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ARTICLE INFO ABSTRACT

Dataset link: https://zenodo.org/records/1697 In electricity markets, storage operation and bidding strategies are based on expected price spreads. At the
8510 same time, these spreads are affected by the operation of the storages. If many storage units react to an
Keywords: expected price spread in a similar way, their joint operation can significantly reduce the spread realised on
Agent-based modelling the market. Such repercussions are known as ‘“avalanche effects”. This paper examines dispatch planning
Energy storage strategies in agent-based electricity market simulations that counter those avalanche effects. These strategies
Flexibility option utilise a dynamic programming algorithm to determine asks and bids. The algorithm can pursue different
Dispatch planning optimisation targets combined with varying awareness levels for price impacts. We apply these strategy variants
léValanC_h_e effect to a parametrisation of the German electricity market and compare resulting prices, dispatch, and monetary

ompetition

performance to their historical values. Our findings illustrate that, without price impact awareness, storage
units are 220% overused in simulations leading to high monetary losses. System-cost minimisation yields the
highest correlation (86%) with the historical dispatch, but electricity prices are reproduced most accurately
(87% correlation) using profit maximisation. Disaggregating storage units results in a better fit to historical data
than an aggregated single-unit representation. Discharged energies and operational profits vary strongly across
the different modelling experiments. Our research highlights the importance of detailed storage modelling to
accurately assess storage market values. One identified strategy is based on implicit collusion and requires only
minimal data also available in the real world. If storage operators behave accordingly, market monitoring and
antitrust regulations may be required.

1. Introduction not properly accounted for during dispatch planning, the resulting
dispatch is suboptimal. For example, if one storage operator expects
As intermittent renewable energy generation technologies, such as very low electricity prices at time A and very high prices at time

wind and solar power, replace fossil-fuel power plants around the
world [1], balancing electricity supply and demand becomes more
challenging [2]. Energy storage systems, such as battery storage or
pumped hydro storage, can contribute to this balance at varying tempo-

B, this could result in charging and discharging actions planned for
time A and B, respectively. If many operators have a similar price
expectation, their combined dispatch could raise prices at time A and

ral scales. Applications range from short-term to seasonal storage and lower prices at time B leading to significantly reduced — or even
from small-scale to large scale systems [3]. Especially battery storage inverted - price spreads. Such outcomes are known as “avalanche
systems also gain an increasingly important role in wholesale electricity effects” and have been observed in models regarding, e.g., household
markets [4]. For instance, in Germany, the installed capacity of large- demand-side flexibility [10], the heating sector [11], and the transport
scale battery storage rose already to more than 2 GW [5]. In addition, sector [12,13]. This highlights the need for novel methods to assess

there are around 220 GW of network connection requests for large-scale
storage systems [6], of which 24 GW are assumed to be viable [7]. An
ongoing decline of storage costs is fostering this development. Battery
pack prices in China have declined from around 260 $/kWh to below

the profitability and system effects of storage systems. These methods
need to consider that the economic perspective of individual storage
units is influenced by the market environment comprising numerous

100 $/kWh between 2017 and 2024 [8] competitors. It is therefore of great importance to account for the
In future systems, large energy storage capacities may have a sig- influence of competitors and to model the behaviour of a storage unit
nificant impact on electricity price dynamics [9]. If such impacts are accurately [14].
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Nomenclature

Dispatch Planning

t time step indices

P offer price of an electricity ask or bid

vV value of a discretised storage level

i initial storage level at the beginning of a transition

f final storage level at the beginning of a transition

AE energy delta of a transition

p (expected) electricity price

4 expected electricity price including dispatch from own
storage

p’ expected electricity price including dispatch from all
storages

Forecasting

t,t time step indices

m storage dispatch multiplier estimate

m initial storage dispatch multiplier estimate

m average storage dispatch multiplier estimate

J, k indices of storage units

N total number of storage units

ce installed charging capacity

cd installed discharging capacity

A awarded energy per time step

T decay time for multiplier estimates

o initial weight multiplier

1.1. Related work

Optimisation models are commonly used to model electricity sys-
tems, focusing on minimising system costs under assumptions of perfect
competition and central planning [15,16]. However, they do not ac-
count for strategic behaviour of individual investors and operators
seeking to maximise their profit. Game-theoretic approaches can ad-
dress this shortcoming and also assess market power [17]. Yet, most
models also assume perfect information.

Agent-based models (ABMs) offer a way to incorporate imper-
fect information and strategic behaviour, simulating real-world actors’
decision-making processes in electricity markets [18]. These mod-
els have been used to explore electricity markets [19] and allow
modellers to analyse economic perspectives for storage operators in
current and future scenarios, considering repercussions from the overall
system [20].

Research on bidding strategies for energy storage systems, such
as hydroelectric plants, is well-established [21,22]. [23] develop a
profit-maximising strategy for battery storage systems, but neglect com-
petition and market price impacts. This limitation is also found in [24],
who propose a profit-maximising dynamic programming scheduling
strategy for pumped hydro storage. The investigation of competition
between different flexibility options (FOs), e.g., energy storage and
demand-side flexibility, is covered to a lesser extent. [25] deploy a two-
stage stochastic optimisation model and find substitutional competition
between the FOs, but do not provide diverse operational strategies.
[26] apply a multi-stage optimisation approach for three competing
storage units and find that storage profits are significantly higher when
the units coordinate their dispatch. Without dispatch coordination,
however, storage profits and dispatch patterns were unstable.

As computational power increases, deep-reinforcement learning
(DRL) models are emerging for simulating electricity markets [27].
Yet, they often fail to consider price impacts or provide interpretable
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results [28]. [29] use DRL to find intelligent bidding strategies of
prosumers to be submitted to local electricity markets. However, the
behaviour of prosumers on local energy community markets differs
from that of large scale units on day-ahead markets. Thus, the transfer
of results to those markets requires more work. In the study by [30], a
price-making storage is considered. They find that a new strategy based
on an actor-critic approach outperforms a baseline strategy. However,
the integration of competition among multiple FOs with market power
remains unexplored. A robust strategy, even when competing FOs are
taken into account, is presented in [31]. However, the case study is
performed on historical market data only. Further work is needed to
assess the performance of these models under high renewable energy
shares.

