Preliminary Design of the Stellar Apps Software
Platform for Developing and Executing On-board
Applications

Hendrik Otte ©®*, Armin Purle-Kopacz ®*, Kai Bleeke ®*, Arnau Prat ®*, Zain Haj Hammadeh ®*,
Andreas Lund ©*, Jan-Gerd MeB ®f, Michael Felderer ®**, and Daniel Liidtke ®*

*Institute of Software Technology
German Aerospace Center (DLR)
Braunschweig and Oberpfaffenhofen, Germany

tInstitute of Space Systems
German Aerospace Center (DLR)
Bremen, Germany

iUniversity of Cologne
Cologne, Germany

Abstract—The German Aerospace Center (DLR) is developing
Stellar Apps, an on-board application platform designed for
space missions. Third-party applications and system services
are deployed as apps. These apps can be executed in isolated
environments with configurable access to the spacecraft and
its computing resources. This allows users to regularly add,
replace, remove, and update Apps to improve the flexibility and
reusability of multipurpose spacecraft. Complex applications can
be executed and tested in a secure environment, reducing their
time to orbit. The Stellar Apps platform enables API-based
communication not only between different apps, but also with
hardware components, allowing it to be integrated into various
types of spacecraft, such as satellites, rovers, space stations,
and even entire satellite constellations, facilitating data exchange
and remote control capabilities through direct communication
with the ground station. Access to commonly used artificial
intelligence libraries and accelerators paves the way for future
space applications. Stellar Apps provides end-to-end services
ranging from development on the ground to deployment of Apps
in space. The platform is currently available as a prototype at
the German Aerospace Center (DLR) and is planned for an in-
orbit demonstration during the second year of DLR’s CAPTn-
1 mission. This paper presents the preliminary design of the
software platform.

Index Terms—OBDP, Al, security, software platform, con-
tainerization, OBC

I. INTRODUCTION

The Nebulae study [1] concluded that future scientific space
missions will rely much more heavily on onboard analysis of
scientific data than is currently the case. It will no longer be
feasible to transmit all (raw) scientific data back to Earth.

Currently, there is a lot of activity surrounding the de-
velopment of on-orbit cloud platforms with edge computing
capabilities in many areas, such as Earth observation, con-
stellation autonomy, on-orbit servicing, and exploration e.g.,

[2]-[4]. These missions rely on complex on-board algorithms
that increasingly use artificial intelligence. Sometimes these
algorithms are so complex that classical verification and vali-
dation approaches are not feasible or too expensive. Therefore,
new approaches are needed to enable untrusted applications to
run on board without compromising the mission.

ESA’s OPS-SAT 1 mission [5] is a good example of the
concept of allowing untrusted or low technology readiness
level (TRL) software to control the satellite. This was achieved
by using a secure second on-board computer (OBC) that could
take control of the spacecraft in the event of an unsafe situation
caused by the experimental software.

The Stellar Apps activity at the German Aerospace Center
(DLR), which began in 2025, was motivated by the idea of
providing an execution environment for high-performance on-
board applications that runs in a safe and secure environment
and allows easy access to orbit for low TRL applications,
alongside mission-critical systems, such as the Attitude and
Orbit Control System or the Command and Data Handling
System. Because of this combination of mixed-criticality appli-
cations [6], security and safety are essential aspects of Stellar
Apps’ design.

The paper first outlines the core directions of related work,
followed by an overview of the Stellar Apps’ predecessor,
ScOSA. It then presents an overview of the platform’s use
cases and requirements. Next, the preliminary design and the
currently available prototype are presented. Finally, the paper
concludes with some final remarks and an outlook on future
work.

This is the accepted version of the article: H. Otte et al., "Preliminary Design of the Stellar Apps
Software Platform for Developing and Executing On-board Applications," 2025 European Data
Handling & Data Processing Conference (EDHPC), Elche, Spain, 2025. Conference website:

https://atpi.eventsair.com/edhpc-2025/


https://orcid.org/0009-0004-7300-6646
https://orcid.org/0009-0005-9426-9872
https://orcid.org/0000-0001-6262-305X
https://orcid.org/0000-0003-1169-4004
https://orcid.org/0000-0001-7539-2393
https://orcid.org/0000-0002-3828-2088
https://orcid.org/0000-0002-2117-3483
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0000-0002-6758-1562
https://atpi.eventsair.com/edhpc-2025/

II. RELATED WORK

As the number of satellites in space continues to rise, and
satellites are more capable to perform complex tasks, onboard
data processing becomes indispensable. In response to this,
the Smart on-board processing for Earth observation systems
(SOPHOS) project [7] was initiated to develop technology for
high-end data products produced onboard of spacecraft. With
a focus on data intensive Synthetic Aperture Radar (SAR)
applications, more efficient onboard data processing chains
were developed. This includes reduced size of commercial
off-the-shelf (COTS) hardware components, improved data
compression and processing, as well as hardware utilization
optimizations.

