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is known in advance at the current state, which is usually 
not the case, especially in analyzing highly dynamic crack 
propagation in complex system configurations. There are 
some applications of molecular dynamics [6] to investigate 
the fracture processes. For this purpose, the body should 
either be represented by millions of atoms to model a struc-
ture with properly large dimensions or should be up-scaled 
to a lower-resolution model [7]. Also, non-local models are 
mesh-sensitive and require much higher resolution than 
regular approaches. This increases the computational efforts 
significantly.

Peridynamics has emerged as an effective theory for 
studying dynamic fracture problems. Here, internal forces 
are represented by non-local interactions that occur between 
pairs of material points distributed throughout a continu-
ous body. The radius of the non-local neighborhood defines 
the grade of non-locality, called the horizon δ. After the 
first publication of Silling [8] regarding peridynamics, the 
theory has experienced significant improvement. The state-
based peridynamics [9] was introduced as a reformulation 
of bond-based peridynamics to address limitations related 
to Poisson’s ratio. In this formulation, the term "state" 
replaces "bond," emphasizing that the response of a mate-
rial point depends on the deformation of all the bonds asso-
ciated with it. The peridynamic theory has already found 
a wide range of applications. It enables the simulation of 
crack initiation and its propagation, providing an accurate 

1  Introduction

The solution to damage problems are particular important, 
especially in developing secure and reliable systems and 
structures. The existing damage theories can be generally 
divided into two groups: local and non-local approaches, 
depending on the range of internal forces. Local theories, 
like classical continuum damage mechanics [1] and its rep-
resentation in the Extended Finite Element Method (XFEM) 
[2] often struggle in capturing long-range effects and ignore 
the non-local character of damage processes, which leads 
to inaccuracies. Non-local theories, for instance, are the 
cohesive zone model [3], the phase-field methods [4], the 
molecular dynamics approaches [5] etc. However, apply-
ing the cohesive zone model assumes that the crack path 
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result for the crack propagation speed [10]. Furthermore, 
peridynamics can also handle the simulation of damage 
processes in composites, such as delamination [11], matrix 
cracking [12], fibre-matrix debond and matrix failure [13], 
that could be used in aerospace and civil engineering mate-
rials research. The theory could also yield accurate results 
for high-velocity impact and penetration problems, which 
could later be applied in defense and aerospace engineer-
ing, as seen in [14, 15], and [16]. Moreover, frameworks 
have been developed for analyzing additive manufacturing 
processes [17] as well as the damage issues arising from 
them [18]. Additionally, peridynamics has been utilized in 
coupled formulations for multi-field problems, such as heat 
transfer [19], diffusion [20] and electronics [21]. One can 
observe the application of peridynamics to micromechani-
cal problems. The homogenization modeling provided by 
[22] and [23] shows the potential of peridynamics on the 
micro-level through peridynamic micro–macro correspon-
dence schemes. The detailed examination of thin films peel-
ing [24] shows the non-local response of the peeled layer, 
offering valuable insights for investigating adhesive joints 
and determining critical peeling forces. While peridynam-
ics demands less computational effort than some damage 
theories, which give similar accuracy regarding fracture, the 
processing time is still less efficient compared to classical 
computational methods.

FEM theory is wide-used in structural mechanics, but 
has limitations by dealing with fractures. The approach uses 
the partial differential equation to describe the relationship 
between external loads b, inertia loads ρü, and the forces in 
the body, where the mechanical stresses σ are determined by 
spatial derivatives of the displacements u. As the derivative 
at the crack tip is not defined, one can define a critical stress 
value and after that switch to the classical fracture mechan-
ics [7]. A coupling of PD and FEM may have good poten-
tial in solving dynamic fracture problems and overcoming 
the disadvantages of both methods at the same time. The 
damage-free domain is supposed to be modeled with FEM, 
while a zone where the damage is presented or expected is 
modeled through PD points. This could lead to a decreas-
ing of computational time without loss of accuracy. The 
Splice Method [25] can be mentioned among existing cou-
pling methods. The coupling is achieved by considering that 
peridynamic points can “see” through a horizon δ finite ele-
ments, and these connections are enough to achieve a cou-
pling. Because of the relative simplicity of implementation, 
there is also the possibility of developing a multi-adaptive 
approach [26] with an adaptive changing interface between 
the domains dependent on crack growth. Another method 
proposes to bridge two subdomains by introducing a special 
transition element [27]. Such direct coupling leads to devia-
tions, as shown in the results. The partitioning procedure by 

using, for example, the Schwarz method [28] is a relatively 
simple and efficient technique. The main advantage is that 
it allows to couple two black-box solvers by defining con-
straints on the common interface.

The approach presented in [29], proposes to achieve the 
coupling by force blending in the overlapping area. The 
implemented method is presented in 1D static cases. Never-
theless, a noticeable error is present. A similar idea is dem-
onstrated by the morphing strategy [30] to couple local and 
non-local methods. The coupling is performed through a 
transition region, where the gradient of the material param-
eters is defined by a morphing function.

Some methods ensure the mechanical compatibility of 
domains of different nature on the energy scale. Among 
them are the Arlequin Method [31], its adaptation for cou-
pling of Classical Elasticity (CE) and PD [32] and further 
developments [33, 34] in considering the static and dynamic 
cases and wave propagation problems. The quasi-nonlocal 
method [35] is also an energy-based approach that recon-
structs the non-local interactions for a subregion with local 
interactions for 1D problems. However, the technique is dif-
ficult to apply for higher dimensional cases. Its improve-
ment [36] proposes a reconstructed energy functional with 
a modified elasticity tensor, which allows the specification 
of the range of validity of non-local forces. The multiscale 
method by [37] combines bridging scale and perfectly 
matched layer approaches to eliminate artificial reflec-
tions and reduce impedance at the interface. Another cou-
pling method [38] between PD and numerical substructure 
method integrates PD part by using interface elements with 
embedded PD nodes.

