i DLR

KONZEPTIONIERUNG, PORTIERUNG UND
EVALUIERUNG EINES ECHTZEIT-ETHERCAT-

FELDBUS-MAINDEVICES

auf einem Mikrocontroller ohne Betriebssystem

Masterarbeit

zur Erlangung des akademischen Grades
Master of Engineering

im Studiengang
Informations- und Kommunikationstechnik
am
Fachbereich 1: Energie und Information

an der

Hochschule fur Technik und Wirtschaft Berlin (HTW Berlin)

erstellt von
Marcel Beausencourt

erstellt am

Deutschen Zentrum fir Luft- und Raumfahrt e.V. (DLR)
Institut

Robotik und Mechatronik Zentrum (RMCQC)
Abteilung
Autonomie und Fernprogrammierung (AUF)

Erstgutachter
Prof. Dr. Thomas Scheffler (HTW Berlin)

Zweitgutachter

Robert Burger (DLR)

Oberpfaffenhofen, den 12. April 2025

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Dokument-Identifikation iii

Deutsches Zentrum fiir Luft- und Raumfahrt e.V.
Robotik und Mechatronik Zentrum

Prof. Dr. Alin Albu-Schaffer, Dr.-Ing. Johann Bals, Prof. Dr. rer. nat. Heinz-Wilhelm Hubers
Minchener StraBe 20

82234 WeBling

Tel: +49 8153 28-3689

Fax: +49 8153 28-1134

Web: https://www.dIr.de/rm

Marcel Beausencourt
Tel: +49 8153 28-3305
Mail: marcel.beausencourt@dlr.de

Dokument-ldentifikation:

Titel Konzeptionierung, Portierung und
Evaluierung eines
Echtzeit-EtherCAT-Feldbus-MainDevices

Thema Masterarbeit
Autor(en) Marcel Beausencourt
Dateiname masters.tex

Zuletzt gespeichertvon . beau_mr

Zuletzt gespeichert am . . 12. April 2025

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Dokument-Identifikation

Abstract

Diese Masterarbeit erldutert alle Schritte, die n6tig sind, um die beiden Bibliotheken
libethercat und libosal vom Betrieb in einem Betriebssystem auf einen STM32-Mikro-
controller ohne Betriebssystem zu portieren. Diese Arbeit ist als Machbarkeitsstudie zur
Portierung zu verstehen.

EtherCAT wird als Kommunikationsstandard am Deutschen Zentrum fir Luft- und Raumfahrt
in vielen Robotersystemen eingesetzt, um Daten Uber deren Peripherie (v.a. Sensoren und
Aktoren) zu sammeln, diese zu konfigurieren und zu steuern. Die Bibliothek 1ibethercat
stellt Funktionen bereit, um das EtherCAT MainDevice auf der gegebenen Hardware zu
implementieren. Die Bibliothek 1ibosal stellt Funktionen bereit, welche den Betrieb von
der Hardware und den Zugriff auf Betriebssystemressourcen abstrahieren.

Es wird eine EinfUhrung in bestimmte Aspekte von Echtzeit, Feldbussen und des EtherCAT
Standards gegeben, welche wichtig fur die Realisierung des MainDevices sind. Daraufhin
werden sowohl Hardware als auch Software analysiert und die wichtigsten Punkte hinsicht-
lich einer Konzeptionierung herausgearbeitet.

Notige Anpassungen und Vorarbeiten wie bspw. das Umléten der Hardware und Konfigura-
tion der Hardware-Module des STM32 werden fokussiert dargestellt, da diese unerlasslich
fur die Portierung waren. Anderungen an den beiden Bibliotheken werden dargestellt,
um ersichtlich zu machen, welche Anpassungen nétig waren, um den Betrieb auf einem
STM32 zu gewahrleisten. Dazu zdhlen auch Anderungen in hardware-spezifischen Files,
die teilweise erst bei Inbetriebnahme des EtherCAT MainDevices und den angeschlossenen
SubDevices auffielen.

Es wurden zeitliche Messungen und Plots zu je zwei verschiedenen Netzwerktopologien
auf dem STM32 angefertigt, bevor diese mit Messungen von einem Linux-PC als Main-
Device verglichen wurden. Die Netzwerktopologien unterscheiden sich in Art und Anzahl
der SubDevices. AnschlieBend wird eine Bewertung der Implementierung hinsichtlich der
Vergleichsmessungen gegeben.

AbschlieBend wird diese Arbeit zusammengefasst und ein Ausblick auf zuklnftige Arbeiten
gegeben, die auf diese Arbeit folgen kdnnen, bevor Schlussfolgerungen zur gesamten
Arbeit gemacht werden.

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Inhaltsverzeichnis

Abstract
Inhaltsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Codeverzeichnis

1. Einleitung
1.1, Motivation
1.2. Zielsetzung und Aufgabenstellung oL
1.3. Aufbauder Arbeit

2. Grundlagen
2.1. Echtzeitsysteme
2.1.1. Scheduling in Echtzeitsystemen
2.1.2. Rechtzeitigkeit.
2.1.3. Deadlines
214, Tasks .
2.1.5. Gleichzeitigkeit und Auslastung
2.1.6. Determinismus
2.1.7. Zuverlassigkeits-/Performancebedingungen L.
2.1.8. Umgebung
2.2. Feldbusse
2.3. EtherCAT . . . e
2.3.1. Funktionsprinzip.
2.3.2. EtherCAT PacketFlow
2.3.3. Das EtherCAT Protokoll
2.3.4. Flexible Topologie
2.3.5. Distributed Clocks fur High-Precision Synchronisierung
2.3.6. Diagnose und Fehlerlokalisierung

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

\Y, Inhaltsverzeichnis
2.3.7. Anforderung an hohe Verflugbarkeit 22
2.3.8. Mailbox und Kommunikationsprofile 23
2.3.9. Fieldbus Memory Management Unit 24
2.3.10.SyncManager 25
2.3.11.Implementierung von EtherCAT Interfaces 26
2.3.12.EtherCAT State Machine 29
2.3.13.Working Counter 32
2.3.14.Wichtige Kommandos 32

2.4. Mikrocontroller ohne Betriebssystem 34
2.5. Anforderungen an Echtzeitfahigkeitund Latenz 35
3. Konzeption des EtherCAT-Feldbus-MainDevices 37
3.1. Systemanforderungen und Designziele L. 37
3.2. Analyse und Auswahl der Zielhardware 40
3.2.1. Analyse der Zielhardware oL 40
3.2.2. Auswahl und Beschreibung der Zielhardware 40

3.3. Architektur des EtherCAT MainDevices 42
3.4. Konzeption des Echtzeit-Verarbeitungsmodells 42
4. Implementierung und Portierung auf den Mikrocontroller 45
4.1. Hardwarekonfiguration und -anpassung 46
4.1.1. Anpassung des STM32-H747-DISCO Evaluation Boards 46
4.1.2. Boardkonfiguration 47

4.2. Kommunikationskonfiguration 0oL 55
4.2.1. UART-Konfiguration 55
4.2.2. Ethernetkonfiguration 56

4.3. Softwarekonfigurationo 56
4.3.1. Interrupts 57
4.3.2. Ausgabe von UART Nachrichten 58
4.3.3. Senden und Empfangen eines Raw Ethernet Frames 59

4.4. Entwicklung der Bibliothekskomponenten 61
4.4.1. Critical Sections 62
4.4.2. Debugging Nachrichten. 64
4.4.3. EtherCAT Send und Receive Frame 65
4.4.4. Timer ISRs und Zeitfunktionen 67
4.45. Semaphoren. 67
446, Mutexe e 68

4.5. Anpassungen fur die Zielhardware 69
4.5.1. AktivierenderCaches. 69
452. ConfigFile 70
4.5.3. Abfrage des Ethernet Link Status 72

