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H I G H L I G H T S

∙ Systematic application of the massively parallel solver PIPS-IPM++ to large-scale capacity expansion problems from the REMix framework reducing the time to 

solve by about one order of magnitude.

∙ Identification of the total number of capacity expansion decisions as the primary driver of the computational burden in linear ESOM instances.

∙ Generation of insights into the optimal decomposition strategy and configuration of PIPS-IPM++ depending on the problem instance to be solved.

∙ Enable researchers to leverage massively parallel solver on high-performance computing infrastructure, avoid limitations from shared memory, and allow for larger 

optimization models.
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A B S T R A C T

The complexity in the design of future integrated energy systems is reflected in the modeling tools used to analyze 

the interactions and synergies between energy technologies. As real-world systems become more interconnected, 

the complexity of model representations increases, resulting in a greater computational burden to obtain optimal 

solutions. Several approaches can address this challenge, including making trade-offs between model dimensions, 

using methods to reduce complexity, performing mathematical decomposition, and applying massively parallel 

solvers. While most of these approaches have been extensively studied, the application of massively parallel 

solvers has barely been explored due to their novelty. The main advantage of this approach is that it is well-suited 

to take advantage of modern high-performance computing infrastructure. Therefore, a more systematic evaluation 

of the types of model instances and decomposition strategies that can benefit from massively parallel solvers 

remains necessary. In this study, we identify capacity expansion decisions as the primary driver of computational 

complexity, particularly within the REMix framework, and demonstrate how to effectively leverage the underlying 

problem structure of these models. In a computational experiment we evaluate the performance of PIPS-IPM++ 

against a state-of-the-art interior-point solver. The results show a significant reduction in the total required wall-

clock time of about one order of magnitude, as well as a reduction in required computational resources. Our 

findings provide modelers with the necessary methods and capabilities to solve previously intractable, large-scale 

problems, thereby increasing the level of detail and explanatory power of energy system optimization models.

1. Introduction

Energy system optimization models (ESOMs) have become widely 

used tools to gain insight into the interactions between energy tech-

nologies and flexibility options in future energy systems. However, 

accurate modeling of these systems requires a sufficient temporal and

spatial resolution to capture the variability of renewable energy sources 

[1], transmission bottlenecks [2] and need for electrical energy stor-

age expansion [3]. Hence, contemporary large-scale ESOMs translate 

into mathematical optimization problems involving up to hundreds of 

millions of variables and constraints, resulting in a high computational
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List of abbreviations

AC alternating current

AC-OPF alternating current optimal power flow

ESOM energy system optimization model 

FLOP floating point operation 

GPU graphics processing unit 

HPC high-performance computing 

IP interior-point

IAM integrated assessment model 

JSC Jülich Supercomputing Centre 

LP linear programming 

MILP mixed-integer linear programming 

NUMA non-uniform memory access 

RAM random access memory 

UC unit commitment 

VRE variable renewable energy

burden. This computational burden is evident in the fact that most mod-

elers opt for clustering and aggregation techniques in either the spatial or 

temporal resolution [4] as well as the large field of research to system-

atically improve complexity reduction techniques [5]. The maximum 

size of ESOMs that can still be solved in a reasonable time frame is 

mainly determined by the performance of the utilized algorithm and 

the available hardware. This combination gives an overall threshold, 

which determines the maximum computational complexity that can still 

be addressed. However, this reasonable time frame is subjective for 

each modeler and depends on additional factors like the overall num-

ber of runs for a given analysis [6]. For an individual optimization 

run, there are various approaches that affect the computational bur-

den – trade-offs between model dimensions, aggregation techniques and 

heuristics, mathematical decomposition, and application of massively 

parallel solvers. We start by discussing the different influences each of 

these approaches has on the computational burden and drawbacks that 

need to be considered by the modeler.

Trade-offs between model dimensions allow one dimension’s level 

of detail to increase at the expense of another dimension’s level of de-

tail. For example, simple aggregation techniques can be used to achieve 

this goal [7]. When using state-of-the-art interior-point (IP) solvers, 

such shifts allow focusing on a specific aspect of the model while 

staying within the threshold for computational complexity. More spe-

cialized heuristics allow more efficient trade-offs through intelligent 

reductions in model dimensions [5]. However, like the trade-offs, this 

approach is also subject to the same overall computational threshold 

imposed by the available algorithms and hardware. In contrast to the 

aforementioned approaches, mathematical decomposition allows the 

computational threshold to be increased by iteratively solving multiple 

smaller subproblems [8]. Similarly, massively parallel solvers exploit 

a fundamental block structure of the optimization matrix. This also 

effectively results in the iterative solving of subproblems but has the 

advantage that no explicit reformulation of the model logic is required. 

Both mathematical decomposition and massively parallel solvers can be 

deployed to distributed memory architectures, enabling the efficient use 

of high-performance computing (HPC) infrastructure.

1.1. The increasing complexity of ESOMs

Energy system modeling has been widely used to inform policy mak-

ers about decisions for a successful energy system transition [9]. The 

fundamental challenge of decarbonizing energy systems lies in integrat-

ing renewable energy resources while ensuring an affordable, secure 

and sustainable energy supply. All three aspects can be modeled using 

ESOMs, which enable capacity expansion planning and economic dis-

patch to be integrated into a single optimization problem [10]. While 

this integration of capacity expansion planning significantly increases 

computational complexity [11], it also offers the most valuable insights 

for planning the energy transition.

One of the most prevalent challenges in modeling large-scale en-

ergy systems is the trade-off between two fundamental requirements – 

maintaining a comprehensive system perspective while at the same time 

providing a sufficient level of detail. This level of detail can affect either

the spatial, the temporal or the technological resolution of the model 

[4]. Reducing the spatial resolution, for example, can affect the preserva-

tion of critical bottlenecks in the network topology, such as high-voltage 

transmission lines. Consequently, the model may produce overly opti-

mistic solutions. Conversely, increasing the spatial resolution increases 

computational complexity and potentially leads to time constraints for 

real-time applications, such as market clearing or network redispatch. 

There are a large number of different approaches and various degrees 

of complexity for different formulations of optimization models, but all 

of them are constrained by the limitation of computational complexity 

when applying standard IP solvers [8].

Several crucial factors must be considered for future energy sys-

tems, requiring a minimum level of detail to be addressed by the ESOM 

across the different dimensions. In terms of the temporal dimension the 

correct representation of the availability of variable renewable energy 

(VRE) sources plays a fundamental role in future energy systems [1]. 

Due to their variability, hourly and sub-hourly resolutions are required 

to accurately estimate the need for additional flexibility options, such 

as transmission networks and storage technologies. Consequently, many 

ESOMs discretize the temporal dimension of the model into hourly time 

steps [12].

Similarly, exploring transformation pathways requires the integral 

consideration of long-term time horizons. For example, this enables 

the endogenous modeling of optimal CO 2 

budget allocation or the in-

clusion of learning rates for energy technologies [13]. Therefore, a 

fundamental design choice for ESOMs is whether to include transfor-

mation pathways as multi-year optimizations or to use (successive) 

single-year optimizations. While single-year optimization models focus 

on the hourly interactions of technologies providing system flexibility, 

multi-year models typically use representative time slices [8].

At a spatial level, the increasing number of distributed generators and 

new power consumers requires more accurate modeling of power flows. 

This modeling must bridge the gap between modeling grid congestion 

at a regional level and accounting for long-distance energy transmission 

due to the spatial balancing effects of renewable energy sources [14]. 

This requires a broad geographical scope, detailed spatial resolution, 

and accurate representation of network losses, in order to adequately 

assess energy transmission and identify the need for network expansion 

[15]. 

In terms of energy technologies, the expansion of the modeled sys-

tem is driven by the coupling of energy sectors to decarbonize the 

heating and transport sectors, primarily through electrification or the 

provision of synthetic fuels based on renewable energy sources [16]. 

This introduces a wide range of new technologies and energy vectors 

to be additionally considered in ESOMs. Similarly, considering hydro-

gen blending in natural gas pipelines [17] or hydrogen offshore hubs 

[18] further increases the complexity of capacity expansion decisions in 

ESOMs.

While reducing the spatial and temporal resolution can often be 

achieved with limited loss of detail, introducing more sectors and tech-

nologies can significantly impact the design of the overall energy system. 

However, there is still the possibility of aggregating similar technologies 

[19].
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1.2. Heuristics and complexity reduction

As a consequence of this growing complexity in all three dimensions, 

the size of the model in terms of variables and constraints, as well as the 

time required to solve it, increases. Many approaches to dealing with the 

resulting computational limitations can be summarized as heuristics. In 

this context, heuristics aim to provide either simplifications across one 

or more dimensions, or multi-stage approaches, where an initial approxi-

mation is performed at a low resolution, followed by a consecutive run at 

a higher resolution. This trade-off between modeling capacity expansion 

pathways and ensuring a high temporal resolution can be addressed by 

running two models sequentially. For instance, in Gerbaulet et al. [20], 

first the capacity expansion is modeled using a low temporal resolution 

to estimate the overall energy system design. Then, the system’s opera-

tions are validated by conducting an hourly economic dispatch of power 

plants at a high temporal resolution.

For models with an hourly resolution in particular, the time dimen-

sion is one of the main drivers of complexity and therefore typically 

the first dimension to be addressed using complexity reduction. This 

involves reducing the temporal dimension sufficiently (e.g., by identify-

ing representative time periods or merging consecutive hours), while 

preserving critical information from the input data with an hourly 

resolution. Kotzur et al. evaluate the impact of several time series aggre-

gation techniques on energy system design (by comparing the resulting 

objective values) and computational times compared to an ESOM using 

the full time series data [21]. They conclude that the choice of a spe-

cific algorithm does not have a significant impact on the accuracy of a 

model. However, the authors emphasize that the approaches studied are 

not recommended for modeling energy systems that rely heavily on en-

ergy storage. This finding is also confirmed by Buchholz et al., who use 

complexity reduction approaches that do not explicitly consider long-

term energy storage [22]. The authors point out that investments in 

flexibility options and thus total system costs are systematically under-

estimated. Raventos et al. study two different time series aggregation 

techniques, reporting that chronological clustering better accounts for 

the operational patterns of energy storage [23].