The present paper studies three coupling techniques: the 
Schwarz Method, the Arlequin Approach and the Splice 
Method. They have already been shown to be efficient for 
static cases, and the research goal is to investigate their 
performance for highly dynamic problems. The structure 
of this paper is as follows: Sect. 2 presents the theoretical 
review of the finite element method and the peridynamic 
theory. Also it gives an overview to elastic wave charac-
teristic in both continuum mechanics and in peridynamics. 
Section  3 is dedicated to detailed characterization of the 
coupling methods. The 1D implementation of all coupling 
approaches, parameter studies, and dynamic tests are pre-
sented in Sect. 4. Finally, the concluding remarks are given 
in Sect. 5.
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2  Materials and methods

2.1  Continuum mechanics and FEM

The FEM is the most widely used method for the simula-
tion of structural problems in engineering. A distinctive fea-
ture of the finite element method is the division of a given 
domain into a set of simple subdomains, called finite ele-
ments [39]. For arbitrary problems it is not possible to find 
functions to describe the solution of the whole domain as in 
the Ritz method [40].

Following [41] the dynamic equations of a continuum 
can be derived using Hamiltons principle, which states that 
the motion of the system in the time interval [t1, t2] is such 
that the variation of the action vanishes, i.e. the motion of 
the system takes the path of stationary action as

δ

t2ˆ

t1

(L + W ) dt = 0 ,� (1)

where L represents the Lagrangian, and W the work of the 
external forces. The Hamiltons principle is adapted in a way 
that the Lagrangian includes in the mechanical case the 
kinetic energy and the potential energy and can be deter-
mined as

L =
ˆ

V

1
2

[
ρu̇T u̇ − εTσ

]
dV ,� (2)

with the mass density ρ and the velocity field u̇. The exter-
nal work W done by external mechanical forces f related to 
volumes (..)V , surfaces (..)Si  and nodals (..)i is given as

W =
ˆ

V

uT fV dV +
ˆ

S1

uT fS1 dS1 +
n∑

i=1
uT

i fi .� (3)

With Hooke’s law

σ = CEε� (4)

and substituting the Equations (2) and (3) in Equation (1) 
the Hamiltons principle is obtained in the following form

0 = −
ˆ

V

[
ρδuT ü + δεT CEε

]
dV +

ˆ

V

δuT fV dV +
ˆ

S1

δuT fS1 dS1 +
n∑

i=1
δuT

i fi,� (5)

where ü is the acceleration. Based on Equation (5) the finite 
element equations can be derived. When using the finite 
element approach a continuous body is approximated with 

shape functions defined on a local domain (elements). The 
displacements u(m) in an element can be expressed as

u(m)(x) = N(m)
u (x)uN.� (6)

N(m) is an interpolation matrix which includes the shape 
functions. uN is the displacement vector, m is the element 
number and x = [x1, x2, x3] is the position vector [40]. 
The mechanical strain is defined as ε = Du, where D is the 
differential operator. With Equation (6) the element strain 
can be derived directly as

ε(m)(x) = DN(m)
u (x)uN = B(m)

u (x)uN.� (7)

If the approximation of the mechanical displacements Equa-
tion (6) and the strains Equation (7) is substituted in Equa-
tion (5) the equations are obtained as

δuT
N

ˆ

V

N(m)T
u ρN(m)

u dVüN + δuT
N

ˆ

V

B(m)T
u CEB(m)

u dVuN

= δuT
N

ˆ

V

N(m)T
u FV dV + δuT

N

ˆ

S1

N(m)T
u FS1dS1 + δuT

NN(m)T
u FP .

� (8)

Equation (8) is valid for any arbitrary variation of the dis-
placements δuN and thus yields

MüN + KuN = fext .� (9)

The abbreviations in common use are the mass matrix M, 
the stiffness matrix K and the vector of the external mechan-
ical forces fext.

In this paper a 1D problem is studied and the matrices for 
one element are given as

M(m) = ρA(m)L(m)

2

[
1 0
0 1

]
and K(m) = A(m)E(m)

L(m)

[
1 −1

−1 1

]
.� (10)

Let L(m) the element length, A(m) the truss cross-section 
area and E(m) the Young’s modulus be the same for all ele-
ments. The lumped mass matrix is given in a diagonalized 
form. Then, the whole finite element system of equation 
can be determined by assuming that all elements have an 
equal size with the length L and the sum of all nodal element 
forces is equal to the external force. The system matrices for 
constant properties are given as
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Thus, the bond force densities are equal in magnitude but 
opposite in direction. This is a crucial factor in the bond-
based theory. Both bond force densities can be expressed 
as force vector states f(x, x’, t) = T(x’, t) ⟨x − x’⟩ and 
f(x’, x, t) = T(x, t) ⟨x’ − x⟩. In order to incorporate the 
properties that are crucial for bond-based peridynamics, the 
force vector states are chosen of the form

T(x’, t) ⟨x − x’⟩ =1
2

C(ξ) y’ − y
|y’ − y|

and T(x, t) ⟨x’ − x⟩

= − 1
2

C(ξ) y’ − y
|y’ − y|

.
� (16)

Both force vector states are parallel to the relative position 
vector of the material points in the deformed configuration. 
Therefore the balance of angular momentum is satisfied 
[42].

The micromodulus C(ξ) in Equation (16) relates the bond 
force to the bond stretch s(y’ − y, x’ − x) [44]. As introduced 
in [43], the parameter can be chosen linearly dependent on 
the stretch in the form C(ξ) = cs(y’ − y, x’ − x). Here the 
constant c is a PD material parameter and s is defined as 
follows:

s = |y’ − y| − |x’ − x|
|x’ − x|

.

Thus, the force states in the bond-based theory can be 
expressed in the form

T(x’, t) ⟨x − x’⟩ =1
2

cs
y’ − y
|y’ − y|

and T(x, t) ⟨x’ − x⟩

= − 1
2

cs
y’ − y
|y’ − y|

.
� (17)

The limitation of BBPD is that the Poisson’s ratio is limited 
in plane strain to 1

4  and for 3D and plane stress to 1
3  [45]. 

