
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2026 1

Sampling-aware Multi-rate Combined Control

for an Orbital Manipulator

Ria Vijayan1, Marco De Stefano1, and Christian Ott2

Abstract—In on-orbit servicing missions using robotic manipu-
lators, certain challenging scenarios require the use of combined
control i.e. actuation of spacecraft and the manipulator, to meet
mission requirements. The low frequency of the controller of
the spacecraft compared to the manipulator can compromise
the stability margin of the combined control. In this paper, we
first design a combined control strategy to carefully decouple
the high-rate manipulator control from the spacecraft’s low-rate
control. Second, we design a novel discrete controller accounting
for the first-order effects of the servicer’s low sampling rate.
This is realized by augmenting a classical proportional-derivative
(PD) control scheme. The operational bounds of the discrete
controller are first benchmarked on a one-DoF system and
further investigated for performance using a multi-DoF orbital
manipulator. The results shed light on the regions of enhanced
performance in terms of stability and impulse utilization as a
measure of efficiency. Simulation results and hardware-in-the-
loop experiments are performed to validate the proposed method.

Index Terms—On orbit servicing, discrete control, multi-rate
control, orbital robotic manipulator.

I. INTRODUCTION

IN the context of on-orbit servicing (OOS), see Fig. 1, an

orbital manipulator i.e. a servicer satellite equipped with

a manipulator arm, plays a critical role in maintaining and

servicing other spacecraft (clients). To meet different mission

requirements, certain challenging scenarios in OOS (eg. syn-

chronized approach to a drifting client) require active control

of both the servicer and manipulator, called combined control,

coordinated control or free-flying control in the literature.

The complexity of combined control is compounded by

the fact that the servicer satellite and its manipulator arm

are controlled at different frequencies. The spacecraft control

typically operates at a relatively low frequency below 10Hz,

while the manipulator arm, which requires precise movements,

is controlled at a much higher rate of approximately 1kHz [1].

This disparity in control frequencies means that the servicer’s

control is discrete, whereas the manipulator’s control is quasi-

continuous. This is what we refer to as multi-rate control in

the scope of this work for combined control of an orbital

manipulator. If not carefully designed, the low sampling and

actuation rate of the servicer satellite can cause instabilites due

to energy leaks from the time-delays introduced by a sampled-

data system [2] (demonstrated on hardware in [3]).

The design of sampled-data controllers is examined in [4]

through Lyapunov function matching at the sampling instants
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Fig. 1: Close-proximity maneuvers shown in (a) simulation and (b)
with hardware-in-the-loop (DLR, OOS-Sim) using 7-DoF manipula-
tors. The challenge in space missions is the combined control of the
servicer, typically at low-rate, and the manipulator at high-rate. See
accompanying video for experiments with the proposed method.

to stabilize a backstepping controller. Stability of haptic ren-

dering under effects of discretization, quantization, time delay,

and coulomb effects are studied in [2] for the one degree-

of-freedom (DoF) case. An approach with variable samplings

has been proposed in [5] to stabilize a nonholonomic sys-

tem linearized about its equilibrium. A feedback passivation

controller is applied in discrete time for matching the energy

consumption at all sampling instants along the closed-loop

system [6]. A sampled-data control based on discrete-time

equivalent model is proposed for a class of nonlinear time-

delay systems in [7]. A variable rate digital feedback control

algorithm using a series expansion is proposed to preserve

the stability of the continuous-time controller at the sampling

instants in [8]. A passivating and stabilizating controller is

proposed in [9] for a discrete-time nonlinear systems via

energy balancing by assigning a target energy profile at all

sampling instants. A combination of discrete- and continuous-

time elements is used in [10] to present passivity and stability

analysis of a one DoF discrete system with time-delay.

