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Abstract

An increasing number of open-source, affordable, and compact robotic platforms
built from commercial off-the-shelf components are being developed to approach the
capabilities of complex space rovers. This trend is motivated by the fact that traditional
space rovers take many years to develop, are extremely expensive, and are typically
mission-specific, making them inaccessible as learning platforms for students and
researchers. This thesis presents an open-source, modular state machine framework
that integrates a utility-frontier-based exploration strategy with real time 3D object
localization for low-cost autonomous rovers, and validates the approach on DLR’s
Lunar Rover Mini (LRM).

Exploration is decomposed into reusable low-level state machines within a hier-
archical architecture that handles frontier detection, clustering, and filtering, as well
as position and orientation monitoring, implemented in RAFCON, DLR'’s open-source
software tool to manage autonomous tasks. A utility function balances information
gain, computed by performing 3D ray casting, and travel cost, determined by the
estimated travel time to a frontier centroid, to decide the next frontier centroid.

Moreover, a frontier coverage algorithm is employed to determine the most effi-
cient set of orientations that maximize information gain, based on the normalized
cumulative entropy within the camera’s iFOV across the full azimuth range around
each frontier centroid.

A parallel perception pipeline runs, in real time, a quantized, custom-trained
YOLOv7 model on the LRM’s Intel NUC to detect objects of interest, and compute
their 3D coordinates in the global map frame using stereo depth data and the
camera’s intrinsic and extrinsic parameters.

The design was tested in DLR’s Planetary Exploration Laboratory across a set of
benchmarks and mission scenarios. Results show the proposed Utility With Edges
strategy performs better than classical Closest-frontier and Entropy-only methods,
with the Utility With Edges strategy improving exploration efficiency by 27% over
the Closest-frontier baseline, while achieving accurate real time CPU-only object
detection and localization.

Key limitations of this implementation include the computational cost of ray casting,
the use of a full OctoMap that stores the full range of occupancy probabilities instead
of a binary map, and drift in the visual odometry estimates.

Future work recommendation entail studying how more complex utility functions
affect selecting the next frontier centroid, building a fully autonomous mission pipeline
with autonomous object grasping, and testing the implementation of the open-source
ready-to-use exploration strategy on other robotic platforms with user-defined para-
meters.
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Introduction

The development of mobile robotic platforms has transformed space exploration
by enabling sample retrieval on the surface of planetary bodies. While the Apollo
Program conducted 11 crewed missions, including six successful lunar landings
between 1969 and 1972, advancing scientific exploration of the Moon [1], such
missions are costly, limited to nearby celestial objects, and carry considerable risks
to human life. Moreover, although significant progress has been made in rover
teleoperation since the successful lunar landings of Lunokhod 1 and Lunokhod
2 in the 1970s [2], increasing communication delays make real-time control from
Earth impractical for more distant targets. For example, Mars exploration missions,
beginning with the Mars Pathfinder mission that deployed the Sojourner rover in
1997 [3], operate either on a delayed “send-command-and-execute” model or
rely heavily on onboard autonomous systems. Recent examples include NASA’'s
Perseverance rover, which landed on Mars in 2021 [4], and ESA’'s ExoMars
rover, planned for launch in 2028 [5], both incorporating advanced autonomous
capabilities. Additionally, the MMX rover, developed jointly by DLR and CNES and
scheduled for a 2026 launch, will land on Phobos as part of JAXA’'s MMX mission
[6, 7]. This highlights the importance of space rovers capable of independently
navigating terrain, performing experiments, and collecting samples, as they form a
cornerstone of future deep-space missions.

These important capabilities have driven extensive research within the scientific
community into optimal strategies for exploring unknown environments, with
frontier-based exploration, where frontiers are regions that separate explored free
space from unknown space, introduced in 1997, emerging as one of the most
widely used approaches for autonomous exploration [8]. Since this breakthrough,
numerous strategies have been proposed in the literature, for both single- and
multi-robot exploration, each offering significant advantages and aiming to improve
the efficiency of autonomous exploration [9, 10, 11]. However, these approaches
are often system-specific, making them difficult to apply to other robotic platforms,
and some are evaluated only in simulated environments.

Ultimately, they seek to identify the set of parameters, such as travel cost
and information gain, that maximize a chosen objective function, with substantial
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literature dedicated to comparing different methods [12, 13, 14]. As previously
mentioned, another important capability is autonomous sample retrieval, where
object detection plays a crucial role. This field of knowledge expands beyond the
space robotics domain and has been gaining significant traction in recent years,
largely as a result of progress in Al and machine learning. Several state-of-the-art
real-time object detection algorithms have been proposed in this context [15, 16]. All
things considered, the integration of a frontier-based exploration strategy coupled
with real-time object detection, allows a robotic platform to efficiently map the
environment while detecting objects of interest. These capabilities, when combined
with autonomous object grasping, enable fully autonomous exploration, which
are then tested in analogous mission environments on Earth that simulate space
conditions.

However, these advanced systems pose significant challenges for STEM
researchers and students, including high hardware costs, closed-source and
non-modular software, and the complexity involved in manufacturing and testing,
which makes them impractical as experimental platforms. In response, there has
been increasing interest in developing more accessible, open-source alternatives
built from off-the-shelf components, while still incorporating many of the capabilities
of high-end systems. Such example that addresses this gap is the Lunar Rover
Mini (LRM), Fig. 1.1. Inspired by the locomotion system of the ExoMars rover
and utilizing some of the same software packages as DLR’s Lightweight Rover
Unit (LRU), designed for autonomous search and exploration [17], the LRM
offers a cost-effective, modular, and easy-to-assemble solution, sharing software
components with other DLR robotic platforms, and benefits from an open-source
middleware framework, such as ROS, RAFCON [18], and Simulink.

Other similar modular, built with off-the-shelf components, robotic platforms
tailored to research and educational purposes have increasingly being adopted due
to their ease of prototyping, assembly, affordability, and compatibility with widely
used software.’

Moreover, ROS presents itself as the most used flexible framework for writing robot
software. Hence, it comes as no surprise that almost all autonomous exploration
implementations in literature are done through ROS. Yet, most implementations
remain closed-source, and the few that are available typically offer only basic
functionalities when it comes to autonomous exploration, such as moving to the
closest frontier [20] or simply considering the 2D occupancy grid instead of the more
informative 3D point cloud [21].

In addition, a gap in the literature exists regarding few documented open-source
finite state machine-based ROS implementations to coordinates the execution of
autonomous tasks [22], even though they are widely recognized as powerful tools
for introduction to robotics, with their importance scaling while task complexity
grows [23].

This report focuses on the design of an autonomous exploration strategy built on
an open-source framework, that combines ROS with a hierarchical state machine

"DLR took the first step in this direction by launching ASURO, followed by NASA's JPL Open Source
Rover, launched in 2019. Later, in November 2020, ESA developed the ExoMy rover [19].


https://www.dlr.de/en/rm/research/robotic-systems/mobile-platforms/asuro
https://jplopensourcerover.com/
https://jplopensourcerover.com/

execution software, implemented and tested on the LRM. The devised strategy can
explore a greater space volume in the same amount of time as existing ROS-based
open-source approaches in the literature, without compromising performance. Its
core relies on a utility function that balances travel cost-estimated by the distance to
a frontier-with information gain, which is computed at each frontier centroid through
ray casting to estimate entropy, a measure of uncertainty in the occupancy state of
the environment.

The results indicate that it offers a promising alternative for adoption within
open-source robotics, since the middleware is designed to be extensible, and can
be applied to future research and missions involving other small ground-based
rovers. Furthermore, it advances toward a fully autonomous mission pipeline, by
integrating a real time object detection algorithm running locally on the NUC of the
LRM, parallel to autonomous exploration. This enables it to survey and create a
3D map of the environment while detecting objects on interest, and storing their
position for future object grasping. All in all, this work aims to mature the LRM
project and contribute to the state-of-the-art in autonomous exploration techniques
for open-space rovers and the growing pursuit to develop evermore accessible,
reliable, and modular robotic systems.

Figure 1.1.: Picture of the Lunar Rover Mini 1, on the right with the robotic arm, and
the Lunar Rover Mini 2, on the left.

This thesis is structured as follows. Chapter 2 reviews the state-of-the-art
in autonomous exploration techniques, with a particular focus on open-source
approaches. It also discusses the capabilities of the LRM and similar rovers, as
well as behavior modeling using state machines, and object detection and 3D
localization.

In Chapter 3, the research proposal derived from the preceding literature review is
presented, along with its corresponding research objective and research question.
Chapter 4 focuses on the theoretical background, presenting the key concepts
and relevant theories that underpin the development of autonomous exploration
strategies and object detection. Besides, it covers the foundational capabilities
required a priori in a robotic platform to implement an exploration algorithm.
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Further, Chapter 5 defines a functional framework based on low-level state
machines that are responsible for detecting, segmenting, and filtering candidate
frontier centroids. The exploration algorithm, designed in Chapter 6, then selects
the best centroid to navigate to based on a defined set of criteria. Furthermore,
Chapter 8 validates the proposed approach through a series of experiments, with
the resulting data subsequently post processed and evaluated.

At last, Chapter 9 concludes this thesis work by summarizing the key findings,
revisiting the research questions, and providing recommendations for future work.



Literature Review

This literature review is structured as follows. Section 2.1 describes briefly the
development of space rovers leading up to the LRM, including low-cost open-source
rover platforms. Further, Section 2.2 depicts the capabilities that have been
implemented on the LRM over the years, highlighting the major contributions to
the project. Section 2.3 presents the state-of-the-art in autonomous exploration
techniques, covering both frontier and sampling-based methods, as well as hybrid
approaches and of those, the ones that have been open-sourced and their
characteristics. It also addresses miscellaneous methods and emerging trends in
the field. Further, Section 2.4 centers on behavior modeling with state machines
in autonomous systems, referencing RAFCON, DLR’s software tool to develop
autonomous tasks through HCSMs. Furthermore, Section 2.5 speaks to object
detection algorithms over the years and subsequent development of pipelines for the
localization on objects of interest in 3D space for robotic applications, referencing
YOLO as the most recognized and influential framework in achieving real-time,
high-accuracy detection and tracking performance. Besides, Section 2.6 provides a
summary of the reviewed literature. Finally, after reviewing the literature, Section
2.7 discusses the findings in order to identify the research gap and formulate the
research questions that will drive the direction of this study.

2.1. History of Space Rovers

Space rovers developed throughout history for various mission profiles can
operate in multiple modes, including teleoperation, crew or payload transport, and
autonomous exploration. Depending on the mission and configuration, a single
rover may perform more than one of these functions. The first teleoperated rovers
were the Soviet Union’s Lunokhods. Although Lunokhod 0 crashed during a launch
failure, the Lunokhod 1 and Lunokhod 2, Figure 2.1a, similar in design, successfully
landed on the Moon, marking the first deployment of a remotely controlled robotic
platform on a celestial body [24]. Crewed exploration vehicles, such as NASA’s
Lunar Roving Vehicle, Figure 2.1b, used during the Apollo 15, 16, and 17 missions
in 1971-72 were designed to transport astronauts on the Moon while carrying
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payload. They were manned vehicles, but could be teleoperated in case the crew
was impaired [25]. Since then, autonomous navigation capabilities have been
combined with space rovers to achieve considerable breakthroughs in autonomous
planetary exploration. The Mars Pathfinder lander is often considered the first
mission to feature real autonomous navigation capabilities. It landed in Mars in 1997
carrying the rover Sojourner [26]. Sojourner, shown in Figure 2.1c, carried three
cameras including a front stereo vision camera and a back color camera, which
allowed the rover to steer autonomously using its wheel odometry and IMUs to
generate commanded goal locations.

(a)

(d) Opportunity rover. (e) Perseverance rover. (f) ExoMars rover.

Figure 2.1.: Historical and contemporary planetary rovers. [Credits: Wikipedia,
JPL/NASA, ESA.]

Following Sojourner, further Mars exploration missions have been equipped with
increasingly advanced autonomous exploration space rovers. Opportunity, Figure
2.1d, launched in 2003 with the same six-wheeled rocker-bogie as its predecessor,
a design choice that would become NASA’s standard locomotion architecture
[27]. These were designed to be highly autonomous, including autonomous
instrument deployment and sample retrieval. This was followed by the Curiosity
rover, in 2012, as part of NASA’'s Mars Science Laboratory mission. The rover
has been exploring Mars with the goal of investigating if it can sustain life [28].
Compared to its predecessors, Curiosity featured not only general improvements in
autonomous navigation capabilities but also an increased size and ability to carry
more payload. Next came the Perseverance rover, Figure 2.1e, launched in 2020
toward Jezero Crater on Mars. This rover represents a next-generation improvement
with more sophisticated scientific instruments, with the aim of understanding Mars’
morphological geology. Furthermore, it was equipped with Ingenuity, the first aircraft
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to flight on another planet [29]. Parallel to the development of Perseverance, the
ExoMars rover, Figure 2.1f, was being designed in a collaboration between ESA
and Roscosmos, targeted to search and find well-preserved organic material and
other biomarkers [30]. The launch was originally scheduled for a 2022, but has been
postponed to 2028.

2.1.1. Low-Cost Open-Source Rover Platforms

With this groundwork in place, more open-source, affordable, and smaller robotic
platforms built with commercial off-the-shelf components are increasingly being
developed to approach the capabilities of more complex space rovers. This is
motivated by the fact that these systems take many years to develop and are
extremely expensive and mission specific, making them inaccessible as a learning
platform for students and researchers.

DLR was one of the pioneers in this field, by launching ASURO as early as 2003,
selling over 30000 units at a price of 50 €. This mobile robot included light sensors
and light barriers for odometry and line tracking, allowing the ASURO to detect
and avoid obstacles. More recently, NASA JPL developed the Open Source Rover
(OSR), launched in 2019, Figure 2.2a. This remote-controlled rover is equipped with
the same six-wheeled rocker-bogie as NASA’'s complex space rovers, achieving a
speed of 1.75 m/s, with a minimum autonomy of 5 hours. The rover is priced at
2160 € and can feature a LED head display. The OBC is based on a Raspberry Pi,
running a Linux and Python software stack with ROS as the middleware framework.
Nonetheless, the OSR does not include autonomous navigation capabilities, leaving
it to the user to mount additional hardware on the rover, such as a stereo vision
camera for visual VO or an IMU for SLAM sensor fusion. In line with this trend, the
Sawppy rover project was created, Figure 2.2b.

(a) Open Source Rover. (b) Sawppy rover. (c) ExoMy rover.

Figure 2.2.: Low-cost, open-source rover platforms designed for educational and
research purposes. [Credits: JPL/NASA, Sawppy, ESA.]

The Sawppy rover featured the same six-wheeled rocker-bogie locomotion
system, but brought the total cost down to 430 €. This was possible because of
smaller overall dimensions and using a combination of aluminum and 3D-printed
parts, compared to the frame of the OSR. Moreover, this rover uses hobby servo
motors, when compared to the individual DC motors of the OSR. Thereafter, in
2020, ESA launched the ExoMy rover, Figure 2.2c. Similarly to the OSR, it runs
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on a Raspberry Pi, with ROS as the middleware framework, but it incorporates
a Raspberry Pi Camera as well. The suspension system is the same as the
aforementioned rovers, achieving a maximum speed of 0.23 m/s. This option was
the most affordable at just 250 €, thanks a fully 3D-printed design.

The Lunar Rover Mini project, born in 2015, adds to this field of modular
open-source rovers. Influenced by the ExoMars rover locomotion system, where
DLR played a crucial role in its development [31], and using the same high-level
software of DLR’s Lightweight Rover Unit [17], the LRM project was created with the
goal of providing a low-cost, accessible testing platform for educational and research
purposes [32]. Thanks to its modular components and 3D-printed body parts, as
well as its small size 36x26x39 cm, it is easy to carry and assemble. The LRM is
equipped with a servo-controlled pan-tilt unit with an Intel RealSense Depth Camera
D435i and a 6-DOF robotic arm with an end effector, which allows for autonomous
navigation, and arm manipulation, respectively. This has the advantage of offering
these capabilities out of the box, rather than requiring additional costly upgrades.

Moreover, it is powered by an Intel NUC, rather than a less powerful Raspberry
Pi. lts estimated cost is around 2000 €. In addition, the LRM benefits from an
open-source software framework based on ROS, Simulink, and Python. The core
capabilities of the aforementioned rovers are summarized in Table A.1.

2.2. Lunar Rover Mini

The LRM was created as a project to serve as an open-source, low-cost, robotic
platform for educational purposes. Since the start of the project, students have
contributed to it by continuing to increase the LRM capabilities. The project is guided
by the aim of making robotic platforms more accessible to researchers and students.
The LRM is designed for deploying modular software packages and is built using
off-the-shelf hardware components.

Recently, the effort has been focused on improving the autonomous navigation
capabilities of the rover. Ricardez Ortiogsa [33] integrated the LRM with
an autonomous navigation algorithm and corresponding data pipeline, apart
from validating the fully functional system integration. Next, Sam Bekkers [34]
implemented a visual-inertial SLAM algorithm that combines data from stereo
camera images and onboard IMU measurements to improve the accuracy of tracking
the rover’'s movement over time. Also the work of Marco Conenna [35] improved
the accuracy of the 6DOF robotic arm of the rover, through an elasto-kinematic
calibration.

2.2.1. System Architecture Overview

The LRM is considered a small ground-based rover of dimensions 36x26x39 cm,
with a 3D-printed acrylonitrile styrene acrylate (ASA) body frame, supported by a
passive '3-bogie’ suspension system for a total of 6 wheels. This configuration,
inspired by the ExoMars Rover locomotion system [36], keeps all wheels in contact
with the ground and the main body frame stable, when moving through uneven
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terrain. The motivation of using ASA is based on its lightweight structure and ability
to withstand higher temperature variations and mechanical stress compared to
traditional fused deposition modeling material such as polylactic acid, as well as the
fact it can be reproduced using 3D printers at home.

End-Effector

- Pan-Tilt Unit Camera

I or-coars NS
A computer

i E* | - __, :
 awaE4 L @Z5S
Steer and Drive ___ ripper
(]
Figure 2.3.: LRM’s key components overview, including mechanical and electronic
systems.

Its main body frame contains the OBC, middleboard PCB, and wireless antenna.
The antenna connects to a ground station that provides VNC access to the Intel
NUC. Besides, each wheel is powered by its own servo motor, meaning each bogie
has two servo motors, allowing for a 6-wheel differential steering. On top of that,
each wheel is driven by a servo motor placed inside it. Thus, in total, there are 12
servo motors for wheel movement and the 2 servo motors for moving the pan-tilt
unit through Pulse Width Modulation (PWM) signals. Figure 2.3 presents the rover’s
key components.

2.2.2. Onboard Electronics and Communication

An overview of LRM’s onboard electronics is presented in Figure 2.4. The schematic
illustrates the system’s communication architecture, showing how the OBC connects
with other components. The OBC is an Intel NUC with an i7 processor running
an Open-Suse Leap 15.4 OS. On top of that, USB connections connect the Intel
NUC to both the pan-tilt unit (via USB-C) and the body PCB (via USB Mini-B). The
NUC also uses an WiFi antenna to link with external devices, although there is
the possibility of a direct Ethernet connection. Additionally, RS-485, a reliable,
differential serial protocol, is used by the middleboard to connect to the six Bogie
PCBs. The entire system is powered by a 14.9 V LiPo battery.
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@ Bogie PCB21 Bogie PCB20

Intel
USB; NUC USB

Bogie PCBO1

Body PCB

Bogie PCB0O

i Bogie PCB10 Bogie PCB11

Figure 2.4.: Overview of the onboard electronics and module communication.

The OBC is responsible for running the autonomous navigation algorithm,
interfacing directly with the stereo vision camera and determining the steering angles
and driving speeds of the wheels. Too, the body PCB also handles communication
between the OBC and all actuators.

2.2.3. Software Architecture

As previously mentioned, the LRM shares the same high-level software infrastructure
of DLR’s LRU. This allows to exchange and reuse software packages from different
robotic platforms from the Robotics and Mechatronics (RM) institute of DLR. All
software packages are deployed through the Links and Nodes (LN) Manager. The
LN Manager is an open-source process manager tool developed by DLR-RM for
deploying a hierarchical set of processes on robotic systems [37].

processes | diients | topics | services | parameters | log

connectall | saveall display type: per group v | oedit | Qreload | g

Group: 00_Normal operation
> Standard Tools/ v startall ° stopall

7 % LRM simulink on irm2

edit config
? % rover communication on Irm2

? % arm_planning server on Irm2
? % LRM_gui_simulink on Irm2

> 01_Controller/

v 02 Autonomous_Navigation/

? X realsense_ros on Irm2
Visual Odometry/
Local Mapping/
Navigation/
SLAM/

# X octomap_mapping on Irm2
# X Irm2 _rostopic2in on Irm2
X rviz_Irm on Irm2
3 LRM_transforms publisher on lm2
v 03 Autonomous Exploration/
? X rafcon state machines on Irm2
? X octomap_msgs saver on lm2
" 04 Object Detection/
7 3 LRM _object detection on Irm2
v 05.Logging/
# 3 LRM system_monitoring on lrm2
7 3 LRM rosbag record on m2
7 3 LRM _area_covered on Irm2
> oeT0OLS/
> o7.Low.Levelguir all processes status
> 99 ALL GROUPS/

Figure 2.5.: Links and Nodes Manager of the LRM.
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As it can be seen from Figure 2.5, the LN Manager allows to monitor the status of
each process. Thus, the LN Manager manages different processes, regardless of
whether they are developed in ROS, MATLAB, Python or C++. Regarding the LRM,
ROS is used for all tasks related to perception, navigation, and mapping. Hence,
two middleware framework are identified on the LRM, the LN Manager and ROS.

2.2.4. Rover Operations

The LRM features a low-level and a high-level GUI. The high-level GUI allows to
steer and drive the LRM, rotate the pan-tilt unit and specify the target position for
the robotic arm’s end-effector. Also, it enables switching between different control
locomotion modes, including the high-level GUI, a gamepad controller, and the
autonomous navigation stack. The different inputs from these control modes are
converted to a universal velocity command vector passed through a Simulink model
that determines the behavior of the rover’s steering and driving servo motors.

There are three different driving modes, defined by a combination of linear
velocities along the x and y direction, and angular velocity around the z-axis. They
are Ackermann Mode (car-like turning with sharper angles on the inner wheels),
Rotation Mode (rotation in place), and Crabwalk Mode (sideways motion with all
wheels aligned in the same direction). The conditions for each driving mode are
depicted in Figure 2.6.

Ackerman forwards
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Figure 2.6.: LRM different driving mode conditions [33].

Moreover, the low-level GUI is used for calibrating the wheels zero position, and
tuning the PID control values for both steering and driving, including both the inner
and outer control loops.

2.2.5. Perception

The LRM uses a feature-based approach to VO, which involves detecting and
tracking specific keypoints in the environment. It uses a Good Features to Track
detector [38] to extract features from the stereo vision camera images and and
describes the local environment around these keypoints using Binary Robust
Independent Elementary Features (BRIEF) [39]. Then, the features between
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consecutive images are matched to estimate the motion of the rover. Figure
2.7 depicts this process of extracting features from the environment. This is
implemented in the LRM within the ROS rtabmap_odom' node.

Figure 2.7.: GFTT algorithm with detected visual odometry keypoint captured in one
camera frame [34].

The LRM is equipped with autonomous navigation capabilities built upon a visual
SLAM pipeline using the Intel RealSense D435i RGB-D camera, which combines
stereo vision and an IMU. The open-source RTAB-Map module, used for solving the
SLAM problem [40], integrated with the GTSAM optimization backend, updates a
factor graph in real time to generate a consistent 3D map [41]. This is implemented
in the LRM within the ROS rtabmap_ slam? node.

This map is shared with the ROS-based navigation stack, which includes a
local planner with a path-planning algorithm, a motion controller for drive mode
and specific velocity commands, and a global planner to correctly estimate the
rover’s pose in a global map frame. This allows to create a real time 3D point cloud
representation of the environment, and an occupancy grid, which identifies occupied,
free, or unexplored space, illustrated in Figure 2.8 and Figure 2.9, respectively.
More specifically, the local planner’s path planning algorithm employs the classic A*
search method to generate a short, collision-free path within the local costmap
[42]. In Figure 2.9, grey grid cells () are considered free, black grid cells (H) are
occupied, and green ones are unknown (H).

Information about the rtabmap_odom ROS node can be found here.
2Information about the rtabmap_s1am ROS node can be found here.


https://wiki.ros.org/rtabmap_odom
https://wiki.ros.org/rtabmap_slam
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Figure 2.8.: Example of 3D point cloudFigure 2.9.: Example of 2D occupancy
generated. grid generated.

2.3. Autonomous Exploration Techniques

Additionally, this section deals with different autonomous exploration techniques.
More specifically, Subsection 2.3.1 examines frontier-based exploration algorithms,
Subsection 2.3.2 looks into sampling-based exploration algorithms, Subsection
2.3.3 covers hybrid frontier-based and sampling-based exploration algorithms,
and Subsection 2.3.4 briefly mentions emerging trends and other miscellaneous
methods when it comes to autonomous exploration techniques. This is followed by
Subsection 2.3.5, which discusses the state-of-the art in open-source ready-to-use
exploration strategies.

2.3.1. Frontier-Based Exploration

Frontier-based exploration was first introduced by Yamauchi in 1979 [8]. It involves
detecting and using frontiers, defined as the boundaries between known and
unknown areas, to move through an unknown environment while building a map
that can be used for subsequent navigation. Thus, detecting frontiers represents the
central process in frontier-based exploration algorithms, meaning that variations
across methods lie on how frontiers are selected [12, 43, 44]. When moving towards
a new frontier, either part or all of the previously unknown space will be mapped. If
only part of the space is mapped, a new frontier will emerge, separating known and
unknown areas.

The first, simplest method, consisted in detecting candidate frontiers from an
occupancy grid map [8]. This is possible since occupancy grid maps contain cells
that can be represented by one of three states: cells with low occupancy probability,
free space, cell with unknown occupancy probability, unknown space, and cells with
high occupancy probability, occupied space. Then, candidate frontiers are clustered
into frontier clusters based on proximity, and the centroid of each frontier cluster is
computed, where frontier clusters below a minimum size threshold or unreachable
based on the arrangement of high occupancy probability grid cells, are disregarded.
By knowing the cartesian coordinates of each centroid in space, as well as the
robot’s pose, the euclidean distance from the robot to the centroid is computed.
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Finally, the robot can select the closest frontier and navigate towards it.

Topiwala et al. [11] highlighted that this frontier detection algorithm is rooted in
Breadth-First Search (BFS) from graph theory. When the robot fails to reach a goal
after some time, that location is marked as an inaccessible frontier and the process
of moving towards the closest, accessible, unvisited frontier is triggered. However,
one of the downsides of this strategy is that it requires to go through the entire
occupancy grid map at every run of the algorithm between moving through different
frontier centroids.

To overcome this limitation, an improved version of this methods called Wavefront
Frontier Detector (WFD) was introduced [11], which limits scanning to the known
regions of the occupancy grid, thereby reducing computational load. This work
showed that total travel time and distance covered are lower using the WFD
algorithm, when compared to a human tele-operating the same robot to generate
a 3D map of the surroundings. Hence, it also contributes to the ever-increasing
certainty on the importance of autonomous exploration systems.

As well, in contrast to BFS-based frontier exploration, [45] proposed a recursive
Depth-First Search (DFS) strategy, also rooted in graph theory, which incrementally
builds a tree structure from sensor data without scanning the entire grid. Unlike BFS,
where all nodes are explored on the same level before going into the next depth
level, DFS follow a node path as deep as possible before backtracking.

The aforementioned strategies can all be considered utility-based if the only
parameter of the utility function to be minimized is distance between robot
and frontier. Nonetheless, selecting frontiers solely based on distance overlooks
other parameters, such as information gain, and environmental complexity, which
could result in redundant exploration, poor map scalability, and limited mapping
efficiency. This being the case, a utility-based goal selection, where the score
of each candidate goal position is determined by its traveling cost and expected
information gain, weighted by a scaling factor in an utility function, was introduced
by Gonzalez-Banos and Latombe [46]. Traveling cost can be seen as the time
between the initial and final pose of the robot, which can be inferred by the distance
between the two points, and maximum linear and angular velocity. Information gain
stems from the concept of entropy, which measures uncertainty about a system.

In the context of a robot exploring an environment, entropy quantifies uncertainty
about the map or the state of a grid cell given the probability of occupancy of each.
The first entropy-based utility function was introduced by Bourgault et al. [47] in
2002, using a convex combination of the map and the robot’s pose entropies.
Overtime, most state-of-the-art utility functions are based on Shannon’s entropy, a
special case of Rényi’s entropy [48], which quantifies the average uncertainty or
information content of a random variable as the sum of the negative probabilities of
each outcome multiplied by the logarithm of those probabilities [49].

In fact, most of newly implemented frontier-based strategies in the literature can
all be traced back to a more or less complex utility function that balances traveling
cost and expected information gain. For instance, Dai et al. [50] implemented a fast
frontier-based information-driven algorithm for a Micro Aerial Vehicle (MAV), where
the utility function is a ration between expected information gain and travel time.
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Because most of these strategies are tested in simulated environments, the
literature shows some effort into comparing experimentally the performance of
different frontier-based exploration strategies [10, 12] or through theoretical trade-off
comparative studies [14].

Nevertheless, purely theoretical trade-off comparative studies are more qualitative
than quantitative in showcasing results, and the ones that have been experimentally
compared are rather simple strategies, given the effort of implementation. Some
extensions of the original two parameters of the utility function are also present in
the literature. For instance, Cogent Frontier Exploration (CFE) which chooses new
frontier position goals based on four parameters-cluster factor, based on the size of
a frontier cell cluster, distance factor, related on the Eucledian distance, clearance
factor, based on the accessibility of a frontier cell, and unreachable-point factor, that
gives a penalty to frontier cells that cannot be reached-through the information of
the 2D occupancy grid map [51].

In addition, Gomez et al. added a semantic utility term, responsible for giving
a semantic importance to transit areas, giving higher priority to areas that are
gateways to unexplored regions, even if they are small in size [52]. Too, the work of
Li et al. extended the parameters of the utility function to account for the overlap
between the new information from the partial map at every observation point, and
the current global map. This is particularly important on exploration strategies that
heavily rely on accurate localization [53].

It is also important to mention that even though only one robot has been
considered for a particular strategy so far, a parallel set of literature is also
dedicated to expanding these frontier-based exploration strategies for swarms of
robots [9, 54, 55]. Nonetheless, the more recent work of Kuckling et al. provides
evidence that multi-robot systems experience a critical point in system size beyond
which performance plateaus or starts decreasing [56]. Too, that the vast majority
of such exploration strategies are implemented using ROS as the middleware.
This is because frontier detection relies on a generated 3D point cloud from the
environment, and respective 2D occupancy grid, which is well integrated within a
ROS framework.

2.3.2. Sampling-Based Exploration

An alternative approach to frontier-based exploration is sampling-based exploration,
which relies on generating random samples in the environment. The simplest
example of a random selection mechanism is known as a random walk, where the
robot selects a random direction and moves towards it until a new one is selected.
Examples of random walk variants include correlated random walks [57], Lévy walks
[58], Lévy taxis [59], and ballistic motion, which vary in step lenght and turning
angle over time. In contrast, pure random action selection may be very inefficient.
Thus, heuristic criteria can be employed on the randomly selected set of points to
determine the next position goal. With regards to sampling-based methods, the
state-of-the-art approach is receding horizon (RH) [60, 61, 62]. A RH approach
means the robot repeatedly plans and executes short-horizon paths toward the best
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exploration goal, replanning whenever the map updates, so it remains adaptive and
efficient in unknown environments. In other words, the robot moves to the first node
along the path and once it reaches this node, a new planning tree is generated,
using the best branch from the previous tree as the starting point.

Moreover, LaValle pointed out that this method offers simplicity and guarantees
completeness, ensuring that any sequence of actions will eventually be executed and
that a solution will always be found, if one exists [63]. Additionally, sampling-based
exploration enables computing different information gains directly from the map,
without using a fixed definition of what is considered as useful information.

The underlying most adopted method in the literature through which randoms
sample points are generated for sampling-based exploration is Rapid-exploring
Random Tree (RRT), initially introduced in 1998 as a randomized data structure
tool for path planning problems [64]. It is a method that incrementally builds
a space-filling tree by sampling random points in the configuration space and
connecting them to the nearest existing node in the tree. When applied to
sampling-based exploration, the RRT algorithm incrementally grows a tree into
unknown regions of the environment, effectively guiding the robot toward areas that
have not yet been observed. Each new node in the tree represents a potential
exploration goal, and the connections between nodes form feasible paths that the
robot can follow. Of course, each node that represents a potential exploration goal
can also be evaluated through an utility function, as demonstrated by Bircher et al.
using a RH-NBV (Receding Horizon Next Best View) planner [60].

Nonetheless, this approach, does not scale well for large-scale environments.
Thus, in this field, focus has been given to proposing RRT variants that improve
exploration efficiency, since the core RRT algorithm provides a flexible and
scalable framework for incrementally covering unknown space, naturally balancing
exploration of unvisited regions with feasible path generation [64]. Aside from
RRT, another pioneer sampling-based motion planner comes from Probabilistic
RoadMaps (PRM). In contrast to RRT, PRM build a global roadmap of the free
space by randomly sampling nodes and connecting them into a graph [65]. PRM
is well suited for multi-query planning, since once the roadmap is built, many
start—goal queries can be answered efficiently. RRT, on the other hand, is more
effective for single-query or online exploration tasks, where rapid incremental growth
toward unexplored regions is preferred. The work of Karaman and Frazzoli proposed
improved versions of both methods, RRT* and PRM*, which extend the original
algorithms with asymptotic optimality guarantees.

Unlike classical RRT and PRM, which are only probabilistically complete and may
converge to suboptimal solutions, RRT* and PRM* ensure that as the number of
samples grows, the cost of the solution converges almost surely to the optimal
value, all while maintaining a computational complexity within a constant factor of
the original algorithms [66].

In recent literature, a large number of papers have presented the state-of-the-art
when it comes to variations of the original RRT method, with respective advantages
and disadvantages, that could potentially be used as part of sampling-based
exploration [67, 68]. Moreover, some scholars have proposed autonomous
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exploration solutions that build on top of these different sampling methods.

One such variation is Sensor-based Random Trees (SRT) which samples
randomly within Local Safe Regions (LSR) defined by sensing the environment [69].
The SRT method addresses the limitations of RRT by adapting step lengths to
obstacle density, avoiding unnecessary collision checks, and using a depth-first,
backtracking exploration strategy better suited for sensor-based environments. In
the authors’ work, Oriolo et al. propose two different SRT algorithms: SRT-Ball,
which uses a circular, fixed-radius LSR, and SRT-Star, which uses an adaptative
star-shaped LSR according to sensor data. Thus, while SRT-Ball prioritizes safety,
it performs poorly in cluttered environments. In contrast, SRT-Star offers better
coverage and more efficient navigation in narrow spaces.

Furthermore, Xu et al. proposed a Dynamic Exploration Planner (DEP) based on
PRM, motivated by the fact that most sampling-based methods fail to efficiently
reuse sampled information from previous planning iterations, resulting in redundant
computation and longer exploration times [70]. Their approach incrementally builds
the roadmap by adding nodes that are evenly distributed within the explored
region, enabling the selection of informative viewpoints while reducing unnecessary
sampling for a UAV. Also, the literature suggests that even though a lot of effort
has been dedicated into proposing improved variants of the RRT algorithm, such
as Informed RRT* [71], Goal-biased Bidirectional RRT [72], RRT-Connect [73],
among others, most implementation of sampling-based methods for autonomous
exploration, especially concerning more recent literature, are coupled with some
frontier-based method [61, 74, 75, 76], expounded upon below.