Similar findings apply to the spatial scale. In a previous study, we 

demonstrated how such reductions can lead to an underestimation of the 

share of investment costs for transmission investments, as well as a shifts 

towards electricity generation with low marginal costs [4]. Although 

spatial reduction techniques are state-of-the-art in power systems engi-

neering, where network equivalents are used to simplify areas around 

the study area (i.e., the area of responsibility of a network operator) 

[24], such approaches are of limited value for ESOMs, which often do not 

focus on a specific distribution network. The key challenge, therefore, 

is to define clusters that can be treated as interconnected regions with 

no internal bottlenecks. Therefore, network clustering approaches are 

usually used to identify the transmission lines that are most important 

to maintain in a reduced network representation [25].

In summary, heuristics that aim to reduce the complexity of ESOMs, 

particularly with regard to the temporal scale, have the potential to 

significantly reduce computational effort while providing results that 

are sufficient for specific use cases. Buchholz et al. report reductions 

in computation time of up to 98 % when ignoring long-term energy 

storage options [22]. However, systematic evaluations in the literature 

have mainly been performed with comparatively small ESOMs, since 

two conditions must be met for such studies. Firstly, a full-scale model 

must be solved as a benchmark for the complexity reduction method. 

Secondly, tuning the algorithm and demonstrating scaling effects require 

a sufficiently large number of runs. To ensure that an algorithm’s per-

formance is comparable to the reference solution, these studies must 

be performed on identical hardware. Therefore, the cumulative com-

putation time for an appropriate benchmark study remains an issue, 

particularly for systematic studies involving large-scale models [26]. For 

a broader overview of the various methods of reducing the complexity 

of energy system models, the reader is referred to [5].

1.3. State of running ESOMs on HPCs

All of the approaches presented so far use single-node, shared-

memory architectures to solve the optimization problem. Historically, 

this approach has worked quite well since available hardware has mainly 

offered speed increases based on processor clock rates. However, this 

trend shifted in the early 2000s with the introduction of multi-core 

processors. 

1 Consequently, algorithms had to utilize multi-core architec-

tures to enhance performance. Further scaling of computing resources 

was achieved by switching from single-node to multi-node comput-

ing clusters. This utilization of multiple cores across one or multiple 

compute nodes can be classified as either parallelization on shared mem-

ory architectures (e.g., via OpenMP, Open Multi-Processing, a standard 

interface for parallel computing on shared memory, multi-core archi-

tectures) and parallelization across distributed memory architectures, 

also referred to as distributed computing (e.g., via MPI, Message Passing 

Interface, a standard interface for coordinating processes across dis-

tributed memory, multi-node architectures). On distributed computing 

architectures, modelers take advantage of the large number of identical 

processors for parallel computing, but at the cost of requiring algorithms 

that are able to utilize the distributed memory. While distributed com-

puting is a quite broad term, modern HPC clusters additionally provide 

fast communication networks and data storage.

Even without parallel software, HPC can still be used to scale up 

the optimization of multiple independent model instances in an embar-

rassingly parallel workflow. While this approach is useful for analyzing 

a broad scenario space, individual model instances still must fit within 

the hardware limitations of a single compute node. For instance, Sharma 

et al. [27] perform benchmark analyses with models of the TIMES 

family [28] and study optimal strategies to allocate multiple indepen-

dent model instances across compute nodes. The authors also highlight 

advantages of applying HPC-typical software, such as workload manage-

ment tools, to perform multiple parameter variations and solve a set of 

scenarios.

However, solving an ESOM that exceeds the memory capacity of 

a single compute node requires decomposing the optimization prob-

lem into a set of subproblems. Accordingly, such applications must 

handle the additional communication overhead between subproblems. 

Various approaches have been presented for operations scheduling [29], 

often using well-known mathematical decomposition strategies such 

as Benders decomposition [30] or Dantzig–Wolfe decomposition [31]. 

Gong et al. use an Augmented Lagrangian Relaxation applied to a com-

bined unit commitment (UC), optimal power flow, and transmission 

switching problem [32]. They also decompose a coordinated opera-

tions planning problem for the gas and electricity sectors in this manner 

[33]. Göke et al. apply Benders Decomposition to a stochastic two-stage 

energy system optimization problem where additional enhancement 

strategies are used to improve the performance of the algorithm [34]. 

Similarly, to improve the parallelization of Benders Decomposition, 

Pecci et al. decompose the subproblems along the temporal dimension 

[35]. 

In the special case of two-stage stochastic optimization the commu-

nication overhead is minimal, making such problems early candidates 

for the application of HPC. One of the main advantages of stochastic 

optimization problems is their fundamental structure: the objective is 

to identify a set of decisions applicable to a broad range of uncertain 

boundary conditions. If a different solution is allowed for each boundary 

condition, solving the entire optimization problem is equivalent to solv-

ing multiple small optimization problems. The goal, however, is to find 

a single solution that applies to all problems, so the decision variables 

span across multiple stochastic scenarios. These variables link the prob-

lem structure, preventing the solution of parts individually. Therefore, 

they are referred to as “linking” or “complicating” variables. Linking

1 https://github.com/karlrupp/microprocessor-trend-data
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variables automatically emerge when the entire problem is decomposed 

in a particular way.

In terms of application, Papavasiliou et al. decompose a short-term 

UC problem with a time horizon of 24 hours by Lagrangian relaxation 

and solve 1,000 independent stochastic scenarios [36]. The authors 

report reducing the computation time from 120 hours down to 17.5 

hours by exploiting the parallelization potential of 1000 processors. In 

a more recent study Ávila et al. [37] introduce a stochastic optimization 

problem for transmission system expansion in the European electricity 

network combining two different decomposition approaches based on 

the L-shaped method, and bring it to HPC. In contrast to classical de-

composition techniques, Lubin et al. present a novel massively parallel 

interior point solver, PIPS-IPM, which decomposes the stochastic opti-

mization problem along the scenario dimension [38]. This solver is used 

by Petra et al. to determine the optimal dispatch of power plants in the 

federal state of Illinois to adequately reflect the probability distribution 

for electricity generation from wind turbines [39]. The major advantage 

of these approaches is their scalability, which is one of the most impor-

tant aspects for distributed memory architectures. Similar scalability was 

demonstrated by Wang et al. [40], who presented the HiOP solver for 

addressing nonlinear stochastic optimization problems. This solver was 

used in one of the first successful attempts at exascale computing with a 

large number of graphics processing units (GPUs) in the field of power 

system analysis. More recently, Shin et al. [41] and Swirydowicz [42] 

both applied massively parallel solvers on GPUs for the optimization of 

large-scale nonlinear alternating current optimal power flow (AC-OPF) 

problems. Also outside the field of optimization, novel approaches ad-

dressing the increasing complexity of transmission expansion planning 

are emerging, using convolutional neural networks [43].

However, most of the previously mentioned approaches require ei-

ther a limited number of linking variables or a limited number of linking 

constraints for the decomposition of the mathematical formulation. To 

solve a more generalized type of optimization problem that includes 

both linking variables and constraints, Rehfeldt et al. [44] extended the 

PIPS-IPM solver by Lubin et al. to handle both types. For various model 

instances, they report a speedup factor of up to 67 compared to the 

best standard IP solver. However, the instances addressed in the study 

are based on very stylized energy system models and real-world sys-

tems for pure economic dispatch models. The authors stress the need to 

further investigate the solver’s performance with model instances show-

ing stronger interconnection between individual subproblems. Similarly, 

Panos and Hassan apply PIPS-IPM++ to the TIMES model family for two 

instances and observe a speedup of 4 compared to a standard IP solver 

[45]. This wide range already indicates a strong connection between the 

types of optimization problems and the potential for speedups, and a lack 

of understanding of decomposition approaches and their resulting per-

formance. To date, the PIPS-IPM++ solver has also not yet been applied 

to large-scale hourly resolved ESOMs, which include a large number of 

capacity expansion decisions.

1.4. Towards a systematic understanding of computational performance in 

ESOMs

In summary, solving large-scale ESOMs, which comprise a multi-

tude of capacity expansion decisions is one of the most challenging 

aspects of outlining pathways for the energy transition. The models 

aim to identify potential investment opportunities in generation, storage 

and transmission capacities. This in turn requires methods that can effi-

ciently handle both linking variables and linking constraints. Although 

several heuristics have been applied to reduce the problem size over-

all, these heuristics either lead to information loss or require highly 

model-specific tuning, and they are usually not generalizable. Massively 

parallel solvers have proven useful in bringing ESOMs to HPC and avoid-

ing hardware limitations. However, their use has been limited to models 

with a small number of coupling elements. Here, PIPS-IPM++ presents 

an option to accelerate or even enable the solution of large-scale ESOMs

that combine both operational and capacity expansion planning. To bet-

ter understand the types of problems for which the PIPS-IPM++ solver 

can be effectively applied, we present its first application to a broad set 

of model instances to study the overall scaling behavior using real-world 

instances involving a large number of investment decisions. Thus, our 

study raises the general question of whether we can obtain similar ben-

efits from applying PIPS-IPM++ to capacity expansion problems and 

provides the following contributions:

1. We analyze the underlying problem structure for a scalable

REMix model instance with varying degrees of capacity expan-

sion planning and economic dispatch, and assess the impact of its 

complexity on the time and memory needed to solve the problem.

2. We outline the methodological steps that enable modelers to de-

compose generic ESOMs and solve them using PIPS-IPM++ on 

distributed memory hardware. To this end, we discuss how dif-

ferent decomposition strategies impact linking elements and the 

potentially achievable parallelization.

3. We perform a systematic computational experiment on various

scalable model instances derived from the REMix framework to 

compare the performance of PIPS-IPM++ against a state-of-the-

art standard IP solver with respect to obtainable solving time 

speedup, memory reduction, and scaling behavior.

2. Methods

Our research is fundamentally based on a computational experiment. 

In Sections 2.1 and 2.2, we first present the REMix framework used in 

this study as well as the parallel solver PIPS-IPM++. Section 2.3 then 

outlines the necessary block structures, while Section 2.4 presents a sys-

tematic approach for the implementation of the decomposition. Section 

2.5 then provides a model-specific example and highlights different 

decomposition strategies for ESOMs.

2.1. The REMix framework

REMix is an open-source framework for energy system optimiza-

tion modeling. 