The emerging field of artificial intelligence neuromorphic
computing holds great potential for advancing space explo-
ration by offering energy-efficient, low-latency, and highly
adaptive computing systems [8]. Inspired by the human brain’s
architecture, neuromorphic computing mimics biological neu-
rons and synapses to build an asynchronous computation unit.
Research showed that neuromorphic processors like Intel’s
Lohi 1 [9] can minimize the power consumption in space.

Given the need for onboard processing, decision making,
and general autonomy, the software running on satellites needs
to become more secure and flexible to adapt to future hardware
and shifting requirements from the developers.

The NanoSat MO Framework (NMF) [10] represents a pio-
neering example of middleware that embodies the principles of
satellite-as-a-service (SaaS). Notably, the NMF was used in the
2019 ESA OPS-SAT mission. In 2020, a significant milestone
was achieved when the NMF was successfully executed in
space, enabling external experimenters to upload and run
their software as on-board applications. This demonstrated the
feasibility of the SaaS concept for “app-driven” satellites. The
NMF’s architecture provides high-level software abstractions
and libraries that facilitate the development of self-contained
on-board applications decoupled from the underlying satellite
hardware. This design allows developers to create portable,
reusable software components. The use of a common Soft-
ware Development Kit (SDK) and interface across all NMF-
enabled on-board units ensures interoperability and consis-
tency, streamlining the development and deployment of on-
board applications.

The multiMIND Framework [11], developed with support
from the ESA ARTES program, was successfully validated
through deployment on the 6U CubeSat EIVE mission, which
launched in 2023. The framework’s design makes it highly
adaptable and multi-mission capable, facilitating the rapid de-
velopment of diverse payload applications that utilize common
application programming interfaces (APIs). Additionally, it
allows for the integration of COTS integrated circuit packages
(IP cores) within field-programmable gate arrays (FPGAs),
accelerating specific tasks such as artificial intelligence or
image processing. The multiMIND Framework’s ability to
provide on-demand software updates and FPGA configura-
tions embodies the principles of SaaS. This capability allows

new applications or configuration changes to be deployed
efficiently without requiring extensive reimplementation or
hardware modifications, enabling more agile and responsive
space application development.

III. SCOSA

The predecessor of Stellar Apps at DLR is the Scalable
On-board Computing for Space Avionics (ScOSA) Flight
Experiment [12]. ScOSA is a distributed, heterogeneous OBC
architecture that combines radiation-hardened processors (in
this project, a GRE712RC LEON3FT) and multiple com-
mercial off-the-shelf systems-on-a-chip (in this project, eight
Xilinx Zynq 7000) in a SpaceWire network. The ScOSA
middleware detects failures and migrates tasks from failing
nodes to continue execution on another node to achieve high
reliability of the system, which is mainly based on radiation-
sensitisve COTS components. If the failure was transient,
recovered nodes can be automatically reintegrated into the
network. The middleware is available for RTEMS and Linux,
enabling the development of distributed, high-performance
applications. These applications can leverage multiple nodes
and utilize the programmable logic on Zynq FPGAs for
acceleration purposes.

ScOSA allows multiple applications to be executed con-
currently [13]. Applications define a graph of tasks (that
processes data) which connected by channels (that store the
state of applications). All applications are bundled into a
single binary. The middleware maps the tasks and channels
of all applications to the different computing nodes. While
this allows high system utilization, it comes to the cost of
inflexibility during development and a lack of separation
between different applications. A fault in a one application
can affect the entire system. Developers are further required
to design their application around the concept of tasks and
channels. Existing software that does not follow this design
principle needs to be reimplemented. Stellar Apps, as the
successor of SCOSA, aims to improve these shortcomings.

Currently, a 3U-sized, 18-core ScOSA system is being
built and integrated into DLR’s CAPTn-1 mission, which is
scheduled for launch in 2026. This mission will demonstrate
the system with five applications in orbit.

