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Abstract—This study introduces an innovative operational
Bayesian neural network framework for high-precision joint
retrieval of aerosol optical depth (AOD) and layer height
(ALH) with physically-consistent uncertainty decomposition from
TROPOMI hyperspectral measurements. Unlike conventional
approaches, three different full-physics Bayesian neural network
architectures (implemented via Bayes-by-Backprop, Dropout,
and Batch Norm techniques) are developed to simultaneously
estimate target parameters and their heteroscedastic aleatoric
uncertainties while preserving radiative transfer constraints.
Epistemic uncertainties are quantified via Monte Carlo sampling
of stochastic forward propagation, enabling systematic separation
of data-driven vs. model-driven uncertainties. A comprehen-
sive validation demonstrates: (1) Synthetic experiments show
epistemic uncertainties strongly correlate with retrieval errors,
particularly for observing geometries outside the training data
distribution, outperforming aleatoric estimates; (2) Analyses
using TROPOMI measurements demonstrate that the frame-
work delivers comparable accuracy to operational products
while providing unique uncertainty diagnostics. The framework’s
computational efficiency combined with its probabilistic outputs
establishes a new paradigm for characterizing aerosol properties
from satellite measurements, particularly valuable for climate
and air quality applications.

Index Terms—Aerosol retrieval, Uncertainty quantification,
Bayesian Neural Network, TROPOMI

I. INTRODUCTION

Aerosols significantly influence Earth’s climate by affecting
solar radiation and interacting with clouds [1]-[3]. They also
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degrade air quality by reducing visibility and contributing to
respiratory issues [4], [S]. Accurate quantification of aerosol
properties, such as optical depth and vertical distribution, is
essential for understanding and modeling their effects on the
climate system and air quality.

Satellite remote sensing techniques harness data from sen-
sors on both polar-orbiting and geostationary satellites to pro-
vide a comprehensive view of aerosol properties on global and
regional scales. These techniques, often leveraging information
across various spectral bands such as visible, near-infrared, and
shortwave infrared, enable detailed analysis of atmospheric
particles. The conventional retrieval algorithm are grounded
in sophisticated radiative transfer models and non-linear op-
timization methods, built upon rigorous physical and math-
ematical principles [6], [7]. However, the accurate retrieval
of aerosol parameters remains a challenging task due to the
inherent complexities, such as surface properties, instrument
limitations and atmospheric variability. Robust uncertainty
quantification methods appears to be essential to assess the
reliability and limitations of aerosol retrievals and further to
support processes related to application of satellite aerosol
products. Moreover, conventional retrieval algorithms require
multiple radiative transfer calculations, especially when pro-
cessing hyperspectral remote sensing data.

Machine learning enables algorithms to learn patterns from
data and make prediction/decision without explicit program-
ming. Among its techniques, neural networks stand out for
their ability to extract information from large data, making
them highly effective for dealing with satellite retrievals.
Neural networks have been widely applied in remote sensing
for tasks such as classification and object detection, and
their use has expanded to atmospheric remote sensing due
to their computational strength and advanced data mining in
capabilities.

Neural networks in this domain are typically employed
through two main approaches: data-driven and physics-based.
Data-driven neural networks integrate data from diverse
datasets from satellite sensors, ground-based instruments, and
climate models to maximize data mining potential [8]-[13].
Physics-based neural networks based on radiative transfer
calculations and inverse techniques, focus on deriving specific
information from satellite spectra. These neural networks have
been trained either to model the forward process [14]-[21] or
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to learn the inverse mapping [22]-[36].

The former of these requires the use of supplementary
nonlinear optimization techniques, such as Tikhonov regular-
ization or Bayesian inference theory [37], [38], to stabilize the
solution-finding process and obtain extra meaningful results.
These techniques, while robust, can be computationally inten-
sive and may require considerate tuning to achieve optimal
results. On the other hand, the networks which focuses on
learning the direct mapping from observations to desired
outputs, can be inherently faster. This method delivers point
estimates almost instantaneously, often within milliseconds,
making it highly suitable for real-time applications. However,
the speed comes at the potential cost of accuracy and inter-
pretability.

Neural networks have recently gained widespread applica-
tion in the operational processing of satellite remote sensing
data, demonstrating their ability to handle complex, high-
dimensional inputs. Despite their success, conventional neural
networks act as “black boxes” and are often deterministic,
making it challenging to conduct a theoretical uncertainty
analysis. Uncertainty quantification is critical as it not only
helps in identifying potential error sources but also enhances
confidence in the model’s predictions by providing an assess-
ment of their reliability.

There are two main types of uncertainty that should be
addressed: aleatoric and epistemic uncertainties. Aleatoric
uncertainty refers to the intrinsic variability or noise present
in the data, which cannot be reduced, no matter how much
additional data is collected. This type of uncertainty arises
from factors like measurement errors or natural variability in
the system being observed. In contrast, epistemic uncertainty
associates with the limitations of the model itself—specifically,
the uncertainty stemming from the lack of knowledge or
assumptions during the model development. Unlike aleatoric,
epistemic uncertainty can potentially be reduced by incorpo-
rating additional information or refining the model structure.
Disentangling aleatoric and epistemic uncertainty poses a
significant challenge, as these two sources of uncertainty often
interact and influence each other.