Inhaltsverzeichnis V

454, EK1100 LED Second Display 73
4.6. Debugging und Fehlerbehebung 74
5. Evaluierung des Echtzeitverhaltens und der Leistung 75
5.1. Testverfahren und Testaufbau 75
5.1.1. Trace Funktionen aus libosal 76
5.1.2. Testaufbau 1. 79
5.1.3. Testaufbau 2. 80
5.2. Messung der Latenzund des Jitters 81
5.2.1. Testaufbau 1. 81
52.2. Testaufbau 2. 83
5.2.3. Aktivierender Caches 84
5.3. Interpretation und Diskussion der Ergebnisse 85
6. Zusammenfassung und Ausblick 87
6.1. Zusammenfassung der Arbeit. 87
6.2. Ausblick auf zuklnftige Arbeiten 88
6.3. Schlussfolgerungen 90
Eigenstandigkeitserklarung i
Quellenverzeichnis iv
Appendix |
A. Vollstandiger Log-Output EtherCAT StartUP Testaufbau 1. I
B. Vollstandiger Log-Output EtherCAT StartUP Testaufbau2 IX
C. Erstellte Dateienund Ordner XVII
D. Excluded Build-Files XIX
E. libethercatconfigFile, . XX
F. libosal configFile XXVI
G. analyze.py Skripte XXIX
G.1. analyze_histos.py XXIX
G.2. analyze_boxplot.py XXXIV
H. EtherCAT Wireshark Capture XXXVII
l. Programmdateienals .zip XXXV

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Abbildungsverzeichnis

1.1. Rollin’ Justin Roboter des DLR[DLRb] 2
2.1. Echtzeitsysteme und ihre Zeitanforderungen [Mac04] 7
2.2. Kostenfunktion harter und weicher Echtzeit [Mac04] 8
2.3. EtherCAT Packet Flow 13
2.4. EtherCAT in einem standard Ethernet Frame (nach IEEE 802.3) 14
2.5. EtherCAT Datagramm 14
2.6. Einflgen von Prozessdaten on-the-fly 17
2.7. Flexible Topologie — Bus, Baum oder Stern 19

2.8. Hardwarebasierte Synchronisierung inkl. Kompensation der Propagation Delays 20
2.9. Synchronitat und Simultanitat - zwei distributed Devices mit 300 Nodes und

120m Kabelldange 20
2.10.Billige Kabelredundanz bei Standard EtherCAT SubDevices 23
2.11.Koexistenz von verschiedenen Kommunikationsprofilen im selben System . . 24
2.12.Typische EtherCAT MainDevice Architektur 27
2.13.SubDevice Hardware: ESC mit direktem I/O 28
2.14 EtherCAT State Machine [Tecc] 30
4.1. STM32-H747-DISCO zu I6tende Pins 47
4.2. CubelDE Uberblick 47
4.3. CubelDE .ioc-File Kontext 48
4.4. Zuweisung Timer Module zum CM7-Kontext 49
4.5. STM32 Clock Configuration Kontext 50
4.6. TIM5 Konfiguration im .ioc-File 53
4.7. USART1 Konfiguration im .ioc-File 55
4.8. Ethernet Konfiguration im .ioc-File 56
4.9. Cache Konfiguration im .ioc-File 69
5.1. SubDevices Testaufbau 1 79
5.2. Testaufbau 1: EK1100, EL2008, ELMO Servo Drive 79
5.3. SubDevices Testaufbau2 L 80
5.4. Testaufbau 2: Caesar Simulator mit 4 SubDevices 80

4#;5 DLR - Konzeptionierung, Portierung und

VI
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

VI

Abbildungsverzeichnis

5.5.
5.6.
5.7.
5.8.
5.9.

1.

Testaufbau 1: Vergleichsmessungen tx_start
Testaufbau 1: Vergleichsmessungen tx_duration
Testaufbau 1: Vergleichsmessungen roundtrip_duration
Testaufbau 2: Vergleichsmessungen tx_start
Testaufbau 2: Vergleichsmessungen tx_duration

EtherCAT Wireshark Capture

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.10.Testaufbau 2: Vergleichsmessungen roundtrip_duration

Tabellenverzeichnis

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.

3.1.

4.1.
4.2.
4.3.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

Eingesetzte Bussysteme
EtherCAT Header Fields
EtherCAT Datagram Fields
EtherCAT Addressing [Tecb]
EtherCAT Working Counter [Tecb]
EtherCAT Commands [Tecb]

Vergleich STM32 und ESP32

STM32-H747-DISCO zu létende Pins
Funktionen in binary_semaphore.c
Funktionen in semaphore.c

Erklarung Tracing Variablen
Linux MainDevice Spezifikation
Testaufbau 1 - Werte der Messungen
Testaufbau 2 - Werte der Messungen
Laufzeitunterschiede Caches
Testaufbau 1 - Prozentualer Vergleich
Testaufbau 2 - Prozentualer Vergleich

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Listings

4.1. Flashspeicherkonfiguration 54
4.2. TIM5 Interrupt Handler 57
4.3. TIM3 Interrupt Handler 58
4.4. USARTTest Code 59
4.5. Ethernet Send Frame Function 60
4.6. TXFrameInit 61
4.7. Ethernet Receive DMA Flash Config 61
4.8. Inkludieren der HW-spezifischen Header Files fur libosal 62
4.9. CRITICAL SECTION Declaration 62
4.10.CRITICAL SECTION in der Senderoutine 63
4.11.0sal_puts Funktion 64
4.12.no_verbose_log Funktioninmain.c 65
4.13.Deklaration no_verbose_log als ec_log_funcin main.c 65
4 .14 .EtherCAT Receive Function in hw_stm32.c. 66
4.15.EtherCAT STM32 Hardware Struct 66
4.16.0SAL GET TIME Funktion 67
4.17.0SAL Mutex Unlock Funktion 68
4.18.Data Cache Invalidation 70
4.19.Data Cache Flushing 70
4.20.Config-File 71
4.21.Ethernet Port LinkStatus Abfrage L. 73
4.22.EK1100 LED Second Display 73
5.1. Trace Binary Export 76
5.2. libosal Tracinginmain.c. 76
5.3. GroupO Callback Funktioninmain.c 77
5.4. Log-Outputbzgl. Tracing 78
1. EtherCAT Log Output Testaufbau 1. I
2. EtherCAT Log Output Testaufbau 2 IX
3. libethercat Config-File XX
4. libosal Config-File XXVI

4#;5 DLR - Konzeptionierung, Portierung und

Xl
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Xl Listings
5. analyze_histos.py XXIX
6. analyze_boxplot.py XXXIV

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

1. Einleitung

1.1. Motivation

Am Institut fir Robotik und Mechatronik (RMC) des Deutschen Zentrums fur Luft- und
Raumfahrt (DLR) werden Roboter fir verschiedene Zwecke gebaut. Diese Roboter sollen
bspw. helfen schwere Objekte zu transportieren oder auch herumfliegenden Mull im Erdor-
bit zu beseitigen und ggf. zu recyclen. Weitere Anwendungsfelder sind u.a. Medizinrobotik,
Assistenzrobotik, Produktion der Zukunft und Planetare Explorationsrobotik '. Der Roboter
Rollin” Justin® (s. Abbildung 1.1) ist hierbei eine zentrale Plattform fir die Forschung im
Bereich der Servicerobotik. Er wurde 2008 erstmals der Offentlichkeit prasentiert und ist
insbesondere im Bereich Haushalt und Assistenz von Astronauten im Weltall im Einsatz.
Die einzelnen Komponenten des Roboters wie Aktoren oder Sensoren kommunizieren
hierbei mittels des Feldbusses EtherCAT (Ethernet for Control Automation Technology). Um
die Prazision dieser Roboter zu gewahrleisten, missen die anfallenden Daten determinis-
tisch gesendet, empfangen und verarbeitet werden. Durch die schritthaltende Regelung
werden natirliche Bewegungen realisiert, da auf Ereignisse reagiert wird. Fur diesen Zweck
wurden in RMC von Robert Burger zwei OpenSource Bibliotheken geschrieben und auf
Github zur Verfligung gestellt. Die Bibliothek libethercat?® implementiert die EtherCAT-
Standard spezifischen Abldufe der EtherCAT Technology Group (ETG)* und baut auf die
Betriebssystem-unabhangige Abstraktionsbibliothek 1ibosal® auf. Die beiden Bibliotheken
sind in C geschrieben. 1ibosal zielt darauf ab betriebssystem-unabhangigen Code zu
generieren, um eine einfache Portabilitdt des Codes zwischen verschiedenen Systemen
und Architekturen zu gewahrleisten. Folgende Betriebssysteme kdnnen mit 1ibosal bisher
verwendet werden:

7 PikeOS

'DLR RM Forschung Anwendungsfelder
2DLR Rollin Justin Website

3GitHub Libethercat

*EtherCAT Website

>GitHub Libosal

4#;1 DLR — Konzeptionierung, Portierung und 1
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.dlr.de/de/rm/forschung/anwendungsfelder
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://github.com/robert-burger/libethercat
https://www.ethercat.org/default.htm
https://github.com/robert-burger/libosal

