This article has been accepted for publication in IEEE Geoscience and Remote Sensing Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LGRS.2026.3652792

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Incidence Angle Optimization for
Formation-Flying Across-Track
SAR Interferometry

Riccardo Longari, Francesca Scala, Gabriella Gaias, Gerhard Krieger, Fellow, IEEE, and
Michelangelo Villano, Senior Member, IEEE

Abstract—Single-pass across-track synthetic aperture radar
(SAR) interferometry using formation flying is a well-established
technique for the generation of high-quality digital elevation
models (DEMs), as it avoids temporal decorrelation and allows for
long baselines, thus leading to high height accuracy. A successful
implementation, employed in the TanDEM-X mission, foresees the
use of a Helix formation, which entails a reduced control effort to
be maintained in the presence of external perturbations. However,
an intrinsic limitation of the Helix concept lies in the inherently
time-varying baseline and height of ambiguity (HoA), which
results in non-homogeneous DEM performance. This letter
proposes an analytical method to minimize the HoA variability at
the global level by optimizing the range of incidence angles used at
each latitude. The approach is primarily aimed at systems, such as
TanDEM-X, for which the area to be imaged becomes significantly
smaller than the ground access range as the latitude increases. A
two-step approach is presented: An initial approximate solution is
derived in closed form and subsequently refined. The method is
validated against numerical results and compared with simpler
strategies involving fixed incidence angles, showing reduced
variation of the HoA for different formation parameters. The
procedure presented in this work could enable a better operation
of current interferometric SAR systems and foster an improved
design of future ones.

Keywords — Across-track interferometry, digital elevation model
(DEM), formation flying, Helix formation, incidence angle,
synthetic aperture radar (SAR), TanDEM-X.

[. INTRODUCTION

SINGLE-PASS across-track synthetic aperture radar (SAR)
interferometry employing formation flying is a powerful
technique for the generation of high-quality digital elevation
models (DEMs) [1]. Systems employing long across-track
baselines can achieve unparalleled height accuracy: As an
example, the TanDEM-X mission by the German Aerospace
Center (DLR) has produced the most accurate high-resolution
global DEM to date, achieving 2-m relative height accuracy for
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a posting of 12 m, leveraging baselines ranging from several
hundred to over a thousand meters.

A successful implementation, employed by TanDEM-X and
later on by the Chinese L-band SAR LuTan-1 mission, foresees
the use of a Helix configuration, which combines the natural
motion of the satellites with intrinsic passive safety, ensuring a
more practical and economical management of the formation.

Despite this advantage, the Helix concept entails an
inherently time-varying baseline, which leads to a
corresponding variation of the height of ambiguity (HoA), the
height over which the interferometric phase varies by 2=,
resulting in non-uniform height accuracy over the imaged area.
This becomes particularly critical for missions requiring global
coverage, where it is desired to maintain uniform performance
over a wide range of latitudes. Notably, the SAR acquisitions
requirements change with latitude: Due to Earth’s curvature, in
fact, the width of the required ground coverage decreases
moving towards the poles, as the ground access ranges of
consecutive orbits increasingly overlap, reducing the area that
has to be imaged, as sketched in Fig. 1.

Some SAR systems are particularly well-suited to exploit this
effect, as they map in subsequent acquisitions multiple
narrower swaths to cover a ground access range of considerable
width. In TanDEM-X, for instance, a ground access range of
240 km is mapped during different orbits with swaths of about
30 km for the stripmap acquisition mode by selectively
activating proper elevation beams, which point to different parts
of the ground access range. For this kind of system, the problem
of ensuring a uniform HoA can be partially addressed by a
thoughtful choice of the non-overlapping portion of the ground
access range at each latitude. This, in turn, can be equivalently
formulated as the optimal selection of the corresponding range
of incidence angles.

This work derives an analytical expression for the range of
incidence angles that minimizes the variability of the HoA as a
function of the latitude in the case of Helix formations.
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For convenience in describing the relative motion, we will

500 A initially make use of the variable u instead of ¢. Additionally,

we will assume a spherical shape of the Earth, without

450 distinguishing between geocentric and geodetic latitude.
N Moreover, the Earth rotation is not considered in this work.

As previously stated, we limit ourselves to considering Helix

400 N orbits, which are bounded orbits obtained after having imposed

Fig. 1. Progressive overlapping of a 240 km-wide access range over ten
consecutive orbits, displayed in alternating colors for latitude ranging from
40°N to 60°N, starting from Greenwich meridian.