Bayesian theory provides a probabilistic framework for
inversion, allowing both the estimation of the parameters of
interest and the computation of their posterior probability
distributions. The stochastic nature of Bayesian methods in-
troduces variability into the model, which enables the as-
sessment of epistemic uncertainty—uncertainty due to limited
knowledge or data. Consequently, the model can distinguish
between epistemic uncertainty and aleatoric uncertainty, which
arises from inherent randomness in the data. By incorporating
Bayesian probability theory into neural networks, it becomes
possible to represent and quantify uncertainties in both the
model and the data simultaneously. The use of the Dropout or
Batch Norm method in neural networks is an approximation
of Bayesian NNs (BNNs).

This study proposes a novel hybrid framework that syn-
ergizes radiative transfer calculations with Bayesian neural
networks to carry out aerosol properties retrieval with inherent
uncertainty quantification. To overcome the limitations of con-
ventional deterministic approaches, we have developed three

distinct full-physics Bayesian neural network architectures
(implemented through Bayesian by Backprop, Dropout, and
Batch Norm techniques) to retrieve aerosol optical depth and
aerosol layer height from TROPOMI hyperspectral measure-
ments. Section II provides a theoretical description of the
employed Bayesian neural networks. Section III describes the
procedure of model training, whereas Sections IV and V dis-
cuss the retrieval performance based on synthetic and real data.
Through comprehensive validation using both synthetic and
real satellite observations, our work provides an operational-
ready retrieval framework that maintains physical interpretabil-
ity while delivering probabilistic uncertainty estimates critical
for climate modeling and air quality monitoring applications.

II. BAYESIAN NEURAL NETWORK

A. Inverse-operator neural network

The inverse-operator retrieval algorithm can be expressed
by the following equation:

y:f(x,w)+6y, (l)

where y represents the parameters of interest, f denotes the
neural network with weight parameters w, and x is the input,
including both the forward model parameters and measured
radiance. The term Jy represents the random error in Yy,
assumed to be Gaussian noise with zero mean and covariance
Cg, expressed as dy ~ /V(D C‘Y), and therefore we have
pylx.w) = JV(f( A, Neverthe]e%% if the actual
error in layer height shows notlceable skewness, the Gaussian
assumption may introduce bias in the retrieved mean and lead
to underestimated uncertainties. Such effects can be diagnosed
through residual analysis (e.g., skewness statistics or Q-Q
plots), and more flexible error models such as skew-normal
distributions may be considered in future work.

Given a dataset D = {(x™, y(™")}_, | the neural network
is trained by finding the parameter set w that maximizes
the posterior probability p(w|D?). According to the Bayesian
theorem, p(w|D) is computed as:

f% o p(Dlw)p(w). @

The corresponding loss function can be expressed as:

E(w) = Ep(w) + Er(w) x — Inp(w|D), 3)

plw|D) =

where Ly is the contribution from the likelihood p(D|w):

N
% Z (n) _ n)sw)]T[Cg’(x(n)‘wn,
=l )
[y(n,) - f(x(n. Jw)]
—Inp(Dw),

and Er represents the contribution of the prior p(w):
1
Er(w) = §wTC;1w o Inp(w), (5)

where p(w) is assumed to be normally distributed: p(w) =
4(0,Cy).
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The optimization of the model parameters w are obtained
as:

W =wpap = argmaxInp(w|D) = argmin E(w) (6)
w w

The point estimate of output is the modeled value calculated
by ¥ = f(x,w).

B. Uncertainty

Bayesian Neural Networks (BNNs) aim to represent uncer-
tainty by calculating the posterior probability distribution of
the output, p(y|x, D), rather than simply providing single-
point estimates, where p(y|x, D) is the posterior probability
distribution of the output y given the input x and the dataset
D, computed as:

p(ylx, D) = / p(y|x,w)p(w|D)dw. )

The variance or standard deviation of the output y within this
distribution is used to quantify the uncertainty in predictions.

The covariance Cov(y) of the output y, given the dataset D
and input x, is computed and then approximated as follows:

Cov(y) = [nyp(ylx, D)dy — E(y)E(y)"
- / j vy ply %, w)dyp(w|D)dw — E(y)E(y)"

— (€ + txw)tx0)p(w| D)o ~ B(y)E(y)
(8)
where Cg is the covariance of the noise in y, representing
aleatoric uncertainty, or the coherent noise in the output and
the rest terms represent epistemic uncertainty. However, the
calculation of p(w|D) is an intractable problem. By using a
Monte Carlo sampling method to repeatedly sample w from
the posterior distribution p(w|D), BNNs can approximate this
integration and therefore calculate this covariance.
The expected value E(y) of the output y given an input x
and Dataset D is computed by integrating over the posterior
distribution of the weights:

B(y) — [ yp(yix. D)dy
= ffyp(YIX:w)dyp(w\D)fﬁu Q)
:ff(x,w)p(wlD)(ﬁu.