1.2. Novelty

While there is a substantial amount of literature on bidding strate-
gies for storage units, our work offers several key methodological ad-
vantages, while following a thorough open science approach. First, we
develop a flexible scheduling algorithm using dynamic programming
which allows to study price-taking as well as price-making strategies.
Additionally, we include a sophisticated approach to account for price
effects of multiple storage units. This enables us to study the impli-
cations of competing storage units and to explicitly control avalanche
effects. While we provide no direct quantitative measure for avalanche
effects, we provide benchmarks for the dispatch planning algorithm
variants based on historical data obtained from [32], enabling us to
quantify our modelling with respect to the reproduction of real-world
market dynamics. In contrast to DRL strategies, we retain full trans-
parency over the scheduling algorithms applied. Compared to game-
theoretic approaches, our methodology offers superior performance.
Second, our work provides a powerful enhancement to the open-source
and state-of-the-art ABM AMIRIS' [33]. Specifically, all strategies de-
scribed in this paper are openly available with AMIRIS. Therefore,
AMIRIS is now not only highly capable for historical benchmarking
simulations [34], but can also address future scenarios with high shares
of renewable energies and competing FOs. Third, all presented bench-
marking analyses are based on open data [35]. This enables users to
reproduce our results and to conduct their own analyses in a convenient
manner. In summary, we provide flexible and powerful algorithms to
simulate competing energy storage units, and thereby contribute to a
better understanding of current and future electricity markets.

The remainder of this paper is structured as follows. Section 2
outlines the fundamentals of the ABM AMIRIS. We present the individ-
ual storage strategies by describing their characteristics and potential
applications. In Section 3, a case study is conducted to evaluate the
performance of the presented storage strategies, both on an individual
storage system level but also on the overall energy system level. We
discuss our presented modelling approach in Section 4. Furthermore,
we contrast our results with existing literature. Finally, in Section 5,
we summarise our findings and offer suggestions on further research
avenues.

2. Methods

To simulate the competition of energy storage units, we enhance
the open Agent-based Market model for the Investigation of Renewable
and Integrated energy Systems AMIRIS with powerful algorithms for
dispatch planning and price forecasting. All of this is described in the
following subsections.

1 Agent-based Market model for the Investigation of Renewable and
Integrated energy Systems.
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Fig. 1. Schematic representation of agent types and their interactions in AMIRIS version 3.7.2.

2.1. Electricity market modelling

AMIRIS is a comprehensive and powerful open-source tool [33] to
model electricity markets. It has been designed to assist researchers in
analysing complex challenges related to future energy market scenarios,
market designs, and energy policy instruments. AMIRIS can simulate
strategic bidding behaviour of various market actors, considering not
just marginal prices but also the effects of support instruments, un-
certainties, and market power [36]. Outputs comprise, e.g., electricity
prices, dispatched energy as well as financial flows between the rep-
resented agents. AMIRIS is evolving constantly — results in this work
were obtained with version 3.7.2 contained in the accompanying data
release [35].

The structure of AMIRIS, depicted in Fig. 1, is based on seven
main agent categories: markets, traders, power plant operators, demand
agents, policy providers, forecasters, and flexibility providers. The day-
ahead market performs the market clearing based on the bids provided
by traders. Power plant operators generate electricity according to
the market success of their corresponding trader. Demand agents buy
energy from the day-ahead market, while policy providers influence
the regulatory landscape and, in turn, affect the dispatch decisions of
other agents [37]. Forecasts of electricity prices and of the merit order
are provided by dedicated forecasters. Flexibility providers (energy
storage, load shifting units, heat-pumps, electric vehicles, and electrol-
ysers) utilise these forecasts to optimise their bidding strategy, thereby
creating a dynamic simulation environment [14].

AMIRIS is based on the FAME framework [38,39]. The model has
been applied to assess different FO technologies and concepts, such as
Carnot batteries [40], battery storage systems [41], heat-pumps [11],
demand response [42], and market coupling [43]. In this work, we
enhance the forecasting method and the dispatch planning of energy
storage units to simulate and assess their competition. Other FOs are
disregarded. Each storage agent controls a single energy storage unit.
Thus, the terms storage agent, storage operator, and storage unit can
be regarded synonymous in this work.

2.2. Dispatch planning strategies

Dispatch planning strategies for storage agents in AMIRIS are de-
termined by solving optimisation problems. We consider two strategy
variants: one that maximises the storage agent’s profits and one that
minimises total system cost. These strategies facilitate analyses between
maximum market power and full competition. The variants can eas-
ily be swapped for new simulations and even combined when using
multiple storage agents. A cost-minimising strategy is often implicitly
applied in energy system optimisation models which minimise the cost
of the dispatch of all power plants [44] and also for power plant
investments [45].

To find the optimal dispatch, AMIRIS storage agents use dynamic
programming [46]. In this common solution approach, the storage
unit’s possible SOC is discretised in energy levels, and the time is discre-
tised in time steps. This is illustrated in Fig. 2, where discretised energy
levels are represented by stacked black lines which are repeated for
each considered time step. Restrictions on the minimum and maximum
SOC directly translate into available energy levels. The number of time
steps is limited by the length of the foresight horizon. Starting at the
last considered time step and progressing backwards, the value of each
SOC level is determined by the value of the best possible transition to
a follow-up level. This transition yields the best result for the sum of
(i) the value of a potential follow-up level and (ii) the value of the
transition to that level. Transitions are evaluated based on forecasts of
the electricity price and the amount of electricity provided to or taken
from the grid corresponding to the transition, see Section 2.3. Potential
follow-up states are restricted by the maximum charge and discharge
powers of the storage unit. Once the values and optimal transitions
for all SOC levels and time steps have been assessed, the optimal
path of SOC levels following the current energy level is determined in
a forward pass. Since all potential follow-up levels must be checked
for each SOC level, the computational cost scales quadratically with
the SOC discretisation. To reduce computational overhead, we employ
memoization techniques.
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Fig. 2. Illustration of the dynamic programming algorithm and its bidding strategy for a storage with three SOC levels and three time steps (plus one for the
initial state) with different electricity prices (green), not considering losses due to charging or discharging efficiencies; starting at a storage level of 1 MWh, the
best path as well as related bid and ask prices are shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

In Fig. 2, the value of all storage levels is assumed to be zero in the
last time step. This simplification neglects the value of storage at the
end of the forecasting period, also known as water value (see e.g. [47]).
To consider the value of storage at the end of the forecasting period,
long-term simulations can be used to derive the water values. If such are
not available, a rolling horizon approach with frequent reevaluations
can be applied instead. Such approaches have been proven to yield
good results for energy system modelling [48]. We also experienced
the rolling horizon approach to yield good results if the E2P ratio of
the storage unit is small compared to the foresight horizon.

The best path of SOC levels determines the amount of energy to sell
to or to buy from the electricity market for every time step. To deter-
mine associated offer prices, we apply different rationales depending on
the optimisation target. In case of system cost minimisation we want to
ensure that the determined dispatch path is followed and use minimal
or maximal allowed offer prices. When profit maximisation is employed
we estimate the opportunity cost for changing the SOC level based on
the previously determined SOC evaluations. For asks, the offer price
P, must compensate for the projected loss of value when moving from
time ¢ to t+1, which equals the difference between the estimated storage
value V., of the initial SOC level i and the final SOC level f, divided
by the associated change in energy AE"/:

i~f _ Vr[+1 _‘ Vt:—l )
! AES
For bids, the offer price must not exceed the projected money that can
be made from the additional energy, resulting in an exchange of initial
and the final SOC levels i and f in Eq. (1).