Discrete-time controllers have also been studied in the

context of spacecraft control. A guidance algorithm based

on feedback linearization was designed while considering a

modulation scheme with adaptation of the control gains for

discrete-variable actuation in [11]. An adaptive robust control

approach was implemented with the disturbance estimation

used as feed-forward to attenuate the disturbance effects in

[12]. A saturated feedback law for the propulsion was designed

with quasi-global analytical stability properties for use in
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nonlinear orbit control [13]. A discrete-time nonlinear attitude

tracking controller resulting in semiglobal practical asymptotic

stability was developed in [14] considering sampling effects of

digital control. An adaptive sliding mode controller was shown

to ensure uniformly ultimately bounded stability while con-

sidering actuator faults and disturbances in [15]. A discrete-

time sliding mode control suppressing chattering was designed

in [16] for the finite-time attitude tracking control problem

of spacecrafts with flexible structures. A model predictive

control with discontinuities and constraints was designed for

the attitude dynamics of an underactuated spacecraft and

shown to be asymptotically stable [17]. In [18] a model

predictive controller was proposed to incorporate deadband

constraints utilizing convex optimization techniques to handle

the discrete nature of actuators in rendezvous missions. In

contrast to [19] which dissipates active energy detected by

a passivity observer, the proposed method acts a priori based

on theoretical deduction to reduce system activity.

This paper focuses on the design and analysis of a multi-rate

combined control of a multi-DoF system, while accounting

for the coupling between subsystems controlled at different

rates. This is done for an orbital manipulator that is considered

to have low-rate (eg. 10Hz) actuation for the spacecraft base

and high-rate (eg. 1kHz) actuation for the manipulator. The

proposed method uses two key approaches. The first is a

combined control strategy carefully designed to decouple the

high-rate manipulator control from the spacecraft’s discrete

control. The second is the design of a discrete controller

that compensates the first-order effects of the servicer’s low

sampling rate. This is realized by augmenting a classical

PD control scheme using discrete Lyapunov analysis. The

proposed controller is benchmarked on a one-DoF system

before investigating its operational bounds for the multi-DoF

orbital manipulator.

The contributions of this paper can be summarized as:

• A novel combined control strategy applied to an orbital

manipulator operated under a multi-rate control scheme.

• A novel discrete PD control that accounts for first-order

sampling effects.

• Validation and analysis in simulation of the performance

of the proposed multi-rate combined controller.

• Validation of the proposed multi-rate combined controller

using hardware-in-the-loop (HIL) experiments.

II. MULTI-RATE OPERATION: PRELIMINARIES AND

PROBLEM STATEMENT

In this section we recall the preliminaries on dynamics of an

orbital manipulator and define the conditions and assumptions

of its multi-rate operation. Finally, we define the problem

statement considered for the scope of this work.

A. Dynamics of an orbital manipualtor

The nonlinear coupled dynamics of a spacecraft base with

a manipulator with n joints can be written using the standard

floating-base robot dynamics as
[
Mbb Mbn

MT
bn Mnn

] [
v̇b

q̈n

]

+

[
Cbb Cbn

Cnb Cnn

] [
vb

q̇n

]

=

[
Fb

τ

]

(1)

Here, Mbb ∈ R6×6,Mnn ∈ Rn×n,Mbn ∈ R6×n are the

inertia matrices of the base, manipulator and their coupling, re-

spectively. They are a function of the joint positions qn ∈ Rn.

Similarly, Cbb ∈ R6×6,Cnn ∈ Rn×n,Cbn ∈ R6×n,Cnb ∈
Rn×6 are sub-elements of the Coriolis/Centrifugal (CC) ma-

trix. They depend on joint positions and velocities qn, q̇n ∈
Rn, and the Cartesian velocity (linear and angular), vb ∈ R6.

The joint acceleration is q̈n and base acceleration, v̇b. The

base control wrench (force and torque) is Fb ∈ R6 and the

manipulator control torques are τ ∈ Rn.

B. Multi-rate operations of an orbital manipulator

We consider the following assumptions characterizing the

multi-rate operations of the orbital manipulator.

A1. The manipulator is controlled at a high sampling fre-

quency (eg. 1kHz) and, therefore, can be considered

quasi-continuous in nature.

A2. The servicer spacecraft is controlled at a low sampling

rate (eg. below 10Hz) and, therefore, can be considered

discrete in nature.

A3. The manipulator has a significantly lower mass and

higher control gain compared to the spacecraft, thus re-

sulting in fast and slow dynamic time-scales, respectively.