The BNNs generate weights for 7" times from the posterior
distribution p(w|D) using the Monte Carlo sampling, this
integration can be approximated by averaging the outputs over
T samples of the network’s weights:

T
il

E(y) ~ 7 gf(x,wf,), (10)

where f(x.w;) is the output of the network for the t,

sample of the weights. p(y|x,w) follows a normal distribution

plylx,w) = A (f(x,w), Cy). The covariance Cov(y) of the

output y, given the dataset I and input x, is computed and
then approximated as follows:

T
Covly) = 7 3 ((C9), + Elxw)f(xw)T) -

t=1

1 Tt !
(T Zf(x,wt)) (T Zf(x,wt))

(11)

t=1

where (Cf,)i represents aleatoric uncertainty for the
T 74

Xl (Frwofxw)”) -

T
(% ST f(x,w) (% Zf_lf(x,w,i)) represents  the
epistemic uncertainty, calculated as the covariance of the
outputs over 7" samples.

teh sample  while

1) Aleatoric uncertainty: To estimate aleatoric uncertainty,
the covariance matrix of the output y is assumed to be a
diagonal matrix with heteroscedastic noise. The heteroscedas-
tic covariance matrix can be expressed as: CJ(x(" w) =
diag[a'jn) ]1}\:”1 where Ny is the dimension of the output. The
term Ep(w) in the loss function is calculated as:

2

N Ny (n) (n)

Yi K m)?
>3 ( () +nle)
n= 7

1j=1 g

ED(L:J) =

Do =

(12)
where 1i; and o;(j = 1,2,..., N,)) are the mean and variance
in the estimates, modeled by the neural network, with the
variance representing the heteroscedastic aleatoric uncertainty.
This means that [i{™, ..., 7, 0™, ..., ('] are 2N units in
the output layer of the neural network.

2) Epistemic uncertainty: Epistemic uncertainty, or model
uncertainty, arises from an imperfect model or insufficient
data. BNNs allows them to estimate epistemic uncertainty in
predictions through stochastic sampling of the weights from
the posterior probability p(w|D). Therefore determination of
p(w|D) is the primary problem that needs to be solved.

Since p(w|D) is intractable, various approximation methods
such as Markov Chain Monte Carlo (MCMC), Laplace ap-
proximation, and Variational Inference (VI) can be employed.
MCMC generates samples directly from the posterior distri-
bution, providing accurate but computationally intensive esti-
mates. The Laplace method approximates the distribution as a
second-order Taylor expansion around w employing a Hessian
matrix. Computing the full Hessian matrix is computationally
expensive, especially for deep neural network models.

The Variational Inference method uses the Kullback-Leibler
(KL) divergence to find an approximated distribution gg(w)
to approach p(w|D), where @ represents the variational pa-
rameters, which are adjusted to minimize the gap between
the approximate the target distributions. The KL divergence
quantifies the difference between the approximate and the
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target probability densities, and is computed as:

KL @) p(w1D) = [ tolw)n ‘ffjrg)

p(Dlw)p(w)
- [ sy ey

+/qe(w) Inp(D)dw

D
=— /qg(w)hl @) ‘w)p(w)rlw + lnp(
: a0 (w)
p(Dlw)p(w)
—Ew) It ———————— + Inp(D
1o (@) @) »(D)
(13)
Since KL divergence is always positive, we have lnp(D) >
Epwyln pDw)p@) " The term Efpw)In 2 pDw)p@) s cqlled

the EvidencgeLower Bound (ELBO), reple:,qgnting the lower
bound of the log model evidence ln p(D).

The best approximation gg(w) is achieved when the KL
divergence is minimized. Since p(D) is independent on w,
minimizing KL divergence is equivalent to minimizing the
negative ELBO:

D
drgmln—hLBO = (ngmm By In p(Dw)p(w)

gow) o

(14)

Given p(w|D) = gg(w), the weights are sampled from gg (w)
and the epistemic uncertainty is estimated by calculating the
variance of the modeled output (as shown in Equation (11)).

C. Methods

1) Bayes-by-Backprop: Bayes-by-Backprop is a variational
inference technique for training BNNs. The weight parameters
are treated as random variables with a posterior probability
distribution. The aim is to define a simpler distribution gg(w)
to approximate the posterior distribution p(w|D) and use a
reparameterization trick to transfer the each weight parameters
to deterministic variational parameters and a random variable.
The variational distribution qa( w) is typically specified as a
normal distribution .4 (g, @2 ). The goal is to learn the varia-
tional parameters 8 = (p,,, Ju,) , which define the approximate
posterior distribution over the weight parameters. To ensure
that ¢, > 0 during training, the variational parameters to be
learned are actually € = (j,,, p,) with o, = exp(p,/2).