2.3.3. Hybrid Frontier-Based and Sampling-Based Exploration

Hybrid exploration methods combine frontier-based strategies with sampling-based
approaches such as RRT, leveraging the complementary strengths of both methods.
Frontier-based exploration is best at identifying and guiding the robot toward
informative boundary regions between known and unknown space. However, it
suffers from inefficiency when navigating large or complex environments, as the
robot may need to backtrack repeatedly between distant frontiers. On the other
hand, sampling-based methods, like RRT and its variants, provide flexible and
feasible path planning generation, but may lack the global perspective needed for
complete coverage. By integrating the global awareness of frontier methods with
the adaptability and scalability of sampling-based planning, hybrid approaches
can overcome these individual limitations and enable robots to explore unknown
environments more effectively.

Freda and Oriolo [74] extended the SRT method presented before, by introducing
a frontier-aware variant, Frontier-Based SRT. While the original SRT builds a
roadmap by sampling within sensor-defined LSRs without distinguishing obstacles
from unexplored areas, FB-SRT incorporates frontiers to improve exploration
efficiency. In this method, the robot’s LSR boundary is divided into three types of
regions: obstacle regions, free regions, and frontier regions. By identifying frontier
regions, FB-SRT biases the robot’s movement toward unexplored regions, while still
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maintaining the random sampling nature of the SBE process.

Selin et al. [61] proposed a hybrid exploration strategy that combines Frontier
Exploration as a global planner with RH-NBVP for local exploration, enhanced
by fast information gain estimation and caching to improve efficiency in large
environments. Interestingly, hybrid methods are applied more to UAVs or MAVs
rather than rovers in the literature. For instance, Dai et al. [50] introduced a hybrid
exploration framework for MAVs that leverages octree-based occupancy mapping to
implicitly cluster frontier voxels, samples candidate next-views directly from frontiers,
and evaluates them using a utility function combining entropy reduction via sparse
ray casting with travel cost.

As well, Wang et al. [77] proposed a systematic 3-D UAV exploration framework
that incrementally builds a roadmap to capture the environment’s topology,
enabling efficient next-best-view evaluation through information gain and cost-to-go
estimation, while a potential field-based local planner guides the UAV toward
information-rich regions, achieving higher exploration efficiency than existing
methods. Ning et al. [76] introduced the Hybrid Multi-Strategy Rapidly-Exploring
Random Tree (HMS-RRT). This approach combines sampling-based exploration
with frontier detection by leveraging a sub-region sampling strategy and a greedy
frontier-based exploration strategy together with Voronoi diagrams to divide the
environment into sub-regions. Results in the authors work showed that this strategy
improve the efficiency and reliability of exploration in both travel time and distance
covered.

2.3.4. Emerging Trends and Miscellaneous Methods

Recent literature goes beyond classical frontier-based and sampling-based
strategies. Notably, several studies focus on innovative approaches to enhance
both exploration efficiency and decision-making under uncertainty. Long et al. [75]
proposed the Hierarchical Planning based on Hybrid Frontier Sampling method
(HPHS), which combines frontier sampling from LiDAR data with a hierarchical
planning strategy. This approach divides the environment into sub-regions,
optimizing the order where each sub-region is accessed according to a maximum
score.

In the field of knowledge of learning-based techniques, Leong [78] integrated
reinforcement learning with frontier-based exploration. By leveraging a reward-based
system, the proposed algorithm enables robots to learn optimal exploration path,
increasing the accuracy of visual SLAM and addressing challenges associated with
multiple frontiers of similar distances. On top of that, Cai et al. [79] introduced an
enhanced hierarchical planning framework for multi-robot systems. This approach
combines the efficiency of frontier-based methods with reinforcement learning.
By employing a multi-graph neural network and policy-based reinforcement
learning, the framework effectively improves exploration performance in complex
environments.

Further, Sun et al. [80] developed FrontierNet, a learning-based model that uses
2D visual cues from RGB images to detect frontiers and predict their information
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gain. This image-only frontier-based exploration system addresses limitations
of traditional 3D map-dependent methods, achieving notable improvements in
early-stage exploration efficiency. What is more, Zhang et al. [81] put forward Local
Constrained Sampling and Frontier Prioritization RRT, a hybrid exploration algorithm
that integrates RRT with frontier detection. Instead of relying on image-based
methods, it identifies frontiers by recording the top nodes of the RRT. By combining
this with a local constrained sampling strategy and prioritizing frontiers based on
their utility, the method significantly increases exploration efficiency in large-scale
environments.

Methods that deviate from the norm include a multi-objective optimization
approach presented by Amigoni and Gallo [9]. In this approach, the system
evaluates each candidate observation point based on its individual values for
traveling cost, information gain, and localization overlap. It then identifies the set of
Pareto-optimal candidates—those for which no other candidate is better in all three
aspects. Besides, Dumitru et al. [82] presents a navigation system for autonomous
mobile robots operating in unknown environments based on the artificial potential
field method. In this approach, obstacles are associated with repulsive fields and
target points with attractive fields, both calculated based on distance and relative
position. The robot’s movement is determined by the resulting vector from the
combination of these fields.

These methods are very complex to be applied to modular, built with off-the-shelf
components, robotic platforms in a reliable way, but are relevant to mention
given how many different ideas have been presented in this field of autonomous
exploration techniques. Also, the fact that more comprehensive studies need to
be carried out to prove the efficiency of such strategies when compared to more
standard ones. However, this is difficult to achieve because proper comparison
between methods means that all shall be implemented in a single system, whereas
these are system-specific.

2.3.5. Open-Source Exploration Strategies

From the previous subsections, it is evident that most autonomous exploration
techniques are system-specific, and even by consulting the appropriate references
are difficult to replicate and implement on different robotic platforms. This being the
case, some literature is specifically dedicated to providing ROS-based autonomous
exploration techniques that can be shared and reused across different systems,
thereby promoting reproducibility, easing integration, and enabling the research
community to build upon common open-source frameworks. Such strategies are
then presented to the scientific community through GitHub repositories, sometimes
with complementary papers.

One of the difficulties associated with this is the fact that different systems need to
share similarity between middleware frameworks, and a level of maturity where
the robot has to perceive its environment, localize itself within in, and navigate
effectively. In other words, enabling autonomous exploration depends on its ability to
simultaneously solve mapping, localization, and motion planning tasks beforehand,
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as depicted in Figure 2.10. On top of that, because an increase in the complexity of
exploration strategies demands a system architecture more tailored to that particular
strategy, makes it so they are rather simple, as explained below.

Simultaneous
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‘ Approaches
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Figure 2.10.: Foundation capabilities for autonomous exploration, taken from
Darmanin and Bugeja [83].

For instance, an Autonomous Explorer Node for Frontier Exploration® has been
proposed as a ROS package that detects frontiers, leverages the ROS 2 Navigation
(Nav2) framework—the standard navigation stack in ROS 2, which provides
localization, mapping, costmaps, path planning to enable safe, collision-free
navigation [84]-and chooses the closest unexplored frontier as the next position goal.
A more complex open-source strategy was proposed by Umari and Mukhopadhyay
[85]. This exploration strategy works by growing RRT tree until a point that lies in an
unknown region of the global map. Then, after detecting possible frontiers, the
revenue, R, of each frontier point, Xfy,, IS computed by balancing navigation cost, N,
and information gain I, through a scaling factor, A-a utility function is employed.

Nonetheless, the navigation cost is just taken to be the euclidean distance
between the current pose and the frontier point, overlooking the time it would take
to get to the actual point given the presence of obstacles in the map or current
orientation. In addition, the information gain is given by the number of unknown cells
around a frontier point within a certain radius in the 2D occupancy grid, which fails
to take into account the more reliable information coming in from the 3D point cloud.
This information can be retrieved by representing the 3D map through an OctoMap
[86]. Here, the 3D space is represented using voxels, 3D volumetric cubes that have
an attached occupancy probability. The downside side it that OctoMaps require
more memory and processing because they store 3D spatial information and need
to manage hierarchical tree structures. Thus, updating and querying an OctoMap is
computationally more intensive than a 2D grid, especially in large environments.
Having an OctoMap also allows to compute entropy in each frontier point through
ray casting, something that is not possible by just resorting to the 2D grid.

SAvailable: https://github.com/AniArka/Autonomous—Explorer—-and-Mapper-ros2-1
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2.4. Behavior Modeling with State Machines

Another important point to make is that these ROS frameworks are great for
providing standardized interfaces for sensors, actuators, and navigation modules,
but they often lack a user-friendly visual interface for monitoring and controlling the
exploration process. To address this, Finite State Machines (FSMs) can be employed
to structure and manage the robot’s behaviors, allowing for clearer visualization
of states, transitions, and decision-making during autonomous exploration. FSMs,
pertaining to the broader field of behavior modeling, is a foundational aspect
in the development of robotic systems for autonomous mobile robotic platforms.
These systems are required to perform complex tasks—including perception,
decision-making, and motion planning.

Behavior models provide a structured way of organizing and controlling the flow of
robotic tasks into states. In the literature, behavior-based control architectures such
as subsumption [87], have laid the foundation for reactive robot behavior, where
complex actions arise as the result of the interaction of simpler ones. Further
development allowed the introduction of Hierarchical Concurrent State Machines
(HCSMs) [88], which combine the modularity of hierarchical state machines with
the concurrency of parallel processes, enables the modeling of complex, real-time
behaviors by allowing multiple tasks to operate simultaneously and interact in a
structured way.

Variation of the original FSM concept are also present in the literature under the
form of Extended Finite State Machines [89], Communicating Finite State Machines
[90], or Probabilistic Finite State Machines [91].

When it comes to integrating FSMs for robotic tasks, more particularly autonomous
exploration, there is low research in this domain. Steinbrink et al. [92] describe a
state machine tailored for exploration and inspection tasks with a GUI designed for
ROS, which comes already with some basic functionalities, such as boot state, idle
state, teleoperation state, and waypoint following state. To enable this, three plugins
must be implemented, each providing interfaces to arbitrary ROS packages. They
are a calculate goal state, a mapping state, and a navigation state.

Nevertheless, as the authors state in their paper, such state machine has
only been successfully demonstrated in 2D scenarios, with missing plugins and
development for 3D environments. Another example is SMACH developed by
Bohren and Cousins [93]. It is a ROS framework for designing and managing
hierarchical finite state machines, allowing developers to structure robot behaviors,
define states and transitions, and integrate them with ROS nodes for modular and
reusable autonomous control through a GUI.

However, even though additions have been made that improve SMACH’s
capabilities over the years, it is not user-friendly, with poor visualization, the lack of a
visual editor and efficient runtime monitoring. FlexBe [94] tried to fix some of the
issues with SMACH, mainly a better visual interface with a visual editor. Some
additions to FlexBe included integrating the ROS Navigation stack [22]. Even though
this is a notable effort, it simply allows the user to have more control over decisions
that are internal to the ROS Navigation plugin model, as fails to describe a broader
approach for managing autonomous tasks, specifically autonomous exploration, in
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this framework. This is a recurring theme, as in most of the contributions to either
SMACH or FlexBe come from integration already existing ROS packages into the
framework.

Other standalone project exist when it comes to ROS-based decision-making
packages”, but they lack the capabilities of the aforementioned ones.

Coupled with this, RAFCON (RMC Advanced Flow Control) is another open
source software tool, which was developed by DLR, based on hierarchical and
concurrent state machines, that facilitates the creation, management and execution
of autonomous robotic tasks [18, 96]. RAFCON operates with a better GUI and
visual editor than the aforementioned, that simplifies the design and management of
such state machines. Its interface supports three basic states. They are execution
states, hierarchy states and concurrency states. The software tool was validated
during the SpaceBotCamp, where it was used to program complex autonomous
tasks with more than 700 states, 1200 transitions and 8 hierarchy levels on DLR’s
LRU [97].

2.5. Object Detection and 3D Localization

Object detection plays a central role in autonomous robotic systems, as it enables
the identification and localization of relevant objects within the robot’s environment.
This is relevant in many different fields within robotics, from autonomous exploration
and manipulation, where robots must recognize and interact with specific objects
for sample retrieval, to environmental monitoring and inspection, where detecting
changes or anomalies is critical.

This capability is typically achieved on robotic platforms equipped with stereo
vision cameras, which provide both RGB and depth information. By combining these
data sources with the camera’s intrinsic and extrinsic parameters, the system can
accurately compute the 3D coordinates of detected objects within the environment
if the pose of the rover's body frame and camera frame are known at the time
the images were taken, as it will be explained in the theoretical background.
Traditional object detection techniques were based on handcrafted features such as
Scale-Invariant Feature Transform (SIFT) [98] and Speeded Up Robust Features
(SURF) [99], often combined with classical machine learning classifiers like Support
Vector Machines (SVMs). While effective under controlled conditions, these methods
suffered from limited robustness to environmental variability, occlusion, and complex
lighting.

Further developments and interest of deep learning and convolutional neural
networks (CNNSs) revolutionized object detection by enabling end-to-end feature
learning directly from data. Early CNN-based detectors, such as R-CNN [100] and its
successors Fast R-CNN [101], and Faster R-CNN [102], introduced region proposal
networks and shared convolutional features, significantly improving detection speed
and accuracy. Single-shot detectors like YOLO (You Only Look Once) [103], Single
Shot MultiBox Detector (SSD) [104], and RetinaNet [105] further enhanced real-time

4One such example is the Decision Making ROS package or YASMIN [95].
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performance, making them particularly suitable for robotic applications where
computational efficiency is critical.

From these, YOLO has been widely regarded as the state-of-the-art solution for
real time object detection due to its balance between speed and accuracy. The
YOLO family of models treats object detection as a single regression problem,
directly predicting bounding boxes and class probabilities from full images in one
evaluation, thus enabling high frame-rate inference suitable for onboard robotic
computation.

The latest version, YOLOv11 [106], is a versatile computer vision model
supporting object detection, image segmentation, image classification, pose
estimation, and oriented bounding box (OBB) detection.

Numerous studies in the literature describe the implementation of YOLO-based
object detection pipelines for robotic applications [107, 108, 109]. Even so, others
demonstrate how autonomous exploration can be coupled with object of interest
(Ool) search such as the work of Dang et al. [110]. In the domain of aerial robotics,
the authors applied a sampling-based semantically-enhanced exploration strategy,
where an utility function maximizes a gain that related to exploring unknown space,
as well as a gain related to the resolution of detected objects of interest. This is
particularly interesting because it goes beyond having the autonomous exploration
and object detection running in parallel independently of each other, to a fully
integrated approach, where exploration decisions are directly influenced by the
presence and importance of Ool.

Another example is the work of H. Kim et al. [111], where a frontier-based
exploration strategy is combined with object detection to dynamically segment a
2D map based on the robot’s path and detected frontiers. This approach reduces
the risk of collisions with 3D obstacles and improves exploration efficiency by
prioritizing unexplored areas while ensuring safe navigation. Nevertheless, these
strategies could not be easily replicated on other robotic platforms, as they are not
open-source. There exists some open-source packages integrated with ROS to
detect and localize Ool in a 3D environment °.

However, these packages are primarily designed for real-time video inference and
rely on systems with high computational capabilities, which limits their applicability.
For instance, both rely on CUDA, NVIDIA’s parallel computing platform and
programming model, for accelerated inference, a capability often unavailable on
resource-constrained robotic platforms equipped only with CPU-based systems
such as Intel NUCs.

2.6. Summary

The reviewed literature provides a brief overview of the history and breakthroughs
of space rovers, leading to the development of the LRM. Section 2.1 traces the
evolution of space rovers from the early teleoperated systems, highlighting the

5Such examples are the Complex YOLO ROS 3D Object Detection and the ROS-Based-3D Detection
Tracking


https://github.com/GutlapalliNikhil/Complex-YOLO-ROS-3D-Object-Detection/tree/main
https://github.com/ksm26/ROS-based-3D-detection-Tracking
https://github.com/ksm26/ROS-based-3D-detection-Tracking
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growing need for autonomous capabilities, which ultimately drove the development
of fully autonomous space rovers.

The development of low-cost educational rover platforms is also explored,
emphasizing how these innovations, combined with advancements in software
architectures and off-the-shelf hardware components laid the foundation for the
LRM. Designed as a small, low-cost rover for educational and research purposes,
as presented in Section 2.2, the LRM incorporates state-of-the-art features such as
autonomous navigation, a modular software stack, integrating ROS, Python, and LN
Manager, and a functional 6DOF robotic arm.

Furthermore, Section 2.3 thoroughly examined the state-of-the-art in autonomous
exploration techniques, with a particular focus on frontier-based, sampling-based,
and hybrid strategies. As detailed in Subsection 2.3.1, frontier-based methods
classify the limits between known and unknown space as frontiers and use them to
guide exploration, often using techniques like utility-based goal selection based on
travel cost and information gain. Alternatively, sampling-based methods, Subsection
2.3.2, use random samples to explore the environment, predominately through RRT,
with several variants of this framework in the literature. Emerging trends in this
domain focus on bridging the gap between the two strategies. One example of this
is the HMS-RRT hybrid strategy, as shown in Subsection 2.3.3. Subsection 2.3.5
addresses the exploration strategies that have been open-sourced through ROS,
with emphasis on their modularity and ease of integration between different robotic
systems, but compromised strategy complexity. Too, that this is only applicable in
systems that already have mapping, localization, and path planning capabilities.

Section 2.5 underscores behavior modeling with state machines as a critical
component for enabling autonomy in robotic systems. Classical approaches like
FSMs remain widely used for structuring reactive and goal-oriented behavior,
although variants such as HFSMs and HCSMs extend FSMs to handle complexity,
concurrency, and multi-agent coordination. Validated tools such as RAFCON, which
leverages hierarchical and concurrent state machines, offer a scalable and visual
environment for managing autonomous tasks.

Finally, Section 2.6 expounds on how object detection pipelines have evolved in
robotics, from simply detecting an object in a RGB image, to using that information
with a stereo vision camera and respective camera intrinsic and extrinsic parameters
to infer the coordinates in 3D space of Ool. This effort is bolstered by the increasing
breakthroughs in deep learning and CNNs with YOLO being the most widely used
real-time object detection algorithm used in computer vision. It is pointed out that
open source pipelines for 3D localization exist but are designed for systems with
high computational capabilities relying on GPUs for accelerated inference.

2.7. Discussion

This discussion of the reviewed literature serves as the first step to move towards
the research gap in the next chapter.

First, the in-depth look into the current capabilities of the LRM provides a clear
foundation for developing an autonomous exploration algorithm. With its core
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features, VO, SLAM, and a navigation stack, the LRM is well-equipped to support
advanced exploration strategies in real-world environments, with its autonomous
navigation capabilities on moving from point A to point B detecting and avoiding
obstacles already demonstrated in previous work [33]. This is also motivated by the
fact that the LRM is one of many mentioned examples of low-cost open-source
rover for space robotics. When compared to its peers, the LRM is more complex by
integrating a more powerful Intel NUC, an Intel RealSense Depth Camera D435i
and a 6-DOF robotic arm, enabling autonomous navigation and arm manipulation,
which none of the other have.

Among the reviewed exploration strategies, frontier-based exploration emerges
as a promising baseline, particularly because it can take advantage of the already
generated 2D occupancy grid to detect frontiers without introducing redundant
exploration inherent to sampling-based exploration such as RRT methods. Also, the
navigation stack developed in-house by DLR incorporates a path planning algorithm
with obstacle avoidance capabilities, wherein the local planner employs the classic
A* search method to compute a short, collision-free trajectory within a local costmap
derived from elevation maps generated by a local mapping node, rather than utilizing
an RRT-based approach. However, existing open-source exploration strategies
lack complexity, relying on simply moving to the closest frontier or using just the
information on the 2D occupancy grid, rather than the 3D point cloud, to compute
information gain.

From the reviewed literature, it can be concluded that there is an ongoing
challenge in balancing the complexity of these implementations with the goal of
making them plug-and-play.

Several improvements have been made to classical frontier-based exploration,
most notably the introduction of utility functions that balance travel cost and
expected information gain. Travel cost is typically measured as the time or distance
to a frontier, while information gain is quantified as the entropy around a frontier
point using ray casting. Implementing these functions on low-cost rovers like the
LRM remains challenging, and few studies assess their feasibility on comparable
platforms. Utility-based goal selection, successfully applied on high-performance
systems such as DLR’s LRU, may be constrained by the LRM’s onboard Intel NUC
processor.

Furthermore, most ROS-based exploration strategies lack a structured approach
for autonomous task execution. Hierarchical and concurrent state machines can
address this by managing robot behavior in real time. Existing models, however, are
often limited frameworks with minimal prebuilt functionality. Evaluating dedicated
tools like RAFCON, with a complex library of state machines, could improve usability,
facilitate rapid development, and support scalable, open-source autonomous
operations. A well-defined behavioral architecture would ensure that exploration
tasks are efficiently controlled and easily extended to new capabilities.

Another important component that complements autonomous exploration is the
robot’s ability to perceive and interpret its environment through object detection and
3D localization. This capability enables estimating the position of Ool within the
3D environment, which is crucial for tasks such as autonomous sample retrieval,
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manipulation, and environment understanding. Nonetheless, existing ROS-based
3D localization pipelines for object detection are for high-performance computing
platforms, with no existing pipeline for optimized for deployment on low-cost,
CPU-based robotic systems such as the LRM.

Moreover, coupling object detection with the behavior management framework
discussed earlier could facilitate dynamic task allocation, allowing the rover to
adapt its exploration strategy based on detected objects or regions of interest.
This integration represents a key step toward achieving higher autonomy levels
in low-cost, open-source robotic platforms like the LRM. This is also important
because it builds the stage for autonomous grasping of Ool.

Taking everything into account, utility-based exploration emerges as a particularly
promising direction for the LRM. While its effectiveness has been demonstrated in
high-performance systems like DLR’s LRU, further investigation is needed to assess
its feasibility within the LRM’s computational limitations and capabilities.

Also, integrating utility-based exploration within a behavior modeling framework
such as RAFCON could provide a strong foundation for developing an open-source,
scalable platform. Once the state machines for autonomous exploration are
implemented, they can be extended to incorporate additional capabilities—most
notably, object detection and 3D localization, which would enable detecting Ool
during exploration. Coupled with the robotic arm, this would allow for autonomous
manipulation and sample retrieval, further enhancing the rover’s operational
autonomy.

Ultimately, such integration would establish a modular architecture adaptable
to other low-cost, open-source rover platforms previously discussed, which could
similarly benefit from the implementation of this framework. This synthesis also
reveals a research gap: the need for integrated open-source frameworks that
combine the reliability of FSM-based behavior modeling, the adaptability of
utility-based exploration methods, and the perception capabilities provided by object
detection and 3D localization, all within the constraints of low-cost robotic platforms
and a scalable framework such as RAFCON.

Bridging this gap could lead to more generalizable, scalable, and autonomous
robotic systems capable of extended operations in unknown environments.



Research Proposal

Following the discussion about the literature in the previous section, this chapter
outlines the research proposal by presenting a structured plan based on the
research objective and questions derived from the identified research gap. Firstly,
the research gap is identified in Section 3.1, highlighting the limitations in current
knowledge and the motivation for this study. Secondly, Section 3.2 defines the
research objective and the key questions the thesis aims to answer. Following this,
Section 3.3 describes the approach and methods that will be employed to conduct
the research. The expected outcomes are discussed in Section 3.4. At last, Section
3.5 presents the research plan.

3.1. Research Gap

The conducted literature review and subsequent discussion provided several key
insights that helped define the underlying research gap addressed in this work.
It is clear that while autonomous exploration remains a central research topic
in mobile space robotics, and foundational capabilities such as VO, SLAM, and
navigation stacks have seen significant advances, integrating these components
into a state machine framework for fully autonomous exploration remains an
undocumented research problem, particularly for systems built on low-cost, built with
off-the-shelf hardware components when compared to high-end, custom-designed
robotic platforms used in advanced research or space applications. Additionally,
existing open-source autonomous exploration strategies lack complexity compared
to closed-source ones, and frameworks for designing and managing HFSMs are
often not user-friendly and provide limited functionality for autonomous exploration
and object perception. Furthermore, while object detection and 3D localization have
been widely studied in high-performance robotic systems, their integration with
low-cost, open-source exploration platforms remains largely unexplored, limiting the
rover’s ability to perceive and interact with objects of interest autonomously.
Moreover, the LRM, as described in Section 2.2, has seen steady development
to serve as a modular robotic platform for educational purposes. It supports
foundational capabilities that provide a solid base for implementing autonomous
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exploration in unknown environments. Although the LRM can navigate effectively
from point A to point B, it still lacks an integrated exploration framework that
autonomously selects goals and manages the flow of actions in a structured
way. This limitation reflects a broader challenge across other low-cost robotic
platforms, as similar concept rovers such as the OSR and the ExoMy rover also lack
frameworks to guide exploration. Several strategies have been proposed in the
literature. Classical frontier-based exploration, for instance, prioritizes navigation
to the nearest unexplored boundary in the occupancy grid. While computationally
efficient, this approach often results in suboptimal behavior, such as low-information
trajectories. In response, researchers have introduced utility-based methods that
balance information gain with travel cost. Utility-based strategies appear particularly
well-suited for the LRM, but a concrete evaluation is needed to confirm their
feasibility. A similar consideration applies to object detection, as it is hecessary to
assess whether real-time perception is possible on the LRM’s Intel NUC CPU. This
contrasts with much of the literature, which primarily focuses on advancing object
detection on high-performance, GPU-accelerated systems rather than low-cost,
CPU-based platforms like the LRM.

To be precise, there is currently no current integrated modular framework that
simultaneously:

1. Is open-source and modular offering a reusable and extensible architecture
that can be deployed and further developed across different robotic platforms
with minimal effort.

2. Employs an autonomous exploration strategy on low-cost rovers built with
off-the-shelf-components that is comparable, in terms of performance and
exploration efficiency, to closed-source complex strategies implemented on
high-end rovers.

3. Coordinates behavior through HFSMs with a comprehensive library of state
machines for autonomous exploration.

4. Is able to detect and localize in 3D space Ool while conducting exploration.

Because such framework can be implemented and tested on LRM, this presents
both a scientific and engineering gap.

3.2. Research Objectives and Questions

After identifying the research gap, namely, the need for an integrated, computationally
efficient, and open-source modular framework for autonomous exploration with
object detection and 3D localization on low-cost mobile robotic platforms, to be
implemented and evaluated on the LRM, the research objective and subsequent
research questions can be formulated. The overarching research objectives of this
thesis are two. First,
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To investigate how autonomous exploration strategies, coupled with 3D
object localization, can be implemented within a state machine-based
framework on a low-cost mobile robotic platform, ensuring an open-source,
modular, and scalable design with performance comparable to high-end
robotic systems.

Secondly,

To advance the autonomous capabilities of the Lunar Rover Mini by
generating accurate maps of unknown environments, detecting objects
of interest, and integrating these functionalities within a state machine
framework that supports scalability and future expansion, with the
overarching goal of enabling a fully autonomous mission pipeline, including
object grasping.

The research questions, and respective sub-questions, that follow from the now
defined research objectives, are:

1. How can autonomous exploration strategies be implemented within an
open-source, scalable and modular state machine-based framework for
mobile robotic platforms?

1.1 What are the computational and architectural limitations that limit the
implementation and ready-to-use deployment of exploration strategies on different
mobile robotic platforms?

1.2 How can frontier- and utility-based exploration algorithms be adapted for
implementation within a state machine framework?

2. How can the performance of the designed exploration techniques and real
time object detection be guaranteed and evaluated across varying operating
conditions?

2.1 What criteria and benchmarks best evaluate the performance and robustness
of autonomous exploration techniques?

2.2 How does the implemented exploration algorithm compare to state-of-the-art
alternatives in the same domain?

2.3 What are the limitations and challenges of achieving real time object detection
on a CPU-based platform like the Intel NUC?

3. To what extent can integrating autonomous exploration techniques,
coupled with 3D object localization, increase the maturity of the autonomous
capabilities of the Lunar Rover Mini?

3.1 How can hierarchical finite state machine architecture be designed in a
modular way that supports future development?

3.2 What experimental validation methods can be used to assess the performance
of the Lunar Rover Mini when generating unknown maps of the environment and
detecting objects of interest?
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3.3. Methodology

The methodology to achieve the research objectives is divided into several stages.
To begin with, the theoretical background is established, covering the core principles
of robotic autonomy and the foundational concepts of autonomous exploration. Then,
this chapter addresses the three underlying capabilities necessary for autonomous
exploration: visual odometry, SLAM, and a navigation stack with local mapping. This
is necessary because a solid understanding of these concepts provides the basis
for designing and implementing an integrated autonomous system with previous
work dedicated to validating the autonomous navigation capabilities of the LRM
[33]. In addition, the mathematical model that governs utility functions referenced
in the literature for autonomous exploration will be presented. This includes not
only the utility function, but also the principles behind travel cost and information
gain computations. At the end, in the same chapter, the theory that governs object
detection algorithms, specifically YOLO, is presented.

Further, a selection of the open-source state machine software will be made
based on a trade-off study, along with an autonomous exploration framework that
defines how sensor data from the LRM, particularly the 3D point cloud from the
stereo vision camera, can be used to detect and filter potential frontier candidates.
Hence, its implementation within the chosen software will provide the system with
the necessary capabilities to integrate and test different exploration algorithms. This
is done through hierarchical state machines, making it essential to ensure that the
state machine architecture is well designed and structured.

Furthermore, before the actual implementation of the exploration algorithm, it
is necessary to understand how occupancy grids can be managed to determine
frontiers, as well as what are the criteria that determine where a frontier is located
and how to generate 3D maps of the environment. Once the general architecture for
exploration is out of the way, answering research sub-question 1.1 and research
sub-question 3.1, it is possible to move towards the design of the exploration
algorithm that advances the field of open-source autonomous exploration strategies.
To this end, a trade-off study is performed to opt for the most suitable exploration
strategy, with the remaining pages of this chapter dedicated to explaining the proper
implementation of this exploration algorithm, answering research sub-question 1.2
and the overall research question 1.

Moreover, the focus will shift toward developing a state machine loop responsible
for both object detection and 3D localization within the global map frame. A
key challenge arises to address research sub-question 2.3, from the fact that
inference must run on an Intel NUC rather than on high-end GPUs, which imposes
computational constraints on real time performance, which is necessary for this
loop to run in parallel with autonomous exploration.

Regarding the LRM, as mentioned in Section 2.2, it is closely integrated with
the LN Manager, which manages all processes running on the rover. Therefore,
deploying the chosen state machine software within the LN Manager is critical,
meaning that upon starting the LN Manager of the rover, there should be a new
node that starts LRM'’s autonomous exploration framework based on hierarchical
state machines, with different open-source state machine libraries. Ultimately, the
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working architecture will be generalized, using, for example, user-defined global
variable for different nodes, to have a generalized and scalable architecture to be
used on other low-performance rovers.

The validation experiments will involve the LRM autonomously surveying and
generating an accurate 3D map of a previously unknown environment, while
localizing objects of interest in the 3D global map frame, covering research
sub-question 3.2, answering research question 3. The implemented strategy will
be compared to open-source existing ones in the literature to tackle research
sub-question 2.2. For this, a trade-off analysis will be conducted between the criteria
used to assess the effectiveness of the exploration strategy, dealing with research
sub-question 2.1 and, finally answering research question 2. Examples of criteria
could be computational load, total distance traveled, map coverage, and total survey
time.

3.4. Expected Outcomes

The expected outcomes of this work follow directly from the methodology and aim to
address the research questions outlined earlier.

Research Sub-Question 1.1

It is expected that the analysis will identify key architectural and computational
bottlenecks when implementing exploration strategies on low-cost robotic platforms
such as the LRM, mainly concerning the number of user-defined parameters that
need to be defined and the relative position of the stereo vision camera with respect
to the based frame in different robotic systems. It is anticipated that the limitations
may be related to CPU usage.

Research Sub-Question 1.2

It is expected that frontier- and utility-based exploration algorithms will be
successfully adapted as modular state machines, compatible with the chosen state
machine software. The expected result includes a state-based implementation
where exploration decisions are governed hierarchically, ensuring reusability.

Research Question 1

The expected outcome is a fully functional, open-source, and modular exploration
framework for low-cost rovers, implemented within a hierarchical finite state machine.
This framework shall be scalable and modular across different robotic systems and
provide a template for future autonomous exploration projects.

Research Sub-Question 2.1

It is foreseen that a set of evaluation metrics will be defined and validated for
low-cost autonomous exploration systems. These will likely include map coverage,
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exploration time, and computational load. The outcome will be a standardized
evaluation framework applicable to resource-constrained platforms.

Research Sub-Question 2.2

It is predicted that experimental comparisons will demonstrate that the proposed
utility-based exploration strategy achieves better performance according to the
benchmarks relative to existing open-source exploration algorithms. Specifically, it is
expected that the proposed method will result in a better exploration efficiency. In
other words, for the same exploration time, more of the environment has been
explored. These results will support the hypothesis that well-optimized, low-cost
systems can achieve performance comparable to high-end rovers.

Research Sub-Question 2.3

It is expected that the study will identify the computational limitations that restrict
real time inference on CPU-based systems and provide a solution to deploy object
detection algorithms for this effect. On top of that, it is likely that the solution path
is through model quantization. Nevertheless, the actual challenges will only arise
when the implementation is being carried out.

Research Question 2

Taking everything into consideration, a comprehensive performance evaluation will
be completed, based on the given benchmarks for the exploration strategy and the
accuracy of the proposed object detection pipeline using real-world experiments.
The expected outcome is a set of empirical results demonstrating the real time
performance of the chosen design.

Research Sub-Question 3.1

It is assumed that that a generalized HFSM architecture will be developed and
implemented in the LRM, enabling future modular integration of new functionalities.
The outcome will include a library of reusable state machine modules, a clearly
documented architecture.

Research Sub-Question 3.2

The outcome will include a set of procedures that validate that the LRM can
autonomously generate accurate 3D maps of an unknown environment and detect
and localize objects of interest.

Research Question 3

At last, the expected outcome is an increase in the autonomy level of the LRM,
moving from autonomous navigation toward a fully autonomous exploration system.
The integration of autonomous exploration within a unified HFSM will demonstrate
that low-cost, open-source platforms can achieve the same level of performance
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as high-end systems. This will also set a baseline for future extensions, including
autonomous grasping and sample retrieval.

3.5. Research Plan

The following Gantt Chart presents the thesis planning, with the key phases and
milestones.
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Figure 3.1.: Thesis planning Gantt chart.






Theoretical Background

This chapter outlines the underlying concepts and theories that guide the thesis.
They provide the foundation needed for the reader to fully understand the research
study. The chapter is structured as follows. To begin, Section 4.1 briefly introduces
the fundamental concepts and general functional architecture that form the basis of
autonomous mobile robotic systems.

three previously mentioned foundational capabilities for autonomous exploration.
Even though they have already been implemented on the rover, they are a core
part of any autonomous exploration implementation and will need to be properly
improved to provide enough robustness for autonomous exploration. Secondly,
Section ?? describes frontier-based exploration from a mathematical point-of-view,
as well as a thorough definition of the different autonomous exploration strategies
that will be implemented.

4.1. Core Principles of Robotic Autonomy

This section presents the core concepts and functional decomposition that underpin
autonomous mobile robotic systems. The purpose is not to provide an exhaustive
review of each subfield, but to establish the concepts and the key relationships
between subsystems that will be used throughout this thesis.

At a high level, a robot, independent of its autonomy level, performs a task by
iteratively sensing its environment, planning an appropriate course of action, and
executing that action through its actuators. This sense—plan—act architecture [112]
forms the backbone of robotic autonomy, ensuring that the system continuously
perceives the environment, updates its internal state, generates feasible strategies,
and interacts with the world in a goal-directed manner. This process is illustrated in
Figure 4.1. The figure also depicts the closed perception—action feedback loop,
represented by the connection from actuators to sensors through the environment.
When the actuators produce motion, they modify the robot’s state and the
surrounding environment. These changes are then captured by the sensors, which
provide updated information to the perception layer. In this way, the environment
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acts as the intermediary between action and perception, completing the feedback
cycle that underpins autonomous operation.