C. Problem statement

The problem considered is a regulation task with a clas-

sical PD control law applied to both, the manipulator joints,

controlled at 1 kHz, and the spacecraft base, controlled at

3 Hz. The exemplary scenario is shown in Fig. 2, where it

can be seen that, compared to the quasi-continuous case (row

I. of Fig. 2), the system becomes unstable with the multi-

rate operation (row II. of Fig. 2). It can be seen that the

low-rate (discrete) actuation of the base causes instability of

the spacecraft and eventually the manipulator. The problem

statement considered in the scope of this work is to design and

analyze the operational bounds of a sampling-aware multi-rate

combined control strategy for tackling instabilities such as the

one seen here.

III. CONTROLLER DESIGN

The controller design is split between the fast dynamics

of the high-rate manipulator control and the slow dynamics

of the low-rate base control. The first step is to dynamically

decouple the control tasks of the manipulator and servicer

base. This is achieved by designing the high-rate manipulator

control to compensate for the disturbances arising from the

discrete control of the base. The second step is to design

the spacecraft controller based on discrete-Lyapunov analysis

using the decoupled dynamics.

A. High-rate manipulator control

Since the manipulator is considered to be controlled at a

high-rate (eg. 1kHz), it can be modeled in continuous-time.

To design the high-rate manipulator control, we inertially-

decouple the manipulator from the base dynamics. This can be
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I. Quasi-Continuous control: Manipulator at 1kHz and base at 1kHz
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II. Multi-rate control: Manipulator at 1kHz and base at 3Hz
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Fig. 2: Problem statement: Exemplary scenario showing stable vs. unstable behaviour using quasi-continuous (row I.) vs. multi-rate (row II.)
control of an orbital manipulator with 7 joints. Actuator profiles compared for (a) joint torques (b) base forces and (c) base torques.

done by substituting v̇b from the top row into the manipulator

dynamics in the bottom row of (1) to obtain,

Λnnq̈n + µnnq̇n + µnbvb = τ −MT
bnM

−1
bb Fb (2)

where,

Λnn = Mnn −MT
bnM

−1
bb Mbn,

µnn =
[
−MT

bnM
−1
bb In

]
[
Cbb Cbn

Cnb Cnn

] [
−M−1

bb Mbn

In

]

,

µnb = Cnb −MT
bnM

−1
bb Cbb.

Here, the passivity property, Λ̇nn = µnn + µT
nn holds. The

dynamics in (2) is similar to the generalized dynamics of

a floating-base manipulator [20], with the difference being

the non-zero momentum with base actuation. From (2) we

observe that the disturbance torque on the manipulator due

to the base actuation is given by the term MT
bnM

−1
bb Fb,

while, the coupling torque on the manipulator due to the

floating base motion is given by the Coriolis acceleration terms

depending on vb. Keeping these observations in mind, we

design a control law that achieves dynamic decoupling [21]

of the manipulator’s control task from the base by choosing,

τ = KPn∆qn −KDnq̇n
︸ ︷︷ ︸

τPD

+MT
bnM

−1
bb Fb

︸ ︷︷ ︸

τF

+µnbvb
︸ ︷︷ ︸

τv

(3)

Here, KPn,KDn ∈ Rn×n are the proportional and derivative

(PD) gains, and ∆qn = qd
n − qn ∈ Rn are the joint errors of

the manipulator from the desired joint angles qd
n. The control

law in (3) decouples the manipulator from the base dynamics

via the terms τF and τv . It is worth noting that the control

law in (3) is consistent with prioritizing the manipulator task

by projecting the base control task in its nullspace [22].

Proposition 1. Consider the system (1) with the control law

(3). Assume that the stiffness and damping gains KPn and

KDn are symmetric and positive-definite. Then, the control

law in (3) results in the equilibrium ∆qn, q̇n = 0 being

asymptotically stable.

Proof. Consider the continuous-time positive definite candi-

date Lyapunov function,

Vn =
1

2
q̇T
nΛnnq̇n +

1

2
∆qT

nKPn∆qn (4)

Its time-derivative along a trajectory governed by the dynamics

in (2) results in,

V̇n = q̇T
n (τ −KPn∆qn −MT

bnM
−1
bb Fb − µnbvb) (5)

where, the passivity property Λ̇nn = µnn + µT
nn is used.

