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Abstract

The classical continuum mechanics fails in case of discontinuities. Peridynamics has been proven to be a powerful tool
for solving such problems. However, it is extremely computational expensive and there are difficulties in fulfilling local
boundary conditions. The paper aims to overcome these problems by coupling the Peridynamics (PD) with the Finite
Element Method (FEM). Three different coupling strategies are considered in the paper: modified Schwarz Alternating
Method, the Arlequin based coupling method and the Splice Method. The methods are presented and applied to one-
dimensional dynamic cases, including high-frequency wave propagation analysis. The criteria applied to evaluate the
methods are convergence to the local solution and difficulties choosing specific numerical parameters. The significance of
long-range forces in the nature of the damage is also examined.
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1 Introduction

The solution to damage problems are particular important,
especially in developing secure and reliable systems and
structures. The existing damage theories can be generally
divided into two groups: local and non-local approaches,
depending on the range of internal forces. Local theories,
like classical continuum damage mechanics [1] and its rep-
resentation in the Extended Finite Element Method (XFEM)
[2] often struggle in capturing long-range effects and ignore
the non-local character of damage processes, which leads
to inaccuracies. Non-local theories, for instance, are the
cohesive zone model [3], the phase-field methods [4], the
molecular dynamics approaches [5] etc. However, apply-
ing the cohesive zone model assumes that the crack path
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is known in advance at the current state, which is usually
not the case, especially in analyzing highly dynamic crack
propagation in complex system configurations. There are
some applications of molecular dynamics [6] to investigate
the fracture processes. For this purpose, the body should
either be represented by millions of atoms to model a struc-
ture with properly large dimensions or should be up-scaled
to a lower-resolution model [7]. Also, non-local models are
mesh-sensitive and require much higher resolution than
regular approaches. This increases the computational efforts
significantly.

Peridynamics has emerged as an effective theory for
studying dynamic fracture problems. Here, internal forces
are represented by non-local interactions that occur between
pairs of material points distributed throughout a continu-
ous body. The radius of the non-local neighborhood defines
the grade of non-locality, called the horizon §. After the
first publication of Silling [8] regarding peridynamics, the
theory has experienced significant improvement. The state-
based peridynamics [9] was introduced as a reformulation
of bond-based peridynamics to address limitations related
to Poisson’s ratio. In this formulation, the term "state"
replaces "bond," emphasizing that the response of a mate-
rial point depends on the deformation of all the bonds asso-
ciated with it. The peridynamic theory has already found
a wide range of applications. It enables the simulation of
crack initiation and its propagation, providing an accurate
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result for the crack propagation speed [10]. Furthermore,
peridynamics can also handle the simulation of damage
processes in composites, such as delamination [11], matrix
cracking [12], fibre-matrix debond and matrix failure [13],
that could be used in aerospace and civil engineering mate-
rials research. The theory could also yield accurate results
for high-velocity impact and penetration problems, which
could later be applied in defense and aerospace engineer-
ing, as seen in [14, 15], and [16]. Moreover, frameworks
have been developed for analyzing additive manufacturing
processes [17] as well as the damage issues arising from
them [18]. Additionally, peridynamics has been utilized in
coupled formulations for multi-field problems, such as heat
transfer [19], diffusion [20] and electronics [21]. One can
observe the application of peridynamics to micromechani-
cal problems. The homogenization modeling provided by
[22] and [23] shows the potential of peridynamics on the
micro-level through peridynamic micro—macro correspon-
dence schemes. The detailed examination of thin films peel-
ing [24] shows the non-local response of the peeled layer,
offering valuable insights for investigating adhesive joints
and determining critical peeling forces. While peridynam-
ics demands less computational effort than some damage
theories, which give similar accuracy regarding fracture, the
processing time is still less efficient compared to classical
computational methods.

FEM theory is wide-used in structural mechanics, but
has limitations by dealing with fractures. The approach uses
the partial differential equation to describe the relationship
between external loads b, inertia loads pii, and the forces in
the body, where the mechanical stresses o are determined by
spatial derivatives of the displacements u. As the derivative
at the crack tip is not defined, one can define a critical stress
value and after that switch to the classical fracture mechan-
ics [7]. A coupling of PD and FEM may have good poten-
tial in solving dynamic fracture problems and overcoming
the disadvantages of both methods at the same time. The
damage-free domain is supposed to be modeled with FEM,
while a zone where the damage is presented or expected is
modeled through PD points. This could lead to a decreas-
ing of computational time without loss of accuracy. The
Splice Method [25] can be mentioned among existing cou-
pling methods. The coupling is achieved by considering that
peridynamic points can “see” through a horizon § finite ele-
ments, and these connections are enough to achieve a cou-
pling. Because of the relative simplicity of implementation,
there is also the possibility of developing a multi-adaptive
approach [26] with an adaptive changing interface between
the domains dependent on crack growth. Another method
proposes to bridge two subdomains by introducing a special
transition element [27]. Such direct coupling leads to devia-
tions, as shown in the results. The partitioning procedure by
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using, for example, the Schwarz method [28] is a relatively
simple and efficient technique. The main advantage is that
it allows to couple two black-box solvers by defining con-
straints on the common interface.

The approach presented in [29], proposes to achieve the
coupling by force blending in the overlapping area. The
implemented method is presented in 1D static cases. Never-
theless, a noticeable error is present. A similar idea is dem-
onstrated by the morphing strategy [30] to couple local and
non-local methods. The coupling is performed through a
transition region, where the gradient of the material param-
eters is defined by a morphing function.

Some methods ensure the mechanical compatibility of
domains of different nature on the energy scale. Among
them are the Arlequin Method [31], its adaptation for cou-
pling of Classical Elasticity (CE) and PD [32] and further
developments [33, 34] in considering the static and dynamic
cases and wave propagation problems. The quasi-nonlocal
method [35] is also an energy-based approach that recon-
structs the non-local interactions for a subregion with local
interactions for 1D problems. However, the technique is dif-
ficult to apply for higher dimensional cases. Its improve-
ment [36] proposes a reconstructed energy functional with
a modified elasticity tensor, which allows the specification
of the range of validity of non-local forces. The multiscale
method by [37] combines bridging scale and perfectly
matched layer approaches to eliminate artificial reflec-
tions and reduce impedance at the interface. Another cou-
pling method [38] between PD and numerical substructure
method integrates PD part by using interface elements with
embedded PD nodes.

