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Abstract. This study investigates the dynamics of granular particles agitated by magnetic shaking within a drop
tower setup. We analyze the experimental images showing approximately 450 spherical magnetic particles with
a diameter of 1.6 mm in a 60 mm spherical sample cell. We find that the magnetic excitation leads to a uniform
spatial distribution of both particle positions and velocities. This demonstrates the effectiveness of magnetic
shaking as a method for controlling granular systems in microgravity environments, with potential applications

in material science and space technology.

1 Introduction

One of the fundamental assumptions of the kinetic theory
of granular gases is that particles exhibit a homogeneous
spatial distribution, both in terms of their positions and ve-
locities. To experimentally realize this condition, two key
requirements must be met: gravity must be eliminated,
and an excitation mechanism must be employed to uni-
formly distribute the particles in space. The former can be
achieved using microgravity platforms, such as drop tow-
ers, parabolic flights, and sounding rockets [1-3]. For the
excitation, shaking of the sample cell or cell boundaries
has been used in most of the granular gas experiments in
micro-gravity [1, 2]. However it has been shown that such
shaking mechanisms may bring extreme inhomogeneity,
as particles tend to cluster at the centre following collisions
whereas near the boundaries particles have higher kinetic
energy due to direct heating from shaken walls [1, 4]. In
contrast, we used particles made from ferromagnetic ma-
terial and used electromagnets to shake them once zero
gravity is achieved. Through DEM simulations, we previ-
ously demonstrated how the strength of the magnetic field,
the shape of the sample cell, and the influence of inter-
particle dipole interactions contribute to achieving homo-
geneity [5, 6]. Following the conclusions from DEM sim-
ulations, experiments were repeated in a Drop-tower cam-
paign in Bremen, operated by the Center of Applied Space
Technology and Micro-gravity (ZARM) [7] of the Univer-
sity of Bremen. In this paper, we examine an experiment
from the campaign where metallic particles are levitated in
a spherical sample cell. These particles are driven into mo-
tion by eight surrounding magnets and subsequently cool
down due to energy dissipation from collisions with one
another and the sample cell boundary after the magnets
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are turned off. We utilize a Convolutional Neural Network
(CNN) with a U-Net architecture, trained with our experi-
mental data, to detect the positions of particles in the im-
ages. The detected particle positions are then used in our
analysis to demonstrate the spatial homogeneity achieved
in the experiment.

2 Experiment setup

The experiment utilizes a spherical sample cell made of
polymethyl methacrylate (PMMA) with a diameter of 60
mm, containing nearly 450 spherical Mu-Metal particles,
each with a diameter of 1.6 mm. The sample cell is
mounted between 8§ electromagnets placed at the corners
of a cube, as illustrated in Fig. 1, which depicts the experi-
mental setup. To achieve homogeneous mixing of the par-
ticles during the Drop Tower experiment, a magnetic shak-
ing protocol is employed. The shaking protocol consists of
a 20 ms pulse of DC voltage applied to a single pair of di-
ametrically opposite magnets, followed by an 80 ms relax-
ation period. This sequence is repeated for each of the four
pairs of magnets, with a total cycle time of 400 ms. The
low coercivity of the Mu-Metal particles ensures that long-
range interactions between particles are negligible during
the cooling phase, while during the heating phase, these
interactions contribute to a more isotropic distribution of
particles, as demonstrated in our previous work[5, 6]. The
ZARM Drop tower provides a reduced gravity condition
of 107%g (g = 9.8m/s?) for approximately 9.4 seconds.
The shaking protocol is applied during the first half of
the microgravity phase, and the particles are allowed to
evolve freely during the second half. The particle dynam-
ics is captured with a CMOS camera EoSens 4CXP from
Mikrotron GmbH at a framerate of 165 fps.
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Figure 1: (a) Sample cell setup with 8 magnets, The mag-
nets are arranged in a cubic configuration to provide a uni-
form magnetic field, and agitation is performed contact-
less from the outside without moving parts. (b) Temporal
variation of average velocity, categorized into four phases.
Cooling starts in the second half of the experiment, when
the average velocity has stabilized at a constant value, with
negligible fluctuations.