IV. USE CASES AND REQUIREMENTS

The Stellar Apps project [14] aims to build on the results
of ScOSA. The design of the development and execution
environment of Stellar Apps is driven by the lessons learned
from the ScOSA activities.

In ScOSA, all applications are compiled into a single binary.
This leads to a high degree of dependency between individual
applications. A fault in one app can cause the entire collection
of applications to fail. Therefore, applications in Stellar Apps
are required to run independently from each other. A fault in
one application shall not affect the stability of the remaining
system. Core system services of the flight software should also
be decoupled from each other to increase maintainability and
reliability of the system.



Another lesson learned in ScOSA is that application de-
velopers would like to have a more flexible development
environment with a greater variety of development and runtime
libraries. In particular, newer versions of Al environments such
as PyTorch or TensorFlow are requested.

Applications are not always planned to be sent to space from
the very beginning. Instead, applications often rely on existing
code and libraries that were developed without the strict safety
requirements for space. Stellar Apps aims to reduce the time to
develop applications for space. This includes reusing existing
code as much as possible, being able to use existing runtime
libraries, and being able to update and test applications in-sifu.

Nevertheless, running untrusted code in space can cause
serious damage to a mission. There is a need for strong
separation and isolation of applications. Given such isolation,
it would also allow Stellar Apps to provide a testbed for com-
plex algorithms that are not feasible to validate by traditional
approaches.

Regular updates of software is required to support an
iterative development and software tests in orbit. Application
developers want to fix bugs, improve existing features, or
introduce entirely new features during a mission. Thus, support
for regular software updates during a mission shall be provided
by the Stellar Apps platform.

In the Stellar Apps project, seven applications are being
developed in parallel with the system software. These appli-
cations include Earth observation, on-orbit service image pro-
cessing, autonomous on-board planning, anomaly detection, an
experimental digital twin, and a single event effects detection
and mitigation experiment. The applications defined compact
use case descriptions to derive requirements for the Stellar
Apps software platform, but also for a new reference OBC
platform to replace the radiation-hardened node in the SCOSA
architecture with a more powerful RISC-V processor. In
addition, use cases from industry partners and other use cases
such as high performance signal processing are considered and
integrated.

Based on the use cases from the application developers, the
following three observations are derived:

1) Applications need to collaborate. The services provided
by an app shall be accessible to other applications if
both developers agree. Otherwise, no data from one app
shall be shared with other applications. Stellar Apps
can be used as a multi-tenant software platform. Thus,
both cooperation and strong separation between tenants
need to be supported. Secure communication mechanisms
between application are required.

2) Applications can profit from distributed execution on
multiple computing nodes. To improve performance, ap-
plications can get access to multiple computing nodes.
Additionally, different versions of the same application
could be executed at the same time. For example, to
compare different algorithms in parallel rather than one
by one. The Stellar Apps software platform shall there-
fore support the execution of application distributed on
multiple computing nodes.

3) Interactions between the applications and the spacecraft
should be simplified. To allow a wide range of app
developers creating applications for space systems, an
accessible API-based communication with the underlying
services and hardware is required. Developers without
prior experience in writing software for space, for exam-
ple from universities or corporations, could launch their
ideas into space. Stellar Apps is planned as a platform for
a large variety of spacecrafts. Thus, an abstraction layer
between applications and the hardware would increase its
interoperability.

With an increasing need for on-board autonomy, data-
processing, and decision making, applications rely on artificial
intelligence more than ever, e.g. [15]-[17]. Stellar Apps shall
provide support for hardware accelerators and commonly used
runtime libraries for artificial intelligence. In addition, real-
time support is also required on the Linux-based nodes to en-
able real-time applications to meet their timely requirements.
The Stellar Apps platform shall therefore provide a real-
time capability through integrating real-time co-kernel, namely
enabling PREEMPT-RT and the Xenomai 4! co-kernel [18].
Co-processor-based solutions, in which real-time tasks are oft-
loaded to a real-time micro-controller such as ARM M4 to run,
got less interest as they consume more power and make the
platform hardware dependent.

Cybersecurity is another important aspect of Stellar Apps.
Satellites are an attractive target for cybersecurity attacks [19].
Therefore, a solid security framework is required to allow
multi-tenant operations and to execute untrusted code in space.
For example, applications shall not be able to access resources
on the spacecraft without explicit permission. Additionally, the
amount of computing resources that are available to an app
shall be limited. This allows a fair distribution of the resources
to multiple applications. It also prevents flawed applications
from exceeding the available resource pool, which could lead
to a total failure of the mission. Constant monitoring in the
form of intrusion detection, common weakness,and common
vulnerability analysis before deployment are necessary.