The present paper studies three coupling techniques: the
Schwarz Method, the Arlequin Approach and the Splice
Method. They have already been shown to be efficient for
static cases, and the research goal is to investigate their
performance for highly dynamic problems. The structure
of this paper is as follows: Sect. 2 presents the theoretical
review of the finite element method and the peridynamic
theory. Also it gives an overview to elastic wave charac-
teristic in both continuum mechanics and in peridynamics.
Section 3 is dedicated to detailed characterization of the
coupling methods. The 1D implementation of all coupling
approaches, parameter studies, and dynamic tests are pre-
sented in Sect. 4. Finally, the concluding remarks are given
in Sect. 5.
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2 Materials and methods
2.1 Continuum mechanics and FEM

The FEM is the most widely used method for the simula-
tion of structural problems in engineering. A distinctive fea-
ture of the finite element method is the division of a given
domain into a set of simple subdomains, called finite ele-
ments [39]. For arbitrary problems it is not possible to find
functions to describe the solution of the whole domain as in
the Ritz method [40].

Following [41] the dynamic equations of a continuum
can be derived using Hamiltons principle, which states that
the motion of the system in the time interval [¢;, t5] is such
that the variation of the action vanishes, i.e. the motion of
the system takes the path of stationary action as

2]

5/(L+W)dt:o, (1)

ty

where L represents the Lagrangian, and W the work of the
external forces. The Hamiltons principle is adapted in a way
that the Lagrangian includes in the mechanical case the
kinetic energy and the potential energy and can be deter-
mined as

1 .
L= /5 [puTu — eTO‘] dv, )
v

with the mass density p and the velocity field u. The exter-
nal work W done by external mechanical forces f related to
volumes (..)y, surfaces (..)s, and nodals (..); is given as

W= / ulfy dvV + / u’fs, dS; + ) ulf;. 3)
174 S1 i=1

With Hooke’s law

o=CF¢ “4)

and substituting the Equations (2) and (3) in Equation (1)
the Hamiltons principle is obtained in the following form

0=-— / [pou"ii + 6T CPe] AV + / su”fy dV +
v

Vv

/rSqusJ dS; + i&l?fﬁ (5)
i=1

Sy

where {i is the acceleration. Based on Equation (5) the finite
element equations can be derived. When using the finite
element approach a continuous body is approximated with

shape functions defined on a local domain (elements). The
displacements u(™ in an element can be expressed as

u™ (x) = N{™ (x)uy. (6)

N is an interpolation matrix which includes the shape
functions. uy is the displacement vector, m is the element
number and x = [z, z2, 3] is the position vector [40].
The mechanical strain is defined as ¢ = Du, where D is the
differential operator. With Equation (6) the element strain
can be derived directly as
£ (x) = DNI™ (x)uxy = BI™ (x)uy. (7)
If the approximation of the mechanical displacements Equa-
tion (6) and the strains Equation (7) is substituted in Equa-
tion (5) the equations are obtained as

ouk / N /)N AV + duk / B{™TCPBM™ dVuy
v v

®)

u

= ouk / NITRLAV + suf; / N Fg,dS; + ufNITF L,

S1

Equation (8) is valid for any arbitrary variation of the dis-
placements duy and thus yields

Mﬁ.N + KUN = fext . (9)

The abbreviations in common use are the mass matrix M,
the stiffness matrix K and the vector of the external mechan-
ical forces foxt.

In this paper a 1D problem is studied and the matrices for
one element are given as

M and K™ =

AL [ 10 ] Am) gm) [
- 2 01

il I B (L)
Let L(™ the element length, A(™) the truss cross-section
area and E(™) the Young’s modulus be the same for all ele-
ments. The lumped mass matrix is given in a diagonalized
form. Then, the whole finite element system of equation
can be determined by assuming that all elements have an
equal size with the length L and the sum of all nodal element
forces is equal to the external force. The system matrices for
constant properties are given as
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2.2 Peridynamics

The paper follows the assumptions and notations from [42].
Within the neighborhood H, with the volume V4, defined by
a spherical domain the horizon 4, the force volume density
state T for the bond interaction between the positions x and
x’ is defined as the integral balance of momentum

/H(I(X7 t){x —x) — T(x,t){x — x'))dVy + b = pil. (12)

Three variations of the peridynamic model are currently
being used, the Bond-based (BB), the Ordinary state-based
(OSB) and also the Non-ordinary state-based (NOSB) for-
mulation. In this order, flexibility increases, but so does also
the complexity of the formulations. In this paper the focus
is on BB, which can be interpreted as a non-local spring
formulation.

The equation of motion for the initially introduced BB
peridynamic theory is defined by

p(x)ﬁ(x7 t) = / fhond (X’7X7 t) dVvHX + b(X7 t), (13)

x

where fyond (%', X,t) = —fhond (X, X', t) is a pairwise force
function which represents the force that x’ exerts on x. In
order to assure the conservation of linear momentum, the
pairwise force function is anti-symmetric, [43]. The pair-
wise force function can be split into the two bond force den-
sities f(x’, x,¢) and f(x, x’, t) as

fbond (X’7 X, t) - f(X7 X77 t) - f(X7a X, t)a (14)
with
1
f(x,x’,t) ==fponda(x’,x,t) and f(x’,x,t)
2
) (15)
= - 7fbond(x77 X, t)

2
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Thus, the bond force densities are equal in magnitude but
opposite in direction. This is a crucial factor in the bond-
based theory. Both bond force densities can be expressed
as force vector states f(x,x’,t) =T (x’,t)(x —x’) and
f(x’,x,t) = T(x,t) (x’ —x). In order to incorporate the
properties that are crucial for bond-based peridynamics, the
force vector states are chosen of the form

y -y
[y’ =yl

1 y -y
-—_C .
2 (g)ly’fy\

T, ) (x — ) =5C(6)

and T(x,t)(x’—x)

(16)

Both force vector states are parallel to the relative position
vector of the material points in the deformed configuration.
Therefore the balance of angular momentum is satisfied
[42].

The micromodulus C'(§) in Equation (16) relates the bond
forcetothe bond stretch s(y’ — y, x’ — x) [44]. Asintroduced
in [43], the parameter can be chosen linearly dependent on
the stretch in the form C'(§) = ¢s(y’ — y,x’ — x). Here the
constant ¢ is a PD material parameter and s is defined as
follows:

G W=yl = ]
< —x

Thus, the force states in the bond-based theory can be
expressed in the form

1 T —
T(x,t) (x —x") =—cs y oy

2y -yl
_ }(,s, y =y
2y -yl

and T(x,t)(x’ —x)
(7

The limitation of BBPD is that the Poisson’s ratio is limited
in plane strain to i and for 3D and plane stress to % [45].
The constant ¢ is defined [46] as

2F

C1D :m; (18)
6F 6F

C2D—plstrs =m7 C2D—plstrn = m (19)

= OE 20

01— 2w)mot (20)

where A is the area, 4 the thickness, v the Poisson’s ratio and
E the Young’s modulus.
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2.3 Wave equation and characteristic
2.3.1 Elastic waves in classical elasticity

Assuming small deflections, the one-dimensional governing
equation of a string in classical elasticity has the form [47]:

2 2
9u _ i@’ 1)
otz v? ox?

where v? represents a phase velocity constant, that for lon-
gitudinal and transversal cases can be found as follows:

v2 = 22 and v2, = £ with X and p as Lame parameters.
) )

It is assumed that the wave propagates in a positive direc-
tion without distortion. Let’s consider an expression for the
longitudinal displacement of the form:

u(x, t) = AetFx—vt), (22)

with wave amplitude 4, that is independent of x and ¢. The
argument k(x — vt) is a phase of the wave. If u(x,t) is
periodic with wavelength A, then A = 27”, where k counts
the number of wavelength over the period 27. The circular
frequency is expressed as w = kv, which follows from the
representation of u(x, t). Phase velocity is detected from the
particle velocity and the maximum value of the ratio between

u and v be expressed as: (ﬂgjxgt) Jmax = Ak = 2w A/ A and
AJA < 1.