The constant c is defined [46] as

c1D = 2E

Aδ2 ; � (18)

c2D−plstrs = 6E

(1 − 2ν)πhδ3 , c2D−plstrn = 6E

(1 + ν)(1 − 2ν)πhδ3 ; � (19)

c3D = 6E

(1 − 2ν)πδ4 ; � (20)

where A is the area, h the thickness, ν the Poisson’s ratio and 
E the Young’s modulus.

M = ρAL

2




1 0 · · · 0 0
0 2
...

. . .
2 0

0 0 · · · 0 1


 and

K = AE

L




1 −1 · · · 0 0
−1 2
...

. . .
2 −1

0 0 · · · −1 1


 .

� (11)

2.2  Peridynamics

The paper follows the assumptions and notations from [42]. 
Within the neighborhood H, with the volume Vx, defined by 
a spherical domain the horizon δ, the force volume density 
state T for the bond interaction between the positions x and 
x′ is defined as the integral balance of momentum
ˆ

H
(T(x, t)⟨x′ − x⟩ − T(x′, t)⟨x − x′⟩)dVx + b = ρü.� (12)

Three variations of the peridynamic model are currently 
being used, the Bond-based (BB), the Ordinary state-based 
(OSB) and also the Non-ordinary state-based (NOSB) for-
mulation. In this order, flexibility increases, but so does also 
the complexity of the formulations. In this paper the focus 
is on BB, which can be interpreted as a non-local spring 
formulation.

The equation of motion for the initially introduced BB 
peridynamic theory is defined by

ρ(x)ü(x, t) =
ˆ

Hx

fbond (x’, x, t) dVHx + b(x, t),� (13)

where fbond(x’, x, t) = −fbond(x, x’, t) is a pairwise force 
function which represents the force that x’ exerts on x. In 
order to assure the conservation of linear momentum, the 
pairwise force function is anti-symmetric, [43]. The pair-
wise force function can be split into the two bond force den-
sities f(x’, x, t) and f(x, x’, t) as

fbond(x’, x, t) = f(x, x’, t) − f(x’, x, t),� (14)

with

f(x, x’, t) =1
2
fbond(x’, x, t) and f(x’, x, t)

= − 1
2
fbond(x’, x, t).

� (15)
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Taking into account, that i is an imaginary unit and that time 
and amplitude can be eliminated, the previous equation is 
reduced to:

−ρk2v2 =
ˆ +δ

−δ

C(ξ)
|ξ|

(cos(kξ) − 1)dξ + i

ˆ +δ

−δ

C(ξ)
|ξ|

sin(kξ) dξ.� (25)

The last integral is equal to zero, since sin kξ is an odd func-
tion, therefore:

v2 = 2
ρk2

ˆ δ

0
C(ξ)1 − cos(kξ)

ξ
dξ ≈ 2

ρk2

ˆ δ

0
C(ξ)k2ξ2

2ξ
dξ

=1
ρ

ˆ δ

0
C(ξ)ξdξ

� (26)

It should be mentioned that the cos(kξ) function was approx-
imated by 1 − (kξ)2/2 from Taylor’s expansion. Moreover, 
the result corresponds to Young’s modulus in elasticity since 
E = 1/2

´
H C(ξ)|ξ|dξ [49]. The limit of the expression by 

δ −→ 0 corresponds to the classical case where v =
√

E
ρ . 

Another different examples of micromodulus functions and 
their influence on elastic behavior were shown in [50–52]. 
However, in the present work, it is considered a uniform 
micromodulus C(ξ) = c̄. To determine the relation of phase 
velocity to the horizon in bond-based PD the Equation (26) 
is evaluated as follows:

(
v

v0

)2

= 4
(kδ)2

ˆ δ

0

1 − cos(kξ)
ξ

dξ where v2
0 = c̄δ2

2ρ
� (27)

Thus, Fig. 1 displays the relation of normed phase velocity 
to the ratio kδ/2π, which can be interpreted as a function 
of the number of wavelengths per horizon. Since the previ-
ous equation gives the phase’s velocity in the square, the 
solution of the equation has positive and negative roots. The 
Fig. 1 shows the result with a positive root.

3  Coupling methods

3.1  Schwarz approach

The Schwarz domain decomposition is one of the oldest 
domain decomposition methods, which was invented by 
Hermann Amandus Schwarz in 1869. Since that time vari-
ous extensions and adaptations of this technique emerged. 
These methods include, among others, The Schwarz Alter-
nating Method, and the Parallel Schwarz Method [53], the 
Discrete Schwarz methods, the Additive Schwarz Method, 
and also different types of optimized Schwarz methods [54]. 
In the paper at hand, our primary focus is on the Schwarz 
Alternating Method.

2.3  Wave equation and characteristic

2.3.1  Elastic waves in classical elasticity

Assuming small deflections, the one-dimensional governing 
equation of a string in classical elasticity has the form [47]:

∂2u
∂t2 = 1

v2
∂2u
∂x2 ,� (21)

where v2 represents a phase velocity constant, that for lon-
gitudinal and transversal cases can be found as follows: 
v2

L = λ+2µ
ρ  and v2

T = µ
ρ , with λ and µ as Lame parameters. 

It is assumed that the wave propagates in a positive direc-
tion without distortion. Let’s consider an expression for the 
longitudinal displacement of the form:

u(x, t) = Aeik(x−vt),� (22)

with wave amplitude A, that is independent of x and t. The 
argument k(x − vt) is a phase of the wave. If u(x, t) is 
periodic with wavelength Λ, then Λ = 2π

k , where k counts 
the number of wavelength over the period 2π. The circular 
frequency is expressed as ω = kv, which follows from the 
representation of u(x, t). Phase velocity is detected from the 
particle velocity and the maximum value of the ratio between 
u and v be expressed as: ( u̇(x,t)

vL
)max = Ak = 2πA/Λ and 

A/Λ ≪ 1.