2 1. Einleitung

= POSIX like OS (Unix, Linux und weitere)
- VXWorks

- Win32
|

Abbildung 1.1.: Rollin” Justin Roboter des DLR [DLRb]

1.2. Zielsetzung und Aufgabenstellung

Da die meisten Anwender- als auch Echtzeitbetriebssysteme Nebenlaufigkeit in Form von
Tasks, Prozessen oder Threads unterstltzen, sind diese meist auf einen Scheduler ange-
wiesen, welcher die CPU-Ressourcen effizient den einzelnen Aufgaben zuweist. Dieses
Scheduling kann dabei die Anforderungen an die Echtzeitdatenverarbeitung und den Deter-
minismus gefdhrden. Diese beiden Anforderungen kénnen auch durch andere Software,
welche auf den Betriebssystemen und den damit verbundenen Systemen in den Robotern
I3uft, beeintrachtigt werden. Hierzu zahlt beispielweise der Einsatz der Software Simulink.®
Simulink wird fur die Regelungstechnik in den Systemen des DLR genutzt. Aus diesem Grund
sollen die beiden Bibliotheken fur eine Nutzung auf einem zu definierenden Mikrocontroller
erweitert werden, um dedizierte EtherCAT Kommunikation auf dem Mikrocontroller zu
realisieren. Dadurch soll die Kommunikation via EtherCAT von der restlichen Software,

5Simulink Website

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://de.mathworks.com/products/simulink.html

1.3. Aufbau der Arbeit 3

die fur den Betrieb der Roboter bendétigt wird, abgekoppelt werden, um Echtzeit und
Determinismus in den Systemen weiter zu verbessern. Auf diesem Mikrocontroller soll kein
Betriebssystem wie z.B. RTOS (Real-Time Operating System)’ laufen, weil jedes Betriebssys-
tem auch gewissen Overhead mit sich bringt und die ohnehin schon knappen Ressourcen
eines Mikrocontrollers noch mehr verringert. Die Installation eines RTOS macht einen PC
nicht direkt echtzeitfahig. Es missen Mechanismen zu Threads und Hyperthreading erstellt
werden und auch jede Hardware noch einmal speziell konfiguriert werden. Dies sind weitere
Punkte, die bertcksichtigt werden missen, und einen hohen Grat an Aufwand bedeuten,
wenn ein OS wirklich echtzeitfahig gemacht werden soll. Beispielweise muss die Ethernet-
Karte fUr niedrige Latenzen in einen PCle-Slot verbaut werden und infolgedessen miissen
Stromsparmodi von mehreren Hardwaremodulen deaktiviert werden, um Echtzeitanforde-
rungen nicht zu gefahrden. Deshalb ist diese Arbeit in erster Linie eine Machbarkeitsstudie,
ob es mdglich ist, die EtherCAT Kommunikation von den restlichen Softwareapplikation zu
trennen und auf einem Mikrocontroller ohne OS zu realisieren.

Hardware-naher Code in C soll direkt auf dem Mikrocontroller implementiert werden, um
Einflisse auf Jitter und Latenz der versendeten Daten zu minimieren. Dadurch soll ein deter-
ministisches System aufgebaut werden. Daflr soll die Funktionsweise der gegenwartigen
Implementierungen zuerst analysiert werden. AnschlieBend soll ein Konzept zur Realisierung
auf der entsprechenden Hardware erstellt und in Betrieb genommen werden. Die Schnittstel-
len zum Senden und Empfangen von Ethernet-Frames sollen evaluiert und Nebenlaufigkeit
ohne Betriebssystem oder Scheduler implementiert werden. Daraufhin sollen Messungen
zum Echtzeitverhalten und Determinismus erstellt werden. Diese werden mit Messungen
der gegenwartigen Implementierung auf einem Betriebssystem gegenibergestellt. Hierfur
muUssen Schnittstellen des Mikrocontrollers definiert werden, um zyklische Prozessdaten und
azyklischen Daten auszutauschen (s. Abschnitt 2.3). In diesem Abschnitt werden auch die
beiden Begriffe zyklische und azyklische Kommunikation vertieft. Deshalb wird an dieser
Stelle auf eine detaillierte Beschreibung verzichtet.

1.3. Aufbau der Arbeit

Kapitel 2 beschaftigt sich mit den nétigen Grundlagen fir diese Arbeit. Dazu zdhlen Begriffs-
definitionen zu Echtzeitsystemen und Feldbussystemen. AnschlieBend wird der EtherCAT
Standard erklart, bevor Vor- und Nachteile eines Mikrocontrollers ohne Betriebssystem
erldutert werden. Das Ende des Kapitels zeigt die die nétigen Anforderungen bzgl. Echtzeit-
fahigkeit und Latenz fur diese Arbeit.

Kapitel 3 erlautert die Konzeption des EtherCAT MainDevices. Dazu zahlen Systemanforde-

"FreeRTOS Website

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.freertos.org/

4 1. Einleitung

rungen und Designziele. AnschlieBend wird Hardware auf diese Anforderungen analysiert
und eine begriindete Auswahl auf eine Hardware getroffen, die dessen Architektur und
Echtzeitanforderungen betreffen.

Kapitel 4 stellt die Portierung der beiden Bibliotheken und Konfiguration der Hardware in-
folgedessen dar. AuBerdem wird auf Tuning der Performance und Debugging eingegangen.
Kapitel 5 beschaftigt sich mit zwei Testaufbauten der Implementierung. Dafir werden
Messdaten erfasst und mit einer Implementierung eines Linux-MainDevices verglichen und
evaluiert.

Das finale Kapitel 6 gibt eine Zusammenfassung dieser Arbeit, Ausblicke in die Zukunft
dieser Arbeit und bewertet den Projekterfolg samt Methodik.

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2. Grundlagen

Dieses Kapitel erldutert die technischen Grundlagen, die fur den Betrieb der beiden Bi-
bliotheken auf einem Mikrocontroller ohne Betriebssystem nétig sind. Zunachst wird der
Begriff Echtzeit definiert (s. Abschnitt 2.1). Im Anschluss werden Feldbbusse und deren
Einsatz am DLR erlgutert (s. Abschnitt 2.2). Abschnitt 2.3 erklart den EtherCAT Standard
inklusive technischer Parameter und dessen Vorteile. Am Ende des Kapitels werden Vor-
und Nachteile eines Mikrocontrollers ohne Betriebssystem genannt (s. Abschnitt 2.4) und
anschlieBend die Anforderungen bzgl. Echtzeit und Latenz erldutert (s. Abschnitt 2.5).

2.1. Echtzeitsysteme

Obwohl es keine klare Trennung zwischen Real-Time und Non-Real-Time Systemen gibt,
existieren mehrere Faktoren, die bei der Eingrenzung von Real-Time Applikationen helfen
[Wil05]. Diese werden in den folgenden Teilabschnitten erklart. Echtzeit hat nicht alleine
etwas mit Schnelligkeit zu tun, sondern hangt vielmehr von der Rechtzeitigkeit (s. Abschnitt
2.1.2) ab. Diese Rechtzeitigkeit wird durch die Umgebung (s. Abschnitt 2.1.8), in der sie
stattfindet, definiert. Typischerweise missen Echtzeitsysteme in Luft- und Raumfahrt binnen
weniger Millisekunden reagieren. Anderen Echtzeitsystemen wie bspw. Bahnibergdangen
genugt eine Reaktionszeit im Sekundenbereich. Fir Echtzeitsysteme ist auch von besonderer
Bedeutung, dass diese Reaktion unter allen Umstanden erfolgt und nicht nur, wenn diese
gerade ,gunstig” sind [Mac04].

2.1.1. Scheduling in Echtzeitsystemen

FUr Echtzeitbetriebssysteme ist die Zeit der SchlUsselparameter. Normalerweise generieren
ein oder mehrere externe Gerate Stimuli und das Echtzeitbetriebssystem muss innerhalb
einer bestimmten Zeit reagieren. Beispielsweise muss ein CD-Player die Bits auf einer CD

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

6 2. Grundlagen

auslesen und in einer bestimmten Zeit ausgeben. Ist dies nicht der Fall, so klingt die ausgege-
bene Musik eigenartig. Andere Echtzeitsysteme sind Monitoring von Patienten, Autopiloten
im Luftverkehr oder Robotersteuerung in einer automatisierten Fabrik. In all diesen Fallen
ist das zu spate Abrufen/Bereitstellen der Daten genauso schlimm, wie wenn diese Daten
gar nicht vorhanden wadren.