Therefore, substituting the control law (3) results in V̇n =
−q̇T

nKDnq̇n which is negative semi-definite. From this we

conclude stability and boundedness of the manipulator states.

Further, using LaSalle’s invariance principle, we conclude

asymptotic stability of the equilibrium ∆qn, q̇n = 0.

B. Low-rate base control

The proposed approach first discretizes the base dynamics

in the set of the converged manipulator errors. A sample-

and-hold discrete controller designed using the discretized

dynamics will result in energy leaks [23] due to a mismatch

in the physical and virtual energies of the continuous plant

and discrete controller between sampling instants. Therefore, a

discrete Lyapunov-based controller is designed to compensate

these sampling effects up to the first order.
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We recall the base dynamics from (1) and consider it in the

set that the manipulator states are converged, i.e. ∆qn, q̇n = 0.

Mbbv̇b +Cbbvb = Fb (6)

Note that the passivity property, Ṁbb = Cbb+CT
bb holds. The

base dynamics in (6) with zero-order-hold on the control input

can be discretized using the Taylor series expansion [24] as,

vb[k + 1] = vb[k] + hv̇b[k] +
1

2!
h2v̈b[k] + . . . (7)

where h is the sampling time corresponding to the actuation

rate of the base, and v̇b[k] and its higher derivatives are

computed from (6). To compensate for the sampling effect

up to the first-order of h, we propose to design the low-rate

base control law by considering Fb of the form

Fb[k] = Fb0[k] + hFb1[k] (8)

where, Fb0 is the zero-order state-feedback control and Fb1

is the first-order control law that compensates first-order

sampling effects. Therefore, we choose

Fb0[k] = EKPb∆xb −KDbvb (9)

Fb1[k] =− 1

2
KT

DbM
−1
bb EKPb∆xb +

1

2
ĖKPb∆xb

−1

2
(EKPbE

T −KT
DbM

−1
bb Cbb −KT

DbM
−1
bb KDb)vb

where [k] has been omitted for all quantities on the right-

hand-side for brevity. Here, KPb,KDb ∈ R6×6 are the

zero-order PD gains. We consider the Cartesian pose error

(position and orientation) of the base, ∆xb ∈ R6, such that

∆ẋb = −ETvb
1. The design of Fb0 and Fb1 as in (9) is

a consequence of discrete-Lyapunov analysis (detailed in the

proof of Proposition 2 ahead) that reduces the sampling effects

to the order of O(h2). Finally, (8) with (9) can be equivalently

re-arranged as

Fb[k] = (EKPb + hKPb1
︸ ︷︷ ︸

K̄Pb

)∆xb − (KDb + hKDb1
︸ ︷︷ ︸

K̄Db

)vb (10)

where, KPb1 =
1

2
(ĖKPb −KDbM

−1
bb EKPb),

KDb1 =
1

2
(EKPbE

T −KDbM
−1
bb Cbb −KDbM

−1
bb KDb)

Note that K̄Pb and K̄Db are the sampling-aware PD gains that

tend to the classical continuous-time PD gains when h → 0. A

schematic of the multi-rate combined controller is summarized

in Fig. 3.

Proposition 2. Consider the dynamics in (6) in the set

∆q, q̇ = 0 discretized using the Taylor series as per (7)

with the control law in (10). The stiffness and damping gains

KPb and KDb are symmetric and positive-definite. Then,

neglecting higher-order terms, the control law in (10) results

in the equilibrium ∆xb,vb = 0 being asymptotically stable

conditionally to the set ∆qn, q̇n = 0.

1Here, E = diag(I3,
1

2
(∆ηI3 + S(∆ǫ))), where ∆η,∆ǫ are the scalar,

vector parts of the error quaternion and S(·) is the skew-symmetric cross-
product operator [25].