To summarize, the following key requirements are identi-
fied:

1) Isolation and separation of individual applications

2) Regular updates of applications

3) Strong cybersecurity measurements during the entire life-
cycle of an application

4) Multi-tenant operations

5) Support for real time applications

6) API-based communication between applications and the
underlying hardware

7) Access to Al accelerators and commonly used runtime
libraries

8) Distributed execution of applications on multiple com-
puting nodes

Uhttps://v4.xenomai.org/overview/


https://v4.xenomai.org/overview/

N

Application Ground
Developer Interface
Pull / Push
Local Registry < 2 = »|  Ground Registry —
Feedback
Development <€ sechae > Testing Service

Local Testing Certificate Authority

Update Service

ajepdn asedaid

Ground Space
Station Segment
Upload %

- Space Registry

I
Deployment

Node 1
Node 2
Node 3

Upload T

Fig. 1. There are three main components of Stellar Apps: 1) the application developer; 2) the trusted ground interface; and 3) the space segment. Developers
use the ground interface to create apps. These apps are then submitted to the ground interface for further security checks and verification. Finally, the apps

are sent into space, where they are executed on the spacecraft.

V. PRELIMINARY DESIGN OF THE STELLAR APPS
SOFTWARE PLATFORM

The Stellar Apps software platform has been developed
based on the previously described use cases and requirements.
Stellar Apps is built on the foundations of the SCOSA project
described in Sect. III. Stellar Apps is organised into three main
components: the space segment, the ground interface and the
application development. These components work together to
enable the secure execution of potentially untrusted third-party
applications in space (Fig. 1).

The Stellar Apps ground interface is a trusted institution
that connects application developers with the spacecraft. The
ground interface provides a container-based development en-
vironment. Application developers can use to develop and
test Stellar Apps. These applications are then submitted to
the ground interface for further checks and verification before
being uploaded to the satellite. Once uploaded, the applications
are deployed and executed by the Stellar Apps software
platform on the space segment.

A. Space Segment

The Stellar Apps software platform is primarily responsible
for securely and safely executing uplinked applications along-
side mission-critical services. Fig. 2 illustrates the software
layers that are run by each computing node.

The operating system is Linux, which has been extended to
support real-time applications. The real-time PREEMPT-RT
Linux kernel is considered to support real-time applications.
In addition, the co-kernel Xenomai 4 is integrated to support
hard real-time requirements. The flight software core provides
essential services to the system and monitors application
execution.

Applications and libraries are deployed in the form of
containers. This allows individual applications to be isolated
from each other. The amount of computing resources can
be limited and access to certain files or hardware can be
restricted. If an application exhibits undesirable behaviour,

such as crashing or excessive memory usage, the impact on
the spacecraft is limited.

On top of the operating system and network layers, the
communication layer controls the data exchange between
individual applications (Fig. 2). By default, no data can be
shared between apps. The communication layer only allows
information to be exchanged with explicit permission from all
participating applications. Stellar Apps supports the distributed
execution of applications on multiple computing nodes as
illustrated in Fig. 3. Therefore, the communication layer also
handles messages between applications on different nodes.

An application orchestrator is responsible for starting, stop-
ping, installing, updating, and removing applications from
the platform. It controls the containerization engine, which
isolates applications and limits their access to the system. If
non-nominal behavior is observed, the application orchestrator
can terminate applications. If a malfunctioning application
is detected, a detailed report is sent to the ground, and the
application is stopped.

A registry stores applications and provides a set of sup-
ported frameworks and libraries in different versions. In con-
trast to the ScCOSA Flight Experiment, it is no longer necessary
for all applications to rely on the same library version. With
this approach, different versions of the application can be
deployed and run.

Applications and libraries in the registry can be updated.
The ground interface sends a patch file to the spacecraft. The
patch’s authenticity can be verified by its signature. Then, the
patch is applied, and the new version is stored in the registry
and made available for deployment. Previous versions of an
app can be kept as a backup option in case the patch becomes
corrupted.

For artificial intelligence (AI) applications, at least two
frameworks are supported: PyTorch and TensorFlow. In ad-
dition to the FPGA co-processor architecture of ScOSA,
the integration of special Al FPGA designs [20] and the
integration of embedded GPUs is planned.