Fur alle Echtzeitsysteme ist es deshalb wichtig das Programm in mehrere Prozesse zu unter-
teilen. Die Eigenschaft dieser Prozesse sollen vorhersagbar und a-priori bekannt sein. Wenn
ein externes Event festgestellt wird, ist es die Aufgabe des Schedulers diese Prozesse so
zu organisieren, dass alle Deadlines eingehalten werden. Manchmal ist dies nicht moglich,
abhangig davon wie viel Zeit diese Events beanspruchen. Diese Events kdnnen in periodische
und aperiodische Events unterteilt werden. Beispielsweise kann ein Event / mit Periode P;
aus m periodischen Events, die jeweils C; Sekunden an CPU-Zeit bendtigen, nur vollstandig
erfullt werden, wenn folgende Gleichung gilt:

m
k=1

Ein Echtzeitsystem, welches diese Gleichung erfillt, kann mit einem Scheduler realisiert
werden. In dieser Gleichung ist ein implizite Annahme, dass das Kontext-Switching Uber
einen so geringen Overhead verfiigt, dass es ignoriert werden kann [Tan09].

0

<1 (2.1)
1

Q)

2.1.2. Rechtzeitigkeit

Real-Time Systeme mussen in einem definierten Zeitabschnitt korrekte und vollstandige
Berechnungen durchfuhren und deren Ergebnisse zur Verflgung stellen. Tasks missen
zugewiesen und durchgefuhrt werden, bevor deren Deadline (s. Abschnitt 2.1.3) verstreicht.
Nachrichten zwischen interagierenden Real-Time Systemen mussen rechtzeitig gesendet
und empfangen werden. Die Genauigkeit von Daten hangt nicht nur von deren logischer
Korrektheit ab, sondern auch von der Zeit, wann diese erfasst, produziert und punktlich zur
Verflgung gestellt wurden [IEE94]. Steht das Ergebnis eines Prozesses zu spat oder zu frih
zur Verflgung, so sind die Daten ungdltig, weil sie unbrauchbar sind, obwohl die Daten
numerisch korrekt sind. Dies hangt damit zusammen, dass die Daten von einem falschen -
einem zu frihen oder zu spaten - Zustand des stammen. Deshalb muss die Reaktionszeit
groBer oder gleich der minimal zuldssigen Reaktionszeit liegen. Gleichzeitig muss die Reakti-
onszeit kleiner oder gleich der maximal zulassigen Reaktionszeit (= Deadline) liegen. Anhand
von Abbildung 2.1 ist ersichtlich, dass Echtzeitbetriebssysteme bis zu einer Genauigkeit im
Mikrosekunden-Bereich operieren. Echtzeitsysteme im Bereich von Nanosekunden kénnen
nur durch Hardware-L&sungen realisiert werden.

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.1. Echtzeitsysteme 7

‘ Elektronik ’ kg ’ RTOS ’ Standard OS ’ Mechanik ’ Handbetrieb ’

I | | I | I |5
I I I I I I [~

Abbildung 2.1.: Echtzeitsysteme und ihre Zeitanforderungen [Mac04]

Die zeitlichen Bedingungen eines Echtzeitsystems lassen sich in zwei Kategorien untertei-
len:

— Absolute Zeitbedingungen — die Daten mUssen zu einem fest definierten Zeitpunkt
ausgegeben werden — z.B. 4:20 Uhr

— Relative Zeitbedingungen — die Daten mussen in einem bestimmten Intervall nach
einem Ereignis vorliegen — z.B. 420 s nach Empfang eines Ethernet Frames

2.1.3. Deadlines

Deadlines werden in folgende Kategorieren unterteilt:
—7 Hard — Nichteinhalten der Deadline fihrt zu katastrophalen Konsequenzen

= Firm — die meisten aperiodischen Tasks gehoéren zu dieser Kategorie — Nichteinhalten
der Deadline fuhrt dazu, dass

- die Resultate des Tasks nicht mehr nitzlich sind
- keine schwerwiegenden Konsequenzen zu erwarten sind

7 Soft — alle restlichen Tasks — der Nutzen der Ergebnisse des Tasks nehmen bei
Nichteinhalten der Deadline mit der Zeit ab

Die Einteilung der Tasks in diese Kategorieren ist abhangig von der Applikation [IEE94]. Mit
Hilfe der Kostenfunktion (s. Abbildung 2.2) kann die Notwendigkeit von Echtzeitschranken

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

8 2. Grundlagen

beurteilt werden [Mac04].

Kosten A
|

: ‘ harte Echtzeit

|
|
|
|

: ’ weiche Echtzeit .-~

t ¢

Zeit
max
| |
Abbildung 2.2.: Kostenfunktion harter und weicher Echtzeit [Mac04]

2.1.4. Tasks

Real-Time Applikationen bestehen normalerweise aus mehreren kooperierenden Tasks. Die-
se Tasks werden in reguldren Intervallen aufgerufen/aktiviert und mussen ihre Ausfihrung
innerhalb ihrer Deadlines abgeschlossen haben. Bei jedem Aufruf muss ein Task den Status
des Systems determinieren, bestimmte Berechnung ausfihren und (falls nétig) Kommandos
senden, um den Status des Systems zu andern oder anzuzeigen. Beispielsweise muss ein
Task in einer Flugzeugsteuerung die Ansteuerung des Gaspedals monitoren, Berechnungen
zur aktuellen Position durchfiihren und anschlieBend die Schubkraft eines Triebwerks durch
Anpassung der Kraftstoffeinspritzung andern.

Dies sind periodische Tasks. Sie sind zeitkritisch in dem Sinne, dass das System nicht funktio-
nieren wlrde, wenn diese Tasks nicht in einer bestimmten Zeit ausgefuhrt werden. Deshalb
ist es fur ein Computersystem sehr wichtig, dass die Kriterien bzgl. Deadlines der kritischen
Tasks eingehalten werden - unabhangig von den Zustanden anderer Systemkomponenten.
Aperiodische Tasks werden ausgeflhrt, wenn bestimmte Events eintreten. Beispielsweise

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.1. Echtzeitsysteme 9

wird ein Systemkonfigurations-Task nur bei Auftreten eines Fehlers aktiviert. Da diese Events
nicht in reguldren Intervallen auftreten, werden die korrespondierenden Tasks auch nicht
regelmaBig ausgefuhrt. Wenn das Event zeitkritisch ist, hat der zugehdrige aperiodische
Task eine Deadline. Wenn das Event nicht zeitkritisch ist, dann hat der Task keine Deadline.
Er muss so schnell wie moglich abgearbeitet werden ohne dabei die Deadlines anderer
Tasks zu beeintrachtigen [IEE94].

2.1.5. Gleichzeitigkeit und Auslastung

Echtzeitsysteme stehen auch vor der Herausforderung, dass mehrere Aufgaben gleichzeitig
auftreten und bearbeitet werden missen. Auch dann mssen diese Aufgaben pinktlich
und korrekt erledigt werden. Um dies zu gewahrleisten, kénnen bspw. mehrere Subsysteme
diese Ereignisse verarbeiten. Dazu kénnen die auszufihrenden Aufgaben auf mehrere Tasks
verteilt werden, die sich unterbrechen kénnen. Dies stellt eine weitere Herausforderung bei
der Konzeption und Realisierung von Echtzeitsystemen dar. Andererseits kann das gleichzei-
tige Eintreten von Aufgaben auch durch den Einsatz von sehr schnellen, verarbeitenden
Systemen sichergestellt werden, da diese Systeme die Daten sehr viel schneller verarbeiten
als neue Ereignisse auftreten. Wichtig ist hierbei, dass die Gesamtkapazitat zur Erledigung
der einzelnen Prozesse in Summe nicht Uberschritten wird [M&c04].

2.1.6. Determinismus

Die Berechenbarkeit des Zeitverhaltens in einem System nennt sich zeitlicher Determinis-
mus. Nur wenn sich ein System zeitlich-deterministisch verhalt, kann Echtzeitverhalten
garantiert werden [Mac04]. Bereits beim Design des Systems sollte es mdglich sein, dass
alle Zeitvorgaben der Anwendungen erfillt werden, solange bestimmte Systemannahmen
vorliegen. Deshalb missen die Einschrankungen aller Tasks a-priori bekannt sein. Dazu
zahlen die Anzahl, Ausflihrungszeiten und Ressourcenbedingungen aller Tasks. Zeitliche
Veranderungen innerhalb der Systemumgebung kénnen das Verhalten des Systems mal3-
geblich beeinflussen. Garantien zu Deadlines sind nur méglich, wenn die Ausfihrungs- und
Ankunftzeit von Tasks a-priori bekannt sind.