Proof. Consider the following positive definite candidate Lya-

punov function

Vb =
1

2h
vT
b Mbbvb +

1

2h
∆xT

b KPb∆xb (11)

in the set of the manipulator errors converged i.e. ∆qn, q̇n =
0. The Lyapunov difference equation of (11) in discrete-time

can be written as,

Vb[k + 1]− Vb[k] = (12)

+
1

2h
vT
b [k + 1]Mbb[k + 1]vb[k + 1]− 1

2h
vT
b [k]Mbb[k]vb[k]

+
1

2h
∆xT

b [k + 1]KPb∆xb[k + 1]− 1

2h
∆xT

b [k]KPb∆xb[k]

Further, consider the expansions Mbb[k + 1] = Mbb[k] +
hṀbb[k] +

1
2!h

2M̈bb[k] + . . . and ∆xb[k + 1] = ∆xb[k] +
h∆ẋb[k] +

1
2!h

2∆ẍb[k] + . . . Applying (6)-(7) and the above

expansions to (12), followed by some tedious but straightfor-

ward simplifications result in

Vb[k + 1]− Vb[k] =

(vb −
h

2
M−1

bb Cbbvb +
h

2
M−1

bb Fb)
T (Fb −EKPb∆xb)

+
h

2
vT
b EKPbE

Tvb −
h

2
vT
b ĖKPb∆xb +O(h2) (13)

where the passivity property Ṁbb = Cbb+CT
bb has been used.

Considering Fb as in (8) and Fb0 as in (9), we can obtain Fb1

as in (9) to yield,

Vb[k + 1]− Vb[k] = −v̄T
b KDbv̄b +O(h2) (14)

where, v̄b = vb− h
2M

−1
bb

Cvb+
h
2M

−1
bb Fb0. Neglecting higher

order terms, the control law (10) for Fb yields (14) negative

semi-definite, showing boundedness of the considered states.

Further, applying LaSalles’s invariance principle for discrete

systems [26] it can be shown that all trajectories in the set

∆qn, q̇n = 0 will converge to the equilibrium ∆xb,vb = 0.

This allows to conclude that the equilibrium ∆xb,vb = 0 is

conditionally stable in the set ∆qn, q̇n = 0, neglecting higher

order terms.

Note that for combined stability, Vn can be considered as in

(4) to be the semi-definite Lyapunov function of the complete

system. In addition, using the conditional stability analysis

in Proposition 2 and neglecting higher-order terms, combined

stability can be concluded similar to [27] for discrete-time

systems. Note that the proof of stability here does not imply

sequential convergence, rather it is a simultaneous convergence

of hierarchical tasks [22]. In other words, the hierarchy is not

referring to time of convergence but the decoupling via the

nullspace of the base disturbance on the manipulator.

Discussion

All terms in (13) besides vT
b (Fb − EKPb∆xb) are the

sampling effects in discrete time of the continuous-time plant.

This can be seen as the energy leak described in [23] occuring

due to the discrete controller’s inability to react between

sampling instants. The proposed discrete controller in (10)

reduces this energy leak to the (negligible) order of O(h2).
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Fig. 3: Block diagram of the proposed combined control of the orbital manipulator shows how the high-rate manipulator control (3) and
low-rate base control (10) are computed. The blocks/signals in blue and yellow associate with high- and low-rate control, respectively.

The rationale for targeting the Lyapunov difference equation

as in (14) lies in a key observation that (13) can alternatively

be seen as,

Vb[k + 1]− Vb[k] =

(vb +
h

2
v̇b

︸ ︷︷ ︸

≈vb[k+
1

2
]

)T (Fb − (E +
h

2
Ė

︸ ︷︷ ︸

≈E[k+ 1

2
]

)KPb(∆xb −
h

2
ETvb

︸ ︷︷ ︸

≈∆xb[k+
1

2
]

)) +O(h2)

(15)

while neglecting higher-order terms. This shows that the first-

order approximation of the Lyapunov difference equation can

be captured by the first-order approximation of the states at

mid-sampling instant [k + 1
2 ]. Applying the control law in

(10) is equivalent to Fb = Fb0 + h
2 Ḟb0 ≈ Fb[k + 1

2 ], the

first-order approximation of the continuous-domain controller

at mid-sampling instant, where Fb1 = 1
2 Ḟb0.

