume no external forces 𝐹𝑗 = 0 and use a collision relaxation
by the BGK operator [17]

𝑆BGK(𝑓) = −1
𝜏
(

𝑓 − 𝑓 eq
)

, (3)

where 𝜏 is the relaxation time towards a local equilibrium 𝑓 eq, which
is determined by the diffusion coefficient 𝐷. In further simplifications,
we will choose a fixed relaxation time and model the diffusion by the
weight parameters of the LBM.

The position space is discretized on a grid and the velocity is dis-
cretized to a set of vectors 𝐞𝑖 that span the velocity space, which are not
necessarily linear independent vectors only. The vectors 𝐞𝑖 are chosen
in length and direction such that they point exactly onto neighbouring
lattice nodes. Each discrete velocity direction 𝐞𝑖 models a distribution
function 𝑓𝑖, which has its own local equilibrium to relax to. The dis-
cretized Boltzmann equation results in
1
Δ𝑡

(

𝑓𝑖(𝐱 + 𝐞𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖(𝐱, 𝑡)
)

= −1
𝜏
(

𝑓𝑖(𝐱, 𝑡) − 𝑓 eq𝑖 (𝐱, 𝑡)
)

. (4)

The equilibrium distribution 𝑓 eq𝑖 is approximated linearly for an advec-
tion diffusion process. For a single grid node, a scalar quantity Φ with
constant background velocity 𝐮 on that grid node determines the equi-
librium distribution in the 𝑖-th discrete velocity direction by [17]

𝑓 eq𝑖 = 𝑤𝑖

(

1 +
𝐮 ⋅ 𝐞𝑖
𝑐2𝑠

)

Φ, (5)

which defines the factor 𝑘𝑖 for the collision matrix used by the QLBM
algorithm

𝑘𝑖 ≡ 𝑤𝑖

(

1 +
𝐮 ⋅ 𝐞𝑖
𝑐2𝑠

)

. (6)

Here, the diffusivity 𝐷 enters the equilibrium distribution via the speed
of sound 𝑐𝑠 that determines the discretization weights 𝑤𝑖. This allows
to calculate the change of the distribution function 𝑓𝑖 for the next time
step due to collision

𝑓𝑖(𝐱, 𝑡) =
(

1 − Δ𝑡
𝜏

)

𝑓𝑖(𝐱, 𝑡) +
Δ𝑡
𝜏
𝑓 eq𝑖 (𝐱, 𝑡), (7)

and the streaming to neighbouring nodes for the next time step 𝑡 + Δ𝑡 for
every updated velocity direction 𝑓𝑖
𝑓𝑖(𝐱 + 𝐞𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝐱, 𝑡). (8)

With the updated distribution functions on each node, the macroscopic
scalar quantity on each node can by re-calculated by the sum of the
distribution functions 𝑓𝑖 [17]
Φ =

∑

𝑖
𝑓𝑖. (9)

Computer Physics Communications 321 (2026) 110040

2

A. Nagel and J. Löwe

2.2.1. Diffusion and lattice boltzmann weights
For the velocity distribution functions in different velocity direc-

tions, the equilibrium function of each discrete velocity direction 𝑓 eq𝑖
scales with a weighting factor 𝑤𝑖. These weighting factors are obtained
by evaluating moment equations of different orders to ensure conserva-
tion properties [17]. The resulting equations relate the weighting factors
with the speed of sound, and therefore indirectly the diffusion constant.
Using a Chapman-Enskog expansion, a relation between diffusion 𝐷 and
relaxation time 𝜏 with the speed of sound 𝑐𝑠 for discretization param-
eters d𝑥 and d𝑡 within the LBM can be derived [18], which leads to a
diffusion of
𝐷 = 𝑐2𝑠

(

𝜏 − Δ𝑡
2

)

. (10)

The diffusion is typically modeled with the relaxation time 𝜏, but the
algorithm design only allows for a full relaxation within one time step
yet, i.e. 𝜏 = Δ𝑡 = 1 as the literature proposes [8,14,15]. For a simulation
that is scaled in such a way that the distribution functions relax fully to
their equilibrium within one time step, the diffusion is either fixed or
can only be modeled by scaling the speed of sound 𝑐2𝑠 of the simulation.
To scale the speed of sound, the weighting factors 𝑤𝑖 are adjusted ac-
cordingly. With sets of weighting factors other than the standard set, the
moment equations may only be fulfilled up to a certain order. Depend-
ing on the physical system, this may or may not violate conservation
symmetries, depending on the given order of symmetry that our system
shows [17]. Whether a set of weights, other than the standard set is
physically justified has to be decided by the end user for the specific
problem of interest. Independently of that choice, our algorithm is ca-
pable of utilizing arbitrary sets of weights.

For our linear, isotropic advection-diffusion problem, we test on the
standard weight set and additionally on weight sets that fulfill the mo-
ment equations up to order four, which allows us to model different
diffusion constants.

2.3. Quantum state encoding and initial state

To encode the flow field with 𝑁 grid points in 𝑄 velocity directions,
amplitude encoding is used to generate the quantum state that the QLBM
algorithm will operate on. In order to make the algorithm work for mul-
tiple time steps with collision, streaming and calculation of the macro-
scopic quantities, we build on an initial state vector that contains the
scalar grid information only in the first velocity direction 𝑓1 while all
other velocity directions have zero state amplitudes. So we explicitly
choose an initial state, where all the scalar grid values are stored in the
first velocity component, so for a grid node this means Φ = 𝑓1, and the
full grid states is

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 1
1
⋮
𝑓𝑁
1
𝑓 1
2
⋮
𝑓𝑁
2
𝑓 1
𝑄
⋮
𝑓𝑁
𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ1

⋮
Φ𝑁

0
⋮
0
0
⋮
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

which will also be referred in short notation grouping the grid into sep-
arate velocity direction subspaces:
𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑄)𝑇 = (Φ, 0, … , 0)𝑇 . (12)

Note that for 𝑁 grid points, we need at least ⌈log2(𝑁)⌉ qubits, generating
⌈log2(𝑁)⌉𝑁 grid points, where ⌈⋅⌉ is the ceiling function. Similarly, for
a stencil with 𝑄 velocity directions, we need as many direction qubits
#𝑞dir, such that they generate as many states as is at least the number of
velocity directions needed, so
𝑁𝑄 = 2#𝑞dir ≥ 𝑄, (13)

Table 1
Arrangement of the D1Q2 velocity direction
subspaces with one direction qubit.

|𝑞⟩dir,𝑥 |0⟩ |1⟩
direction 𝑓𝑖 𝑓1 𝑓2

 = |0⟩ |1⟩
→ ←

Table 2
Arrangement of the D1Q3 velocity direction subspaces with two direction
qubits.

|𝑞2𝑞1⟩dir,𝑥 |00⟩ |01⟩ |10⟩ |11⟩
direction 𝑓𝑖 𝑓1 − 𝑓2 𝑓3

= |00⟩ |01⟩ |10⟩ |11⟩
rest − → ←

Table 3
Arrangement of the D2Q9 velocity directions for the two 𝑥-direction qubits
denoted by |𝑞2𝑞1⟩𝑥 and the two 𝑦-direction qubits denoted by |𝑞4𝑞3⟩𝑦, re-
spectively.

|00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥 |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1 - 𝑓2 𝑓3 |00⟩𝑦 rest - → ←

|01⟩𝑦 - - - - = |01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 𝑓7 |10⟩𝑦 ↑ - ↗ ↖

|11⟩𝑦 𝑓5 - 𝑓8 𝑓9 |11⟩𝑦 ↓ - ↘ ↙

which will expand the state vector from dimension 𝑁 ⋅𝑄 to 𝑁 ⋅𝑁𝑄, i.e.
(𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇 = (Φ, 0, … , 0)𝑇 , with 𝑁𝑄 −𝑄 zero entries in the
short velocity direction subspace notation.

In this paper, D1Q2 and D1Q3 as well as D2Q9 stencils are used.
They are arranged as shown in the following equations, where each 𝑓𝑖
represents a group of 𝑁 gird points in direction 𝑖. For D1Q2, the state
es encoded by one velocity qubit to span the two velocity directions
𝐹D1Q2 = (𝑓1, 𝑓2)𝑇 , (14)

for D1Q3, 2 velocity qubits generate the state given by
𝐹D1Q3 = (𝑓1, 0, 𝑓2, 𝑓3)𝑇 (15)

and for D2Q9, 4 velocity qubits (2 for the 𝑥- and 2 for the 𝑦-direction)
generate the space for the 9 velocity directions arranged by
𝐹D1Q3 = (𝑓1, 0, 𝑓2, 𝑓3, 0, 0, 0, 0, 𝑓4, 0, 𝑓6, 𝑓7, 𝑓5, 0, 𝑓8, 𝑓9)𝑇 . (16)

The arrangements are represented in Tables 1, 2 and 3.