II. HELIX FORMATION FRAMEWORK

The relative dynamics is formulated employing the relative
eccentricity and inclination vectors Ae and Ai [2]:

_ [€cCOSWe — eqCoSWq] cos@
Ae = [ecsinwc - edsinwd] =oe [sin(p 1)
Ai=[ ic— g ]zd.[cosﬁ
Q — Qy)sini sind

where de and §i and ¢ and U are the magnitudes and phases of
Ae and Ai, respectively, and the subscripts ¢ and d indicate the
chief and the deputy satellite, respectively. Additionally, e
denotes the orbit’s eccentricity, w the argument of the perigee,
i the inclination angle, and (1 the right ascension of the
ascending node.

If the assumptions of the Hill-Clohessy-Wiltshire (HCW)
equations hold, bounded, periodic orbits centered on the chief
can be expressed using the amplitude-phase formulation of the
relative eccentricity and inclination vectors:

B,(u) = —a de cos(u — ¢)
Ba:(w) = 2 a e cos(u — @) 2)
By (w) = a 8i sin(u —9)

where B,, B,;, and By, are the radial, along-track, and across-
track components of the baseline, respectively, a denotes the
semi-major axis of the chief’s orbit, and u stands for the mean
argument of latitude, defined as the sum of the argument of the
perigee and the mean anomaly. Under the assumption of pure
Keplerian motion, u is the only term that varies with time.

In the following, we assume that the chief satellite flies in a
circular and polar orbit. The circularity, already required by the
HCW equations, implies that the mean and true arguments of
latitude are identical; the polar hypothesis ensures that all
latitudes are covered. These two assumptions allow us to
consider u as equivalent to the geocentric latitude ¢ over which
the satellites pass. In typical SAR missions, sun-synchronous
orbits are often employed by imposing an inclination between
96° to 99° depending on the altitude, hence slightly deviating
from a perfectly polar orbit. Indeed, the polar assumption,
which we retain to display the results without neglecting any
latitude value, could be easily relaxed by considering that u and
¢ are related by:

the condition ¥ = ¢ + km. This allows for maintaining a safe
distance in the B, — B, plane, which is crucial considering the
higher uncertainties the along-track component is subject to. In
fact, this configuration ensures that the vertical coordinate is
maximized when the across-track one reaches zero and vice
versa [2]. Moreover, the phases of the relative eccentricity and
inclination vectors (¢ and ) are often set equal to m/2 (or
3m/2), like for TanDEM-X. This choice has the merit of
providing a more robust stability to the perturbing effect of
Earth's oblateness (J,) because it eliminates the secular
evolution of the Ai vector, leading to a less frequent request of
a control action to maintain the safety of the formation as well
as to a slower deviation from the nominal configuration [2]. We
will adopt this assumption in the case studies presented in
Section V.

III. PARAMETRIC EXPRESSION OF THE HEIGHT OF AMBIGUITY

We consider the height of ambiguity as the figure of merit to
optimize. Specifically, we focus on the bistatic case, where the
HoA is defined as:

Ar(6;)sind;
HoA B O0) 4)
where A indicates the wavelength, 7, the slant range, and B, the
orthogonal baseline [1]. Please note that a height variation
implies a proportional HoA wvariation, which justifies a
spherical Earth assumption for low Earth orbit satellites. To
understand how the angle of incidence 6; influences the HoA,
we need to explicit the relations between all quantities in (4).

Referring to the geometry on the left panel of Fig. 2, the
position of a generic point on the ground can be defined by

B, R o R
R A D: (XTp, Rp) A
B
XT
h
Rp sin c
6 v
Re ) By
< |~
6,
XT), cos 6,
(6]

Fig 2. Sketch of the geometry in the radial-across-track plane. Left: angular and
ground range coordinates definition. Right: relative geometry of chief and
deputy satellites.
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means of either the incidence angle 8; or the look angle 6,,
whose relation is given by the law of sines [3]:

. Rg+h .
sing; = ’;—smel , 5
E

where Ry is the radius of the Earth, or through the angle y
measured from the center of the Earth, as:

0,=0;—-v. (6)

The ground range coordinate of a generic point P is indicated
as sp and can be related to the corresponding look angle ;p

using (5) and (6):

in (32
tanf;p = sinye = - (RE) @)
Ry cosyp R, cos (-

The width of the total ground width to be imaged for a given
latitude W (¢) reads:

%(¢) =sp—5a=Wyo cosg, (®)

where Wy, is the ground access range at the equator.