3 Data analysis

Images are recorded during the whole run of the the ex-
periment: from the initial heating phase (Fig.2a) to the fi-
nal cooling phase (Fig.2b). Upon examining the images,
we encounter a significant challenge in analyzing them.
The magnet arrangements in our setup limit our ability
to achieve optimal lighting conditions. Additionally, the
metallic particles used in the experiment can reflect light,
making it challenging to accurately segment the images.
Close inspection of the images shows that the reflection of
light from the particle surfaces makes it difficult to distin-
guish between the particles and the background. Initial
attempts with usual image processing methods, such as
binarization, erosion and dilation, proved insufficient for
accurately segmenting the particles from the background.
However, by leveraging the capabilities of deep learning,
we were able to significantly improve our results. Inspired
by a recent study that successfully applied U-Net to parti-
cle identification in granular experiments[8], we adopted a
U-Net model implemented using Tensorflow [9] libraries
for our image segmentation task. The U-Net architecture,
is a convolutional neural network (CNN) initially devel-
oped for medical image segmentation [10].

We train the U-Net model from scratch using a dataset
of 20 experimental images, selected at different points in
time, and their corresponding binary ground truth images,
which classify pixels as either particles or background. To
facilitate efficient processing and reduce memory require-
ments, each image is divided into smaller tile images, re-
sulting in approximately 10,000 training images with a di-
mension of 128 x 128 pixels. Our model is trained using
the Adam optimizer, with a sigmoid activation function at
the output layer, and we use Binary Cross-Entropy as loss
function.

An optimal model is chosen by fine-tuning hyperpa-
rameters to get the best value for recall and precision, and
is used to make predictions on raw images. Subsequently,

the output images from the network are further processed
to get particle coordinates in each frame (Fig.2c). Once
we have the particle coordinates in each frame, we need
to match the particle positions across frames to track their
movement. While U-Net facilitates the extraction of par-
ticle coordinates, particle tracking through the frames re-
mains a challenging task due to the frequent overlap of
particles in the images. However, here we employ a sim-
plified approach to estimate particle velocities in individ-
ual frames. We calculate the instantaneous velocity (2D
projection) of particles by comparing subsequent frames
and assigning each particle’s next position as their nearest
neighbor in the subsequent frame. This is done by cre-
ating a list of possible mappings between frames, select-
ing closest pairs within a threshold distance, and remov-
ing duplicate assignments. However, using a low thresh-
old cutoff underestimates particle movements, as it may
not capture the true motion of the particles. In contrast,
a threshold cutoff of approximately 0.5 times the particle
diameter allows us to map local velocities for over 97%
of particles, and increasing this value does not improve
the results. Fig. 1b shows average velocity data calculated
through this method over the whole duration of the exper-
iment.

Figure 2: The progression from the initial magnetic heat-
ing phase (a) to the cooling phase (b) reveals a more uni-
form distribution of particles over time. The application
of U-Net for particle detection yields accurate particle po-
sitions (red dots) (c). Furthermore, tracking the particles
into the next frame (green dots) and analyzing the corre-
sponding displacement vectors (d)(scaled up 5 times for
visibility), reveals a random, isotropic distribution of ve-
locity directions.



EPJ Web of Conferences 340, 03007 (2025)
Powders & Grains 2025

https://doi.org/10.1051/epjcont/202534003007

4 Results

Previous DEM simulation results from our group have
demonstrated the effectiveness of the 8-magnet setup as a
thermostat in achieving homogeneous particle distribution
[5, 6]. These findings are corroborated by the experimental
results presented here. We present the results of our image
analysis, including the spatial distribution of particle posi-
tions and the mean velocity profiles in different regions of
the sample cell.