In linear continuum mechanics, the phase velocities of
traveling harmonic waves in 1D are independent of the
wavelength A. This means that short and long waves propa-
gate with the same phase velocity, leading to the system’s
nondispersive properties [48].

2.3.2 Elastic waves in bond-based peridynamics

If the system shows inelastic properties or nonlocality, the
dispersed behavior emerges. Consider a nonlocal 1D peri-
dynamic string and define a variable & as a vector between
two points inside the horizon: £ = x” — x. If small deforma-
tions are assumed, the equation of motion is reduced to the
following form:

dé+b(x,t).  (23)

+6 u(x — u\xX
pict) = [ c<£)(+f§|”

C(€) is a micromodulus. Following [49] and substituting
Equation (22) into Equation (23) it results in:

"+
Apizk,Z,UQeik(x—vt) — / C(f) Aeik(x—vt)(eik£ _ 1)d£ + b(x, t)

are 24)

Taking into account, that 7 is an imaginary unit and that time
and amplitude can be eliminated, the previous equation is
reduced to:

s 5
—pk*v? = /+ ¢ (cos(k€) —1)d€ + i /+ e sin(k€) dg. (25)

s ¢ s &l

The last integral is equal to zero, since sin k€ is an odd func-
tion, therefore:

2 [0 . 1-—cos(k 2 [0 k2R
o= [Ceo =M~ 2 Mo a o

1 é
= [ c(¢)u
P/{) (§)éd¢

It should be mentioned that the cos(k¢) function was approx-
imated by 1 — (k€)?/2 from Taylor’s expansion. Moreover,
the result corresponds to Young’s modulus in elasticity since
E =1/2 [,, C(&)|¢]d€ [49]. The limit of the expression by

& — 0 corresponds to the classical case where v = %

Another different examples of micromodulus functions and
their influence on elastic behavior were shown in [50-52].
However, in the present work, it is considered a uniform
micromodulus C(¢) = ¢. To determine the relation of phase
velocity to the horizon in bond-based PD the Equation (26)
is evaluated as follows:

2 5 ~52

v 4 / 1 — cos(k¢€) 5 €O
— ) = d¢ where vi=—
(UO) (kd)* Jo g ¢ 0 2p

@7

Thus, Fig. 1 displays the relation of normed phase velocity
to the ratio k6 /2w, which can be interpreted as a function
of the number of wavelengths per horizon. Since the previ-
ous equation gives the phase’s velocity in the square, the
solution of the equation has positive and negative roots. The
Fig. 1 shows the result with a positive root.

3 Coupling methods
3.1 Schwarz approach

The Schwarz domain decomposition is one of the oldest
domain decomposition methods, which was invented by
Hermann Amandus Schwarz in 1869. Since that time vari-
ous extensions and adaptations of this technique emerged.
These methods include, among others, The Schwarz Alter-
nating Method, and the Parallel Schwarz Method [53], the
Discrete Schwarz methods, the Additive Schwarz Method,
and also different types of optimized Schwarz methods [54].
In the paper at hand, our primary focus is on the Schwarz
Alternating Method.

@ Springer
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Fig. 1 Phase velocity for wave 1.2
propagation in one-dimensional
bond-based peridynamics vs in
classical elasticity

1 1 1 1 | 1 1

02 Local
——1D BB PD
0 1 1
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Q r, Q r,
Uy — Upp Upp—Ugg
Q Q
Upg Upp

Fig. 2 Domain decomposition in Schwarz Alternating Method with
information exchange through the boundaries I and I>. The choice
of boundary size is discussed in Sect. 4

This approach is chosen for its intuitive usability and
its documented linear convergence, as indicated by [55].
The method presents a fundamental idea for solving com-
plex problems by decomposing the whole domain into two
or more domains with some overlap. The solution is based
on an algorithm that solves the problem in one domain and
then moves to the next one, using the results of the previous
iteration, and so on.

The general solution algorithm is illustrated in Fig. 2. In
the following the coupling approach is presented for a one-
dimensional elasto-dynamic problem. One subdomain cor-
responds to a domain calculated with classical theory, while
the remaining part corresponds to a subdomain, calculated
using Peridynamic theory.

The entire domain is denoted as £2 C R*. The first sub-
domain is referred to as the Finite Element (FE) domain,
denoted as {2rg, while the second one concerns to the PD
domain, labeled as {2pp. The intersection of these two sub-
domains, which serves as the overlap between the FE and
PD sections, is given as {2, = {2pg N 2pp.

In the following the coupling procedure is presented in
detail. Both frameworks are coupled inapartitioned approach,

@ Springer

0.6 0.8 1.2 1.4 1.6 1.8 2

1
ké/2m

which means that they communicate and exchange informa-
tion just through the common boundaries. For the transition
region, only Dirichlet boundary conditions are considered,
meaning that only the displacement is to be transferred from
one subdomain to another. Using the notation of the inter-
faces I} = O2¢g N 2pp and I = O2pp N 2rg, wWhere
0{2 stands for the external boundary of the corresponding
region, the general algorithm of the Schwarz Alternating
Method can be shown as follows:

1. Set an initial displacement value uj% on the boundary
and solve for the subdomain with FE:

Miipg(x) + Kupg(x) = Fig,  Vx € Opg.

2. Transition between two different regions occurs by find-
ing the value:

upg(x) — upp(x), Vxe .

3. With obtained displacement values on the boundary
find the solution for the second PD subdomain {2pp:

piip(x) = > (ci si %v) +bpp, Vx€ Qpp ¢ .
PD y =y

4. Similar to the step before find the displacement value on
I'; and pass it to the another subdomain:

Upp(x) — upg(x), Vxe Ty
5. Find the solution for the domain 2gg:

6. Check whether the convergence is reached, where ¢ is a
predefined parameter:

upg(x) —upp(x) <&, Vxeln.
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i

Fig. 3 Domain decomposition in Arlequin Coupling method with
overlapping region, where the properties are weighted, dependent on
a function «(x)

7. Ifyes, go to the next time step n = n + 1.

3.2 Arlequin approach

The Arlequin Method is a computational technique that can
be used to bridge the gap between atomistic and continuum
theories in the context of modeling damage problems. The
main idea of the coupling [56] consist on the assumption
that the energy in the coupling region is distributed by using
a weighting function whose sums are equal to unity to con-
serve the local mechanical energies. In the overlapping area
domains are glued to each other to reach the proper material
behavior.