The expression of 7y as a function of the look angle can be
computed by applying the law of cosines to the triangle OCP,
from which the following expression is obtained:

10(8)) = (Rg + h)cos8;, — \/(Rg + h)2cos26, — (h2 + 2Rzh)  (9)

with 6; (8;) subject to the condition:

0, €[0.5] = sine, € [o, %} . (10)

The only term in (4) that has not been explicitly expressed as
a function of the look angle remains the orthogonal baseline B,
which is also the only one that depends on the relative position
of the two satellites. It is important to remark that in “across-
track” interferometry, B, is not only influenced by the B,
component of the baseline, but also by the B, component. With
reference to the acquisition geometry depicted in the right panel
of Fig. 2, the orthogonal baseline can be obtained as:

B, (6, u) = |B(w) - sin(a — 6,)| =
= |-B,(w)sinb; + B,;(u)cosh;| =
= a|Secos(u — @)sind, + (—1)*Sisin(u — @)cosh|,

(11)

where the last form has been obtained by imposing the
condition: ¥ = ¢ + km. The look angle is defined as positive
for a right-looking radar.

For given orbital parameters of the formation (a,
ée, 6i, ,9), the HoA therefore becomes a function of the two
variables u and 8,(s) given by (12).

HoA(8;(s),u) =
/1[(R5+h)cosel(s)—J(RE+h)2 cos? Gl(s)—(h2+2REh)J

Rg+h
Rg
a|8ecos(u—¢)sind;(s)+(~1)kSisin(u—¢p)coso(s)|

sin6,(s)

(12)

IV. OPTIMIZATION PROBLEM

The purpose of the optimization is to minimize the variability
of the HoA with respect to a given reference value, HoA™.
Denoting with s,(u) and sp(u) the boundaries of the total
ground width to be imaged as functions of the mean argument
of latitude, we aim at defining them to minimize the deviation
between the HoA and HoA™ according to a selected metric. In
the following, we will omit making explicit the dependency on
u to facilitate readability. Thanks to (8), s is known from s,
and the width of the swath, which in turn depends only on the
latitude. Formally, we seek the function s, that minimizes the
functional J in the following equation:

argmin ] : = [7*""7(HoA(s,u) ~ HoA")?ds.  (13)
Sa

To find the minimum of J, we evaluate it in correspondence
with its stationary points, which satisfy:
2 5aWs oA (s, u) — HoA™)? ds = 0.

05s47Sa

(14

The previous equation could be solved with Leibniz's
integration rule, provided that the integrand is continuous over
the interval [s4, s, + W,]. However, this is not guaranteed for
every latitude, since beyond a certain u, there is always a value
of the look angle, which we will refer to as 6;", for which B,
goes to zero, and the HoA reaches an asymptote. This critical
angle can be computed by imposing B, =01in (11):

tan(u — p) = (~1)*** Etan(8,). (15)

If we fix ¢ =m/2 and 9 = ¢ +m (as is the case for
TanDEM-X), we ensure that the function in the integral is
continuous for u € [0, w/2) because the left and right-hand
terms in (15) would always have opposite signs, and B, could
nullify only when u = /2 and 8; = 0° (i.e., at the poles with
the radar nadir-pointing). Therefore, (14) can be easily solved
for u belonging to the first quadrant.

Please notice that the HoA as given by (12) has a period of ©
with respect to u; thus, to guarantee global coverage, it is
enough to consider half of the points of the orbit. More
precisely, we can focus on a single hemisphere, which will be
mapped, for example, during the ascending part of the orbit; the
opposite hemisphere will then be mapped during the
descending part, and the HoA will be the same for each pair
{ii, T + 4}. Thanks to the polar orbit hypothesis, a value of @i
belonging to a given quadrant uniquely defines a pair of
hemisphere-orbit’s half: For example, the points where u €
(0,/2) are in the northern hemisphere, imaged in the
ascending half of the orbit. This is crucial because it ensures the
continuity of the integrand for global coverage. Table I lists the
intervals of u where the integrand is continuous depending on
the parity of k and the looking direction, for ¢ = /2. For a
given combination of the look direction and the parity of £,
Table I therefore allows determining whether the optimal
solution can be found in the Northern or Southern hemisphere
using an ascending or descending orbit.
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TABLEI underestimates the actual value of the slant range, leading to an
LACEUIS[TIONS SSRGSV PR <pN= n}{ PAAS (p; ki overestimation of the angle 8;. Since the introduced error is
" 00 k Continuity interval ort out relatively small, a first-order correction is sufficient to correct

irection hemisphere  hemisphere . . . . . .
. odd  u€[07/2) +kn  ascending  descending it. Specifically, this consists of performing a single step of the