Complementary to this, the figure also illustrates a subsumption architecture—a
layered control framework in which complex behaviors emerge from the interaction
of simpler, independent modules rather than from a centralized planner. It is
composed of three hierarchical layers: avoid obstacles, wander freely when safe,
and navigate toward a goal. In this structure, higher layers can suppress or subsume
the actions of lower ones when necessary, producing context-appropriate behavior
through simple local interactions. For example, during exploration, a low-level
obstacle-avoidance behavior may temporarily override the goal-directed navigation
layer to ensure safety. This mechanism enables robust, adaptive, and real-time
autonomy without relying on detailed world models.
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Figure 4.1.: Horizontal decomposition of the sense—plan—act pipeline [113] with
subsumption architecture [112].

At a lower level, the autonomy stack shown in Figure 4.2 illustrates the hierarchical
organization of an autonomous robotic system and the flow of information across
its functional layers. At the hardware level, Sensors such as cameras, LiDAR,
radar, IMUs, GPS, and wheel encoders capture raw data that describe the robot’s
interaction with its . This information is processed by the Perception
layer, which performs data fusion, object detection, and SLAM to Map and generate
a coherent representation of the surroundings and the robot’s state. Within the
software domain, Planning modules use this representation to compute feasible
motion trajectories and behavioral strategies that satisfy mission objectives while
avoiding obstacles. The Control layer then translates these trajectories into
low-level actuator commands through algorithms that ensure stability, accuracy, and
responsiveness. Finally, —including steering and steering mechanisms
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as well as pan-tilt unit rotation—execute these commands to produce physical
motion, influencing the environment and closing the perception—action loop.
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Figure 4.2.: Functional architecture of an autonomous robotic system [114].
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4.2. Autonomous Exploration Foundational
Capabilities

As previously mentioned, three complementary capabilities, VO, SLAM, and the
navigation stack, are widely recognized as essential for the implementation of
an autonomous exploration system, as outlined by Uslu et al. [10]. Thus, their
mathematical principles and algorithms are presented below.

4.2.1. Visual Odometry

VO is defined as the process of estimating the position and orientation of a moving
system by analyzing a sequence of images captured over time by a camera [115].
The goal of VO is to determine the camera motion, i.e., its rotation and translation,
between consecutive frames by tracking visual features in the environment.
Compared to conventional odometry methods such as wheel encoders or inertial
navigation systems, VO provides greater accuracy and robustness, particularly in
environments where wheel slippage or drift affects measurements.

Let I+ and I+41 denote two consecutive image frames captured at times t and
t+ 1. The goal of VO is to estimate the camera motion Tt ++1 € SE(3), represented
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as [115]:

Rtt+1  tte+1
Tt,t+1 =[ t’(5+ t’i+ ] (4.1)
where Rt t+1 € SO0(3) is the rotation matrix and ttt4+1 € R3 is the translation
vector between the two camera poses.
Given a 3D point Pt = [ Xt, Y4, Z¢]" observed in the first frame, its projection on
the image plane is given by the pinhole camera model [116]:

ue XW
Y
s | vt | = K[Reltt] ZW (4.2)
1 1W

where K is the intrinsic camera calibration matrix and s is the scale factor.
When the camera moves, the same 3D point is projected at a new pixel location
(Ut+1, Ve+1), such that:

Pty1 =Rt t+1Pt + t 41 (4.3)

The core VO problem is thus formulated as minimizing the reprojection error
between matched feature points [117]:

N

E(Re,e+1, tre41) = D IIM(K(Re,e41Pi + te41)) — P12 (4.4)
i=1

where 7(+) projects 3D points to 2D pixel coordinates, p’ is the observed pixel
in the second frame, and N is the number of matched features. This nonlinear
least-squares problem is typically solved using bundle adjustment or Gauss—Newton
optimization, allowing refinement of the estimated motion parameters.

In stereo VO, depth information allows each pixel correspondence to be
associated with a metric 3D point. The motion between frames can then be
estimated directly in Euclidean space using Perspective-n-Point (PnP) or Iterative
Closest Point (ICP) formulations. The PnP problem estimates R¢,t+1 and tt t+1
from 3D-2D correspondences:

p; ~K[Re t+1ltt,e41]1P; (4.5)

The LRM employs a feature-based RGB-D VO approach using an Intel RealSense
D435i camera, integrated through the rgbd_odometry node in ROS. Keypoints
are extracted using the Good Features to Track (GFTT) detector [38], and
descriptors are computed using BRIEF [39] and motion estimation follows a
Frame-to-Frame scheme, which improving robustness compared to a traditional
Frame-to-Map approach.
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4.2.2. Simultaneous Localization and Mapping

The SLAM problem can be expressed probabilistically as estimating both the robot
trajectory X1.t = x1, ..Xt and the map m, given a sequence of controls U;.+ and
observations Z7:¢:

p(X1:t, m|Z1:t, U1:t) (4.6)

This can be factored recursively as [118]:

p(X1:t, m|Z1:t, Ur:t) < p(Z|Xe, m)p(Xe|Xt—1, Ut)p(X1:t—1, M|Z1:t—1, U1:e-1)

(4.7)

where p(X¢|Xt—1, Ut) models motion, i.e., odometry, and p(Z:|Xt, m) models

perception, i.e., sensor measurements. More importantly, this Bayesian factorization

underpins both filter-based (EKF-SLAM, FastSLAM) and graph-based (RTAB-Map,
ORB-SLAM) approaches.

This being the case, in graph-based SLAM, each node represents a robot
pose X, and edges represent spatial constraints between poses, Figure 4.3. The
optimization problem is to find the set of poses X = x1, ..., X, that minimize the
total error over all constraints [119]:

X* =argmin > 1legOOlIZ, (4.8)
X pec

where ej(X) = zjj — 2;i(x;, X;) is the error between the measured and predicted
relative transformation, Q;; is the information matrix, z;; is the observed relative
pose between nodes i and j, and Z;;(x;, X;) is the expected relative pose given the
current estimates.

(eij, i)

Xi

y
’
’
#
s
A .
Q/

Figure 4.3.: Example of a pose graph in graph-based SLAM. Each node represents
a robot pose, and edges denote spatial constraints derived from
odometry and loop closures [119].

Similarly to VO, this nonlinear least-squares problem is typically solved via
Gauss—Newton or Levenberg—Marquardt optimization.

The LRM implements graph-based SLAM using RTAB-Map within the ROS
framework. RTAB-Map stands for Real-Time Appearance-Based Mapping and relies
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on visual similarity detection to close loops [40]. Each new key frame is compared
against a database of past images using bag-of-words (BoW) appearance features.
A loop closure is detected when two key frames I; and I; have high visual similarity
and spatial consistency, leading to a new constraint z;; added to the pose graph.

Mathematically, the BoW similarity is computed as the cosine similarity between
histogram representations h; and h;:

s, I) = M (4.9)
ST ATHTENT '

If s(I;, I}) > T, a loop-closure constraint is proposed and verified geometrically via
for example PnP pose estimation.

Once constraints are added to the graph, RTAB-Map peforms incremental
optimization using libraries such as g2o' to refine pose estimates in real time [120].
The optimization problem can be expressed as:

M
min > 11z = f i, XIS, (4.10)
k=1

where f(-) models the relative motion function between poses. The interface of
both the rgbd_odometry and rtabmap node with ROS topics is presented
in Figure 4.4.

nav_msgs/Path
nav_msgs/OccupancyGrid

- /Irm1/mapPath
i ~Irm1/grid_map|

/Irm1/rgbd_odometry

firm1/camera/depth
fimage_rect_raw
/image_topics

sensor_msgs/PointCloud2

wep
FaRl/Irm 1/cloud_map

firm1/camera
/color/camera_info

it

/im1/cameralcolor
/image_rect/image_topics

Figure 4.4.: ROS topic interface between the rgbd_odometry and rtabmap
nodes [33].

4.2.3. Local Path Planning and Mapping

Local navigation in the LRM is managed by the rmc_gbr_navigation ROS
package, a software module developed at DLR for ground-based robotic platforms.

"More information about the g2o graph-based nonlinear error functions optimizer can be found here.


https://github.com/RainerKuemmerle/g2o
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This package provides the local path planning, including obstacle avoidance,
trajectory generation for path following, and motion control to drive the robot toward
a specified local goal. The navigation diagram is presented in Figure 4.5.

'
{Irm1/motion_client_vsualizer) !

, LN Worid

'

'

Irm1/next_pose

geometry_msgs/PoseStamped

'
|
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ggometry_msgs/ Twist
'

Nirm1/local_map

grid_map_msgs/GridMap firm1/planned_path

firm1/plannin: nav_msgs/Pat
(it /planning
!’ Irm1/planned_path_posses
3 /tf mc_control_msgs/LocalPlan |
[ h '
f2_msgs/TFMessage P 1
{/irm1/nav_client) Arm1/local_goal ROS World
\_____/
_msgs/PoseStamped
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Figure 4.5.: Navigation diagram interfacing with ROS topics and LN [33].

At its core, the planner employs the A* search algorithm to compute an optimal
path between the rover’s current position and a target waypoint. The A* algorithm
explores multiple potential paths through a discretized map and incrementally
refines its solution based on a cost function that balances traversability and distance
to the goal [42].

Formally, A* operates on a graph G = (V, E), where V is the set of nodes and
E is the set of edges. Each edge (n, n’) € E has an associated traversal cost
c(n, n”) < 0. The algorithm seeks the path:

*

m* = argmin Z c(n,n’) (4.11)

nell(s,g) (n,n")en

that minimizes the total accumulated cost from the start node s to the goal node g
[42]. Here, TI(s, g) denotes the set of all possible paths connecting s and g.

To efficiently approximate this minimization, A* evaluates each node n using the
cost function

f(n)=g9(n)+ h(n) (4.12)

where g(n) represents the known cost from the start node to n, and h(n)
provides a heuristic estimate of the remaining cost to reach the goal. At each
iteration, the algorithm expands the node with the smallest f(n), effectively trading
off path optimality and computational efficiency.

The heuristic h(n) is typically defined using a distance metric such as:

v (xn—xg)2 + (yn—yg)?, Euclidean distance,
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|Xn —Xgl + lyn—ygl, Manhattan distance. ( )

h(n) = {
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The search continues until the goal node is reached, after which the optimal
path is reconstructed by backtracking through the visited nodes. This approach
enables efficient and deterministic motion planning, ensuring that the rover can
safely navigate around obstacles while progressing toward its goal. In addition to
path planning, DLR’s rmc_gbr_mapping ROS package, which diagram is
depicted in Figure 4.6, integrates a local mapping module based on a 2D grid map
representation.

firm1/local_map

‘camera_info

gnd_map_msgs/GridMap
Fi
- ‘camera/depth/ frmime. local_may ) LAl /tf
age_rect_raw/image_topick -local_mapping ;

f2_msgs/TFMessage

£ [several]

/camera/color,
image_rect/image_topics

[several]

Figure 4.6.: Local mapping diagram interfacing with ROS topics [33].

4.3. Occupancy Mapping and Voxel Representation

Occupancy mapping is a fundamental component of robotic perception, providing a
representation of the environment that distinguishes free, occupied, and unknown
regions. This representation forms the foundation for higher-level tasks such as path
planning, obstacle avoidance, and autonomous exploration. In the context of the
LRM, a voxel map is maintained using the octomap_server package in ROS,
which implements the OctoMap framework [86].

The core idea behind occupancy mapping is to estimate, for each 2D grid cell or
3D voxel m;, the probability that it is occupied given all past sensor measurements
z1:+ and robot poses x1.¢+. Formally, this can be expressed as [121]:

Zelmi, x milz1:t—1, X1:t—
P(mi|zl:t,X1:t)=p( tlmi, xe) p(Mmilz1:t—1, X1:¢ 1)’ (4.14)
p(zt|Z1:t-1, X1:t)
where p(z¢|m;, X¢) is the inverse sensor model describing how likely a measurement
zt is given the occupancy state of voxel m;.
To simplify computation, the occupancy probability is often updated in the
log-odds form:

p(milzt, Xt) B
1—p(mil|ze, xt)

L(mi|z1:t, X1:t) = L(Mi|z1:t-1, X1:t—1) + log Lo, (4.15)
where L(m;) denotes the log-odds of occupancy and Lg is the prior log-odds
value. This recursive update allows efficient real-time computation while maintaining
probabilistic consistency.
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The occupancy probability can be recovered from its log-odds form using:

1
~ 1+ exp(—L(my)’

p(m;) (4.16)

A 3D occupancy grid requires storing probabilities for every cube voxel, which
leads to high memory usage. OctoMap addresses this issue by using an octree data
structure, which recursively subdivides space into cubic cells of varying resolution.
Each node in the octree corresponds to a cubic volume that can be either occupied,
free, or further subdivided into eight child nodes.

Mathematically, the recursive occupancy update for an octree node n is defined
as:

Pocc, if hit by a sensor ray,

417
prree, If passed through by a ray. ( )

p(nlzi:t, X1:t) = {

Each time a new point cloud is received, sensor rays are traced from the sensor

origin to each measured 3D point. Voxels traversed by the ray are updated toward

the free space probability psree, While the voxel corresponding to the endpoint is
updated toward the occupied probability pocc.

4.4. YOLO-Based Object Detection

Object detection refers to the task of identifying instances of objects within an image
and assigning them a class label along with a spatial location, usually in the form of
a bounding box. YOLO is a state-of-the-art, real time object detection algorithm that
treats detection as a single regression problem, directly predicting class probabilities
and bounding box coordinates from full images in one evaluation [122].

YOLO divides an input image into an S x S grid. Each grid cell is responsible for
predicting B bounding boxes and associated confidence scores. Formally, for an
input image I:

y =foll) = {(xi, yi Wi, hi, ci, PO} (4.18)

where (X, yi) is the center of the bounding box relative to the grid cell, w;, h; are
the width and height of the box (normalized by the image dimensions), ¢; is the
confidence score that the bounding box contains an object, p; = {pl.l, pl.z, pl.C}
are the conditional class probabilities for C object classes, and 0 represents the
learned network parameters.

The predicted bounding box confidence score is defined as:

Confidence = P(Object) - IOUpred,truth (4.19)

where P(Object) is the probability that an object is present in the box and
IOUpred.truth is the intersection-over-union between the predicted and ground-truth
bounding boxes.

YOLO uses a single convolutional neural network to predict all bounding boxes
and class probabilities simultaneously. The network is trained by minimizing a
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multi-part loss function that balances localization, confidence, and classification
errors [103]:

s2 B )
L= )\coordzz 1ij|:(xi - >A<i)2 + (Yt' - }71')21

i=0j=0
S2 B o
o - =
+ )\coordZZ 1ij ][(V Wi— Wt')2 + (\/h_t_ \/E)Z]
i=0 /=0
S2 B o
0 A
+ ZZ lij J(ci— ¢))?
i=0j=0
s2 B o
noo N
+ Anoobj ZZ 1ij l(ci—¢)?
i=0j=0
52
bj A
+>°17 7 (pil©) = pil©))? (4.20)
i=0 ceclasses

where 1Z.bj and 12.°°bj
object in the bounding box, X, Vi, Wi, hi, ¢i, pi(c) denote the ground-truth values,
and Acoord, Anoobj @re parameters to weight localization and no-object penalties.

are indicator functions for the presence or absence of an

4.5. Frontier-Based Autonomous Exploration Theory

Autonomous exploration is the process by which a robot incrementally constructs
a map of an unknown environment while deciding where to move next to
maximize knowledge about the surroundings. The theory behind exploration can be
formalized using concepts such as frontiers, information gain, and utility functions.
Nevertheless, only a general formulation is presented here, as a more detailed one
strongly depends on the specific exploration strategy employed, which is provided
only in the design phase of the work.

Frontier-based exploration is a widely used strategy for autonomous mapping,
where a frontier is defined as the boundary between known free space and unknown
space in the occupancy map [8]. Formally, given an occupancy map m, the frontier
set F can be defined as:

F = {c € unknown cells | 3n € free cells, n adjacent to c}. (4.21)

Exploration based on information gain evaluates candidate frontiers based on the
expected reduction in map uncertainty. Let p; denote the occupancy probability of
voxel or cell i, and H(p;) = —pilog p;— (1 — pi) log(1 — p;) its Shannon entropy
[49]. The expected information gain I(x) for moving to a candidate location X is
given by [123]:

Ix)= Y. [H(p)—H(pil2)] (4.22)

ieS(x)
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where S(x) is the set of cells observable from the camera’s field of view at
location X, and z represents the expected sensor measurements at x.

To balance exploration efficiency and travel cost, a utility function U(x) is often
defined. The utility function typically combines information gain and travel cost
weighted by one or several scaling factors. An example of such utility function is the
following:

UX) =al(x)—Bd(x), (4.23)

where a and @ are the weighting parameters. The exploration algorithm can then
select the next goal x* by maximizing the utility:

x* =arg max U(x). (4.24)






Design of Autonomous
Exploration Framework

It is essential to define a functional framework that serves as the foundation before
the implementation of the actual exploration strategy, both in terms of the chosen
open-source state machine software and general architecture for autonomous
exploration. Once the framework is established, its implementation is carried out
through low-level state machines.

In light of this, Section 5.1 of the following chapter focuses performing a
trade-off study to determine the best open-source state machine software to
use and justifies using ROS as the middleware, while Section 5.2 outlines the
system-level architecture for autonomous explorationm and Section 5.3 establishes
the low-level state machines and corresponding functionalities necessary to support
this architecture.

5.1. Open-Source Framework Trade-Off Studies

The foundation of this thesis is the development of an open-source framework
for autonomous exploration, built around a state machine-based architecture that
can be easily adapted to different robotic platforms. To ensure the effectiveness
and portability of this framework, it is essential to conduct trade-off studies that
evaluate and select the most suitable software and middleware components for its
implementation.

In particular, two key aspects must be carefully considered in this selection
process: the middleware framework, which provides communication and integration
between software modules, and the state machine software, which governs
high-level task control and behavior coordination. As previously discussed in Section
2.2, the LRM relies on ROS for all autonomy-related functionalities. Given this
existing integration, it is both practical and advantageous to continue using ROS as
the underlying middleware for this work. ROS provides a mature, modular, and
community-driven ecosystem that supports a wide range of hardware interfaces, and

47
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sensor drivers, significantly reducing development time and integration complexity.

Furthermore, it has become the standard in research and industry for robotic
middleware. For these reasons, a trade-off analysis among middleware options
would invariably conclude that ROS is the most suitable choice. Alternative
frameworks such as DLR’s Links and Nodes Manager [37], YARP [124], or MOOS
[125], might offer specific advantages in niche domains but lack ROS’s ecosystem
size, documentation quality, and integration flexibility. Therefore, ROS remains
the most appropriate and future-proof middleware for the development of the
autonomous exploration framework proposed in this thesis.

Another important consideration is that the LRM currently operates on ROS 1,
whereas the more recent ROS 2 is now widely available and increasingly adopted.
Migrating the entire software stack to ROS 2 before implementation would require
significant development effort and reconfiguration of existing components, which is
beyond the scope of this project. Nevertheless, several tools and bridging packages’
facilitate interoperability and gradual migration between the two versions. Therefore,
although the proposed framework is initially designed for ROS 1, its architecture and
modular design allow for straightforward replication and future adaptation to ROS 2.

Nevertheless, this distinction is less nuanced when it comes to selecting
alternative task management and execution frameworks for state machines,
meaning that a proper trade-off study is necessary. Based on the reviewed literature,
several state machine frameworks have been identified for evaluation in the following
trade-off study: SMACH, FlexBE, RAFCON, the Decision Making ROS Package,
and YASMIN. A set of criteria must be defined to evaluate these frameworks.

First is the Ease of Integration with ROS, i.e., how seamlessly the framework
interfaces with ROS nodes, topics, and services, enabling communication between
the state machine and other software modules.

The second criterion is the Graphical Interface and Usability, which evaluates
whether the framework provides an intuitive GUI for designing, and visualizing state
machines, thereby simplifying development and maintenance.

Third, the Modularity and Hierarchical Structure criterion assesses the ability
to create reusable and nested state machines, allowing complex behaviors to be
composed from simpler components.

The fourth criterion, Execution Monitoring and Debugging Tools, refers to the
mechanisms available to observe runtime behavior, inspect variable values, and
manage state transitions during execution, which are critical for testing and fault
diagnosis.

Finally, Community Support and Documentation, measures the extent of
available resources, including user guides and tutorials, and the frequency of
updates or maintenance by the developer community.

A proper method to apply the criteria for the different frameworks must be
employed. As such, each framework will be ranked on a scale from 1 to 5 in each
of the five criteria, with 1 considered the lowest and 5 considered the highest.
For example, RAFCON being given a score of 5 in the graphical interface and

TOne example of such bridging package is the ROS 1 Bridge, while a lot of documentation exists in
the literature regarding Migrating from ROS 1 to ROS 2.


https://github.com/ros2/ros1_bridge
https://docs.ros.org/en/humble/How-To-Guides/Migrating-from-ROS1.html

5.1. Open-Source Framework Trade-Off Studies 49

usability means it has a very intuitive GUI. Moreover, it is necessary to establish the
importance of each criterion in the work’s context. As such, a relative weight of
importance is attributed as follows:

+ Ease of integration with ROS, 1.0. Since ROS serves as the middleware for
all perception, planning, and control tasks, seamless integration is critical.
Therefore, this criterion receives the highest importance.

+ Graphical interface and usability is given a relative weight of 0.6 because
the ability to visually design, monitor, and debug state machines significantly
reduces development time but is something that can be learned when using
the framework consistently.

» Modularity and hierarchical structure is given 0.9. Modular and hierarchical
state design is essential for scalable autonomy architectures, allowing complex
missions to be composed of simpler behaviors.

+ Execution monitoring and debugging tools, 0.8. Robust runtime monitoring
and debugging support are important for iterative testing and ensuring reliable
system behavior during autonomous operation.

» Community support and documentation, 0.6. While still relevant, this criterion
has slightly lower importance, as it primarily affects long-term maintainability
rather than immediate functional performance.

With the criteria being defined and the corresponding relative weight, it is now
possible to perform the trade-off study, which results are presented in Table 5.1,
where the Decision Making ROS Package was shortened to DMP ROS. The
attributed values from 1 to 5 in the different criterion are based on available
information for each framework. References for this are provided in the literature
review chapter.

Ease of integration with ROS 1.0 5 5 4 3 3

Graphical interface and usability 0.6 1 3 5 1 2

Modularity and hierarchical 0.9 3 4 5 3 2

structure

Execution monitoring and 0.8 2 3 5 2 2
debugging tools

Community support and 0.6 4 3 3 2 1
documentation

Weighted sum 12.3 14.6 17.3 9.1 8.2

Table 5.1.: Application of the trade-off method to state machine frameworks.

From the trade-off analysis presented in Table 5.1, RAFCON, Figure 5.1c, clearly
outperforms the other open-source frameworks, achieving the highest weighted
score of 17.3. Its strong performance is primarily due to its comprehensive graphical
user interface, hierarchical state management, and advanced debugging and
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execution monitoring tools. FlexBE, Figure 5.1b, follows with a score of 14.6,
showing very good integration with ROS and a reasonably intuitive graphical
interface. However, it provides less flexibility and depth than RAFCON when
managing large, hierarchical state structures.

SMACH, Figure 5.1a ranks third with a total score of 12.3. Although it integrates
seamlessly with ROS just like FlexBE and benefits from mature documentation
and community support, it lacks a good native graphical interface, which makes
debugging and visualization more difficult during development. The reason SMACH
and FlexBE rank better than RAFCON with respect to ease of integration with
ROS is because these are ROS packages, while RAFCON state machine blocks
interface with ROS by programming in Python. The Decision Making ROS Package
and YASMIN, Figure 5.1d and Figure 5.1e, respectively, received significantly lower
scores of 9.1 and 8.2, respectively. These frameworks are less actively maintained
and limited in both usability and visualization capabilities. Also, note that, as
mentioned in Chapter 2, FlexBE is a sucessor of SMACH.

However, it appears to have less documentation when compared to its
predecessor. Also, RAFCON scores lower than those in this criterion because
it has been been as widely adopted. However, it benefits from a very thorough
documentation®. All in all, the trade-off results demonstrate that RAFCON provides
the best balance between usability, modularity, debugging support, and ROS
integration, making it the most suitable choice for implementing the autonomous
exploration framework proposed in this work.

Bt
(a) SMACH viewer stan-
dalone GUL. (b) FlexBE interface GUI. (c) RAFCON editor GUL.
— & &
L X X )
bt
-
(d) Decision Making ROS === -
Package plugin. (e) YASMIN web viewer.

Figure 5.1.: Comparison of graphical interfaces from different state ma-
chine frameworks. [Credits: SMACH Viewer, FlexBE, RAFCON,
rqt_decision_graph, YASMIN [95]]

2Available: https://rafcon.readthedocs.io/en/latest/


https://wiki.ros.org/smach_viewer
https://wiki.ros.org/flexbe/Tutorials
https://dlr-rm.github.io/RAFCON/
https://wiki.ros.org/rqt_decision_graph?utm_source=chatgpt.com
https://rafcon.readthedocs.io/en/latest/
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5.2. General Architecture for Exploration and Core
Capabilities

Following the selection of the state machine framework, and prior to defining
the specific exploration strategy to be implemented, it is essential to establish
the general architecture for autonomous exploration. This architecture defines
the hierarchical and functional organization of the state machines, ensuring
modularity, scalability, and clear separation of responsibilities across different layers
of autonomy. In this context, each state machine or state within the framework
serves a distinct functional role and can be categorized as follows:

- Hierarchical State: A state that encapsulates multiple sub-states. This allows
complex states to be stores as libraries ready-to-use. One example of such
hierarchical state could be a state that contains the total autonomous mission
pipeline.

 Information Retrieval State: Responsible for acquiring relevant data from
ROS topics. For instance, obtaining the current robot pose or 2D occupancy
grid.

- Computation or Algorithm State: Executes processing tasks or algorithms
required for decision-making, such as frontier selection.

- Action Execution State: Triggers specific robot actions through control
commands, e.g., sending velocity commands to move the robot or rotate the
pan-tilt unit.

- Software Interface State: Manages communication and data exchange with
external software or middleware modules, including mission control systems.

- Monitoring and Feedback State: Supervises ongoing actions, monitors
success or failure conditions, and ensures that proper transitions occur in
response to feedback. This could be monitoring the current position and
orientation of the rover within a certain threshold.

Together, these functional state types form the foundation of the general
architecture for exploration. In addition to defining the internal logic of the state
machines, it is also necessary to specify the user-provided inputs required by the
mission state machine. These inputs represent parameters or configurations that
may vary between different robotic platforms. Since the goal of this framework is
to remain as open-source and platform-independent as possible, the number of
required user inputs should be kept to a minimum. For instance, if the user does
not define the ROS topic responsible for publishing the position goals used by the
autonomous navigation stack, the rover will be unable to move.

Conceptually, the framework can be viewed as a modular “black box” that receives
input data, determines the optimal exploration strategy based on these inputs, and
commands the robot to navigate toward computed position goals. The low-level
motion control and path following are then handled by the autonomous navigation
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stack, while the higher-level architecture continues to monitor system performance
and environment changes in a closed-loop manner.

At the highest level, the mission state machine does not produce direct outputs in
the traditional sense but instead publishes results via ROS topics, allowing them to
be visualized or interpreted by the user. For example, after computing the next
exploration target, the framework can publish both the selected goal and the set
of available frontiers which can then be visualized in RViz. Ideally, the user just
needs to press play on the state machine and wait until exploration is complete. The
complete user input variables is presented in Table 5.2.

User Input Description Unit
Goal position ROS topic where position goals are published to be followed up -
ROS topic by the autonomous navigation stack.
Camera frame ~ Name of the camera frame, used to known the transformation -
name between this frame and the robot reference frame.
Area to cover Defines the total area within which the exploration mission will m?
take place.
Position Minimum distance required for the robot to be considered as m
threshold having reached a target goal position.
Orientation Minimum angle tolerance required for the robot to be considered °
threshold as having reached a target orientation.
Cluster Minimum number of frontier points to form a valid exploration -
minimum size cluster. Filters out small, insignificant regions.
Cluster Maximum number of frontier points allowed per cluster to prevent -

maximum size
Robot reference
frame name

OctoMap ROS
topic

Occupancy grid
ROS topic

excessively large frontier regions.

Name of the reference frame, e.g., base_11ink, used by the
robot for localization and transformation between coordinate
systems.

Name of the ROS topic publishing the 3D occupancy map
(/octomap_full), used for computing entropy by ray
casting voxels.

Name of the ROS topic publishing the 2D occupancy grid map
(/grid_map), used for frontier detection and navigation.

Table 5.2.: Full description of user inputs required for autonomous exploration
mission state machine.

Aside from this, a more detailed diagram can be presented to illustrate how
the proposed mission state machine integrates with the foundational capabilities
required for autonomous exploration, Figure 6.2, namely, visual odometry, local
mapping, and the navigation stack. Further, note the OctoMap ROS topic
requirement, which originates from the ROS octomap® package. This constitutes
the only component among the aforementioned modules that may not be natively
implemented in all systems with autonomous navigation capabilities. However,
justification for this is given below, as it enables the generation of a 3D volumetric
representation of the environment, voxels, allowing the exploration algorithm to do
ray casting across them, as explained in Chapter 4. This will allow for more complex
exploration strategies similar to the ones used in more complex robotic platforms

SAvailable: https://wiki.ros.org/octomap


https://wiki.ros.org/octomap
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who simply use the 2D occupancy grid to decide on where to go next, as explained
in the literature review.

Goal Position ROS Topic
Camera Frame Name  — !

Areato Cover ——)

Position Threshold ~ ——

Orientation Threshold  ——»  Mission State Machine

Cluster Minimum Size =~ ———]

Cluster Maximum Size =~ ———»

Robot Reference Frame Name —>
OctoMap ROS Topic =~ ———»|
Occupancy Grid ROS Topic —>

Position and
Orientation Goal

| Autonomous Navigation Stack |

A

Visual Odometry

Figure 5.2.: Mission state machine integration with foundational capabilities required
for autonomous exploration.

5.2.1. Pipeline Integration of ROS octomap Package

The integration of the octomap ROS package into the exploration framework is
motivated by the need to perform ray casting operations and manage a volumetric
representation of the environment. The need for this is explained more in-depth
when the actual exploration strategy is discussed.

The octomap__server node within the package is responsible for building
and distributing 3D occupancy maps as OctoMap binary streams, which can be
published in multiple ROS-compatible formats for use in tasks such as obstacle
avoidance, motion planning, or visualization. It uses an octree data structure, where
each node represents a 3D volume, and children subdivide it into eight smaller
cubes. These maps are constructed incrementally from incoming range sensor data
(published as sensor_msgs/PointCloud?2).

Since ROS messages play a crucial role in this work, Appendix B was created to
direct the reader to the respective message definitions. This facilitates understanding
of how the data contained in each message can be processed. Every time a ROS
message appears, with defition is presented in the appendix. When no prior map is
provided, the node starts with an empty representation that is continuously updated
as new sensor data becomes available. In other words, this package converts the
incoming 3D point cloud data, Figure 5.3a, into 3D probabilistic voxels, where each
voxel has an occupancy probability. If the voxel is fully occupied the occupancy
probability is 1, whereas if the voxel is fully free the occupancy probability is 0. Thus,
a 3D probabilistic voxel map is created, Figure 5.3c gives 3D information of the state
of occupancy of the surrounding environment.
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(a) 3D point cloud. (b) OctoMap of occupied (c) OctoMap of all voxels.
voxels.

Figure 5.3.: lllustration of the OctoMap generation process visualized in RViz during
an exploration scenario. In (b), voxels are colored according to their
height, while in (c), voxels are colored based on occupancy probability
using a red-to-green gradient. Red indicates occupied space and green
indicates free space. A clear correlation can be observed between (b)
and (c).

Furthermore, note the difference between Figure 5.3b and Figure 5.3c. While the
first one only shows occupied voxels, inferred directly from the 3D point cloud data,
the latter depicts all voxels, free and occupied. This is because for every 3D point, p,
in the point cloud, a ray is drawn from the origin to p. Voxels along the ray path are
marked as free. The voxel at p is marked as occupied. Each voxel stores a log-odds
probability, {; of being occupied:

P(occupied|measurement)
lg = lt—1 + Iog - (5.1)
1 — P(occupiedimeasurement)

Equation 5.1 also allows us to conclude that the more measurements a voxel
receives, the more confident the system becomes about its occupancy state. Each
update incrementally adjusts the voxel’s log-odds probability, integrating information
over time in a Bayesian manner. Consequently, repeated observations of free space
along a ray decrease the occupancy probability, while repeated hits on a voxel
increase it, refining the map’s accuracy.

Now that the importance of generating an OctoMap has been established,
it is necessary to explain how it integrates with the RAFCON-based state
machine architecture. The OctoMap data is published in the form of
octomap_msgs/Octomap messages, which encapsulate the probabilistic 3D
occupancy grid generated by the octomap_server node. These messages
contain all relevant metadata—including map resolution, reference frame, and
the serialized octree structure. Note that the probabilities can be expressed in a
continuous range from 0 to 1 or in binary form. The serialized octree structure
means that, in order to read this data, it first needs to be deserialized, usually
through the conversions. h header of the OctoMap package.

Since the state machines in RAFCON are built for Python, a python package
that does this would be nice. There are two available python packages that serve
as Python binding of the OctoMap library that could work. However, upon closer
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inspection the bindings bindings primarily allow to create and manipulate OctoMaps
in Python, e.g., inserting point clouds, querying occupancy, or saving maps, but not
directly deserialize the binary OctoMap messages published by.

Since the state machines in RAFCON are implemented in Python, having a
Python package capable of handling OctoMap data would be advantageous. Two
available packages provide Python bindings for the OctoMap library and could
potentially serve this purpose* However, upon closer inspection, these bindings
primarily allow the creation and manipulation of OctoMaps within Python—e.g.,
inserting point clouds, querying voxel occupancy, or saving map files—but do not
provide functionality to directly deserialize the binary OctoMap messages published
by ROS. To address this limitation, a custom C++ ROS node was developed based
on the conversions.h header from the OctoMap package. This node, named
octomap_saver_node.cpp, remains continuously active and subscribes
to a ROS topic named /trigger_saver, which uses a std_msgs/Bool
message type. Every time a ROS topic is mentioned, its description is provided in
Appendix B.

A corresponding state machine in RAFCON was designed to publish a True
value to this topic whenever the algorithm requires access to the deserialized octree
data structure for further computation. From the deserialized data, a . csv file is
generated containing the coordinates of each voxel along with its corresponding
occupancy probability. Figure 5.4 outlines how the node is integrated and called in a
state machine to read data from the octree structure.

Mission State Machine

Other ¢ -
.csV Trigger Saver State Eg;?rlgtr:tlon
A Machines 9y

True

A 4

Figure 5.4.: Integration of custom C++ ROS node to deserialize the binary OctoMap
messages.

5.2.2. Autonomous Exploration State Machine Architecture

After understanding how the OctoMap messages are deserialized, the first iteration
of the general architecture for autonomous exploration can be defined. This
architecture represents the initial design of the state machine hierarchy that will
support the implementation of the exploration strategy. After understanding how the
OctoMap messages are deserialized, the first iteration of the general architecture

4The first one is octomap—python and the seconds, more recent, is pyoctomap.


https://github.com/wkentaro/octomap-python
https://github.com/Spinkoo/pyoctomap?tab=readme-ov-file
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for autonomous exploration can be defined. This architecture represents the initial
design of the state machine hierarchy that will support the implementation of the
exploration strategy. A general architecture is proposed in Figure 5.5.

360 Rotation [~ -
Detect Frontiers __.| Segment Frontiers H Remove Unwanted Frontiers

>

Check Area Covered

Check Frontiers Exist

<_| Apply Exploration Algorithm

Monitor Position Monitor Orientation

Figure 5.5.: General architecture of the initial autonomous exploration framework.