Let the general domain be divided into two sub-domains
that overlap (Fig. 3). The size of the overlapping region is
discussed below.

Let the sum of energies are written as bellow:

Hiot (UFE, UFE, UpD, UpD) = (X)HFE(UFE, UFE) (28)
+ (1 — a(x))Hep(urp, ipp).

The interface between domains should be well-balanced.

Thus the choice of weighting function «(x) [57] (Fig. 4) can

influence a material response in the coupling zone and play

a crucial role in determining how information is exchanged

between different models. Moreover, it is assumed that a.(x)
is a positive piece-wise continuous function satisfying the
following conditions:

1 Vx € pg N QO,
ax)=1¢ 0 Vx € £2pp N £2,, (29)
a(xe) Vx € (2,

From the energy conservation principle, we can depict the
total mechanical energy as sum of energies that is valid for
both the classical elasticity and the peridynamic theory:
Htot _ Wkin + Wint _ WeXt. (30)
From the first form of Hamilton’s principle for conserva-
tive systems, mentioned in Equation (1), a kinetic energy

of a moving system for both CE and PD can be expressed
as follows:

W = M2 .
VVIPUIID1 = pVQPD U'12:’D/2

The internal energy, which is the work done by the internal
forces has the form:

1
f/ €:odf?
2 QFE

(777 E)VQPD

Wint _
Wi =

And the work done by external forces can be calculated as
follows:

W = / upbd2
WED = uppb Vi,

Using displacements as the primary variable, we derive the
system of equations of motion from the system of energy
equations. More details can be found in [33].

To achieve compatibility between the two regions, addi-
tional constrains should be considered in the overlapping

Fig. 4 Different weighting 1 | |
functions «(x); top - piecewise . ,
constant; middle - piecewise linear; ! !
bottom - piecewise cubic 0 | |
1
| |
| |
0 QO
1 | I
'QFE | | 'QPD
I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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area. In the present study, we focus on the implementation
of the penalty-based Arlequin method.

The first step in achieving mechanical compatibility is to
ensure that the difference in the displacements are zero. So
consider the classical elasticity domain which is represented
through finite elements and the second region is descretized
using the meshfree PD method.

Let a set of constraint equations in the general case z(u)
consist of the displacement-dependent term Zu and a con-
stant term zg, which are always positive or zero, so that:

z(u) =79 + Zu = 0. 34

This equation is fulfilled when the constraints are satisfied
and the variation of a product reaches its minimum [40]:

8(2(1)Tz(u)) = 0. (35)

This results in the new functional:

1
= = L(x,u,t) + im/

‘QO

2% 2d 2, — Min, (36)

where L(x,u,t) is Lagrangian of the dynamic system and
the term « is the ’penalty parameter” that should also be a
positive and a large enough number. However, in the Arle-
quin framework it should be restricted to avoid negating
the energy partitioning effect. The solution will satisfy the
constrains only approximately depending on the selection
of the penalty term. The integral is calculated only in the
coupling area and solved points-wise [58]. It is assumed that
the reference PD points in the overlap domain are given, and
each of them should be coupled with a corresponding finite
element. Then the functional in (36) has the form:

F= l1'1TM1'J + %uTKu —ulF + %n(zo + Z0)T (29 + Zu). (37)

e

QFE QPD
# o o 0 0 o
® o 0 0 0 o
{ ® © 0 0 0 o

Fig. 5 Schematic illustration of Splice Coupling Method. Coupling
between FE and PD domains is occurred through coupled elements in
the interface and bonds, that connects PD points and FE nodes

@ Springer

In order to minimize the functional =, the partial derivative
should be calculated as:

0=
— =0, - Mi+(K+K,)u=F—-F,;

ou

K, = xkZ%'Z;

f, = kZ 2o, (38)

If the displacement constrains for the overlap region can be
described as:

Z=Upp — Upg = Upp — Z N(&)upg, (39)
2,

than the coupling matrix results in:

2 I Npp ug
K. | P = POl =0,
[uFE] " {N%ZD NgDNPD] [uFE:|

where I is a identity matrix, Npp is a shape function applied
on the peridynamic point to determine its position inside the
finite element.

This all can be summarized to a system of coupled
equations:

oo | | e |+ [ o || ]

upp | _ aFpg
+K. { uly } - [ (1 - a)bpp ]

(40)

It should be noted that the governing system of equations
of FEM and PD differ in dimension by a certain factor.
This problem can be overcome without loss of accuracy
by multiplying the FE part by the volume of the finite ele-
ment. In summary, the coupled problem to be solved looks
as follows:

;Mg Upg n v; Kre upg
(I=a)pep | | tpp (1—a)fpp | | uep

+K. [ upy, ] — [ ( v Fre ]

U 1 —a)bpp

(41)

3.3 Splice Method

The method was first presented in 2016 by [25] as a practical
coupling approach for static problems. The central concept
is to divide the entire domain into two parts: one discretized
with finite elements (FE) and the other with peridynamic
(PD) points, ensuring that they do not overlap (Fig. 5).

The main idea of the coupling method is that PD points,
that located near the coupling boundary, can ’see” the FE
nodes through a defined horizon §. The PD points, that are
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close to the coupling interface have not only other PD points
in their non-local neighborhood, but also FE nodes inside.
Consequently, they have non-local interactions with all of
them, thereby completing the non-local neighborhood of the
PD points.

In the finite element framework, nodes interact only with
their direct neighbors and this continues until the last ele-
ment, that would consists of both FE nodes and PD points.
Let these elements be called coupled elements. The coupled
elements exhibit the properties of both fields, which is also
reflected in the construction of the stiffness matrix.

In the above-mentioned paper, the linearized version of
peridynamics is employed, which allows the decoupling of
stiffness and displacement components from internal bond
force density in Equation (17). By the assumption of small
deformation: |n| < 1, the second-order micromodulus
tensor C is given by: C = g—f?((),ﬁ) [8]. This formulation
enables to assemble the stiffness matrix for peridynamics.
To couple two domains, it is necessary to create a global
FEM-PD stiffness matrix by assembling and combining the
individual matrices corresponding to their respective global
points.

It can be noticed that the global stiffness matrix is non-
symmetric since the number of non-diagonal terms for PD
nodes exceeds that for FEM nodes. This approach can also
be applied to dynamic analysis to assemble a global mass
matrix. The further works by [59] and [60] provide more
detailed information regarding the coupling procedure.

4 Numerical results

The comprehensive review of different FEM—PD coupling
methods with verification on static cases has already been
presented in [61]. Many of these methods demonstrate
promising results and show good agreement with the refer-
ence solutions. However, static analyses alone do not pro-
vide sufficient information on the quality of the coupling
schemes, since the main field of application for coupled
FEM-PD approaches lies in dynamic fracture.