Fig. 2 demonstrates all aspects of the algorithm with deliberately
simple numbers. The storage device’s SOC is discretised into three
levels with 0, 1, and 2 MWh. Since the E2P ratio is two, the SOC can
only change by 1 MWh per time step. Three time steps are considered,
an additional fourth time step indicates the initial state of the storage
device. As there is no water value considered here, the storage values
(red numbers) are assumed to be zero for all SOCs in the last time step.
Projected electricity prices change from 7 over 4 to 10 €/MWh. The
best follow-up SOC levels are indicated by dotted arrows. An exemplary

path starting with a half-filled storage is highlighted in blue. Bid and
ask price calculations associated with the transitions are also shown in
blue.

The outlined algorithm is well known but stands and falls with
the electricity price forecast. For small amounts of installed storage,
forecasts do not necessarily need to consider the feedback of storage
dispatch on the electricity prices. This is assumed in Fig. 2. The dispatch
of large or many storage devices, though, could have significant price
impacts that potentially lead to avalanche effects. Thus, we also need
to forecast price changes due to storage dispatch.

2.3. Forecasting

Electricity price forecasts used by AMIRIS agents are calculated
based on three types of information for any respective time step: (i)
What the electricity price would be without dispatch from storage
agents, (ii) how the price would change with additional supply or
demand, and (iii) how strongly the dispatch of a storage agent aligns
with the dispatch of all competitors. In order to answer these questions,
the forecaster agent collects preliminary bids and asks from the supply
and demand agents for all future market clearing events within the fore-
sight horizon. Without bids and asks of storage agents, the forecaster
agent clears the market using the same algorithm as the day-ahead
market agent to answer question (i). The resulting merit order is then
inspected to assess how additional demand or supply from storages
would change the clearing price. This “sensitivity forecast” answers
question (ii). To answer questions (iii), we track the dispatch of all
storage agents. For each time step, we calculate the total dispatch from
storage agents as well as the share of each storage agent in this dispatch
total. The inverse of this share represents an agent-specific multiplier
to calculate the dispatch of all storage agents — including competitors
— using the agent’s own dispatch. This multiplier is rapidly changing
over time and depends on the characteristics of the different storage
agents. To achieve a more stable value, we average over multiple time
steps. Based on the averaged “competition multiplier”, each individual
storage agent can estimate the future total dispatch of all storage agents
using its own dispatch plans. By combining this approach with the
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Fig. 3. Illustration of the interplay between merit-order forecasting and competition multipliers; without storage operations, price p is forecasted; based on the
price sensitivity of the merit order (bar plot), storage agents can adjust the forecast to include their own dispatch (dashed lines) or even the dispatch of their
competitors (dotted lines) resulting in new forecasted prices p’ and p”, respectively.

sensitivity forecast each storage agent can estimate the total impact of
all storage agents on future electricity prices.

Fig. 3 illustrates this mechanism using a schematic representation
of the merit order. Without storage activity, the given demand and
supply curves determine the price p. The forecast includes not only this
price, but also how sensitive it is to changes in demand or supply. Thus,
each agent can consider the impact of potential dispatch options on the
electricity price p’. The impact of competitors on the prices p” can also
be considered using the competition multiplier.

At the beginning of the simulation, no information about the prior
dispatch of the any storage agent is available. In order to provide a
first estimate of the competition multipliers we utilise the theoretical
dispatch potential of the storage agents, i.e., their charging and dis-
charging capacities. In Eq. (2) we derive the initial multiplier estimates
my o from the ratio of the total installed charging and discharging
capacities CJ? and C;' of all N storage agent j, relative to the installed
charging and discharging capacities C; and C,‘j of storage agent k.

N c d
2aG+C)

2
d
CZ +C,

Mo =
Once dispatch data from previously simulated times is available, the
unit-specific multipliers m , for each time ¢ can be determined. Eq. (3)
defines their calculation in a given time step using the net awarded
energy A;, of storage agents ;.

N
N4

3
A 3

My
In order to calculate a moving average of unit-specific multipliers, we
use an exponential smoothing of summands over time. This grants
a higher attention to more recent values of the multipliers but also
considers past values, albeit with less and less weight. Eq. (4) intro-
duces the decay factor a based on the decay time constant z. This
constant represents the number of time steps after which the weight
of a summand is reduced to about 37%.

“

1
a = CXP(—;)

In order to blend smoothly from the initial estimate to the averaged
ones, the initial estimate m,  is granted an increased weight w,. Eq.

(5) represents the calculation of the averaged multiplier m, , for unit &
at time ¢ using the uni-specific multipliers from previous times .

t ¢
mygo wo & + X, my ot

®

my ; wo o + Z;/:] a,_,r

With the calculation of the competition multiplier estimators, all fore-
casting data is compiled in the forecaster agent. The forecasted elec-
tricity price, its sensitivity on changes in demand and supply, and a
competition multiplier estimator are distributed to each storage agent.
These forecasts can then be applied by the storage agents to estimate
the future electricity prices and thus values of stored energy for each
potential dispatch path using dynamic programming as mentioned
above.

This algorithm represents a high level of awareness for price impacts
from competition. Other levels of awareness can be achieved by adapt-
ing the competition multiplier. If set to zero, no impact on the prices by
the storage dispatch is assumed, resulting in the behaviour of a price
taker. Price-maker behaviour is achieved with a competition multiplier
value of one. This, however, is only consistent with a single storage unit
in the system. In that case, the presented algorithm can provide perfect
foresight, whereas in the case of competing storage units, competition
multipliers are merely estimates.

3. Results

The following subsections compare the performance of the previ-
ously presented dispatch planning variants within a scenario based
on the historical German wholesale electricity market of 2019. This
backtesting scenario has been found to closely reproduce historical
electricity market dynamics [34]. It was slightly enhanced with re-
spect to the storage units. Additionally, we investigate a scenario with
artificially increased storage capacities to demonstrate the dispatch
strategies’ capability to handle increasing competition. Important pa-
rameters are described in Appendix A. All data is openly available in
the accompanying data release [35].

3.1. Single storage
We assess the price-taker and price-maker strategy variants first and

aggregate the pumped hydroelectric storage units in the German elec-
tricity market into a single storage agent. We assess the ability of three
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Performance metrics for three variants of the storage dispatch strategy with one aggregated storage agent in the
backtesting scenario; the sum of discharged energy is given in relative terms to historical dispatch. Profits are relative
to a fictitious profit that would have been received from the historical dispatch at historical day-ahead market prices.
The price-taker assumption leads to large overuse of storage and significant losses. Price-maker profit maximisation
results in highest correlation with the historical prices but underuses storage capacities.