IV. EVALUATION OF SAMPLED-DATA CONTROLLER ON A

LOW-DIMENSIONAL BENCHMARK

In this section, we validate the novel discrete controller

applied to a 1-DoF double-integrator plant for simplicity and

clarity. This gives us an insight into the operational bounds of

the discrete controller enhanced to tackle first-order sampling

effects. This shall provide a baseline for anticipating the

controller’s performance in the nonlinear multi-DoF case.

The results of the discrete-controller in (10) applied to a

1-DoF case are presented for an exemplary plant with mass

M = 5kg and stiffness KP = 25N/m. A comparison of the

Fig. 4: Low-rate discrete-control for 1-DoF plant: Region of stability
for the 0th order and 1st order PD control law.

stability to a step-input is performed between the 0th order

(Fb0) and 1st order (Fb0 + hFb1) PD control law for 4000

data points across a grid of damping and sampling ratios.

Stability is determined by the location of the poles inside the

unit circle. The damping ratio equals ζ = KD/(2
√
KPM)

and the sampling ratio equals ωs/ωn, where ωs = 2π/h is

the sampling frequency2 and ωn =
√

KP /M is the natural

frequency. Note that here we use the sampling frequency

normalized by the natural frequency so as to make the result

agnostic to the mass and stiffness chosen.

The increase in the boundary of stability is shown in Fig. 4

by the overlapping area between violet and yellow regions. In

this overlapping region, the 1st order PD controller stabilizes

instability seen with 0th order PD. We can observe that regions

with either very low sampling ratios or very low damping

ratios are more prone to instability. In Fig. 4 , the range of

sampling ratio above 15 and damping ratio above 0.4 results

in a stable system. This evaluation facilitates the tuning of the

control gains a-priori and anticipate boundaries of stability.

V. SIMULATION RESULTS FOR MULTI-RATE COMBINED

CONTROL OF AN ORBITAL MANIPULATOR

This section presents simulation results of the proposed

multi-rate combined controller applied to the multi-DoF case

of an orbital manipulator. First, we show the effectiveness

of the proposed multi-rate combined control in tackling the

instability presented in the problem statement, Fig. 2. Second,

we highlight the significance of the compensation torques

designed for the high-rate manipulator control. Lastly, we

compare the proposed 1st order multi-rate combined control

against the 0th order control scheme for 99 data points across

randomized initial poses of the manipulator and base.

The simulation setup in Fig. 1 (a) uses an orbital manip-

ulator from the EROSS IOD mission [28]. The manipulator

considered is the 7-DoF CAESAR arm. The servicing space-

craft considered weighs 360kg and its inertia elements in

the spacecraft body frame are Ixx = 210, Iyy = 77, Izz =
212, Ixy = 1.9, Ixz = 1.7, Iyz = 3.2 kgm2. The manipulator

is controlled at a high-rate of 1kHz and the servicer spacecraft

is controlled at a low-rate of 3Hz, i.e. h = 0.33s. The initial

velocity (linear and angular) of the servicer and client is zero.

The initial manipulator pose is [90, 75, 0, 160, 0, 0, 120]deg.

2To avoid signal aliasing, the lower limit for sampling is known to be twice
the natural frequency.
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Fig. 5: Stabilized manipulator and base actuation profiles and trajectories using proposed method for scenario in problem statement, Fig. 2.
For ease of presentation, Euler angles (φ, θ, ψ in the XYZ convention) are reported here.

1) Problem statement scenario with proposed method:

The example scenario shown in the problem statement

Fig. 2 considers a base displacement of [−0.3, 0.1, 0.2]m
and [−8, 4, 12]deg, and manipulator displacement of

[10,−25, 10,−45, 10, 25, 10]deg. A smooth trajectory is

interpolated from the initial to the final setpoint. An overlay

of the initial and final poses of this maneuver are shown in

Fig. 1 (a). The gains for the manipulator control are set to

KPn as diag(400, 800, 400, 400, 100, 100, 40)Nm/rad and

KDn as diag(300, 300, 200, 200, 20, 20, 10)Nms/rad. The

0-order gains for the spacecraft control are set to KPb as

diag([2500, 2500, 2500]N/m, [1000, 1000, 1000]Nm/rad),
KDb as diag([250, 250, 250]Ns/m, [100, 100, 100]Nms/rad).