When a crack initiates and propagates under load, high—
frequency waves are generated as a result of the fracture

Fig. 6 Two benchmark tests to

process. Therefore, this study focuses particularly on the
dynamic behaviour of coupled systems. As demonstrated in
Sect. 2.3, elastic waves in classical elasticity and in peridyn-
amics show different characteristics. Unlike in the classical
case, peridynamic waves display dispersive behavior. It is
proposed that the wave parameters and numerical values

kS

be selected so that in the PD case (Fig. 1), the value 5~

approaches zero, thereby approximating the classical case.

To validate the coupling methods, we consider two
benchmark tests (Fig. 6) and compare the results against
both numerical FE and PD reference solutions.

Free vibration test: Consider an elastic one-dimensional
bar with a constant cross-section area A = 4 - 1078 m? and
a length L = 1 m that is fixed at x = 0 and initially pre-
strained so that the bar has a homogeneous deformation: at
t =0, u(x,tg) = Fug (Fig. 6a). The bar is released at time
t > 0, and free vibrations occur. The material constants of
the bar are £ = 10° Pa, v = 0.25 and p = 7800 kg/m3.
For the reference FE solution the bar discretizes with the
element size Axpg = 1-1073 m, while the PD numeri-
cal parameters are: Axpp =2- 107* m and horizon
§ = 3.015 Axpp = 6.03 - 10~% m. The time domain param-
eters are chosen as At = 1.5- 1077 sand tepq = 1.3 - 1073
.

Since the PD equation of motion does not contain a spa-
tial derivative of displacement, no natural boundary condi-
tions arise when deriving the equilibrium equation. So the
choice of PD boundary conditions needs to be clarified. For
the fixed left side of the bar, the additional fictitious domain
with size of 3Axpp is modeled, where the displacement
u =0 is applied. To all the real points where x # 0 and
t = 0 the prescribed displacement u(x, ¢g) is applied. Also,
the volume correction strategy from [7] is used to improve
the inaccuracies in PD numerical integration.

Figure 7 displays the displacement over the time of the
last point of the bar at x = L for both FE and PD solu-
tions. The plot is enlarged around the time ¢ = 0.005 s and
t = 0.011 s. As expected, the difference between the solu-
tions is negligibly small, since the PD solution converges to
classical elasticity by 6 — 0 [62].

Wave propagation test. Consider an elastic one-dimen-
sional bar withaconstant cross-sectionarea A = 1 - 1076 m?
and a length L =5 m (Fig. 6b). It is fixed at x = 0 and

validate the coupling methods (a)

()

UO(X, tO)
______________ '
u(x, t)
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Fig. 7 Comparison of FE and PD solutions in a free vibration test. The enlarged displacement in point x = L around the time at = 0.005 s and

bt = 0.011s

exited with a prescribed displacement at x = L. As a pre-
scribed displacement wave the sine type wave is chosen:
u(L,t) = Ay sin(f,t — m/2) + ¢ with the following param-
eters: A1 =0,51074m, ¢c; =0.5107* m, f, = 79,5 Hz.
The material constants of the bar are F = 10° Pa, v = 0.25
and p = 7800 kg/m?>.

For PD boundary conditions on the left side of the bar,
an additional fictitious region of a size 3Axpp is modeled,
where the displacement is set to zero u = 0. The displace-
ment wave is applied over the time on the last real node at
x = L. To improve the numerical integration, the volume
correction schema is used as in a previous test. For the refer-
ence FE and PD solutions, the following numerical param-
eters are chosen: Axpg = 3.3-1072 m, Axpp =1-1073
m, § = 3.015 Axpp, At =2.7-1077 s, teng = 1.4- 1073
.

Figure 8 shows the wave at t=6.8-10"° s and
t = 1.2- 1073 s. The wave moves from the right side of the

@ Springer

bar to the left. The plot is enlarged to analyze the differ-
ence between the solutions. As expected, the disagreement
is negligibly small, and the PD converges to the FE solution
with current numerical variables. Therefore, for analyzing
the coupling strategies, only the PD solution is used as a
reference.

4.1 Arlequin coupling case
4.1.1 Free vibration test

Very often, the effectiveness of numerical methods depends
on choosing the right parameters. Figure 9 shows the dis-
placement of the last point of the bar over time, calculated
with Arlequin method in comparison with the pure PD case
(upper plot). Figure 9a-c displays the parameter study for
Arlequin coupling at close near t = 5.6 - 1073 s. The mesh
density study is conducted to evaluate the convergence rate
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Fig. 8 Comparison of FE and PD solutions in a wave propagation test. Displacement of a bar att = 6.8 - 10™® sand t = 1.2 - 103 s for a sine-

type wave

and to compare the performance with other coupling meth-
ods. From this study, it can be observed that the highest
accuracy with respect to the reference solution is achieved
when the grid spacing is reduced to Ax = 2 - 10~* m.

The influence of penalty parameters is illustrated in plot
(b). If it is chosen too small, numerical errors may occur
in the solution [40]. However, revealing a general rule for
selecting an appropriate parameter remains a challenging
problem. The coupling properties theoretically improve as
the parameter « increases. However, its value is numerically
limited [33]. Choosing « too large can result in numeri-
cal instability as the determinant of the stiffness matrix
approaches zero. Based on the analysis of three cases, it’s
evident that improving x to the value 10° leads to a good
agreement with the PD case.

Furthermore, the size of the overlapping area is investi-
gated in Fig. 9c with one element in the overlap zone, three

elements corresponding to the approximate value of the
horizon, and six elements as the value of two horizons. All
three solutions yield similar results, so the parameter study
should be continued by another test configuration.

4.1.2 Wave propagation test

Figure 10 shows the displacement at ¢t = 6.8 - 1075 s and
t =1.2-1073 s, which corresponds to the time before and
after passing the coupled region. The black vertical line
matches the transition from the FE part (left) to the PD
(right). To analyze the convergence to the reference solution,
the plots of the displacement around the main wave and the
remaining part at t = 1.2 - 1072 s are enlarged. The plot in
Fig. 10a corresponds to the enlarged displacement of a bar.
A coarse mesh causes a lag in wave propagation, as detailed
in graph (b). Here, the left part of the bar is enlarged, and
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Fig. 9 A case study in a free vibration test for Arlequin coupling case vs reference peridynamic solution for displacement in the point x = L over
time: a mesh density study; b penalty number study; ¢ size of overlapping area study

one can note that by passing a coupled interface, the part of
the main wave reflects and travels in the opposite direction.
The reflected wave has the same speed and frequency as the
main one. By reducing the grid size, the reflection decreases
to the amplitude value of ~ 3.9 - 10~ m. One can mention,
that the amplitude of the reflected wave is insignificant small
in comparison to the main wave amplitude (= 0.004% ).
Analyzing the size of the overlapping region (Fig. 11a), it
can be seen that an increase of the overlapping zone leads
to a disturbance between local and non-local parts of the
bar, resulting in an increase in the amplitude of the reflected
wave. Additionally, three « values have been considered
(Fig. 11b). In conclusion, the careful choice of numerical
parameters made the reflected wave minimal, so it is not
visible and practically can be neglected.
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4.2 Schwarz coupling case
4.2.1 Free vibration test

The Schwarz coupling method, a well-established tech-
nique, may need some adjustments when coupled with a
non-local domain. Specifically, the selection of boundary
interfaces 17 and I'» (Fig. 2) deserve special attention. This
is because the material point in the PD interacts with other
points through a horizon, potentially transforming the inter-
faces into boundary domains that are several layers thick.