Metric

Profit maximisation
price taker

System cost minimisation
price maker

Profit maximisation
price maker

Price correlation

MAE in EUR/MWh

RMSE in EUR/MWh
Dispatch correlation
Relative discharged energy
Relative profits

0.62
8.76
12.22
0.80
245%
-159%

0.80
6.21
9.91
0.75
149%
70%

0.87
5.09
7.79
0.68
83%
148%

Power Price in EUR/MWh
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Fig. 4. Electricity prices resulting from simulation of storage dispatch with one storage agent in week 43 of the backtesting scenario using different strategy
variants compared to the historical electricity prices (top); associated hourly storage dispatch from simulations and historical data (bottom)

dispatch strategy variants to explain historical electricity prices and
storage dispatch. The first strategy variant applies profit maximisation
but assumes to be a price taker, thus ignores the feedback of storage
dispatch on electricity prices. The second and third variant apply a
price-maker assumption and either aim to minimise the system cost,
or to maximise their profits. Each strategy variant is tested in its own
simulation without any competitors.

Table 1 compares the Pearson correlation of the simulation results
with the historical day-ahead market prices, as well as the associated
mean absolute error (MAE) and root mean square error (RMSE). Ad-
ditionally, it shows the Pearson correlation of the simulated storage
dispatch with the historical storage dispatch, the cumulative simulated
discharged electricity relative to the historical storage discharge, as
well as the profits obtained in the simulation relative to those that
would be achieved with historical prices and dispatch. Historical data
were obtained from [32].

With the AMIRIS electricity price forecasting mechanism (see Sec-
tion 2.3), single storage agents can be provided with perfect informa-
tion and market power. The price-taker variant forfeits this market
power and assumes that its dispatch has no impact on the prices. While
this results in the highest Pearson correlation with historical dispatch,
correlation with the prices, as well as MAE, and RMSE are the worst
among the variants due to massive overuse of the storage. Fig. 4 shows
this effect. It displays one week of simulated dispatch and the resulting
electricity prices alongside the historical dispatch and prices. With the
price-taker variant, expected price valleys and hills are often flattened
or even inverted, resulting in negative profits. Unsurprisingly, this
emphasises the need to consider the price feedback of storage dispatch.

Similar to the price-taking variant, the system-cost minimisation
variant also involves the overuse of storage capacities compared to the

historical reference — but to a lesser degree. Here, perfect foresight
of the impact of dispatch on prices is available and market power is
used to avoid price inversions. Thus, price spreads are merely reduced.
The correlation with the historical price is strong with a value of 0.8,
and the MAE and RMSE are significantly better than in the price-taker
variant. However, the correlation with historical dispatch is slightly re-
duced, and only 70% of profits are generated compared to the historical
dispatch.

The profit-maximisation variant also uses perfect foresight and mar-
ket power, which results in a reduction of total storage dispatch to
maintain profit-optimal price spreads, i.e. to avoid self-cannibalisation
of profits. This leads to the highest correlation of simulated and histor-
ical prices with lowest MAE and RMSE. With 148% of the fictitious
reference value, profits are significantly higher than what could be
expected from the historical dispatch.

In contrast, Fig. 4 shows that, for the profit-maximising variant, too
few capacities are utilised. The correlation with the historical dispatch
is the lowest among the variants. This shows, that the assumption of
perfect information combined with high market power leads to unreal-
istic dispatch restraints and overestimation of profits when applied to
a single storage agent.

It is important to interpret the comparisons of historical and simu-
lated prices and dispatch in Figs. 4 and 6 (further below) with caution.
Even if the storage units in the model reproduced the historical dispatch
exactly, AMIRIS would not be able to perfectly replicate historical
electricity prices. There are several reasons for this. Historical storage
dispatch is influenced not only by day-ahead market outcomes but
also by activity on intraday markets and reserves markets. In contrast,
our AMIRIS simulations cover only the day-ahead market, thus bid-
ding behaviour of actors is not perfectly reproduced. Furthermore, the
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Fig. 5. Averaged multipliers over the full simulation year (bottom) and in detail for the first month (top) for 18 competing storage units with varying E2P ratio
using a profit maximising dispatch strategy; initial estimate weight w, = 6, decay time constant = = 168 hours.

shown AMIRIS simulations do not include transmission constraints or
redispatch. In reality, these aspects can significantly alter the dispatch
of units. Additionally, agents in AMIRIS operate with less uncertainty
than real-world actors, who must deal with imperfect forecasts and un-
predictable market behaviour. Lastly, there are simplifying assumptions
in the backtesting scenarios. For example, the scenario relies on hourly
market clearing, approximate power plant efficiencies, estimated power
plant availability profiles and stylised must-run constraints.

3.2. Competing storages

We assess the performance of the developed dispatch planning and
forecasting algorithm regarding the modelling of competition. To this
end, we simulate 18 competing storage agents and employ the afore-
mentioned three storage dispatch strategy variants within the otherwise
same backtesting scenario. Total storage power and capacity of the 18
pumped-hydro storage units is identical to that of the single storage unit
in the previous section. Only units with similar round-trip efficiency
(RTE) and E2P were aggregated. Details regarding the parametrisation
of the storage units are provided in Appendix A.

3.2.1. Competition multiplier estimates

The competition estimation process outlined in Section 2.3 contains
two soft parameters, the initial weight w, and the weight decay time .
These can affect the performance of the storage units. If wy, is too small,
the competition multiplier estimates show strong fluctuations at the
beginning of the simulation. If wj, is too large, the measured multiplier
data is suppressed for a longer time span. The decay time 7 can be
compared to the averaging window of a moving average. If it is chosen
too small, fluctuations increase, but if it is chosen too large, adaptations
take too long. To identify a combination for w, and r with stable
performance we conducted a parameter study and identified w, = 6 and
7 = 168 hours as a good combination. The results for price correlation,
dispatch correlation, and profitability were extremely stable over the
assessed parameter ranges. Details of the parameter study are shown
in Appendix B.

Fig. 5 shows the development of competition multiplier estimates
for 18 competing storage units during a simulated year. For most of
the storage units, the multiplier estimates stabilise after one week. The
storage units whose multipliers take the longest to stabilise are those
with the highest E2P ratio. The selected decay time of 168 h enables
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Table 2
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Performance metrics for three variants of the storage dispatch strategy with 18 competing storage agents in
the backtesting scenario year; discharged energy totals are relative to historical dispatch. Profits are relative to
a fictitious profit that would have been received from the historical dispatch and historical day-ahead market
prices. Compared to single-agent representation, total discharged energy is reduced while dispatch correlation

and MAE improve for all strategy variants.