Core Service
Core Service
App
Core Service
Core Service
App
App

. Containerized

Communication
Layer

Application
Orchestrator

Operating System

Hardware

Fig. 2. Stellar Apps’ layered software stack is designed for a single node.
A communication layer handles secure communication between applications.
The application orchestrator manages application installations, updates, re-
movals, and activation. The entire system runs on a Linux operating system.

For the interfaces to sensors and actuators, to other applica-
tions on the spacecraft and to the ground, APIs are provided
that abstract from the actual communication protocol. This
simplifies application development by eliminating the need to
implement the details of specific telecommand and telemetry
service standards. The programming model of Stellar Apps is
similar to the programming of lightweight web services.

While Stellar Apps do not necessarily have to be imple-
mented in a particular programming language, APIs for C/C++
and Rust will be provided. Rust was chosen because of the
safe-by-design nature of the language specification and the
promising results of a Rust study for ESA [21]. Python will
also be supported because of its widespread use in the Al
community. However, we will not provide a direct Stellar Apps
Python API in the first phase.

The Stellar Apps environment will be provided at least for
the GR712 and Xilinx Zynq 7000 (i.e. ScCOSA on the CAPTn-
1 mission), Intel x64, and the new RISC-V-based reference
platform. For the network layer, both SpaceWire and TSN are
supported.

B. Ground Interface

To execute multi-tenant applications with varying sets of
permissions, a trusted interface between the application de-
velopers and the execution in orbit is required. Therefore, the
Stellar Apps ground interface is introduced. It is a collections
of various services, developers, and infrastructure to provide
services to the application developers and to operate the
spacecraft. The main purpose of the ground interface is to
verify the authenticity of applications and their permissions
on the spacecraft. The ground interface provides the following
functionalities:

Node 1 Node 2
App 1 P - App 2
) »

App 1 App 3
A A
\ 4 \ 4
Node 3 Node 4
App 2 P - App 2
) »

App 1

Fig. 3. Applications can be executed on a single computing node, or spread
over multiple ones. Communication channels between the nodes allow data
transfer between apps. Data can only be shared if applications agree.

1) Provide a development environment to the application
developers. Application developers shall be able to test
their applications independently from other developers.
The Stellar Apps ground interface provides a container-
based environment that allows local and independent
software tests. This enables developers to run their appli-
cations in a similar software environment that is present
on the spacecraft.

2) Provide testing capabilities to the application devel-
opers. Not every developer has access to the specialized
hardware that is used on the spacecraft. Therefore, the
ground interface provides services to the developers to
test their applications on such hardware.

3) Analyse the submitted apps for security issues. Ap-
plications that are submitted to the ground interface are
scanned for security issues with both static and dynamic
analysis methods. The applications are also checked
against known vulnerabilities and malicious code.

4) Negotiate and verify the entitlements that an applica-
tion developer has access to. By default, an application
has no permissions to run on a spacecraft. Accessing
hardware resources, software services on the spacecraft,
or communicating to other apps requires explicit autho-
rization. The ground interface provides entitlements to the
developers. Each entitlement grants a set of permissions
on the spacecraft. As a certificate authority, the ground
interface also proves the correctness and authenticity of
these entitlements to the spacecraft.

5) Upload and update applications on the spacecraft.
To upload applications, developers submit their apps
to the ground interface. The applications go through
extended testing and verification. The ground interface
then creates an app bundle with additional information



about granted entitlements and other app specific details.
The app bundle is send to the spacecraft using an existing
ground station infrastructure.

Applications are deployed in the form of app bundles. An
app bundle contains everything that is required to execute an
application. This includes the container image, a set of granted
entitlements, the developer identifier, information about the
execution mode, and signatures from the ground interface to
prove authenticity of the bundle.

C. Application Development

Most functionalities for the application developers are cov-
ered by the ground interface described in Sect. V-B. Devel-
opers can access a container-based environment to develop
and test their applications. Applications are submitted to the
ground interface for hardware tests and verification. Once
the application is ready, the developer requests the ground
interface to upload the app to the spacecraft.

In order to access certain software or hardware systems on
the spacecraft, developers need to be granted the correspond-
ing entitlements. Whether an entitlement is granted or not is a
decision made by the operators of the ground interface. Given
the potential risks to a mission, granting an entitlement should
be carefully considered.

VI. PROTOTYPE

A Stellar Apps prototype is developed by DLR as a proof-
of-concept and platform to validate design decisions and con-
duct experiments. The following section gives a brief overview
of the current state of this prototype.