Let us consider five possible configurations to calibrate
the Schwarz procedure:

Case 1: Interfaces I and I are one element thick:

Fl = FQ = AX;

Case 2: Interfaces I is one element thick, while 15 has
thickness of horizon:

Fl = AX, FQ = (5;
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— Case 3: I has thickness of horizon, while interface I
is one layer thick:

Fl = (5, FQ = AX;
— Case 4: Both domains have thickness of horizon:
I'=1,=4;

— Case 5: Both domains have thickness of two horizons:
I =15=26.

Consider a 1D bar with the geometry and material param-
eters from the Sect. 4.1.1. The grid spacing for both PD and
FEM domains are the same: Ax = 1.43 - 10~* m. The criti-
cal time step is At = 2.5- 1077 s.

Figure 12 (upper plot) shows displacement of the last
point of the bar over time for all five Schwarz cases with
a comparison of the pure PD solution. It’s clear that both
Case 1 and Case 2 give a non-physical response, indicating

that the solution is insensitive to the choice of I thick-
ness, which is not the case for boundary domain 77. It is
to consider further analyzing case 3,4,5 in the present test
configuration.

For the detailed analyses of the remaining cases, the dis-
placement is enlarged, as it is shown on the upper plot. It
is important to notice, that the solutions of the remaining
Schwarz cases fluctuate around the reference PD solution -
plots (a) and (b). The closest the PD solution has the Case 5.
Since the Cases 1 and 2 give the nonphysical results, just the
remaining Schwarz Cases are considered further.

4.2.2 Wave propagation test

Figure 13 shows the wave before and after passing the cou-
pling region, the wave moves from the right side of the bar
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for Cases 3,4,5; b enlarged displacement around a bottom chosen rect-
angle for Cases 3,4,5
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to the left. The time step is chosen as At = 1.6- 1077 s.
One can mention that there is no visible reflection from the
coupling zone, so the displacement on the right side of the
bar at time t = 1.2 - 1073 s needs to be enlarged.

Figure 13adisplays the grid density study for the Schwarz
Case 3 to investigate the convergence speed. With the grid
spacing Ax = 5 - 1072 m, parasite vibrations appear. How-
ever, when the grid distance is Ax = 7.1 - 1074 m the dis-
placement line appears smooth without additional numerical
perturbations. The amplitude of the reflected wave remains
constant, independent of mesh density, which is not the case
in the Arlequin method. Nevertheless, the reflected ampli-
tude value = 4 - 10~ m ( 0, 004% of the main amplitude) is

relatively small and produces a comparable result with the
previous method.

Figure 13b presents the reflected wave for Cases 3,4 and
5 and it can be mentioned that there is no noticeable dif-
ference is detected between all of them. The explanation
could be as follows: both interfaces are used for transmitting
information between two independent domains. When the
local domain transmits information, it only needs for infor-
mation to be "local", whereas the non-local domain should
transmit “non-local” information, meaning that a boundary
region should have a thickness at least equal to the horizon.
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4.3 Splice coupling case
4.3.1 Free vibration test

Figure 14 shows the solution of the Splice coupled method
in comparison to the PD. Unlike to other methods, the Splice
method doesn’t have any additional numerical parameters
to investigate, except mesh density. Thus the displacement
around t =5.6-10"% s and t = 2.2-1072 s is enlarged
for close consideration. It is to mention, that the solution
oscillates around the reference PD case and the decrease of
mesh density from Ax =5-10"* mto Ax = 2.5-10"*m
doesn’t bring any significant difference in the amplitude of
this oscillations.

4.3.2 Wave propagation test

As before, the test configuration was taken from the
Sect. 4.1.2. One can mention no reflected wave on the right

part of a bar on the Fig. 15. The enlarged displacements on
the left (plot (a)) and on the right part of the bar (plot (b))
show slightly difference by reducing the mesh density to
Ax =5-10~* m. Again the solution oscillates around the
reference PD case, but decreasing the grid size leads to min-
imization of the amplitude of oscillation as well as slightly
reduction of reflected wave amplitude. The amplitude of the
reflected wave results in = 0.65 - 10~° m, that corresponds
to 0.00065% of the main wave amplitude.

5 Conclusions

The study explored the effectiveness of the Arlequin,
Schwarz and Splice coupling methods in simulating the
dynamic response of a one-dimensional bar subjected to
free vibration and wave propagation tests. The results lead
to several conclusions.
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over time: a enlarged displacement around left chosen rectangle for
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mesh density study; b enlarged displacement around right chosen rect-
angle for mesh density study
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The Arlequin Method demonstrated high accuracy when
the mesh density and penalty parameters were appropri-
ately selected. The displacement results closely matched
the reference peridynamic (PD) solutions when a fine mesh
density (Ax =2-10"* m for free vibration test) and an
optimized penalty parameter (k = 10°) were used. It was
observed that an incorrect selection of these parameters
could lead to significant numerical errors and interpenetra-
tion issues. The method showed good convergence to the
reference solution in the wave propagation test as well. The
optimal configuration effectively minimized the amplitude
of the reflected wave, confirming the method’s robustness in
handling dynamic crack propagation simulations.

Considering the Schwarz Method, it requires careful
selection of boundary interfaces to ensure accurate results.
Case 5 ( [} = I'; = 26) provided the closest match to the
PD solution, while cases with thinner boundary interfaces
resulted into larger errors or non-physical responses. This
indicates that the method’s effectiveness is highly sensitive
to the chosen boundary configuration. Similar to the Arle-
quin method, the Schwarz Method achieved satisfactory
results in the sine-type wave propagation test. Cases 3,4
and 5 provided the reliable results, with minimal amplitude
of reflected waves, comparable to the Arlequin Method.
The mesh density had a noticeable impact on the presence
of numerical perturbations, with finer meshes producing
smoother displacement profiles.
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The Splice Method is intuitive clear and easy for numeri-
cal implementation. It has an advantage, that there is no
numerical parameters to calibrate. The method showed
a good convergence to the reference PD solution for both
free vibration and wave propagation tests. Nevertheless, a
numerical effect has been notices, that the coupled solution
oscillates around the reference one. The decrease of grid
size has an influence on the amplitude of this oscillations,
but they cannot be completely eliminated.