Metric Profit maximisation System cost minimisation Profit maximisation
price taker competition estimate competition estimate

Price correlation 0.66 0.85 0.87

MAE in EUR/MWh 8.46 5.37 5.24

RMSE in EUR/MWh 11.93 8.12 7.83

Dispatch correlation 0.87 0.86 0.79

Relative discharged energy 222% 107% 72%

Relative profits -161% 109% 129%
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Fig. 6. Electricity prices resulting from simulation of storage dispatch with 18 competing storage agents in week 43 of the backtesting scenario using different
strategy variants compared to the historical electricity prices (top); associated hourly storage dispatch from simulations and historical data (below).

mid-term adaptions of the competition multipliers due to changed mar-
ket situations while providing short-term stability. To assess whether
the initial estimates for the competition multipliers are reasonable, we
compare them to the averaged competition multipliers at the end of
the simulation. We find that the initial multiplier estimates are off by
less than a factor of 4. This correction factor of the initial estimates
has a Pearson correlation of —0.9 with the RTE. Therefore, competition
multipliers for storages with high RTE are initially overestimated, and
those for storages with low RTE begin underestimated. This can be
explained by a number of dispatch opportunities that can only be
exploited with high RTE, but increased competition in situations with
high price spreads.

3.2.2. Backtesting performance

Table 2 shows the performance metrics associated with 18 com-
peting storage agents in the backtesting scenario. Compared to the
single-agent representation, the multi-agent representation improves
performance with respect to the price and dispatch correlations. MAE
and RMSE improve for the price-taker and system-cost minimisation
variants, but slightly worsen for the profit-maximisation variant. Total
discharged energy is reduced in all cases, as the developed algorithm
only provides a good, not a perfect, estimate of the competitors’ be-
haviour. This reduction brings the profit and the sum of dispatched
energy of the system-cost minimisation variant close to the historical
results.

Fig. 6 shows the cumulative hourly dispatch from all storage units
and associated electricity prices for the three dispatch strategy vari-
ants against historical data for the same week as in Fig. 4. Several
differences can be spotted when comparing these two figures. These

differences are caused by the disaggregation of storage capacity into
distinct units with specific RTE and E2P ratios, as well as the added
uncertainty from competition. Results for the price-taker variant ex-
hibit slightly reduced charging and discharging peaks. However, the
high-efficiency storage units are overused and additional charging and
discharging activities lead to additional peak-valley inversion events
of the electricity price on the fifth day. The system-cost minimis-
ing and profit-maximising variants show less pronounced charging
and discharging peaks, and are more closely related to the historical
dispatch.

Fig. 7 shows the same week as Fig. 6 but depicts the individual
dispatch of three storage units with the profit-maximising strategy
variant. The storage units differ strongly with respect to their technical
parameters, causing different dispatch patterns. It can be seen that
the most active unit is that with the highest RTE (purple). This unit
charges and discharges for several hours each day, while the unit with
the lowest RTE (green) can barely exploit any of the small under-the-
day price spreads. The high-efficiency unit performs both charging and
discharging activities between October 25th and 27th, whereas the
unit with largest E2P (orange) utilises its storage capacity for charging
only. In this way, it can exploit the relatively low prices at that time
compared to those during the first three days of the following week
(not shown).

3.3. Increased competition
The impact of competition increases with higher storage capacities.

To demonstrate the applicability of the presented method to highly
competitive scenarios, we deviate from the backtesting scenario and
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Fig. 7. Electricity prices resulting from the simulation of storage dispatch with 18 competing storage agents in week 43 of the backtesting scenario using the
profit-maximising dispatch variant (top); state of charge for three storages units with different energy-to-power ratios and round-trip efficiencies (bottom).

Table 3

Power, capacity and round-trip efficiency of storage units added to the backtesting scenario; unit
identifiers are equal to their energy-to-power ratio. The same round-trip efficiency is assumed for

all additional storage units.

Storage unit identifier Converter power Storage capacity RTE

Battery 1 5 GW 5 GWh 0.865

Battery 2 5 GW 10 GWh 0.865

Battery 3 5 GW 15 GWh 0.865

Battery 4 5 GW 20 GWh 0.865
Table 4

Discharged energy and profit totals of 18 competing storage units in the backtesting scenario and
the scenario with increased storage capacity using either cost-minimising or profit-maximising
strategies; with system cost minimisation, storage capacities are strongly used, thus reducing
profits. Profit maximisation shows a moderate increase of storage usage, and a small increase

of storage profits.

Metric Scenario System cost minimisation Profit maximisation
Discharged Energy Total Backtesting 7.32 4.95

in TWh Increased Capacity 10.71 6.61

Total Profits Backtesting 105.3 124.2

in M€ Increased Capacity 75.4 137.8

increase the amount of installed storage by 20 GW. Motivated by recent
developments in Germany, we concentrate on short-term storage that
resembles, e.g., batteries. We consider 5 GW additional capacity, each
for E2P ratios of 1, 2, 3, and 4. All additional units are assigned a similar
RTE. Table 3 shows the parameters of the additional storage units.

We evaluate both the system-cost minimising and profit-maximising
dispatch strategy variants for the case of 18 competing storage agents.
Due to the changed scenario setup, we do not compare with historical
data. Instead, we compare with the original backtesting scenario to
assess the impact of the additional storage units. Table 4 highlights
the absolute profits and discharged energies in both scenarios and for
both dispatch strategy variants. In case of system-cost minimisation,
the additional units are strongly put to use and the discharged energy
total rises from 7.3 TWh in the backtesting scenario to 10.7 TWh
in the increased capacity scenario. This, however, reduces the total
profit from 105 M€ to 75 M€, due to price spread dampening (see
below). With the profit maximisation strategy variant, the discharged
energy total moderately increases from about 5 TWh to 6.6 TWh in the
increased capacity scenario due to the higher-than-average efficiency
of the additional units. The total profit increases as well, but only from
124 M€ to 137 M€.

As Fig. 8 shows, the profit-maximising dispatch strategy variant
(green colours) creates very similar prices in the backtesting scenario

and the additional capacity scenario. This strategy variant restricts the
use of additional storage power and capacity to maintain higher price
spreads. However, the system-cost minimising dispatch variant (pink
colours) uses the additional capacities especially at the beginning of
the shown week to further reduce the differences between price minima
and maxima when compared to the backtesting scenario. For reference,
we also provide prices from a scenario without any storage units (grey
colour) to demonstrate the storage units’ price impact.