2.4. The quantum lattice boltzmann method

To solve the advection-diffusion Eq. (1) with a quantum algorithm,
the individual steps of the lattice Boltzmann method are solved by quan-
tum algorithms, i.e. collision, streaming and updating the macroscopic
values as shown in Fig. 1.

The data is encoded in the complex amplitude coefficients of the
states of the grid qubits |𝑞grid⟩, which for 𝑁 grid qubits generate space
for 2𝑁 scalar values. For multiple dimensions, it is separated into groups
of grid qubits for each dimension. For the collision operation, additional
qubits |𝑞dir⟩ are added, to enable to duplicate the grid in order to oper-
ate for the different LBM directions, given by the specific choice of the
velocity set (LBM stencil). Also the streaming is then performed condi-
tioned on the different direction qubits to transport in the corresponding
directions. The macroscopic step finally merges the different directions
to recalculate the new macroscopic quantities to update for a new lo-
cal scalar quantity and local equilibrium. This QLBM routine generally
requires all velocity subspaces but the first one to have zero probabil-
ity amplitude in order to obtain the correct assignment by the collision
step, as will be discussed in further subsections. Hence, the reinitializa-
tion QLBM algorithms reinitialize the state vector accordingly in each
time step.

Our goal is to construct a scheme for a QLBM step that does not re-
quire a state extraction and reinitialization in between the time steps.
Therefore, we propose a new extended scheme with a re-prep block

Computer Physics Communications 321 (2026) 110040

3

A. Nagel and J. Löwe

Fig. 1. Quantum circuit for a single quantum lattice Boltzmann time step.

Fig. 2. Our quantum circuit extension of the QLBM routine for multiple quantum lattice Boltzmann time steps without state extraction or reinitialization.

Fig. 3. Full quantum circuit of the QLBM simulation with the extension of the
QLBM routine for 𝑇 time steps without state extraction or reinitialization from
Fig. 2.

and additional time qubits |𝑞time⟩ as shown in Fig. 2, to enable a fully
quantum algorithm for all time steps from start to end without a mea-
surement of the state at any time in between. The full quantum circuit of
all building block, including initialization, time loop and measurement,
is shown in Fig. 3. Corresponding pseudocode referring to the building
blocks is shown in the appendix in Section A.1.

2.4.1. The collision step
The collision step in the context of the LBM determines how each

of the velocity probability distribution function 𝑓𝑖 relaxes towards its
local equilibrium for that specific velocity direction 𝑖. Assuming a full
relaxation within a time step, i.e Δ𝑡∕𝜏 = 1, the collision step is directly
determined by the equilibrium distribution 𝑓 eq in Eq. (5). Although the
diffusion usually dictates the relaxation time 𝜏, this does not restrict the
diffusion to a fixed value because we can model the diffusion by the
modeled speed of sound 𝑐𝑠 and weights 𝑤𝑖 as described in Section 2.2.1.

For 𝑁 grid points and 𝑄 velocity directions, our total state has di-
mension 𝑁 ⋅𝑄, for which we have to calculate the relaxation for each en-
try. Collecting this in a state vector 𝐹 = (𝑓 1

1 , … , 𝑓𝑁
1 , … , 𝑓 1

𝑄, … , 𝑓𝑁
𝑄)𝑇 ,

the collision operation for each 𝑓 𝑛
𝑖 , 𝑖 ∈ [1, 𝑄], 𝑛 ∈ [1, 𝑁] as dictated by

Eq. (7) can be written as the linear system
𝐹 = 𝐴𝐹 , (17)

where 𝐴 is the diagonal collision matrix. The collision matrix is gen-
erally not unitary and thus can not be decomposed into a series of

available unitary operations of a quantum computer. Therefore, Budin-
ski [8] separates 𝐴 into a sum of diagonal unitary matrices 𝐴 = (𝐵1 +
𝐵2)∕2 with 𝐵1,𝑘,𝑘 = 𝐴𝑘,𝑘 + 𝑖

√

1 − 𝐴2
𝑘,𝑘 and 𝐵2,𝑘,𝑘 = 𝐴𝑘,𝑘 − 𝑖

√

1 − 𝐴2
𝑘,𝑘, fol-

lowing a linear combination of unitaries (LCU) approach. The idea of the
LCU approach is to add an additional ancilla qubits |𝑎⟩ and duplicate the
grid coefficients up to a norm factor into the new ancilla generated sub-
space. Now, 𝐵1 and 𝐵2 can operate separately on the two subspaces by
conditioning the operations on the ancilla state |𝑎⟩. To do so, 𝐵1 op-
erates conditioned on |𝑎⟩ = |0⟩ and while 𝐵2 is performed conditioned
where |𝑎⟩ = |1⟩ and the results in the two subspaces are summed in a
last step (for summation, cf. the summation in Section 2.4.3).

After the LCU summation step, there remains a significant amount
of amplitude of the complex amplitude coefficient of the states in the
additional LCU ancilla subspace, that results in a loss of probability that
we want to avoid for our algorithm. So instead of using the LCU, we
want to mimic the distribution into the multiple directions dictated by
𝐴 by a unitary collision operation 𝑈coll in the first place.

The idea is to start a time step in a state that has all the scalar in-
formation in one velocity direction subspace (cf. Section 2.3) and then
mimic the distribution of the collision operation along the velocity di-
rections by a unitary matrix. To achieve starting in this state, the state
is re-prepared at the end of each time step by the re-prep block as de-
scribed in Section 2.4.4 and as sketched in Fig. 2. The choice of this state
is made possible by our choice of Δ𝑡∕𝜏 = 1 because after the collision the
state relaxes fully into the equilibrium state, which only depends on Φ
of the node, independent of how Φ is distributed along the different di-
rections in the first place (recap Φ =

∑

𝑖 𝑓𝑖 for a specific grid point). So
if Φ is fully captured by one velocity direction, we can make sure that
our desired operation 𝑈coll operates on these states according to the
corresponding entries in 𝐴, while the remaining entries can be chosen
arbitrarily, but in particular such that our desired matrix 𝑈coll becomes
unitary.

To find a general collision description, we start with the simplest
QLBM stencil and generalize to arbitrary stencils further in the subsec-
tion. The simplest case for a QLBM collision is given by a D1Q2 stencil,
so by one spacial dimension and two velocity directions 𝑄 = 2, leading
to a state vector 𝐹 = (𝑓 1

1 , … , 𝑓𝑁
1 , 𝑓 1

2 , … , 𝑓𝑁
2)𝑇 . Here, the collision

matrix 𝐴 has the following form:

𝐴 =
(

𝐴1 𝐴2
𝐴3 𝐴4

)

, (18)

where the 𝐴𝑖 are diagonal 𝑁 ×𝑁 matrices. With the state prepared as
in Eq. (11), 𝐴2 and 𝐴4 do not contribute to the collision calculation.
Additionally, according to Eq. (5), all the diagonal entries 𝑎𝑖 inside an

Computer Physics Communications 321 (2026) 110040

4

A. Nagel and J. Löwe

𝐴𝑖 are all equal and we can write:

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1 𝑎2
⋱ ⋱

𝑎1 𝑎2
𝑎3 𝑎4

⋱ ⋱
𝑎3 𝑎4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

𝑎1 𝑎2
𝑎3 𝑎4

)

⊗ 𝟙𝑁 . (19)

This can be represented by a quantum operation using a 2 × 2 rotational
gate, the 𝑅𝑌 (𝜃)-gate, on one qubit and no operation (≡ identity opera-
tion 𝟙) on 𝑁 qubits. So the rotation operation has to fit the coefficients
𝑎𝑖, but only for 𝑎1 and 𝑎3, since our state is prepared in such a way that
𝑎2 and 𝑎4 do not contribute
(

𝑎1 𝑎2
𝑎3 𝑎4

)

=
(

cos(𝜃∕2) − sin(𝜃∕2)
sin(𝜃∕2) cos(𝜃∕2)

)

≡ 𝑅𝑌 (𝜃), (20)

leading to the conditions for choosing 𝜃 such that the 𝑎𝑖 correspond to
map the vector Φ from Eq. (11) to 𝑓 eq in Eq. (5) of the corresponding
velocity direction:

𝑎1 = 𝑘1 ≡ 𝑤1

(

1 +
𝑢 ⋅ 𝑒1
𝑐2𝑠

)

!
= cos(𝜃∕2), (21)

𝑎3 = 𝑘2 ≡ 𝑤2

(

1 +
𝑢 ⋅ 𝑒2
𝑐2𝑠

)

!
= sin(𝜃∕2). (22)

So applying 𝑅𝑌 (𝜃) to the state as prepared in Eq. (11), this operation
effectively shifts a certain fraction from all Φ in the first velocity direc-
tion to the second velocity direction, such that the ratio of 𝑘1∕(𝑘1 + 𝑘2)
is kept in the first velocity subspace while moving 𝑘2∕(𝑘1 + 𝑘2) into the
second subspace. So essentially, we want to choose 𝜃, such that we dis-
tribute our state (Φ, 0)𝑇 to (𝑘1Φ, 𝑘2Φ)𝑇 , but this can not be achieved
by unitary operation in general. So instead, we choose 𝜃, such that we
keep the proportion of 𝑘1∕𝑘2 for (cos(𝜃∕2)Φ, sin(𝜃∕2)Φ)𝑇 . This leads to
our condition and single solution for the argument 𝜃:

𝑘1
𝑘2

=
cos(𝜃∕2)
sin(𝜃∕2)

⟺ 𝜃 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘1
√

𝑘21 + 𝑘22

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡𝑛

= 2 arcsin

⎛

⎜

⎜

⎜

⎝

𝑘2
√

𝑘21 + 𝑘22

⎞

⎟

⎟

⎟

⎠

.