Stellar Apps is conceptualized as an ecosystem for the
secure and safe execution of third-party Apps in space. This
includes software in space but also infrastructure on ground.
Stellar Apps is a collection of different software products
that are used by application developers, service providers on
ground, and spacecrafts. Therefore, the prototype is also made
up of multiple individual software components for all three
segments of Stellar Apps.

Fig. 4 illustrates the components included in the prototype:

o Command-line interface for the application developers.

o Server for the Ground Interface to provide the develop-

ment environment and to receive Apps.

o Command-line interface for the Ground Interface to man-

age and upload Apps to the spacecraft.

o Registry servers to store and manage Apps. For both the

Ground Interface and the spacecraft.

o Application Manager for the spacecraft.

All components are developed with Rust. The communica-
tion between the components is realized with TCP/IP. The
prototype is split into three dedicated virtual machines to
reflect the division between the three segments of Stellar Apps:
The developer, the ground interface, and the spacecraft.

Following the design of Stellar Apps, individual applications
are deployed in the form of containers. A container image is a
portable and executable package of a software application and
its dependencies. It is used to create containers that provide

a consistent and reliable environment for the application to
operate in. The OCI?> (Open Container Initiative) standard
for container images is used. Its wide spread use in con-
tainerization tools makes it compatible with various existing
containerization solutions like Docker® or Podman®.

Registries are used to manage the available container images
on a system. A registry is a piece of software to store, version,
update and remove container images. Such a registry is found
on all three segments of Stellar Apps. The developers have
access to a registry with the images that were downloaded from
the ground interface. These images provide the development
environment for Stellar Apps. The developed apps are then
pushed back into the registry of the ground interface. From
there, apps are uploaded into the local registry on the space-
craft from where they are deployed and executed as presented
in Fig. 4.

To manage container images received from the ground
interface, developers have access to a CLI (command-line in-
terface). This interface is used to request different development
environments from the ground interface, and to build, run,
test, and upload apps. A similar CLI is used on the ground
interface. The CLI can be used to manage applications and
upload them to the spacecraft. The spacecraft receives apps in
the form of application bundles that are stored and managed in
its local registry. Finally, the application orchestrator deploys
and executes the available container images on the spacecraft.

The application orchestrator also provides an interface to
the environmental simulator 42 [22], which is used in the
NASA Operational Simulator for Small Satellites (NOS3) [23].
It is used as a source for the precise simulated position of
the spacecraft and to test how to operate the spacecraft from
ground. This process is illustrated in Fig. 5.

The prototype is being tested on a set of multiple Rasp-
berry Pi 4 Model B. Each Raspberry Pi represents a single
computing node. Multiple nodes can communicate using IP-
based communication channels to test and validate the system
design and the implemented distributed computing algorithms.

VII. CONCLUSIONS AND OUTLOOK

With the Stellar Apps platform a secure and safe environ-
ment for on-board applications is currently developed that will
significantly reduce the time-to-orbit for even experimental
applications. The software platform is targeted for a large va-
riety of spacecraft for future space missions ranging from, for
instance, satellites, space transportation, rovers, or experiments
on space stations. It enables edge computation by providing
a software environment for high-performance OBCs with the
support of hardware acceleration for Al applications. Stellar
Apps is designed to be compatible with a wide range of
hardware architectures and provides an powerful development
environment based on the Linux operating system. Addition-
ally, the Stellar Apps platform is planned to be extended to

Zhttps://opencontainers.org/ (Accessed September 14, 2025)
3https://www.docker.com/ (Accessed September 14, 2025)
“https://podman.io/ (Accessed September 14, 2025)


https://opencontainers.org/
https://www.docker.com/
https://podman.io/
https://opencontainers.org/
https://www.docker.com/
https://podman.io/

VM 1
"Application Developer”

VM 2
"Ground Interface"

VM 3
"Spacecraft"

2 ]

«component» «component» TR
Developer Ground Interface | «comp

oLl cLI Application Orchestrator

I I it

N N
7 7 \ 7
AN AN
AN N
«component» N «component» N «component»
Registry ‘b— Registry 4O— Registry
Client Server Client
TCP/IP TCP/IP

Fig. 4. Overview of the prototype components and how they relate to each other. The t

hree segments of Stellar Apps (Developer, Ground Interface, Spacecraft)

can be deployed into distinct (virtual) machines. Each machine has access to a registry for container images. Command-line interfaces are used to manage
and upload the images. An application manager on the spacecraft machine is responsible for deploying the applications. TCP/IP connections are used to share

data between the machines.