Here, the yellow arrows (—) represent variables provided by the user that are
passed into state machines or other variables that are created by and passed
between state machines. Blue arrows (—) indicate high-level transitions between
hierarchical state machines, while purple arrows (—) correspond to low-level
transitions between state machines within a hierarchical structure. Finally, red
arrows (—) denote transitions that finalize the exploration process successfully. Of
course, the general architecture represents a high-level overview, and it is expected
that certain state machines within this structure will themselves contain additional
nested state machines. Nevertheless, a description is provided that explain this
architecture.

To begin, the rover performs a 360-degree rotation to maximize the amount
of information available before moving. Since the rover is capable of in-place
rotation, as described in Section 2.2, this maneuver is considered safe because no
translational motion occurs during the process. After completing the rotation, the
system transitions to a hierarchical state machine responsible for detecting and
segmenting frontiers from the 2D occupancy grid. This process uses user-provided
inputs, including the occupancy grid topic and the maximum and minimum cluster
size parameters.

Classifying every individual grid cell as a separate frontier point would be
inefficient, as the rover’s stereo vision system has a sensing range much larger
than the distance between consecutive grid cells. Therefore, frontier points are
clustered into groups representing viable exploration frontiers. Additionally, this state
machine removes invalid or unreachable frontier points—for example, those that
are unreachable by the rover. If no frontiers are available, exploration concludes
successfully, as indicated by the red transition arrow leading out of this state
machine.



5.3. Implementation of Low-Level State Machines 57

If viable frontiers do exist, the exploration algorithm selects the next frontier goal.
This computation requires additional user-defined parameters, such as the OctoMap
topic, the camera frame, and the rover base frame name. The selected frontier
is converted into a pose goal, which is both passed to the next hierarchical state
machine, responsible for monitoring rover motion, and published to the goal position
ROS topic. The movement monitoring state machine operates passively, tracking
progress without directly commanding motion. From this point, the autonomous
navigation stack assumes control and drives the rover toward the pose goal. When
the rover successfully reaches the target, the hierarchical state machine reports
success, triggering the next transition.

Finally, a verification step evaluates whether the explored area exceeds a
user-defined threshold. This option allows users to stop exploration based on a
maximum coverage area, goal rather than waiting for all frontiers to be explored.
This is especially important in large environments. If the coverage threshold is
reached, the mission concludes successfully. Otherwise, the loop repeats until all
frontiers have been explored or the defined area has been covered.

5.3. Implementation of Low-Level State Machines

Following the definition of the overall exploration architecture, this section
focuses on the implementation of the low-level state machines that compose the
hierarchical control structure. These implementations interact directly with the
robot’s foundational capabilities, them being perception, mapping, and navigation,
through ROS topics. Each low-level state machine is responsible for performing a
specific function.

5.3.1. Frontier Detection Pipeline

The first challenge of the frontier detection pipeline is to identify all grid cells
that can be considered potential frontier candidates. As previously mentioned,
frontier cells represent the boundary between known free space and unknown
space in the occupancy grid. The process begins by scanning the 2D occupancy
grid map, where each cell is classified as free, occupied, or unknown, depicted,
by grey (1), black (W), and green (M) grid cells, respectively, in Figure 5.8a. A
cell is labeled as a frontier candidate if it is free and has at least one adjacent
cell that is unknown. The ROS topic publishing this information does it through
a nav_msgs/OccupancyGrid message. For this, a state machine was
created in RAFCON that subscribes to the ROS topic specified by the user
containing the occupancy grid map. The state machine waits for the message and
processes the received data to identify potential frontier cells.

Each cell in the map is checked: if it is free and at least one of its neighboring
cells is unknown, it is classified as a candidate frontier. Besides, an important
consideration must be made when interpreting the information from the occupancy
grid. It is possible that, based on the 3D point cloud data, an unknown grid
cell appears completely surrounded by free grid cells, Figure 5.6. Given the grid
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resolution of 5x5 cm, such cells can be safely reclassified as free rather than
unknown, since their small size and surrounding context make it unlikely that they
represent unexplored space. Consequently, these cells are not treated as candidate
frontiers.

A\

Figure 5.6.: Example of unknown grid cells fully surrounded by free grid cells, which
can be safely reclassified as free.

The detected frontiers are then converted from grid indices to real-world
coordinates using the map resolution and origin parameters. Finally, a
visualization_msgs/Marker message is created, where each frontier
cell is represented as a green cell in RViz, Figure 5.8b. This allows for the
visualization of all candidate frontier points detected from the current occupancy
grid. As an example, Figure 5.7 shows the implementation of such state machine in
RAFCON.

detect_candidate_froritiers

Figure 5.7.: Example of the state implemented in RAFCON for detecting all
candidate frontiers.

Now that all possible candidate frontiers have been identified, they can be
clustered for further processing. To accomplish this, a RAFCON state machine was
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implemented to segment adjacent frontier cells into coherent clusters. The state
subscribes to the ROS topic containing the previously detected frontiers. Each point
in this message corresponds to a frontier cell in the occupancy grid. The algorithm
constructs a graph based on Euclidean distance between points, where two points
are considered neighbors if their squared distance is below a threshold derived from
twice the map resolution. A BFS is then used to group connected frontier cells into
clusters.

Each cluster is constrained by the maximum and minimum cluster size
user-defined parameters. It is important that the cluster size can be adjusted,
given that the range of the stereo vision cameras in different systems
varies. Once all clusters are formed, they are published to a new topic
as a visualization_msgs/MarkerArray, where each cluster is
represented by a distinct color for easy visualization in RViz, Figure 5.8c. The
resulting topic, serves as input for the next stage of the frontier detection pipeline.

On top of this, it is necessary to determine which point best represents each
clustered frontier region. The centroid of the cluster is typically chosen because it
provides a compact, spatially balanced representation of the entire frontier area [8].
The centroid of a frontier cluster composed of N grid cells is given by:

SRS
C= (— Xi, — yl-) (5.2)
N i=1 N i=1

where (X;, y;) are the coordinates of the center of each grid cell and
C = (Cx, Cy) represents the centroid coordinates. This process is implemented
through a dedicated RAFCON state machine that subscribes to the ROS topic
containing the clustered frontiers. Upon receiving this message, the state machine
iterates through each cluster, computes its centroid, and publishes the results as a
new MarkerArray for visualization in RViz. The centroids are represented as
spherical markers whose colors correspond to their originating clusters, ensuring
visual consistency between clusters and their representative points, Figure 5.8d.

In addition to visualization, the state machine stores the computed centroids as
output variables (centroids_list and number_centroids) that can
be accessed by subsequent high-level state machines. These variables will serve
as inputs for decision-making processes, such as selecting the next exploration goal
or evaluating spatial coverage. Note that because this information is taken from the
2D occupancy grid there is no height coordinate. In addition, because the FOV
of the camera is concave from the POV of the rover, it is almost certain that the
centroid will fall within a known region of the map.

The results of a fully functional frontier detection pipeline are presented in Figure
5.8, captured from an experimental mission scenario. It can be observed that, due
to the minimum cluster size constraint, some of the candidate frontiers detected in
(b) are no longer present in (c). Furthermore, all centroids shown in (d) for this
particular 2D occupancy grid lie within the known region of the map, confirming the
consistency of the clustering and centroid computation processes.
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(d)

Figure 5.8.: Frontier detection pipeline from RViz: (a) generation of 2D occupancy
grid, (b) detection of candidate frontiers, (c) clustering of frontiers, and
(d) centroid computation for navigation goals.

5.3.2. Filtering Unwanted Frontiers

Although all computed centroids lie within the known region of the map, not all
of them are guaranteed to be accessible by the rover. Consequently, additional
state machines are employed to filter out unwanted frontiers from the centroid list
generated by the frontier detection pipeline. Two main situations can render a
centroid unsuitable for exploration:

* Inaccessible region due to occupancy: The centroid is located in a region that
cannot be reached because it lies beyond occupied grid cells, Figure 5.9.

» Narrow passage constraint: The centroid is theoretically reachable—there
exists a continuous region of free space connecting the rover and the
frontier—but the available passage is narrower than the rover’s required
clearance, making traversal physically impossible, Figure 5.10, which is the
case of the orange () centroid of Figure 5.8d.

To address this, two dedicated state machines were developed to filter out these
unwanted frontiers before proceeding to the next stage of exploration. The first
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Figure 5.9.: Example of an inaccessible region due to occupied grid cells.

Figure 5.10.: Example of a narrow passage that prevents rover traversal.

state machine evaluates if the spatial there is a straight connection between each
centroid and the rover’s current position. If such an obstruction is detected, the
corresponding centroid is discarded. The second state machine assesses the width
of the free-space corridor leading to each remaining centroid. This is achieved by
analyzing if the minimum width for a clear path between the rover and the centroid
is bigger than a certain threshold that correspond to the rover’s dimension with a
safety factor being applied. The output of these two filtering stages is a refined set of
valid frontier centroids, guaranteed to be both reachable and physically traversable
by the rover.

With the frontiers detected and filtered, the next step is to describe how the rover’s
position and orientation are monitored while it navigates toward a goal position. As
shown in the general architecture of the autonomous exploration framework (Figure
5.5), the subsequent stage involves applying the exploration algorithm. However,
since this algorithm represents the core of this thesis and requires a more detailed
explanation, the monitoring process is first presented. Afterwards, a dedicated
section focuses on the exploration algorithm itself, detailing how the next frontier
to explore is selected from the list of centroid frontiers obtained from the frontier
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detection pipeline, after filtering out the unwanted ones.

5.3.3. Position and Orientation Monitoring

Monitoring the position and orientation of the rover is a crucial part of the
autonomous exploration framework. In this context, the monitoring process does
not control the rover directly; rather, it observes and verifies the progress of the
autonomous navigation stack after a pose goal has been assigned. Each pose
goal consists of two components. First, a position goal, which corresponds to the
coordinates of the selected frontier centroid in the 2D occupancy grid, and then an
orientation goal, that defines the desired heading of the rover when reaching the
frontier.

Determining the appropriate orientation is a non-trivial task. Most works in
autonomous exploration focus on moving the rover towards a frontier without
explicitly specifying the desired orientation. However, orientation is important for
maximizing sensor coverage and ensuring effective perception of the environment.
In this implementation, the orientation goal is chosen such that the stereo vision
camera is facing the frontier centroid. This ensures that when the rover reaches the
target position, the camera is aligned with a line passes through the center of the
rover and the frontier centroid. Figure 5.12 illustrates this concept.

7
N

Figure 5.11.: Rover orientation aligned towards a frontier centroid. The arrow
indicates the desired heading while approaching the target.

There are several passive approaches to monitor the rover’s position. One
straightforward method is to continuously track the rover’s current pose at each
timestamp and compare it with the given pose goal. The pose goal consists of
two components, the position vector, (X, y, z), and the orientation represented as
a quaternion, (X, y, z, w). This indicates that two different state machines can
be created, each responsible for monitoring the rover’s position and orientation,
separately.

Through the t £ Python package®, the rover’s position in the global map frame

SAvailable at https://docs.ros.org/en/jade/api/tf/html/python/tf_
python.html
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can be retrieved at each timestamp. Knowing both the rover’s current position and
the frontier centroid, the Euclidean distance between them can be computed as:

d =/ (Xc—X)? + (Ve — yr)? (5.3)

where (Xr, yr) represents the rover's position and (X¢, yc) represents the
coordinates of the frontier centroid in the 2D occupancy grid. The z coordinate is
omitted since the centroid is defined within the 2D plane.

Then, a state machine can continuously monitor this distance, and once it falls
below a user-defined position threshold, the state machine concludes successfully,
indicating that the rover has reached the target. It is important to note that the rover’s
autonomous navigation stack also uses its own internal thresholds to determine
when the goal position has been reached. Ideally, the user-defined threshold in the
state machine should closely match the one used by the navigation stack to ensure
consistent behavior.

If the threshold defined in the state machine is larger than that of the navigation
stack, the state might terminate prematurely, before the rover’s navigation system
confirms goal completion. Conversely, if the state machine’s threshold is smaller, it
might continue running even after the navigation stack has already concluded that
the goal has been reached, potentially leading to unnecessary delays.

y
Vel

Yc=Yr

Xc— X

Xc ~X

Figure 5.12.: Rover orientation aligned towards a frontier centroid. The arrow
indicates the desired heading while approaching the target.

Regarding the orientation, it can be computed by determining the angle that
makes the rover face the selected frontier centroid. This is done using the difference
between the rover’s current position and the centroid position in the global frame, as
illustrated in Figure 5.12. The orientation angle, a, is computed as

(5.4)

(YC_}/r)
o =atan

Xc—Xr

where a is then restricted to [—m, m]. After obtaining this angle, it is converted
into a quaternion representation. This conversion is necessary because ROS
uses quaternions to represent orientation in three-dimensional space, avoiding
the singularities and discontinuities associated with Euler angles. The resulting
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quaternion defines the orientation goal that can then be monitored, knowing the
orientation of the rover at any timestamp.

Thus, three hierarchical state machines were developed for use within this
pipeline: one that terminates successfully when a position threshold is reached,
another that terminates successfully when an orientation threshold is reached, and
a third that terminates successfully when both position and orientation thresholds
are simultaneously satisfied. Using one or a combination of these hierarchical state
machines yields similar outcomes when navigating toward a pose goal. Depending
on the chosen configuration, the rover may first orient itself toward the selected
frontier and then move to it, or it may perform both actions simultaneously.

5.3.4. Exploration Completion Checks

Two completion checks are employed to determine whether the exploration process
shall continue. They are based on an area covered and frontier availability check.
The area covered check computes the area of the environment that has been
explored by multiplying the area of each grid cell, given by the grid cell resolution, by
the total number of cells classified as either free or occupied in the occupancy grid.
The frontier availability check determines wether there are still frontier centroids to
explore by checking if the list of centroids obtained after filtering unwanted frontiers
is greater than 0. If the user wants exploration to stop when there are no more
frontiers to explore, it can bypass the state machine responsible for checking the
covered area. This can be done either by changing the state transitions directly in
RAFCON or by setting the area coverage threshold to a very high value.

“exploration_missi
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Figure 5.13.: Low-level state machine implementation of the autonomous exploration
mission.

With this, Figure 5.13 illustrates the implementation of the low-level state
machines thus far. This provides an exploration mission structure similar to the
the general architecture of the exploration framework presented in Figure 5.5
(Subsection 5.2.2). The only hierarchical state machine, along with its corresponding
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sub-state machines, that remains to be defined is the one related to the exploration
strategy, which is presented in the following section. Note that some state machines
correspond to execution states, e.g., check area covered, while others are
hierarchical states that contain either execution or additional hierarchical states. For
instance, the hierarchical state go to centroid, Figure 5.14, is composed of
two subordinate hierarchical states: go to centroid pose orientation
and go to centroid pose position. Furthermore, go to centroid
pose orientationitself, 5.15, consists of 4 distinct execution states. As well,
note the user defined inputs to the left of the exploration mission hierarchical state
machine.

go_to_centr

Tgotocentroid — go to.centroid ™

pose orientation pose position

Figure 5.14.: Hierarchical structure of the go__to_centroid state machine.

'»-go_to_centroid_pose_orient&tje_n.—.:

= getcumentpose " publishrgoal 7

© wateh
orientation goal

Figure 5.15.: Detailed view ofthe go_to_centroid_pose_orientation
hierarchical state, composed of 4 execution states.

The get current pose state retrieves the current pose of the rover with
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respect to the global map frame. This information is then passed to the get base
link to centroid pose rotation state, which computes the orientation
angle according to Equation 5.4 and converts it into a quaternion representation.
Using this quaternion, the publish goal state machine publishes the
corresponding orientation goal to the topic used by the autonomous navigation
stack. Subsequently, the watch orientation goal state monitors the
rover’s current orientation angle and compares it to the desired orientation. Once a
given orientation threshold is reached, the state machine exits successfully.

With the general architecture for exploration implemented in RAFCON comprising
low-level state machines responsible for detecting potential frontier centroids
through a frontier detection pipeline, filtering unwanted frontiers, and monitoring the
rover’s position and orientation, it is now possible to progress to the implementation
of the exploration algorithm.



Design of Exploration
Algorithm

The exploration strategy is the core this thesis work. On one hand, it shall be
structured in a way that is easy enough to be implemented across different robotic
platforms. On the other hand, it shall have sufficient complexity to advance the
efficiency of autonomous exploration compared to existing open-source strategies
found in the literature.

Accordingly, this chapter performs a trade-off study between existing open-source
exploration strategies to define the exploration strategy to be implemented in this
work in Section 6.1. Given the definition of the desired strategy, Section 6.2, Section
6.3, Section 6.4, and Section 6.5, address the different components of the strategy,
mainly, the travel cost, information gain, utility function, and frontier coverage,
respectively. Finally, Section 6.6 examines the effect of the ray casting step size on
entropy accuracy across the ray casting sphere.

6.1. Exploration Strategies Trade-Off Study

This being the case, the first step is to define, a suitable exploration strategy that
can be adapted and improved for implementation in this framework. For this, a
trade-off study like the one presented for deciding the state machine framework to
be used is performed.

As discussed in the literature review, two open-source exploration strategies
stand out. The first is the Autonomous Explorer Node for Frontier Exploration’,
which selects the closest unexplored frontier as the next navigation goal. The
second is an exploration strategy based on RRT, where the next frontier point, X,
is chosen by balancing the navigation cost, N, and the information gain, I, through a
scaling factor, A, [85]. In the work of Umari and Mukhopadhyay [21], the information
gain is defined as the number of unknown cells surrounding a frontier point within
a certain radius in the 2D occupancy grid, while the navigation cost is given by

Available: https://github.com/AniArka/Autonomous-Explorer—and-Mapper—-ros2-nav2
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the Euclidean distance between the rover and each frontier point. A reasonable
conclusion is that developing a strategy that also employs a utility function, similar to
the work of Umari and Mukhopadhyay, but improved the way either the navigation
cost, the information gain, or both, are retrieved, would be beneficial.

Another important limitation of these strategies is that they do not consider the
rover’s orientation at the frontier point, only mentioning that the rover goes to the
frontier point. This is better illustrated in Figure 6.1, where the blue camera FOV
captures more information about the frontier cluster, when compared to the red
camera FOV.

Figure 6.1.: Schematic of the effect of rover orientation at a frontier point on map
coverage. An appropriate orientation or FOV range when reaching
the frontier can significantly increase sensor coverage and exploration
efficiency.

This opens the opportunity to develop an exploration strategy that explicitly
accounts for a possible orientation that maximizes exploration efficiency at the
frontier point. Given this analysis, and based on the reviewed literature, the following
exploration strategies will be compared and evaluated. The first exploration strategy
aims to improve the computation of both the navigation cost and the information
gain when selecting the next frontier point, following approaches similar to those
proposed by Bourgault et al. [47] and Dai et al. [50], named Improved Ultility
Function. The second strategy, Maximizing Entropy, focuses solely on maximizing
the amount of new map area discovered while moving toward a frontier point. The
third strategy introduces the consideration of the rover’s orientation at the frontier,
aiming to maximize sensor coverage and exploration efficiency. This strategy will be
called Maximizing Frontier Coverage.

Finally, a Reinforcement Learning—based exploration strategy is included for
completeness of the trade-off study, as it has been demonstrated in previous works,
such as that of Leong [78]. A set of criteria is also defined to evaluate these
strategies.

First is the Computation Complexity, i.e., the computational cost of generating
and selecting new frontier points. Lower complexity might mean a better algorithm
performance on resource-constrained robotic platforms.
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Second, the Adaptability and Parametrization assesses how easily the method
can be tuned or extender. For example, by incorporating more terms in an utility
function, or tuning the existing parameters through a scaling factor. This is also
important, as one of the goals of this work is to develop a strategy that can be
further extended by the community to achieve greater complexity.

The third criterion, Improvement of State-of-the-Art Exploration Efficiency,
refers to the expected enhance in performance that the exploration strategy will
have when compared to existing open-source exploration strategies.

Finally, the Reproducibility and Open-Source Availability criterion evaluates
the extent to which the strategy can be reproduced or built upon using publicly
available literature. This is aligned with the open-source nature of this work and
supports future community-driven extensions.

Similarly to the state machine framework trade-off study, each strategy will be
ranked on a scale from 1 to 5, with 1 considered the lowest and 5 considered the
highest. The importance of each criterion in the work’s context is attributed through
relative weights as follows:

« Computation Complexity, 0.8. Efficient computation is important for real-time
performance, especially on platforms with limited onboard resources. However,
slightly higher computational costs can be tolerated if they result in
substantially improved exploration performance.

+ Adaptability and Parametrization, 0.9. The ability to easily tune or extend the
exploration method is crucial for this work, as one of its primary objectives is
to develop a strategy that can serve as foundational work to be expanded by
the research community.

 Improvement of State-of-the-Art Exploration Efficiency, 1.0. This criterion
measures the degree to which a strategy advances existing open-source
methods in terms of exploration performance. It is the most important criterion.

* Reproducibility and Open-Source Availability, 0.7. While open-source
accessibility is aligned with the goals of this work, it is assigned a slightly
lower weight, as it primarily influences long-term research adoption rather
than immediate technical performance.

Note that criteria 2 and 4 are distinct. Criterion 2 deals with the question 'Can this
algorithm be adapted to different robotic platforms or modified easily?’, whereas
criterion 4 focuses on 'Can another researcher reproduce, execute, and build upon
this work?’. The results of this trade-off study are presented in Table 6.1, where
Reinforcement Learning is shortened to RL.
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Criterion Weight Improved Util- Max. En- Max. Frontier RL
ity Function tropy Coverage
Computation 0.8 4 5 4 2
Complexity
Adaptability and 0.9 5 3 4 5
Parametrization
Improvement of 1.0 5 4 5 5

State-of-the-Art
Exploration Efficiency

Reproducibility and 0.7 5 4 4 2
Open-Source
Availability
Weighted Sum 16.2 13.5 14.6 12.5

Table 6.1.: Trade-off analysis of advanced exploration strategies suitable for
open-source implementation.

From the trade-off study, it can be concluded that the Improved Utility Function
strategy achieves the highest overall score, with a weighted score of 16.2. This
indicates that it offers the best balance between computational efficiency, adaptability,
performance improvement, and open-source reproducibility. Nevertheless, the
Maximizing Frontier Coverage strategy closely follows, with a score of 14.6, also
scoring the highest with respect to improvements in the state-of-the-art, given the
previously mentioned exploration strategies do not account for frontier coverage.

Moreover, the Maximizing Entropy strategy scores lower, with a weighted sum of
13.5, primarily due to its limited adaptability and parametrization. This is expected,
as it focuses on maximizing entropy and lacks the flexibility of utility-based
methods, which can incorporate multiple factors and, therefore, more easily tuned.
Reinforcement Learning scores the lowest, which was expected, given the low
score in terms of computation complexity, motivated by inference cost, compared to
heuristic methods.

Given these results, both the Improved Utility Function and Maximizing Frontier
Coverage strategies are considered suitable candidates for implementation in this
thesis. The Improved Utility Function will serve as a baseline approach that refines
classical open-source frontier-based exploration by optimizing the way navigation
cost and information gain are computed. The Maximizing Frontier Coverage
strategy, on the other hand, introduces a novel contribution by explicitly considering
the rover’s orientation at the frontier to maximize sensor coverage and mapping
efficiency.

Consequently, an exploration strategy that integrates both approaches will be
developed. This represents an even greater advancement over existing open-source
exploration strategies, at it tackles two of the main gaps in current methods: an
improved utility function between that balances navigation cost and information gain,
and accounting for the rover’s orientation at frontier points.

The results of the trade-off study allowed to determine that the implemented
exploration strategy shall use an improved utility function that balances travel cost
and information gain, while also accounting for the rover’s orientation at frontier
points. As a result, the first step is to determine how the travel cost and information
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gain can be computed in a more accurate way.

6.2. Travel Cost

The travel cost, T;, can be determined in two ways: by distance or by time. The
distance-based approach considers only the Euclidean distance between the rover
and the target goal. This can be easily computed as mentioned in Subsection 5.3.3.

In addition, if the rover’s linear velocity is known, the distance can be converted into
AX

travel time using At = ==. Although this provides a simple measure of proximity, it
fails to capture how the rover’s orientation can influence travel time.

This concept is demonstrated in Figure 6.2. The blue centroid is located 15 cm
away from the rover and requires a 180° rotation to orient itself correctly. Similarly,
the green centroid is positioned at a distance of 20+/2 cm, requiring a 45° rotation.
Given the rover's maximum angular velocity of 12.8°/s, maximum linear velocity of
0.13 m/s, and an occupancy grid resolution of 5x5 cm, the corresponding travel
times can be determined. For the blue centroid, the rotation time is 14.06 s and the
translation time is 1.15 s, resulting in a total travel time of approximately 15.22 s. In
contrast, the green centroid requires 3.52 s for rotation and 2.18 s for translation,
yielding a total travel time of 5.69 s. In light of this, the green centroid presents a
lower travel cost when evaluated in terms of total travel time, yet a higher one when
wrongfully considering only the Euclidean distance.

180
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Figure 6.2.: Example illustrating the influence of rover orientation on travel cost
computation.

This shows how computing travel cost by taking into account total travel time
is more accurate than considering only the Euclidean distance. Even so, some
assumptions are made to apply this method. First, it is assumed that the rover is
always moves at its maximum linear and angular velocities. Second, the rover’s
trajectory from its initial position to the centroid is considered to be a straight line.
Third, when computing the total travel time, rotation and translation are treated as
separate, non-overlapping motions.

Finally, since this strategy is intended to be as plug-and-play as possible, it is
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assumed that the stereo vision camera, specifically, the pan-tilt unit, remains fixed,
and only the rover itself rotates. Rotating the pan-tilt unit compared to rotating
the rover’s body frame would yield a lower rotation time. However, not all robotic
platforms have this feature. In fact, ongoing work at the LRM focuses on using the
IMU data from the Intel RealSense Depth Camera D435i to correctly represent the
rotation of the pan-tilt unit within the TF tree in RViz.

Some of these assumptions increase total travel time, while others decrease. It is
expected that the rover’s linear and angular velocities will vary during motion, and
that its trajectory will not be a straight line. The results in Chapter 8 will demonstrate
the extent to which the simplified travel cost estimation aligns with the rover’s actual
travel time. Note that because of this more complex approach, two additional user
inputs are necessary. To be specific, the rover’s linear and angular velocity.

6.3. Information Gain

The information gain, henceforth denoted as IG, quantifies how much uncertainty
is reduced when a robot observes a previously unknown region. This uncertainty
is typically represented by entropy H [48]. Hence, a greater information gain
corresponds to a larger decrease in entropy, meaning the robot has reduced more
uncertainty about the environment. This is given by:

IG = Hprior - Hposterior (6.1)

where Hpyior is the entropy before taking a measurement (how uncertain the
rover is about the environment) and Hposterior iS the entropy after the expected
measurement (how uncertain the rovers expects to be after observing). In an
OctoMap, each voxel in 3D space has a probability p; of being occupied as
explained in Subsection 5.2.1. The entropy of one cell is:

Hi=—pilog(pi) — (1 —p)log(l—p;) (6.2)

Remembering that a probability of occupancy of 1 means that the voxel is fully
occupied, a probability of occupancy of 0 means that the voxel is fully free, and
a probability of occupancy of 0.5 means that the state of the voxel is completely
unknown, Equation 6.2 will yield 0 if the voxel is known, i.e., its probability of
occupancy is either 0 or 1, and yields the maximum value of 1 when the voxel is
completely unknown. Thereafter, the total entropy over a region R is the sum of all
cells’ entropy:

H(R) =Y H (6.3)
i€eR

Therefore, for a potential sensor viewpoint, it is possible to estimate how much
entropy would be reduced by observing a region., where the IG is then:

IG(xf) = H(R) — H'(RIxf) (6.4)

where H(R) is the current entropy of the observable region, and H(R|xf) is the
expected entropy after taking a measurement from the frontier candidate xy. In
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practice, since exact measurement prediction is difficult, an approximation is used
that considers the number of unknown cells visible from that point within the sensor
range of FOV. Thus, a practical approximation used in many papers, such as the
work of Dai et al. [50], is:
IG(xp)~ > H (6.5)
ieV(xf)

where V(x¢) is the set of cells visible from xf. That is, the more unknown volume
the rover sees, the more information gain it is expected. Accordingly, what is left to
do is define the volume V that contains the set of voxels visible from xf to apply
Equation 6.5 and compute entropy and, subsequently, information gain.

Besides, note that the occupancy probabilities in an OctoMap can be expressed
either in a full or binary form, where voxels are classified as free or occupied.
Because this strategy is implemented in resource-limited rovers, a binary OctoMap
is employed. This representation allows each voxel to be directly assigned of value
of 0 or 1 and not compute the entropy value for each voxel, through Equation
6.2, which significantly decreases exploration time. This is supported by work in
the literature that also use the binary occupancy representation in OctoMap for
mapping, navigation, and exploration tasks [126, 127].

6.3.1. Ray Casting Within a Spherical Region

Since the rover is equipped with a stereo vision camera, a spherical region with a
radius equal to the range of the stereo vision camera will be used as the volume
V that will contain the set of visible voxels. Using the TF tree and the user input
names of the camera frame and the rover body frame, it is possible to determine the
position of the stereo vision camera when the rover reaches the frontier point. This
position will serve as the origin of the ray casting sphere. The ray casting process
has already been explained in Chapter 4.

The choice of a sphere as the volume V, is supported by the fact that rovers
equipped with pan-tilt units are capable of rotating their stereo cameras to cover
a wide range of directions. For instance, if this algorithm is being used on a
rover to explore a cave, it might be useful for the rover to look up. With this, the
volume V provides the most accurate representation of the observable space, when
compared, for example, to just using the camera frustum, 6.3, rotated around the
frontier point as the volume V.

Since the volume V is a sphere, spherical coordinates are used to determine the
step increments of each ray. In this representation, the usual Cartesian coordinates
(x, y, z) are replaced by (r, 8, ¢), where r is the radius from the origin, 6 is the
azimuth angle in the xy-plane, and ¢ is the elevation angle measured from the
z-axis, Figure 6.4.

Because the range of ¢ is [—g, g], and the range of 6 is [—m, 7], the azimuth
step will always be twice the elevation step to ensure uniform distribution of rays
across the entire sphere, even before deciding the actual step values.

A visual representation is useful for explaining how the sphere is positioned
within the OctoMap for ray casting. Given this, Figure 6.5 clarifies how this occurs.
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Figure 6.3.: Camera frustum view. [Credits: Wikipedia.]

«(1,0,0)

Figure 6.4.: Spherical coordinates representation. [Credits: Wikipedia.]

The OctoMap is height-colored from an experimental mission scenario in which
the rover, represented by the green dot, performed a 360° rotation. The red dot
represents the position of the stereo vision camera after applying the transformation
from the respective frontier centroid to the camera frame. A 1.5 m radius sphere is
projected around the camera position. Figure 6.5a shows only occupied voxels,
while Figure 6.5b depicts both free and occupied voxels. It can be seen that there
are voxels that fall within the projected sphere. During ray casting, the rays intersect
these voxels, which allows to compute entropy.
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(b) Same configuration as in (a), but displaying both free and occupied voxels.

Figure 6.5.: Visualization of the ray casting sphere within the OctoMap. (a) Occupied
voxels only. (b) Both free and occupied voxels.

From this, a method is defined to compute the total entropy inside this region in
the most computationally efficient way possible. First, the entropy along each ray is
computed, and then the entropy of all rays is summed to obtain the total entropy.
This is done for all centroid after filtering unwanted frontiers. The centroid with the
highest total entropy represents the centroid with the biggest information gain. Ray
casting along a ray stops either when an occupied voxel is hit or when the distance
between the tip of the ray and the sphere’s origin is greater than the sphere radius.
Note that with these constraints, the different between using the rotated camera
frustum or the sphere as volume V becomes redundant.

In the example presented, the floor is composed of occupied voxels will with stop
the rays and the sky is just unknown voxels which will always give maximum entropy
along the ray. Note that under these constraints, the difference between using the
rotated camera frustum or a sphere as V becomes negligible because occupied
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voxels will always stop rays, independent of the shape of V.

By knowing the resolution of each voxel as well as the position of each occupied
and free voxel of the OctoMap in the sphere, it is possible to infer the position of
unknown voxels in the remaining available space. Now, with the whole volume of
the sphere defined, entropy can be computed along each ray. For example, given a
1.5 m radius sphere and a voxel resolution of 5x5x5 cm, there are 30 voxels per ray.
This means that, from Equation 6.2, the maximum entropy value along a ray is 30,
which corresponds to just having unknown voxels in that ray. Because the number
of rays changes with step size so will the total entropy for the same scenario. This
technique can also be used to compute a depth from around the sphere, by only
considering the distance to occupied voxels.
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(a) Entropy map projected onto the spherical (b) Depth map projected onto the spherical
surface. surface.

Figure 6.6.: Projection of the entropy and depth maps from the scenario of Figure
6.5 onto a spherical surface.

Coupled with this, it is possible to compute a depth map an entropy map across
the spherical surface of the sphere for each frontier point. These maps are a visual
representation of the observed environment by the stereo vision camera at that point.
Hence, Figure 6.6 projects the depth map an the entropy map of the same scenario
as Figure 6.5 into the spherical surface of radius 1.5 m. Each cell on the spherical
surface corresponds to a spherical quadrilateral, defined by the selected azimuth
and elevation step sizes. These areas represent the discrete sampling areas of the
spherical grid, where the corresponding depth and entropy values are mapped.

In the black-and-white gradient color bar of the entropy map, note that the
maximum expected value of entropy, 30, dominates most of the spherical surface,
meaning that, in this particular ray casting point, most of the environment is
unknown. Furthermore, by comparing the entropy map with the depth map, it can
be seen that the entropy map is similar to the depth map but includes additional
features. This stems from the fact that the depth map accounts only for occupied
voxels, whereas the entropy map considers both free and occupied voxels. For
better visualization, the spherical surface can be projected in 2D, as illustrated in
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Figure 6.18.
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(a) 2D projection of the entropy map. (b) 2D projection of the depth map.

Figure 6.7.: 2D projection of the entropy and depth maps from the scenario of
Figure 6.5.

For this particular ray casting, a step of 0.5° was used for the azimuth, while a
step of 0.25° was used for the elevation. Given the range of these angles, a total of
519841 rays were casted, which took 85.282 s for MATLAB to compute, for a total
entropy value of 14915612. This represents 95.6% of the total possible entropy of
15595230. This correlates with the entropy map, which is predominantly filled with
regions of maximum entropy. Thus, it is clear that attention shall be given to defining
the correct elevation and azimuth step sizes that yield accurate ray casting results
without compromising performance. This will be addressed in Section 6.6.

Since the maximum entropy value varies according to the step size of the angles
it is important that for a set of frontier centroids, the same step size is used, to
ensure that the entropy values can be properly compared. For now, since the way
travel cost and information gain are computed has already been implemented, the
next step is to determine how to balance them through an utility function.

6.4. Utility Function

When considering utility functions for autonomous exploration that balance travel
cost and information gain, several approaches can be found in the literature. For
one, Gonzalez-Bafios and Latombe [46] used an utility function for a given frontier
centroid, x;, that takes the distance to the centroid, d;, and the information gain, IG;,
as:

X =I1G; exp(—Ad,) (6.6)

setting the A parameter as 0.2. This was later reproduced by Schuster et al. [97] as
part of DLR’s LRU participation in the SpaceBotCamp Challenge. Other work like
the one from Stachniss et al. [123] use a similar approach without relying on an
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exponent, where the utility, U;, of a frontier centroid is given by:
Ui =1G;— ad; (6.7)

However, these utility functions use distance to centroid and not total travel time
as the travel cost. A linear weighted difference could also be used, where the utility
is given by:

IG; Ti
1 — W2

IGmax Tmax

where the minus sign expresses the penalty from travel cost. This represents a
normalized linear trade-off between information gain and travel cost, where w1 and
w7 are weighting coefficients such that w1 + w2 = 1. This might appear to be an
easy approach to use at first glance. Yet, tuning the parameters to achieve a proper
balance between information gain and travel cost can be challenging and requires
careful consideration. Therefore, this approach is not adopted in the present work.
However, given that this thesis is intended to be easily extendable by the community,
it could be pursued as future work.