4.1 Distribution of particle positions

The particle number density distribution exhibits distinct
differences between the cooling and heating phases. Dur-
ing the heating phase, as illustrated in Fig.3a, a distinct
4-fold symmetric pattern, characterized by increased par-
ticle densities near the sample cell corners appears. This
pattern is consistent with the expected response of parti-
cles to the applied magnetic forces. These high-density
regions disappear during cooling, as shown in Fig.3b. The
remaining subtle inhomogeneities can be identified as in-
elastic clustering, which is expected during the cooling
process. The slight decrease in density in the outermost
layer is due to the presence of the cell boundary which
creates an excluded volume. The data shown are normal-
ized considering the varying depth of the sample cell at
different positions, and is averaged over a time duration of
3 seconds, corresponding to 495 image frames.

This outcome differs from boundary-driven shaking,
where clustering often occurs at the sample cell center [1].
Although short-range clustered regions are present during
cooling, the short time frame of our study does not allow
for the formation of large-scale clusters.

4.2 Distribution of particle velocities

The kinetic theory assumes that particles exhibit homo-
geneity in both their positions and velocities, meaning
that velocities should be uniformly distributed across the
space. Fig.4 shows the velocity magnitudes averaged over
a l-second duration for particles reaching each polar sec-
tor during heating and cooling. Data shown are taken from
the phase II of heating and cooling (as shown in Fig. 1b),
where minimal fluctuation is observed for the mean veloc-
ity magnitude. The mean velocity magnitude decays by
approximately 2 mm/s during this time, which is less than
the fluctuations observed during heating, justifying our se-
lection of the time range for obtaining sufficient data for
the distribution. From the figure, it can be easily observed
that the velocities are indeed uniformly distributed in both
the heating and cooling phases. Which means that the in-
termittent shaking mechanism we employed does not lead
to an accumulation of particles with high velocities close
to the magnets.

This result can be motivated by the actual driving pro-
tocol: the heating phase with a pair of magnets turned
on extends only 20 ms, and although particles are pulled
to the adjacent volume during this phase, their collisions
within this region sufficiently mix the velocities during the
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Figure 3: The number density, normalized by depth of
the sphere, exhibits distinct differences between the two
phases: (a) Averaged during the last 3 seconds of the heat-
ing phase, density fluctuations with fourfold symmetry
emerge, whose positions reflect the symmetry of the driv-
ing magnet arrangement. (b) In contrast, averaged dur-
ing the last 3 seconds of cooling, the fourfold symmetry
observed in the heating phase disappears, and new, less
pronounced inhomogeneities arise, likely due to inelastic
clustering.

subsequent 80 ms relaxation phase, resulting in a uniform
velocity distribution.

5 Conclusion

We have successfully demonstrated that intermittent shak-
ing of magnetic granular particles using our 8-magnet
setup promotes a homogeneous distribution, which is
achieved through the interplay of magnet switching and
random particle collisions during the turn-off phase, where
the switching of magnets leads to long-term isotropy and
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Figure 4: Magnitude of particle velocities averaged over 1 second duration, showing a uniform distribution across different
regions of the sample cell, which is divided into equal area polar sectors. Unlike the position distribution, the velocity
distribution lacks concentrated regions, indicating that the intermittent shaking mechanism effectively suppresses the
formation of velocity gradients. The uniformity of the velocity distribution is evident in both the heating (a) and cooling
(b) phases, suggesting that the system has achieved a high degree of spatial uniformity in its velocity field.

the collisions absorb excess kinetic energy and randomize
motion. We believe that our ability to create a homoge-
neous mixture of granular particles opens up new opportu-
nities for experimental studies of granular gas dynamics,
particularly in the context of freely cooling systems. With
a well-controlled and uniform initial state, it may be pos-
sible to observe the emergence of complex structures and
patterns in granular gas, as observed in simulations.
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