To optimize the Evidence Lower Bound (ELBO) efficiently,
a reparameterization trick is used to transform the sampling
process as:

W = Yy + Ty 0 €y, €, ~ A(0,1), (15)

where € is sampled from the standard normal distribution and
o denotes the element-wise product.

During training, we found that if we sample and keep the
sampling for each epoch, the loss becomes highly unstable
between consecutive epochs. The weight parameters w consist
of weights and biases. Given an input matrix X, € R(V*N:)
to layer [ and weight matrix W; € RMx*N0) | calculated as
[Uw], + [Ow], © [éw];» and bias b; € RUXND | calculated as
[tb], + [ob], © [ep], for layer I, where N is the number of the

D)

samples, and N, is the number of units in layer [, the output
matrix Y, is calculated as:

Y, = Xi\Wi+b, = Xi([pw], to

wliolew];)+[pb], +[ob],olen);

(16)

where [ey], € RM%*M) and [ep], € RU*M) have the same
dimension as the weight and bias respectively.

To address this instability, we impose the sampling and vary

€ for each input. The output y; is then calculated as:
Y, = Xifpw], + o], + (X o [ew]; ) (ow),; + [€b];[ob];: (17)

where [e,,], € RV XM and [ep], € RWV*D),
The cost function is the negative ELBO:

i 2Op)
g0 (w)
—Egew) Inp(Dlw) + KL(gs(w)|[p(w)).
The first part p(D)w) can be approximated by sampling
weights w'®) for S times from the posterior distribution
qo(w) = A (1,0, ) and calculating as:

Z In p(Dw'*),

where Inp(Dw®)) is the log-likelihood term calculated as
Ep(w')) using Equation (12). Assuming that the prior distri-
bution of w follow the standard normal distribution .4°(0, 1),
the second part can be calculated analytically to a simpler
form:
KL(ge

—ELBO = —

USW

(18)

Eqgw) Inp(Djw) = (19)

(w)l\p(w) KL( N (I—"w Ow H A/

1)
w
%Z(”w] +0'w] —Info ]f)’ o

Jj=1

where W is the dimensionality of w, and the KL term can
now be computed directly without requiring sampling.

2) Dropout: Dropout randomly sets weights to zero with
probability 1 — p, while keeping them with probability p. We
define the input layer as layer O and the output layer as layer L,
with the number of hidden layers being L — 1. The weights w
at layer [ (1 = 1,2, ..., L) are represented as the weight matrix
W, = [wg|n’, and bias by, for a neural network with Z — 1
hidden layers and N; units in layer [. The dropout process is
expressed as:

h, =

(xi W) ozg + by, (21)

where h; is the pre-active input and each element of z; follows
a Bernoulli distribution Bernoulli(p;), with 1—p, representing
the zero-out rate in layer /. In this experiment, dropout is
applied to the units in layer 2 through L — 1 with the same
zero-out rate p, such that po = ... =pp_1=p, p1r =pr = L.

Adding a regularization term, the cost function of Dropout
can be expressed as:

N
1 i i i
E(w) —ﬁzhl;ﬂ(y”lx(),w”)

L N (22)

+ZZAk;|\sz\IQ +Z)\l||bl||2=

=1 k=1
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where w(? represents a sampled set of weights obtained by
applying a Dropout mask to the weights w for each sample
and \j; represents the weight decay.

This stochastic mechanism allows dropout to be viewed as
an approximate to variational inference in Bayesian Neural
Networks (BNNs). By treating the estimated weight parame-
ters as variational parameters and reparameterizing the weights
as samples from the product of Bernoulli and normal dis-
tributions, the —ELBO of Dropout can be expressed in a
form similar to Equation (22). Therefore, Dropout could be
viewed as an approximation of a Bayesian neural network.
The detailed proof can be found in [39].

3) Batch Norm: With input x; into layer [, Batch Norm
(BN) applies a normalization over the mini-batch to the pre-
activation values h; before the activation function. The pre-
activation input to the layer is defined as h; = x; W;, where
hy = [k}, h?, ..., h;""], and N is the total number of the units
in layer [.

During training, for a given unit » and a mini-batch dataset
B = {(x(™) y(m)}M_| the mini-batch mean pf and vari-
ance (a}_é;}g are calculated as follows:

1M M
A e T u uy2 A u A—— 2
BB = 37 Z B, (08)" = M Z (Wlm — uB)™ (23)

m=1 m=1

During training, the moving mean ji,,;., and moving vari-

2
ance (0, oving ) are updated for each forward pass:
u _ A u u
”moving = (1 - I\IOIDeIltIHII) x F‘moviug + HB»
uw 2. 7 ’ uw 2 TRV
(Jmoving) - (1 o I\-IUH]GHLU,HI) x (Umoving) & (UB) 1