Wahrend des Systemdesigns liegen meist nicht alle Information Gber diese Anforderungen
vor. Deshalb werden oft Annahmen bzgl. des Worst-Case genutzt, um voraussagen zu
kénnen, ob die Echtzeit eingehalten werden kann. Die Daten des Worst-Case stammen
aus Simulationen, Tests und anderen Vorgangen. Die tatsachlichen Daten der Worst-Cases
kénnen die Annahmen Uberschreiten. Da es keine andere Alternativen gibt, muss zuerst
mit den Annahmen des Worst-Cases gearbeitet werden [I[EE94]. Dies stellt einen Gegensatz

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

10 2. Grundlagen

zu vielen Modellen in der Informatik dar, da diese fur den Durchschnittsfall optimiert sind.
Echtzeitsysteme mussen gegenlber des Worst-Cases optimiert werden. Dafur wird oft
davon ausgegangen, dass alle Ereignisse zum selben Zeitpunkt eintreten und ihre maximale
Ausfihrungszeit in Anspruch nehmen [Mac04].

2.1.7. Zuverlassigkeits-/Performancebedingungen

Ein Task muss bestimmte Zuverlassigkeits-, Verfigbarkeits und/oder Performancebedingun-
gen erflllen. Zuverlassigkeit ist extrem wichtig. Der Ausfall eines Real-Time Systems kénnte
zu einem 6konomischen Desaster oder dem Verlust von Menschenleben flhren [IEE94]. Die
Zuverlassigkeit eines Systems hangt stark mit dessen Hard Deadlines ab. Beispiele hierfir
sind Systeme in Flugzeugen, Kraftwagen oder auch Kraftwerken [Mac04].

2.1.8. Umgebung

Die Umgebung, in welcher ein Computer arbeitet, ist eine aktive Komponente jedes Real-
Time Systems. Beispielsweise ist der Einsatz von On-Board Computern in einem Drive-by-
Wire System nutzlos ohne das Auto selbst [IEE94]. Die Umgebung wird auch externes System
genannt. Dieses externe System gibt die relevanten Bedingungen fir das Echtzeitsystem vor
[Mac04].

2.2. Feldbusse

Feldbusse sind Netzwerke, um Gerate wie Sensoren, Aktuatoren, PLCs (Programmable Logic
Controllers), Regulatoren oder auch Man-Machine-Interfaces miteinander zu verbinden,
damit diese Daten miteinander austauschen kénnen. Die verschiedenen Feldbussysteme
adressieren alle ahnliche Probleme, unterscheiden sich jedoch leicht in Art und Weise. Sie
hangen primar von folgenden Punkten ab:

— Anforderungen der End-User in verschiedenen Branchen
— Anzahl und Vielfalt der angeschlossenen Hosts

7 technische Moglichkeiten zur Zeit der Entwicklung

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.2. Feldbusse 11

Abhangig davon entwickelten Unternehmen ihre properitaren Lésungen und standardisier-
ten diese [ThoO5]. Zu einem Feldbussystem gehdren spezifische Hardwarekomponenten wie
Kabel und Konnektoren. Zusatzlich missen fir jeden Feldbus Kommunikationsprotokolle
definiert sein. Gangige Feldbussysteme sind:

— Profibus / Profinet’

~ Modbus?

—~ DeviceNet?

- CAN*

— SERCOS-IIP

— EtherCAT (s. Abschnitt 2.3)

Die Entwicklungen am DLR sind heterogene Systeme bzgl. der Kommunikationsbusse.
Folgende Busse sind im Einsatz:

Tabelle 2.1.: Eingesetzte Bussysteme

Bussystem Einsatz
Ethernet RT, non-RT, Kameras
SERCOS-II LWR Joints
SpaceWire HAND-II, HaSy/David, MiroSurge
EtherCAT Beckhoff Terminals, ELMO Boxes, Digi-I/O
CAN Heinzmann Wheels, Schunk Grippers/Pan-Tilt
SSI Positionsenkoder
USB Asus Xtion, XSense IMU’s, verschiedene Mikrocontroller
Serial Medical Hands, Dynamixel Servis, DLR FTS-78
TProfibus Website
ZModbus Website

3DeviceNet Einfihrung von Beckhoff
4Can knowledge in CiA (CAN in Automation)
>Sercos Il Erklarung der Sercos

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.profibus.de/
https://www.modbus.org/
https://infosys.beckhoff.com/index.php?content=../content/1031/bc5250/2578437003.html&id=
https://www.can-cia.org/can-knowledge
https://www.sercos.de/technologie/sercos-iii/

12 2. Grundlagen

2.3. EtherCAT

EtherCAT steht flr Ethernet for Control Automation Technology. Es ist eine Echtzeit-
Industrie-Ethernet-Technologie, die urspriinglich von Beckhoff Automation® entwickelt
wurde und im IEC (International Electrotechnical Commission) Standard I[EC61158 ver-
offentlicht wurde. Sie ist geeignet fur Hard- und Soft-Real-Time-Anforderungen in der
Automationstechnik, Tests, Messungen und andere Anwendungen. Wahrend der Entwick-
lung lag der Fokus vor allem auf kurzen Zykluszeiten (< 100us), niedrigem Jitter fur akkurate
Synchronisation (< 1us) und niedrigen Hardwarekosten.

EtherCAT wurde im April 2003 vorgestellt und die EtherCAT Technology Group (ETG) wurde
im November 2003 gegriindet. In der Zwischenzeit hat sich die ETG zur weltweit groBten
Organisation fur Industrial Ethernet und Feldbusse entwickelt. Sie vereint viele Hersteller und
Nutzer, welche zum Fortschritt der EtherCAT Technologie in technischen Arbeitsgruppen
zusammenarbeiten [Eth].

2.3.1. Funktionsprinzip

Das EtherCAT MainDevice (veraltet: Master) sendet ein Telegram, das durch alle am Bus
angeschlossenen Nodes geht. Jedes SubDevice (veraltet: Slave) liest die Daten, welche fir
sie bestimmt sind ,on-the-fly” aus dem Telegram aus und flgt eigene Daten an diese
Stelle im Frame ein. Der Frame verzdgert sich nur durch Hardware Propagation Delays.
Das letzte Device im Bus erkennt einen offenen (nicht angeschlossenen) Port und sendet
die Nachricht via Full-Duplex zurlick an das MainDevice. Die SubDevices nutzen einen
EtherCAT SubDevice Controller (ESC). Dies ermdglicht, dass die Daten on-the-fly und in
Hardware verarbeitet werden kénnen, um die Network-Performance vorhersagbar und
unabhdngig von der individuellen SubDevice Implementierung zu machen [Eth]. Dies ahnelt
dem Cut-Through Forwarding in geswitchten Netzwerken. Die SubDevices verfiigen dafur
Uber spezielle ASICs (Anwedungsspezifische integrierte Schaltung), damit die Frames mit
einem Delay im Nanosekundenbereich versendet werden kénnen.

Die maximale, effektive Datenrate erhoht sich auf dber 90%. Durch das Nutzen des Full-
Duplex Features ist die theoretisch erreichbare, effektive Datenrate hoher als 100 MBit/s
(>90% x 2 x 100 MBit/s).

Das EtherCAT MainDevice ist das einzige Gerdt innerhalb eines Segments, das aktiv einen
EtherCAT Frame versenden darf; die restlichen Nodes leiten die Frames lediglich im Down-
stream weiter. Dieses Konzept verhindert unvorhersagbare Delays und garantiert Echtzeit-
Fahigkeit.

5Beckhoff Website

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/

2.3. EtherCAT 13

Das MainDevice nutzt einen Standard Ethernet Media Access Controller (MAC) ohne
zusatzlichen Kommunikationsprozessor. Dies ermdglicht, dass das MainDevice auf jeder
Hardwareplattform implementiert werden kann, das Gber einen Ethernet Port verflgt. Dies
ist unabhangig davon, ob ein Echtzeit-Betriebssystem (RTOS) oder welche Anwendungssoft-
ware genutzt wird.