(23)

Note, that instead of calculating the ratio of 𝑘1 and 𝑘2, only a normalized
ratio with 𝑛 ≡ 𝑘1∕

√

𝑘21 + 𝑘22 and 𝑘2∕
√

𝑘21 + 𝑘22 is calculated, which will
lead to a certain decay discussed in Section 2.4.5.

Generalization
Extending this idea to D1Q3 scheme, three velocity directions are

modeled (𝑄 = 3) using 𝑁𝑄 = 2 direction qubits that span four veloc-
ity direction subspaces. Here, the first velocity direction is the resting
node direction (𝑓 1

1 , … , 𝑓𝑁
1), while the second and third direction are

the left and right streaming direction, respectively, which are arranged
as shown in Table 2. In order to include the additional direction, the
same idea is used, starting with an initial state vector as in Eq. (11)
and sequentially distributing to the additional direction subspaces. Now
two steps are modeled: in the first step, an angle 𝜃1 is determined,
such that the amount 𝑛1 is kept in the first (resting) direction while
all remaining fraction 𝑛′1 is shifted to the second direction subspace
(Φ, 0, 0, 0)𝑇 → (𝑛1Φ, 0, 𝑛′1Φ, 0)𝑇 . Note that 𝑛1 is the normalized correct
amount of the first subspace while the second subspace now contains
all remaining information, so for the second and third velocity direc-
tion. This remaining information still needs to be further distributed.
Now by a second 𝑅𝑌 operation, an angle 𝜃2 is determined to distribute
between the second and third subspace, according to the LBM weights:

(𝑛1Φ, 0, 𝑛′1Φ, 0)𝑇 → (𝑛1Φ, 0, 𝑛2Φ, 𝑛3Φ)𝑇 . This results in two rotation oper-
ations with angles

𝜃1 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘1
√

𝑘21 + 𝑘22 + 𝑘23

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝑛1

, 𝜃2 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘2
√

𝑘22 + 𝑘23

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡𝑛2

. (24)

For a 1D stencil, we shift all the information sequentially
through each of the subspaces while keeping a fraction ac-
cording the LBM weights in the corresponding subspace
(Φ, 0,… , 0)𝑇 → (𝑛1Φ, 𝑛′Φ,… , 0)𝑇 → … → (𝑛1Φ, 𝑛2Φ,… , 𝑛𝑄Φ)𝑇 , where
each operation is performed with a general angle for each of the
rotation gates of

𝜃𝑖 = 2 arccos

⎛

⎜

⎜

⎜

⎝

𝑘𝑖
√

∑𝑄
𝑗=𝑖 𝑘

2
𝑗

⎞

⎟

⎟

⎟

⎠

. (25)

For multiple spacial dimensions, the sequential distribution of the signal
through the velocity subspaces may have to be adjusted. If the signal
may have to be kept for multiple directions 𝑘𝑗 in a certain subspace (as
will be necessary in our D2Q9 distribution procedure), the value of 𝑘𝑖
has to be replaced by the Euclidean norm of all the directions that we
want to keep in the subspace:

𝜃𝑖 = 2 arccos

⎛

⎜

⎜

⎜

⎝

√

∑

keep 𝑘
2
keep

√

∑

inv 𝑘
2
inv

⎞

⎟

⎟

⎟

⎠

, (26)

where 𝑘keep are the 𝑘𝑖 of the directions that (temporarily) remain in the
direction subspace and 𝑘inv are all the subspaces involved in the oper-
ation, so those which are shifted to another subspace and those which
will remain in the respective subspace. This defines the normalized 𝑘𝑖
factor 𝑛𝑖 used as the argument of the arccos(⋅) by

𝑛𝑖 ≡

√

∑

keep 𝑘
2
keep

√

∑

inv 𝑘
2
inv

. (27)

In this work, the D1Q2, D1Q3 and D2Q9 stencils are used. The details
of the quantum circuit of the collision block from Fig. 2 is shown in
Figs. 4(a) and (b) for the D1Q2 and the D1Q3 scheme, respectively,
and for the D2Q9 scheme it is shown in Fig. 5. A spatially constant
diffusion and flow velocity is assumed, so there is no dependence on the
grid qubits. For a spatially varying diffusion, additional 𝑅𝑌 gates with
controls on the grid qubits need to be used.

To represent the two velocity directions in the D1Q2 scheme, we
use one direction qubit in the |𝑞dir⟩ register to span the state vector in
Eq. (11) of length 2𝑁 , where we already use log2(𝑁) qubits for the
representation of the 𝑁 grid points.

For the D1Q3 scheme, we need a state vector in Eq. (11) of length
3𝑁 , so we need an second qubit in the direction register, as explained
in Section 2.3. This will span our state space to 4𝑁 .

For the D2Q9 scheme, it is not feasible to distribute the velocity di-
rections in a sequential way, always shifting all the signal to the next
direction subspace. Specifically, for the D2Q9 scheme used in this work,
first the amplitude from the resting subspace will be distributed along
the 𝑥-direction subspaces as for D1Q3, but in a second series of steps,
the direction subspaces superposing the 𝑥-direction (including the rest-
ing direction) with up and down directions will get their corresponding
signal. The details of the order on how the directions are distributed to
their corresponding subspace is shown in the appendix in Section A.2 in
Table A.5. For the distribution procedure, a set of eight 𝑅𝑌 (𝜃)-gate op-
erations are used and 𝑁𝑄 = 4 direction qubits generating 16 subspaces
are used to accommodate for the 𝑄 = 9 velocity directions. To perform
the operations only on the desired subspace, several controls are set to
the 𝑅𝑌 -gates, which are shown in the collision circuit in Fig. 5.

Computer Physics Communications 321 (2026) 110040

5

A. Nagel and J. Löwe

Fig. 4. Quantum circuit for the collision step in Fig. 2 for the D1Q2 scheme (Fig. 4(a)) and a the D1Q3 scheme (Fig. 4(b)) for spatially constant diffusion and flow
velocity. For spatially varying diffusion or flow velocities, multiple 𝑅𝑌 gates with controls on the grid qubits |𝑞grid⟩ need to be used.

Fig. 5. Quantum circuit for the collision step in Fig. 2 for the D2Q9 scheme for spatially constant diffusion and flow velocity. Each 𝑅𝑌 -gate distributes the velocity
distribution functions into their corresponding velocity direction subspace according to the procedure in Table A.5 in Section A.2 of the appendix. The argument 𝜃
for each 𝑅𝑌 -gate has to be chosen according to Eq. (26). For additionally spatially varying diffusion or flow velocities, multiple 𝑅𝑌 gates with controls on the grid
qubits |𝑞grid⟩ need to be used.

2.4.2. The streaming step
The streaming for the stencils used in this work as indicated in the

circuit in Fig. 2 are basic periodic right (→) and left (←) shift operations
in 1D and additional up (↑) and down (↓) operations including diagonal
superpositions of them, respectively, in 2D. This is done by a binary
+1 and −1 operation with binary integer overflow, conditioned on the
direction qubits. The quantum circuit for the binary shift operations is
adapted from Todorova et al. [6] as presented in Figs. 6(a) and (b),
where instead of changing the condition state of the control qubits for
−1 compared to −1, we instead reverse the order of the gates of +1 to
represent the −1 operation.