2 It optimizes the expansion and operation of the energy 

system from a central planner’s perspective with perfect foresight by 

minimizing the total system costs. The framework consists of a few gen-

eralized modules that can represent various technologies across multiple 

sectors. For most applications, one target year with hourly resolution is 

formulated as linear programming (LP). However, more advanced fea-

tures are available such as mixed-integer linear programming (MILP) for 

UC and investment planning, Pareto fronts, myopic and pathway opti-

mization [46]. Examples of different use-cases of the REMix framework 

have been published in previous studies [47,48].

As discussed in Section 1.1 from an abstract perspective, REMix is 

likewise structured in various model dimensions:

𝑡 ∈ 𝑇 time steps 

𝑦 ∈ 𝑌 year intervals 

𝑛 ∈ 𝑁 model nodes

𝑙 ∈ 𝐿 transfer links 

𝑧 ∈ 𝑍 network cycles

𝑞 ∈ 𝑄 energy carriers

𝑎 ∈ 𝐴 converter activities

2 https://dlr-ve.gitlab.io/esy/remix/framework
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𝑝 ∈ 𝑃 technologies

𝑃𝐶 ⊂ 𝑃 converter technologies 

𝑃 𝑆 ⊂ 𝑃 storage technologies 

𝑃𝐿 ⊂ 𝑃 transfer technologies 

𝑖 ∈ 𝐼 system indicators

𝐼 𝑜𝑏𝑗 ⊂ 𝐼 indicator declared as objective function

The main model variables can be divided into two categories: ca-

pacity expansion decisions, which relate to infrastructure investment 

decisions, and dispatch decisions, which describe how available infras-

tructure is utilized throughout the year:

𝑥 ≥ 0 number of available units / links

Δ𝑥 

+ ≥ 0 units / links expanded 

Δ𝑥 

− ≥ 0 units / links decommissioned 

𝑑 ≥ 0 dispatch of converter

𝑒 ≥ 0 level of storage 

𝑓 

+ ≥ 0 flow along transfer link 

𝑓 

− ≥ 0 flow against transfer link

𝑔 

+ ≥ 0 import of energy carriers

𝑔 

− ≥ 0 export of energy carriers

𝑗 accounting indicator

Several additional parameters are needed to describe various charac-

teristics of different technologies and the connectivity between transfer 

links and model regions:

𝐷 rated dispatch coefficients 

𝐸 rated storage coefficients 

𝐹 rated transfer coefficients 

𝐻 rated transfer loss coefficients 

𝑀 incidence matrix between transfer links and model regions 

𝐾 minimum cycle basis matrix between transfer links and network cycles 

𝐽 indicator coefficient matrix 

𝑉 activity matrix for converter technologies 

𝑊 weighting factor between year intervals 

𝛼 availability factor

𝛾 loss adjusted transfer correction factor

𝛿 self-discharge rate of storage

𝜆 technical lifetime 

𝜒 link-specific reactance

To define an objective function for optimization, various system in-

dicators can be used, which are linked to both the capacity expansion 

and economic dispatch parts of the model. These indicators can be sub-

divided into those referring to individual years and those integrating 

results across multiple years, the latter of which is controlled by the 

weighting factor 𝑊 for individual year intervals. Additional bounds can 

be defined for indicators that are not defined as the objective function 

to enforce system constraints, such as a limit on carbon emissions.

min𝑗 𝑖 

∀𝑖 ∈ 𝐼 𝑜𝑏𝑗 (1)

s.t.

𝑗 

𝑖 

≤ 𝑗 𝑖 

≤ 𝑗 𝑖 

∀𝑖 ∈ 𝐼 ⧵ 𝐼 𝑜𝑏𝑗 (2)

𝑗 𝑖 

= 

∑

𝑦∈𝑌
𝑊 𝑦,𝑖 ⋅ 

(

∑

𝑛∈𝑁,𝑝∈𝑃 𝐶∪𝑃 𝑆

𝐽 

build
𝑖,𝑛,𝑦,𝑝 ⋅ Δ𝑥 

+
𝑛,𝑦,𝑝 + 𝐽 

fix
𝑖,𝑛,𝑦,𝑝 ⋅ 𝑥 𝑛,𝑦,𝑝 + 𝐽 

decom
𝑖,𝑛,𝑦,𝑝 ⋅ Δ𝑥 

−
𝑛,𝑦,𝑝

(3a)

+
∑

𝑙∈𝐿,𝑝∈𝑃 𝐿

𝐽 

build
𝑖,𝑙,𝑦,𝑝 ⋅ Δ𝑥 

+
𝑙,𝑦,𝑝 

+ 𝐽 

fix
𝑖,𝑙,𝑦,𝑝 ⋅ 𝑥 𝑙,𝑦,𝑝 + 𝐽 

decom
𝑖,𝑙,𝑦,𝑝 ⋅ Δ𝑥 

−
𝑙,𝑦,𝑝 (3b)

+
∑

𝑡∈𝑇 ,𝑛∈𝑁,𝑝∈𝑃 𝐶 ,𝑎∈𝐴 

𝐽 

var
𝑖,𝑡,𝑛,𝑦,𝑝,𝑎 ⋅ 𝑑 𝑡,𝑛,𝑦,𝑝,𝑎 (3c) 

+
∑

𝑡∈𝑇 ,𝑙∈𝐿,𝑝∈𝑃 𝐿

𝐽 

flow
𝑖,𝑡,𝑙,𝑦,𝑝 ⋅ 

(

𝑓+
𝑡,𝑙,𝑦,𝑝,𝑞 + 𝑓−

𝑡,𝑙,𝑦,𝑝,𝑞

) 

(3d)

+
∑

𝑡∈𝑇 ,𝑛∈𝑁,𝑞∈𝑄
𝐽 

import
𝑖,𝑡,𝑛,𝑦,𝑞 ⋅ 𝑔+𝑡,𝑛,𝑦,𝑞 + 𝐽 

export
𝑖,𝑡,𝑛,𝑦,𝑞 ⋅ 𝑔−𝑡,𝑛,𝑦,𝑞

) 

∀𝑖 ∈ 𝐼

(3e)

The capacity expansion model of REMix can be described using the 

lower and upper bounds of the converter and storage units and of the 

transfer links,

𝑥 𝑛,𝑦,𝑝 ≤ 𝑥 𝑛,𝑦,𝑝 ≤ 𝑥 𝑛,𝑦,𝑝 

∀𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐶 ∪ 𝑃 𝑆 

(4)

𝑥 𝑙,𝑦,𝑝 ≤ 𝑥 𝑙,𝑦,𝑝 ≤ 𝑥 𝑙,𝑦,𝑝 ∀𝑙 ∈ 𝐿, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐿 (5)

the continuity equation considering existing units from the previ-

ous year’s intervals and changes in the number of units due to new 

investment and decommissioning decisions,

𝑥 𝑛,𝑦,𝑝 = 𝑥 𝑛,𝑦−1,𝑝 + Δ𝑥 

+
𝑛,𝑦,𝑝 − Δ𝑥−𝑛,𝑦,𝑣 

∀𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐶 ∪ 𝑃 𝑆 

(6)

𝑥 𝑙,𝑦,𝑝 = 𝑥 𝑙,𝑦−1,𝑝 + Δ𝑥 

+
𝑙,𝑦,𝑝 − Δ𝑥−𝑙,𝑦,𝑝 ∀𝑙 ∈ 𝐿, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐿 (7)

and the equations enforcing the decommissioning of units and links 

after the end of their respective lifetime 𝜆:
∑

𝑦 

′ ≤𝑦−𝜆 𝑣

Δ𝑥 

+
𝑛,𝑦 

′ ,𝑝 

≤ 

∑

𝑦 

′ ≤𝑦
Δ𝑥 

−
𝑛,𝑦′ ,𝑝 ∀𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐶 ∪ 𝑃 𝑆 

(8)

∑

𝑦 

′ ≤𝑦−𝜆 𝑙

Δ𝑥+ 

𝑙,𝑦 

′ ,𝑝 

≤ 

∑

𝑦 

′ ≤𝑦
Δ𝑥 

−
𝑙,𝑦′ ,𝑝 ∀𝑙 ∈ 𝐿, 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐿 (9)

The number of available units limits the dispatch of different activi-

ties for converters,

∑

𝑎∈𝐴
𝑑 𝑡,𝑛,𝑦,𝑝,𝑎 

≤ 𝑉 𝑝,𝑎 

⋅ 𝛼 𝑡,𝑛,𝑦,𝑝 ⋅ 𝑥 𝑛,𝑦,𝑝 

∀𝑡 ∈ 𝑇 , 𝑦 ∈ 𝑌 , 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃 𝐶 (10)

the maximum level of storage reservoirs,

𝑒 𝑡,𝑛,𝑦,𝑝 

≤ 𝛼 𝑡,𝑛,𝑦,𝑝 ⋅ 𝑥 𝑛,𝑦,𝑝 

∀𝑡 ∈ 𝑇 , 𝑦 ∈ 𝑌 , 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃 𝑆 

(11)

and the flows of energy carriers throughout the network:

𝑓+
𝑡,𝑙,𝑦,𝑝 ≤ 𝛼 𝑡,𝑙,𝑦,𝑝 ⋅ 𝛾 𝑙,𝑝 ⋅ 𝑥 𝑙,𝑦,𝑝 ∀𝑡 ∈ 𝑇 , 𝑦 ∈ 𝑌 , 𝑙 ∈ 𝐿, 𝑝 ∈ 𝑃 𝐿 (12)

𝑓−
𝑡,𝑙,𝑦,𝑝 ≤ 𝛼 𝑡,𝑙,𝑦,𝑝 ⋅ 𝛾 𝑙,𝑝 ⋅ 𝑥 𝑙,𝑦,𝑝 ∀𝑡 ∈ 𝑇 , 𝑦 ∈ 𝑌 , 𝑙 ∈ 𝐿, 𝑝 ∈ 𝑃 𝐿 (13)

In addition to the flow constraints based on the network capacity, 

a direct current optimal power flow (DC-OPF) formulation is used to 

linearly approximate alternating current (AC) networks:

∑

𝑙∈𝐿
𝐾 𝑧,𝑙 

⋅ 𝜒 𝑙,𝑝 ⋅ (𝑓+
𝑡,𝑙,𝑦,𝑝 − 𝑓−

𝑡,𝑙,𝑦,𝑝) = 0 ∀𝑡 ∈ 𝑇 , 𝑦 ∈ 𝑌 , 𝑝 ∈ 𝑃 𝐿, 𝑧 ∈ 𝑍 (14)