Fig. 9 compares the installed converter power and storage capacity
of the original backtesting scenario with that of the additional bat-
tery storage units. Although the newly installed battery storage units
account for more than triple the converter power, the total installed
storage capacity is only increased by about 20%. Since the system-cost
minimising dispatch strategy variant produced a dispatch closest to the
real-world (see above), we assess this strategy here. Due to the higher
RTE of the additional battery units compared to the existing pumped-
hydro storage units, the battery units generate about 52% of the profits
and provide 59% of the dispatched energy.

4. Discussion

We tested variants of storage dispatch strategies with different op-
timisation targets and varying awareness of price impacts from storage
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using the system-cost minimising dispatch variant (bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
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dispatch. For both, a single large storage unit and disaggregated storage
units, we observed significant overuse of the storage units if these
are not aware of their price impacts. Therefore, price-taker dispatch
strategies should be combined with predictions that already include
an expected impact of storage units on the price. This can make
performative predictions necessary [49] that consider the impact of
electricity price predictions on the simulation outcome [14].

With a single storage unit that is perfectly aware of its own price
impacts, price-maker behaviour is found. When combined with the
optimisation target of system cost minimisation, results are equivalent
to those of a global cost minimisation model [50]. Employing the
optimisation target of profit maximisation, though, can illustrate the
impact of market power on profits and strategically reduced dispatch.
This also leads to higher system cost [50].

To simulate competition, the developed algorithm estimates mul-
tipliers resembling the effective combined storage power. This allows

10

to approximate the impact on electricity prices from all competitors
and to avoid avalanche effects. The multipliers are individually adapted
for each storage unit to consider the impact of different E2P and RTE
characteristics. This approach aligns the dispatch of the storage units,
by letting them assume that the dispatch of competing storage units will
correlate with their own dispatch. In case of the profit-maximising strat-
egy, this presumed dispatch alignment strongly restricts storage usage
in order to increase profits. This corresponds to collusion which is also
found in other studies assessing the effects of coordinated storage be-
haviour [26]. However, when applied with a cost-minimising strategy,
the dispatch alignment of individual storage units also prevents their
overuse, but to a lesser extent and similar to a global cost-minimisation.
Thus, the alignment aspect of the algorithm in this case simulates the
outcome of (almost) perfect competition. When compared with the
historical dispatch of storage units, we find higher coincidence levels
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of the simulated dispatch when applying a cost-minimising strategy.
This could mean that real-world storage units do not utilise significant
market power and that the German electricity market was close to
perfect competition with insignificant collusion of storage units in the
assessed year. This implication, however, is to be taken with a grain
of salt, since other aspects can impact storage operation as well, most
prominently the participation in intra-day and reserve markets.

Despite its similarity to energy system optimisation models, our
presented approach allows to combine different optimisation rationales
for multiple agents. Thus, partial market power could be simulated.
Additionally, the interplay between competing storage systems and
other market designs, such as renewable energy remuneration policies
[51], can be studied using this approach. Furthermore, it can easily
be enhanced to consider the individual prediction uncertainties of
different storage operators.

In comparison to ABMs that employ machine-learning to model stor-
age competition, such as [14] and [28], our approach provides superior
computational performance as there is no training required. Instead,
our algorithm’s soft parameters, initial weight and decay time constant
(see Section 2.3), proved to yield stable results over a wide range of
the parameter space (see Appendix B). This indicates that the default
parameters can probably be used without adaptation for a wide range of
scenarios. Additionally, the employed dynamic programming algorithm
yielded good results during execution, even with a quite coarse energy
resolution of one tenth of the converter power per storage unit. The
average runtime for scenarios with 18 competing storage units for a
full year with hourly resolution was about 30 seconds per simulation
on a personal computer (Intel Core i7-1370, 32 GB of Memory). A
performance test with 1 to 128 storage agents is shown in Appendix
C. It demonstrates that our approach scales linearly with the number
of storage agents included in simulations and thus enables large-scale
parameter studies, even on limited hardware. While providing other
benefits, equivalent case studies of ABMs utilising machine learning to
model storage competition, demonstrate training times in the range of
hours [52] on the same machine.

An additional benefit of the presented implementation is that it
allows to quantify the lower and upper limits of storage profitability
by switching between the two implemented optimisation rationales
of cost-minimisation and profit-maximisation. The cost-minimisation
rationale provides a “perfect competition” estimate and acts as a lower
boundary for system costs and storage profits. The profit-maximisation
rationale, on the other hand, demonstrates collusion among storage
units and thus represents an equivalent upper boundary to those quanti-
ties. However, it implies that market actors employ similar algorithms
for price forecasting, competition estimation, and dispatch planning.
In case historical dispatch information is published a few hours after
real time, such collusion behaviour could theoretically be realised by
actual market actors. For the German market, corresponding data is
available [32]. Thus, in order to prevent the abuse of collective market
power, antitrust regulations might be necessary. At least, the dispatch
behaviour of storages and other flexibility options should be monitored.

To showcase the capability of our algorithm to deal with higher
levels of competition, we increased the total storage power in a stylised
scenario. Depending on the dispatch strategy variants, we observed
only a moderate increase of total profits for storage units at best, or
even a significant reduction. In general, such studies could contrast
technology-specific economic assessments that rely on historical price
projections, e.g. [53]. However, our stylised evaluation did not consider
an increase of renewables in the scenario. These would likely increase
the price spreads and thus present additional dispatch opportunities for
storage units. We expect storage profits in such a scenario to be highly
dependent on the competition with other flexibility sources, such as
flexible loads, increased international trading, flexibility from sector
coupling technologies, e.g. electrolysers, heat pumps or electric vehi-
cles. In Germany, compared to the detailed expansion pathway goals
for variable renewable generators defined in the German renewables
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act [54], there is no overall goal concerning the capacity pathway
of flexibility sources. There are some strategic policy goals, such as
installing at least 500,000 heat pumps per year and reaching 15 million
electric vehicles by 2030 [55]. However, these goals are not binding
and, for the case of heat pumps, have been failed in the past years. In
contrast, there is a large uncertainty about how the capacity mix will
evolve and influence remuneration perspectives of storages. This might
change with the obligation of introducing indicative flexibility goals for
EU member states according to Article 19f of [56]. Furthermore, we did
not consider other revenue streams for storage units from, e.g., intraday
markets or peak shaving, as illustrated in [57]. These activities would
likely influence the simulated dispatch and, ultimately, the modelled
electricity prices, depending on how storage units optimise across
multiple markets simultaneously. Also, we did not account for revenue
streams from policy instruments that are subject of debate, but not yet
introduced. Relevant policy instruments could be flexibility markets or
capacity remuneration mechanisms, which by EU law must be open to
storages or flexible loads according to Article 22 of [56]. The latter
can even be combined with dedicated revenue streams from support
mechanisms for non-fossil flexibility according to Article 19 g and
19 h of [56]. Those additional revenue streams could impact bidding
behaviour in day-ahead markets and consequentially affect dispatch
patterns and storage profits.