1 even u€ (3m/2,m]+kr  descending  ascending Newton method:
odd wu€ (3n/2,m]+km  descending ascending x 7 HoA*—HoA(6})
left even u€|[0,m/2)+kn ascending descending 61 ~ 91 + 6H0A|~ ' (21)
a6 1 6 l

Applying Leibniz’s rule, the solution to (14) is given by one
of the following two expressions:

HoA(sy) = HoA(s4 + W) ; (16)
HoA(s4)+HoA(s4+Wy) *
% = HoA*. (17)

Notably, (16) does not admit a solution in any of the cases
reported in Table I. This is because the function HoA(s) is
monotonic with respect to s except when the look angle reaches
07", which we explicitly avoid. Substituting the expression of
the HoA from (12) into (17), we obtain a non-differential scalar
problem, which cannot be solved in closed form.

Nevertheless, an analytical solution can still be found by
introducing the following two approximations: 1) the slant
range is expressed according to the flat-Earth geometry, and 2)
the HoA is linear with respect to s:

[
{ To cosé,;
HOA(SA) + HOA(SA + Wg)

2

(18)

~ _9
~HOA(SA+ 2)

The approximation 2) will be substituted by a more accurate,
second-order expression in the following (see egs. (22)-(24)).
The idea is to determine an approximation 8, of the look angle
6;(s*), solution of HoA(8;) = HoA*, and assume a swath
perfectly centered around the corresponding point on the
ground: §. Inserting (4) in (17) and considering the
approximations of (18), we obtain the four-degree polynomial

1 Rg+h h
-2 (&'tan(u - @) + HoA* Ry disin(u — (0)) S
Se
+2(-D" (6itan(u - ) (] 9)
i A Reth  h oo
D HoA* Ry &isin(u— (p)) t+1=0
where
t = tan(6,/2), (20)

and j is even or odd, if the argument of the absolute value in
(11) is positive or negative, respectively. Among the (at most)
four real roots of eq. (19), the relevant one is the positive one
that lies within incidence angle range corresponding to the
maximum (equatorial) access range.

Although reasonable, the approximations in (18) introduce
an error that shifts the resulting swath away from the nadir
compared to the exact one. To compensate for it, we propose
the following corrections to be applied ex-post, i.e., once (19)
has been solved. First, we consider that the first assumption

The linear hypothesis, on the other hand, assumes that the
point § to be kept at the center of the swath to respect (17)
coincides with s*. This introduces an error that depends on how
much the function HoA(s) differs from a straight line. To
compute the shift between § and s*, it is therefore necessary to
consider the non-linear behavior of HoA(s), which we account
for by substituting its Taylor expansion truncated to the second
order into (17). The required derivatives of the HoA with
respect to s can be computed with the chain rule:

; _ OHoA _ 0HoAd6
HoA' = as 86, ds’ (22)
HoA” — Q?HoA _ 0%HoA (d_e,)z OHoA d26, (23)
T asz T 967 \ds 26, ds?’

where the expressions of all factors are obtainable leveraging
(7) and (12). The shift between the two points therefore reads:

. HoA' (s%) (HoA’(s*))Z _w 24)

§=8§—5"=— .
HoA” (s*) HoA” (s*) 4

V. TANDEM-X EXAMPLES

Some examples of the proposed method's application are
presented below, using the TanDEM-X mission as a reference.
The two distinct scenarios reported in Table II are considered:
In the first one, the orbital parameters are taken from [4]; in the
second one, we set the parameters de = §i as used by
TanDEM-X to map high latitudes, as described in [5].

Fig. 3 illustrates how the optimization process influences the
HoA across the swath for various latitude values, without
limitations on the access range, in scenario 1. It is clear that the
proposed solution progressively introduces a shift towards the
nadir, keeping the HoA centered around the desired value as the
latitude increases.

In practice, the radar would select an increasingly smaller
part of the ground access range initially covered at the equator
when approaching the poles, i.e., it is here assumed that the
optimal swath must never exceed the limits imposed at the
equator (this can be justified, e.g., by radar observation
requirements). The result of the optimization with and without
the equatorial boundaries is reported in Fig. 3 (a), with both the
numerical and the analytical, approximated solution. The

TABLE II
TANDEM-X PARAMETERS IN TWO DISTINCT MISSION PHASES
ade adi 10 9 HoA™ Wyo
Scenario 1 300m 600m
Scenario2  500m 500m /2 3n/2 30m  240km
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maximum error between the two is 0.37 km, or 0.15% of the
access range for the quadratic approximation. Remarkably, the
correction factors play a crucial role, as the solution of (19)
would result in an error of 20.27 km, equal to 8.45% of the
access interval for the linear approximation.