24)
where Momentum = 0.1 is the averaging factor. The moving
mean and variance are used for the inference stage to calculate
the normalized input, while the statistics pp and (oﬁ)2 are
used to calculate the normalized input Iﬂz}f_,,,, for each mini-
batch example: '

5 hy o — b
= ——— (25)

ams 2 ’
\ (of)" +e

where € is a small constant added to avoid division by zero.
A scale parameter ;' and a shift parameter 3;' , which
are learned along with the weight matrix W in the neural
network, are applied to the normalized input to allow for
identity transformations. The output of the BN layer is:

y.;‘:m = F)luh}l;m. + ﬁlu (26)

The optimization of BN for a mini-batch can be expressed
as the minimization of the loss function:

M L
1 2 : m m m E

m=1 i=1

27
where @, is the learnable parameters in layer [, including W,
{7}"},’:;1 and {63‘}2’;1 and w is the stochastic parameters
comprising {u5; ™'} | and {o™"}F . The second term can
be treated as a weight decay regularization. Since the weights
for each sample in the mini-batch are different, the weights
can be viewed as being sampled for each individual sample.

To illustrate why optimization for BN can be approximated
as variational approximation, we first represent the —ELBO,
which is aimed to be minimized for the mini-batch, as follows:

N M
—ELBO = . 1 (m) (‘m).w(m)
7 2 ™)
+ KL(gp (w)]|p(w))-

Assume pf; and op follow a normal distribution centered
around the population value pf . = %Z,’L] hj', and
G, = l\,Zf,V:l (¥, — pitoe)” respectively. With large
batch A/ and dataset size IV, and with j* = 1 and g} = 1,
the optimization of the derivative of F(w) and — ELBQO with
respect to w could be equivalent, provided that the prior
distribution are set as p(py) = 47(0.00) and p(ef) =
A7(0, ﬁ) The detailed prove can be found in [40].

ITI. TRAINING

The training dataset is generated by sampling the for-
ward model parameters [, H, 0y, 0, Ay, Hy, As] using a smart
technique based on Halton sequences [41], as described in
[42]. The Halton sequence is used because it generates low-
discrepancy points over the parameter space. Compared with
simple random sampling, it reduces clustering and gaps,
resulting in faster convergence of network optimization and
more representative coverage of the input—output space in the
training dataset. The variation intervals for these parameters
are provided in Table 1. The neural networks are trained with
the moderately absorbing aerosol model from the MODIS DT
algorithm. The aerosol layer is modeled as homogeneous, with
a constant thickness of 0.5 km, distributed evenly between
H —0.25 km to H + 0.25 km.

TABLE 1
INTERVALS OF VARIATION OF THE OPTICAL AND GEOMETRICAL
PARAMETERS FOR GENERATING THE DATA SET.

Parameter Description Interval of variation
T Aerosol Optical Depth 0.05 -5
H Aerosol Layer Height 0.1 —15.75km
By Solar Zenith Angle 0—75°
a Viewing Zenith Angle 0—70°
Ay Relative Azimuth Angle 0 — 180°
H, Surface Height 0—2.61km
A Surface Albedo 0—0.4

The input to the BNNs, denoted as =z, consists of the
biased radiances on a measurement wavelength grid, along
with the forward model parameters. A heteroscedastic aleatoric
covariance is incorporated into the output of the BNNs. The
maximum posterior estimate of the weights is given by w =
arg min,, E(w), where the loss function E(w) calculated using
Equations (18), (22) and (27) for Bayes-by-Backprop, Dropout
and Batch Norm, respectively. The output vector is defined as
y = [r, H|T, where 7 is the aerosol optical depth and H is
the aerosol layer height. The output layer of neural networks
produces estimates of the aerosol optical depth p., aerosol
layer height py, and parameters that representing their as-
sociated heteroscedastic aleatoric uncertainties (o,, o). This
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is based on the assumptions that p(7|w,z) = A (p.,0?)
and p(H|w,z) = A (1, 0%). To ensure that the uncertainty
values are positive, the actual output terms representing the
uncertainty are denoted as p, and pgy, with the following
relations: 0, = exp(%5),on = exp(Z). The input and the
complete output information are as follows:

[I(O5) + G o

Input = x = -
[H(h 9-. AiP, Hsa A%]

(29)

+— Output = (i, 11, pr. p]”

Here 4, is a Gaussian noise added to the input radi-
ances. Ny = 131 is the total number of the measurement
wavelengths in the grid and » = 1,2,...,448 denotes the
index of the swath row. The input vector has a dimension
of Ny = Npn + 5 and the output has a dimension of
AN, =2x2=4.