Comparing with other approaches as presented in [58], our method
incorporates strategic behaviour of storage units, but is not based
on an equilibrium approach. While granting high computational effi-
ciency and the possibility to include uncertainty into decisions, our
method lacks mathematical proof. A comparison of the results for single
and multiple storage units indicates that our approach of competi-
tion modelling is at least plausible. Still, a direct comparison with
game-theoretic models would be necessary to strengthen trust in the
presented approach.

5. Conclusions and outlook

We developed an algorithm for dispatch scheduling of competing
storage units based on dynamic programming and smart electricity
price forecasting. The algorithm and its variants were integrated in
the agent-based electricity market model AMIRIS. We used a back-
testing scenario of Germany to compare profit-maximising and system
cost-minimising dispatch strategy variants. Furthermore, we applied
aggregated and disaggregated representations of the storage units to
assess the dispatch strategies with respect to avalanche effects, market
power and competition. A scenario setup with additional battery stor-
age units demonstrates the applicability of our approach also for highly
competitive situations.

Results for the price-taker strategy variant highlight the risk of
avalanche effects when price impacts due to storage dispatch are not
considered. Such avalanche effects can be avoided with our presented
algorithm that allows to equip agents with the necessary awareness of
storage units’ price impacts. This has been proven to work with single
or multiple competing storage units. It was shown that the simulation of
competing storage units can improve model quality with respect to the
reproduction of historical dispatch behaviour. The profit-maximising
strategy variant produced the best results when modelling historical
electricity price dynamics but seems to overestimate profits and un-
derestimate the storage usage. Metrics of the system-cost minimising
variant improved the most due to the disaggregated representation of
storage units. With this variant, storage profit and dispatch were closest
to historical market results. This aligns with market theory expectations
that in highly competitive systems fewer market power is prevalent
[59].

In summary, our method allows to incorporate storage competition
into agent-based simulations using a transparent and understandable
dispatch planning approach. It enables researchers and decision-makers
to assess the market dynamics of competing storages within imperfect
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Table A.1
Technical and economical parameters of conventional power plants.
Technology Installed Block Efficiency Efficiency Variable Markup Markup
Capacity Size Minimum Maximum OPEX Minimum Maximum
in MW in MW in % in % in €/MWh in €/MWh in €/MWh
Nuclear 9524 900 33.0 33.1 0.5 -150 -90
Lignite 21,067 500 31.1 45.0 2.0 -60 0
Hard coal 22,458 300 33.9 49.2 2.5 -15 5
Natural gas CCGT 13,572 200 51.6 61.7 1.2 -10 10
Natural gas OCGT 13,206 100 32.7 44.9 1.2 10 50
oil 3934 100 31.1 39.7 1.2 0 0
Table A.2 CRediT authorship contribution statement
Average prices and CO, emissions of different fuels.
Fuel Average price in EUR/MWh CO, in kg per thermal MWh Christoph Schimeczek: Writing - original draft, Validation,
Nuclear 2.0 0 Software, Methodology, Data curation, Conceptualization. Felix
Lignite 5.0 364 Nitsch: Writing — original draft, Validation, Software, Methodology,
Hard coal 10.98 341 Data curation, Conceptualization. Johannes Kochems: Writing —
Natural gas 16.67 201 .. . . .
oil 37.08 264 original draft, Visualization, Software, Methodology, Conceptualiza-

markets, where policy impacts and uncertainties are also considered.
Since we base our analyses on open source modelling and open data,
the algorithm and its results are fully replicable.

Still, there are several opportunities for further research and devel-
opment. Firstly, extending the analysis to include multi-market respec-
tively multi-use scenarios, such as intraday markets, peak shaving or
ancillary services, will provide a more thorough understanding of how
flexibility options can be optimised across different market contexts.
Secondly, further technical storage details could be added to the as-
sessment, including the degradation of storage systems or self-discharge
rates, in order to enhance the accuracy of the operational simulations.
Thirdly, an important next step would be to validate the robustness of
the presented approach with respect to other market situations, e.g., by
expanding the analysis to further historical years. Especially the years
2020 to 2024 could serve as an acid test for the approach due to the
harsh changes in market conditions in those years, e.g., from changing
demand patterns and natural gas prices. Furthermore, comparisons
with reinforcement learning models and game-theoretic models could
provide a more comprehensive evaluation of the strategic interactions
among various market participants. Quantitative comparisons with
these model types are required to further substantiate the indicated
benefits of the presented approach regarding performance, scalability,
and accuracy. Last, the developed dispatch planning algorithm could
be extended to cover other FOs, e.g., heat pumps, electrolysis units,
or mobility and load shifting applications. Pursuing these avenues
would create a more informed basis for designing policy and regulat-
ing markets, enabling robust simulations of highly renewable energy
systems.

Glossary

ABM agent-based model

DRL deep-reinforcement learning
E2P energy to power

FO flexibility option

MAE mean absolute error

RMSE root mean square error
RTE round-trip efficiency

SOC state of charge
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Appendix A. Backtesting scenario

Here, we provide the most important parameters for the backtesting
scenario and its variants. The scenario is based upon a scenario of the
German day-ahead electricity market in the year 2019 [60]. All data
are openly accessible [35].

Technical and economic parameters of conventional power plants
are shown in Table A.1. Installed capacities are split into blocks of
specified size. Unit efficiencies are interpolated between the specified
minimum and maximum. Mark-downs or markups are also interpo-
lated per unit between the specified minimum and maximum. High
(low) markups or mark-downs are assigned to units with low (high)
efficiency. Variable operation expenditures (OPEX) are assumed per
thermal MWh and otherwise constant per technology. Natural gas
power plants are split into open and closed cycle gas turbines (OCGT,
CCGT). Cost and emission parameters of associated fuels are shown in
Table A.2. Technical and economical parameters of renewable power
plants are shown in Table A.3. Renewable capacities are not split into
units, but chunks with same remuneration parameters. Most capacities
are bound to a remuneration scheme, of which feed-in tariffs (FIT) and
variable market premia (MP) are used.

Significant effort was put into the compilation of an accurate
parametrisation for the storage units since [61] do not cover pumping
power or reservoir capacities and have only very rough estimates for
round-trip efficiency. Regarding the storage units in Germany, we
derived installed charging and discharging powers as well as stor-
age capacities from [62]. For round-trip efficiencies we combined
age data of the storage from [61] with efficiency data from [63]
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Table A.3
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Technical and economical parameters of renewables power plants.