To perform the correct streaming direction in the corresponding di-
rection subspace, the +1 and −1 streaming operations are conditioned
on the direction qubits, which depends on the velocity set chosen by
the QLBM stencil. The conditions for our choice of direction subspaces
as described in Section 2.3 are shown in Fig. 7, so every gate of the +1
and −1 operation in Fig. 6 has to have additional controls on the direc-
tion qubits. The controls are chosen in such a way that they shift the
correct subspace of the state, which for the D1Q2 scheme is chosen to
(𝑓1, 𝑓2)𝑇 = (𝑓→, 𝑓←)𝑇 and for the D1Q3 is chosen to be (𝑓1, 0, 𝑓2, 𝑓3)𝑇 =
(𝑓rest, 0, 𝑓→, 𝑓←)𝑇 (cf. Tables 1 and 2).

For the D2Q9 scheme, additional up and down streaming opera-
tions are performed on 𝑦-direction grid qubits with corresponding con-
trol states on the direction qubits to select the correct subspace like

arranged in Table 3. The diagonal streaming directions are performed
by sequentially performing a left or right with an up or down operations
on the same direction subspace, so with similar control states on the di-
rection register. The quantum circuits for the streaming of the directions
in D2Q9 are shown in Fig. 8.

2.4.3. Updating macroscopic variables
The summation of the distribution functions in the different sub-

spaces is basically done by reversing the steps of distributing the dis-
tribution functions along the subspaces as is done in the collision steps,
so by collecting instead of distributing subspaces. Assuming a total stat-
evector of dimension 2𝑁 , which can be subdivided into two distribu-
tions of dimension 𝑁 , such that |Ψ⟩ = (Ψ1

1,… ,Ψ𝑁
1 ,Ψ1

2,… ,Ψ𝑁
2)𝑇 , this can

be represented by the two distributions |Ψ1⟩ , |Ψ2⟩ for different states of
the last, the ancilla, qubits:
|Ψ⟩ = |0⟩⊗ |Ψ1⟩ + |1⟩⊗ |Ψ2⟩ ≡ (Ψ1,Ψ2)𝑇 . (28)

The Hadamard transformation 𝐻 can distribute from a distribution in
one subspace to another subspace with zero probability (Φ, 0)𝑇 to two
equal parts in both subspaces (Φ1∕2,Φ1∕2)𝑇 , while having to conserve
the norm of the vector. The Hadamard transformation operation 𝐻 is its
own inverse, so while distributing from one subspace to two subspaces,
it also reverses the operation and collects information back into the first
subspace (Φ, 0)𝑇

𝐻
⟷ (Φ1∕2,Φ1∕2)𝑇 when applied again. The Hadamard

Computer Physics Communications 321 (2026) 110040

6

A. Nagel and J. Löwe

Fig. 6. Binary +1 and −1 operations with overflow as the basis of the right, left, up and down operations in the QLBM circuit in Fig. 2.

Fig. 7. Arrangement of the controls on the direction qubits for the streaming
operations of the D1Q2 scheme (7)(a) and D1Q3 scheme (7)(b).

transformation calculates the equally weighted sum in the first subspace,
while at the same time, the difference of the distributions is kept in the
second subspace
𝐻 |𝑎⟩⊗ |Ψ⟩ = 𝐻 |0⟩⊗ |Ψ1⟩ +𝐻 |1⟩⊗ |Ψ2⟩

=
√

1
2
(

|0⟩⊗ |Ψ1 + Ψ2⟩ + |1⟩⊗ |Ψ1 − Ψ2⟩
)

, (29)

where we notice, that we calculate the sum in the first subsection up to
a normalization factor of

√

1∕2, which will account for another loss of
signal, as also further taken into account in Section 2.4.5.

The Hadamard transformation as used here calculates the equally
weighted sum and difference up to a normalization of the two distri-
butions. The same holds in general for the 𝑅𝑌 gate with corresponding
choice if 𝜃, which we understand as mixing in between the subspaces as
has been explained in Section 2.4.1. Note that in order to maintain the
sum and the difference in the corresponding subspaces |0⟩ and |1⟩, we
need to choose 𝜃 negative, such that the cosine remains the same but
the sine flips its sign and the difference shifts to the bottom line in the
𝑅𝑌 matrix

𝑅𝑌 (𝜃) ≡
(

cos(𝜃∕2) − sin(𝜃∕2)
sin(𝜃∕2) cos(𝜃∕2)

)

=
(

cos(−𝜃∕2) sin(−𝜃∕2)
− sin(−𝜃∕2) cos(−𝜃∕2)

)

.

(30)

The result of the difference state is of no further interest. With choosing
different angles of 𝜃, the sum can be calculated with different weights.
It is important to avoid including zero subspaces that do not contain

any distribution function because this would lead to a significant addi-
tional decay of the solution. For the sequential summation of different
subspaces we have to account for different weightings in each summa-
tion step, due to the general norm preservation of a quantum state. The
weighted summation of two subspaces |Ψ1⟩ and |Ψ2⟩ using the 𝑅𝑌 -gates
results in
𝑅𝑌 (𝜃) |𝑎⟩⊗ |Ψ⟩ = |0⟩⊗ |cos(−𝜃∕2)Ψ1 + sin(−𝜃∕2)Ψ2⟩

+ |1⟩⊗ |cos(−𝜃∕2)Ψ2 − sin(−𝜃∕2)Ψ1⟩ .
(31)

For the D1Q2 scheme, one equally weighted sum is needed. This is done
with the Hadamard gate as demonstrated in Eq. (29). The circuit is
shown in Fig. 9(a).

For the D1Q3 scheme, at first, only the third and fourth subspaces,
so 𝑓→ and 𝑓← in Ψ = (𝑓rest, 0, 𝑓→, 𝑓←)𝑇 , are summed equally weighted
by a Hadamard gate, which leaves its sum in the third subspace. After-
wards, a 𝑅𝑌 gate is used to sum the first and third subspace where the
sum results in the first subspace. We need the final sum to be an equally
weighted sum of the first, third and fourth subspace, so 𝑓rest + 𝑓→ + 𝑓←,
meaning a weighting of the statevector with (1, 0, 1, 1)𝑇 . Due to normal-
ization, we need the weights to be (

√

1∕3, 0,
√

1∕3,
√

1∕3), which is fine
as long as the weights remain equal. To apply the gates as summation
operations on these isolated subspaces, controls need to placed accord-
ingly. The quantum circuit with corresponding controls are shown in
Fig. 9(b). For these two controlled operations, the total summation op-
eration on the two direction subspaces is:

𝑅𝑌 (𝜃)
|

|

|

||𝑞dir,1⟩=|0⟩
𝐻
|

|

|

||𝑞dir,2⟩=|1⟩
Ψ

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

cos
(

− 𝜃
2

)

0 sin
(

− 𝜃
2

)

0
0 0 0 0

− sin
(

− 𝜃
2

)

0 cos
(

− 𝜃
2

)

0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0

√

1∕2
√

1∕2
0 0

√

1∕2 −
√

1∕2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑓rest
0
𝑓→
𝑓←

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

− 𝜃
2

)

0 sin
(

− 𝜃
2

)
√

1
2 sin

(

− 𝜃
2

)
√

1
2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑓rest
0
𝑓→
𝑓←

⎞

⎟

⎟

⎟

⎟

⎠

,

(32)

which will fulfill our demand of an equally weighted summation
(
√

1∕3𝑓rest + 0 +
√

1∕3𝑓→ +
√

1∕3𝑓←, ⋅, ⋅, ⋅)𝑇 by the condition:

cos
(

− 𝜃
2

) !
=
√

1
3

∧ sin
(

− 𝜃
2

)

√

1
2

!
=
√

1
3

(33)

Computer Physics Communications 321 (2026) 110040

7

A. Nagel and J. Löwe

Fig. 8. Implementation of the D2Q9 streaming operations in different directions as a combination of +1 and −1 operations from Fig. 6 with corresponding controls
on the direction qubits as in Table 3.

Computer Physics Communications 321 (2026) 110040

8

A. Nagel and J. Löwe

Fig. 9. Update of the macroscopic variables as the sum of all distributions into the first subspace for D1Q2 (Fig. 9(a)) and D1Q3 (Fig. 9(b)).

Fig. 10. Update of the macroscopic variables as the sum of all distributions into the first subspace for the D2Q9 scheme using 𝜃 from Eq. (34) for the 𝑅𝑌 gates,
following the order schematically shown in Table A.7.

⟺ 𝜃 = −2 arccos

(
√

1
3

)

= −2 arcsin

(
√

2
3

)

. (34)

So for the calculation of the D1Q3 macroscopic quantities with its result
in the first subspace, a Hadamard gate on the first direction qubit with
a control on the second direction qubit being in state |1⟩ and a 𝑅𝑌 ro-
tation gate with 𝜃 = −arccos(

√

1∕3) on the second direction qubit with
control on the first direction qubit being in state |0⟩ is used, as shown
in Fig. 9(b).