In linear continuum mechanics, the phase velocities of 
traveling harmonic waves in 1D are independent of the 
wavelength Λ. This means that short and long waves propa-
gate with the same phase velocity, leading to the system’s 
nondispersive properties [48].

2.3.2  Elastic waves in bond-based peridynamics

If the system shows inelastic properties or nonlocality, the 
dispersed behavior emerges. Consider a nonlocal 1D peri-
dynamic string and define a variable ξ as a vector between 
two points inside the horizon: ξ = x′ − x. If small deforma-
tions are assumed, the equation of motion is reduced to the 
following form:

ρü(x, t) =
ˆ +δ

−δ

C(ξ)u(x + ξ) − u(x)
|ξ|

dξ + b(x, t).� (23)

C(ξ) is a micromodulus. Following [49] and substituting 
Equation (22) into Equation (23) it results in:

Aρi2k2v2eik(x−vt) =
ˆ +δ

−δ

C(ξ)
|ξ|

Aeik(x−vt)(eikξ − 1)dξ + b(x, t)� (24)
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which means that they communicate and exchange informa-
tion just through the common boundaries. For the transition 
region, only Dirichlet boundary conditions are considered, 
meaning that only the displacement is to be transferred from 
one subdomain to another. Using the notation of the inter-
faces Γ1 = ∂ΩFE ∩ ΩPD and Γ2 = ∂ΩPD ∩ ΩFE, where 
∂Ω stands for the external boundary of the corresponding 
region, the general algorithm of the Schwarz Alternating 
Method can be shown as follows: 
1.	 Set an initial displacement value uΓ2

FE on the boundary 
and solve for the subdomain with FE: 

Mün
FE(x) + Kun

FE(x) = Fn
FE, ∀x ∈ ΩFE.

2.	 Transition between two different regions occurs by find-
ing the value: 

un
FE(x) −→ un

PD(x), ∀ x ∈ Γ1.

3.	 With obtained displacement values on the boundary 
find the solution for the second PD subdomain ΩPD: 

ρün
PD(x) =

∑
PD

(
ci si

y’ − y
|y’ − y|

Vi

)n

+ bn
PD, ∀ x ∈ ΩPD /∈ Γ1.

4.	 Similar to the step before find the displacement value on 
Γ2 and pass it to the another subdomain: 

un
PD(x) −→ un

FE(x), ∀ x ∈ Γ2.

5.	 Find the solution for the domain ΩFE: 

Mün
FE(x) + Kun

FE(x) = Fn
FE, ∀ x ∈ ΩFE /∈ Γ2.

6.	 Check whether the convergence is reached, where ε is a 
predefined parameter: 

un
FE(x) − un

PD(x) ≤ ε, ∀ x ∈ Γ2.

This approach is chosen for its intuitive usability and 
its documented linear convergence, as indicated by [55]. 
The method presents a fundamental idea for solving com-
plex problems by decomposing the whole domain into two 
or more domains with some overlap. The solution is based 
on an algorithm that solves the problem in one domain and 
then moves to the next one, using the results of the previous 
iteration, and so on.

The general solution algorithm is illustrated in Fig. 2. In 
the following the coupling approach is presented for a one-
dimensional elasto-dynamic problem. One subdomain cor-
responds to a domain calculated with classical theory, while 
the remaining part corresponds to a subdomain, calculated 
using Peridynamic theory.

The entire domain is denoted as Ω ⊂ R1. The first sub-
domain is referred to as the Finite Element (FE) domain, 
denoted as ΩFE, while the second one concerns to the PD 
domain, labeled as ΩPD. The intersection of these two sub-
domains, which serves as the overlap between the FE and 
PD sections, is given as Ωo = ΩFE ∩ ΩPD.

In the following the coupling procedure is presented in 
detail. Both frameworks are coupled in a partitioned approach, 

Fig. 2  Domain decomposition in Schwarz Alternating Method with 
information exchange through the boundaries Γ1 and Γ2. The choice 
of boundary size is discussed in Sect. 4

 

Fig. 1  Phase velocity for wave 
propagation in one-dimensional 
bond-based peridynamics vs in 
classical elasticity
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between different models. Moreover, it is assumed that α(x) 
is a positive piece-wise continuous function satisfying the 
following conditions:

α(x) =

{ 1 ∀x ∈ ΩFE ∩ Ωo,
0 ∀x ∈ ΩPD ∩ Ωo,
α(xo) ∀x ∈ Ωo,

� (29)

From the energy conservation principle, we can depict the 
total mechanical energy as sum of energies that is valid for 
both the classical elasticity and the peridynamic theory:

Htot = Wkin + W int − Wext.� (30)

From the first form of Hamilton’s principle for conserva-
tive systems, mentioned in Equation (1), a kinetic energy 
of a moving system for both CE and PD can be expressed 
as follows:

Wkin
FE = Mu̇2

FE/2
Wkin

PD = ρVΩPD u̇2
PD/2

� (31)

The internal energy, which is the work done by the internal 
forces has the form:

W int
FE = 1

2

ˆ

ΩFE

ε : σdΩ

W int
PD = f(η, ξ)VΩPD

� (32)

And the work done by external forces can be calculated as 
follows:

Wext
FE =

ˆ

ΩFE

uρbdΩ

Wext
PD = uPDbVΩPD

� (33)

Using displacements as the primary variable, we derive the 
system of equations of motion from the system of energy 
equations. More details can be found in [33].

To achieve compatibility between the two regions, addi-
tional constrains should be considered in the overlapping 

7.	 If yes, go to the next time step n = n + 1.

3.2  Arlequin approach

The Arlequin Method is a computational technique that can 
be used to bridge the gap between atomistic and continuum 
theories in the context of modeling damage problems. The 
main idea of the coupling [56] consist on the assumption 
that the energy in the coupling region is distributed by using 
a weighting function whose sums are equal to unity to con-
serve the local mechanical energies. In the overlapping area 
domains are glued to each other to reach the proper material 
behavior.