Technology Installed capacity in MW Variable OPEX in €/MWh Remuneration schemes
Photovoltaics 47,753 0 FIT, MP
Wind onshore 53,553 0 FIT, MP
Wind offshore 7504 0 MP
Run of River 5268 0 FIT
Biogas 7833 0 -
Other Renewables 454 1.2 -
Table A.4 Table B.1

Technical parameters of the aggregated and disaggregated (1-18) storage
units; Charging and discharging powers refer to the maximal grid interaction.
Storage capacities refer to the internally stored energy (after application of the
charging efficiency, before applying discharging efficiency).

Correlation of electricity prices with historical prices in the backtesting sce-
nario for 18 storage units and variations of w, and r; higher values of r yield
a slightly higher correlation. The lowest (highest) correlation is marked in cyan
(magenta) colour.

Unit Charging Power Discharging Power RTE Capacity T/w 1 3 6 12 24

in MW in MW in % in MWh 48 0.8665 0.8667 0.8665 0.8666
Aggregated 9188 9325 76.8 227,731 96 0.8668 0.8664 0.8666 0.8667 0.8668
1 400 370 66.0 1,147 168 0.8668 0.8669 0.8669 0.8669 0.8669
2 153 165 76.5 590 336 0.8668 0.8668 0.8672 0.8671 0.8674
3 2340 2336 74.3 9,470 730 0.8672 0.8672 0.8674 0.8676 0.8675
4 360 358 76.0 1,725
5 143 145 80.0 693
6 231 219 71.2 1,103
7 661 623 77.5 3,584 Table B.2
8 80 80 69.6 460 Correlation of total dispatch from 18 storage units with historical dispatch in
9 46 43 59.8 264 the backtesting scenario for variations of w, and r; lower values of w, yield a
10 90 90 74.8 563 slightly higher correlation. The lowest (highest) correlation is marked in cyan
11 463 457 70.0 2,990 (magenta) colour.
12 1078 1002 77.4 6,823
13 327 493 76.7 3,950 T/wo 1 3 6 12 24
14 1540 1532 80.7 13,235 48 0.7891 0.7886 0.7888 0.7879 0.7887
15 360 360 90.3 3,650 96 0.7895 0.7886 0.7893 0.7885 0.7892
16 242 289 74.0 4,234 168 0.7895 0.7886 0.7884 0.7886 0.7884
17 450 525 82.8 50,050 336 0.7892 0.7886 0.7876 0.7880 0.7876
18 224 238 82.8 123,200 730 0.7896 0.7888 0.7885 0.7876

plus own estimates, and compared the results with [64]. We also Table B.3

included five storage units in Austria connected to the German grid.
Their charging and discharging powers as well as storage capacities
were taken from [65]. We estimated round-trip efficiencies based on
water flows during charging and discharging. Regarding the single
storage unit in Luxembourg, we used data from their website. Table
A.4 shows technical parameters of the aggregated and disaggregated
storage units. In both scenarios, initial state of charge for all storage
units was about 43 %. In total, 28 individual storage units with installed
converter power above 30 MW were considered. These were either
aggregated into a single unit, or 18 units. In the latter case, only units
with very similar round-trip efficiency and energy-to-power ratio were
aggregated. For the aggregation, we added up the charging powers,
discharging powers, and storage capacities of the individual units.
Regarding the round-trip efficiencies, we applied an average weighted
by the converter power.

Appendix B. Soft parameter study

The soft parameters w, and = were introduced in Section 2.3. These
parameters determine the estimation of the competition multipliers.
As mentioned in Section 3.2.1, the choice of these parameter can
impact the performance of competing storage units: If wj, is too small,
the competition multiplier estimates show strong fluctuations at the
beginning of the simulation. If wj is too large, the measured multiplier
data is suppressed for a longer time span. The decay time r can be
compared to the averaging window of a moving average. If it is chosen
too small, fluctuations increase, but if it is chosen too large, adaptations
take too long. However, there is no strict way to deduce the best value
for these parameters. Therefore, we conducted a parameter study of w,
and 7 to identify a parameter combination that yields good results for

13

Total profit of 18 storage units relative to fictitious profits that would result
from the historical dispatch at historical day-ahead market prices the in the
backtesting scenario for variations of w, and r; larger values of w, and 7 yield
slightly better profits. The lowest (highest) profit is marked in cyan (magenta)
colour.

/w, 1 3 6 12 24

48 % 128.6% 128.6% 128.6% 128.7%
96 128.8% 128.8% 128.8% 128.8% 128.8%
168 128.8% 128.8% 128.8% 128.7% 128.7%
336 128.9% 129.0% 129.0% 129.0% 129.0%
730 129.2% 129.3% 129.3% 129.3% 129.3%

the storage competition. Furthermore, the parameter study can indicate
how sensitive the results are with respect to the choice of the two
parameters.

Overall, results for price correlation (Table B.1), dispatch corre-
lation (Table B.2), and profitability (Table B.3) are very stable over
the assessed parameter ranges. The difference between the best and
worst value for price correlations differs by 0.0014, which corresponds
to a relative difference of 0.2%. Similarly, the best and worst value
for dispatch correlations are 0.0024 apart, corresponding to a relative
difference of 0.3%. Profitability values vary by up to 0.0077. This
corresponds to a maximum relative change of 0.6%. Best values for
price correlation and profitability can be found at high values of w
and r, whereas best values for dispatch correlation are located at low
values of w, and . However, the sensitivity of the results on the choice
of w, and 7 is so weak, that this choice has no relevant impact on the
results presented in Section 3.
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Fig. C.1. Average walltime of a simulation depending on the number of
storage agents; the walltime scales approximately linearly with the number
of storage agents.

Appendix C. Performance benchmark

The optimisation of storage dispatch using dynamic programming
scales with O(n) regarding the amount of forecast intervals and with to
O(n?) with the number of energy levels, see Section 2.2. The forecasting
algorithm is based on Eq. (3), which scales with O(n) regarding the
number of involved agents. Eq. (5) looks like it has a linear scaling,
too, but is in fact implemented as a recursive series over time, providing
O(1) performance in each time step. Overall, a linear runtime scaling
is expected with the number of involved agents. To demonstrate this,
a performance benchmark is conducted on a personal computer (Intel
Core i7-1370, 32 GB of Memory) using a single computation process
and the backtesting scenario introduced before. Deviating from that
scenario, the total number of storage agents is varied between one
and 128 agents. For each number of storage agents, five simulations
are conducted to provide a stable measure for the average simulation
walltime.

Fig. C.1 shows the average simulation walltime for the simulations
depending on the number of storage agents. The offset of approximately
10 s is caused by the other agents in the simulation, which are not
changed in this setup. A linear scaling can be observed for a larger
number of storage agents.

Data availability

All data and code are available at https://zenodo.org/records/
16978510.
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