[App1] Earth observation 90 seconds
App2] Training AI model 65 seconds
[App1] Earth observation 92 seconds
[System] App updated: observation
System] Start Earth Observation.
[App1] Earth observation 94 seconds
App1] Earth observation 96 seconds
App2] Training AI model 7@ seconds now.
[App1] Earth observation 98 seconds now.
App1] Earth observation 100 seconds now.
[App2] Training AI model 75 seconds now.
ﬁAppl] Earth observation 102 seconds now.

now.
now.

| ./reg 30001 1
Received App 'Earth Observation'.
Received App 'AI Training'.
Received App 'Earth Observation'.

| spoc upload observation
Make bundle for sat.
79680 KB sent.

| spoc upload ai_training
Make bundle for sat.
79680 KB sent.

| spoc
Make bundle for sat.
Generate update ...
40 KB sent.

|

upload observation

| spoc upload app_1.toml
79680 KB sent.
observation.sa
| spoc upload app_2.toml
79680 KB sent.
ai_training.sa
| spoc upload app_1_updated.toml
KB sent.
observation.sa

Fig. 5. A screenshot of the prototype that shows 1) an interactive dashboard on the left, and 2) a connected instance of 42 - Spacecraft Simulator on the right.
The dashboard is showing the three segments of Stellar Apps: The application developer (bottom), the ground interface (center), and the spacecraft (top). The
instance of the 42 - Spacecraft Simulator is used for visualization and simulation of the environment.

support multi-spacecraft collaborations, for example in the
context of satellite constellations using inter-satellite links.

Stellar Apps is under development in a three year project. =
First results with relevant applications in orbit are demon-
strated in the second mission year of CAPTn-1. In parallel
ground tests will be conducted with the new reference platform 13]
OBC.

REFERENCES [4]

[11 J. V. Hook, J. Castillo-Rogez, R. Doyle, T. S. Vaquero, T. M. Hare,
R. L. Kirk, V. Fox, D. Bekker, and A. Cocoros, “Nebulae: A proposed

concept of operation for deep space computing clouds,” in 2020 IEEE
Aerospace Conference, 2020, pp. 1-14.

M. Der Yang, H. H. Tseng, Y. C. Hsu, and W. C. Tseng, “Real-
time crop classification using edge computing and deep learning,” in
2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC). 1EEE, 2020, pp. 1-4.

B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite con-
stellations as a new class of computer system,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 939-954.
I. Leyva-Mayorga, M. Martinez-Gost, M. Moretti, A. Pérez-Neira, M. A.
Vézquez, P. Popovski, and B. Soret, “Satellite edge computing for real-
time and very-high resolution earth observation,” IEEE Transactions on
Communications, vol. 71, no. 10, pp. 6180-6194, 2023.



[5

[6

=

[7

—

[8]

[9]

[10]

(11]

(12]

[13]

D. Evans and M. Merri, “OPS-SAT: A ESA nanosatellite for accelerating
innovation in satellite control,” in SpaceOps 2014 Conference, 2014, p.
1702.

A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2022.

O. Flordal, N. Gollin, M. Jaeger, V. Kollias, M. Martone, J. Naghmouchi,
M. Persson, S. Pedersen, N. Pogkas, R. Scheiber et al., “Smart on-
board processing for next generation sar payloads,” in EUSAR 2024;
15th European Conference on Synthetic Aperture Radar. VDE, 2024,
pp. 606-610.

A. Yu, S. Woo, and H. Ahn, “Toward transforming space exploration
with artificial intelligence neuromorphic computing,” Engineering Ap-
plications of Artificial Intelligence, vol. 154, p. 111055, 2025.

M. S. Murbach, E. Barszcz, L. S. Schisler, A. J. Salas, K. Boateng,
G. Marty, M. Mooney-Rivkin, A. Brock, S. M. Krze$niak, and S. Zuniga,
“Brainstack—a platform for artificial intelligence & machine learning
collaborative experiments on a nano-satellite,” in SmallSat Conference
Proceedings, no. SSC23-X-03. SmallSat Organization, 2023.

C. Coelho, O. Koudelka, and M. Merri, “Nanosat mo framework: When
obsw turns into apps,” in 2017 IEEE Aerospace Conference. 1EEE,
2017, pp. 1-8.