Hence, the chosen approach to balance the utility function is based on the work of
Dai et al. [50], where the utility of each frontier centroid is given by a ratio between
the information gain and travel cost:

Ui=w (6.8)

IG;

(= (6.9)

The frontier centroid with the highest utility is the one chosen as the target
position goal. This ratio automatically penalizes frontiers that require a long total
travel time, while favoring closer frontier with a high information gain, without
the need to tune a weighing factor. Another motivation for this choice is that,
experimentally tuning a weighing factor instead of in a simulated environment
would be very time-consuming, taking time allocated for other critical steps. The
implementation of the state machines in RAFCON used to select the next frontier
goal according to this method is shown in Figure 6.8.

6.5. Frontier Coverage

The utility function that defines the rover’s target position has been implemented.
Still, as the trade-off study of Section 6.1 showed, another promising approach
that is not present in the literature is to investigate how selecting the optimal
orientation or set of orientations, when approaching a frontier centroid could
improve exploration efficiency. For this purpose, the information obtained from the
ray-casting process will be manipulated. The idea behind this frontier coverage
method is to determine, based on the information obtained from ray casting, the
range of angles through which the rover shall rotate when it reaching the frontier
centroid to maximize additional information gain during coverage.

Of course, if the rover performs a 360° rotation every time it reaches a frontier
centroid, it will cover the entire angle range from which information about the
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Figure 6.8.: Hierarchical state machine architecture used to compute travel cost,
information gain, and the utility function that determines the next
position goal.

environment can be gathered. However, this approach is inefficient, as it increases
exploration time and redundant exploration without a proportional gain in new
information.

At any instant, what is being seen by the stereo vision camera is limited by the
camera horizontal and vertical FOV. In the case of the LRM, the Intel RealSense
Depth Camera D435i has a hFOV of 87° and a vFOV of 58°, for a diagonal (total)
FOV, using Equation 6.10, of 95.8°.

FOVy FOVy
FOViota = 2 arctan | 4| tan? ( > ) + tan? ( > ) (6.10)

Hence, for each point in Figure 6.18a corresponding to the center of the stereo
vision camera’s FOV, an area can be defined that represents what the camera is
seeing currently. Figure 6.9 is an example of such representation, where the red
rectangle represents the iFOV of the camera. Given that the total observable sphere
around the camera covers 180 x 360 = 64800 deg?, and the rectangular angular
area seen at any instant is 87 x 58 = 5046 deg?, at any given time, the iFOV of
the camera sees, approximately, 7.79% of the total ray casting sphere.

If the entropy values from ray casting are constrained by the camera’s
instantaneous field of view (iFOV), it is possible to compute an entropy map that,
for any given camera position, represents the normalized total entropy within the
visible region, i.e., the sum of the entropy values of all rays falling inside the iFOV,
as presented in Figure 6.10. This representation allows to determine the camera
azimuth and elevation that correspond to the direction of maximum entropy. In other
words, it identifies the orientation from which the camera is expected to observe the
most information, which corresponds to the region of maximum entropy bounded
by the iIFOV of the camera. Other than that, Figure 6.9 shows that the rectangle
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Figure 6.9.: 2D projection of the entropy map with the red rectangle representing
the iFOV of the camera.

depicting the camera’s iFOV can take several position where entropy is maximum.
This is because the 2D projection of the entropy map makes it so that there a lot of
maximum entropy regions adjacent to each other.

As a result, the set of optimal orientations at a frontier point used to efficiently
maximize information gain through frontier coverage, after applying the utility
function to go to the frontier point, comes from defining which regions in Figure 6.10
justify being observed based on their entropy FOV values.
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Figure 6.10.: Camera FOV entropy map showing, for each azimuth and elevation,
the total entropy sum normalized within the camera’s FOV.



6.5. Frontier Coverage 81

Another important consideration is that not all robotic platforms have a rotating
pan-tilt unit, which limits the entire entropy FOV map to a band along the 0°
elevation, across the full azimuth range. Additionally, in the LRM case, there is no
feedback on the RC servos of the pan-tilt unit, and the rotation of the frames in the
TF tree is updated using the current time instead of the commanded timestamp.
Over time, this difference makes the camera frame in the TF tree unreliable,
eventually breaking the visual odometry, as the system misplaces the camera angle.
Ongoing work by other students in the project is being carried out to use the IMU
data from the Intel RealSense camera to better integrate the rotation of the pan-tilt
unit in the TF tree. Consequently, the pan-tilt camera of the LRM is not able to
change its elevation without breaking the TF tree.
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Figure 6.11.: Black-and-white gradient color camera FOV entropy map limited at 0°
elevation.

This being said, frontier coverage is limited along the 0° elevation band,
corresponding the the stripe of the camera FOV entropy map in Figure 6.10 that
corresponds to the 0° elevation. This is illustrated in Figure 6.11. Because there is
no elevation variation, the camera FOV entropy can be plotted as a function of
azimuth with the actual camera FOV entropy values instead of the black-and-white
gradient color, Figure 6.12a. These values can also be normalized, as Figure 6.12b
shows.
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Figure 6.12.: Representation of camera FOV entropy along the 0° elevation band as
a function of azimuth, with the red dots depicting the azimuth angles
above the 0.95 normalized threshold.

The normalized plot is particularly useful because it allows to define a threshold
to determine which azimuth angles are worth observing. For instance, a 95% value
in the plot indicates that, at that azimuth angle, the camera FOV captures 95% of
the maximum possible entropy. For the sake of exploration efficiency, a value of
0.95 was defined as the threshold to which an angle considered worth observing.
The choice of this value tries to balance how much meaningful information can be
gathered about the environment, without doing redundant frontier coverage. Thus,
any azimuth with a normalized FOV entropy above this threshold is considered a
candidate orientation. For this particular mission scenario and camera position for
a given centroid, the range of azimuth angles worth observing counterclockwise
(CCW) is [—78.5,110]°, for a total range of 188.5°. From this, the range of
maximum normalized entropy is [—44, 93]°.

In Chapter 8, it will be shown that candidate orientations with a normalized value
of or greater than 0.95 for frontier coverage always fall within a single range, rather
than being spread across multiple separate ranges. This is due to the fact that the
camera FOV entropy map ends up masking the individual entropy values of each
ray into a sort of continuum, which smooths out difference between azimuth and
elevation steps. This phenomena can be observed by comparing Figure 6.9 and
Figure 6.10. Consequently, this assumption is made when developing the state
machines for frontier coverage.

6.5.1. State Machine Design for Frontier Coverage

The state machine approach for frontier coverage requires several considerations.
First of all, the system must known the range of azimuth angles above the desired
threshold so that the rover can cover this region. The range is provided in an interval
in a counterclockwise direction. The 0° azimuth corresponds to the x-axis in the
global map frame. With this information it is possible to also compute the orientation
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of the rover, in terms of azimuth, in the global map frame. Two things can occur: the
rover’'s azimuth is either inside or outside the range. A state machines checks which
case applies and triggers the corresponding transition downstream.

Further, such state machine, Figure 6.13, is responsible for computing the
furthest and closest azimuth from the rover’s current orientation. Here, the variable
theta_edges carries the orientation range to be looked at computed previously
at the utility function step.

*vover_frontier_angle_edges

™ coverfrontier |
1 from [nside

= get current pose

= coverfrontier ~
fram outside

Figure 6.13.: Hierarchical state machine architecture used to compute travel cost,
information gain, and the utility function that determines the next
position goal.

Cover Range from Inside

On one hand, if the rover’s orientation lies between the observable azimuth range, it
first turns in the direction of the closest azimuth before changing its direction of
rotation to the furthest azimuth. While this is happening, the same state machine
responsible for monitoring orientation, presented in Subsection 5.3.3, is employed to
trigger the switch in the rotation direction. Since only a rotation is considered here,
without any translational motion, there are two possible ways to execute the rotation.

 Pose goal approach: The autonomous navigation stack of the rover receives
an orientation command publishing a pose goal that orients the rover towards
the desired azimuth angle. This approach is more complex but applied to all
robotic platforms.

» Twist vector approach: The rotation is controlled directly by changing the
rover’'s angular velocity along the z-axis. This approach is specific to the LRM
architecture where a twist vector is used as input from the navigation stack.
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The twist vector is the standard data format used as input from the navigation
stack in the LRM. It consists of two separate vectors for linear and angular velocity,
as outlined in Table 6.2.

Parameter Type Description
linear.x float Forward linear velocity along the x-axis
linear.y float Lateral linear velocity along the y-axis
linear.z float Vertical linear velocity along the z-axis

angular.x float Rotation the x-axis
angular.y float Rotation the y-axis
angular.z float Rotation the z-axis

Table 6.2.: Components of LRM twist vector used as input for the navigation stack.

Nonetheless, because the rover is not able to move vertically and only rotate
in the xy-plane, the parameters 1inear. z, angular.x, and angular.y
have no usage. The twist vector approach for covering the azimuth range when the
rover is inside the range is presented below, Figure 6.14.

"cover_frontier_from_insid

Figure 6.14.: Hierarchical state machine responsible for covering the entire azimuth
range of the observable region from the inside.

Cover Range from Outside

On the other hand, if the rover’s orientation lies outside the observable azimuth
range, the state machine logic is a bit simpler. In this case, the rover just has to to
rotate in the direction of the closest frontier, until it reaches the furthest frontier. The
condition of rotating in the direction of the closest frontier ensures that the rover
reaches the furthest frontier by moving within the observable azimuth range. The
twist vector approach when the rover is outside the range is presented below, Figure
6.15.
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Irover_frontier_from_outsice:
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Figure 6.15.: Hierarchical state machine responsible for covering the entire azimuth
range of the observable region from the outside.

6.6. Step Size Considerations

An important consideration is the size of the azimuth and elevation steps.
Particularly, how they affect the normalized distribution of entropy across the camera
FOV. Investigating how the step size influences the information gain used in the
utility function to decide the next frontier position goal is more challenging, since the
total entropy of the spherical region also depends on the step size, Equation 6.5.

Nevertheless, even though reducing the step size makes the entropy calculation
less reliable, Chapter 8 shows that this does not affect the utility raking of possible
frontier goals, which is critical for the exploration strategy to work. This analysis is
necessary because a very small timestamp significantly increases the computation
time of the total entropy because of the increasing number of rays, reducing the
overall exploration efficiency of the exploration strategy. For instance, fora 1.5 m
radius sphere and an elevation and azimuth step of 0.25° and 0.5°, respectively,
the time it takes to complete the ray casting is 296.02 s. For comparison, the
computation time to determine the closest frontier is 30.513 ms.

Following this trend, if the range of azimuth angles varies significantly with the
step size, exploration efficiency is also compromised. The normalized camera FOV
entropy plot for the 0° elevation can be used to verify this by using a very small step
size as a reference, performing two checks: first, whether the range of azimuth
angles changes, and second, computing the RMSE for plots with larger step sizes.
The chosen reference corresponds to an azimuth step of 0.5° and an elevation step
of 0.25°, with both step sizes being doubled in each subsequent computation. The
normalized entropy results are shown in Figure 6.6.

Moreover, Table 6.3 summarizes the RMSE values computed with respect to the
reference, as well as the CCW azimuth ranges for each step size. As expected, an
increase in the step size leads to an increase in the RMSE and a decrease on the
computation time. However, the azimuth range remain consistent until the elevation
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Figure 6.16.: Normalized camera FOV entropy at 0° elevation for different azimuth
and elevation step sizes.

and azimuth reach a step size of 4° and 2°, respectively. Too, note that a big enough
step size yields more than 1 azimuth range, such as the case of the biggest step
size in the table. Another interesting conclusion of using this approach is the fact
that even though the computation time decreases from 296.02 s, for the reference,
to 1.34 s, for the biggest step size, the RMSE reaches a value of 0.0789. This is
considered a small RMSE increase compared to the computation time decrease.

Step Size RMSE Computation Time CCW azimuth range
6=0.5° ¢=0.25° - 296.02 s [—78.5, 110]°
6=1°¢=0.5° 0.0019 69.67 s [—78, 110]°
6=2°¢=1° 0.0074 2570 s [—78, 110]°
6=4°, ¢p=2° 0.0166 7.83s [—80, 108]°
6=8°¢p=4° 0.0357 3.14s [—76, 100]°
6=16° ¢ =8° 0.0789 1.34s [—68, 92]°,[135, 145]°

Table 6.3.: RMSE, computation time, and the CCW azimuth ranges of the
normalized entropy with respect to a reference step size.

A visual representation of the effect of increasing the step size on the 2D
projection of the entropy map is provided below. Based on the analysis of these
figures and the values presented in Table 6.3, a step size of 4° for the azimuth,
and of 2° for the elevation was selected as it provides a suitable balance between
computation time and accuracy to the reference.
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(a) 2D projection of the entropy map (b) Camera FOV entropy map (6 = 1°,
(6=0.5° ¢ =0.25°). ¢ =0.5°).
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(c) Camera FOV entropy map (6 = 4°, (d) 2D projection of the entropy map (6 = 8°,
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Figure 6.17.: Effect of step size increase in the 2D projection entropy map.
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(a) Camera FOV entropy map (6 = 16°, (b) Camera FOV entropy map (6 = 32°,
¢ =8°). ¢ =16°).
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Figure 6.18.: Effect of step size increase in the 2D projection entropy map.
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This chapter presented the exploration strategy that is employed on the LRM
and is open-source through RAFCON. The exploration strategy consisted in using
an utility function that balances travel cost and information gain to compute the
next frontier goal, together with a frontier coverage based on a normalized entropy
threshold along the 0° elevation. The selection of the ray casting step size was
guided by a trade-off between computation time and entropy estimation accuracy,
ensuring that the chosen parameters preserve accuracy while maintaining a
computation time compatible with exploration efficiency. With this out of the way, it
is possible to move to Chapter 7, where the object detection algorithm and 3D
localization pipeline for Ool is discussed.



Detectionand 3D Localization
of ObjectsofInterest

This chapter is dedicated to explaining how the 3D localization of Ool in achieved
within a state machine framework using real time CPU-based inference. For this,
Section 7.1 delves into the formulation of the general architecture for object
localization, including how camera intrinsic and extrinsic parameters are used to
infer 3D coordinates from the 2D camera plane and depth information. Additionally,
Section 7.2 investigates how a YOLOv7 model, saved in a PyTorch format, can
be converted and deployed for CPU inference on an Intel NUC, as well as the
step for training a custom object detection model from a default YOLOv7 model to
detect colored cubes as a proof of concept. At the end, Section 7.3 exemplifies how
the fully integrated pipeline is used to visualize the estimated 3D coordinates of
detected objects in RViz.

7.1. Object Localization Pipeline

The first step in the 3D localization of an Ool is to detect the object. With respect
to the LRM, object detection requires determining both the position and class of
objects in the 2D plane of an RGB frame captured by the stereo vision camera.
The second step involves using the camera’s intrinsic and extrinsic parameters to
localize the object within the environment overlapping the information from the RGB
image with the corresponding frame in the depth image. Therefore, even before
choosing the object detection algorithm to be used, it is necessary to characterize
the object localization pipeline that makes this implementation possible in RAFCON.

Another important consideration is whether the hierarchical state machine
responsible for the object detection shall be implemented within the autonomous
exploration pipeline or run separately, in parallel. On one hand, running it in parallel
allows a more open-source, plug-and-play solution, not limited to the autonomous
exploration framework, but applicable to any robotic system that features 3D
localization of Ool. This approach is favored by RAFCON’s API, where the execution

89
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of a state machine can be called directly through a Python script. Even so, this
solution implies that the OBC, in the case of the LRM an Intel NUC, is capable
of handling in parallel, both the object detection, computationally intensive due to
inference, and the autonomous exploration algorithm, computationally intensive due
to ray casting.

Moreover, as reported in Section 2.5, object detection algorithms typically rely on
GPUs for accelerated inference, which are often unavailable on low-cost robotic
platforms equipped only with a CPU. This represents a gap in the research, as the
performance of CPU-only system for onboard inference remains understudied. On
the other hand, integrating the object detection pipeline directly into the autonomous
exploration pipeline ensures series execution, potentially reducing overall CPU load
but making the object detection pipeline constrained to autonomous exploration
applications.

All things considered, it was decided to develop the object localization pipeline as
an hierarchical state machine that can be either run independently or be connected
via state transitions into the autonomous exploration framework. Subsequently, the
computational load will be evaluated to determine the most suitable option. Likewise,
it is also possible that running inference on the CPU may take too long to support
real-time object detection, rendering this implementation obsolete.

7.11. Real-Time Object Detection Threshold Considerations

To evaluate whether the object detection can run real time on the LRM, it is
necessary to guarantee that the inference frequency is high enough so that no part
of the environment is not seen as the rover moves. This is better observed in Figure
7.1, where the rover rotates CCW and three frames with the respective camera
FOVs are shown. Only the middle frame captures the object, so if the inference
takes as long as the interval between the first and last frame, the object will not
be detected. In other words, given the maximum angular speed of the LRM and
its hFOV, the inference frequency of the object detection algorithm must be high
enough to ensure that objects entering the camera’s FOV are detected before they
leave the FOV.

The LRM has a maximum angular speed, wmax 0of 12.8°/s and the hFOV of the
stereo vision camera is 87°. Hence, the time it takes for the camera to rotate across
its own FOV is troy = %, which yields ~ 6.8 s. Therefore, to detect the object
before it leaves the frame, the inference must run at a minimum frequency of ~
0.147 Hz. This frequency value appears to be low enough so that real-time object
detection is possible even of the CPU. Nonetheless, if real-time inference is not
possible, an alternative offline approach will be followed, where the camera frames
and the corresponding rover poses are saved, allowing inference to be performed
after exploration.

7.1.2. General Architecture for Object Localization

The proposed general architecture for object localization is presented in Figure 7.2.
First, a ROS node is started, followed by a TF listener that continuously maintains a
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Figure 7.1.: lllustration of the real-time object detection challenge on the LRM Intel
NUC.

buffer of the transformation between the rover’s frames. The TF listener is stored in
the global variable manager, a RAFCON capability that allows other state machines
within the framework to access the transformation data in real time. Following this, is
a hierarchical state machine that pairs and saves the closest matching timestamps
from both the RGB and depth image frames to a local folder on the OBC. Moreover,
it stores the pose of the rover’s camera at that timestamp as a variable in RAFCON
to be passed to another state machine, as it is a necessary extrinsic parameter
used to compute the coordinates of the Ool in the 3D global map frame.

Thereafter, a state machine runs CPU-based inference on the RGB image
frame. If at least one object is detected, the state machine outputs the bounding
box coordinates and object class, then transitions to another one responsible for
computing the object’'s 3D coordinates, checking whether the object is new or
already known, and publishing this information to a ROS topic while visualizing it in
RViz, through the detected_objects ROS topic.

Publishing to a ROS topic opens the possibility of integrating the detected object
information with other nodes in the robotic platform. Then, because the RGB and
depth image frames were saved in a folder for post-processing, they are deleted
after each iteration to free up storage. By contrast, if no object is detected, a
transition occurs to a state machine that deletes the existing RGB and depth image
frames, and then the object detection loop is repeated.

Note that two additional user inputs, the ROS topic names for the RGB image
and depth image, are required. Not only that, the state machine responsible for
performing inference depends on other third-party packages to operate. Specifically,
the official GitHub repository implementating YOLOv7 [122] and Intel OpenVINO, a
toolkit for optimizing and deploying learning models on Intel hardware'. Their need
is justified in Section 7.2, while the other state machines aforementioned are now
examined more in detail.

'The GitHub repositories for the YOLOv7 implementation and OpenVINO can be found here.


https://github.com/WongKinYiu/yolov7?utm_source=chatgpt.com
https://github.com/openvinotoolkit/openvino?utm_source=chatgpt.com
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Figure 7.2.: General architecture for object localization.

Timestamped Camera Frames

For this state machine, both color and depth frames from the camera are captured
and saved for subsequent processing. Two folders are created to store the images:
one for the color image frame and one for the depth image frame. In the LRM case,
it uses the messages from the ROS topics camera/color/image_raw
and camera/aligned_depth_to_color/image_raw to obtain syn-
chronized color and depth image frames. However, these names can be overwritten
by the user inputs. The aligned depth image is used instead of the raw depth image
to ensure that each depth pixel corresponds exactly to the same pixel in the color
image frame.

This is necessary because the stereo vision camera is composed of
a RGB camera and a depth camera, which do not share the same
intrinsic parameters. The aligned_depth_to_color topic performs this
transformation automatically.

This enables reliable 3D localization of the detected objects and simplifies
subsequent image processing. Both use the sensor_msgs/Image message
type.

At the same time, a tf . TransformListener is used to get the camera’s
pose relative to the map frame with the same timestamp the images were retrieved
and store it in an output variable. The ROS messages for the color and depth image
frames are converted to OpenCV--compatible formats using NumPy arrays, and
each image is saved as a . png file. An example of a color image alongside its
corresponding depth image is presented in Figure 7.3.

Because the aligned depth image is being used, the depth values are transformed
from the depth camera frame to the color camera frame of the stereo vision camera.
By overlapping Figure 7.3b onto Figure 7.3a, it is clear that the depth and color
images are properly aligned, with the depth information outlining the correct position

20penCV (Open Source Computer Vision Library) is a widely used, open-source software library that
provides tools for computer vision and image processing.


https://opencv.org/
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of objects in the depth image relative to their location in the color image.

(a) Color image. (b) Depth image.

Figure 7.3.: Same timestamp color image (a), and depth image (b) from LRM’s
stereo vision camera.

Localization in Global Map Frame

This state machine is triggered when at least one object is detected after inference,
and its purpose is to localize the detected objects in 3D space using the depth
information, bounding boxes, and the camera’s intrinsic and extrinsic parameters at
the time the image frames were captured.

Bounding box
center

.

(a) Color image. (b) Depth image.

Figure 7.4.: Color image showing the bounding box after inference (a), and the
corresponding depth image showing the 5x5x5 cm cube and the
corresponding bounding box center used to infer Z (b).

To begin, the center point of the bounding box, (u, v), is calculated, as this will
serve as the reference to retrieve the depth value, Z., from the depth image. In
practice, the center of the bounding box will correspond to the true center of the
detected object in the image. This can occur due to object orientation, irregular
shapes, and the fact, without knowing the entire object’s geometry, the measured
depth value corresponds to the surface facing the depth camera rather than the
object’s true center.

However, for small objects like the ones the LRM will localize, this difference is
typically negligible. To mitigate this, the depth values are averaged within a small
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3x3 pixel window centered around (u, v). A small 3x3 pixel window was chosen to
prevent from including pixels that do not belong to the object, particularly if it is a
small object or is very far away. The bounding box resulting from inference in the
color image, and the center of the bounding box used to infer Z are presented in
Figure 7.4. For this particular case, a 5x5x5 cm orange cube was detected, and
the accuracy of the (u, v) position can be validated from looking at the depth
information that clearly outlines the cube.

The coordinates (u, v) can be back-projected into the camera coordinate system
as:

Xc u
Y| =2Zc-K1|v (7.1)
Zc 1
where K is the camera intrinsic matrix defined as:
fc 0 cx
K=10 f, ¢y (7.2)
0O 0 1

where fx and f, are the focal lengths, while cx and ¢, are the

principal point. These parameters can be retrieved by echoing the ROS topic

/camera/color/camera_info. Why this is the case and their proper

definition as been previously explained in Chapter 4. Expanding Equation 7.1 gives:

Xc= M, Ye= m, Zc=2Z¢ (7.3)

fx fy

Now, using the camera’s pose that was previously saved as the extrinsic

parameters describing its position and orientation in the world frame and Equation

7.4, the 3D coordinates of the object, (Xw, Yw, Zw), can be determined in the
global map frame.

Xw Xc Xoy X,
Yw =[R t] Yol o Yw|=R|Yc|+t (7.4)
Zw 0 1|z 2 7
1 1 w C

where R is the 3x3 rotation matrix and t is the 3x1 translation vector. Merging
Equation 7.1 and Equation 7.4 leads to:

Xw u
Yw|=R-Zc-K 1 |v]|+t (7.5)
Zw 1

This equation summarizes the calculations performed by the state machine to
transform the pixel coordinates and depth value into 3D world coordinates. The
importance of using the camera pose corresponding to the timestamp when the
images were captured rather than the current pose, lies in the fact that inference
occurs between capturing the image and getting the object’s 3D coordinates, and
the rover keeps moving during this time which would lead to inaccuracies.
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Handling New and Previously Detected Objects

A potential issue that may arise concerns how the 3D localization pipeline differs
between detecting a new observed object or one that has already been seen. Since
the class and 3D coordinates of objects are stored in the detected_objects
ROS topic, the information in this topic can be used to tackle this issue.

A state machine is created to verify, after computing the 3D coordinates of the
most recent detected object, whether an object of the same class already exists.
This is done by comparing the Euclidean distance between objects of the same
class and checking if it falls below a certain threshold. The threshold is necessary
because inference runs in parallel with autonomous exploration and, as the rover
moves, odometry drift gradually increases, which will change the estimated position
of the object in the global map frame. To account for this, a threshold of 25 cm was
defined. Chapter 8 concludes that this level of drift is not concerning for the mission
scenario considered.

The main motivation of knowing with accuracy the object’s positions it to enable
future autonomous grasping for a fully autonomous mission pipeline. This will be
possible because the proposed pipeline provides the grasping with a reliable region
where each object is. Once there, the rover can disregard global odometry drift and
rely on its local perception to know where the object is. However, this concerns
future work and is beyond the scope of this thesis. Because the first instance the
object was detected corresponds to the instance with lowest odometry drift due to
lowest exploration time, the newly computed coordinates of a previous known object
do not overwrite the previous ones.

This also opens up the possibility of creating a state machine that checks if a
given object class has already been detected and implement it in the general
architecture of autonomous exploration described in Section 5.2. This allows to
easily guide exploration to find and stop when a desired object is detected, showing
the modularity of using a state machine approach for autonomous exploration.

7.2. Implementation of YOLO-Based Object Detection

The only element left to explain is the implementation of the chosen object detection
algorithm. Selecting the object detection algorithm did not require a trade-off study,
as the literature widely recognizes YOLO as the state-of-the-art solution for real time
object detection due to its balance between speed and accuracy, with plenty of
supporting documentation®. Its theoretical foundations are laid out in Chapter 4.

Given the availability of an open-source GitHub repository for YOLOv7, as well as
DLR’s internal training toolkit for creating and training custom YOLOv7 models,
this version was selected for implementation. Nonetheless, other models can be
used as long as the specific state machine responsible for running inference and
retrieving class and bounding box information is properly adapted.

3This includes both an official Ultralytics website and Ultralytics GitHub repository.


https://www.ultralytics.com/yolo
https://github.com/ultralytics/ultralytics
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7.2.1. Custom Model Training

Based on the GitHub repository, the default YOLOv7 model is trained on the
COCO* dataset (Common Obijects in Context) and includes 80 object classes,
covering a wide range of everyday objects such as bicycles, umbrellas, laptops, and
teddy bears. In addition to its main task of object detection, YOLO is also able
to perform image segmentation, which assigns a class label to each pixel in the
image, classification, which predicts the overall class of an entire region, and pose
estimation, which identifies the orientation of objects. Nonetheless, going beyond
object detection is not considered here, as it would be time-consuming and falls
outside the scope of this thesis.

In a mission environment, the objects of interest are more specific and do not
correspond to any of the 80 classes. A more realistic object class would be rocks.
Nonetheless, DLR’s training toolkit initially requires training on a . ply file which
is difficult to generate for rocks with different shapes, sizes, and colors. Further,
given the similarities between such rocks and the surrounding environment, more
knowledge in deep learning and model training would be required to properly train a
detection model. Thus, it was decided to train a custom YOLOv7 model to detect
3D-printed 5x5x5 cm colored cubes as a proof of concept for the object detection

pipeline.
r ™ \<

Figure 7.5.: Proof of concept 5x5x5 cm colored cubes for custom YOLOv7 model.

Six different colored cubes were chosen to train the custom model, Figure 7.5.
DLR’s training toolkit automates creating the training dataset by first generating
random images of the objects from the . ply files. These objects are placed in
scenes with other objects and different backgrounds. The toolkit also automatically
generates all bounding box annotations and depth information for each object in

“More information about the COCO dataset is available here.


https://cocodataset.org/
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every image. This is extremely useful since generating the data takes much longer
than training the custom model. An example of the created synthetic data created is
presented in Figure 7.6.

(a) Train batch 3. (b) Train batch 9.

Figure 7.6.: Examples of synthetic training data batches used for custom model
training.

After a sufficient number of synthetic training data was created, the default
YOLOv7 model was custom trained using one of DLR’s GPU cluster for 40 epochs,
meaning the entire training dataset was passed through the network 40 times,
allowing the model to iteratively refine its internal parameters and improve prediction
accuracy. The training toolkit also generates test data batches to validate the custom
model training that show inference results with predictive bounding boxes, labels,
and level on confidence, where as example is presented in Figure 7.7.

Moreover, the custom trained YOLOV?7 training results are summarized below in
Figure 7.9, over the 40 epochs. Their deep analysis goes beyond the scope of this
work. Nevertheless, a brief assessment is made. Overall, the model converges with
decreasing losses and increasing detection accuracy metrics. More specifically,
regarding training losses for bounding box, objectness and classification, all
decrease sharply during the first 10 epochs. A rapid decrease in bounding box loss
shows that the model quickly learns to predict the object position, while the decrease
in objecteness loss and classification loss, suggests improved discrimination
between object and background and effective learning to assign correct class labels
to detected objects, respectively. The validation losses for each mirror the same
trend.

With respect to precision and recall, the precision curve rises sharply within
the first few epochs. This indicates that the vast majority of predicted bounding
boxes correspond to real objects. The recall curve shows more fluctuation early
in training but also ends up stabilizing around 0.8. The mean average precision
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Figure 7.7.: Example of YOLOv7 validation output on a test data batch.

(mAP) is a widely used metric for object detection that combines both precision
and recall across all classes, where a higher value is better, presented in Figure
7.10. mAP@0.5 measures the average precision when the predicted bounding
boxes have an Intersection over Union (loU) threshold of 0.5 with the ground truth.
MAP@0.5:0.95 is a stricter metric that averages the mAP across multiple loU
thresholds from 0.5 to 0.95 in steps of 0.05. Both exhibit strong upward trends.
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Figure 7.9.: Custom YOLOv7 model training results 2.

In fact, it was expected that the custom YOLOv7 model training presented no
issues, since despite DLR’s training toolkit pipeline combining several objects and
background, the cubes have sharp edges and vivid colors that make them easily
distinguishable.
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Figure 7.10.: Mean Average Precision training results for the two common variants.

After training, the custom YOLOv7 model is saved as a PyTorch file, the deep
learning framework underlying YOLOv?. This file contains the model’s learned
weights as well as its architecture, allowing the trained network to be used for
inference or further fine-tuning. Knowing that the experimental validation of this
work will be done at the PEL laboratory at DLR Oberpfaffenhofen, a site designed to
mimic lunar soil [128, 129], Figure 7.11, the custom YOLOv7 model can be validated
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in a real-life scenario by capturing images of the cubes in this environment and
running inference on a desktop equipped with a GPU. So, Figure 7.12 shows the
validation of the object detection algorithm in a a lunar-analog site.

(c) Scenario 3.

Figure 7.12.: Real-life scenario validation of object detection algorithm.
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Now that the custom YOLOv7 model has been trained and validated, it is possible
to move towards its implementation within the Intel NUC.

7.2.2. CPU Inference Deployment

To deploy the YOLOv7 model for CPU inference on an Intel NUC, the first step
involves converting the PyTorch model, saved in the . pt format, into a format that
is optimized for Intel hardware. The motivation for this is twofold. First, the . pt file
is a PyTorch checkpoint, which stores the model architecture and weights. Pytorch is
designed primarily for GPU acceleration, so when a model with this format runs on
a CPU, it does not automatically take advantage of the low-level CPU optimizations.

As a result, inference can be significantly slower and consume more memory
than necessary. Morever, DLR provides a Portable Computer Vision Pipeline
(PCVP) with the option of running YOLOv7 directly. However, this approach has two
limitations: it is not open-source, and the YOLOv7 implementation in the PCVP is
designed to run only with CUDA on NVIDIA GPUs. Therefore, it is clear that the
model must be converted to a CPU-optimized format.

The OpenVINO toolkit provides a workflow for this purpose. Matter of fact,
documentation on how to convert and optimize YOLOv7 with the OpenVINO toolkit
is available here. Thus, the steps described here were followed in the following
way. The PyTorch model is converted into the Intermediate Representation (IR)
format, which consists of an XML file describing the network architecture and a BIN
file containing the learned weights. Once the model is converted, the OpenVINO
runtime is used to load and execute it on the Intel NUC. More technically, the runtime
abstracts the hardware specifics and allows the same code to leverage various CPU
instruction sets, such as AVX2 or VNNI®, which can significantly improve inference
speed. In practice, the input image is preprocessed to match the model’'s expected
dimensions and normalization, then passed to the OpenVINO InferRequest object.

The accuracy of the quantized model can also be compared with the original
one. Nonetheless, this step is unnecessary if the model is able to meet the desired
performance on the target CPU. For this, the pre-inference images of Figure 7.12
were used to run inference locally on the Intel NUC of the rover executed through a
state machine in RAFCON. The results were similar which validates the model
running on the CPU. At this point, the full loop for object detection implemented
in RAFCON is provided in Figure 7.13. A timer variable is used in case the user
whishes to wait a certain amount of time between each run of the object localization
loop. However, real time object detection is obsolete if the 3D localization pipeline
runs at a lower frequency that ~ 0.147 Hz, as analyzed in Subsection 7.1.1. This
point will be discussed next.

7.2.3. Real Time Inference Validation

The most effective way to validate real-time inference, i.e., ensuring that the Intel
NUC can perform inference fast enough to process every frame without skips, is to

5Information about Intel AVX2 and Intel AVX2 VNNI can be found here.


https://docs.openvino.ai/2023.3/notebooks/226-yolov7-optimization-with-output.html
https://edc.intel.com/content/www/br/pt/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/006/intel-advanced-vector-extensions-2-intel-avx2/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/006/intel-avx2-vector-neural-network-instructions-avx2-vnni/

102 7. Detection and 3D Localization of Objects of Interest

YOLOvV7_loop_object_detection

“initrosnode no ObJeCt

- ~ start listeher”

“savecamera
frarfie.

Wi

Figure 7.13.: Hierarchical state machine loop for 3D object localization.

measure the execution time of each iteration within the object localization loop. For
this purpose, the time of both the inference and the complete object localization
loop, including saving the color and depth frames and publishing the 3D coordinates
of the detected object into RViz, are averaged over 10 iterations. If the average
execution time per loop is below 6.8 seconds, real time inference is achieved. The
averaged inference time was 4.4596 s, while for the complete loop was 5.81278 s.
This value is lower than the 6.8-second threshold. Therefore, real time inference is
possible and validated. This is bolstered by the experimental work where the rover
did not miss any object detection, Chapter 8.

7.3. Fully Integrated Pipeline in RViz

It is important for researchers using this pipeline to visualize, in real time, the
3D coordinates of the objects computed by the rover within RViz. As previously
mentioned, a ROS topic is responsible for storing the classes and 3D coordinates of
detected object. A state machine can then use this information and publish it in the
global map frame in RViz, using different colors or shapes to distinguish between
objects. For instance, in this case, where different colored cubes are used, an if
statement can change the color of the published markers according to the class of
the object. This is possible because the model is trained to detect specific objects,
meaning that the object classes are known a priori. This also helps to validate the
accuracy of the object localization. Consequently, Figure 7.14 illustrates how the
research would perceive the fully integrated pipeline in RViz, with a white cube
being published, on the right, given the class and 3D coordinates of the detected
object, also a white cube placed on the floor, clearly seen on the left.
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Figure 7.14.: Visualization of the fully integrated pipeline in RViz. The hierarchical
state machine publishes detected objects with their computed 3D
coordinates (b).