Let the general domain be divided into two sub-domains 
that overlap (Fig. 3). The size of the overlapping region is 
discussed below.

Let the sum of energies are written as bellow:

Htot(uFE, u̇FE, uPD, u̇PD) =α(x)HFE(uFE, u̇FE)
+ (1 − α(x))HPD(uPD, u̇PD).� (28)

The interface between domains should be well-balanced. 
Thus the choice of weighting function α(x) [57] (Fig. 4) can 
influence a material response in the coupling zone and play 
a crucial role in determining how information is exchanged 

Fig. 4  Different weighting 
functions α(x); top - piecewise 
constant; middle - piecewise linear; 
bottom - piecewise cubic

 

Fig. 3  Domain decomposition in Arlequin Coupling method with 
overlapping region, where the properties are weighted, dependent on 
a function α(x)
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In order to minimize the functional Ξ , the partial derivative 
should be calculated as:

∂Ξ

∂u
= 0, → Mü + (K + Kz)u = F − Fz;

Kz = κZT Z;

fz = κZT z0,� (38)

If the displacement constrains for the overlap region can be 
described as:

z = uo
PD − uo

FE = uo
PD −

∑
Ωo

N(ξ)uo
FE,� (39)

than the coupling matrix results in:

Kz

[
uo

PD
uo

FE

]
= κ

[
I NPD

NT
PD NT

PDNPD

] [
uo

PD
uo

FE

]
; fz = 0,

where I is a identity matrix, NPD is a shape function applied 
on the peridynamic point to determine its position inside the 
finite element.

This all can be summarized to a system of coupled 
equations:
[

αMFE
(1 − α)ρPD

] [ ..uFE..uPD

]
+

[
αKFE

(1 − α)fPD

] [
uFE
uPD

]

+Kz

[
uo

PD
uo

FE

]
=

[
αFFE

(1 − α)bPD

] � (40)

It should be noted that the governing system of equations 
of FEM and PD differ in dimension by a certain factor. 
This problem can be overcome without loss of accuracy 
by multiplying the FE part by the volume of the finite ele-
ment. In summary, the coupled problem to be solved looks 
as follows:
[

α
Vel

MFE
(1 − α)ρPD

] [ ..uFE..uPD

]
+

[
α

Vel
KFE

(1 − α)fPD

] [
uFE
uPD

]

+Kz

[
uo

PD
uo

FE

]
=

[
α

Vel
FFE

(1 − α)bPD

] � (41)

3.3  Splice Method

The method was first presented in 2016 by [25] as a practical 
coupling approach for static problems. The central concept 
is to divide the entire domain into two parts: one discretized 
with finite elements (FE) and the other with peridynamic 
(PD) points, ensuring that they do not overlap (Fig. 5).

The main idea of the coupling method is that PD points, 
that located near the coupling boundary, can ”see” the FE 
nodes through a defined horizon δ. The PD points, that are 

area. In the present study, we focus on the implementation 
of the penalty-based Arlequin method.

The first step in achieving mechanical compatibility is to 
ensure that the difference in the displacements are zero. So 
consider the classical elasticity domain which is represented 
through finite elements and the second region is descretized 
using the meshfree PD method.

Let a set of constraint equations in the general case z(u) 
consist of the displacement-dependent term Zu and a con-
stant term z0, which are always positive or zero, so that:

z(u) = z0 + Zu = 0.� (34)

This equation is fulfilled when the constraints are satisfied 
and the variation of a product reaches its minimum [40]:

δ(z(u)Tz(u)) = 0.� (35)

This results in the new functional:

Ξ = L(x,u, t) + 1
2

κ

ˆ

Ωo

zT zdΩo → Min,� (36)

where L(x,u, t) is Lagrangian of the dynamic system and 
the term κ is the ”penalty parameter” that should also be a 
positive and a large enough number. However, in the Arle-
quin framework it should be restricted to avoid negating 
the energy partitioning effect. The solution will satisfy the 
constrains only approximately depending on the selection 
of the penalty term. The integral is calculated only in the 
coupling area and solved points-wise [58]. It is assumed that 
the reference PD points in the overlap domain are given, and 
each of them should be coupled with a corresponding finite 
element. Then the functional in (36) has the form:

Ξ = 1
2
u̇T Mu̇ + 1

2
uT Ku − uT F + 1

2
κ(z0 + Zu)T (z0 + Zu).� (37)

Fig. 5  Schematic illustration of Splice Coupling Method. Coupling 
between FE and PD domains is occurred through coupled elements in 
the interface and bonds, that connects PD points and FE nodes
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process. Therefore, this study focuses particularly on the 
dynamic behaviour of coupled systems. As demonstrated in 
Sect. 2.3, elastic waves in classical elasticity and in peridyn-
amics show different characteristics. Unlike in the classical 
case, peridynamic waves display dispersive behavior. It is 
proposed that the wave parameters and numerical values 
be selected so that in the PD case (Fig.  1), the value kδ

2π  
approaches zero, thereby approximating the classical case.

To validate the coupling methods, we consider two 
benchmark tests (Fig.  6) and compare the results against 
both numerical FE and PD reference solutions.

Free vibration test: Consider an elastic one-dimensional 
bar with a constant cross-section area A = 4 · 10−8 m2 and 
a length L = 1 m that is fixed at x = 0 and initially pre-
strained so that the bar has a homogeneous deformation: at 
t = 0, u(x, t0) = x

Lu0 (Fig. 6a). The bar is released at time 
t > 0, and free vibrations occur. The material constants of 
the bar are E = 109 Pa, ν = 0.25 and ρ = 7800 kg/m3. 
For the reference FE solution the bar discretizes with the 
element size ∆xFE = 1 · 10−3 m, while the PD numeri-
cal parameters are: ∆xPD = 2 · 10−4 m and horizon 
δ = 3.015 ∆xPD = 6.03 · 10−4 m. The time domain param-
eters are chosen as ∆t = 1.5 · 10−7 s and tend = 1.3 · 10−3 
s.