To calculate the macroscopic values in the D2Q9 scheme, the sum-
mation is done in a similar way with the same summation weights as
in the D1Q3 scheme, which is shown in the circuit in Fig. 10 with
the summation order shown in Table A.7 in the appendix. For the
D2Q9 scheme, the summation is done in 𝑥- and 𝑦-direction, respec-
tively, by the same operations as in the D1Q3 summation step. First,
the 𝑥-direction summation operations perform the summations of the
directions |rest⟩ , |→⟩ , |←⟩ into |rest⟩ directions, the |↑⟩ , |↖⟩ , |↗⟩ direc-
tion into |↑⟩ direction and |↓⟩ , |↙⟩ , |↘⟩ directions into |↓⟩ direction with
the Hadamard gate 𝐻 and rotation gate 𝑅𝑌 as in D1Q3. After that, the
final summations of |rest⟩ , |↑⟩ , |↓⟩ into|rest⟩ are done similarly but on
the 𝑦-qubits.

2.4.4. Re-prepare state for next time step
In order to create a fully quantum algorithm for multiple quantum

lattice Boltzmann steps without reinitialization, the state vector has to
be re-prepared to the state that contains the scalar grid information only
in the first direction subspace while all other direction subspaces have
to have zero state amplitudes, i.e. (𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇 = (Φ, 0, … , 0)𝑇

(cf. Section 2.3). As we see in Eq. (29), with the summation of sub-
spaces also comes a subtraction result. So after the calculation of the
macroscopic quantities, there is the sum in the first subspace but gen-
erally also left over information in all other used direction subspaces.
But in order to make the algorithm work for multiple time steps with
collision, streaming and calculation of the macroscopic quantities, the
state requires to have only the grid results in the first velocity direc-
tion subspace and all other velocity direction subspaces need to have
zero probability amplitude, as stated in Eq. (11). So a way is needed to
set these probabilities to zero, without destroying the system quantum
state.

The idea is to introduce additional qubits as part of the time
qubit register, which is shown in Fig. 2. The first additional time
qubit doubles the number of direction subspaces, so for 𝑁𝑄 direc-
tion subspaces, the statevector expands from (𝑓1, 𝑓2, … , 𝑓𝑁𝑄

)𝑇 to

(𝑓1, 𝑓2, … , 𝑓𝑁𝑄
, 0, … , 0)𝑇 . This statevector now contains 𝑁𝑄 addi-

tional subspaces with states of probability zero, because the additional
time qubit, as long as not operated on, remains in state |0⟩, so in the
state of the first 𝑁𝑄 direction subspaces and never takes |1⟩ in the sec-
ond 𝑁𝑄 direction subspaces. The key part is to shift all 2𝑁𝑄 periodically
and switching the 𝑁𝑄 + 1 subspace with the first subspace again:

re-prep:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
𝑓2
⋮

𝑓𝑁𝑄
0
0
⋮
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⟶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
⋮
0
𝑓1
𝑓2
⋮

𝑓𝑁𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⟶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
0
⋮
0
0
𝑓2
⋮

𝑓𝑁𝑄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (35)

where after the collision, streaming and macroscopic calculation steps,
the first subspace contains the gird 𝑓1 ∼ Φ up to a known normaliza-
tion factor. The norm of 𝑓1 will decrease in every time step due to the
left over results of the subtraction in the other subspaces. This decay
is further discussed in Section 2.4.5. Since the collision, streaming and
macroscopic calculation steps only act within a group of every 𝑁𝑄 sub-
spaces, the state after the re-preparation at the end of Eq. (35) can
be used for the next time step. For multiple time steps, further time
qubits are added, where each additional time qubits doubles the num-
ber of zero-probability-subspaces. Therefore, the number of time qubits
needed scales logarithmically with the number of simulated time steps
𝑇 , so #𝑞time ∼ log(𝑇), meaning that #𝑞time time qubits can simulate up to
𝑇 = 2#𝑞time time steps. The periodic shifting +𝑁𝑄 of the entries of state
vector can be realized in a similar way as the streaming operation. The
quantum circuit is shown in Fig. 11.

For some specific lattice Boltzmann stencils, the re-prep circuit as
shown in Fig. 11 can be simplified. For the D1Q2 and D1Q3 stencil a
simplification of the re-prep circuit is shown in the appendix in Sec-
tion A.4.

2.4.5. Decay of quantum state amplitude of solution per time step
The updated grid values for the next time step in the first subspace

𝑓 𝑡+1
1 = Φ𝑡+1 undergoes a certain decay of its coefficient amplitude at
two points in the algorithm: the collision operation and the calculation
of the macroscopic variables. The first decay comes from the collision
operation, that distributes the full grid in the first subspace 𝑓1 to the
velocity distributions 𝑓𝑖. In this step, only the normalized fraction 𝑛1
of Φ is kept in the first subspace and the remaining signal 𝑛′ is moved

Computer Physics Communications 321 (2026) 110040

9

A. Nagel and J. Löwe

Fig. 11. Quantum circuit of the re-prep step in Fig. 2 to prepare the state vector for the next time step in order to allow a fully quantum algorithm for all simulation
time steps without the need of reinitialization or mid-circuit measurements.

Fig. 12. Comparison of the total number of shots over time for reinitialization
methods (dashed line) and our method for different decay factors.

to subspace 𝑓2. Instead of keeping the full amount 𝑘1 in subspace 𝑓1,
as would be dictated by the non-unitary collision operation in Eq. (5),
only the normalized amount of 𝑛1 is kept. This normalization leads to
the first signal decay in 𝑓1 as determined in Eq. (25)

𝛾coll,𝑓1 = 1
√

∑𝑄
𝑖=1 𝑘

2
𝑗

. (36)

The second decay arises from the last summation step when calculating
the macroscopic variables. As shown in the Section 2.4.3, a summation
of subspaces comes with a subtraction as well. While there is the sum
of two subspaces in one subspace, there is the subtraction result in the
other subspace. The resulting subtraction is some left over, unusable
signal in the other subspaces. The last summation step is weighted with
√

1∕𝑄 to take into account previous sequentially summations of velocity
subspaces. So the decay due to the summation of the last subspaces that
includes the 𝑓1 subspace is

𝛾macro,𝑓1 =
√

1
𝑄
. (37)

By determining only the decay of the macroscopic value Φ, which
is calculated in subspace 𝑓1, only the collision decay and macroscopic
variable calculation decay for 𝑓1 need to be taken into account. Further
decays due to the collision and summation in further velocity subspaces
𝑓𝑖>1 do not change the decay in the first subspace. Only when 𝑓1 is
included in the operations 𝑓1 decays further. This results in a total decay
of

𝛾tot,𝑓1 = 1
√

∑𝑄
𝑖=1 𝑘

2
𝑗

√

1
𝑄
, (38)

which is the signal loss of the complex amplitude coefficients of the
macroscopic grid variables in the first velocity subspace per time step.
For the decay of probability amplitude, the square of the decay value
𝛾2tot,𝑓1 determines the signal loss. In order to reconstruct the grid after
𝑇 time steps, that is encoded in the complex amplitude coefficients, the
magnitude of the complex amplitude coefficients need to be multiplied
by the decay factor for 𝑇 time steps 𝛾𝑇tot,𝑓1 .

2.4.6. Comparison to methods that use reinitialization
Our algorithm avoids the necessity to measure and reinitialize the

quantum state after every single time step by adding the re-prep block.
For a single time step, our method and methods that require reinitial-
ization are similar, i.e. both initialize and perform collisions, stream-
ing and the macroscopic step. Performing many time steps, methods
that require reinitialization have to contain the initialization block
in every time step while our method initializes only once and contains
the re-prep block in every time step instead. When considering many
time steps, the computational cost of the single initialization block
in our method becomes negligible. Therefore, the difference between a
method with reinitialization and our method without reinitialization are
the reinitialization block and the re-prep block. Comparing these
two blocks to compare methods with and without reinitialization can
not be done in general, since the initialization highly depends on the
flow field to encode. However, the total number of samplings required
to resolve the flow to a certain level after 𝑇 time steps can be compared
for both methods.

Assuming a requirement of 𝑁shots shots for a desired resolution, a
reinitialization method needs to resolve the entire flow field with 𝑁shots
in every time step. So for 𝑇 time steps, the total number of shots scales

Computer Physics Communications 321 (2026) 110040

10

A. Nagel and J. Löwe

Fig. 13. Fully Quantum Lattice Boltzmann method without reinitialization for the 1D linear advection-diffusion equation solved with a D1Q2 scheme in Fig. 13(a)
and a D1Q3 scheme in Fig. 13(b).