Both the availability of fuels and the exogenous demand for energy 

carriers are defined through the bounds on imports and exports across
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the system boundary:

𝑔 

+
𝑡,𝑛,𝑦,𝑞

≤ 𝑔+𝑡,𝑛,𝑦,𝑞 ≤ 𝑔+𝑡,𝑛,𝑦,𝑞 ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑞 ∈ 𝑄 (15)

𝑔 

−
𝑡,𝑛,𝑦,𝑞

≤ 𝑔−𝑡,𝑛,𝑦,𝑞 ≤ 𝑔−𝑡,𝑛,𝑦,𝑞 ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑞 ∈ 𝑄 (16)

The nodal conservation of energy carriers is enforced by the balanc-

ing equation for all model regions and time steps. This equation includes 

inputs and outputs into the converters (17a), flows across transfer links 

in the network (17c) and associated losses, which are evenly distributed 

to both connected model regions (17d), the change in storage levels and 

their respective self-discharge (17b), and imports and exports of energy 

carriers across the system borders (17e). Note that for the storage level 

the reference to the previous time step 𝑡 − 1 behaves in a cyclical fashion 

in which the predecessor of the first time step is equal to the last time 

step of the set 𝑇 :

∑

𝑝∈𝑃 𝐶 ,𝑎∈𝐴
𝐷 𝑝,𝑎,𝑞 

⋅ 𝑑 𝑡,𝑛,𝑦,𝑝,𝑎 (17a)

+
∑

𝑝∈𝑃 𝑆

𝐸 𝑝,𝑞 ⋅ 

( 

𝑒𝑡,𝑛,𝑦,𝑝,𝑞 

− (1 − 𝛿 𝑝 

) ⋅ 𝑒 𝑡−1,𝑛,𝑦,𝑝,𝑞 

) 

(17b)

+
∑

𝑙∈𝐿,𝑝∈𝑃 𝐿

𝑀 𝑛,𝑙 

⋅ 𝐹 𝑙,𝑞 ⋅
(

𝑓+
𝑡,𝑙,𝑦,𝑝 − 𝑓−

𝑡,𝑙,𝑦,𝑝
) 

(17c)

− 

∑ 

𝑙∈𝐿,𝑝∈𝑃 𝐿

1
2 

⋅ |𝑀 𝑛,𝑙 

| ⋅ 𝐻 𝑙,𝑞 ⋅
(

𝑓+
𝑡,𝑙,𝑦,𝑝 + 𝑓−

𝑡,𝑙,𝑦,𝑝
) 

(17d)

+ 

( 

𝑔+ 

𝑡,𝑛,𝑦,𝑞 

− 𝑔−𝑡,𝑛,𝑦,𝑞
) 

= 0 ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁, 𝑦 ∈ 𝑌 , 𝑞 ∈ 𝑄
(17e)

Applying the optimization to a single target year significantly simpli-

fies the Eqs. (4)–(9). Similarly, if the expansion and decommissioning of 

power plants are not permitted, the available units 𝑥𝑛,𝑦,𝑝 

 

and links 𝑥𝑙 ,𝑦,𝑝 

can be treated as fixed variables and are reduced to constant factors in 

Eqs. (10)–(13), effectively resulting in a pure economic dispatch model. 

The equations shown are the minimum requirement to model the basic 

functionality of the general ESOMs and are even in the reduced form 

for a single target year sufficient to demonstrate the increase in compu-

tational complexity of the model with a fixed number of time steps |𝑇 | 

and increasing the number of model regions |𝑁| and transfer links |𝐿|.

2.2. The parallel solver PIPS-IPM++

As mentioned in Section 1, the original implementation of PIPS-IPM 

was specifically designed to solve stochastic optimization problems on 

HPCs. The algorithm effectively leverages the block structure of the 

underlying problem quite well and is adept at handling the linking vari-

ables that connect the stochastic dimension of optimization problems. 

For instance, in [38], these are the decision variables related to the 

power generation limits, which must be consistent across all scenarios. 

In contrast, the decomposition of arbitrary optimization problems gen-

erated by ESOMs leads not only to linking variables, but also to linking 

constraints. For instance, incorporating limits on annual CO 2 

emissions 

as constraints in such models yields constraints across all model regions 

and time steps. For this particular reason, Rehfeldt et al. extended their 

version of PIPS-IPM, called PIPS-IPM++, to apply to linear programs 

with both linking variables and linking constraints and presented the 

improvements in [44]. Fundamentally, the solver uses a primal-dual IP 

method to solve the augmented system of an LP with arrowhead struc-

ture. This arrowhead structure can be created via a permutation of the 

optimization matrix, resulting in a structure in which most of the non-

zero entries are close to the diagonal of the matrix and the remaining 

non-zero entries are close to the left and top borders of the matrix. This 

property is intrinsic to almost all ESOMs with a high temporal resolution, 

as discussed further in Section 2.3. The solver’s increased parallelism 

and computational performance stem from the distributed computation

of the local Schur complement for each block in the structure. For a more 

detailed description of the algorithm, see the initial introduction in [39] 

and [44].

Since PIPS-IPM++ can also use information about the adjacency of 

blocks, it is necessary to distinguish between globally linking constraints 

and variables and locally linking constraints and variables. Constraints 

that are contained in fewer than four blocks are considered locally link-

ing and can be treated differently by the solver. All other constraints 

are considered globally linking. The same metrics apply to both lo-

cal and global linking variables. Building upon this, Kempke et al. 

extended this version with a hierarchical approach that splits the lin-

ear system, allowing it to solve larger models with a large number of 

local constraints [49]. Initial benchmark analyses have demonstrated 

that PIPS-IPM++ can outperform standard IP solver software for both 

generic and real-world ESOMs [50]. Moreover, the reported results show 

that PIPS-IPM++ is even able to obtain solutions where other solvers 

cannot. However, the degree of parallelization and thus the ability to 

accelerate ESOMs depends on several parameters, such as the choice of 

underlying problem structure. As we demonstrate during the computa-

tional experiment, there are some fundamental aspects to consider based 

on the model instance at hand in order to obtain reasonable performance 

when applying PIPS-IPM++.

In contrast to standard IP solver, a slightly different workflow is re-

quired in order to benefit from distributed memory architectures and to 

obtain optimal performance with PIPS-IPM++. Fig. 1 shows a compari-

son of the two workflows and highlights the necessary considerations for 

parallelism. The HPC cluster used in the computational experiment has 

dual-socket compute nodes with 2 CPUs per node. Since each socket 

has its own memory controller, only half of the memory is locally 

accessible by each CPU. Accessing the remaining memory requires cross-

socket communication, which decreases access speeds. This concept of 

non-uniform memory access (NUMA) needs to be considered when dis-

tributing any computations on HPC systems. In the case of the standard 

IP solver on shared memory (left side), only one compute node can 

be used. Furthermore, using more than half of the total memory can 

decrease the solver’s overall performance due to cross-socket commu-

nication. For PIPS-IPM++ additional preparation steps are required. 

First, in this case, annotation describes the assignment of variables and 

equations to blocks, a topic discussed further in Section 2.4. Then, split-

ting and distributing the matrix is required to prevent parallel threads 

from simultaneously reading the same input file, which could cause a 

bottleneck. Up to 12 cores can be used for each block with the fastest 

memory access, or up to 24 cores can be used while still preventing cross-

socket communication. Please note that the exact number of cores for 

each case depends on the CPU architecture and memory layout specific 

to the HPC cluster.

2.3. Matrix structures in ESOMs

The objective function of linear programs is typically formulated in 

the form 𝑐 

𝑇 𝑥 representing either a minimization or maximization of the 

decision variables 𝑥 multiplied by a cost vector 𝑐. In the case of ESOMs 

this objective function is usually a minimization of total system costs as 

shown in Eq. (1). In addition to the decision variables the model contains 

equations in the form of 𝐴𝑥 ≤ 𝑏 which limit the dispatch of power plants 

to their rated capacity, for example. The non-zero entries of the matrix 

𝐴 therefore provide useful insights into the connectivity between vari-

ables and equations. These non-zero elements can be used to represent 

any optimization problem visually (see Fig. 2(a)). In this visualization, 

each row represents an equation, and each column represents a variable. 

Black dots indicate non-zero entries and show whether a given constraint 

contains a given variable. The rows and columns of the matrix can be 

permuted without altering the underlying optimization problem, cre-

ating a block-structured matrix (see Fig. 2(c)). This block structure is 

required by the parallel solver PIPS-IPM++ and allows us to treat each 

of the blocks 𝑃 1 

to 𝑃 𝑘 

as a partial optimization problem. The linking
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Fig. 1. Stylized representation of the differences in the workflow and hardware utilization between PIPS-IPM++ operating on distributed memory architectures and 

standard IP solvers. Blue arrows indicate communication pathways at the CPU, node, and cluster levels. The dashed line indicates CPU-internal core subdivisions. 

(a) IP solver on shared memory: Ideally, the matrix can be stored in the memory addressable by a single socket, otherwise cross-socket communication can decrease 

performance due to non-uniform memory access. (b) PIPS-IPM++ on distributed memory. The problem is first annotated, then split and finally distributed and solved 

on several nodes and CPUs. The blocks can be evenly distributed throughout the system, allowing for fast access and mitigating memory limitations.

Fig. 2. Matrix structure representations for a small scale instance with 5 model regions and 16 time steps. (a) Representation of the matrix structure using the non-zero 

coefficients. (b) Required matrix structure for PIPS-IPM++ with colored blocks highlighting the diagonal sub-matrices and gray blocks highlighting sub-matrices for 

linking elements. (c) Permutation of the original matrix structure to match the matrix structure required by PIPS-IPM++.

variables and equations in 𝐿 0 

to 𝐿 

 

and to𝑘  𝐵0  

 

𝐵𝑘  

are used between par-

allel iteration steps to update the bounds for each partial optimization 

problem. In other words, each block represents a subproblem computed 

by one of many processes running in parallel. Thus, the greater the num-

ber of blocks, the greater the number of parallel processes that can be 

used.