2.3.2. EtherCAT Packet Flow

EtherCAT Devices verfligen Ublicherweise Uber zwei Ports, kdnnen aber auch mehr haben.
Das MainDevice hat im Normalfall nur einen Port in Benutzung, an den das erste SubDevice
angeschlossen ist (s. Abbildung 2.3). Das MainDevice sendet Uber seine TX-Leitung den
EtherCAT Frame an den ersten Port des angeschlossenen SubDevices. Das SubDevice
empfangt den Frame auf der RX-Leitung des Ports. Dieses SubDevice verarbeitet die Daten
und sendet diese Uber die TX-Leitung des zweiten Ports weiter (= Downstream = gelber
Pfeil in der Skizze). Wenn ein SubDevice erkennt, dass nur ein Port in Benutzung ist, sendet
es die Daten Uber die TX-Leitung seines Eingangsports wieder zurlick an das vorherige
Device (= Upstream = blauer Pfeil in der Skizze). Dies geschieht solange bis der Frame am
MainDevice Uber dessen RX-Leitung wieder empfangen wird. Sollte der zweite Port des
letzten SubDevices in der Kette direkt mit dem zweiten Port des MainDevices verbunden
sein, werden die Daten Uber diese Ports in einer Ringstruktur gesendet (s. Abbildung 2.10).

1 2
MainDevice : X

O O

SubDevice
with motor

SubDevice

Abbildung 2.3.: EtherCAT Packet Flow

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

14 2. Grundlagen

2.3.3. Das EtherCAT Protokoll

EtherCAT bettet seinen Payload in einen Standard Ethernet Frame ein (s. Abbildung 2.4).
Der Ethertype ist hierbei 0x88A4. Da EtherCAT fur kurze, zyklische Prozessdaten optimiert
wurde, ist das Nutzen von Protokollstacks wie TCP/IP oder UDP/IP obsolet [Eth].

[Ethernet header] [ECAT J [EtherCat telegram J[Ethernet]
[Destination] [Aource][Type] [Frame HDR J{ Datagram 1 } [Datagram 2] [Datagram n M Padding] [FCs]

©) ®) (2/4) @ (10+n+2) (10+4m+2) (10+k+2) (0..32) @)

Ethertype 0x88A4

Abbildung 2.4.: EtherCAT in einem standard Ethernet Frame (nach IEEE 802.3)

Der 2-Byte-lange EtherCAT Header ist in drei Felder (vgl. Tabelle 2.2) unterteilt. Ein EtherCAT

Tabelle 2.2.: EtherCAT Header Fields

Feld Lange Wert/Beschreibung
Length | 11 Bit Lange des EtherCAT Datagrams ohne FCS
Reserved 1 Bit Reserviert, O

Type 4 Bit | Protokoll-Typ, SubDevices untersttzen nur Type = 0x1

Telegramm kann aus bis zu 15 EtherCAT Datagrammen bestehen. Jedes Datagramm in
einem EtherCAT Telegramm besteht aus einem Datagramm Header, zugehdérigen Daten
und dem Working Counter (s. Abbildung 2.5).

‘ EtherCAT datagram ’
[Datagram header [Data | [Working Counter
(10 Byte) (variabel) (2 Byte)

| |
Abbildung 2.5.: EtherCAT Datagramm

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT

15

Tabelle 2.3.: EtherCAT Datagram Fields

Feld Lange Wert/Beschreibung
Cmd 1 Byte EtherCAT Kommando-Typ
numerische Kennung fir die Identifizierung des MainDevices
ldx 1 Byte von Duplikaten oder verlorengegangenen Datagrammen;
SubDevices sollten diesen Index nicht andern
Address | 4 Byte Adresse: Auto-lnkrement, Configured Station
oder Logische Adresse
Len 11 Bit Lange der Datagramm-Daten
R 3 Bit Reserviert, 0
Umlaufender Frame:
C 1 Bit 0 = Frame lauft nicht um
1 = Frame ist einmal umgelaufen
Mehrere Datagramme:
M 1 Bit 0 = Letztes Datagramm
1 = mindestens 1 weiteres folgt noch
Ereignis-Abfrage-Register
RQ 1 WORD Kombination aller SubDevices mit logischen OR
Data n Bytes zu lesende/schreibende Daten
WKC WORD Working Counter

Der Datagramm Header ist in zehn Felder unterteilt, welche wie in Tabelle 2.3 spezifiziert

sind.

Das 4-Byte-lange Adressfeld (vgl. Tabelle 2.4) kann auf mehrere Arten genutzt werden:

=7 Position Addressing — nur flr Startup des EtherCAT Systems und um neu hinzuge-
fugte SubDevices zu erkennen; jedes SubDevice erhéht diese Adresse um 1

—~ Node Addressing — Registerzugriff auf einzelne, schon identifizierte Gerate

7 Logical Addressing — bitweise Zuordnung von Daten in einem 32-bit breiten, virtuel-
len Adressraum

7 Broadcast Addressing — Initialisierung aller SubDevices

Je nachdem welche Adressierungsart genutzt wird, werden die 4 Byte anders aufgeteilt

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

16 2. Grundlagen

und genutzt (s. Tabelle 2.4) [Tecb]. Um Ethernet IT-Kommunikation zwischen den Nodes

Tabelle 2.4.: EtherCAT Addressing [Tecb]

Modus Feld Lange Wert/Beschreibung
jedes SubDevices erhoht den Wert
Position Address ODER Position | WORD SubDevice wird angesprochen,
Auto Increment Address wenn Position = 0
Offset | WORD Lokale Register- oder Speicheradresse des ESCs
SubDevice wird adressiert,
Node Address ODER Address | WORD wenn Address = Configured Station Address
Configured Station Address ODER Address = Configured Station Alias
Offset | WORD Lokale Register- oder Speicheradresse des ESCs
Broadcast Position | WORD SubDevice erhdht den Wert
Offset | WORD Lokale Register- oder Speicheradresse des ESCs
Logische Adresse (konfiguriert von FMMUs)
Logical Address Address | DWORD SubDevice wird adressiert,
wenn FMMU Konfiguration = Wert im Adressfeld

zu gewabhrleisten, kénnen TCP/IP Verbindungen optional durch einen Mailbox Channel
getunnelt werden, ohne dabei den Echtzeit-Datenaustausch zu gefdhrden. Wéahrend des
Startvorgangs des Busses konfiguriert und mappt das MainDevice die Prozessdaten auf den
SubDevices. Verschiedene Mengen an Daten (1 Bit bis zu mehreren Kilobytes) kénnen pro
SubDevice ausgetauscht werden.

Der EtherCAT Frame beinhaltet ein oder mehrere Datagramme. Der Datagram Header gibt
an, welche Art des Zugriffs das MainDevice gerne ausfihren wirde:

— Read, Write, Read-Write

7 Zugriff auf ein bestimmtes SubDevice durch direkte Adressierung oder Zugriff auf
mehrere SubDevices durch logische bzw. implizite Adressierung

Logische Adressierung wird fir den zyklischen Austausch von Prozessdaten verwendet.
Jedes Datagram adressiert einen spezifischen Teil des Prozessabbildes im EtherCAT Segment.
Dafir sind 4 GByte im Adressraum vorhanden. Wahrend des Hochfahrens des Netzwerks
wird jedem SubDevice eine oder mehrere Adressen in diesem globalem Adressraum zuge-
wiesen. Wenn mehrere SubDevices im selben Adressraum liegen, kénnen sie alle mit einem
einzigen Datagram adressiert werden. Da das Datagram alle Daten beinhaltet, die fiir den
Zugriff bendtigt werden, kann das MainDevice entscheiden, wann und auf welche Daten
es zugreift. Beispielsweise kann das MainDevice kurze Zykluszeiten nutzen, um die Daten
in den Speichern aktualisieren, und langere Zykluszeiten, um die I/O Daten zu samplen.
Deshalb ist eine fixe Prozessdatenstruktur nicht notwendig. Dies entlastet das MainDevice
im Vergleich zu konventionellen Feldbussen. In konventionellen Feldbussen missen die
Daten der Nodes individuell ausgelesen, mit Hilfe eines Prozesscontrollers sortiert und in

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 17

den Speicher kopiert werden.