Fig. 14. Fully Quantum Lattice Boltzmann method without reinitialization for the 2D linear advection-diffusion equation solved with a D2Q9 scheme with periodic
boundary conditions and a diffusion constant of 𝐷 = 1∕3. The cross (×) indicates the initial position of the gaussian with a standard deviation of 𝜎 = 2.0. Two different
times and velocities are simulated in Figs. 14(a) and (b).

linearly by 𝑇 ⋅𝑁shots. Our methods decays by the decay factor 𝛾tot,𝑓1
in every time step (cf. Eq. (38), Section 2.4.5), so to compensate the
decay, the number of samples need to be 𝑁shots∕𝛾tot,𝑓1 . For 𝑇 time steps,
this means a total number of 𝑁shots∕𝛾𝑇tot,𝑓1 is required. Removing the
arbitrary factor 𝑁shots, the total relative number of shots required for a
reinitialization method and our method is shown in Fig. 12 for different
decay values 𝛾tot,𝑓1 .

3. Verification

To verify our proposed algorithm, we model the advection-diffusion
process of a gaussian distributed concentration in one and two dimen-
sions for multiple time steps without reinitialization. We use our quan-
tum lattice Boltzmann method (QLBM) with a D1Q2, D1Q3 and D2Q9
stencil and compare it to classical lattice Boltzmann (LBM) results. All

simulations are performed such that each velocity distribution func-
tion fully relaxes to its local equilibrium within one time step, i.e.
Δ𝑡 = Δ𝜏 = 1. Further, a spacial discretization of Δ𝑥 = 1 is used. With
different sets of lattice Boltzmann weights 𝑤𝑖 different diffusion con-
stants 𝐷 are modeled ensuring conservation of moment equations at
least up to order four (cf. Section 2.2.1). For the simulation of our quan-
tum algorithm, the shot method of the Qiskit package [16] from IBM is
used. The number of quits and the number of gates for the Qiskit simula-
tions for the different stencils, i.e. D1Q2, D1Q3 and D2Q9, are listed in
Table 4.

3.1. 1D Advection-Diffusion equation

The simulation of a one-dimensional gaussian hill following the ADE
is done with a D1Q2 stencil and D1Q3. For both 1D test cases, a uni-
form velocity of 𝑢 = 0.2 and periodic boundary conditions are used. The

Computer Physics Communications 321 (2026) 110040

11

A. Nagel and J. Löwe

Fig. 15. Contour plots of the 2D linear advection-diffusion simulation showing results of the fully Quantum Lattice Boltzmann method without reinitialization from
Figs. 15(a) and (b) (dashed lines) and the results from the classical Lattice Boltzmann implementation (solid lines).

Fig. 16. Comparison of QLBM and LBM method for a D2Q9 test case in Fig. 14(b) with an initial gaussian distribution of standard deviation of size 𝜎 = 2.0 at a
diffusion of 𝐷 = 1∕3 for a velocity of 𝐮 = (1∕6, 1∕12)𝑇 .

Table 4
Number of qubits (grid, direction, time) and gates (𝑋,) used for the not-transpiled simulation of
the results shown for D1Q2 in Fig. 13(a), D1Q3 in Fig. 13(b) and D2Q9 in Figs. 14(a) and (b).
 stencil Figures qubits 𝑋 𝐶𝑋 𝑀𝐶𝑋 𝐻 𝐶𝐻 𝑅𝑌 𝐶𝑅𝑌 𝑀𝐶𝑅𝑌

 D1Q2 13(a) 14 (6, 1, 7) 0 3 16 1 0 1 0 0
 D1Q3 13(b) 15 (6, 2, 7) 0 1 18 0 1 1 2 0
 D2Q9 14(a) 15 (4+4, 4, 3) 1 1 50 0 2 1 4 5
 D2Q9 14(b) 18 (4+4, 4, 6) 1 1 53 0 2 1 4 5

gaussian hills are initialized at position 𝑥0 = 16 with a standard devi-
ation of 𝜎 = 6.0 and a global offset of 𝑜 = 0.1. The grid is discretized
on 𝑁 = 64 grid points by #𝑞grid = 6 grid qubits. For a maximum simu-
lation time of 𝑡 = 128, a number of #𝑞time = 7 qubits in the time qubit
register are used. The D1Q2 stencil requires #𝑞dir = 1 direction qubit for
its two velocity directions, whereas the D1Q3 stencil requires #𝑞dir = 2
direction qubits for its three velocity directions. The simulations are per-

formed with 3.4 ⋅ 107 shots in total. The results are shown in Figs. 13(a)
and (b).

For the D1Q2 stencil, the standard LBM weights are used, i.e. [1/2,
1/2], which results in a squared speed of sound of 𝑐2𝑠 = 1 and there-
fore a diffusion of 𝐷 = 1∕2 is modeled. This results in a decay per
time step to 𝛾 = 0.98, which reduces the probability per time step
to 𝛾2 = 0.96.

Computer Physics Communications 321 (2026) 110040

12

A. Nagel and J. Löwe

The simulation with the D1Q3 stencil uses the non-standard weight
set of [1/3, 1/3, 1/3] which results in a squared speed of sound of 𝑐2𝑠 =
2∕3 and therefore a simulated diffusion of 𝐷 = 1∕3. This setting results in
a decay per time step to 𝛾 = 0.97, so a probability reduction to 𝛾2 = 0.94
per time step.

The results show that our QLBM is capable of reproducing the LBM
results overall very accurately. For more time steps, the probability of
measuring the correct states becomes less likely, which is due to the
decay of the probability function in our algorithm. This results in an in-
creasing noise of the solution for larger time steps. Performing the sim-
ulation with more shots in total reduces the noise, as will be discussed
in more detail for the 2D test case in Section 3.2.

3.2. 2D Advection-Diffusion equation

To verify our algorithm for two-dimensions, we again propagate a
gaussian hill, now in 2D, following the advection-diffusion equation us-
ing the D2Q9 stencil with periodic boundary conditions. The results for
two different advection velocities are shown in Figs. 14(a) and (b). Con-
tour plots of the results in Figs. 14(a) and (b) with comparison to the
classical Lattice Boltzmann solutions are shown in Figs. 15(a) and (b).

The gaussians are discretized on 16 × 16 nodes using #𝑞grid = 4 + 4
grid qubits for the 𝑥 and 𝑦 directions. The concentrations have a standard
deviation of 𝜎 = 2.0 and no global offset. The D2Q9 stencil requires 𝑄 =
9 velocity directions, so 𝑁𝑄 = 16 velocity direction subspaces need to be
generated, which is done using #𝑞dir = 4 velocity direction qubits. With
#𝑞time = 6 time qubits, up to 𝑇 = 48 time steps are simulated. The flow
field is sampled at the end of the simulation with 1.3 ⋅ 108 shots.

Since the decay is smaller for smaller difference of the values of the
weights, we choose a weight set of equal weights. For the test cases, a
set of 𝑤𝑖 = 1∕9 ∀𝑖 ∈ [1, 9] is used which results in the minimal decay of
our solution. This set of weights simulates a squared speed of sound of
𝑐2𝑠 = 2∕3 and thus a diffusion of 𝐷 = 1∕3 is simulated. The decay has a
dependence on the advection velocity since it is part of the 𝑘𝑖 factors in
the decay in Eq. (2.4.5). So for the test case in Fig. 14(a), an advection
velocity of 𝐮 = (1∕4, 0)𝑇 is used, resulting in a decay of 𝛾 = 0.96 per time
step, so a probability decay to 𝛾 = 0.91 per time step. For the test case in
Fig. 14(b), the smaller advection velocity of 𝐮 = (1∕6, 1∕12)𝑇 results in
a decay of 𝛾 = 0.97 per time step, so a probability decay to 𝛾 = 0.95 per
time step. The results show very good agreement with the expectations,
including deviations due to sampling noise. To verify the agreement
with the classical LBM solutions, especially regarding expected sampling
deviations, a more detailed look comparing QLBM with LBM is done: to
quantify the difference the results by our QLBM compared to a classical
LBM, we calculate the 𝐿2 error as

𝐿2 =

√

√

√

√

𝑁
∑

𝑖=1
(ΦQLBM − ΦLBM)2. (39)

Due to an increasing decay of our solution for more time steps, we ex-
pect that for a fixed number of shots, fewer shots resolve our flow field in
the correct subspace. Therefore, we expect increase deviation for an in-
creasing number of simulated time steps between QLBM and LBM, since
the flow field is effectively resolved with fewer shots. This is confirmed
by calculating the 𝐿2 error for more time steps, as is shown in Fig. 16(a).
Now this also means, that the error should decrease to zero for a fixed
number of time steps with more sampling shots, meaning that the QLBM
solution converges towards the LBM solution. This in fact can be verified
by Fig. 16(b), which shows the convergence of QLBM solution towards
the LBM solution for different simulation time lengths. This means that
our QLBM algorithm can approximate the LBM solution arbitrarily close
even for longer simulation times if the decay can be compensated with
more total simulation shots.