To handle a set of measurement wavelength grids and
reduce the dataset size, a jitter approach is employed to
randomly select a wavelength grid for forward simulation.
Detailed description of the method can be found in [43].
The training dataset consists of 404901 samples, 10% of
which are used for validation to optimize the architecture of
the neural network. In the validation stage, holdout cross-
validation is used alongside a grid search. The grid search ex-
plores different combinations of hyperparameters, specifically
the number of hidden layers, which is selected from {2, 3, 4},
and the number of units per layer, which is selected from
{20, 40, 60, 80, 100, 120, 140, 160, 180,200}. A linear rectifi-
cation activation function is employed; mini-batch gradient
descent with Adaptive Moment Estimation (ADAM) [44] is
utilized, and a total of 3,000 epochs is used for training these
neural networks.
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Fig. 1. Mean squared error for the validation dataset across different numbers
of neurons and layers using the Bayes-by-Backprop method.
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Fig. 2. Mean squared error for the validation dataset across different p, and
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These neural network are evaluated by using the quality
assessment parameter, i.e. the mean squared error of the
output y. Figure 1 illustrates the mean squared errors obtained
using the Bayes-by-Backprop method with these different
combinations. A more complex neural network structure, with
additional layers and more units per layer, typically exhibits
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better performance. The neural network comprising 4 hidden
layers and 160 units in each layer produces the lowest mean
squared error. The probability 1 — p of zeroing out weights
has a significant effect on model performance. Therefore, p,
ranging from {0.9,0.95,0.98,1} is also included the grid
search process. The neural network with p = 1 represents
a standard neural network. The evaluation of these neural
networks is shown in Fig. 2. Implementing Dropout in the
neural network can reduces errors in the retrieval; however,
model performance will decrease with a high zeroing-out
probability. The highest performance is achieved by the neural
network using the Dropout method with p = 0.98, 4 hidden
layers and 140 units per layer. The mean squared error for
neural networks using the Batch Norm method is shown in
Fig. 3. A mini-batch size of 1000 is used. With four hidden
layers and 180 units per layer, the network produces the most
plausible retrievals. The optimal architectures differ slightly
among the three methods. A consistent trend is observed: as
the number of hidden layers and neurons per layer increases,
the loss decreases, suggesting that more complex architectures
generally yield better performance. Across all methods, four
hidden layers provide the best results. However, when the
number of neurons per layer exceeds 140, the improvement in
loss becomes marginal. To balance computational efficiency
and model generalization, and to ensure a fair comparison
among the three methods by isolating the effect of network
architecture, we use the entire dataset and adopt the same
architecture, consisting of four hidden layers with 140 units
per layer, to train all three Bayesian neural networks.

IV. RETRIEVAL USING SYNTHETIC DATA

To analyze both epistemic and aleatoric uncertainty, we gen-
erate testing datasets and test them with the three BNNs. As
described in Section II-B and assuming a diagonal covariance
matrix for the output y, the uncertainty are represented by the
variance of the output. For each set of input, the calculation
is conducted for T = 100 times. Aleatoric uncertainties are
assumed to be heteroscedastic variance and modeled directly
together with retrieved estimates of aerosol optical depth as
described in Section III.

Taken 7 as example, the total variance of 7 is calculated as:

1, i s o R 2 (1< :

Var(r) T Z () T Z ((ur)e)” — (T Z (ﬂ-r)t) S

i=1 t=1 t=1 (30)
where ((,); and o, are the estimate and aleatoric uncertainty
of 7 for ty, sample. The first term is the mean aleatoric uncer-
tainty over T’ san;lplcs. The second term, % Zt;l ((“.T)t)2 -
(% Z?:] ( ,u-r)t) = Var(u. ), represents the epistemic uncer-
tainty, calculated as the variance of ;i over T samples.

To estimate the uncertainty, the Bayes-By-Backprop method
employs sampling weights, while the Dropout method ran-
domly zeroes out weights. In the Batch Norm method, the
mini-batch mean and variance will vary as the input to
the neural network changes. However, if the input variance
significantly exceeds that of the training dataset, the output
may become unstable. To mitigate this, we randomly select

1000 samples (the size of the mini-batch used in the training
process) from the training dataset to calculate the mean and
variance, which are then used for normalizing the inputs of
the testing dataset.

Dataset A consists of 10000 radiances simulated by the
radiative transfer model. These radiances are computed using
the input parameters randomly generated within the variation
specified in Table L.

The retrievals of 7 and H from dataset A are calculated
using the three neural networks. The mean absolute error and
the mean uncertainties of the retrievals are listed in Table II.

The Batch Norm method produces the smallest errors and
the smallest aleatoric uncertainty for both 7 and H, while the
Bayes-by-Backprop method produces the smallest epistemic
uncertainty and the biggest errors for both 7 and H. It is worth
noting that the epistemic uncertainty for the three BNNs is of
a similar magnitude.

We separate the samples into 100 bins and calculate the
mean absolute error, mean aleatoric uncertainty and mean
epistemic uncertainty for each bin. The relationship between
the input parameters and the errors/uncertainty is plotted in
Figs. 4, 5 and 6. As the epistemic uncertainty is much smaller
than the aleatoric uncertainty, three times the epistemic uncer-
tainty is shown in these plots. The analysis identifies sev-
eral consistent patterns: (1) Strong correlations exist between
aleatoric uncertainty, epistemic uncertainty, and absolute errors
across all parameters; (2) Uncertainties in H decrease with
increasing SZA and VZA, while uncertainties in 7 increase
with increasing SZA and VZA; (3) Both retrieval errors
and uncertainties for ' and 7 are higher under low aerosol
loading conditions; (4) Surface albedo positively correlates
with retrieval errors and uncertainties for both parameters; (5)
Parameter-specific trends emerge, with epistemic uncertainty
in H increasing with H and epistemic uncertainty in 7
increasing with 7.