Focusing on scenario 1, the shape in Fig. 3 (b) shows that the
optimal look angle increases to a maximum and then decreases
with the latitude. This behavior is mainly due to the orthogonal
baseline, which increases in the first part of the orbit, reaching
its maximum when

tanu = /2 +%tan 0,, (25)
and then decrease, as the satellites move towards the pole. For
@ = m/2 or 3m/2, the influence of e and i is well separable:
They respectively determine the HoA at the poles (u = m/2)
and at the equator (u = 0):

Ar(6) Rg+h

HOA'u:n’/Z = ase Ry (26)
Ar(6)) Rg+h
HoAlyeo = Z(&l)%tan(@). (27)

This is a direct consequence of having chosen ¢ = /2, for
which the separation between satellites is exclusively in the
across-track direction at the equator and in the vertical direction
at the poles, as in TanDEM-X. Remarkably, these last two
equations explain the optimal swath in Fig. 3 (b) to move
towards the nadir as the latitude increases. In fact, to keep a
constant HoA, we must have:

T(0)lu=r/2 _ T(6)tan(6))|u=o
se si ’ (28)
from which it follows that 6;|,=r/,, < 0;|y=¢ (i.e., the ideal

swath is closer to the nadir at the poles than at the equator)
when:

r(gl)lu;n/z

5i
T <1 e tan(f) < 5o

(29)

Since the nominal parameters reported in Table II are such
that §i = 24e, the last equation becomes:

0, < arctan(2) = 63.4°, (30)

which is likely to be verified in realistic scenarios.

with ideal pointing

60 with admissible pointing
---- HoA*
g
< 40 max HoA N
é é 20 ideal \\
& ° -—- analytical \‘
Achi HoA 3 y
W e I PP e \
= access range
02 30° 60° 90 0° 30°N 60°N 90°N
Latitude Latitude
(a) (b)

Fig 3. Optimal solution for scenario 1 in Table II. (a) HoA achieved at different
latitudes; the ideal HoA (blue) is centered around the target value of 30m. (b)
Ideal and accessible swaths; the numerical and analytical solution are
represented in blue and red, respectively.

TABLE III
RMSE FOR SUB-OPTIMAL VS. OPTIMAL STRATEGIES

Strategy RMSE with respect to HoA* = 30 m
Scenario 1 Scenario 2

Near range 612m  204%  7.77m  259%
acquisition

Center of the ground 7 5 23505 669m  223%
access range

Optimal incidence
563m 18.7% 5.89m 19.6%

angle

To evaluate the benefit of the proposed strategy, we compare
it with two other straightforward cases. In the first case, the
swath is always starting at the nearest point within the access
range; in the second case, the swath is taken at the center of the
access range. In Table III is reported the root mean square error
(RMSE) with respect to the target value HoA* = 30 m for all
three strategies in the two scenarios listed in Table II.

Notably, the choice of the formation geometry, and
specifically of the nominal values of §e and &i profoundly
influences the optimal solution. This explains why each of the
two straightforward strategies outperforms the other in different
scenarios. The poorest performance for these strategies occurs
in scenario 2, where the optimal swath coincides with the
farthest part of the access range from the radar. Regarding the
worst-performing near-range acquisition, the optimized
solution achieves an absolute improvement of 1.88 m,
corresponding to a relative error reduction of approximately
24%. As for the effects related to the Earth rotation, it has been
verified through numerical simulations that, for the case studies
considered, the coupling effect between along-track and across-
track components is negligible (HoA deviation < 2 %).

VI. CONCLUSIONS

This letter presented an analytical method for selecting the
incidence angle in single-pass across-track SAR interferometry
using a Helix formation. The proposed solution is the result of
a two-step process, in which an initial estimate, obtained by
solving a fourth-degree polynomial equation, is refined with the
introduction of suitable correction factors. Examples based on
TanDEM-X orbit parameters show that the results match almost
perfectly those obtained numerically. Ultimately, the proposed
strategy offers an improvement in the homogeneity of the
height of ambiguity compared to fixed-angle approaches.
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