4. Conclusion

In this paper, an extension of the Quantum Lattice Boltzmann
Method (QLBM) is proposed and verified, such that multiple time steps
can be performed without the need of state measurement or reini-
tialization in between the time steps. This extension is valid for gen-
eral lattice Boltzmann velocity stencils and tested on D1Q2, D1Q3 and
D2Q9 stencils using the shot methods of the Qiskit simulation pack-
age. The algorithm is proposed and discussed in detail, giving the
mathematical description as well as the quantum circuit diagrams. For
the extended QLBM algorithm, we discuss our required initialization
state, the collision and streaming step, calculation of macroscopic vari-
ables and a re-preparation step for the next time step, all as fully
quantum algorithm blocks with corresponding quantum circuit gate
diagrams.

The extension is tested on a linear advection-diffusion equation
(ADE) in one and two dimensions and compared to classical lattice Boltz-
mann (LBM) reference solutions. We show excellent agreement and a
convergence of our QLBM to LBM for any desired accuracy. For very
large, highly-resolved grids, a state extraction of the full grid may be
infeasible. The main advantage of our algorithm is that there is no need
to extract the full flow field at any time. While other algorithms requires
measurements and state reinitialization of the full flow field, our algo-
rithm can perform all time steps without any measurements or reinitial-
ization. When only interested in surface integrals or scalar properties,
our algorithm would allow to calculate these quantities without ever
having to extract the flow field at any time at all. This overcomes the
scaling issues of algorithms in the literature that require state extraction
where the computational effort, given by the number of shots, scales
with the grid resolution. Future work is dedicated to reduce the decay
by such techniques like amplitude amplification and to tackle nonlinear-
ities to be able to solve fluid flow equations like the Burgers equations.
Further, the method is supposed to include the flow around bodies and
different boundary conditions than periodic.

4.1. Discussion of our algorithms advantages

Our goal is to investigate possible quantum algorithm approaches
and improve these algorithms such that they may be suitable and us-
able for applications in Aerospace science. Since we are looking for al-
gorithms that can deal with very large grids with extremely high resolu-
tion, it is important to find an algorithm where the computational cost
scales efficiently with the grid resolution. These computational costs are
essentially the number of shots and the number of gates required. An
algorithm that requires to sample the fully resolved grid cannot fulfill
these requirements. Therefore, we propose a method that can perform
the full simulation without the need of state extraction at any time and
still obtain the results that we are interested in. These can be mainly
reduced quantities like lift, drag, or other body surface properties.

Our algorithm can perform multiple time steps more efficient in
terms of the number of shots required than those which require state
extraction in between every time step, although this efficiency holds
only for a limited number of time steps. In terms of efficiency, one could
think of combining our algorithm with state extraction algorithms, but
for our purposes, we want to avoid a state extraction for the aforemen-
tioned reasons at all and only extract our reduced quantities. How to
extract these reduced quantity is completely unclear yet and remains an
open question.

A large computational advantage of our algorithm is that we can
avoid having to reinitialize a very complex flow field in between the
time steps, which generally will require a large number of gates to tune
the statevector accordingly. For a fluid flow simulation around a body,
we could basically initialize a uniform velocity field which is achieved
with very few gates.

While our algorithm can be more efficient in the initialization
and number of shots, we do not reduce the gate count compared to

Computer Physics Communications 321 (2026) 110040

13

A. Nagel and J. Löwe

other QLBM algorithms. In fact, our algorithm without state extraction
produces a very large circuit depth which may cause coherence time
issues. Additionally, the noise induces due to errors of the gate opera-
tions significantly limits the number of feasible time steps. This depends
highly on the hardware and large improvements are to expect in the up-
coming years.

CRediT authorship contribution statement

Aaron Nagel: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, Formal
analysis, Conceptualization; Johannes Löwe: Writing – review & edit-
ing, Supervision, Formal analysis, Conceptualization.

Data availability

The data and code cannot be shared due to restrictions within the
ToQuaFlics project of the DLR QCI. However, the content of this paper
allows to fully reproduce the algorithm and the results. Data and code
may be made available via a license agreement on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This project was made possible by the DLR Quantum Computing Ini-
tiative and the Federal Ministry for Economic Affairs and Climate Ac-
tion; qci.dlr.de/projects/toquaflics. Figures with Quantum circuits are vi-
sualized using the Quantikz latex package [19].

Appendix A. Appendix

A.1. Pseudocode of simulation blocks

A pseudocode showing the structure of the entire simulation using
the corresponding QLBM block from the methods section is shown in
Algorithm 1. It shows essentially the structuring of the program corre-
sponding to Fig. 3. Each of the functions representing a QLBM block
list the gates of their corresponding quantum circuit figure as explicitly
depicted in the respective methods subsection.

A.2. D2Q9 Collision step distribution of velocity direction distribution
functions

The distribution of the D2Q9 velocity distribution functions is eas-
ier to handle if not distributed directly in a sequential way. The order
of the procedure of distributing the velocity distribution function into
the corresponding direction subspaces by several 𝑅𝑌 -gate operations is
shown in Table A.5.

A.3. D2Q9 Summation step of velocity direction distribution functions

The order of the summation of the D2Q9 velocity distribution func-
tions is shown in Table A.7 of the corresponding circuit in Fig. 10.

Algorithm 1 Main structure of QLBM simulation program, abbreviate
quantum-circuit by qc, list of control qubits by ctrls and list of target qubits
by targets.
1: PARAMETER declaration
2:
3: def collision: ⊳ choose for velocity set stencil
4: while 𝑖 in subspaces do
5: 𝜃𝑖 ← calculate 𝜃𝑖 from Eq. 26
6: qc.append(𝜃𝑖, ctrls, targets)
7: end while
8:
9: def streaming: ⊳ cf. Figures 6, 7 and 8
10: while 𝑖 in directions do
11: stream_direction(qc, ctrls, targets)
12: end while
13:
14: def macros: ⊳ cf. Figures 9 and 10
15: call_H_or_RY_gates(qc, ctrls, targets)
16:
17: def re_prep: ⊳ cf. Figure11
18: streaming_+1(qc, |𝑞time⟩)
19: bring_back_first_subspace(qc, ctrls, target = |𝑞time, 1⟩)
20:
21: init vector← flatten initial flow field
22: init vector← normalize flattened state
23: init quantum state←call Qiskit’s initialize(init vector) function
24:
25: while 𝑡 ≤ 𝑇 do ⊳ build entire quantum circuit
26: collision()
27: streaming()
28: macros()
29: re_prep()
30: end while
31: measure

A.4. Re-prepare state for D1Q2 and D1Q3

For the D1Q2 and D1Q3 stencil, the re-prep circuit shown in Fig. 11
can be simplified. In these stencils, all the velocity subspaces but the first
one are located in the second half of all subspaces, so 𝑓1 is in subspace
one and all velocity subspaces 𝑓𝑖 are in subspace with index 𝑖 > 1

2𝑁𝑄.
This is shown in Eqs. (A.1) and (A.2), where the dashed line indicates
the split into half of the velocity direction subspaces and the solid sep-
aration line the split to the additional subspaces due to the added time
qubits. This results in a re-prep step for the D1Q2 scheme of
⎛

⎜

⎜

⎜

⎜

⎝

|0⟩time |0⟩dir
|0⟩time |1⟩dir
|1⟩time |0⟩dir
|1⟩time |1⟩dir

⎞

⎟

⎟

⎟

⎟

⎠

∶

⎛

⎜

⎜

⎜

⎜

⎝

𝑓1
𝑓2
0
0

⎞

⎟

⎟

⎟

⎟

⎠

D1Q2re-prep
←←→

⎛

⎜

⎜

⎜

⎜

⎝

𝑓1
0
0
𝑓2

⎞

⎟

⎟

⎟

⎟

⎠

(A.1)

and for the D1Q3 scheme of
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|0⟩time |00⟩dir
|0⟩time |01⟩dir
|0⟩time |10⟩dir
|0⟩time |11⟩dir
|1⟩time |00⟩dir
|1⟩time |01⟩dir
|1⟩time |10⟩dir
|1⟩time |11⟩dir

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
0
𝑓2
𝑓3
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

D1Q3re-prep
←←→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1
0
0
0
0
0
𝑓2
𝑓3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.2)

In these arrangements it is sufficient to move only the second half of
all velocity subspaces. With this arrangement of the velocity direction
subspaces, this re-preparation can be achieved by a +𝑁𝑄 operation on all
subspaces where the most significant qubit is in state |1⟩ or equivalently

Computer Physics Communications 321 (2026) 110040

14

A. Nagel and J. Löwe

Table A.5
Distributing the D2Q9 velocity distribution functions along the
velocity direction subspaces. The division of the four direction
qubits is done such that the first two qubits form the 𝑥-directions
and the last two qubits form the 𝑦-directions, so |𝑞4𝑞3𝑞2𝑞1⟩dir =
|𝑞4𝑞3⟩𝑦 |𝑞2𝑞1⟩𝑥. The index of 𝜃 contains the state with decimal rep-
resentation of the binary states. The series of tables continues in
Table A.6.

|00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1 , … , 𝑓9 - - -
|01⟩𝑦 - - - -
|10⟩𝑦 - - - -
|11⟩𝑦 - - - -
𝜃
|0⟩→|2⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓4 , 𝑓5 - 𝑓2 , 𝑓3 , 𝑓6 , 𝑓7 , 𝑓8 , 𝑓9 -
|01⟩𝑦 - - - -
|10⟩𝑦 - - - -
|11⟩𝑦 - - - -
𝜃
|2⟩→|3⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓4 , 𝑓5 - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦 - - - -
|10⟩𝑦 - - - -
|11⟩𝑦 - - - -
𝜃
|0⟩→|8⟩

←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 , 𝑓5 - - -
|11⟩𝑦 - - - -
𝜃
|8⟩→|12⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 , 𝑓6 , 𝑓8 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - - -
|11⟩𝑦 𝑓5 - - -

Table A.6
Continuation of Table A.5.