The result of applying the low-rate 0th order PD control on

the base and high-rate PD control on the manipulator without

any decoupling was shown in the problem statement in Fig. 2.

The result with the proposed multi-rate combined control laws

in (3) and (10) is now presented in Fig. 5 for comparison. It

can be seen from Fig. 5 that the proposed method stabilizes the

scenario in the problem statement, which lay in a region of low

sampling ratio (≈7.5) and damping ratio (≈0.12). The mean

absolute error between the total Lyapunov difference equation

in (12) and the O(h) approximation in (15) is bounded below

0.25J/s. Further, omitting compensation torques (τF and τv)

in (3) only result in minor joint vibration, seen in Fig. 6 (a).

2) Comparison to passivity-based control [19]: The pro-

posed method has been compared with the passivity based

approach presented in [19] under identical conditions at 8

Hz. A comparison of the impulse (integral of force and torque

as a measure of the efficiency) is shown in Fig. 6(b) . The

method in [19] has maximum values of 74 Ns and 33 Nms

at the end of the maneuver against the lower values of 46 Ns

and 20 Nms of the proposed method. The method in [19] is

based on observation first (observe energy) and action later

(dissipate active energy with passivity control). This translates
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Fig. 6: (a) Manipulator joint velocities while omitting compensation
torques with discrete base control. (b) Impulse profile compared with
[19] (in dashed lines) versus proposed 1st order PD (in solid lines).

in more impulse (consumption) for the system. In contrast,

the proposed method, acts a-priori (i.e. from a theoretical

deduction) to reduce the system activity.

3) Grid search with randomized initial conditions: To cover

a wider spectrum of dynamic motions a set of simulations were

performed for randomized poses sampled from a uniform dis-

tribution across a grid of damping [29] and sampling ratios for

the base controller. The grid considers damping ratios between

[0.1, 0.9] in steps of 0.1 and sampling ratios between [3, 33] in

steps of 3. Considering a natural frequency of ωn = πrad/s,
this translates to a range of [1.5, 16.5]Hz in steps of 1.5Hz for

the base control. The initial pose of the manipulator was sam-

pled from a range of ±[130, 40, 130, 130, 130, 130, 130]deg
and the displacement was randomly chosen as ±50deg per

joint. The base displacement was sampled along the surface
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Fig. 7: Difference in (a) linear and (b) angular impulse utilized by the
0th order vs. proposed 1st order multi-rate combined control shown
across increasing sampling and damping ratios.

of spheres of radii 0.5m and 30deg. Therefore, the norm of

manipulator and base displacements were considered the same

(regardless of the initial pose and direction of displacement)

for a fair comparison of the impulse utilized by the different

maneuvers. For sensitivity analysis, model parameters are

perturbed up to 20% in the mass, inertia and center-of-mass.

The 0-order stiffness gain of the base controller is chosen as

KPb = ω2
n/Mbb(q(0)) using the initial pose q(0). The ma-

nipulator gains are similarly tuned as KPn = ω2
n/Mnn(q(0))

and KDn set to a damping ratio of 0.7, which must not

be confused with the range of damping ratios of the base

controller considered for the analysis.

For each data point thus generated, 80 data points out of 99

were observed to be stable for both controllers. A comparison

of the impulse utilized for the maneuvers is shown in Fig. 7.

Here, we observe that 93% and 89% of stable data points led

to a reduction in the linear and angular impulse consumed,

respectively. The mean and standard deviation of the reduction

was observed to be 9.64 Ns and 14.22 Ns in linear, and

9.22 Nms and 13.21 Nms in angular impulse, respectively.

The remaining stable data points with high damping ratio of

ζ > 0.6 have a comparable/marginal increase in the impulse

consumed. Thus, the proposed method is observed to perform

better particularly in regions of low damping ratios.