The aleatoric uncertainty in 7 for the Batch Norm method
is smaller than that of the other two neural networks. The
epistemic uncertainty for the Batch Norm method depends
heavily on the calculation of moving mean and variance.
Figure 7 shows the errors and uncertainties when using the
Batch Norm method with 100 randomly selected samples from
the training dataset to calculate the moving statistics, compared
to using 1000 samples. The epistemic uncertainty increases
substantially when using 1000 samples compared to 100 sam-
ples, while the overall aleatoric uncertainty remains relatively
unchanged. For practical applications, it is recommended to
use the training mini-batch size of 1000, while ensuring that
samples are randomly selected from the training dataset.

The aleatoric and epistemic uncertainties show strong cor-
relation. To study their differences, we simulate Datasets B, C'
and D using the radiative transfer model, each containing 2000
radiance spectra. These spectra are computed using the same
viewing geometry parameters (SZA = 0,VZA = 0,RA =0))
and a surface height of 0 km. Dataset B is generated with
T = 1.5, H = 3 km, and surface albedo randomly selected
from [0, 1] to study uncertainties when surface albedo exceeds
the range of the training dataset. Datasets C' and D are
generated with a fixed surface albedo of S, = 0.02. Dataset
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Fig. 4. Error, aleatoric uncertainty, and epistemic uncertainty versus input parameters for Bayes-by-Backprop.

C uses H within the training range and 7 within the range
[0,10], while Dataset D uses 7 within the training range and
H within the range [0,19.75] km. The relationships between

retrieval errors and uncertainties for the three neural networks
are shown in Figs. 8, 9, and 10, respectively.

Aleatoric uncertainty correlates with errors when the input
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Fig. 5. Error, aleatoric uncertainty, and epistemic uncertainty versus input parameters for Dropout.

variance falls within the training dataset. However, for out-
of-distribution scenarios, aleatoric uncertainty can remain low
despite significant retrieval errors, particularly evident in: (1)
7 and H uncertainties under extremely high surface albedo,
and (2) 7 uncertainty under extremely high aerosol loading.
Notably, the Batch Norm method shows an increasing trend
in the aleatoric uncertainty of 7 with increasing 7, contrast-
ing with the behaviors of Bayes-by-Backprop and Dropout
methods. Overall, aleatoric uncertainty originates from data
characteristics, appearing to be pronounced under unfavorable
retrieval conditions (e.g., bright surface or low aerosol load-
ing). However, it may underestimate actual uncertainty when
viewing conditions deviate substantially from the training data
distribution.

Epistemic uncertainty represents the uncertainty arising
from model limitations. The epistemic uncertainty across all

cases exhibits a strong correlation with the absolute errors, in-
dicating its effectiveness in characterizing retrieval uncertainty
compared to the aleatoric uncertainty. This correlation suggests
that higher epistemic uncertainty typically corresponds to
larger retrieval errors. The increased uncertainty mainly results
from inadequate representation of the retrieval process, either
due to its limitation in performance under unfavorable viewing
conditions or insufficient training data to fully capture the
system variability.

V. RETRIEVAL USING REAL DATA

The three neural networks are evaluated using TROPOMI
measurements for two different aerosol events: a dust storm
case over China and a wildfire case over California. Surface
albedo data are obtained from the TROPOMI Surface LER
& DLER database [45], with the snow/ice-covered flag from
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Fig. 6. Error, aleatoric uncertainty. and epistemic uncertainty versus input parameters for Batch Norm.

the official TROPOMI L2 product determining the selection
between “clear’ (snow/ice free) and ’snice’ (snow/ice-covered)
albedo fields in the retrieval process.

The retrieved 7 and H for the dust case and the wild-
fire case together with the logarithm of their epistemic and
aleatoric uncertainties are shown in Figs. 1la, 11b, 1lc and
13a, 13b, 13c. To provide better insight into the results,
Figs. 11d and 13d show ancillary parameters including cloud
fraction, aerosol index from the official TROPOMI L2 product,
and surface albedo used in the retrievals. The retrievals are
also compared with the 7 and H results from the official
TROPOMI L2 product as shown in Figs. 12a, 12b, 12c
and 14a. 14b, l4c Based on the synthetic data analysis
where galeatoric and 3gepistemic were found comparable to the
actual retrieval errors, we implement quality filtering using
thresholds of: Ingaleatoric ] 6 Ipgepistemic - 97,

Inggjeatoric > 0.7 and Inofp™*™ > —1.8 corresponding
to the maximum permissible errors of 0.2 for 7 and 0.5 km
for H.