Experimental Validation and
Results

This chapter presents the experimental validation of the exploration strategy and
3D object localization pipeline developed. The chapter begins by detailing the
experimental setup, including the testbed configuration, assumptions regarding
rover operations, and how data is acquired and saved during testing in Section 8.1.
Also, the parameters that serve as benchmarks to evaluate the performance of
the implemented exploration strategy. Next, the standard operating procedure is
outlined to ensure reproducibility across all experiments, followed by a description of
the three experimental sets in Section 8.2.

The first concerns evaluation the exploration efficiency of the implemented
strategy compared to available ones in the literature, the second one to validate
the 3D object localization pipeline, and third the final integration testing combining
exploration and object detection. Finally, Section 8.3 concludes this thesis work by
presenting the results obtained from these experiments, providing post processed
data with respect to the rover’s performance, exploration efficiency, 3D localization
accuracy, and computational load.

8.1. Experimental Setup

The experiments to validate the performance of the exploration strategy, coupled
with object localization, will be conducted at the DLR’s Planetary Exploration
Laboratory (PEL), Figure 7.11, already partially described in Section 7.2. The
laboratory features a 5x10 m testbed for navigation tasks, with an analog lunar soil
surface that can be modified for different mission scenarios. Additionally, rocks are
available that can be placed to serve as obstacles for the rover. A control room is
used to monitor the rover’s behavior.

105
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8.1.1. Testbed Configuration

The first task is to decide the configuration of the testbed that the rover will need
to explore. This configuration shall have obstacles, hills and depressions. Even
though the autonomous navigation capabilities of the rover have been tested as
part of another master thesis work [33], this was only demonstrated as part of one
mission scenario of simply moving from point A to point B. As a results, having the
rover exploring the PEL fully autonomously matures the autonomous navigation
capabilities of the rover. It will be very important to understand the success rate of
the rover when avoiding obstacles in different configurations, for example. Moreover,
evaluating whether the small dimensions of the rover might a pose a challenge
when traversing certain parts of the terrain is also valuable. Having all of this in
mind, the following testbed configuration was designed, Figure 8.1.

Figure 8.1.: Chosen PEL configuration as part of the experimental setup at DLR
Oberpfaffenhofen.
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In this configuration, rocks are scattered throughout the testbed, while the
colored cubes are randomly placed. The level of environmental complexity is
considered high, as most autonomous exploration strategies found in the literature,
particularly open-source approaches, are typically indoor simulated environments,
where corridors represent the only obstacles. Such environments are less complex
because point-like obstacles such as the rocks present in this testbed are harder to
interpret by the autonomous navigation stack. It is expected that the local mapping
system will recognize that larger rocks are non-traversable and appropriately classify
them as obstacles, based on the work of Ricardez Ortigosa [33].

8.1.2. Rover and Testbed Miscellaneous Assumptions

As previously mentioned, the testbed has dimensions of 5x10 meters. The effective
range of the camera used for visual odometry is approximately 5 meters. This
implies that if the rover is positioned at the center of the testbed and performs a full
360° rotation, it is able to map the entire environment. In practical terms, this means
that independent of the starting point of the exploration, only a small number of
centroids need to be explored for the rover to map the entirety of the PEL. For this
reason, the maximum range of the camera used to track features for visual odometry
was limited to 2 meters. Further reduction of this range would negatively impact the
visual odometry performance, as it would result in fewer detectable features to track.

Additionally, it will be ensured that the black curtains are closed. Although they will
still be detected as obstacles by the stereo vision camera, their uniform appearance
makes them comparable to a sky or space-like background, which provides a more
realistic environment for the rover. They also contain fewer visual features to track
compared to the walls and surrounding objects behind the curtains. This means that
leaving the curtains open would artificially inflate the accuracy of the SLAM.

With respect to lighting, the PEL is equipped with a powerful light source
designed to mimic sunlight. However, the goal of this rover is to serve as a
modular, open-source robotic platform for students and researchers, to be used in
different environments and lighting conditions. Therefore, although future work could
investigate how lighting affects the autonomous navigation stack of the system, the
experiments in this study will be conducted with the building lights turned on and the
high-intensity light source switched off.

A final consideration concerns the trails left by the rover after each exploration run.
Between tests, these track marks will be erased using a broom. This is necessary
because the marks can also serve as visual features for the SLAM system. As the
number of tests increases, so does the number of visible trails, which could provide
additional, non-representative features and thereby artificially inflate the SLAM
accuracy, similar to the effect that is expected to happen by leaving the curtains
open.

State Machine Configuration Parameters

A set of parameters must also be defined, as they determine the behavior of certain
state machines within the overall mission hierarchical state machine, introduced
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during the implementation of the low-level state machines in Section 5.3. This is
different from the user inputs necessary for compatibility with other robotic platforms.
For instance, for position and orientation monitoring, Subsection 5.3.3, a position
threshold of 8 cm and an orientation threshold of 4° where chosen, respectively.
What is more, regarding the exploration completion checks, Subsection 5.3.4, the
area to cover threshold was set to 109 m2. This is because exploration is intended
to stop when the PEL has been fully explored, i.e., there are no more frontier
centroids to visit. The cluster minimum and maximum size were set to 30 and 40,
respectively. Also, since the maximum range of the camera is 2 meters, the ray
casting radius shall be of the same value.

8.1.3. Data Acquisition

All experimental data are recorded using the ROS rosbag to enable post-
processing and reproducibility of the results. The rosbag tool is a message
recorder within the ROS framework, storing all desired published topics during
runtime into a single file with the . bag extension. Each message is saved with
its original timestamp. Once the data have been recorded, the rosbag play
command can be used to replay the experiment. When executed, it republishes all
the recorded topics with their original timing, effectively simulating a live system.
This capability makes it possible to visualize the recorded data in RViz, as is
happened in the experiment for further post processing and performance evaluation.

8.1.4. Benchmarks for Performance Evaluation

The remaining step in the data acquisition process is to specify the ROS topics to
be recorded. These topics must be selected such that the recorded data provide
sufficient information to evaluate the performance of the designed exploration
strategy itself, as well as to enable comparison with other exploration approaches
reported in the literature that will also be implemented on the rover. On that account,
the ROS topics to be recorded result from being able to produce the following plots:

- Traveled Distance vs Time: This plot allows to assess how efficiently the
rover covers the exploration area when compared to other strategies.

- Computational Cost vs Time: This plot quantifies the processing load on
the OBC, in terms of CPU usage, RAM, and disk, as well as network sent
and received over time throughout the mission. It helps determine whether
the computational requirements of object localization coupled with the state
machines, remain within the processing capabilities of the Intel NUC.

- Entropy Difference Per Centroid vs Centroid: Entropy difference before
and after the rover has visited the respective frontier centroid is used as a
metric to evaluate the information obtained at each exploration step.

+ Explored Volume and Area Covered vs Time: These plots are the most
important one as it represents how the volume and area of the mapped
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environment increase over time. A more efficiency strategy explores more of
the environment in the same amount of time as others.

- 3D Generated Point Cloud After Exploration: The reconstructed point
cloud provides a visual and quantitative representation of the final map
obtained through SLAM. It allows the verification of mapping completeness
and accuracy relative to the known geometry of the testbed.

« Odometry Trajectory on 3D Point Cloud: Overlaying the odometry trajectory
on the generated 3D map allows the comparison between estimated and
reconstructed paths. This visualization helps to identify drift or inconsistencies
between trajectories.

 Velocity, Acceleration, and Respective Covariance vs Time: This plot
provides a dynamic characterization of the rover's motion.

- 3D Coordinates of Objects in the 3D Point Cloud: This plot visualizes the
estimated 3D positions of the detected objects within the reconstructed point
cloud. It serves to validate the accuracy of the object localization pipeline by
comparing the predicted coordinates with the actual positions of the objects in
the environment.

Lunar Rover Mini ROS Topics ROS Bags Recorder

Accordingly, the ROS topics that provide this information, in the LRM, are the
following:

- /system_stats

« /grid_map

- /octomap_full

« /odom

- /candidate_frontiers

- /segmented_frontiers

- /segmented_frontiers_centroids
- /centroids_sphere_view
- /utility_function

- /normalized_entropy

+ /cloud_map

- /map_stats

- /detected_objects



110 8. Experimental Validation and Results

A rationale for each topic, along with a description of its usage, is provided in
Appendix B. To record the selected ROS topics, a Python node was implemented
within the LN Manager of the LRM, specifically responsible for this.

8.2. Experimental Procedure

After the experimental setup and experiment assumptions were made, attention is
directed toward the experimental procedure. This involves not only defining a SOP
that ensures consistent and reproducible execution of each experiment, thereby
improving efficiency, but also enumerating the specific experiments to be conducted.

8.2.1. Standard Operating Procedure

The SOP defines a structured sequence of steps to ensure that each experiment is
conducted consistently, safely, and reproducibly. Of course, individual experiments
might deviate slightly from the SOP given their specificity. The importance of the
SOP goes behind this thesis as it can be reused for other students working on the
rover. The SOP goes as follow:

1. Start the Normal Operations node in the LN Manager: This initializes the
Simulink interface, establishes communication with the rover, and launches
the high-level GUI. Refer to Section 2.2 for details on why this is considered
normal operations.

2. Start the Autonomous Navigation node in the LN Manager: This launches
the ROS nodes for the Intel RealSense camera, VO, SLAM, local mapping,
and navigation stack, as well as the OctoMap server and RViz visualization
tool.

3. Start the Autonomous Exploration node in the LN Manager: This launches
RAFCON to execute the exploration state machines and the OctoMap
message saver for saving OctoMap 3D maps.

4. Start the LRM_object_detection node in the LN Manager: This
starts the object detection loop for real-time object localization.

5. Start the Logging node in the LN Manager: This activates multiple monitoring
and logging functions: LRM_system_monitoring publishes CPU,
RAM, and disk usage; LRM_rosbag_record records the selected
ROS topics; and LRM__area_ covered continuously computes the area
explored by the rover from the 2D occupancy grid.

6. Switch to Autonomous Navigation mode in the high-level GUI or
RAFCON: This enables the rover to execute commands generated by the
autonomous navigation stack. If this mode is not activated, the rover will not
act upon the commanded linear and angular velocities.
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7. Start the Exploration Mission hierarchical state machine: This starts the
execution of the exploration mission on RAFCON. The state machine to be
started depends on the experiment that is being conducted.

The LN Manager with all the aforementioned nodes of the LRM is displayed in
Figure 8.2.

In_manager v2.53 Irm_mission_rm2 on [rm2:54413

processes | clients | topics | services | parameters | log

connectall | saveall displaytype:| pergroup v | S Edit| Qreload |
Group: 00_Normal operation
> standard Tools/ v start all (-] stop all

2 3 LRM_simulink on Irm2. ecit config
7 ¥ rover_communication on Irm2
% 3 arm_planning server on Irm2
% 3¢ LRM_gui_simulink on Irm2

> 01_Controller/

M 02 Autonomous Navigation/

7 X realsense_ros on Irm2
Visual 0dometry/
Local Mapping/
Navigation/
SLAM/

% X octomap_mapping on Irm2

% X Irm2 _rostopic2in on Irm2

2 3 rviz_Irm on Irm2

% 3 LRM _transforms_publisher on Irm2
- 03_Autonomous Exploration/

% X rafcon state machines on Irm2

% X octomap_msgs_saver onIrm2
™ 04 Object Detection/

? 3 LRM_object detection on Irm2
- 05_Logging/

% 3 LRM_system_monitoring on Irm2

% % LRM_rosbag_record on Irm2

% 3 LRM_area covered on Irm2
> 06.TOOLS/
S 07_Low_Level gul/ all processes status
> 99 ALL GROUPS/

Figure 8.2.: LRM’'s LN Manager showing the main nodes along with their
corresponding sub-nodes.

The post processing of each experiment is not described in detail here. In general,
it consists in converting the data recorded in the ROS topics within the ROS bags
into a format compatible with MATLAB to generate data plots.

8.2.2. First Experiment

The first experiment has two main objectives. The first is to evaluate the maturity
of the autonomous navigation capabilities of the rover in complex scenarios. This
is motivated by the fact that it was only demonstrated in one mission scenario
going from point A to point B in the work of Ricardez Ortigosa [33]. The second
is to compare the performance of the implemented exploration algorithm against
open-source, state-of-the-art alternatives in a controlled environment to demonstrate
the scientific relevance of this work.

To achieve this, the rover will be placed in 7 different initial poses within the PEL.
At each pose, it will perform an initial rotation over an angle randomly selected in
the range [0, 2], defining seven distinct mission scenarios. Using the low-level
implementation of the hierarchical state machines, a set of frontier centroids is
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computed for each scenario. Because this low-level implementation is common
to all mission, independent of the exploration algorithm being used, this ensures
that, although different exploration algorithms are applied to select the next target
centroid, the set of candidate centroids remains identical across algorithms.

For each mission scenario, the exploration strategy under test is applied: the rover
navigates to the selected centroid while mapping the environment and recording all
relevant data in ROS bags. After reaching the target, the rover returns to its starting
position. The experiment is then repeated with a different exploration algorithm,
using the same initial conditions and candidate centroids. Because the selection of
centroids depends on the exploration strategy, the rover is expected to choose
somewhat different centroids for each algorithm. This approach enables a fair
comparison between strategies, as differences in behavior can be directly attributed
to the exploration algorithms rather than the environment or initial conditions.

The rationale for using seven distinct mission scenarios, rather than allowing
the rover to map the entire PEL under each exploration algorithm, is twofold. First,
terrain complexity may break the current capabilities of the autonomous navigation
stack, making mapping the entire PEL potentially infeasible. By using smaller,
controlled scenarios, the performance of the navigation stack can be evaluated in a
more controlled environment.

Second, if the rover were to map the entire PEL under different algorithms, it
would rarely encounter the same frontier centroids in the same context, preventing a
direct comparison of decision-making between strategies. Also, given a camera
maximum range of 2 m and the PEL dimension of 5x10 m, it is expected that
mapping the entire PEL will not take more than 10 centroids to explore.

Thus, this approach preserves the ability to assess overall exploration efficiency:
for each scenario, explored volume and time to reach the target centroid are
recorded, which can then be compounded across all scenarios for the same
exploration algorithm, effectively treating each mission scenario as an isolated
instance within a continuous exploration mission. The exploration algorithms that
will be compared are: Closest Frontier, which selects the closest frontier in terms of
Euclidean distance for the rover to move to, Random Frontier, chooses a frontier
randomly from the list of available frontiers, serving as a baseline for comparison,
Entropy-Based, selects the frontier that maximizes expected information gain, Ulility
Function, chooses the frontier that maximizes the ratio of information gain and travel
cost in terms of total travel time, and Utility Function with Frontier Coverage, which is
similar to the utility function, but includes an additional term that defines the azimuth
range that is worth observing at the frontier centroid.

Mission Scenario Starting Conditions

It was mentioned that after reaching the target, the LRM returns to its starting
position so that the same initial conditions apply when running the same mission
scenario with a different exploration algorithm. However, it is important to ensure
that the initial conditions are in fact the same. When the Autonomous Navigation
node is started, the odometry and map frames are initially aligned, so the rover’s
starting position coincides in both frames. Over time, odometry naturally drifts,
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causing the odom frame to diverge from the map frame. The map frame, maintained
by SLAM, remains anchored to the global map, providing a corrected estimate of
the robot’s position, while the odometry frame continues to drift.

To quantify this divergence, the Euclidean distance between the rover’s positions
in the odometry and map frames is computed. If this divergence exceeds a threshold
of 5 cm when the rover returns to its original position, the experiment is repeated.
Ensuring that the initial conditions are consistent in this way also prevents the
coordinates of the frontier centroids to differ between exploration algorithms.

8.2.3. Seconds Experiment

The second experiment is designed to validate the 3D object localization pipeline. In
this experiment, the object localization loop will be running, and the rover will be
manually moved through the PEL using a gamepad for a fixed duration. The colored
cubes are randomly placed across the PEL, Figure 8.1. For that reason, during this
test, autonomous navigation is not employed. Nevertheless, VO and SLAM continue
running, as it is still necessary to maintain and update the point cloud generated
map and know the transformation between frames of the rover.

Figure 8.3.: Reference 3D map of PEL after 360° rotation.

The primary goal is to assess whether the rover can successfully detect all or
some of the placed Ool and if their 3D coordinates are accurate. This is particularly
important because object detection inference relies on a confidence threshold,
which determines when an object is considered detected. Objects located further
away have lower confidence scores, reducing the probability of detection. Of course,
the random walk with the gamepad is biased towards object detection because this
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is what this experiment is suppose to evaluate. Nevertheless, this is not the case for
experiment 3. A confidence threshold of 0.85 was chosen for this experiment.

(b) PEL configuration experimental setup with cube markers.

Figure 8.4.: PEL experimental setup and corresponding 3D point cloud map with
cube markers taken from the control room side.
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Knowing if the object is detected far away or close to the rover also opens up
future work research. For example, a strategy could initially use a low confidence
threshold to detect a potential object, then guide the rover to approach the object
while continuously monitoring the confidence score until it surpasses a higher
threshold, e.g., 0.9, ensuring that the object has been correctly identified. This would
shift the mission scenario from exploring an unknown environment while detecting
Ool in parallel, to actively guiding exploration with the goal of finding a specific Ool.

Accuracy of Estimated 3D Object Coordinates

The accuracy of the estimated 3D coordinates is evaluated as follows. A reference
map of the PEL was created by placing the stereo vision camera at maximum range
and having the rover perform a full 360° rotation at the center of the testbed. This
generates a highly accurate 3D map of the environment, Figure 8.3. Given that
the cubes are only 5x5x5 cm and the dimensions of the PEL are 5x10 m, they
are difficult to visualize in the given plot. Theferore, Figure 8.4 depicts the PEL
experimental setup and corresponding 3D point cloud map with cube markers for
easier visualization. In Figure 8.4a the borders ar the PEL are well defined by the
curtains in three of the four sides, while the remaining side is bounded for the
control room wall and windows.

The 3D coordinates of the objects detected during the experiment are then
overlaid onto this reference map to determine whether they fall within a reasonable
radius of the actual position. A radius of 25 cm was chosen as an acceptable
threshold. This threshold is the same for distinguishing two different objects apart,
since afterwards the rover can rely on its local perception rather than global
odometry when grasping the object in the future, as described in Subsection 8.49.

In this experiment, the system will also be monitored to provide real time
information about the computational load on the Intel NUC, mainly how is the
behavior of the frequency of the inference loop. In addition, the PEL is equipped with
an ART (Advanced Realtime Tracking) system, which is an optical motion capture
setup providing precise 3D position and orientation measurements of objects in real
time. The ART system was not used in this study because the PEL was undergoing
hardware and software reconfigurations, with the ART system unavailable when
experiments were being conducted.

8.2.4. Third Experiment

The third and final experiment is intended validate both the developed exploration
strategy and the 3D object localization pipeline in an integrated scenario. For this
purpose, the rover will be placed at a random location within the PEL and will
autonomously explore the environment. The exploration process will continue until
no additional frontier centroids are available, indicating that the environment has
been fully mapped. While exploration is happening, the object detection loop is
running in the background. The 3D coordinates of the detected objects can be seen
in RViz while the rover is exploring, and the ROS topic responsible for publishing the
detected objects with a given timestamp can be analyzed later.
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With the three experiments defined and characterized, the next step involves
analyzing their results.

8.3. Results and Analysis

This section presents the outcomes of the experiments described in the previous
section and provides an in-depth analysis of the obtained results. The analysis
mainly focus on quantitative data from the benchmarks to evaluate performance
of Subsection 8.1.4. After evaluating each experiment, a final discussion is also
provided which summarizes the key findings.

8.3.1. First Experiment

Two of the 7 mission scenarios 3D point clouds are presented in Figure 8.5. All the
mission scenarios are presented in Appendix C. Mission scenarios 1, 2, 3, and 6
both are a 360° rotation at different location in PEL. Mission scenario 3 is a 360°
rotation right in the middle of the PEL. This is inferred given that there are no "walls"
visible in the 3D point cloud of this mission scenarios. The "walls" are noticeable in
other mission scenarios though, which are the black curtains surrounding the PEL.

z (m)
5 sos
Ronao

(a) Mission Scenario 1. (b) Mission Scenario 7.

Figure 8.5.: Example of two mission scenarios for the first experiment.

Mission scenario 3 and mission scenario 5 have the rover pplaces in a slope,
which can be observed by the height gradient in the plots. For mission scenario
5 and mission scenario 6, the rover only performed a 90° and 180° rotation,
respectively. For mission scenario 7, after performing the 360° rotation, the rover
moved forward at its maximum linear speed for 14 seconds.

First, the results are presented by overlaying the 3D point clouds generated with
the corresponding rover odometry positions. If all exploration algorithms choose
different centroids for the same mission scenario, the total number of different point
clouds generated and respective odometry positions is 4. This is because when
frontier coverage is added to the utility function, this does not influence the chosen



8.3. Results and Analysis 117

centroid. For instance, Figure 8.6 depict the overlaying 3D point cloud generated
with the rover odometry positions for mission scenario 1, and mission scenario 7. All
the overlaying 3D point cloud and odometry positions for each mission scenario are
presented in Appendix D.

ClosestUtiity With Edges
Random

Entropy

Entropy
Utiity With Edges

e Closest
e ~———Random
o

(a) Mission Scenario 1. (b) Mission Scenario 7.

Figure 8.6.: 3D point clouds generated for each exploration algorithm with the
corresponding rover odometry positions for the same mission scenario.

Moreover, it could be that different exploration algorithms choose the same
frontier centroid as their next target. In such cases, the legend of each plot reflects
this overlap. Also, regarding the utility-based strategy without edges, i.e., without
frontier coverage, and with edges, i.e., with frontier coverage, both exploration
algorithms choose the same centroid. As a result, the corresponding 3D point cloud
is created in the same experimental run. Therefore, it is displayed only for the utility
with edges. The same applies if any of the other exploration algorithms selects the
same centroid as the utility-based strategy.

From the analysis of the figures, it is possible to conclude that visually, overall, the
3D point clouds generated by the utility-based strategy has more points that the
others. As well, only mission scenario 1 and mission scenario 2 had four different
frontier centroids being chosen. In contrast, mission scenario 4 had the same
frontier centroid for the closest, entropy, and utility exploration algorithms. This is
justified by the fact that the starting conditions of this mission scenario only had
the rover perform a 90° rotation. With this, the starting 2D occupancy grid with
segmented frontiers is the one shown in Figure 8.7, with the rover being located
roughly at the intersection point between the yellow and the green segmented
frontiers.

Even though frontier centroids are not directly displayed, it is clear that because
the yellow or green centroids are much closer to the rover than the blue and red
ones, the utility-based strategy computes that a much shorter travel time is required
to reach one of the former centroids, biasing this strategy to the same centroid as
the closest one.

However, these early conclusions are more qualitative than quantitative, and more
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Figure 8.7.: 2D occupancy grid of mission scenario 4.

data shall be provided to confirm this. First of all, the computation time of each
exploration algorithm is presented in Figure 8.8, for each mission scenario.
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Figure 8.8.: Strategy computation time for each mission scenario.

Even though seven scenarios may be too few to draw definitive conclusions about
small differences in computation time between strategies such as Entropy, Utility
No Edges, and Utility With Edges, it can be inferred that these strategies take
significantly longer than the Closest exploration strategy. This increased time is due
to the ray casting computations, rather than the calculation of the utility function
or frontier coverage. This is supported by the fact that the computation times of
Entropy, Utility No Edges, and Utility With Edges are very similar, making them
indistinguishable at this scale.

When it comes to real travel time, is is expected that the Closest strategy takes
the smallest value at every mission scenario. The real travel time for each mission
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scenario, Figure 8.10, shows that is, in fact, the trend, but with scenarios where the
Closest strategy ends up taking longer than others.

When it comes to real travel time, the Closest strategy is expected to have the
smallest values in every mission scenario. Figure 8.10 confirms this trend, although
there are scenarios in which this one takes longer than some of the other strategies.
Note that the rotation time for frontier coverage is also taken into account here. That
is why the real travel times for the Ultility No Edges strategy is always higher than
the one for the Utility With Edges strategy.
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Figure 8.9.: Strategy real travel time for each mission scenario.

This difference is not because the algorithm to compute the expected real travel
time is wrong, but because it only consideration orientation and Euclidean distance
between the rover and the centroid, not accounting for how the cost map looks. For
instance, if an obstacle is present, the rover may need additional time to get to
the centroid. This difference is not because the algorithm used to compute the
expected real travel time is incorrect. Rather, it arises because the algorithm only
considers the rover’s orientation and the Euclidean distance to the centroid, without
accounting for the structure of the cost map. For example, if an obstacle is present,
the rover may require additional time to reach the centroid.

Matter of fact, this occurs in scenario 6. As shown in Figure D.6, the odometry
path of the Closest strategy follows a curved trajectory to reach the centroid, rather
than a straight line, which increases the travel time. A similar situation occurs in
scenario 3, Figure D.3, where the rover again takes a curved path to the centroid. In
this scenario, the last Closest odometry message is corrupted, resulting in a straight
line from the centroid to the origin, as if the rover returned home, which is not the
case.

This opens the discussion on how the real travel time, overall, compares to the
computed expected travel time. For this, Figure 8.10 showcases the difference
between the real and expected travel time.

Based on the figure, it is evident that there is a substantial difference between
the real and computed travel times, averaging around 55-60% and reaching a
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Figure 8.10.: Difference between real and expected travel time for each scenario.

maximum of 80%. In absolute terms, this difference reaches a maximum of 170
seconds. The closest prediction underestimated the travel time by approximately
20%, or 20 seconds, meaning that in all experimental runs, the rover took at least
20 seconds longer than the computed time to reach the centroid. As expected, the
real travel time is always greater than the computed travel time.

With that in mind, the real travel time to centroid was plotted against the estimated
time to centroid, 8.11. In this plot, the identity line indicates the overall relationship
between the computed and actual travel times, showing how closely the estimates
predict the real travel times and highlighting any systematic deviations. In other
words, if the RMSE of the linear fit is 0 s, it means that the estimated travel times
perfectly match the real travel times for all scenarios, with no deviation between the
predicted and actual values.
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Figure 8.11.: Real travel time to centroid against estimated time to centroid.
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According to the values on the plot, the RMSE for the identity line is 92.0 seconds.
This is a very high RMSE value. Considering this, it was decided to create a way
that would better adjust and correct the difference between both times. For this,
linear, quadratic, and cubic fits were created, also depicted in Figure 8.11.

According to the plot, the RMSE for the identity line is 92.0 seconds, which is
relatively high. Considering this, to better account for and correct the difference
between the estimated and real travel times, linear, quadratic, and cubic fits were
computed, as also shown in Figure 8.11. The respective RMSE values for the linear,
quadratic, and cubic fits were 37.74 s, 36.81 s, and 35.81 s. From these RMSE
values, it can be deduced that there is a significant improvement from the identity
line to the linear fit, while the difference between the linear, quadratic, and cubic fits
is less pronounced. Higher degree fits were avoided because they will overfit this
particular data. Nevertheless, using the cubic fit to correct the expected travel times
yields the results shown in Figure 8.12.
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Figure 8.12.: Difference between real and expected travel time for each scenario
with cubic fit correction.

Comparing Figure 8.12 with Figure 8.10, the cubic fit clearly improves the results.
Nonetheless, some outliers remain, highlighting the need for a more accurate
method to estimate travel times.

The same analysis in terms of comparing the real travel distance to centroid to the
expected travel distance to centroid can be made. For this, Figure 8.13 illustrates
the real travel distance to centroid, while Figure 8.14 highlights same difference
between real and expected distance covered.

The real traveled distance to the centroid was computed using the rover’s
odometry positions at each timestamp, based on the cumulative Euclidean distance
between consecutive position:

N—1
Diaveled = V/ (Xis1 = X002 + (Yir1 — y)? + (Zis1 — 20)? (8.1)
i=1
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Figure 8.14.: Difference between real and expected travel distance for each
scenario.

where (X;, yi, zi) are the rover’s coordinates at timestamp i, and N is the total
number of odometry measurements along the trajectory. Here too there is a
noticeable difference between both distances, with a RMSE of 0.72 meters. This is
again justified by the fact that the cost map used by the autonomous navigation
stack prevents the rover from moving along a straight line.

With the analysis of the difference between real and expected time and distance
for all experimental runs, it is possible to move towards exploration efficiency results.
The evidence for this can be seen with either entropy or voxel measurements.
As previously explained in Section 6.3, entropy is a measurement of uncertainty
about the state of the environment, where detected voxels are either free or
occupied, which allow to define without doubt the state of the environment, related
to information gain of a particular region of interest.
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In other words, using Equation 6.2 their entropy is 0. Hence comparing these
variations across different regions before and after the exploration, for a given
exploration time, allows to conclude about the exploration efficiency of each strategy.

First and foremost, it is important to note that ray casting was performed across a
sphere when using the entropy-based strategy. Nevertheless, since all data were
recorded using ROS bags, the same ray casting, or counting the number of free and
known voxels, can be applied to every centroid visited by any strategy, both before
and after exploration. This allows the information gain associated with each centroid
to be directly compared across all strategies.
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Figure 8.15.: Total discovered voxels outside
of the spherical region of interest
as a function of the real explora-
tion time.

terest.

From this, it was decided to first examine if there is any correlation between the
used strategy and how many voxels were discovered outside of the region of interest
of each centroid, which is considered a sphere with the same radius of the ray
casting sphere. Since both free and known voxels convey information about the
environment, a higher number of discovered voxels indicates that a larger portion
of the environment has been explored. It is expected that discovered voxels exist
outside of the region of interest because when the rover moves to the frontier
centroid, it might look into unknown regions of the environment, even unintentionally.
Figure 8.15 provides this information, with the slope values being shown in Table
8.1. Note that the resolution of each voxel is 5x5x5 cm.

The slope values indicate that, for voxels discovered outside the sphere, there is
no direct correlation between the exploration algorithm used and the volume of
voxels discovered beyond the region of interest. This is expected since as the rover
moves towards the centroid, its behavior is dictated by the autonomous navigation
stack.

The next important finding concerns the total discovered volume as function of
real exploration time inside the sphere of influence of each centroid. Note that real
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exploration time not only entails real travel time but also the computation time for
each exploration strategy. This is the most important data of this thesis work when
it comes to proving that the implemented exploration strategy outperforms other
state-of-the-art open source approaches. Figure 8.16 and Table 8.4 gives this data.
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Figure 8.16.: Total discovered volume inside of
the spherical region of interest as
a function of the real exploration
time.

The slope values in the table confirm that this exploration strategy outperforms
the others. It explores the environment more efficiently, covering a larger volume
within the same amount of time. As important is the conclusion that the additional
time required to perform ray casting, compared to just computing the closest frontier
centroid, is outweighed by the significantly larger volume of the environment that
this strategy enables the rover to discover.

The Utility With Edges performs the best, validating the trade-off study in Section
6.1 to choose the exploration strategy to be implemented. Moreover, even without
the frontier coverage implementation, just using the Utility No Edges strategy to
balance travel cost and information gain yields the second best results, with a purely
Entropy strategy in third place.

Moreover, note that taking the Closest strategy as baseline, there is a maximum
deviation of 27% compared to the Utility With Edges strategy for discovered voxels
inside the spherical region of interest. This is much smaller for the discovered
voxels outside the spherical region of interest, only 4.38%. This also validates this
experiment, as the voxels outside the spherical region of interest are discovered as
the rover moves and not by the choice of exploration strategy directly, which explain
why their slope values are so similar.

An additional conclusion can be made when it comes to the correct application of
the utility function. If only absolute discovered volume inside the sphere without
accounting for the real exploration time was being considered, the Entropy strategy
would always perform equal to or better than the Ultility No Edges strategy.
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Nonetheless, the utility function is employed correctly since the Utility No Edges
strategy performs better than the Entropy strategy on overall exploration efficiency.
a This also validates that the simple ratio between information gain and travel cost is
enough to prioritize frontiers that offer the highest information gain relative to the
effort required to reach them, when compared to more complex utility functions
mentioned in Section 6.4. Still, it would be interesting to study if more complex utility
functions would increase the exploration efficiency compared to this baseline.

The exploration efficiency can also be displayed as a function of total discovered
voxels inside the sphere, similarly to Figure 8.15. This is portrayed in Figure 8.17.
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Figure 8.17.: Total discovered voxels inside of the spherical region of interest as a
function of the real exploration time.

Not only this allows to reach the same conclusions when it comes to exploration
efficiency, but also showcases an additional important consideration. As it was
previously mentioned in Section 6.5, the pan-tilt of the LRM is fixed to avoid breaking
the TF tree. Therefore, when performing frontier coverage, the rover has to rotation
its body, which takes longer than simply rotation the pan-tilt unit.

Knowing the frontier coverage time from the recorded data, it is possible to
deduce how much efficient this exploration strategy would be if the frontier coverage
is made by rotating the pan-tilt, with no body rotation. An approximation was used
assuming that a 180° rotation of the pan-tilt unit takes 6 seconds. The results of this
optimization are shown in Figures 8.17 and 8.16, where both an absolute and a
percentage decrease in time can be observed, ranging from 21.3 to 35.2 seconds
and from 13.3% to 29.1%, respectively. With this approximation, a new improved
value of 0.0072 m3/s is reached in terms of exploration efficiency.

The same can be said when considering the area covered information given by
the 2D occupancy grid, highlighted in Figure 8.18. Here, an interesting conclusion is
that the Closest strategy performs better than the Entropy strategy.

Additionally, a final difference in terms of the entropy before and after exploration
in the OctoMap can also be computed. A greater difference in entropy would
mean that more of the state of the environment was known after exploration when
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compared to before. This is outlined in Figure 8.19. Once again, the Utility With
Edges strategy performs the best, followed by the Utility No Edges and Entropy,
respectively. Interestingly, the Closest strategy performs worst than the Random
strategy. This could be because when moving to the closest frontier centroid, the
rover covers less terrain, so less of the environment outside of the sphere of
influence of the centroid is mapped.
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One of the considerations in the first experiment was that each individual scenario
could be treated as an isolated event within a single exploration mission, allowing
the explored information to be compounded for each mission scenario. Hence,
cumulative results for both volume and area, for each exploration strategy are
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demonstrated in Figure 8.20 and Figure 8.21, respectively. Also, in each figure, the
difference in volume and area between exploration strategies is also depicted.
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Both the cumulative volume and area covered allow to conclude that the Utility
with Edges strategy ends up gathering more information about the environment for
a full mission scenario. In addition, the Entropy strategy outperforms the Ultility No
Edges strategy. This has to do with the fact that real exploration time is not being
accounted for here.

Lastly, given that the rover was able to navigate complex environments in each
of the seven mission scenarios, this experiments also allowed to mature the
autonomous navigation stack of LRM. Not only that, but this experiment represented
a total run time of approximately 18 hours by the LRM over a three-week period, the
longest rover operations to date, with the wheels having to be calibrated 3 times
during this period through the low-level GUI. The wheels were calibrated when a
visual offset of approximately 4-5° was observed between the wheel’s position and
its actual zero position.

A final analysis can be made that concerns the range of frontier coverage. For
this, the range of normalized entropy greater than 0.95 was computed for every
possible frontier centroid, even the ones that did not had the highest utility. Figure
8.22 depicts this range for all frontier centroids, with the actual covered ones by the
Utility With Edges strategy highlighted.

The average range is also presented, around the 0°, with a range covering
165.311 °. Is it interesting that this value is almost half the total available range.
given that if a frontier centroid is place between the regions of known and unknown
space. This somewhat aligns with was expected since, if the environment is not
too complex, a frontier centroid lies between regions of known and unknown
space, therefore, only around half of the surrounding area contributes efficiently to
information gain, according to this strategy.