However, the number of blocks – and thus the degree of parallelism 

– is limited by the additional elements connecting the blocks. Some vari-

ables appear in equations across multiple blocks, creating additional 

interlinkages. These linking variables are shown on the left-hand side 

of Fig. 2(b) as 𝐿 1 

to 𝐿 𝑘 

. Similarly, equations can contain variables from 

multiple blocks. These linking equations can be found at the bottom of 

the arrowhead matrix in blocks 𝐵 0 

to 𝐵 𝑘 

. Both types of linking struc-

tures impose an overhead cost on the parallel solver. In extreme cases, 

this communication overhead can outweigh the performance gain from 

parallel computing. Therefore, the goal of pre-structuring the matrix is 

to find appropriate decomposition strategies and optimize the number 

of blocks.

2.4. Block structure generation

Depending on the chosen decomposition strategy, this pre-

structuring can result in various arrowhead structures. Despite the large

number of possible decompositions, there are several points to consider 

for the effective application of PIPS-IPM++. First, the number of blocks 

corresponds to the maximum achievable parallelism. Therefore, we try 

to generate structures with a large number of diagonal blocks. Second, 

the more linking elements there are in the block structure, the greater 

the communication overhead during the non-parallel phase of the solver. 

These two effects create a trade-off between the speedup gained from 

parallelization and the slowing effect of communication, which is further 

explored in the computational experiment presented in Section 3.

In order to generate a specific block structure for PIPS-IPM++, a de-

composition strategy must first be defined. This strategy comprises the 

mapping between two sets: the set of decomposition elements , which 

are related to the model variables based on the decisions the variables 

represent, and the set of blocks  we want to generate. In a temporal de-

composition strategy, for example, the set of decomposition elements is 

the set of all time steps considered in the model. The mapping can then, 

for example, assign hours 1 to 24 to block 1, hours 25 to 48 to block 2, 

and so on. For the partitioning of the variables, each variable is checked 

to see if it is associated with a decomposition element. For example, a 

variable can represent the dispatch of a power plant in hour 12. If a 

variable is associated with an element of the decomposition strategy, it 

belongs to the parallel blocks 𝑃 1 

to 𝑃 𝑘 

and the corresponding linking 

equations 𝐵 1 

to 𝐵 𝑘 

, with the block 𝑘 depending on the mapping from
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decomposition elements to blocks. If a variable is not associated with an 

element in the strategy, then it belongs to the linking variables of the

blocks 𝐿 0 

to 𝐿 𝑘 

and 𝐵 0         

 

. To determine the partitioning of the constraints,

the annotation of the variables must be evaluated. If a constraint con

tains only linking variables, then it is an 𝐿 0-constraint contained in the 

 

top-left block, 𝐿 0           

 

. If a constraint contains only variables from a single

block and optionally linking variables, it is assigned to the respective 

parallel block, 𝑃 1 

to 𝑃 . If a multi𝑘  constraint contains variables from 

ple parallel blocks, then it is a linking constraint contained in blocks 𝐵 0 

to 𝐵𝑘 . More formally,  

 

it can be described via the following partitioning

algorithm.

-

-

1. Definition of the decomposition strategy

With  = {1, 2, … , 𝐷} as the set of decomposition elements and

 = {1, 2, … , 𝐾} as the set of blocks, 𝑠 ∶  →  is the user-defined 

decomposition strategy assigning each decomposition element to 

a block.

2. Annotation of the variables

With  = {𝑥1 , 𝑥 2,… , 𝑥 𝑗} as  

  

the set of all decision variables, the

variables can be partitioned as follows:

𝑘 = {𝑥 ∈  ∣ 𝑥 is associated with 𝑑 such that 𝑠(𝑑) = 𝑘} ∀𝑘 ∈ 
⋃

 linking 

 =  ⧵  𝑘
𝑘∈

3. Annotation of the constraints

With  = {𝑐1  

, 𝑐 2 

,… , 𝑐 

 

} as the set of all constraints and 𝑖  𝑐  

 

⊆ 
as the subset of decision variables with non-zero coefficients in 

constraint 𝑐, the constraints can be partitioned as follows:

 

𝐿 0 = 

{ 

𝑐 ∈  ∣  𝑐 ⊆  

linking 

}

 𝑘 = 

{ 

𝑐 ∈  ⧵  

𝐿 0 ∣  𝑐 

⊆  𝑘 ∪  

linking 

} 

∀𝑘 ∈ 

 

linking =  ⧵ 

( 

 

𝐿 0 ∪ 

⋃

𝑘∈
 𝑘

)

4. Assignment of variables and constraints to matrix blocks

With 𝐴 𝑐,𝑥 

as the coefficients in the original matrix 𝐴 for con-

straint 𝑐 and variable 𝑥, the matrix can be partitioned for the 

structure required by PIPS-IPM++ as follows: 

𝐿 0 = 

{ 

𝐴 𝑐,𝑥 

∣ 𝑐 ∈  

𝐿 0 ∧ 𝑥 ∈  

linking 

}

𝐿 𝑘 

= 

{ 

𝐴𝑐,𝑥 

∣ 𝑐 ∈  𝑘 ∧ 𝑥 ∈  

linking 

} 

∀𝑘 ∈ 

𝑃 𝑘 

= 

{ 

𝐴𝑐,𝑥 

∣ 𝑐 ∈  𝑘 ∧ 𝑥 ∈  𝑘 

} 

∀𝑘 ∈ 

𝐵 0 = 

{ 

𝐴𝑐,𝑥 

∣ 𝑐 ∈  

linking ∧ 𝑥 ∈  

linking 

}

𝐵 𝑘 = 

{ 

𝐴 𝑐,𝑥 

∣ 𝑐 ∈  

linking ∧ 𝑥 ∈  𝑘
} 

∀𝑘 ∈ 

2.5. Decomposition strategies

Due to the high spatial and temporal resolution of the ESOMs, decom-

posing along these dimensions is the most promising way to generate a 

large number of blocks 𝑘:

• In the case of spatial decomposition, individual model regions can be

treated as parallel blocks. However, these blocks are still connected 

by hourly variables that representing energy transmission between 

model regions and by constraints affecting multiple model regions, 

such as a global CO 2 

budget.

• In the case of temporal decomposition, multiple time steps can be

grouped into blocks, allowing for a uniform sizing of the parallel 

blocks. This type of decomposition establishes investment decisions 

as the linking variables and creates additional linking constraints 

for the storage level continuity and annual limitations, such as CO 2 

budgets.

Table 1 shows the commonly used constraints and variables in 

ESOMs and the number of linking variables and constraints generated 

depending on the decomposition strategy. The last row provides an es-

timation of the scaling behavior of the linking elements. When using 

a spatial decomposition approach, the number of linking elements de-

pends primarily on the size of the time dimension (|𝑇 |) and the total 

number of lines (|𝐿|) between model regions. For a temporal decompo-

sition, the number of linking constraints and variables depends mainly 

on the number of model regions (|𝑁|) times the number of transmission 

and storage technologies (|𝑃 𝐶 

| + |𝑃 𝑆 

|) and the number of transfer links 

(|𝐿|) times the number of transfer technologies (|𝑃 𝐿 

|). Note that if ca-

pacity expansion and decommissioning decisions are not allowed for a 

specific model region or technology, these decisions do not factor into 

the number of linking variables. Therefore, in the special case of a pure 

economic dispatch model, as described in Section 2.1, combined with a 

temporal decomposition, there are no linking variables.

A decomposition by time steps can be beneficial if the level of de-

tail on the temporal scale outpaces the spatial scale. Additionally, when 

using HPC, it is essential to consider load balancing across multiple com-

pute nodes and, consequently, to create similarly sized blocks. This is 

similar to two of the requirements of Lagrangian relaxation, in which 

the quality of the diagonal structure can be determined by granular-

ity (a large number of blocks) and homogeneity (equally sized blocks) 

[51]. In the case of a spatial decomposition, each model region is usually 

connected to a various number of generation and demand technologies, 

resulting in unequally sized blocks. In contrast, the overall number of 

time steps can be equally and more flexibly assigned to the number of 

blocks chosen, allowing for a more thorough assessment of the scaling 

behavior between solver performance and the number of blocks. For 

this reason, and because the number of time steps is significantly greater 

than the number of model regions, we select the temporal decomposition 

strategy for the computational experiment in Section 3.

Table 1

Estimation of linking constraints and variables for spatial and temporal decomposition of a generic ESOM. The entries correspond to the factor 

by which the the number of linking elements increases per constraint or variable. 𝑘 denotes the number of blocks, |𝑇 | the number of time steps, 

|𝑁| the number of regions, |𝐿| the number of network links, |𝑃 𝐶,𝐿,𝑆 

| the number of converter, network, and storage technologies, respectively.

spatial decomposition temporal decomposition

constraint global annual constraint, e.g. CO 2 

limit 1 1

regional annual constraint, e.g. CO 2 

limit – |𝑁|

conservation of energy carriers – |𝑁| ⋅ |𝑃 |𝑆  ⋅ 𝑘
limitation of transfer flows |𝑇 | ⋅ |𝐿| ⋅ |𝑃 𝐿 

| –

variable available converter units – |𝑁| ⋅ |𝑃 |𝐶
available storage units – |𝑁| ⋅ |𝑃 |𝑆
available transfer links |𝐿| ⋅ |𝑃 |𝐿  |𝐿| ⋅ |𝑃𝐿  

|

transfer flows |𝑇 | ⋅ |𝐿| ⋅ |𝑃 𝐿 

| –

scaling of linking elements ∼ (2 ⋅ |𝑇 | + 1) ⋅ |𝐿| ⋅ |𝑃 𝐿 

| ∼ (1 + 𝑘) ⋅ |𝑁| ⋅ |𝑃 𝑆 

| +|𝑁| ⋅ |𝑃 𝐶 

| + |𝐿| ⋅ |𝑃 𝐿 

|
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Fig. 3. Structure of a temporally decomposed optimization matrix which in-

cludes the following sub-matrices: (a) 𝐿 1 

to 𝐿 𝑘 

containing linking variables, (b)

𝐵 1 

to 𝐵 𝑘 

containing linking constraints, (c) 𝑃 1 

to 𝑃 𝑘 

containing the block-specific 

independent part of the decomposed optimization problem.

Fig. 3 shows an ESOM temporally decomposed into 8 blocks. Most 

of the equations and variables are non-linking, so they can be easily 

separated into parallel blocks, as indicated in the block matrix in (c). 

However, a few equations significantly impact the number of linking 

variables and constraints. These equations are:

• Globally linking constraint (e.g., CO 2 

-limit): An annual limitation on

carbon emissions 𝑗 CO 2 

results in a globally linking constraint, since 

the emissions resulting from the utilization of fossil fuels in each time 

step and model region are summed up as modeled in Eq. (3a)).