Higher uncertainties are observed under conditions of high
surface albedo or low 7, suggesting suboptimal viewing
conditions. In contrast, uncertainties decrease in cases with
pronounced aerosol loading, characterized by high values of
aerosol index and optical depth. A strong correlation exists
between aleatoric and epistemic uncertainties, especially for
the Batch Norm method. However, the Bayes-by-Backprop
and the Dropout methods show divergence between these un-
certaint measures when dealing with viewing conditions absent
from the training dataset (e.g., very high cloud fractions).
Under such circumstances, although the aleatoric uncertainty
remains low, the consistently high epistemic uncertainty for all
three neural networks demonstrates its superior reliability as an
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Fig. 7. Error, aleatoric uncertainty, and epistemic uncertainty versus input parameters for Batch Norm, with 100 samples to calculate the moving mean and

variance.

uncertainty indicator. All three algorithms face challenges in
separating aerosol and cloud signals when their magnitudes are
comparable. Notably, even at moderately high cloud fractions,
the epistemic uncertainty may remain low, indicating contin-
ued reliance on aerosol index and cloud fraction parameters
for aerosol-cloud separation.

The comparison with the official TROPOMI aerosol prod-
uct reveals several important insights. The retrieved 7 and
H demonstrate strong correlation with the official product,
though minor discrepancies are expected given the different
aerosol models employed in our retrieval algorithms. The
Batch Norm method yields systematically elevated estimates
of H in the upper-right panel of Fig. 13c, a feature requiring
turther investigation. Most significantly, the magnitude of H
uncertainties shows quantitative correspondence with retrieval
accuracy, confirming their practical utility as reliability indi-

cators in operational applications.

VI. CONCLUSIONS AND OUTLOOK

This study describes three Bayesian neural networks im-
plemented with the Bayes-by-Backprop, Dropout and Batch
Norm method for joint retrieval of aerosol optical depth and
layer height with integrated uncertainty quantification. The
framework quantifies the total uncertainty through variance
estimation based on the Bayesian theory, where:

« Aleatoric uncertainty represents the uncertainty arising
from data noise in both input and output domains. By
adopting a heteroscedastic formulation and incorporating
output variance into the loss function, the neural network
can directly estimate this uncertainty alongside target
parameters.
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« Epistemic uncertainty is evaluated via Monte Carlo sam-
pling of the Bayesian network’s stochastic forward prop-
agation. The output variance across multiple samplings is
calculated to represent the epistemic (model) uncertainty.

The performance of the three neural networks has been
investigated using both synthetic and real measurements. Ac-
cording to the synthetic analysis, errors in retrievals show a
good correlation with epistemic uncertainty, while aleatoric
uncertainty may not align well with errors if the viewing con-
ditions are beyond the variation range of the training dataset.
Therefore, epistemic uncertainty can explain the uncertainty in
retrievals more effectively. The experiment on real measure-
ments suggests the same conclusion. The estimated aerosol
optical depth and layer height from all three neural networks
are comparable to the results from the official TROPOMI
product.

The three neural networks have demonstrated significant
potential for aerosol retrieval. Retrieving all 4172 x 448 pixels
in a single orbit with uncertainty quantification (100 Monte
Carlo samplings) requires approximately 650, 300, and 180
seconds for Bayes-by-Backprop, Dropout, and Batch Norm,
respectively, on a workstation equipped with 64 GB of RAM
and a 32-core Intel Core i9-13900K processor. In contrast,
physical retrieval algorithms require comparable processing
time to retrieve only 1—4 pixels.

Among the three Beyesian Neural Networks, Bayes-by-
Backprop offers the most theoretically rigorous implementa-
tion, while Dropout and Batch Norm serve as practical ap-
proximations. Bayes-by-Backprop explicitly learns probability
distributions for all neural network parameters by training both
the mean and variance of each weight and bias, providing an
interpretable representation of parameter uncertainty. However,
its implementation is complex and computationally demanding
due to repeated sampling of every parameter during both
training and inference. In comparison, Dropout turns out to
be the most straightforward and stable method, randomly
zeroing neuron weights during training and yielding consistent
performance across training, validation, and inference. Batch
Norm shows superior optimization efficiency, typically achiev-
ing faster convergence and lower training loss, which makes
it particularly suitable for complex and large-scale problems.
Its main limitation lies in the requirement for representative
mini-batches to compute reliable normalization statistics, as
poor batch selection may degrade performance.

This study provides a foundation for improving Bayesian
neural networks in aerosol retrieval. Future work should en-
hance the physical constraints in the neural networks, par-
ticularly for optically thick aerosol conditions. Expanding
the training datasets with more diverse observation scenarios
would improve robustness. Operational applications would
benefit from near-real-time assimilation of ground measure-
ments to refine the retrievals. Further development should
focus on better uncertainty quantification under challenging
conditions like high cloud cover.
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