VI. HARDWARE-IN-THE-LOOP RESULTS FOR MULTI-RATE

COMBINED CONTROL

The HIL platform uses the servicer robot of the DLR, OOS-

Sim (250Hz) able to simulate 0-g dynamics at 1kHz and the

intrinsic time delay of the facility is 4ms [30]. The HIL setup

(see Fig. 1) is equipped with a 7-DoF LWR manipulator. The

servicing spacecraft considered weighs 200kg and its inertia

elements in the spacecraft body frame are Ixx = 100, Iyy =
100, Izz = 100, Ixy = 3, Ixz = 0, Iyz = 0 kgm2. The ma-

nipulator is controlled at a high-rate of 1kHz and the servicer

spacecraft is controlled at a low-rate of 5Hz(h = 0.2s).
The gains for the manipulator control are

KPn=diag(150, 150, 135, 100, 50, 50, 50)Nm/rad and

KDn=diag(20, 30, 1, 1, 1, 1, 1)Nms/rad. The 0-order gains

for the spacecraft control are set to a damping ratio of 0.7 with

KPb =diag([220, 220, 220]N/m, [120, 130, 110]Nm/rad) and

KDb=diag([305, 305, 305]Ns/m, [170, 180, 150]Nms/rad).
Thus, a control rate of 5Hz results in a sampling ratio ≈ 31.

The scenario considers a close-proximity maneuver of the

servicer spacecraft towards the client along with the ma-

nipulator. An overlay of the initial and final poses of this

maneuver are shown in Fig. 1 (b). The desired displacement

for the base is [0.1, 0.0,−0.1]m and [−10, 0, 0]deg, and for

the manipulator is [0,−47, 4,−28,−1,−15, 3]deg. A smooth

trajectory is interpolated from the initial to the final setpoint.

The result of applying the proposed multi-rate combined

control laws in (3) and (10) to the scenario is presented in

Fig. 8. The proposed multi-rate control is seen to stabilize the

combined motion of the spacecraft base and manipulator to

reach the desired setpoint with a maximum error of 0.9deg per

joint and 10−4m, 0.1deg in norm for the base. The steady-state

residual torques in Fig. 8 (a) arise from the joint friction. The

discrete nature of the base actuation at 5Hz can be observed

from the staggered profile of the force and torques in Fig. 8 (b)

and (c). The final linear and angular impulses for this scenario

are reduced by 1% and 4% respectively by using the proposed

method versus the 0th order PD control.

The same maneuver was repeated with lower sampling rates

of 3Hz, 2Hz and 1Hz for the base control. The recorded im-

pulse reduction is reported in Table I comparing the proposed

1st order PD to the 0th order control. It can be seen from the

values that the proposed method was more efficient for the

conducted experiments and the nonlinearity of the dynamics

is evident from the nonlinear reduction of impulse across

different base control rates.

TABLE I: HIL experiments: Efficiency of base actuation at different
sampling rates with damping ratio of 0.7. *Percentage reduction in
impulse compared using the 1st order versus 0th order PD.

Base rate Sampling ratio Linear* [%] Angular* [%]

5 Hz 31 -1 -4
3 Hz 19 -7 -11
2 Hz 13 -3 -7
1 Hz 6 -21 -34

VII. CONCLUSIONS

In this paper, we proposed a multi-rate controller that

addresses the combined control problem encountered in the

operation of an orbital manipulator. This is achieved through

two main innovations - the design of a discrete controller that

considers the servicer’s low sampling rate, and a combined

control strategy that separates the manipulator’s high-rate

control from the spacecraft’s discrete control. The proposed

(control) concept is first validated in simulation using a one-

DoF benchmark showing the enhancement of the boundary of

stability with the proposed method. Second, simulations are

performed using a multi-DoF orbital manipulator to compare

the impulse utilization as a measure of efficiency. The method

is further validated using a hardware-in-the-loop setup. Exten-

sions of the method to Cartesian control or, to quantized input

and time delay with [3] and [31], which rely on power ports

and energy measurements, may be scope for future work.
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Fig. 8: HIL experiment: Manipulator and base actuation profiles and trajectories for close-proximity maneuver performed using proposed
method with low-rate (5Hz) base control and high-rate (1kHz) manipulator control. For ease of presentation, Euler angles are reported here.
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