• Globally linking variable (e.g., capacity expansion): If investment

decisions are considered in the optimization the capacities of each 

technology represent linking variables. For example, they have an 

impact on the dispatch in each time step, as modeled in Eqs. 

(10)–(13) (see Fig. 3 (a)).

• Locally linking constraint (e.g., storage level): Storage technolo-

gies introduce locally linking constraints to the optimization. 

Equation (17b) enforces conservation of energy carriers and there-

fore also links the storage level of any time step to the storage level 

of the previous one (see Fig. 3 (b)).

3. Computational experiment

In this section, we will first provide a summary of the case study, 

followed by more details on the model instances for the computational 

experiment in Section 3.1. Second, in Section 3.2 we motivate the se-

lection of performance indicators that are relevant in the context of 

assessing ESOMs in the context of HPC. Third, in Section 3.3 we describe 

the used hardware, software, and solver-specific configurations.

3.1. Model instance

This paper uses a model instance based on the work of Cao et 

al. [52] that focuses on the capacity expansion in the power sector. 

The model includes existing capacities for renewable and conventional 

power plants, as well as lithium-ion battery, pumped hydro storage, and 

the transmission grid. An annual CO 2 

budget limits the operation of 

conventional power plants. Each year is modeled with full hourly res-

olution, resulting in 8,760 sequential time steps. At the highest spatial 

resolution, Germany is considered with 477 model regions represent-

ing substations and grid junctions including a total of 643 transmission 

lines. Additionally, the 11 neighboring countries are included with one 

model region each, and their electricity imports and exports to Germany 

are fixed based on historical time series. The base model with the high-

est spatial resolution and full expansion planning has been published as

open data. 

3 Although minor data updates have been implemented com-

pared to the model instances used in this study, they do not affect the 

findings regarding computational performance.

Starting from the base model instance, we use hierarchical cluster-

ing [4] to derive a subset of spatial aggregations to investigate the 

performance of the solver for a broad set of model instances. For our 

computational experiment, we use eight levels of aggregation with 

18 to 488 model regions. Additionally, we vary the degree of com-

plexity by defining three levels of capacity expansion planning typical 

for energy systems research: i) disabled (economic dispatch optimiza-

tion, disp), ii) enabled only for renewable power generators (generation 

expansion planning, expRE), and iii) enabled for renewable power gen-

erators, storage units, and transmission lines (full expansion planning, 

expAll). Combining these three levels with eight different spatial aggre-

gations results in a total of 24 model instances. Table 2 lists the number 

of constraints, variables and non-zeros for each of these instances.

To decide which decomposition strategy to use, the rule of thumb 

from the Table 1 for estimating the number of linking elements can 

be applied to the full-size model. In the case of a spatial decomposi-

tion, the large number of time steps significantly increases the number 

of linking variables for power flows to about 22 million. With a tem-

poral decomposition and an estimate of 100 time blocks, however, 

the number of linking constraints for the storage level is only about 

0.1 million. This confirms our expectation from Section 2.4, that for 

REMix and other hourly resolved ESOMs, a temporal decomposition is 

advantageous when using PIPS-IPM++.

3.2. Performance indicators

For energy system modelers, one of the most important metrics is 

the wall-clock time required to solve a given optimization problem. A 

short wall-clock time significantly reduces the overall analysis workflow 

time because solving the problem is usually the most time-consuming 

step, except for initial data collection. During the setup of a given case 

study, for example, several workflow cycles are required to calibrate the 

model correctly and to detect and correct possible errors in the input 

data. Even if computation across multiple compute nodes is possible for 

a large-scale scenario analysis, the minimum run time of the analysis as 

a whole is limited by the longest single run.

Another key metric to consider is the amount of random access 

memory (RAM) required to store the optimization problem matrix on a 

shared memory system. Although there is some overhead caused by the 

optimization method itself, it scales quite linearly within a given prob-

lem class. As a result, energy system modelers face an upper bound on 

maximum problem sizes depending on available hardware. One way to 

circumvent this limitation is to simplify the problem’s overall complex-

ity through aggregation on the temporal, spatial, or technological scale, 

as previously discussed in Section 1.2. If simplifications cannot be made, 

or if the goal is to solve a reference run at the highest possible resolu-

tion, memory can still be a limiting factor for standard IP solvers using 

shared memory hardware. In contrast, decomposition approaches and 

block-structure solvers allow smaller chunks of the optimization matrix 

to be stored in memory.

From an HPC usage perspective, another key metric is the number of 

core hours required to solve the problem, in the following also referred 

to as compute. The number of core hours gives an indication of how 

much computational effort was required to solve any specific problem. 

In the context of HPCs, core hours usually also represent the budget that 

is granted in publicly funded compute clusters or paid for in commercial 

clusters. Therefore, it is important to develop an awareness of how much 

compute is required in order to run in a highly parallel environment.

Due to the overall scaling behavior of the optimization problem, 

all three factors – wall-clock time, RAM demand, and core hours – are 

highly correlated, but they offer trade-offs when using parallel solvers.

3 https://gitlab.com/dlr-ve/esy/remix/projects/powger
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Table 2 

Model instances for the computational experiment and sizes of their corresponding optimization matrices.

regions constraints [mio] variables [mio] dense columns [tsd] non-zeros [mio]

disp expRE expAll disp expRE expAll disp expRE expAll disp expRE expAll

18 2.60 3.00 3.24 2.44 2.83 3.07 0.00 0.10 0.16 8.57 10.46 12.07

30 3.96 4.63 4.98 3.71 4.37 4.72 0.00 0.15 0.24 13.02 16.07 18.48

60 6.90 8.23 8.85 6.44 7.77 8.38 0.00 0.26 0.44 22.35 28.13 32.48

90 9.17 11.15 12.03 8.53 10.51 11.39 0.00 0.35 0.60 29.52 37.80 43.96

120 11.49 14.13 15.27 10.70 13.34 14.48 0.00 0.44 0.76 36.74 47.54 55.49

240 18.99 24.13 26.32 17.71 22.85 25.04 0.00 0.74 1.33 59.65 79.84 94.52

360 23.85 31.03 34.19 21.66 28.84 32.00 0.00 0.91 1.74 73.78 101.36 122.30

488 31.11 40.75 45.04 28.51 38.15 42.44 0.00 1.19 2.29 95.94 132.81 160.67

Decomposing the problem into more blocks allows for a higher degree of 

parallelism, reducing wall-clock time and RAM requirements per block. 

Conversely, more blocks increase the number of link variables and con-

straints generated per block, in turn leading to increased communication 

overhead when exchanging information between different blocks. To 

investigate this trade-off, we use the temporal decomposition strategy in-

troduced in Section 2.5 to demonstrate scaling across a range of different 

block numbers.

3.3. Software setup and hardware

All runs of the computational experiments were performed on the 

JUWELS cluster at Jülich Supercomputing Centre (JSC) with 2,271 stan-

dard nodes, each with two Intel Xeon Platinum 8168 and 96 GB of DDR4 

memory, and 240 large memory nodes with the same CPUs but 192 GB 

of memory. 

4 All compute nodes are connected via an InfiniBand EDR 

network.

The runs with the standard IP solver as the reference case were per-

formed using GAMS 39.1 and CPLEX 22.1. For all runs we used an 

interior-point method with crossover disabled, which generally seems to 

provide the best performance for large and complex ESOMs [53]. Other 

additional settings have been applied based on previous experiences 

with the REMix model. 

5 Sharma et al. report the highest reductions in 

overall solve time for their model until up to 12 cores, and a slightly less 

steep reduction between 12 and 35 cores [27]. In order to make use of 

both a high solver performance and limit the number of cores to allow 

for running multiple instances on the same machine we utilize 8 cores for 

the runs with the standard IP solver and take into account the theoretical 

farming factor. This factor describes how many similar jobs could be run 

simultaneously on a single compute node given the limitation of 48 phys-

ical cores and 192 GB of RAM. When running small-scale models 8 cores 

are taken into account for the calculation of the compute because mem-

ory is not limiting, and 6 instances can be run simultaneously. However, 

for large model instances, when shared memory is limited, the additional 

cores cannot be allocated for parallel runs, resulting in a farming factor 

of 1.

Another option to consider for the solvers is the stopping criterion 

used by the optimization algorithm. For interior point methods this 

is usually the duality gap between the primal and dual objectives of 

the LP. For ESOMs solved as linear problems a sufficient gap tends to 

be in the range of 10 

−8 to 10 

−4 depending on the optimization prob-

lem at hand. For many ESOMs the area around the optimal solution 

tends to be rather flat due to the large number of marginally different

4 https://www.fz-jülich.de/en/ias/jsc/systems/supercomputers/juwels
5 The following CPLEX solver options have been used for the computational

experiment:

lpmethod 4 (select interior point method)

predual −1 (pass only the primal problem to the pre-solver)

barorder 3 (use nested dissection for the matrix ordering)

barepcomp 1e-5 (set stopping criteria to 10 

−5 ) 

solutiontype 2 (disable crossover, as no basic solution is required).

decisions. Therefore, lowering the precision is a reasonable strategy to 

reduce wall-clock time, albeit at the expense of being slightly off the 

global optimum. In all runs of the computational experiment, the stop-

ping criterion is set to a tolerance of 10 

−5 between the primal and dual 

objectives.

The parallel solver PIPS-IPM++ was compiled using the Intel 

Compiler and ParaStationMPI. The optional library PARDISO 7.2 [54] 

was used as a sparse direct solver, though other options, such as MA57 

[55], can also be used. For PIPS-IPM++ the default settings for the con-

vergence criteria have been used, requiring a 𝜇 value below 10 

−6 and a 

relative residual norm below 10 

−4 . Additional PIPS-IPM++-specific op-

tions are required to set PARDISO as the direct solver when multiple 

direct solvers are available during compilation. 

6 As discussed in Section 

2.4, the two main drivers of the overall performance of PIPS-IPM++ are 

the number of blocks into which the problem is decomposed into and 

the utilized hardware per block. To fully utilize all available 48 cores per 

compute node and account for NUMA cache locality for the dual-socket 

CPU nodes, we split the number of blocks into multiples of 12 and al-

locate 4 cores for each block. This results in a total of 72, 96, 144, and 

192 blocks, while utilizing 6, 12 and 24 compute nodes respectively.