Mit EtherCAT muss das MainDevice nur einen einzelnen EtherCAT Frame mit neuen Output-
Daten initialisieren und den Frame via Direct Memory Access (DMA) an den MAC-Controller
senden. Wenn ein Frame mit neuen Input-Daten am MAC-Controller empfangen wird,
kopiert das MainDevice diese Daten via DMA in den Speicher des Gerdts. Dies geschieht
ohne aktive Nutzung der CPU. Erganzend zu den zyklischen Daten kénnen Datagramme
benutzt werden, um asynchrone oder event-basierte Kommunikation zu realisieren.
Zusatzlich zur logischen Adressierung kann das MainDevice die SubDevices durch die

—} &I ST &

Ethernet header ECAT HDR Datagram 1 Datagram 2 Datagram 3
{)

Logical Process Logical Process Logical Process
Image Task 1 Image Task 2 Image Task 3

Abbildung 2.6.: Einfligen von Prozessdaten on-the-fly

Position im Netzwerk adressieren. Diese Methode wird wahrend des Network-Boots ver-
wendet, um die Netzwerktopologie zu bestimmen und diese mit der geplanten Topologie
zu vergleichen.

Nachdem die Netzwerkkonfiguration Uberprift wurde, kann das MainDevice jedem Node
eine konfigurierte Node-Adresse zuweisen und durch diese mit den Nodes kommunizieren.
Dies ermdglicht gezielten Zugriff auf Gerate, auch wenn sich die Netzwerktopologie im
laufenden Betrieb verandert, was durch Hot Connect Groups geschehen kann. Es gibt zwei
verschiedene Ansatze flr SubDevice-to-SubDevice-Kommunikation. Ein SubDevice kann Da-
ten direkt an andere SubDevices senden, die sich im Downstream-Pfad des Netzes befinden.
Da EtherCAT Frames nur in Vorwartsrichtung verarbeitet werden kénnen, ist dieser Ansatz
von der Netzwerktopologie abhangig und nur fir ein unveranderliches Machine-Design
geeignet (z.B. fur Drucker oder Verpackungsanlagen).

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

18 2. Grundlagen

Im Gegensatz dazu findet die freie SubDevice-to-SubDevice-Kkommunikation Gber das
MainDevice statt. Diese Kommunikation bendétigt zwei Buszyklen (nicht zwangsweise zwei
Kontrollzyklen). Aufgrund der hervorragenden Performance von EtherCAT ist diese Art der
SubDevice-to-SubDevice-Kommunikation immer noch schneller als andere Kommunikati-
onstechniken [Eth].

2.3.4. Flexible Topologie

EtherCAT unterstUtzt fast alle Topologien wie bspw. Bus, Baum, Stern oder auch Daisy-
Chain. EtherCAT baut eine reine Bustopologie mit hunderten von Nodes auf. Die Umsetzung
erfolgt ohne die standardmaBigen Limitationen, die auftreten, wenn Switches oder Hubs
kaskadiert werden.

Beim Verkabeln des Netzes ist eine Kombination aus Anschlussleitungen hilfreich: die Ports,
welche fur die Anschlussleitungen bendétigt werden, sind direkt in viele I/0 Module integriert.
Deshalb werden keine zusatzlichen Switches oder andere aktive Hardware benétigt. Die fur
Ethernet standardmaBige Sterntopologie kann so naturlich genutzt werden.

Modulare Maschinen oder Tool Changers setzen Voraus, dass Netzwerksegmente oder
individuelle Nodes wahrend des Betriebs angeschlossen oder abgetrennt werden. EtherCAT
SubDevice-Controllers haben die Voraussetzungen dieses Hot-Connect-Features’ standard-
maBig implementiert. Wenn ein Nachbarnode vom Bus getrennt wird, wird der Port auto-
matisch geschlossen, damit der Rest des Netzes weiterhin ohne Interferenzen funktionieren
kann. Kurze Detektionszeiten von < 15us garantieren eine reibungslose Anpassung (=
ChangeOver) der Topologie.

EtherCAT bietet eine groBe Flexibilitat, was die Art der verwendeten Kabel betrifft. Jedes
Segment kann mit genau den Kabeln bestickt werden, die dessen Anforderungen am
besten erfillt. Billige Industrial-Ethernet-Kabel kénnen im 100BASE-TX Mode zwischen zwei
Nodes genutzt werden, die sich bis zu 100m entfernt befinden. Mit der Protokoll Erweite-
rung EtherCAT P kénnen sowohl Daten als auch Strom Uber lediglich ein Kabel Ubertragen
werden. Dadurch kénnen Gerate wie Sensoren in einer Bustopologie angeschlossen werden.
Glasfaseroptiken und deren Kommunikationsstandard wie z.B. 100BASE-FX kénnen genutzt
werden, um Gerate zu verbinden, die sich mehr als 100m voneinander entfernt befinden.
Die vollstandige Breite von Ethernet Verkabelung ist deshalb fur EtherCAT verfiigbar.

Bis zu 65535 (21°) Gerate kénnen an einem EtherCAT Segment angeschlossen werden.
Deshalb ist die Erweiterung des Netzes virtuell unlimitiert und modulare Gerate wie ,sliced”
l/O-Stationen kénnen so designt werden, dass jedes Modul wie eine unabhangige EtherCAT
Node operiert. Dadurch entfallt der lokale Erweiterungsbus. Durch die hohe Performance
von EtherCAT wird jedes Modul direkt und ohne jegliche Delays erreicht, da es kein Gateway
im Buskoppler oder in der Kopfstation gibt [Eth].

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 19

= LTV T NI

1010 A0 | Jﬁ
O0O0O0 D]]a‘
O O

-/

Abbildung 2.7.: Flexible Topologie — Bus, Baum oder Stern
2.3.5. Distributed Clocks fiir High-Precision Synchronisierung

Insbesondere in Anwendungen mit raumlich verteilten Prozessen, welche simultane Ausfih-
rung bendtigen, ist Synchronisierung sehr wichtig; beispielweise in Anwendungen, welche
mehrere Servoaxen ansprechen, um koordinierte Bewegungen gleichzeitig auszufthren.
Die Qualitat von vollstandig synchroner Kommunikation leidet direkt unter Kommunikati-
onsfehlern. Im Gegensatz dazu haben Distributed Synchronized Clocks einen hohen Grad
an Fehlertoleranz bzgl. des Jitters in einem Kommunikationssystem. Deshalb erfolgt die
Synchronisierung der Nodes in EtherCAT durch Distributed Clocks (DC). Die Kalibierung
der Clocks in den Nodes ist komplett hardwarebasiert. Die Zeit des ersten DC SubDevice
wird zyklisch an alle anderen Gerate im System weitergegeben. Mit diesem Mechanismus
kdnnen die SubDevice Clocks prazise an diese Referenz-Clock angepasst werden. Der daraus
resultierende Jitter ist <1us.

Da diese Referenz-Clock leicht verzdgert an den SubDevices empfangen wird, muss das
Propagation Delay fur jedes SubDevice gemessen und kompensiert werden. Dies stellt Syn-
chronitat und Simultanitat sicher. Dieses Delay wird wahrend des Netzwerkstarts gemessen.
Zusatzlich kann dies wahrend laufenden Betriebs stattfinden, um sicherzustellen, dass die
Clocks simultan innerhalb von 1us zueinander laufen. Wenn alle Nodes die selbe Informati-
on Uber die Zeit haben, kdnnen sie ihre Output-Signale simultan setzen und einen hoch
prazisen Timestamp an ihre Input-Signale anhdngen. In Motion Control Anwendungen ist

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

20

2. Grundlagen

ga= NULLITTITTIANINN

© |

Abbildung 2.8.: Hardwarebasierte Synchronisierung inkl. Kompensation der Propa-

gation Delays

|fm 2.00v

1+~ 0.00000 3

Abbildung 2.9.: Synchronitat und Simultanitat - zwei distributed Devices mit 300
Nodes und 120m Kabellange

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 21

die Zyklusgenauigkeit zusammen mit Synchronitat und Simultanitat sehr wichtig. In solchen
Anwendungen wird die Geschwindigkeit anhand der gemessenen Position bestimmt. Des-
halb ist es wichtig, dass die Ortsbestimmung dquidistant (z.B. genaue Zyklen) vorgenommen
wird. Kleine Ungenauigkeiten in der Ortsbestimmung kénnen zu gréBeren Ungenauigkeiten
in der berechneten Geschwindigkeit fihren; vor allem relativ zu kurzen Zykluszeiten. In
EtherCAT werden Positionsmessungen durch die prazise, lokale Clock getriggert und nicht
durch das Bussystem. Dies fhrt zu einer deutlich héheren Genauigkeit.