Since the PD equation of motion does not contain a spa-
tial derivative of displacement, no natural boundary condi-
tions arise when deriving the equilibrium equation. So the 
choice of PD boundary conditions needs to be clarified. For 
the fixed left side of the bar, the additional fictitious domain 
with size of 3∆xPD is modeled, where the displacement 
u = 0 is applied. To all the real points where x ̸= 0 and 
t = 0 the prescribed displacement u(x, t0) is applied. Also, 
the volume correction strategy from [7] is used to improve 
the inaccuracies in PD numerical integration.

Figure 7 displays the displacement over the time of the 
last point of the bar at x = L for both FE and PD solu-
tions. The plot is enlarged around the time t = 0.005 s and 
t = 0.011 s. As expected, the difference between the solu-
tions is negligibly small, since the PD solution converges to 
classical elasticity by δ → 0 [62].

Wave propagation test: Consider an elastic one-dimen-
sional bar with a constant cross-section area A = 1 · 10−6 m2 
and a length L = 5 m (Fig.  6b). It is fixed at x = 0 and 

close to the coupling interface have not only other PD points 
in their non-local neighborhood, but also FE nodes inside. 
Consequently, they have non-local interactions with all of 
them, thereby completing the non-local neighborhood of the 
PD points.

In the finite element framework, nodes interact only with 
their direct neighbors and this continues until the last ele-
ment, that would consists of both FE nodes and PD points. 
Let these elements be called coupled elements. The coupled 
elements exhibit the properties of both fields, which is also 
reflected in the construction of the stiffness matrix.

In the above-mentioned paper, the linearized version of 
peridynamics is employed, which allows the decoupling of 
stiffness and displacement components from internal bond 
force density in Equation (17). By the assumption of small 
deformation: |η| ≪ 1, the second-order micromodulus 
tensor C is given by: C = ∂f

∂η (0, ξ) [8]. This formulation 
enables to assemble the stiffness matrix for peridynamics. 
To couple two domains, it is necessary to create a global 
FEM-PD stiffness matrix by assembling and combining the 
individual matrices corresponding to their respective global 
points.

It can be noticed that the global stiffness matrix is non-
symmetric since the number of non-diagonal terms for PD 
nodes exceeds that for FEM nodes. This approach can also 
be applied to dynamic analysis to assemble a global mass 
matrix. The further works by [59] and [60] provide more 
detailed information regarding the coupling procedure.

4  Numerical results

The comprehensive review of different FEM–PD coupling 
methods with verification on static cases has already been 
presented in [61]. Many of these methods demonstrate 
promising results and show good agreement with the refer-
ence solutions. However, static analyses alone do not pro-
vide sufficient information on the quality of the coupling 
schemes, since the main field of application for coupled 
FEM–PD approaches lies in dynamic fracture.

When a crack initiates and propagates under load, high–
frequency waves are generated as a result of the fracture 

Fig. 6  Two benchmark tests to 
validate the coupling methods
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bar to the left. The plot is enlarged to analyze the differ-
ence between the solutions. As expected, the disagreement 
is negligibly small, and the PD converges to the FE solution 
with current numerical variables. Therefore, for analyzing 
the coupling strategies, only the PD solution is used as a 
reference.

4.1  Arlequin coupling case

4.1.1  Free vibration test

Very often, the effectiveness of numerical methods depends 
on choosing the right parameters. Figure 9 shows the dis-
placement of the last point of the bar over time, calculated 
with Arlequin method in comparison with the pure PD case 
(upper plot). Figure 9a-c displays the parameter study for 
Arlequin coupling at close near t = 5.6 · 10−3 s. The mesh 
density study is conducted to evaluate the convergence rate 

exited with a prescribed displacement at x = L. As a pre-
scribed displacement wave the sine type wave is chosen: 
u(L, t) = A1 sin(frt − π/2) + c with the following param-
eters: A1 = 0, 5 10−4 m, c1 = 0.5 10−4 m, fr = 79, 5 Hz. 
The material constants of the bar are E = 109 Pa, ν = 0.25 
and ρ = 7800 kg/m3.

For PD boundary conditions on the left side of the bar, 
an additional fictitious region of a size 3∆xPD is modeled, 
where the displacement is set to zero u = 0. The displace-
ment wave is applied over the time on the last real node at 
x = L. To improve the numerical integration, the volume 
correction schema is used as in a previous test. For the refer-
ence FE and PD solutions, the following numerical param-
eters are chosen: ∆xFE = 3.3 · 10−3 m, ∆xPD = 1 · 10−3 
m, δ = 3.015 ∆xPD, ∆t = 2.7 · 10−7 s, tend = 1.4 · 10−3 
s.

Figure  8 shows the wave at t = 6.8 · 10−5 s and 
t = 1.2 · 10−3 s. The wave moves from the right side of the 

Fig. 7  Comparison of FE and PD solutions in a free vibration test. The enlarged displacement in point x = L around the time at = 0.005 s and 
bt = 0.011 s
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elements corresponding to the approximate value of the 
horizon, and six elements as the value of two horizons. All 
three solutions yield similar results, so the parameter study 
should be continued by another test configuration.

4.1.2  Wave propagation test

Figure 10 shows the displacement at t = 6.8 · 10−5 s and 
t = 1.2 · 10−3 s, which corresponds to the time before and 
after passing the coupled region. The black vertical line 
matches the transition from the FE part (left) to the PD 
(right). To analyze the convergence to the reference solution, 
the plots of the displacement around the main wave and the 
remaining part at t = 1.2 · 10−3 s are enlarged. The plot in 
Fig. 10a corresponds to the enlarged displacement of a bar. 
A coarse mesh causes a lag in wave propagation, as detailed 
in graph (b). Here, the left part of the bar is enlarged, and 

and to compare the performance with other coupling meth-
ods. From this study, it can be observed that the highest 
accuracy with respect to the reference solution is achieved 
when the grid spacing is reduced to ∆x = 2 · 10−4 m.