Finishing this subsection, the cumulative number of voxels for the Utility With
Edges strategy can also be computed for the seven mission scenarios, Figure 8.23.
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Figure 8.22.: Angle range of normalized entropy values above 0.95 to be covered.

Here, the last total number of voxels and timestamp from one previous mission
scenario equals the starting values for the next.
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Figure 8.23.: Cumulative total number of voxels over time using the Utility With
Edges strategy.

The linear fit slope for the total number of voxels yields 69.3341 voxels/s, which
corresponds to 0.0087 m3/s. This value will be compared with the one obtained
during the full autonomous mission of mapping the PEL in the third experiment.
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8.3.2. Second Experiment

The second experiment was designed to evaluate the accuracy of 3D object
localization, as well as the computational load on the Intel NUC during the object
localization loop, using the 3D point cloud map of the PEL shown in Figure 8.3 as a
reference. Figure 8.24 illustrates the generated 3D point cloud while the rover is
moved with the gamepad and the object localization loop is running. Additionally, the
odometry positions of the rover are shown in purple, and the estimated coordinates
of the cubes, obtained from the ROS topic publishing the 3D coordinates of each
cube at a given timestamp, are also displayed. The position and orientation of the
rover at the moment each detection occurred are indicated with arrows colored to
match the corresponding detected cube. In a cleaner way, Figure 8.25 shows the
same odometry position and estimated 3D coordinates of the cubes without the
generated 3D point cloud.

Figure 8.24.: Generated 3D point cloud data with object localization depicting the
estimated 3D coordinates of Ool.

Visually, it can already be concluded that the generated 3D point cloud accurately
portrays the PEL. Moreover, the estimated coordinates of the cubes are close to
their positions in the generated 3D point cloud. However, there is a distinction
between the 3D coordinates being accurate relative to the generated point cloud
and being accurate relative to the reference 3D point cloud, which serves as a sort
of ground truth.

Thus, by plotting the estimated 3D coordinates within the reference 3D point
cloud and comparing them to the centers of the cubes in the reference, it is possible
to visualize if the actual cube positions fall within the threshold region of 0.25 m
radius around the estimated coordinates, Figure 8.26. For better visualization, the
data is shown on the xy-plane.
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Figure 8.25.: Object localization with estimated 3D coordinates of Ool and odometry
positions.

Figure 8.26.: Visualization of estimated cube positions. The threshold region of
0.25 m radius around each estimated coordinate is shown, with dots
representing the actual ground truth of the rovers in the reference 3D
point cloud.

From the analysis of the figure, it is possible to conclude that only the white
cube falls outside the threshold region. This is reasonable, since, according to
the odometry positions, it is the last cube to be discovered, meaning that greater
odometry drift has accumulated up to this point. Also, in this case, there are no
duplicate cubes, which validates even more the object localization loop. It is also
possible to compute the distance between each cube center and corresponding
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point, as well as the distance between the rover and the estimated cube position,
when detection occurred. This is exhibited in Table 8.5 and Table 8.6, respectively.

Cube Distance (m) |_Cube _Distance (m) |

Blue 2.0759

Blue 0.2052
Green 1.8222

Green 0.1836
Orange 2.1919

Orange 0.2419
Volute 1.3287

Volute 0.2088 .

. White 2.1326
White 0.3202 Yellow 1.3826

Yellow 0.1456

Table 8.5.: Distance between each

Table 8.6.: Distance between rover

position and estimated
cube coordinates at the
time of detection.

cube center and estim-
ated coordinates.

With this information the average distance between each cube center and
estimated coordinates is 0.2175 m, while the average distance that the rover detects
the object is 1.8223 m. This distance is determined either by how far the rover is
when the confidence threshold is finally exceeded as it moves forward facing the
object, or simply when the rover turns and the object comes into view.

When it comes to computation load on the Intel NUC, Figure 8.27 represents the
data rate of both net sent and received during this experiment. The plot shows peaks
and dips, but their frequency seems too random so that any relevant conclusions
can be drawn.
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Figure 8.27.: Data rate for both net sent and net received.

Besides, the same cannot be said when is comes to CPU, RAM, and Disk usage,
Figure 8.28. Here, disk usage remains constant throughout the experiment, while
CPU and RAM exhibit a sinusoidal pattern. Moreover, while CPU usage oscillates
around the same value, RAM usage keeps slightly increasing as exploration carries
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on. Too, not that CPU usage spikes around 90%, an extremely high value. In
addition, the periodic behavior of the CPU and RAM usage can be attributed to the
object localization loop, where spikes represent inference being run of the OBC.

Usage (%)

o 20 an B0 80 100 120 140 160
Time (s)

Figure 8.28.: CPU, RAM, and disk usage during experiment.

This hypothesis can be confirmed by fitting the CPU and RAM usage into a
sinusoidal wave, and comparing their frequencies with the average frequency of the
object localization loop, measured over 10 iterations in Subsection 7.2.3, which
is 6.8 s or a frequency of 0.147 Hz. The CPU and RAM fitted sinusoids are
shown in Figure 8.29 and Figure 8.30. The frequency of the CPU fitted sinusoid is
0.1879 Hz, while the RAM fitted sinusoid is 0.1822 Hz. Both are slightly higher
than the threshold value of 0.147 Hz, which ensures real time object detection and
localization is possible. Furthermore, both values are similar to the complete loop
averaged inference time over 10 iterations of 5.81278 s or 0.172 Hz.
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8.3.3. Third Experiment

Finally, the third experiment, involving the full mission scenario with the Utility With
Edges exploration strategy running in parallel with 3D localization of Ool, can be
conducted. This allowed to validate the two different hierarchical state machines.
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Figure 8.31.: State machine distribution ~ Figure 8.32.: State machine distribu-

for the object localization tion for the full mission
loop. pipeline using the Ultility
With Edges strategy.

Each of the state machines belongs to one of these categories: Hierarchical
State, Get Information, Perform Computation/Algorithm, Monitor Action, Publish
Information, and Connection With Other Software. Thus, the number of different
state machines used are presented for the object localization loop, Figure 8.31, and
the full mission pipeline with the Ultility With Edges strategy, Figure 8.32. Overall, 56
state machines were necessary for complete autonomous exploration, while 17
state machines where necessary for the 3D localization loop of Ool, for a total
number of 73 state machines.

When trying to compute the 3D point cloud on MATLAB from the . ply generated
file after exploration by RTAB-Map, a 22751398x6 matrix was created which stored
the positions and RBG colors of each point of the point cloud. In comparison, the
second experiment produced a 6497468x6 matrix.

This means the third experiment 3D point cloud is 3.5 times denser than the
one generated during the second experiment. For this reason, when trying to
compute the 3D point cloud MATLAB crashes. Thus, the original point cloud of
this experiment was reduced by 35% before plotting in MATLAB. The results for a
3D and 2D-plane view with overlapping odometry are shown in Figure 8.33a and
Figure 8.33b, respectively. Reducing the density of the point cloud by 35% does not
compromise its information.

In the 2D-plane plot the z coordinate of the odometry position was set high
enough to tell it apart from some of the points in the point cloud. Several conclusion
can be drawn from the analysis of both plots. First, it is clear from the odometry
position that the autonomous navigation stack successfully avoids obstacles while
moving towards a position goal. This can easily be inferred from the way the
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odometry contours both rocks and cubes in its trajectory.

(a) 3D view of 3D point cloud.

(b) 2D-plane view of 3D point cloud with odometry position.

Figure 8.33.: Third experiment generated 3D point cloud.

Second, it can be seen that the accuracy of the PEL map is poorer than the one
generated in the second experiment. This has to do with the rover that in the third
experiment, the rover traveled a larger distance, which contributed to an increased
drift in odometry, which compromised the accuracy of the point cloud. Even though
the black curtains surrounding the PEL blend more with the testbed, the rectangular
dimensions of the PEL are still noticeable.

Nevertheless, when comparing to the testbed setup of Figure 8.1, noticeable
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features stand out. Particularly. the orange, green, and blue cubes, as well as the
rocks. The white cube is blended with the points of the point cloud representing the
black curtains.

Moreover, the yellow and volute cubes are not shown, as the part of the point
cloud on this side of the PEL appears to be sloped upward. This also coincides with
the last part of the PEL that was mapped by the LRM, which indicates an odometry
drift along the z-axis. This is addressed further in the OctoMap representation of the
PEL. It appears that the PEL extends to the left side. This is justified since this is the
side of the control room are there are no black curtains here.

05 0 05 1 15 2 25 3 35 4 45 5
x (m)

Figure 8.34.: 3D view of odometry dur-  Figure 8.35.: xy-plane view of odometry
ing exploration. during exploration.

The second analysis focuses on just the odometry data. Figure 8.35, Figure 8.34
and Figure 8.36, show the odometry trajectory of the LRM during the exploration
mission, presented in a 3D view, in the xy-plane, and in the yz-plane, respectively.
Also, blue dots in the figures represent the chosen frontier centroid, the green dot
the starting position, and the red dot the final position.

It can be clearly observed when an obstacle was encountered by the LRM and
the autonomous navigation reacted, as the odometry trajectory shows a curved path
between points. This further validates the autonomous navigation capabilities of
the LRM. Moreover, the total traveled distance by the rover according to odometry
was 16.86 meters. On top of that, Figure 8.36 highlights the odometry drift along
the z-axis, already noticed from the analysis of the point cloud. In fact, the rover
estimates that is has moved -40 cm along the z-axis when, in fact, its trajectory
should be approximately flat.

What is more, a total of 7 frontier centroids were explored to map the PEL. Some
frontier centroid seem "above" the odometry position. This is because the frontier
centroids are first selected as candidates from the 2D occupancy grid, where there
are only x and y. This being the case, as odometry shifts from a from trajectory, the
frontier centroids might appear "above" or "below" the rover’s odometry. Also, it can
be seen that in the rover’s trajectory, the points where the rover reaches the centroid
and computes the next one to go to do not coincide exactly with the centroid itself.
This comes from the position threshold defined by the user.
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Figure 8.39.: Linear acceleration over
exploration time.

Complementary to this, the position, velocity, and acceleration along the three
axes in both linear and angular terms can also be presented, Figure 8.37, Figure
8.38, and Figure 8.39 for linear, respectively, and Figure 8.40, Figure 8.41, and
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Figure 8.42 for angular, respectively. For both linear and angular motion, the
position curves appear significantly smoother than the corresponding velocity and
acceleration. This behavior arises because velocity and acceleration are obtained
through differentiation of the position data, which amplifies measurement noise and
small variations.

As a result, the derived signals become more irregular and spiked, sometimes
appearing saturated at certain points. For instance, the angular acceleration in
the roll axis reaches values exceeding 600 m/s2, which is unrealistically high for
the LRM. Such values likely result from a combination of sensor noise and limited
sampling resolution.
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Figure 8.40.: Angular position over ex- Figure 8.41.: Angular velocity over ex-
ploration time. ploration time.
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Figure 8.42.: Angular  acceleration
over exploration time.

Within the same odometry framework, the variance of the position (X, y, z) can
also be computed and plotted. There are depicted in Figure 8.43. The variance of
s a statistical measure of how much the position values deviate from their mean
expressed as:

o_1 N 212
oy = NZ(Xi—X) (8.2)
i=1
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where x = %Z;\Ll X is the mean position, and (x; — X)? represents the squared
deviation from the mean.
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Figure 8.43.: Variance of position during exploration.

Regarding position variance, it is interesting that its values remain close to zero
for the first 750 seconds of exploration. After this period, the variance peaks at
approximately 0.7 m? and stays like this for around 250 seconds, until it reaches
1000 seconds. It then briefly returns to near zero before peaking again at around
0.23 m2, and subsequently drops to zero once more. The return of the variance to
near-zero values after significant fluctuations may correspond to a loop closure
event, where the LRM revisits a previously mapped area and the odometry
estimates are corrected, temporarily reducing positional uncertainty.

Too, the OctoMap will be presented as a direct ROS topic echo of the cloud
map visualized on RViz. The OctoMap created of the PEL laboratory is presented
in Figure 8.44. This representation of the environment using 5x5x5 voxels is fine
enough that, from the image, it is possible to notice some of the traits of the terrain
that make up the PEL.

For this reason, a depiction of the PEL setup, Figure 8.45, and the OctoMap,
Figure 8.46, is provided, with magenta circles identifying the regions of the PEL
setup that can be clearly recognized in the OctoMap.

By inspecting the images, it can be seen that the voxels in the OctoMap. Regions
1 to 5 are more noticeable as they represend piles of rocks in the PEL. Region 6 is
more spread out, therefore, the OctoMap is also less pronounced around this area.

By inspecting the images, it can be observed that the voxels in the OctoMap
correspond to distinct regions of the PEL. Regions 1 to 5 are more prominent, as
they represent piles of rocks in the environment, while Region 6 is more spread out,
resulting in a less pronounced OctoMap representation in that area. From all, region
4 is the less noticeable. This is justified by the fact that only one rock exists in this
region. Besides, the black curtains are shown both to the left and the right of the
OctoMap.

Special attention must be given to the two outlier regions, A and B, in Figure 8.46.
These small clusters of voxels are placed much higher than the others, and seem to
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Figure 8.44.: OctoMap of PEL generated after exploration.

Figure 8.46.: Corresponding OctoMap
representation of the PEL

Figure 8.45.: Setup of the PEL laborat- laboratory. Magenta circles
ory. Magenta circles high- highlight the same distinct-
light distinctive regions of ive regions of the environ-
the environment. ment.

be some of sort of noise. This was caused by interference from the PEL roof lights,
which affected the stereo vision camera. Even though this noise did not interfere
with the PEL mapping, it could have affected the local cost map by introducing false
obstacles. This being the case, this work would benefit from a more in-depth study
on how light conditions affect the overall mapping capabilities of the LRM.

Another remark as to do with an odometry drift more evident along the z-axis. For
one, the rover started by performing a 360° rotation, This first semi OctoMap before
the rover moves to the first centroid is evident by the yellow curve. After this, the
rover starts moving and the ground drifts to lower values, as noticeable by the color
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gradient between Region 5 and Region 6. If there was no drift in odometry, this
transition would be smoother as the PEL setup does not have this downhill slope.

Another remark concerns an odometry drift that is more evident along the z-axis.
Initially, the rover performed a 360° rotation, which resulted in a partial OctoMap
before it moved toward the first centroid, as indicated by the yellow curve in Figure
8.46. After this, as the rover continued to move, the ground level in the map
appeared to drift downward, which can be observed from the color gradient between
Region 5 and Region 6. If no odometry drift were present, this transition would
appear smoother, since the PEL setup does not actually exhibit such a downhill
slope.

On the other hand, when the rover starts moving in the opposite direction toward
Region 3, the drift causes the ground level to appear shifted upward. This can also
be explained if the stereo vision camera is tilted slightly upward or downward, and
this misalignment is not reflected in the TF tree. However, both the stereo vision
camera in the LRM and the camera frame in RViz were perfectly horizontal.
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Figure 8.47.: Known area over time using the Ultility With Edges strategy.

Lastly, regarding the OctoMap representation, Regions a and @ also deserve
attention. Even though the voxel resolution is 5x5x5 cm, the map is recursively
subdivided into smaller voxels only where necessary on the octree structure, while
uniform regions are represented by larger cubes. This behavior is also visible
throughout the map, although less pronounced in certain areas.

Overall, the generated 2D occupancy grid and 3D point cloud visualized in RViz
from this experiment are presented in Figure 2.9, and Figure 2.8, respectively, for a
total exploration time in the ROS bag files of 18 minutes and 33 seconds. However,
finishing the setup and starting the state machine took around 60 seconds, as it can
be seen, from Figure 8.37, from the firs 60 seconds there is no rover movement.
Taking around 10 seconds to compute centroid utility, taken from averaging the
values of Figure 8.8 for this strategy, the total real exploration time is 17 minutes and
43 seconds. Using for t = 0 the actual instant when the state machine was started
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yields the following known area as a function of time plot, Figure 8.47.

At the end of the exploration, the total known area was 49.23 m2. This is slightly
smaller than the PEL dimensions of 50 m2, which is justified by a missing part of the
PEL in the 2D occupancy grid. Also, the value of 49.23 m? is positively inflated
since the black curtains, and the space between the PEL and the black curtains
appears as occupied in the 2D occupancy grid. The slope of the linear fit of these
points gives 0.0384 m?/s. Using this value as reference, comparing to the slope of
the same strategy from experiment 1, it has an error of 7.8%. This value allows
to conclude that even though only 7 mission scenarios were tested in the first
experimental, it is a good approximation in a full exploration mission in terms of
exploration efficiency values.
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Figure 8.48.: Free, occupied, and total known voxels over time using the Utility With
Edges strategy.

The same can be made in terms of the OctoMap, where Figure 8.48 shows the
number of free, occupied, and total known voxels over time. The value at the end of
exploration of total known voxels is 134181, which given the resolution of 5x5x5
cm, is a total volume of 16.7726 m3. Also the linear fit slope for the total known
voxels is 74.6798 voxels/s, which in m3 is 0.0093 m3/s. Using this as reference as
comparing to the cumulative total known voxels for the same strategy in the first
experiment, Figure 8.23, gives an error of 7.16 %. This error suggests that using
the cumulative values of each mission scenario as a fully autonomous exploration
is a good approximation, also validating the comparison in exploration efficiency
between methods in the first experiment.

This slope value is greater which suggests that the rover ends up exploration
more in the environment in a continuous mission, rather that in separate mission
scenarios added together. Another interesting conclusion is the fact that there are
dips in the plot, which indicate that over the course of exploration, the rover "loses"
information about previously known voxels.

When it comes to the object 3D localization, Figure 8.49 allows to conclude that
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the rover failed to localize the 3D volute cube at the end of the exploration, and
given its odometry drift, the blue cube was considered two different cubes, 27 cm
apart from each other.
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Figure 8.49.: Visualization of estimated cube positions.

Since the images in the objection detection are deleted post inference during
exploration to save space, it is not possible to infer if the object detection did not
occur due to an overload in CPU usage, or because at this point the rover estimated
it was around 0.25 m into the ground, and the algorithm was not able to compute a
proper transformation between the camera and the cube.

8.4. Discussion and Conclusion

The experimental validation performed in the PEL demonstrated the maturity of
the LRM as an open-source, modular platform capable of autonomous exploration
coupled with real-time object detection and 3D localization. Three main experiments
were conducted. First, evaluate of the maturity of the autonomous navigation
capabilities of the rover in complex scenarios and compare the performance of the
implemented exploration algorithm against state-of-the-art approaches in the same
domain. Second, validate the accuracy of the 3D object localization pipeline and
its computation load on the OBC. Third, validate the fully integrated autonomous
exploration mission comprised of the implemented exploration strategy and 3D
object localization to map an unknown environment and detected objects of interest.

The first experiment compared the proposed Ultility-based exploration strategy,
both with and without frontier coverage, and Entropy maximization, against
established methods, including the Closest-frontier strategy, and a Random
baseline for control. Results indicated that the proposed method achieved a higher
exploration efficiency, as measured by the slope of discovered volume per second,
with values reaching 0.0061 m3/s compared to the 0.0048 m3/s for the baseline
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Closest-frontier approach. In fact, all the exploration algorithms developed as part
of this thesis work, which include the experimented Entropy and Utility No Edges
strategies perform better than the baseline. Thus, these findings align with the
hypothesis that using a simple ratio between expected information gain and travel
cost yields a more efficient exploration behavior when choosing the next desired
frontier centroid.

That said, analysis of the actual travel distances and times, when compared to the
expected ones, revealed measurable differences. The RMSE between estimated
and real travel times was approximately 92 seconds for the identity line, reduced
to 35.8 seconds when a cubic correction fit was applied. Similarly, a 0.72 m
RMSE was observed between expected and traveled distances. These deviations
were primarily attributed to navigation constraints imposed by the local cost map,
non-linear rover motion due to obstacle avoidance, and measured computation time
between each transition of the full mission hierarchical state machine.

Despite these variations, the rover consistently reached all target centroids without
manual intervention, validating the robustness of its navigation stack. Even if so the
rover covered, for each centroid in every mission scenario, a distance ranging from
0.6 to 3.5 m, which is lower than the full mission scenario of the third experiment.

The second experiment, focusing on 3D object localization, confirmed the
accuracy and reliability of the implemented pipeline. Using 3D-printed colored
cubes as Ool, the rover accurately localized all expect one target within a 0.25 m
radius threshold relative to their ground truth positions in the reference 3D point
cloud. The white cube fell outside this margin, which was explained by accumulated
odometry drift during after a greater exploration time. Nonetheless, the maximum
distance between the reference and estimated cube position was 0.3202 m, while
the minimum distance between the rover and the cube at the moment of detection
was 1.3287 m.

Given that this minimum detection distance is approximately 4.15 times greater
than the maximum positional error, it is safe to assume that, when the rover moves
to the estimated position. it will still be able to detect the cube and rely on its local
perception rather than global odometry when grasping the object in future work.

This result verifies that the perception pipeline, built on YOLO inference and
depth-based information from camera intrinsic and extrinsic parameters, is capable
of real time detection and 3D localization running only on the LRM CPU, achieving
an average loop inference rate of 0.1879 Hz from the CPU fitted sinusoidal
wave. The observed periodic oscillations in CPU and RAM usage confirmed
synchronization with inference.

The third experiment, integrating exploration and object localization, validated the
complete autonomous mission pipeline, including the hierarchical state machine
framework employed in RAFCON. The rover successfully executed all planned
centroids, avoiding obstacles autonomously. The final 3D OctoMap closely reflected
the true structure of the PEL testbed, with a large number of regions from the PEL
testbed present in the generated OctoMap. Some mapping noise, notably two
voxel clusters above the ground, were identified as being caused by reflections
from the PEL roof lights, suggesting that lighting conditions affect stereo vision
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accuracy. Additionally, a z-axis drift was detected in the OctoMap, likely due to small
odometry accumulation errors, rather than hardware misalignment, as both the
stereo camera and respetive camera frame in RViz were confirmed to be aligned.
Despite these limitations, the rover’s total traveled distance of 16.86 meters matured
rover operations.

This experiment also represented approximately 18 hours of cumulative operation,
the longest runtime achieved by the LRM project to date, with the wheels having to
be calibrated 3 times. This also validated other hardware choices in the LRM. Given
the low-cost nature of the hardware, performing three calibrations over 18 hours of
operation is considered good, and there was no overheating or component failure.
The only downside was that, at full capacity, the battery lasted only 1.5 to 2 hours,
significantly less than the initially expected 3-hour autonomy.

Additionally, it was clear that developing autonomous exploration strategies using
state machines significantly simplifies the process. Initially, considerable time is
required to design each state machine. However, over time, most of the building
blocks, i.e., state machines for creating hierarchical state machines to perform a
specific task are already available. The main challenge then shifts from writing the
code for each state machine to choosing its architecture. This not only applies to
autonomous exploration strategies but also to other tasks performed by the rover.
For instance, object grasping can reuse the object localization loop. For instance,
object grasping can reuse the object localization loop, since both need to detect and
locate the position of the Ool.

Overall, the validation experiments provide strong evidence that the proposed
utility-based exploration algorithm, developed using a state machine framework,
provides a scalable approach on low-cost robotic platforms, without relying on
GPU acceleration for real time object localization or closed-source software.
Nevertheless, several limitations emerged. Environmental lighting was shown to
affect the generated OctoMap in a non-predictive way. The odometry drift mainly
along the z-axis highlights the benefit of fusing VO with IMU data for better mapping
accuracy.



Conclusions

This chapter concludes this thesis by addressing the research questions outlined in
Section 9.1 and by presenting recommendations for future work in Section 9.2.
This work set out to design and validate an open-source, modular framework for
autonomous exploration and 3D object localization on low-cost robotic platforms
such as the LRM. The goal was to integrate exploration and object localization
within a state machine-based framework that is open, scalable, and comparable in
performance to high-end systems, while performing better in terms of exploration
efficiency when compared to existing ROS-based open-source strategies in the
literature.

The LRM was further improved to autonomously map unknown environments,
detect and localize Ool. This integration advanced its autonomy and established
a foundation for a total autonomous mission pipeline, including object grasping.
The proposed architecture, combining ROS and RAFCON, enabled managing the
execution of autonomous tasks related to perception, exploration, and navigation.

In conclusion, the results validate the feasibility of an open-source, modular
framework for autonomous exploration and perception on low-cost rover platforms.
The developed pipeline successfully integrates high-level HFSMs, low-level state
machines, and perception and exploration related tasks into an architecture capable
of real time operation and exploration. These findings confirm the LRM’s ability to
perform complex autonomous missions, demonstrating the potential of low-cost,
open-source systems for advanced robotic research and education.

9.1. Answering Research Questions

How can autonomous exploration strategies be implemented within an
open-source, scalable and modular state machine-based framework for
mobile robotic platforms?

- What are the computational and architectural limitations that limit the
implementation and ready-to-use deployment of exploration strategies
on different mobile robotic platforms?

Implementing ready-to-use exploration strategies on different robotic platforms

145
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is constrained by four principal factors. First, the onboard computational load,
CPU vs. GPU, limits both the complexity of real time inference and the time
available for the exploration algorithm to compute. In this case, performance is
strongly bounded by the ray casting time. On one hand, robotic platforms with
integrated GPUs benefit from a very high object localization loop frequency
thanks to accelerated inference. On the other hand, CPU-only systems often
require model quantization tailored to the specific CPU.

Second, middleware and communication impose latency challenges.
Exchanges between ROS nodes nad HFSM states, such as control
commands, and monitoring and listening to ROS topics, can delay transitions
between state machines. Third, 3D mapping using a full OctoMap, where each
voxel stores an occupancy probability between 0 and 1, scales poorly in terms
of memory usage and query cost when computing individual entropy values. A
binary OctoMap representation can be used to reduce the computation cost
during ray casting without significantly affecting results.

Fourth, sensor quality and odometry drift, escalated by poor lighting or the
lack of fusion between VO and IMU measurements, directly reduce map
accuracy and must be mitigated through sensor fusion or developing an
exploration strategy that prioritizes map accuracy.

Mitigations that proved effective in this work include running heavy
computations in parallel across different HFSM states, limiting the OctoMap
to a binary representation with constrained voxel resolution, enabling ray
casting to reduce on unknown grid cell in the 2D occupancy grid, choosing
azimuth and elevation step sizes for ray casting that balance accuracy and
computation time, and applying frontier filtering to reduce the set of candidate
exploration points.

How can frontier- and utility-based exploration algorithms be adapted
for implementation within a state machine framework?

Frontier- and utility-based methods are implemented by decomposing the
algorithm into smaller, single-purpose state machines, which serve as the
building blocks of HFSM states. This implementation can be divided into a
low-level state machine layer, which handles the pipeline of frontier detection,
followed by clustering and filtering based on the 2D occupancy grid information,
followed by the application of the exploration algorithm based on the list of
candidate frontier centroids.

In this case, this includes using an utility function defined as the ratio between
information gain, estimated through ray casting around a sphere of radius
equal to the range of the stereo vision camera, and trave cost, computed as
the time it would take the rover to get to the centroid based on its pose. Once
utility scores are computed, the position of the candidate frontier centroid is
published as a navigation goal to the autonomous navigation stack. Apart from
the HFSM, the employed state machines handle actions such as triggering
actions, monitoring system parameters, gathering information, interfacing with
other software, or performing computations for the algorithms.

The state machine framework architecture allows the definition of global
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variables, simplifying how they are accessed within individual state machines.
Hence, practical adaptations, such as storing the TF listener in the global
variable manager, are beneficial because a new buffer does not need to
be created each time a state machine queries a transform in the TF tree,
reducing processing time between state machines. They also provide an easy
way to incorporate user-defined inputs, making this approach more adaptable
to other robotic platforms.

How can the performance of the designed exploration techniques and real
time object detection be guaranteed and evaluated across varying operating
conditions?

- What criteria and benchmarks best evaluate the performance and
robustness of autonomous exploration techniques?
A comprehensive evaluation of exploration strategy performance requires
considering parameters such as information gain, travel cost, map accuracy,
and computational load. In terms of robustness, the evaluation focuses on
how closely the estimated values match the real ones. The key criteria include
exploration efficiency, the volume of the environment discovered over time,
the RMSE between expected and actual travel distances and times, and the
computational load on the OBC in terms of CPU, RAM, and disk usage.
Additional metrics include the success rate, defined as the proportion of
mission scenarios completed without manual intervention, and assessing
the total number of voxels that have been discovered both inside and
outside the spherical region of interest around each centroid. Because these
performance metrics are often plotted as a function of time, a proper way
to compare exploration strategy is compare the slopes of each criteria,
where steeper slope indicates better performance of the exploration strategy.
When exploration time is not considered, the cumulative volume covered as
additional centroids are explored serves as a strong indicator of the overall
information gain achieved by each strategy, independent of time.
Although not implemented in this work, an ART system would allow to compare
the estimated odometry position by the rover and the actual ground truth,
providing more conclusive evidence regarding mapping accuracy. As well,
when using repeatable scenarios as benchmarks, it is important to ensure
identical starting configurations in terms of ground-truth positions.

- How does the implemented exploration algorithm compare to state-of-
the-art alternatives in the same domain?
Using the first experiment within the PEL as a reference to address this
research sub question, the most complex exploration algorithm implemented,
the Utility With Edges strategy which comprises utility-frontier algorithm with
frontier coverage, outperforms the Closest strategy by 27% in terms of
exploration efficiency, measured as the discovered volume per second of
exploration time. Moreover, the Entropy strategy, which selects the centroid
with the highest entropy sum based on ray casting around each centroid,
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already shows an improvement of approximately 10.4% in the same domain
compared to the Closest strategy.

The Entropy strategy is already more complex when compared to a similar
one on the state-of-the-art which performs the sames entropy computation but
just uses a radius around the centroid in the 2D occupancy grid summing
the entropy values of each ray in the 2D plane, which is not as complex
as ray casting around a 3D sphere. Also, the Entropy strategy is already
more advanced than the most complex open-source method available in the
state-of-the-art prior to this thesis. The referenced approach performs similar
entropy computations but rely on a 2D radius around the centroid, summing
the entropy values of rays in the 2D plane, rather than conducting full 3D ray
casting around a spherical region.

The same conclusion regarding the implemented exploration algorithm and
comparison with the state-of-the-art of exploration efficiency is reflected in
the total centroid entropy difference as a function of real exploration time, as
well as in the total area covered over time. The Utility With Edges strategy
and Utility No Edges strategy always rank first and second, respectively. This
is followed by the Closest strategy. All in all, the implemented exploration
algorithms demonstrate higher complexity than state-of-the-art approaches
while also achieving better exploration efficiency.

What are the limitations and challenges of achieving real time object
detection on a CPU-based platform like the Intel NUC?

Real time object detection on CPU-only hardware faces limited compute for
accelerated inference, which is translated in fewer frames processed per
second compared to GPU-accelerated systems. In principle, real time object
detection is possible if the inference frequency is high enough so that no part
of the environment is not seen as the rover moves.

This is defined by the time it takes the camera to rotate across its field of view
FOV, given as the ratio between the hFOV and the camera’s maximum angular
speed. In practice, real time performance requires adopting lightweight YOLO
variants. For instance, using OpenVINO to perform model quantization can
reduce model size and improve inference speed on Intel hardware with just a
CPU.

Another issue concerns CPU usage, where high CPU load can lead to
increased latency and reduced overall performance. However, the second
experiment showed that peak inference reached approximately 90% CPU
usage without compromising rover operations. Lastly, the majority of the
computational load in the object localization loop is due to inference,
accounting for 77% of the total loop time, while saving the color and depth
frames and computing 3D coordinates from camera intrinsics and extrinsics
account for the remaining 23%.
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To what extent can integrating autonomous exploration techniques, coupled
with 3D object localization, increase the maturity of the autonomous
capabilities of the Lunar Rover Mini?

+ How can hierarchical finite state machine architecture be designed in a
modular way that supports future development?
A modular HFSM design relies on developing each execution state machine
with a specific purpose, organized into clear libraries. The advantage of
storing states as libraries is that it promotes reusability and easy integration
with other state machines developed in the future. Additionally, it allows for
easier troubleshooting, as the libraries have already been validated.
Since the middleware framework is ROS, each state interacts with ROS topics
to perform its designated function. Particulary concerning the LRM, the HFSM
architecture is employed in RAFCON, which is deployed as a node in the LN
Manager of the rover. Its libraries are well-defined, which allows other users to
continue to build on top of them. Besides, having less hard-coded variables
may require more time during setup, but it ensures modularity and allows the
HFSM to be integrated with other robotic platforms relatively easily.

- What experimental validation methods can be used to assess the
performance of the Lunar Rover Mini when generating unknown maps of
the environment and detecting objects of interest?

A successful experimental validation campaign includes both benchmark
scenarios, used to compare performance between different exploration
strategies, and full mission scenarios to understand the behavior of the rover
over a longer time. These include experiments where the behavior of the rover
in the same mission scenario is tested for different exploration strategies,
while recording exploration efficiency.

Further, tests to conclude the accuracy of the 3D localization of Ool. These
consist on having proof of concept objects with known ground truth located
randomly in the environment, and having the rover move in the environment
while the coordinates of the objects are being computed. Then, it can be
concluded the different between the estimated and real position of the objects.
More importantly, if this different is bigger than a theoretical circular region
around the object where the rover will always be able to detect it. Furthermore,
a test with the full autonomous exploration and 3D object localization pipeline,
where an ART system can be used to save the ground truth position of the
rover for later comparison with its estimated odometry.

Finally, evaluating how changing environmental conditions, for instance
lightning or the terrain configuration influences the results.

9.2. Future Work Recommendations
This report allowed to develop an understanding of possible future work that builds
upon the research presented here, which are presented below.

More complex utility function: In this work, the utility function used was a
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simple ratio between expected information gain and travel cost. However, several
other utility functions in the literature use weighting factors to balance these two
components. Thus, it would be interesting to explore how using different utility
functions, or tuning the weights of the same utility function, affects selecting the next
centroid, and what effect does that have on overall exploration efficiency. Also, it
might be worth exploration adding another term to the utility function which takes
into account map accuracy.

Fusing IMU data with VO for increased robustness: As mentioned when
describing the LRM, it only relies on VO to estimate motion, which is prone to drifts.
Given that the LRM is equipped with two IMUs, one on the middle board PCB,
and one on the Intel RealSense camera, integrating IMU data to improve overall
robustness and accuracy of the SLAM pipeline. As well, integrating the IMU data
from the camera within the TF tree would allow to properly estimate the pose of the
camera frame when rotating the pan-tilt, which is currently not accounted for. This
would allow to improve the exploration efficiency when using Utility With Edges
strategy, since the rover’s body would not need to rotate, only the pan-tilt unit.

Using ART during experiments: Since the PEL is equipped with an ART system,
it is possible to use this system to track the rover’s position while it is moving. This
allows to compute the RMSE between the ground truth and the estimated odometry,
making it easier when testing exploration strategies that prioritize map accuracy.

Real time pose estimation: As it was described, achieving real time object
detection on a CPU was already challenging. Nonetheless, extending this to pose
estimation would increase the complexity of the object localization loop. Specifically,
pose estimation is important for object grasping, for the end effector to understand
the best way to approach the object. However, running inference for pose estimation
is expected to take longer than simple object detection, which means it might not be
able to run in real time.

Autonomous object grasping: Another recommendation is building on top of
this autonomous exploration strategy by implementing autonomous object grasping
for a fully autonomous mission pipeline. Since the 3D coordinates of Ool are
published to a ROS topic, this pipeline would start by having the rover moving
towards those coordinates. From there, it would rely on its local perception for the
autonomous grasping.

Testing open-source implementation on other robotic platforms: A key part
of this work was making sure that the implemented exploration strategy within
the HFSM was open-source and as ready-to-use as possible on other robotic
platforms. To achieve this, the HFSM was designed so that user inputs define
specific parameters, topics, and thresholds. This allows easy adaptation without
changing the code or transitions in each state machine library. This study would
allow to identify ways in which the state machines can be even more modified to be
more user friendly.