The mesh density study was conducted to determine
which method converges faster to the reference solution.
It can be observed that the Schwarz method exhibits faster
convergence in the wave propagation test, whereas the
Splice method performs better in the vibration analysis.

Overall, all of the coupling methods demonstrated strong
potential for accurate dynamic simulations, provided that
specific parameter configurations were used. The Arlequin
method proved effective with a well-chosen penalty param-
eter and mesh density, while the Schwarz method showed
sensitivity to boundary interface selection. The Splice
Method is independent from numerical parameters, but the
solution exhibited slight fluctuations, that could possibly
have an effect in 2D or 3D analysis.

The pure PD model exhibites inherent dispersive charac-
teristics. These characteristics influenced the accuracy and
stability of the coupled simulations. While all the coupling
methods managed to achieve satisfactory results, there were
discrepancies when compared to the finite element method
(FEM) solutions. These discrepancies highlight the chal-
lenges in perfectly matching the non-local PD model with
the local FEM model.

Further investigation into the dispersive properties of
PD and their impact on coupled simulations would help in
achieving a more seamless integration with FEM, ensur-
ing improved accuracy, stability and applicability of these
methods in complex dynamic scenarios.

Acknowledgements The project is funded by the Deutsche Forschun-
gsgemeinschaft (DFG, German Research Foundation) under the Proj-
ect GA480/16-1 (No 456427423). This financial support is gratefully
acknowledged.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright

@ Springer

holder. To view a copy of this licence, visit http://creativecommons.o
rg/licenses/by/4.0/.

References

1. Cherepanov GP (1974) Mechanics of brittle fracture (Mekhanika
khrupkogo razrusheniya). Nauka, Moskow

2. Belytschko T, Moes N, Doldow J (1999) A finite element method
for crack growth without remeshing. Int J Numer Meth Eng
46(1):131-150

3. Scheider I, Cornes A, Schwalbe K-H (2009) The siam method for
applying cohesive models to the damage behaviour of engineer-
ing materials and structures. GKSS-Forschungszentrum Gees-
thacht GmbH (Germany)

4. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM
(2012) A phase-field description of dynamic brittle fracture.
Comput Methods Appl Mech Eng 217:77-95

5. Zhou SJ, Lomdahl PS, Thomson R, Holian BL (1996) Dynamic
crack processes via molecular dynamics. Phys Rev Lett
76(13):2318-2321

6. Abraham F, Brodbeck D, Rudge W (1996) A molecular dynam-
ics investigation of rapid fracture mechanics. ] Mech Phys Solids
9:1595-1619

7. Bobaru F, Foster JT, Geubelle PH, Silling SA (2015) Handbook
of peridynamic modeling. Modern mechanics and mathematics.
Taylor and Francis, NY

8. Silling SA (2000) Reformulation of elasticity theory for disconti-
nuities and long-range forces. ] Mech Phys Solids 48:175-209

9. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridyn-
amic states and constitutive modeling. J Elast 88(2):151-184

10. Weckner O, Askari A, Xu J, Razi H, Silling S (2007) Damage and
failure analysis based on peridynamics - theory and applications.
In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural
dynamics, and materials conference, Reston, Virigina, 04232007.
American Institute of Aeronautics and Astronautics

11. Yolum U, Gok E, Coker D, Guler MA (2018) Peridynamic mod-
elling of delamination in dcb specimen. Procedia Struct Integrity
13:2126-2131

12. Mitts C, Naboulsi S, Przybyla C, Madenci E (2020) Axisym-
metric peridynamic analysis of crack deflection in a single strand
ceramic matrix composite. Eng Fract Mech 235:107074

13. Rédel M, Willberg C, Krause D (2019) Peridynamic analysis of
fibre-matrix debond and matrix failure mechanisms in composites
under transverse tensile load by an energy-based damage crite-
rion. Compos B Eng 158:18-27

14. Silling SA, Askari A (2004) Peridynamic modeling of impact
damage. Problems involving thermal hydraulics, liquid sloshing,
and extreme loads on structures, pages 197-205

15. Ren B, Song J (2022) Peridynamic simulation of particles impact
and interfacial bonding in cold spray process. J Therm Spray
Technol 31(6):1827-1843

16. Oterkus E, Guven I, Madenci E (2012) Impact damage assess-
ment by using peridynamic theory. Open Eng 2(4):523-531

17. Hesse J-T, Willberg C, Hein R, Winkelmann F (2023) Peridyn-
amic framework to model additive manufacturing processes.
PAMM 23(4):¢202300033

18. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics
review. Math Mech Solids 24(11):3714-3739

19. Zhanping X, Zhang G, Chen Z, Bobaru F (2018) Elastic vortices
and thermally-driven cracks in brittle materials with peridynam-
ics. Int J Fract 209(1-2):203-222

20. Wang B, Oterkus S, Oterkus E (2021) Thermal diffusion anal-
ysis by using dual horizon peridynamics. J Therm Stresses
44(1):51-74


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Computational Mechanics

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Agwai A, Guven I, Madenci E (2011) Crack propagation in mul-
tilayer thin-film structures of electronic packages using the peri-
dynamic theory. Microelectron Reliab 51(12):2298-2305

Qi J, Li C, Tie Y, Zheng Y, Cui Z, Duan Y (2024) A peridyn-
amic-based homogenization method to compute effective prop-
erties of periodic microstructure. Computat Particle Mech
11(3):1391-1401

Diana V, Bacigalupo A, Lepidi M, Gambarotta L (2022) Aniso-
tropic peridynamics for homogenized microstructured materials.
Comput Methods Appl Mech Eng 392:114704

Cavuoto R, Deseri L, Fraldi M (2024) Effects of a nonlocal micro-
structure on peeling of thin films. Meccanica 59(8):1269-1283
Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An
effective way to couple fem meshes and peridynamics grids for
the solution of static equilibrium problems. Mech Res Commun
76:41-47

Mossaiby F, Sheikhbahaei P, Shojaei A (2022) Multi-adaptive
coupling of finite element meshes with peridynamic grids:
robust implementation and potential applications. Eng Comput
39:2807-2828

Liu W, Hong J-W (2012) A coupling approach of discretized
peridynamics with finite element method. Comput Methods Appl
Mech Eng 245-246:163-175

Yue Yu, Bargos FF, You H, Parks ML, Bittencourt ML, Karnia-
dakis GE (2018) A partitioned coupling framework for peridyn-
amics and classical theory: analysis and simulations. Comput
Methods Appl Mech Eng 340:905-931

Seleson P, Beneddine S, Prudhomme S (2013) A force-based cou-
pling scheme for peridynamics and classical elasticity. Comput
Mater Sci 66:34—49