The influence of penalty parameters is illustrated in plot 
(b). If it is chosen too small, numerical errors may occur 
in the solution [40]. However, revealing a general rule for 
selecting an appropriate parameter remains a challenging 
problem. The coupling properties theoretically improve as 
the parameter κ increases. However, its value is numerically 
limited [33]. Choosing κ too large can result in numeri-
cal instability as the determinant of the stiffness matrix 
approaches zero. Based on the analysis of three cases, it’s 
evident that improving κ to the value 106 leads to a good 
agreement with the PD case.

Furthermore, the size of the overlapping area is investi-
gated in Fig. 9c with one element in the overlap zone, three 

Fig. 8  Comparison of FE and PD solutions in a wave propagation test. Displacement of a bar at t = 6.8 · 10−5 s and t = 1.2 · 10−3 s for a sine-
type wave
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4.2  Schwarz coupling case

4.2.1  Free vibration test

The Schwarz coupling method, a well-established tech-
nique, may need some adjustments when coupled with a 
non-local domain. Specifically, the selection of boundary 
interfaces Γ1 and Γ2 (Fig. 2) deserve special attention. This 
is because the material point in the PD interacts with other 
points through a horizon, potentially transforming the inter-
faces into boundary domains that are several layers thick.

Let us consider five possible configurations to calibrate 
the Schwarz procedure:

	– Case 1: Interfaces Γ1 and Γ2 are one element thick:
	 Γ1 = Γ2 = ∆x;
	– Case 2: Interfaces Γ1 is one element thick, while Γ2 has 

thickness of horizon:
	 Γ1 = ∆x, Γ2 = δ;

one can note that by passing a coupled interface, the part of 
the main wave reflects and travels in the opposite direction. 
The reflected wave has the same speed and frequency as the 
main one. By reducing the grid size, the reflection decreases 
to the amplitude value of ≈ 3.9 · 10−9 m. One can mention, 
that the amplitude of the reflected wave is insignificant small 
in comparison to the main wave amplitude (≈ 0.004% ). 
Analyzing the size of the overlapping region (Fig. 11a), it 
can be seen that an increase of the overlapping zone leads 
to a disturbance between local and non-local parts of the 
bar, resulting in an increase in the amplitude of the reflected 
wave. Additionally, three κ values have been considered 
(Fig. 11b). In conclusion, the careful choice of numerical 
parameters made the reflected wave minimal, so it is not 
visible and practically can be neglected.

Fig. 9  A case study in a free vibration test for Arlequin coupling case vs reference peridynamic solution for displacement in the point x = L over 
time: a mesh density study; b penalty number study; c size of overlapping area study
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that the solution is insensitive to the choice of Γ2 thick-
ness, which is not the case for boundary domain Γ1. It is 
to consider further analyzing case 3,4,5 in the present test 
configuration.

For the detailed analyses of the remaining cases, the dis-
placement is enlarged, as it is shown on the upper plot. It 
is important to notice, that the solutions of the remaining 
Schwarz cases fluctuate around the reference PD solution - 
plots (a) and (b). The closest the PD solution has the Case 5. 
Since the Cases 1 and 2 give the nonphysical results, just the 
remaining Schwarz Cases are considered further.

4.2.2  Wave propagation test

Figure 13 shows the wave before and after passing the cou-
pling region, the wave moves from the right side of the bar 

	– Case 3: Γ1 has thickness of horizon, while interface Γ2 
is one layer thick:

	 Γ1 = δ, Γ2 = ∆x;
	– Case 4: Both domains have thickness of horizon:

	 Γ1 = Γ2 = δ;
	– Case 5: Both domains have thickness of two horizons:

	 Γ1 = Γ2 = 2δ.

Consider a 1D bar with the geometry and material param-
eters from the Sect. 4.1.1. The grid spacing for both PD and 
FEM domains are the same: ∆x = 1.43 · 10−4 m. The criti-
cal time step is ∆t = 2.5 · 10−7 s.

Figure  12 (upper plot) shows displacement of the last 
point of the bar over time for all five Schwarz cases with 
a comparison of the pure PD solution. It’s clear that both 
Case 1 and Case 2 give a non-physical response, indicating 

Fig. 10  Displacement of a bar at t = 6.8 · 10−5 s and 1.2 · 10−3 s for a sine-type wave propagation test for Arlequin coupling case vs reference 
peridynamic solution: a mesh density study; b mesh density study regarding reflected wave amplitude
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Fig. 12  A case study in a free vibration test for Schwarz coupling case 
vs reference peridynamic solution for displacement in the point x = L 
over time: a enlarged displacement around an upper chosen rectangle 

for Cases 3,4,5; b enlarged displacement around a bottom chosen rect-
angle for Cases 3,4,5

 

Fig. 11  Parameter study for the bar at t = 1.2 · 10−3 s for sine-type wave propagation for Arlequin coupling solution vs reference peridynamic 
solution: a size of overlapping area study; bκ - value study
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relatively small and produces a comparable result with the 
previous method.

Figure 13b presents the reflected wave for Cases 3,4 and 
5 and it can be mentioned that there is no noticeable dif-
ference is detected between all of them. The explanation 
could be as follows: both interfaces are used for transmitting 
information between two independent domains. When the 
local domain transmits information, it only needs for infor-
mation to be "local", whereas the non-local domain should 
transmit ”non-local” information, meaning that a boundary 
region should have a thickness at least equal to the horizon.

to the left. The time step is chosen as ∆t = 1.6 · 10−7 s. 
One can mention that there is no visible reflection from the 
coupling zone, so the displacement on the right side of the 
bar at time t = 1.2 · 10−3 s needs to be enlarged.