A. Pawlitzki and F. Steinmetz, “multimind-high performance processing
system for robust newspace payloads,” in 2nd European Workshop on
On-Board Data Processing (OBDP2021), 2021.

D. Liidtke, T. Firchau, C. E. Gonzalez Cortes, A. Lund, A. M. Nepal,
M. M. H. H. Elbarrawy, Z. A. Haj Hammadeh, J.-G. MeB, P. Kenny,
F. Bromer, M. Mirzaagha, G. Saleip, H. Kirstein, C. Kirchhefer,
and A. Gerndt, “Scosa on the way to orbit: Reconfigurable high-
performance computing for spacecraft,” in Proceedings - 2023 IEEE
Space Computing Conference, SCC 2023, August 2023. [Online].
Available: https://elib.dlr.de/196642/

A. Lund, Z. A. Haj Hammadeh, P. Kenny, V. Vishav, A. Kovalov,
H. Watolla, A. Gerndt, and D. Liidtke, “Scosa system software: the
reliable and scalable middleware for a heterogeneous and distributed
on-board computer architecture,” CEAS Space Journal, vol. 14, no. 1,
pp. 161-171, 2022.

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

D. Liidtke, J. Sommer, C. Gonzalez, H. Otte, A. Lund, Z. H. Hammadeh,
C. Brokering, and A. Prat, “Stellar apps: On-board application frame-
work for space missions,” 2025, 18th Annual Flight Software Workshop.
G. Labreche, D. Evans, D. Marszk, T. Mladenov, V. Shiradhonkar,
T. Soto, and V. Zelenevskiy, “Ops-sat spacecraft autonomy with ten-
sorflow lite, unsupervised learning, and online machine learning,” 2022
IEEE Aerospace Conference (AERO), pp. 1-17, 2022.

S. Kacker, A. Meredith, K. Cahoy, and G. Labreche, “Machine learning
image processing algorithms onboard ops-sat,” in Proceedings of the
AIAA/USU Conference on Small Satellites, 2022, in Science/Mission
Payloads, SSC22-WKIV-03.

G. Labreche, C. Guzman, and S. Bammens, “Generative ai... in space!
adversarial networks to denoise images onboard the ops-sat-1 space-
craft,” 2024 IEEE Aerospace Conference, pp. 1-17, 2024.

J. H. Brown and B. Martin, “How fast is fast enough? choosing between
xenomai and linux for real-time applications,” in proc. of the 12th Real-
Time Linux Workshop (RTLWS’12), 2010, pp. 1-17.

J. Pavur and I. Martinovic, “Building a launchpad for satellite cyber-
security research: lessons from 60 years of spaceflight,” Journal of
Cybersecurity, vol. 8, no. 1, p. tyac008, 2022.

D. Helms, Q. Dariol, K. Griittner, B. R. Perjikolaei, L. Einhaus, and
S. Gregor, “Fpga based in-memory ai computing,” in ONERA Workshop
on Advances in Artificial Intelligence for Aerospace Engineering, Mai
2023. [Online]. Available: https://elib.dlr.de/194973/

J. Sommer, T. Gutierrez Rojo, A. Lund, H. I. E. Abdelmaksoud,
and D. Liidtke, “Viability of rust for avionics software development
— current status and way forward,” in 7th Workshop on Avionics
Systems and Software Engineering, ser. SE 2025 - Companion
Proceedings.  Gesellschaft fiir Informatik, Februar 2025. [Online].
Available: https://elib.dlr.de/212971/

E. T. Stoneking, “42 — Spacecraft Simulation,” Accessed: September
14, 2025. [Online]. Available: https://github.com/ericstoneking/42
NASA, “NASA Operational Simulator for Small Satellites (NOS3),”
Accessed: September 14, 2025. [Online]. Available: https://github.com/
nasa/nos3


https://elib.dlr.de/196642/
https://elib.dlr.de/194973/
https://elib.dlr.de/212971/
https://github.com/ericstoneking/42
https://github.com/nasa/nos3
https://github.com/nasa/nos3
https://elib.dlr.de/196642/
https://elib.dlr.de/194973/
https://elib.dlr.de/212971/

	Introduction
	Related Work
	ScOSA
	Use Cases and Requirements
	Preliminary Design of the Stellar Apps Software Platform
	Space Segment
	Ground Interface
	Application Development

	Prototype
	Conclusions and Outlook
	References