4. Results and discussion

The results of this paper are structured as follows: Section 4.1 an-

alyzes the scaling behavior of the model instances with respect to 

different model sizes and levels of complexity using a standard IP solver. 

Section 4.2 derives the ideal configurations of the parallel solver PIPS-

IPM++ in terms of optimal number of blocks for decomposition and 

utilized hardware nodes. Section 4.3 then brings together the model 

instances and the optimal configuration for PIPS-IPM++ from the previ-

ous sections to compare PIPS-IPM++ to the standard IP solver in terms 

of key performance indicators.

4.1. Complexity of ESOMs

Fig. 4 shows the comparison of the runs performed using a stan-

dard IP solver for the 24 instances described in Section 3.1. As expected, 

Fig. 4(a) shows an overall increase in the wall-clock time as the number 

of model regions increases. Similarly, the overall complexity of the prob-

lem in terms of capacity expansion decisions significantly impacts the 

results. The difference between the types of capacity expansion becomes 

more pronounced when a larger number of model regions is considered. 

The increasing difference in solving times can be explained by the addi-

tional complexity due to capacity expansion decisions indicated by the 

number of dense columns (see Fig. 4(c)). Dense columns in the coeffi-

cient matrix result from variables that appear in many equations, such as 

limitations on dispatch relative to capacity expansion. These variables

6 The following PIPS-IPM++ solver options have been used to set PARDISO 

as the direct sparse solver: 

LINEAR_ROOT_SOLVER 3 int 

LINEAR_SUB_ROOT_SOLVER 3 int 

LINEAR_LEAF_SOLVER 3 int

Sustainable Energy, Grids and Networks 44 (2025) 101893 

10 

https://www.fz-jülich.de/en/ias/jsc/systems/supercomputers/juwels


M. Wetzel, K.-K. Cao and S. Sasanpour

Fig. 4. Scaling across the different instances while using a standard IP solver. Note that both x and y axis are displayed with a logarithmic scaling. (a) Wall-clock time: 

For all expansion variations, the wall-clock time increases exponentially with more model regions. The expAll variation has the steepest ascent. (b) Peak memory 

demand: The higher the complexity of the expansion variation, the higher the memory demand and the exponential increase. (c) Number of dense columns: This 

metric is only applicable for the two variations with expansion variables. (d) Compute estimation via FLOPs for Cholesky factorization: Especially the expAll variation 

shows the highest exponential increase with a higher spatial resolution.

are comparable to linking variables and are identified in standard IP 

solvers to be treated differently during presolve. For the disp instance, 

the presolver can remove all dense variables, resulting in a reduced com-

plexity. For the other instances, expAll and expRE, the curves show clear 

scaling behavior with respect to the number of model regions. However, 

the curves are shifted relative to each other, as expAll allows investments 

in storage technologies and power lines, in addition to renewable power 

plants, whereas expRE only allows investments into renewable power 

plants. For the largest analyzed instance this amounts to 2290 dense 

columns for expAll, 1194 for expRE and 0 for disp.

The number of dense columns also affects the total number of vari-

ables, constraints and non-zeros in the optimization problem because 

each investment decision results in dispatch decisions for every hour of 

the model. The overall size of the optimization matrix is one of the main 

drivers of the required memory (see Fig. 4(b)). For the largest instance 

size the total memory requirement ranges from 57 GB to 151 GB depend-

ing on the complexity of investment decisions. This memory demand 

corresponds to the number of variables after presolve, which ranges 

from 14.4 million to 37.1 million. We consider the number of vari-

ables because it is larger than the number of constraints. This allows 

us to derive an estimate of memory per variable, ranging from 3.96 to 

4.07 GB per million variables after presolve, indicating a theoretical lim-

itation of a few hundred million variables on current shared memory 

architectures.

Another helpful metric for estimating the total runtime of the opti-

mization in barrier algorithms is the number of floating point operations 

(FLOPs) for the Cholesky factorization. This value provides a rough es-

timate of how much time each iteration will take. However, the total 

time required to solve the problem depends on the maximum achiev-

able FLOPs of the hardware and the total number of barrier iterations 

required for the solution. Fig. 4(d) shows the number of FLOPs required 

per iteration across all instances, indicating a clear difference in com-

putational effort for each barrier iteration depending on the instance’s 

complexity.

In summary, we can clearly establish a connection between the 

overall size of the optimization problem and the number of capac-

ity expansion decisions as the primary drivers of model complexity. A 

comparison of the scaling behaviors for memory and wall-clock time 

indicates that, with a larger number of investment decisions, the in-

crease in wall-clock time significantly outpaces the increase in memory 

requirement. Therefore, even if the shared memory suffices for the com-

putation, the theoretical example with several hundred million variables 

is expected to require multiple days of wall-clock time to solve.

4.2. Solver tuning for PIPS-IPM++

To identify the ideal configurations for the model decomposition and 

the hardware, we run the same model instances using a range of dif-

ferent configurations as outlined in Section 3.3. Fig. 5 shows a clear 

difference between the two large-scale instances (disp on the left, expAll 

on the right). The top figures show the time to solve for different con-

figurations in terms of chosen number of blocks and cores. As expected, 

a larger number of cores results in faster solution times at the expense 

of additional computing power. However, the figure also highlights the 

risk of choosing non-optimal configurations, which can result in up to 

three times longer solution times compared to the best configuration.

For the economic dispatch instance the fastest time to solution is 

achieved with both a large number of cores and a large number of blocks. 

This suggests that the model complexity, due to linking variables and 

constraints, is not the limiting factor and even higher speedups would 

be possible if more blocks and cores are utilized. Conversely, the best 

performance when dealing with a large number of investment decisions 

is achieved with a high number of cores and a low number of blocks. 

This indicates an additional limitation of the algorithm’s overall paral-

lelism. In this case, the bottleneck for the performance is not in solving 

the individual blocks, but rather the computation of the global Schur 

complement and overall communication due to the additional linking 

structures of the underlying problem.
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Fig. 5. Time to solve and required compute for the different model instances 

and hardware configurations using PIPS-IPM++. Lower time to solve and lower 

compute resources are favorable. (a) The disp variation achieves the lowest 

wall-clock time with more cores and a higher number of blocks. (b) The expAll 

variation benefits from more cores when minimizing wall-clock time, however, 

fewer blocks are favorable. (c) The compute of the disp variation is the lowest 

with more blocks and a lower number of cores. (d) The expAll variation requires 

the least compute with fewer blocks and cores.

These findings provide a good initial estimate for the configuration 

of PIPS-IPM++ depending on the optimization problem to be solved. 

The optimal configuration also depends on the overall goal of deploying 

PIPS-IPM++: decreasing wall-clock time, increasing efficiency in terms 

of computation, or preventing limitations from the shared memory ar-

chitectures. Furthermore, these results provide an explanation for the 

significant differences in speedup observed in the previous two appli-

cations of PIPS-IPM++ by Rehfeldt et al. and Panos and Hassan, as 

reported in their respective studies [44,45]. Rehfeldt et al. observed the 

highest speedup, a factor of 67, for the ELMOD_EU16 instance with 876 

blocks and 1,752 CPU cores. While the model instances do have around 

300,000 linking constraints, they have only very few global linking vari-

ables. Therefore, they are similar to the large disp instances presented 

in this study, which also benefited from a larger number of CPU cores. 

Panos and Hassan, on the other hand, report a speedup of factor 4 for 

their model instance 288_22_8, which contains 162,169 linking con-

straints and 16,783 linking variables which is higher than the largest 

expAll instance considered here. Due to the different model structure, 

they used 88 blocks and 88 CPU cores.

4.3. Solver comparison with PIPS-IPM++

Bringing together the results of the complexity analysis using 

standard IP solvers in Section 4.1 and the assessment of different 

configurations for PIPS-IPM++ in Section 4.2, we can evaluate the rel-

ative performance between the two. While the reference solution using 

the standard IP solver provides only one data point for time to solve and 

compute (Fig. 4), the different configurations for PIPS-IPM++ provide 

a range of data points for solution time and compute (Fig. 5). For the 

following comparison, we will assume prior knowledge of the optimal 

configuration for PIPS-IPM++ in terms of the shortest time to solve and 

the least compute, respectively.

Fig. 6 shows the time required to solve and the necessary compute 

for all instances considered in this study. It illustrates the effect of using 

the most suitable PIPS-IPM++ configuration instead of the standard IP 

solver. A significant reduction in time to solve, roughly one magnitude, 

can be observed across all instances. The greatest reductions are possi-

ble for the economic dispatch instances with small numbers of model

regions. For instances with the largest number of model regions, regard-

less of model complexity, the time required to solve can be reduced by 

one order of magnitude by using PIPS-IPM++ instead of the standard 

IP solver. However, this speedup comes at the cost of slightly increased 

compute and furthermore requires prior knowledge of the optimal PIPS-

IPM++ configuration. Only for the instances expAll with 488 model 

regions is it roughly on par. This is mainly due to the farming factor 

that we considered, which significantly favors the standard IP solver if 

memory is not a limiting factor.

The speedup achieved via the application of PIPS-IPM++ can also 

be expressed in terms of solving larger models within a similar time 

frame. For the model instance disp, the greatest difference is observed 

when solving the 488 region instance faster than the 18 region instance 

using the standard IP solver. However, since the absolute solution time 

is still in the range of minutes, the real-world savings are negligible. 

In contrast, the savings in wall-clock time for the instance expRE al-

low one to increase the number of regions from 60 to 240 or from 90 

to 360, respectively. On average, model instances can increase fourfold 

with a similar wall-clock time to solve, significantly pushing the limits 

of computational complexity.

Switching to a comparison of the most efficient solution in terms of 

required compute, we observe similar findings to those of the shortest 

time to solve. Fig. 6(b) shows that all instances can be solved faster using 

PIPS-IPM++. Additionally, the required compute to solve the same in-

stances is reduced across all model instances. This is especially relevant 

for the full capacity expansion instances. For the 488 model regions in-

stance, we observe a 13 % reduction in solve time, while saving 22 % of 

compute compared to the standard IP solver. These results further sup-

port the conclusion that applying PIPS-IPM++ can provide the greatest 

benefits for large, complex models. Table 3 shows the solving time and 

compute for all scenarios and regions, as well as for both solvers and the 

different PIPS-IPM++ configurations.