Figure 13a displays the grid density study for the Schwarz 
Case 3 to investigate the convergence speed. With the grid 
spacing ∆x = 5 · 10−3 m, parasite vibrations appear. How-
ever, when the grid distance is ∆x = 7.1 · 10−4 m the dis-
placement line appears smooth without additional numerical 
perturbations. The amplitude of the reflected wave remains 
constant, independent of mesh density, which is not the case 
in the Arlequin method. Nevertheless, the reflected ampli-
tude value ≊ 4 · 10−9 m ( 0, 004% of the main amplitude) is 

Fig. 13  A case study of a sine-type wave propagation test for dif-
ferent Schwarz configurations vs reference peridynamic solution 
at t = 6.8 · 10−5 s and t = 1.2 · 10−3 s: a mesh density study for 

Schwarz Case 3 around the reflected wave; b displacement of the right 
part of a bar around the reflected wave
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part of a bar on the Fig. 15. The enlarged displacements on 
the left (plot (a)) and on the right part of the bar (plot (b)) 
show slightly difference by reducing the mesh density to 
∆x = 5 · 10−4 m. Again the solution oscillates around the 
reference PD case, but decreasing the grid size leads to min-
imization of the amplitude of oscillation as well as slightly 
reduction of reflected wave amplitude. The amplitude of the 
reflected wave results in ≊ 0.65 · 10−9 m, that corresponds 
to 0.00065% of the main wave amplitude.

5  Conclusions

The study explored the effectiveness of the Arlequin, 
Schwarz and Splice coupling methods in simulating the 
dynamic response of a one-dimensional bar subjected to 
free vibration and wave propagation tests. The results lead 
to several conclusions.

4.3  Splice coupling case

4.3.1  Free vibration test

Figure 14 shows the solution of the Splice coupled method 
in comparison to the PD. Unlike to other methods, the Splice 
method doesn’t have any additional numerical parameters 
to investigate, except mesh density. Thus the displacement 
around t = 5.6 · 10−3 s and t = 2.2 · 10−2 s is enlarged 
for close consideration. It is to mention, that the solution 
oscillates around the reference PD case and the decrease of 
mesh density from ∆x = 5 · 10−4 m to ∆x = 2.5 · 10−4 m 
doesn’t bring any significant difference in the amplitude of 
this oscillations.

4.3.2  Wave propagation test

As before, the test configuration was taken from the 
Sect. 4.1.2. One can mention no reflected wave on the right 

Fig. 14  A case study in a free vibration test for Splice coupling case 
vs reference peridynamic solution for displacement in the point x = L 
over time: a enlarged displacement around left chosen rectangle for 

mesh density study; b enlarged displacement around right chosen rect-
angle for mesh density study
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Considering the Schwarz Method, it requires careful 
selection of boundary interfaces to ensure accurate results. 
Case 5 ( Γ1 = Γ2 = 2δ) provided the closest match to the 
PD solution, while cases with thinner boundary interfaces 
resulted into larger errors or non-physical responses. This 
indicates that the method’s effectiveness is highly sensitive 
to the chosen boundary configuration. Similar to the Arle-
quin method, the Schwarz Method achieved satisfactory 
results in the sine-type wave propagation test. Cases 3,4 
and 5 provided the reliable results, with minimal amplitude 
of reflected waves, comparable to the Arlequin Method. 
The mesh density had a noticeable impact on the presence 
of numerical perturbations, with finer meshes producing 
smoother displacement profiles.

The Arlequin Method demonstrated high accuracy when 
the mesh density and penalty parameters were appropri-
ately selected. The displacement results closely matched 
the reference peridynamic (PD) solutions when a fine mesh 
density (∆x = 2 · 10−4 m for free vibration test) and an 
optimized penalty parameter (κ = 106) were used. It was 
observed that an incorrect selection of these parameters 
could lead to significant numerical errors and interpenetra-
tion issues. The method showed good convergence to the 
reference solution in the wave propagation test as well. The 
optimal configuration effectively minimized the amplitude 
of the reflected wave, confirming the method’s robustness in 
handling dynamic crack propagation simulations.

Fig. 15  A case study of a sine-type wave propagation test for Splice coupling method vs reference peridynamic solution: a enlarged displacement 
for mesh density study; b enlarged displacement around the reflected wave for mesh density study

 

1 3



Computational Mechanics
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The Splice Method is intuitive clear and easy for numeri-
cal implementation. It has an advantage, that there is no 
numerical parameters to calibrate. The method showed 
a good convergence to the reference PD solution for both 
free vibration and wave propagation tests. Nevertheless, a 
numerical effect has been notices, that the coupled solution 
oscillates around the reference one. The decrease of grid 
size has an influence on the amplitude of this oscillations, 
but they cannot be completely eliminated.

The mesh density study was conducted to determine 
which method converges faster to the reference solution. 
It can be observed that the Schwarz method exhibits faster 
convergence in the wave propagation test, whereas the 
Splice method performs better in the vibration analysis.

Overall, all of the coupling methods demonstrated strong 
potential for accurate dynamic simulations, provided that 
specific parameter configurations were used. The Arlequin 
method proved effective with a well-chosen penalty param-
eter and mesh density, while the Schwarz method showed 
sensitivity to boundary interface selection. The Splice 
Method is independent from numerical parameters, but the 
solution exhibited slight fluctuations, that could possibly 
have an effect in 2D or 3D analysis.

The pure PD model exhibites inherent dispersive charac-
teristics. These characteristics influenced the accuracy and 
stability of the coupled simulations. While all the coupling 
methods managed to achieve satisfactory results, there were 
discrepancies when compared to the finite element method 
(FEM) solutions. These discrepancies highlight the chal-
lenges in perfectly matching the non-local PD model with 
the local FEM model.

Further investigation into the dispersive properties of 
PD and their impact on coupled simulations would help in 
achieving a more seamless integration with FEM, ensur-
ing improved accuracy, stability and applicability of these 
methods in complex dynamic scenarios.
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