Lubineau G, Azdoud Y, Han F, Rey C, Askari A (2012) A morph-
ing strategy to couple non-local to local continuum mechanics. J
Mech Phys Solids 60(6):1088—1102

Serge Prudhomme H, Ben Dhia PT, Bauman NE, Oden JT (2008)
Computational analysis of modeling error for the coupling of
particle and continuum models by the Arlequin method. Comput
Methods Appl Mech Eng 197(41-42):3399-3409

Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of
peridynamics and classical elasticity for elastodynamic problems.
Comput Methods Appl Mech Eng 344:251-275

Pernatii A, Gabbert U, Naumenko K, Hesse J-T, Willberg C
(2023) A penalty method for coupling of finite-element and peri-
dynamic models. PAMM 22(1):035414

Pernatii A, Gabbert U, Hesse JT, Willberg C (2023) A fem-pd
coupling based on Arlequin approach to impose boundary condi-
tions in peridynamics. PAMM 23:¢202300176

Qiang D, Li XH, Jianfeng L, Tian X (2018) A quasi-nonlocal cou-
pling method for nonlocal and local diffusion models. SIAM J
Numer Anal 56(3):1386-1404

Jiang F, Shen Y (2022) A quasi-nonlocal coupling method for
bond-based peridynamics with classical continuum mechanics.
Eng Comput 39(2):554-573

To AC, Li S (2005) Perfectly matched multiscale simulations.
Phys Rev B 72(3):035414

Sun B, Li S, Quan G, Jinping O (2019) Coupling of peridynamics
and numerical substructure method for modeling structures with
local discontinuities. Comput Model Eng Sci 120(3):739-757
Reddy JN (1993) An introduction to the finite element method.
McGraw-Hill Education, New York

Zienkiewicz OC, Taylor RL (2000) The finite element method:
the basis, vol 1. Butterworth-Heinemann, Oxford, UK

Willberg C (2013) Development of a new isogeometric finite ele-
ment and its application for Lamb wave based structural health

42.

43.

44,

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

monitoring. VDI Verlag, ISBN: 978-3-18-344620-9, Diisseldorf,
fortschrit edition

Silling SA, Epton M, Olaf Weckner JX, Askari E (2007) Peridyn-
amic states and constitutive modeling. J Elast 88:151-184
Silling SA, Askari E (2005) A meshfree method based on
the peridynamic model of solid mechanics. Comput Struct
83(17-18):1526-1535

Madenci E, Oterkus E (2014) Peridynamic theory and its applica-
tions, vol 1. Springer, New York

Trageser J, Seleson P (2020) Bond-based peridynamics: a tale of
two poisson’s ratios. J Peridyn Nonlocal Model 2(3):278-288
Huang X, Bie Z, Wang L, Jin Y, Liu X, Guoshao S, He X (2019)
Finite element method of bond-based peridynamics and its abaqus
implementation. Eng Fract Mech 206:408-426

Graff K (1975) Wave motion in elastic solids. Dover Publications,
New York

Achenbach JD (1975) Wave propagation in elastic solids. Else-
vier, Amsterdam

Bazant ZP, Luo W, Chau VT, Bessa MA (2016) Wave dispersion
and basic concepts of peridynamics compared to classical nonlo-
cal damage models. J Appl Mech 83(11):111004

Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Jifeng X
(2009) Convergence, adaptive refinement, and scaling in 1d peri-
dynamics. Int J Numer Meth Eng 77(6):852-877

Zhiyong Chen J, Woody J, Guoshao S, Huang X, Li S, Zhai L
(2019) Influence of micro-modulus functions on peridynamics
simulation of crack propagation and branching in brittle materi-
als. Eng Fract Mech 216:106498

Naumenko K, Yang Z, Ma C-C, Chen Y (2023) Closed-form
series solutions to peridynamic rod equations: influence of kernel
function. Tech Mechanik - Eur J Eng Mech 43(2):259-270
Keyes DE (ed) (1997) Parallel numerical algorithms. ICASE /
LaRC interdisciplinary series in science and engineering, vol 4.
Springer, Dordrecht

Gander MJ (2006) Optimized Schwarz methods. SIAM J Numer
Anal 44(2):699-731

Gander MJ (2008) Schwarz methods over the course of time.
Electron Trans Numer Anal 31:228-255

Dhia HB (1998) The arlequin method: a partition of models for
concurrent multiscale analyses. Comptes Rendus de 1I’Académie
des Sciences, pages 1-3

Hashmi Ben Dhia and Guillaume Rateau (2005) The arlequin
method as a flexible engineering design tool. Int J] Numer Meth
Eng 62(11):1442-1462

Gabbert U (1982) Beriicksichtigung von zwangsbedingungen
in der fem mittels der penalty-funktion-methode. Tech Mech
4(2):40-46

Zaccariotto M, Tomasi D, Galvanetto U (2017) An enhanced cou-
pling of pd grids to fe meshes. Mech Res Commun 84:125-135
Ongaro G, Seleson P, Galvanetto U, Ni T, Zaccariotto M (2021)
Overall equilibrium in the coupling of peridynamics and clas-
sical continuum mechanics. Comput Methods Appl Mech Eng
381:113515

D’Elia M, Li X, Seleson P, Tian X, Yu Y (2022) A review of local-
to-nonlocal coupling methods in nonlocal diffusion and nonlocal
mechanics. J Peridyn Nonlocal Model 4:1-50

Nishawala VV, Ostoja-Starzewski M (2017) Peristatic solutions
for finite one- and two-dimensional systems. Math Mech Solids
22(8):1639-1653

Publisher's Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	﻿Coupling of peridynamics with finite elements: a case study
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Materials and methods
	﻿2.1﻿ ﻿Continuum mechanics and FEM
	﻿2.2﻿ ﻿Peridynamics
	﻿﻿2.3﻿ ﻿Wave equation and characteristic
	﻿2.3.1﻿ ﻿Elastic waves in classical elasticity
	﻿2.3.2﻿ ﻿Elastic waves in bond-based peridynamics


	﻿﻿3﻿ ﻿Coupling methods
	﻿3.1﻿ ﻿Schwarz approach
	﻿3.2﻿ ﻿Arlequin approach
	﻿3.3﻿ ﻿Splice Method

	﻿﻿4﻿ ﻿Numerical results
	﻿4.1﻿ ﻿Arlequin coupling case
	﻿﻿4.1.1﻿ ﻿Free vibration test
	﻿﻿4.1.2﻿ ﻿Wave propagation test


	﻿4.2﻿ ﻿Schwarz coupling case
	﻿4.2.1﻿ ﻿Free vibration test
	﻿4.2.2﻿ ﻿Wave propagation test

	﻿4.3﻿ ﻿Splice coupling case
	﻿4.3.1﻿ ﻿Free vibration test
	﻿4.3.2﻿ ﻿Wave propagation test

	﻿﻿5﻿ ﻿Conclusions
	﻿References