5. Limitations

Strictly speaking, the findings of this study are only applicable to 

the REMix framework. However, the results align with findings from 

previous applications, suggesting some degree of transferability to other 

ESOMs. Considering all applications thus far, the performance of PIPS-

IPM++ highly depends on a suitable algebraic model formulation, the 

total number of blocks and the linking structure between blocks. In the 

case of non-optimal configurations for PIPS-IPM++, the computational 

benefits can quickly diminish. Similarly, access to hardware with suffi-

cient performance to take advantage of the high degree of parallelism 

can be a limiting factor.

Based on the reported findings for ELMOD [56], the Swiss TIMES 

model [57], and REMix [46], we can formulate some general expec-

tations for other ESOMs: For models with a high temporal resolution, 

chronologically ordered time steps, and limited interlinkages between 

time steps, such as PyPSA [58], oemof [59], Backbone [60], Balmorel 

[61], and AnyMod [62], we expect similar performance benefits from 

PIPS-IPM++, under the assumption of a similar ratio between time 

steps and investment decisions, and of a well-performing configuration. 

When it comes to models using representative time slices, such as 

OSeMOSYS [63], GENeSYS-MOD [64], and models from the TIMES fam-

ily, the ratio between investment decisions and the number of time 

steps makes it more challenging to apply PIPS-IPM++. Furthermore, 

aspects such as international energy trade can make a sufficient decom-

position into blocks challenging, since they are usually represented on 

an annual rather than sub-annual timescale. Applying different decom-

position strategies may therefore be more appropriate for these types 

of models. Regarding integrated assessment models (IAMs), such as 

Message ix 

[65] and REMIND [66], we expect similar challenges, be-

cause these models focus on additional aspects, such as the overall 

economy and environmental impact. IAMs also typically consider more
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Fig. 6. Time to solve and required compute for the three model instances solved with the standard IP solver and PIPS-IPM++. Sub-figures (a) and (c) utilize the 

PIPS-IPM++ configuration optimized for the least time to solve. Sub-figures (b) and (d) utilize the PIPS-IPM++ configuration optimized for the least compute. Lower 

time to solve and lower compute resources are better. Note that both x and y axis are displayed with a logarithmic scaling.

Table 3 

Wall-clock time and compute for all scenarios and regions. Comparison between CPLEX and different configurations for PIPS-IPM++. Depending 

on the configuration either the solving time or the compute is minimized for PIPS-IPM++.

scenario regions CPLEX PIPS-IPM++ (shortest time) PIPS-IPM++ (least compute)

time [s] compute [core h] time [s] compute [core h] time [s] compute [core h]

disp 18 73 5.28 3.25 1.60 5.25 0.56

30 111 6.45 5.23 1.92 7.95 0.80

60 149 8.72 8.62 3.20 13.48 1.28

90 186 10.91 10.73 3.84 16.81 1.60

120 227 13.36 14.22 4.80 24.68 2.24

240 282 19.79 29.61 9.92 50.62 4.24

360 369 25.81 39.90 13.12 69.93 5.84

488 433 34.80 43.46 14.40 73.33 6.08

expRE 18 146 6.85 9.12 3.20 14.34 1.44

30 321 12.37 41.47 13.44 44.55 3.76

60 517 19.33 39.69 13.12 62.45 5.20

90 670 25.28 50.25 16.32 92.92 7.68

120 943 33.95 62.65 20.80 117.99 9.60

240 1519 55.33 118.06 38.40 234.74 19.04

360 2109 75.87 162.19 52.16 318.73 25.76

488 2733 101.55 192.44 62.08 387.57 31.20

expAll 18 207 8.69 21.33 7.36 31.65 2.80

30 603 20.29 48.27 16.00 74.69 6.16

60 1108 35.44 112.32 36.48 185.92 15.12

90 1839 56.59 202.60 65.28 333.10 26.80

120 2489 75.52 309.26 99.52 464.43 37.28

240 6973 201.81 1030.94 330.56 1530.5 122.56

360 14723 414.11 1665.62 533.44 2915.69 233.36

488 36897 1015.47 2944.78 942.72 4791.47 383.44
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nonlinear and nonconvex interactions, which may prevent the applica-

tion of PIPS-IPM++ altogether. Ultimately, future research is needed 

to demonstrate the generalized transferability of our findings and show 

concrete performance benefits across a wide range of ESOM frameworks 

and model instances with different levels of complexity.

The performance of PIPS-IPM++ can be significantly affected not 

only by the software, but also by the available hardware, such as the 

CPU and memory per compute node, as well as by proper software 

configuration, such as thread pinning. Therefore, the findings of this 

study should be considered in the context of the used HPC until the 

solver has been applied to a wider range of clusters. Additionally, com-

putational experiments may be influenced by other factors, such as 

simultaneous computational loads on the same nodes or general loads 

on the communication network. Although we applied simple counter-

measures, such as allocating complete compute nodes for each run, 

variations caused by simultaneous load can affect the results. Ideally, 

computational experiments are performed with multiple runs per test 

and on different hardware to ensure the reliability of the results. For 

this study, however, such a design was not possible due to limited ac-

cess to HPC clusters and the prohibitively large number of computational 

resources required to obtain statistical significance for the large model 

instances.

It should also be noted that, in its current state, PIPS-IPM++ has 

strict requirements regarding the provided optimization problems. These 

requirements must be addressed by the modeler until adequate heuris-

tics are incorporated into the solver itself. For example, this concerns 

rank-deficient matrices, which standard IP solvers can automatically 

presolve but which PIPS-IPM++ currently cannot handle due to chal-

lenges in preserving the block structure during the presolve. This can 

render PIPS-IPM++ impossible to apply to some of the aforementioned 

problems.

6. Conclusion and outlook

This study evaluates a broad spectrum of scalable energy system 

model instances generated with the REMix framework. It shows the 

direct link between the size and complexity of the model instances 

and their corresponding computational requirements. Specifically, the 

number of investment decisions significantly impacts the required wall-

clock time, while the total number of variables and constraints primarily 

drives the memory demand. These findings also suggest that, as the size 

increases, pure economic dispatch problems are more likely to be lim-

ited by available shared memory, while capacity expansion problems 

are more likely to be limited by the time required to obtain a solution.

We further demonstrate that decomposing the problem and utiliz-

ing the massively parallel solver PIPS-IPM++ can significantly reduce 

solution times and prevent limitations imposed by shared memory ar-

chitectures, given both access to sufficient HPC hardware and a well 

performing configuration. However, the optimal configuration of PIPS-

IPM++ depends heavily on the specific model instance to be solved and 

the emphasis placed on either the least wall-clock time or the least com-

pute time. The number of blocks into which the optimization problem is 

decomposed and the number of cores used for the parallel solving pro-

cess must be adjusted accordingly. For instances with few investment 

decisions, a large number of blocks is advisable. For instances with a 

large number of investment decisions, a smaller number of blocks should 

be used. If the primary goal is to reduce the wall-clock time to solve 

an instance, utilizing more cores is beneficial. Conversely, reducing the 

required compute can be achieved by reducing the number of utilized 

cores.

The observed speedups are in line with previous applications 

of PIPS-IPM++ which demonstrated significant speedups for pure 

economic dispatch models [44] and a limited speedups for models 

with a greater emphasis on capacity expansion planning [45]. In our

application, the greatest benefits are obtained for large, complex in-

stances, where solving with standard IP solvers on a shared memory 

architecture is challenging or impossible. First, the speedup achieved by 

PIPS-IPM++ allows more scenarios to be solved in the same amount 

of time. Thus, the challenge of multiple uncertainties associated with 

scenario studies of large energy systems can be addressed more effec-

tively [6]. Second, the ability to switch to distributed memory machines 

avoids the memory limitations previously encountered on shared mem-

ory machines, as only part of the full optimization matrix needs to 

be stored in local memory [44]. This is particularly relevant for using 

modern HPC infrastructure, as the emphasis is generally on high paral-

lelization and throughput, and individual compute nodes have limited 

memory.

When it comes to the question of whether to adopt the use of 

PIPS-IPM++, several key conditions must be met. First, access to a 

multi-node computing cluster is recommended or, alternatively, cutting-

edge CPUs with more than 256 cores on shared memory systems. This 

translates to approximately 120 blocks with two cores per block or 

60 blocks with four cores per block, which seems like a reasonable lower 

entry point. Furthermore, due to the additional overhead of annotat-

ing and splitting the problem, using PIPS-IPM++ is only recommended 

for models that exceed several hours of solve time with standard IP 

solvers or that exceed the available shared memory. Additionally, extra 

time must be factored in to determine well-performing configurations in 

terms of the number of blocks and cores used. Regarding the trade-off 

between configurations optimized for the shortest time or the least com-

pute, the decision depends heavily on the specific usage scenario. The 

former is especially relevant for academic HPC systems, which often 

have constraints on the maximum time allowed for each computing job. 

The latter is potentially more suitable for users running PIPS-IPM++ in 

cloud computing environments, where computing costs are charged 

based on usage. In both cases, we expect users to benefit most from sig-

nificant reductions in the time it takes to solve large linear optimization 

problems.

Against the background of ever-increasing model complexity and 

the prevalent design of modern HPC infrastructure, massively parallel 

solvers for general optimization problems, such as PIPS-IPM++, offer 

clear advantages compared to other current approaches. While many 

of these solvers are still in the early stages of research, they have the 

potential to significantly benefit many different ESOM frameworks in 

the long term. However, additional development efforts are required for 

PIPS-IPM++ specifically in terms of numerical stability, testing across 

multiple platforms, and lowering the entry barrier for using the solver. 

Regarding the development of ESOM frameworks, different annotations 

and classes of problem instances must be explored in the future. Some of 

the most promising approaches that could significantly benefit from the 

application of solvers like PIPS-IPM++ are capacity expansion planning 

problems with stochastic economic dispatch, as well as the computation 

of long-term transformation pathways with perfect foresight. These ap-

proaches share a decomposition into capacity expansion and economic 

dispatch along the time dimension, offering a large number of blocks 

while keeping the total number of linking variables and constraints 

relatively low. Going forward, this allows for the efficient solution of 

increasingly large model instances, such as the assessment of resource 

adequacy for renewable capacities [37,67] and the outlining of long-

term transitions toward systems with high shares of renewable energy 

technologies and high degrees of sector integration at high temporal 

resolution [17].
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