𝜃
|2⟩→|10⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1 - 𝑓2 𝑓3 , 𝑓7 , 𝑓9
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 , 𝑓8 -
|11⟩𝑦 𝑓5 - - -
𝜃
|3⟩→|11⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 𝑓3
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 , 𝑓8 𝑓7 , 𝑓9
|11⟩𝑦 𝑓5 - - -
𝜃
|10⟩→|14⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 𝑓3
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 𝑓7 , 𝑓9
|11⟩𝑦 𝑓5 - 𝑓8 -
𝜃
|11⟩→|15⟩

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 𝑓3
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 𝑓7
|11⟩𝑦 𝑓5 - 𝑓8 𝑓9

a +1 operation on all time qubits conditioned on the most significant
direction qubit to be in state |1⟩. This circuit is shown in Fig. A.17.

Table A.7
Summation order of the D2Q9 velocity distribution func-
tions first in 𝑥-direction and then in 𝑦-direction.

𝐻
|11⟩𝑥→|10⟩𝑥

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥

|00⟩𝑦 𝑓1 - 𝑓2 𝑓3
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 𝑓7
|11⟩𝑦 𝑓5 - 𝑓8 𝑓9
𝐻

|11⟩𝑥→|10⟩𝑥
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 - 𝑓2 , 𝑓3 -
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 - 𝑓6 , 𝑓7 -
|11⟩𝑦 𝑓5 - 𝑓8 , 𝑓9 -
𝑅𝑌

|10⟩𝑥→|00⟩𝑥
←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓2 , 𝑓3 - - -
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 , 𝑓6 , 𝑓7 - - -
|11⟩𝑦 𝑓5 , 𝑓8 , 𝑓9 - - -
𝐻

|11⟩𝑦→|10⟩𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , 𝑓2 , 𝑓3 - - -
|01⟩𝑦 - - - -
|10⟩𝑦 𝑓4 , 𝑓6 , 𝑓7 - - -

𝑓5 , 𝑓8 , 𝑓9
|11⟩𝑦 - - - -
𝑅𝑌

|10⟩𝑦→|00⟩𝑦
←←→ |00⟩𝑥 |01⟩𝑥 |10⟩𝑥 |11⟩𝑥
|00⟩𝑦 𝑓1 , … , 𝑓9 - - -
|01⟩𝑦 - - - -
|10⟩𝑦 - - - -
|11⟩𝑦 - - - -

Fig. A.17. Simplified quantum circuit of re-prep step from Fig. 11 for the D1Q2
and D1Q3 state arrangements.

Computer Physics Communications 321 (2026) 110040

15

A. Nagel and J. Löwe

References

[1] R.P. Feynman, Quantum mechanical computers, Found. Phys. 16 (6) (1986)
507–532.

[2] P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring,
in: Proceedings 35Th Annual Symposium on Foundations of Computer Science, IEEE,
1994, pp. 124–134.

[3] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceed-
ings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996,
pp. 212–219.

[4] D.A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys.
85 (5) (1996) 551–574.

[5] J. Yepez, Quantum lattice-gas model for computational fluid dynamics, Phys. Rev.
E 63 (4) (2001) 046702.

[6] B.N. Todorova, R. Steijl, Quantum algorithm for the collisionless boltzmann equa-
tion, J. Comput. Phys. 409 (2020) 109347.

[7] M.A. Schalkers, M. Möller, Efficient and fail-safe collisionless quantum Boltzmann
method, arXiv:2211.14269 (2022).

[8] L. Budinski, Quantum algorithm for the advection–diffusion equation simulated with
the lattice boltzmann method, Quantum Inf. Process. 20 (2) (2021) 57.

[9] A.M. Childs, N. Wiebe, Hamiltonian simulation using linear combinations of unitary
operations, arXiv:1202.5822 (2012).

[10] T. Shinde, L. Budinski, O. Niemimäki, V. Lahtinen, H. Liebelt, R. Li, Utilizing classi-
cal programming principles in the intel quantum SDK: implementation of quantum
lattice boltzmann method, ACM Trans. Quantum Comput. 6 (1) (2025) 1–18.

[11] W. Itani, S. Succi, Analysis of carleman linearization of lattice boltzmann, Fluids 7
(1) (2022) 24.

[12] W. Itani, K.R. Sreenivasan, S. Succi, Quantum algorithm for lattice boltzmann
(QALB) simulation of incompressible fluids with a nonlinear collision term, Phys.
Fluid. 36 (1) (2024).

[13] J.-P. Liu, H.Ø. Kolden, H.K. Krovi, N.F. Loureiro, K. Trivisa, A.M. Childs, Efficient
quantum algorithm for dissipative nonlinear differential equations, Proc. Natl. Acad.
Sci. 118 (35) (2021) e2026805118.

[14] L. Xu, M. Li, L. Zhang, H. Sun, J. Yao, Improved quantum lattice boltzmann method
for advection-diffusion equations with a linear collision model, Phys. Rev. E 111 (4)
(2025) 045305.

[15] D. Wawrzyniak, J. Winter, S. Schmidt, T. Indinger, C.F. Janßen, U. Schramm, N.A.
Adams, Linearized quantum lattice-Boltzmann method for the advection-diffusion
equation using dynamic circuits, Comput. Phys. Commun. (2025) 109856.

[16] A. Javadi-Abhari, M. Treinish, K. Krsulich, C.J. Wood, J. Lishman, J. Gacon, S. Mar-
tiel, P.D. Nation, L.S. Bishop, A.W. Cross, B.R. Johnson, J.M. Gambetta, Quantum
computing with Qiskit, 2024, https://doi.org/10.48550/arXiv.2405.08810

[17] A.A. Mohamad, Lattice boltzmann method, 70, Springer, 2011.
[18] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E.M. Viggen, The lattice

Boltzmann method, 10, Springer, 2017.

Computer Physics Communications 321 (2026) 110040

16

http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0001
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0001
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0002
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0002
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0002
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0003
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0003
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0003
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0004
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0004
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0005
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0005
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0006
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0006
http://arxiv.org/abs/2211.14269
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0008
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0008
http://arxiv.org/abs/1202.5822
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0010
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0010
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0010
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0011
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0011
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0012
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0012
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0012
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0013
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0013
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0013
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0014
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0014
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0014
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0015
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0015
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0015
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0017
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0018
http://refhub.elsevier.com/S0010-4655(26)00022-6/sbref0018

	Quantum lattice boltzmann method for multiple time steps without reinitialization for linear advection-Diffusion problems
	1 Introduction
	2 Methods
	2.1 The advection-diffusion equation
	2.2 The lattice boltzmann method
	2.2.1 Diffusion and lattice boltzmann weights

	2.3 Quantum state encoding and initial state
	2.4 The quantum lattice boltzmann method
	2.4.1 The collision step
	2.4.2 The streaming step
	2.4.3 Updating macroscopic variables
	2.4.4 Re-prepare state for next time step
	2.4.5 Decay of quantum state amplitude of solution per time step
	2.4.6 Comparison to methods that use reinitialization

	3 Verification
	3.1 1D Advection-Diffusion equation
	3.2 2D Advection-Diffusion equation

	4 Conclusion
	4.1 Discussion of our algorithms advantages

	A Appendix
	A.1 Pseudocode of simulation blocks
	A.2 D2Q9 Collision step distribution of velocity direction distribution functions
	A.3 D2Q9 Summation step of velocity direction distribution functions
	A.4 Re-prepare state for D1Q2 and D1Q3