Testing in different more complex environments: One of the conclusions
about experiments in the PEL was the fact that lighting conditions affected the
OctoMap. None only that, but the tested for the LRM was designed to mimic
lunar soil. Nevertheless, the LRM’s goal is to be used as a robotic platforms for



9.2. Future Work Recommendations 151

researchers and students in different environments. Therefore, it would be beneficial
to also study the rover’s behavior when it comes to mapping the environment in
such conditions. This would also allow to make conclusions about the mechanical
design of the rover, mainly if the wheels slip in other terrains.
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ASURO
OSR
Sawppy

ExoMy
LRM

Mass

Embedded Capabilities

Dimensions

45x122x117 mm  0.165kg  Basic object detection and
avoidance
610x305x356 mm  12.7 kg LED head information
display
685x320x306 mm - Simple camera support
300x390x420 mm 2.5 kg 2D RGB visual imaging
360x260x390 mm 3.7 kg RGB-D vision, autonomous

nav. & exploration, 6-DOF
robotic arm, object detection

Max. Velocity

1.75 m/s

0.23 m/s
0.13 m/s

Autonomoy

3h
3h

Price Software
50 € C
2160 € Linux,
Python
430 € ROS, C,
C++
360€ ROS, Python
2000 € ROS,
Python, C++,
Linux

Table A.1.: Comparison of low-cost COTS built open-source rovers.



ROSMessage and Topics
Definitions

This appendix lists the main ROS message types referenced throughout this work,
along with links to their official documentation for complete definitions, as well as the
description of the ROS topics used throughout this report.

B.1. ROS Messages

sensor_msgs/PointCloud2
octomap_msgs/Octomap
std_msgs/Bool
nav_msgs/OccupancyGrid
visualization_msgs/Marker
visualization_msgs/MarkerArray

sensor_msgs/Image

B.2. ROS Topics

/trigger_saver: Subscribing to a Bool message and triggers the custom
node octomap_saver_node. cpp to save the current OctoMap.
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https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/PointCloud2.html
https://docs.ros.org/en/noetic/api/octomap_msgs/html/msg/Octomap.html
https://docs.ros.org/en/noetic/api/std_msgs/html/msg/Bool.html
https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.html
https://docs.ros.org/en/noetic/api/visualization_msgs/html/msg/Marker.html
https://docs.ros.org/en/noetic/api/visualization_msgs/html/msg/MarkerArray.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html
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/system_stats: Provides real time information about the computational
load and system performance, including CPU, RAM, and disk, to monitor whether
the rover operates within the processing capabilities of the Intel NUC.

/grid_map: Publishes a 2D occupancy grid of the environment generated
from the point cloud, used for navigation and visualization.

/octomap_full: Contains the full 3D OctoMap representation of the
environment, indicating occupied, free, and unknown space for the exploration
strategy to use.

/ odom: Provides the rover’'s odometry data, including position and orientation
estimates, used for trajectory tracking and SLAM evaluation.

/candidate_frontiers: Publishes the set of candidate frontier points
identified by the exploration algorithm, which represent potential areas to explore.

/segmented_frontiers: Contains clusters of frontier points segmented
from the raw candidate frontiers.

/segmented_frontiers_centroids: Publishes the centroid posi-
tions of the segmented frontier clusters, which will be used by the utility-based
exploration algorithm.

/centroids_sphere_view: Publishes the ray casting sphere around
each centroid for entropy to be computed.

/utility_function: Contains the computed utility values for each
candidate centroid.

/normalized_entropy: Publishes the normalized entropy associated
with each centroid.

/cloud_map: Contains the accumulated 3D point cloud generated from stereo
vision camera data, representing the explored environment in detail.

/map_stats: Provides the total area that has been covered so far by the
rover.

/detected_objects: Publishes the class labels and 3D coordinates of
objects detected by the YOLOv7-based custom model, used for object localization
and visualization in RViz.
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A Modular Open-Source Rover for Space Robotics Research

Tomds Plicido de Castro™2, Jui-Wen Yeh!, Ivan Gilberto Martin Enciso?,
Hugo Allard', Armin Wedler!, Josef Reill and Riccardo Giubilato!

Abstract—This paper introduces the Lunar Rover Mini
(LRM), an open-source, low cost mobile robotic platform
developed for space robotics research. Started in 2015 at
DLR’s Institute of Robotics and Mechatronics, the LRM is
built using off-the-shelf hardware and 3D-printed components,
with custom body and bogie PCBs that can be released and
made openly available for reproduction. It features a modular
software framework and robust perception capabilities that
support autonomous functionality. The rover’s architecture in-
cludes a 6-wheel triple-rocker-bogie suspension system, a stereo
RGB-D vision camera with an integrated IMU, and a 6-DOF
robotic arm with a gripper. Middleware frameworks such as
ROS, Simulink, and RAFCON are used to enable teleoperation,
autonomous navigation, arm manipulation, and frontier-based
exploration. Moreover, the ¢ t rover es 36x26x39
cm and has a total mass of 3.7 kg, while achieving a maximum
speed of 0.13 m/s. The LRM has been successfully field-tested
at different summer schools, demonstrating autonomous 3D
mapping, frontier-based exploration, and robotic arm grasping
while monitoring electric current.

Ongoing work includes the integration of a YOLOv7-based
vision pipeline for object detection in mapped environment,
integration of IMU data into the transformation tree for im-
proved SLAM accuracy, and further mechanical enhancements.
Also, increasing the c lexity of aut yus exploration
strategies through an utility function. The LRM seeks to
bridge the accessibility gap in space robotics by offering a
cost-effective, modular, easy-to-assemble rover that features
capabilities comparable to those of state-of-the-art planetary
rovers.

Index Terms— Mobile space robotics, robotic arm manipula-
tor, space rover, autonomous navigation, frontier-based explo-
ration, object detection

I. INTRODUCTION

The development of mobile robotic platforms revolution-
ized space exploration through their ability to collect data on
the surface of planetary bodies. While the Apollo Program
achieved 11 crewed missions, including 6 successful lunar
landings between 1969 and 1972, carrying out a program
of scientific exploration of the Moon [1], such missions
are resource-intensive, limited to nearby celestial bodies,
and pose significant risks to human life. Furthermore, even
though advancements have been made in rover teleoperations
since Lunokhod 1 and Lunokhod 2 successfully landed on

1 Tomis P. (tomas.placidodecastro@dlr.de),
Jui-Wen Y. (jui-wen.yeh@dlr.de), Ivan
M. (ivan.martinenciso@dlr.de), Hugo
A. (hugo.allard@dlr.de), Armin W.

(Armin.Wedler@dlr.de), Josef R. (Josef.Reill@dlr.de)
and Riccardo G. (riccardo.giubilato@dlr.de) are with the
Institute of Robotics and Mechatronics, German Aerospace Center (DLR),
Oberpfaffenhofen, Germany.

2Tomds P. (tomas.placido.castro@gmail.com) is also
with Delft University of Technology (TU Delft), Delft, Netherlands.

Fig. 1.
arm, and the Lunar Rover Mini 2, on the left.

Picture of the Lunar Rover Mini 1, on the right with the robotic

the Moon in the 70’s [2], communication delays increase on
more distant celestial bodies, rendering teleoperation from
Earth impractical. For instance, Mars exploration missions,
starting with the Mars Pathfinder, which deployed the So-
journer rover on Mars in 1997 [3], are either controlled on
an asynchronous send commands and execute tasks basis,
or rely on their ever-increasing onboard autonomy. Thus, it
is clear that space rovers capable of exploring terrain, con-
ducting experiments, and retrieving samples autonomously,
stand at the core of next-generation deep-space missions.
Recent missions, such as NASA’s Perseverance rover [4],
which landed on Mars in 2021, and ESA’s ExoMars rover
[5], targeted to launch in 2028, both feature substantial
autonomous capabilities. In addition, the MMX rover [6],
[7], developed by DLR together with CNES, scheduled to
launch in 2026, will set down on Phobos as part of JAXA’s
MMX mission [8].

However, these advanced capabilities come with signif-
icant drawbacks for STEM researchers and students, such
as costly hardware, closed-source non-modular software,
and complexity of manufacturing and testing, making them
unsuitable as testing platforms for experimental purposes.
This being the case, building on top of this knowledge, there
has been a growing interest in developing more accessible,
open-source alternatives using off-the-shelf components that
incorporate the same capabilities found in such systems.
Taking inspiration from the ExoMars rover locomotion sys-
tem, and using some of the same software packages as
DLR’s Lightweight Rover Unit (LRU), designed for search
and exploration activities with a high-level of autonomy
[9], the Lunar Rover Mini (LRM), Fig. 1, bridges this gap
by presenting itself as a cost-effective, modular, easy-to-



TABLE I
COMPARISON OF LOowW-CoST COTS BUILT OPEN-SOURCE ROVERS

Rover Dimensions Mass Embedded Capabilities Max. Velocity ~ Autonomy* Price** Software Stack
ASURO 45x122x117 mm 0.165 kg Basic object detection and avoidance - - 50 € C
OSR 610x305x356 mm 12.7 kg LED head information display 1.75 m/s Sh 2160 € Linux, Python
Sawppy 685x320x306 mm - Simple camera support - - 430 € ROS, C, C++
ExoMy 300x390x420 mm 2.5 kg 2D RGB visual imaging 0.23 m/s 3h 360 € ROS, Python
RGB-D vision, autonomous nav. & exploration, ROS, Python, C++,
LRM 360x260x390 mm 3.7 kg 6-DOF robotic arm, object detectpion 0.13 m/s 3h 2000 € Iz’inux

* Autonomy may vary depending on system configuration and use case.
** Prices are approximate and may vary due to market fluctuations.

assemble rover, which shares the same software components
with other DLR robotic systems. Moreover, the LRM benefits
from an open-source middleware framework.

The LRM, with dimensions of 36x26x39 cm, a mass of
3.7 kg, and a passive 6-wheel, triple-rocker-bogie suspension
system, features 3D-printed body parts, a custom body and
bogie PCBs, and a stereo vision RGB-D camera with an
integrated IMU, mounted on a servo-controlled pan-tilt unit.
It also features a 6-DOF robotic arm using off-the-shelf
radio-control servos. Previous contributions to the project
focused on improving the autonomous capabilities of the
rover, by integrating the LRM with an autonomous naviga-
tion algorithm and corresponding data pipeline [10]. Also,
in the development of a visual-inertial SLAM algorithm
that combines visual and inertial measurements, from the
stereo vision camera and the onboard IMU, respectively, to
solve the SLAM problem through performing tightly coupled
sensor fusion [11]. More recently, the accuracy of the 6-
DOF robotic arm was improved through an elasto-kinematic
calibration [12]. Ongoing work concerns the implementation
of autonomous exploration strategies with object detection
to map the environment and locate objects of interest, and a
vision-based pipeline for autonomous grasping.

Moreover, several capabilities of the rover were field-
tested during the PETRAS Summer School 2024 on the
Italian island of Vulcano, north of Sicily, and at the iFOODis
Summer School 2025 at the Kristineberg Center in Gothen-
burg, Sweden'. The PETRAS Summer School 2024 focused
on validating the kinematic performance of the robotic arm,
the behavior of the autonomous navigation stack, and inves-
tigating the thermal control of components. The integration
of RAFCON [13] within the LRM for mission control,
alongside the state machines for autonomous exploration, as
well as monitoring of electric current for both autonomous
grasping and temperature overheat estimation of the robotic
arm, were addressed during the iFOODis Summer School
2025.

The paper is structured as follows. Section II provides
a survey of related robotic platforms. In Section III, the
system design overview is presented, including the system
architecture, onboard electronics and communication, and
actuator behavior for different driving modes. Section IV dis-
cusses the software architecture, including the main software
development pipeline and middleware process management,

!Details for the PETRAS Summer School 2024 and the iFOODis Summer
School 2025 are provided, respectively.

perception capabilities, autonomous exploration, and image
detection. Section V and Section VI describes different rover
operations scenarios, including a high and low-level GUI
and RAFCON, and field test work carried out on the rover,
respectively. At last, Section VII concludes the paper by
presenting a brief summary of the LRM, highlighting the
major contributions to the project alongside future research
directions and work.

II. RELATED WORK

Modular, built with off-the-shelf components, robotic plat-
forms tailored to research and educational purposes are
increasingly being adopted due to their ease of prototyping,
assembly, affordability, and compatibility with widely used
software, when compared to others, built specifically for the
requirements of a particular mission. Hence, it comes with
no surprise that organizations have dedicate resources to their
development.

DLR took the first steps in this direction by launching
ASURO? as early as 2003. This 2-wheel differential drive
small mobile robot, sold over 30,000 units and at just a price
of 50 €, is equipped with six collision probes and an optical
unit, including two light sensors for line tracking and 2 light
barriers for odometry, making it possible to recognize and
avoid obstacles. A more recent example is NASA’s JPL Open
Source Rover® (OSR), launched in 2019. With a total cost of
2160 €, this remote-controlled rover features the flagship 6-
wheel rocker-bogie suspension system used in NASA’s space
rovers. It achieves a top speed of 1.75 m/s and is designed
to accommodate the integration of a LED head display, with
at least 5 hours of autonomy. The OSR is powered by a
Raspberry Pi and runs a software stack based on Linux, ROS,
and Python, and benefits from a modular design framework
that easily allow the introduction of hardware upgrades,
such as a vision camera for collision avoidance, an IMU
for pose estimation and navigation, or an arm manipulator
for sample retrieval. Following this trend, the Sawppy rover
kept the same design approach, mimicking the proportions
and overall design of the Curiosity and Perseverance rovers.
However, it reduces overall costs to 430 € by using a smaller
frame, a mix of 3D-printed and aluminum components, and
hobby servo motors instead of dedicated DC motors. Initially
designed with a proprietary control stack, recent updates have
made it ROS-compatible.

2Details about DLR’s ASURO.
3Details about NASA’s JPL OSR.



TA

BLE II

HARDWARE COMPONENTS USED ON THE LRM AND THEIR OPEN-SOURCE AVAILABILITY [14]

Subsystem

Hardware Component Availability

On-board processing

Intel NUC (V7) [Info] v

Perception Intel RealSense Depth Camera D435i [Info] v

Ground station communication airMAX Bullet AC [Info] v
1/0 and power management DLR custom body PCB X*
Steer and drive control DLR custom bogie PCB X"

Wheel actuators Faulhaber 2619 006 SR [Info] v
Pan-tilt mechanism AGFRC AS0BHL Ultra Torque Programmable Brushless Servo [Info] v
Arm manipulator AGFRC AS8OBHMFT/A35BHL¥/A20CLS® Programmable Brushless Servo [ Info] [*Info] [*Info] v/
Teleoperation controller Logitech F710 Wireless Gamepad [Info] v

¥ Not available yet, but PCB design can be open-sourced for manufacturing.

Later, in November 2020, ESA developed the ExoMy
rover [15]. The ExoMy rover features a 6-wheel triple-
bogie steering system with a top speed of 0.23 m/s. It is
also powered by a Raspberry Pi, but it is further equipped
with a Raspberry Pi Camera. Its fully 3D-printed frame
design brings costs down to 360 €. Like the OSR, it uses
Python within a ROS framework. DLR’s LRM contributes
to this ecosystem of rovers by integrating a more powerful
Intel NUC in place of a Raspberry Pi. It is also equipped
with an Intel RealSense Depth Camera D435i and a 6-
DOF robotic arm with a gripper. These features enable
advanced autonomous navigation and arm manipulation ca-
pabilities out of the box, unlike the others rovers, which
require additional, costly upgrade packages to achieve similar
functionality, while maintaining a relative affordable price
point of 2000 €, under an open-source software development
stack. Also, note that the bulk of this price point could
be substantially reduced if the custom PCBs were mass-
produced.

Table I summarizes the available key features of the
aforementioned rovers.

III. SYSTEM DESIGN
A. System Architecture Overview

The LRM consists of a main body frame that houses
an on-board computer, middleboard PCB, and a wireless
communication antenna. The head section features a pan-tilt
unit actuated by two servos through PWM signals, which
control the stereo vision camera. The locomotion system is
a 6-wheel, 3-bogie suspension which guarantees continuous
ground contact for all six wheels while traversing uneven
terrain. Each bogie integrates two custom bogie PCBs and
two servos for independent wheel steering. Each wheel is
individually driven by an internal DC motor. Thus, in total,
the system includes 12 DC motors for wheel movement.
Mounted on the body is a 6-DOF robotic arm comprising six
actuated joints, along with a gripper driven by an additional
servo as its end-effector. The battery fitting is positioned
underneath the body frame to power all onboard components.
An overview of the main components of the rover is shown
in Figure 2, and the key hardware modules used in the system
are summarized in Table 1L

The entire rover casing is fully 3D-printed using ASA
(Acrylonitrile Styrene Acrylate) material, which contributes
to its lightweight structure and can be easily reproduced at

Stereo Vision
Camera

Middleboard

Fig. 2. Overview of main hardware components of the LRM, highlighting
the structural design and the mechanical and electronic subsystems.

home using standard hobby-style 3D printers. With compact
dimensions of 360x260x390 mm, the LRM is easy to trans-
port and well-suited for field testing. An offline computer
is used as ground station by remotely connecting to the on-
board computer for controlling and monitoring processes.

The wheels, specifically designed for sandy environments
with small obstacles, have a diameter of 6.5 cm with periodic
3 mm protuberances. This design improves traction and grip
during locomotion. The small wheel diameter keeps the rover
compact and easy to transport. However, the reduced wheel
size limits the rover’s ability to traverse larger obstacles,
thereby decreasing ground clearance compared to high-end
planetary rovers. Therefore, future work will be dedicated
to explore alternative wheel concepts to improve terrain
adaptability.

The robotic arm is positioned opposite the pan-tilt unit
to ensure better weight distribution across the rover’s casing
and to make sure the robotic arm’s home position does not
interfere with the stereo vision camera FOV. Since the pan-
tilt unit can rotate, the camera can still be used to monitor
object grasping by the robotic arm in this configuration. The
size of the robotic arm is constrained by the dimensions of
the joint RC servos, leaving minimal clearance for the joints
to rotate.

B. Onboard Electronics and Communication

Figure 3 illustrates the system’s onboard electronics archi-
tecture, showing how the on-board computer connects with
other electronics. The Intel NUC is running an Open-Suse



Leap 15.4 OS. On top of that, USB connections connect
the Intel NUC to both the pan-tilt unit (via USB-C) and the
body PCB (via USB Mini-B). Additionally, the middleboard
communicates with the six bogie PCBs using RS-485 as the
differential serial communication standard, while the data
itself is formatted and handled using the UART protocol.

! Bogie PCB21 Bogie PCB20

Bogie PCBO1

Bogie PCB0O

! Bogie PCB10 Bogie PCB11

Schematic of the onboard electronics and communication between

Fig. 3.
modules.

Moreover, the body PCB manages the communication
between all actuators and the on-board computer. The entire
system is powered by a 14.9 V LiPo battery.

The on-board computer is responsible for processing and
managing all data, including autonomous navigation tasks,
execution of state machines, input controls, joint states for
the robotic arm and communication with the microcontroller
that interfaces with the hardware components. The on-board
computer acquires IMU sensor data from both the Intel
RealSense Depth Camera D435i and the microcontroller
PCB. The communication frequency between the on-board
system and the microcontroller has been increased from
10 Hz to 100 Hz to improve data acquisition and sensor
sampling rates, thereby enhancing overall rover performance.

C. Driving and Steering Mechanism

There are three different driving modes defined by a
combination of zero and non-zero linear velocities in the
rover’s plane, x and y direction, and angular velocity, along
the z-axis, which corresponds to a rotation about the rover’s
vertical axis, Table III. These modes are Ackermann Mode
(car-like turning with sharper angles on the inside), Rotation
Mode (in place rotation), and Crabwalk Mode (sideways
motion with all wheels aligned in the same direction) [10].

TABLE 1II
ROVER DRIVING MODES BASED ON LINEAR AND ANGULAR VELOCITY
INPUTS

ving Mode ~ Linear z  Linear y | Angular z |
Ackermann 0 0 0

Rotation 0 0 # 0
Crabwalk 0 #0 0
Ackermann #0 0 0
Ackermann # 0 0 #0
Crabwalk Z0 Z0 0

* Undefined combinations are not showed as they result in no movement.

The maximum linear velocity achieved by the rover is
0.13 m/s, while the maximum angular velocity in rotation
mode is 12.8 °/s. Nevertheless, it is important to note that,
regardless of the control mode, them being the high-level
GUI, the gamepad, or the autonomous navigation stack, a
conversion always takes place to translate the control inputs
into a universal steering angle and driving velocity command
output to the wheels.

IV. SOFTWARE ARCHITECTURE
A. Software Pipeline and Middleware Process Management

As previously mentioned, the high-level software infras-
tructure of DLR’s LRU is also employed in the LRM. This
allows to reuse software packages from different robotic plat-
forms from the Robotics and Mechatronics (RM) institute of
DLR. The open-source middleware framework comprises the
real-time middleware process manager tool Links-and-Nodes
[16], ROS for all autonomous perception and navigation-
related tasks, Simulink to determine the commands sent to
the rover’s steering, driving and pan-tilt motors from control
inputs, and RAFCON to program and manage the execution
of autonomous tasks through hierarchical state machines
[13], all running at the same time on the on-board computer.
The software packages are deployed through the Links-and-
Nodes Manager.

Besides, a CI/CD pipeline supports the software devel-
opment, by simplifying the build, test, and deployment
processes. This pipeline leverages open-source tools, such
as Conan for package management, Jenkins for automated
builds, and Artifactory for storing and distributing software
dependencies*. Similarly to Table II, Table IV provides an
overview of the software and middleware modules as well
as the CI/CD pipeline used on the system.

B. Perception

Visual odometry (VO), a Visual SLAM pipeline (including
local mapping), and a navigation stack are widely recognized
as the three foundational capabilities for the implementation
of an autonomous exploration system.

1) Visual Odometry: In the LRM case, a feature-based
VO approach is used with the stereo vision camera. It detects
key points using the Good Features to Track (GFTT) algo-
rithm and describes them with BRIEF descriptors to match
features across frames within a Frame-to-Frame strategy. The
VO pipeline runs within the ROS rtabmap_odom’ node.

2) Visual SLAM Pipeline: Furthermore, a visual SLAM
pipeline is used to map the environment, employing the
open-source RTAB-Map library [17] with the C++ GTSAM
library [18] as the low-level optimizer. The RTAB-Map
library is responsible for sensor data integration, loop closure
detection, and overall maintaining a globally consistent map,
while GTSAM performs efficient nonlinear optimization on
the factor graph representing the robot poses and landmark
constraints. This allows to generate a real-time 3D point

4More information about these open-source tools is available at: Conan,
Jenkins, and Artifactory.
5Available: https://wiki.ros.org/rtabmap_odom



TABLE IV
SOFTWARE, MIDDLEWARE AND CI/CD MODULES USED ON THE LRM AND THEIR OPEN-SOURCE AVAILABILITY [14]

Module Specifications | Availability
Visual odometry Frame-to-Frame Strategy from RTAB-Map VO [Info] v
Visual SLAM RTAB-Map [Info] v
Navigation stack DLR custom navigation stack X*
I/O rover actuator controller Simulink|[Info] v
Process manager Links-and-Nodes|Info] v
Perception and navigation tasks ROS [Info] 4
Manage and execution of autonomous tasks RAFCON [Info] v
Package management Conan [Info] v
Software build automation Jenkins [Info] v
Store and distribute software artifacts Artifactory [Info] v

™ Not open-sourced but can be replaced by another navigation package compatible with ROS.

cloud map of the environment, and respective occupancy
grid, which is shared with the navigation stack. The SLAM
pipeline runs within the ROS rtabmap_slam® node.

Fig. 4. Example of the generated 3D point cloud, on the top left, and
respective 3D OctoMap, on the top right, occupancy grid, on the bottom
left, and local mapping with obstacle detection, on the bottom right.

3) Navigation Stack: The navigation stack developed in-
house by DLR includes a path planning algorithm with
obstacle avoidance. More specifically, the path planning
algorithm of the local planner uses the classic A* search
method to compute a short, collision-free path in a local
costmap derived from elevation maps and computed by a
local mapping node. A motion client, part of the same
navigation stack, is responsible for publishing the velocity
commands and deciding which driving mode to use accord-
ingly.

Figure 4 illustrates the result of the perception capabilities
visualized in RViz. With respect to the occupancy grid, black
grid cells (M) represent obstacles, while grey (/) and green
(M) represent free and unknown space, respectively. The
gradient of the local mapping depicts sloped areas, which
can be classified as obstacles.

6 Available: https://wiki.ros.org/rtabmap_slam

C. Autonomous Exploration

Autonomous frontier-based exploration strategies have
been implemented in the LRM within a RAFCON-based
state machine framework to generate 3D maps of unknown
environments, using a modular and scalable approach that en-
ables future expandability. The core of using a frontier-based
approach for autonomous exploration relies on knowing how
to use the stereo vision camera image, Fig 5a, to classify
candidate frontiers from the generated 3D point cloud, Fig
5b, and respective 2D occupancy grid Fig 5c, from the visual
SLAM pipeline. Figure 4 depicts such occupancy grid on
the bottom left. Candidate frontiers, Fig 5d, are defined as
free grid cells adjacent to unknown ones. Candidate frontiers
are then segmented into clusters, Fig Se, constrained by
minimum and maximum sizes. For instance, a frontier cluster
consisting of only a 5x5 cm grid cell may be considered
too small to explore. Next, the centroid coordinates of each
cluster are calculated, Fig 5f, along with the corresponding
edges, Fig 5g.

Given the shape of the FOV of the stereo vision camera,
the 2D occupancy grid outer boundary will be convex from
the point of view of the camera, placing the centroid between
the frontier and the rover, instead of behind the frontier.
There is also a position and orientation watcher in place,
responsible to stop the forward movement of the rover
towards the frontier when a certain threshold distance is
reached. Additionally, two criteria are evaluated to classify
each centroid as a valid one to explore. First, if a small
cluster of unknown cells is completely surrounded by free
cells, it is reclassified as free space and thus not marked for
exploration. Second, if there is no clear free path between
the centroid and the rover, the centroid is excluded from
exploration.

Based on the selected exploration strategy, a path through
waypoints is then generated to guide the rover toward one
or more of these centroids, Fig 5h, fully autonomously.
The number of waypoints to explore determines if this path
generation is done by brute force or by using a nearest-
neighbor heuristic for faster planning. The state machines
responsible for navigation and monitoring direct the rover to
move toward the selected centroids relying on the capabilities
of the local mapping and navigation stack mentioned in



Subsection IV-B. Once the rover reaches a position and ori-
entation within defined thresholds, it stops its linear motion
and performs a rotation within the range of edges of the
frontier for maximum frontier coverage, fully autonomously.
This process can be repeated until a certain area is mapped
or there are no more frontiers to explore.

Stereo Vision
Camera Imag
R\ (

Detected
Frontiers

3D Point 2D Occupancy
Cloud Grid

Strategy-Based Frontier Frontier Segmented
Waypoints Edges Centroids Frontiers
Fig. 5. Breadth-First Search exploration strategy, from (d) through (h),

including the stereo vision camera images (a), and generated 3D point cloud
(b), used to build the 2D occupancy grid (c).

So far, two different high-level exploration strategies have
been implemented: Breadth-First Search and Greedy Frontier
Selection. In the first one, the rover explores all waypoints of
one node of the occupancy grid, before looking at the newly
updated occupancy grid for the next node of waypoints, while
the second one moves the rover to one frontier selected
from all detected frontiers based on certain criteria, such
as the frontier’s size or distance from the rover. Figure
5 showcases the entire loop of the previously explained
autonomous exploration pipeline algorithm for the Breadth-
First Search strategy, as an example.

In addition, a probabilistic OctoMap, a 3D map representa-
tion based on an octree data structure which divides 3D space
into voxels (smaller cubes), each storing a probability of oc-
cupancy [19], Figure 4, has also been implemented ahead of
the current work to expand the exploration strategies towards
a Utility-Based Goal Selection using an utility function that
balances traveling cost and expected information gain.

D. Object Detection

To further advance the autonomous exploration capabili-
ties of the rover, a real-time YOLOV7 object detector [20]
has been trained on synthetic data for the detection of white
cubes. The trained YOLOv7 model was then deployed on
the rover’s Intel NUC using the OpenVINO 7 (Open Visual
Inference and Neural Network Optimization) toolkit, which
first takes the trained model from a TensorFlow framework,
and converted it to an intermediate format for accelerated
hardware-specific inference by leveraging the NUC’s CPU
and integrated GPU, allowing for real-time on-board object
detection at a given rate, during exploration. Figure 6 depicts
an example of the trained YOLOvV7 model output. Ongoing

7 Available: https://docs.openvino.ai/2023.3/
notebooks/226-yolov7-optimization-with-output.html

work focuses on integrating this object detector so that the
rover is capable of determining the coordinates of such
objects in the global coordinate frame, while mapping the
3D environment. This capability will be integrated with the
ongoing work on the arm manipulator, Subsection VI-B, to
enable fully autonomous exploration and sample retrieval.

Fig. 6.  Trained YOLOV7 object detector output, running on the rover’s
on-board computer, in the PEL laboratory, on colored cubes near rocks.

Using RAFCON state machines, the rover will perform
3D environmental mapping, accurately identify objects of
interest along with their coordinates in the global map frame,
and relay this information to the arm manipulator, which will
then autonomously execute object grasping using a visual
pipeline based on a low-cost camera mounted on the end-
effector.

V. ROVER OPERATIONS

The LRM features a low-level GUI and a high-level GUI.
The high-level GUI is deployed through the Links-and-Nodes
manager, just like all other rover processes, while the low-
level GUI runs as a standalone application.

A. High and Low-Level GUI

The high-level GUI allows to steer and drive the LRM,
rotate the pan-tilt unit, move the robotic arm to pre-defined
positions, or specify the target position for the end-effector.
Also, it enables switching between different driving modes,
including the high-level GUI, a gamepad controller, and
the autonomous navigation stack. The target position goals
from the autonomous navigation can come either from a
2D position goal from RViz, or directly by setting a local
goal from RAFCON state machines. Likewise, the low-level
GUI is used for calibrating the wheels and tuning the PID
control values for both steering and driving, including both
the inner and outer control loops. It also includes live data
from the IMU, electric current of the whole robotic arm and
temperature of the body PCB. Finally, support for single-joint
control and functionalities for saving, deleting, and managing
predefined positions are also implemented.

B. RAFCON

What is more, RAFCON integrates the capabilities of the
high-level GUI into an autonomous task framework. For
example, while the high-level GUI can manually rotate the
pan-tilt unit, a dedicated state machine was created for the
same capability, taking a specific rotation value as input. This
state machine can then be embedded in a hierarchical state



machine to perform automatic rotations as part of a sequence
of autonomous tasks. In this way, the same functionalities
offered by the high-level GUI are now within an autonomous
execution framework. The designed state machines can also
switch between driving modes with different linear and
rotation velocities.

Figure 7 depicts the on-board computer interface during
normal rover operations running the Links-and-Nodes man-
ager, RViz for the 3D environment map and rover pose, and
RAFCON for managing the execution of state machines.

Fig. 7. On-board computer interface during typical rover operation,
showing the Links-and-Nodes manager, on the top left, RAFCON for
autonomous task execution, on the bottom left, and RViz for 3D environment
mapping and navigation, on the right.

VI. FIELD TEST WORK
A. Breadth-First Search Autonomous Exploration

The implementation of the RAFCON state machines nec-
essary for Breadth-First Search autonomous exploration was
tested at the iFOODis Summer School 2025 to map a
sand pit, Figure 8. The rover started by performing a 360-
degree rotation so it could detect the most frontiers from
the beginning. A total of 52 state machines were tested,
comprising 13 hierarchical states, 12 for computations, 9 for
triggering actions, 6 for reading data, 7 for action monitoring,
and 5 responsible for interfacing with other software on the
rover. The resulting map covered an area of approximately
23 m?2,

The results validated both the implemented state machines
and the accuracy of the rover’s perception capabilities to
generate a detailed 3D map of the environment. Notably,
the generated map captures the presence of the other LRM
positioned at the sand pit. It is important to note that the
maximum range of the stereo vision camera was purposefully
limited to 1 meter in the VO and SLAM pipeline, requiring
the rover to explore more frontiers to map the same area. This
was introduced to bolster the validation of the implemented
exploration strategy.

Further, this experiment allow to conclude about future
improvements on the implemented exploration strategy. First,
more efficient usage of the pan-tilt mechanism to replace fre-
quent body commands. In addition, implementing the rover’s
URDF in RViz would improve visualization by being able to
better judge the rover’s dimensions in the 3D environment,
during mapping.

Fig. 8. 3D map of a sand pit of approximately 23 m?, generated
through Breadth-First Search autonomous exploration, validating the correct
implementation of RAFCON state machines, perception capabilities, and
autonomous task execution.

B. Arm Manipulator

As previously mentioned, the robotic arm is already fully
implemented and has been extensively tested during both
summer schools. The 6-DOF robotic arm of the LRM is
equipped with consumer-grade servo motors that lack po-
sition feedback, which limits the arm’s control capabilities
and prevents the system from detecting whether an object
has been successfully grasped by the gripper.

Experimental research was conducted to address these
limitations. The LRM middleboard is equipped with an
electrical current sensor, which was used to control the
grasping process and detect the presence of grasped objects.
The underlying hypothesis was that when all nine servos are
in a static position, the electric current draw is constant, al-
lowing the separation of current specific to the gripper servo
during object grasping. Results demonstrated that grasping
operations could be detected using a single current sensor
monitoring all nine servos simultaneously, with grasping
operations increasing current by 0.7 A, above the measured
static arm position. This finding enabled successful automatic
grasping of rocks weighing up to 80 grams without requiring
additional feedback from the servos.

Future work will focus on developing a complete au-
tonomous grasping pipeline, using a low-cost camera
mounted on the end-effector to provide visual feedback for
a YOLO-based object detector.

C. Mechanical Improvement

Although the rover’s mechanical design is already robust,
several issues were identified during field testing concerning
the gripper. The current gripper design uses a servo motor to
control the gear rack system to close the gripper. However,
the current design has two main issues: the rack is not long
enough, and the rack was not properly restrained, which leads
to instability when the gripper is moving. Temporary fixes
included using straps to restrain the rack and adding a 3D-
printed extension.

Future improvements will maintain the current gripper
concept but incorporate updated components to simplify
manufacturing and testing. A modular camera mount for the
robotic arm is also planned to be designed. Moreover, some
components showed fragility under harsh conditions during
the field testing and shall be redesigned.



VII. CONCLUSION

This paper presented the Lunar Rover Mini, a project
created in 2015 by DLR to develop and open-source, low-
cost robotic platform for research and educational purposes,
which has since involved contributions from over 20 stu-
dents. The rover is able to autonomously navigate the en-
vironment while avoiding obstacles thanks to its stereo vi-
sion camera. Furthermore, its perception capabilities allowed
the implementation of autonomous exploration strategies,
validated during the iFOODis Summer School 2025. The
integration of the already trained YOLOV7 object detector
will follow to determine the coordinates of objects of interest
in the global 3D map frame. The software development
of rover is done through an internal CI/CD pipeline, and
all real-time middleware process tools are open-source. The
robotic arm, has fully functional kinematics (both forward
and inverse). Autonomous grasping with the aid of electric
current sensors has been tested and shows promising results
for further tuning, as well as temperature prediction of the
robotic arm servo motors using the same current sensor for
safe operation.

Future work includes the deployement of the trained
YOLOV7 object detector within the RAFCON autonomous
exploration pipeline, and the implementation of an au-
tonomous vision-based grasping pipeline to enable end-to-
end mission cycle autonomy from exploration to sample
retrieval. All things considered, the LRM poses as a versatile
and accessible robotic platform that incorporates advanced
functionalities of high-end rovers, while being build primar-
ily on off-the-shelf hardware components.
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