Zusatzlich wird das MainDevice durch den Einsatz von DCs entlastet. Positionsmessungen
werden durch die lokale Clock getriggert und nicht durch den Empfang eines Frames. Des-
halb unterliegt das MainDevice keinen strengen Anforderung bzgl. dem Senden der Frames.
Dadurch kann das MainDevice in Software auf Standard Ethernet-Hardware implementiert
werden. Ein Jitter im Bereich von einigen Mikrosekunden vermindert nicht Genauigkeit der
DCs. Die Genauigkeit der Clock ist unabhangig vom Zeitpunkt, an dem sie gesetzt wird.
Deshalb ist die absolute Transmissionszeit des Frames irrelevant. Das EtherCAT MainDevice
muss lediglich sicherstellen, dass der EtherCAT Frame gesendet wird, bevor das DC-Signal
den Output der SubDevices triggert [Eth].

2.3.6. Diagnose und Fehlerlokalisierung

Erfahrungen mit konventionellen Feldbussen haben gezeigt, dass Diagnosecharakteristiken
eine bedeutende Rolle spielen, wenn die Verfligbarkeit eines Gerat und dessen Inbetrieb-
nahmedauer bestimmt werden soll. Zusatzlich zur Fehlererkennung ist Fehlerlokalisierung
wichtig beim Troubleshooting. EtherCAT verflgt Gber das Feature, die aktuelle Netzwerkto-
pologie wahrend des Hochfahrens des Netzes zu scannen und mit der geplanten Topologie
zu vergleichen. EtherCAT hat weitere Diagnosefahigkeiten inhdrent zu seinem System.
Der ESC jedes SubDevices prift den Frame auf Fehler anhand der Checksumme. Die Infor-
mationen werden der Applikation bereitgestellt, sofern der Frame ohne Fehler empfangen
wurde. Sollte ein Fehler vorliegen, wird der Error Counter inkrementiert und alle folgen-
den Nodes dartber informiert. Das MainDevice wird ebenfalls feststellen, dass der Frame
fehlerbehaftet ist und die Daten verwerfen. Das MainDevice kann anhand der Error Counter
der SubDevices feststellen, wo der Fehler aufgetreten ist. Dies stellt einen enormen Vorteil
im Gegensatz zu konventionellen Feldbussen dar, da dort der Fehler Gber den gesamtem
Bus weitergegeben wird, was es unmaglich macht den Ursprung des Fehlers zu lokalisieren.
EtherCAT kann gelegentlich auftretende Unterbrechungen detektieren und lokalisieren,
bevor der Vorfall andere Gerédte beeinflussen kann.

Bei gleicher Zykluszeit ist die Wahrscheinlichkeit von Stérungen durch Bitfehler innerhalb
eines EtherCAT Frames wesentlich geringer. Dadurch ist EtherCATs einzigartiges Prinzip der
Bandbreitennutzung um GréBenordnungen besser als bei Ethernet Technologien, welche
Single-Frames nutzen. Werden deutlich kirzere Zykluszeiten verwendet, wird die Zeit der

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

22 2. Grundlagen

Fehlerbehebung drastisch reduziert. Dadurch wird es auch einfacher solche Probleme in der
Applikation zu adressieren.

Die Informationen innerhalb eines Frames kénnen anhand des Working Counters besser
auf Konsistenz gemonitort werden. Jedes verfligbare Node inkrementiert den Working
Counter automatisch, sofern es durch das Datagram adressiert und sein Speicher ausgelesen
werden kann. Das MainDevice kann dann zyklisch bestatigen, dass alle Nodes mit konsis-
tenten Daten arbeiten. Wenn der Working Counter einen abweichenden Wert beinhaltet,
leitet das MainDevice das Datagramm nicht an die Kontrollapplikation weiter. Mit Hilfe
von Status- und Fehlermeldungen der Nodes und des Link-Status, ist es dem MainDevice
automatisch moglich den Grund fur das unerwartete Verhalten festzustellen. Aufgrund
der Tatsache, dass EtherCAT in Standard Ethernet Frames eingebettet ist, ist es moglich
den Netzwerkverkehr mit Hilfe von freien Ethernet Tools aufzunehmen. Beispielsweise
hat Wireshark’ einen EtherCAT Protokoll Dissektor bereits integriert. So kénnen protokoll-
spezifische Informationen wie der Working Counter, Kommandos und weitere direkt als
Klartext ausgegeben werden. Weitere nitzliche Informationen kénnen unter den folgenden
beiden Links eingesehen werden [Eth]:

EtherCAT Diagnosis for Users

EtherCAT Diagnosis for Developers

2.3.7. Anforderung an hohe Verfiigbarkeit

Kabelbriche oder fehlfunktionierende Nodes sollten in Geraten mit hohen Anforderungen
an die Verflgbarkeit nicht dazu fihren, dass das gesamte Netzwerksegment nicht mehr
verflgbar ist. EtherCAT stellt die Redundanz von Kabeln mit einfachen MaBnahmen zur
Verfligung. Durch eine Kabelverbindung zwischen dem letzten Node und einem zusatzlichen
Port am MainDevice, wird die Bustopologie zu einer Ringtopologie erweitert. Fdlle, in
denen redundant umgeschalten werden muss (z.B. Kabelbriiche oder fehlfunktionierende
Nodes), werden durch ein Software Add-On im Stack des MainDevice erkannt. Die Nodes
selbst mussen daflr nicht angepasst werden und wissen nicht dartber Bescheid, dass sie
aktuell in einem redundantem Netz betrieben werden. Link Detection in den SubDevices
erkennt und |6st redundante Falle automatisch mit einer Recovery-Time < 15us. So wird
maximal ein einziger Kommunikationszyklus unterbrochen. Das bedeutet, dass sogar Motion
Applications mit kurzen Zykluszeiten weiterarbeiten kénnen, wenn ein Kabel bricht. Mit
EtherCAT ist es auch mdglich das MainDevice redundant in einem Hot-Standby Modus zu
betreiben. Anfallige Netzwerkkomponenten, wie z. B. solche, die mit einer Drag Chain
verbunden sind, kénnen mit einer Stichleitung verkabelt werden, so dass selbst bei einem
Kabelbruch der Rest der Maschine weiterlauft [Eth].

7Wireshark Website

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.ethercat.org/en/downloads/downloads_60F2A51B4B114D8D81C2668AF90B2312.htm
https://www.ethercat.org/en/downloads/downloads_C530D44B66104E778FB47A6A0A4FFF68.htm
https://www.wireshark.org/download.html

2.3. EtherCAT 23

MainDevice

UUUCam

O O000O0 O O OO0

Abbildung 2.10.: Billige Kabelredundanz bei Standard EtherCAT SubDevices
2.3.8. Mailbox und Kommunikationsprofile

Um SubDevices konfigurieren und Diagnosen anfertigen zu kénnen, ist es mit Hilfe von azy-
klischer Kommunikation mdéglich auf Variablen, welche das Netzwerk betreffen, zuzugreifen.
Sie basieren auf dem zuverlassigen Mailbox-Protokoll, welches Uber eine Auto-Recover
Funktion far fehlerbehaftete Nachrichten verfiigt. Um eine breite Auswahl an Geraten und
Anwendungslayern unterstitzen zu kénnen, wurden die folgenden EtherCAT Kommunika-
tionsprofile eingefihrt:

— CAN® application protocol over EtherCAT (CoE)

— Servo drive profile, according to IEC 61800-7-204° (SoE)

- Ethernet over EtherCAT (EoE)

- File Access over EtherCAT (FoE)

- Automation Device Protocol over EtherCAT (ADS over EtherCAT, AoE)
Ein SubDevice muss nicht alle Kommunikationsprofile unterstiitzen. Es entscheidet selbst,
welches Profil fir die Anforderungen am besten geeignet ist. Das MainDevice wird anhand
des SubDevice Description Files in Kenntnis gesetzt, welche Profile implementiert sind [Eth].
Diese Profile wurden eingefiihrt, um eine breitere Masse an Feldgeraten und infolgedessen

auch Application Layers ansprechen zu kénnen. Im Gegensatz zu zyklischen Prozessdaten
gibt es fur azyklische Kommunikation keine Garantie, dass die Daten in Echtzeit ausgeliefert

8Controller Area Network
9IEC 61800-7-204

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.vde-verlag.de/iec-normen/222326/iec-61800-7-204-2015.html

24 2. Grundlagen

File system, Subordinated object IEC 61800-7-204 CANopen Process data
bootloader b e e
(SERCOS) i

ies or
devices

A A A A A A
Y Y Y Y Y Y
C D
Object
TCP UDP IDN dictionary
glar:[e;:lv:x P Service channel SDO PDO
File access m‘ap- MADTT
Ethernet ping
AN J
\ FoE / \AoE A EoE 1t SoE ‘\COE \ CoE/SoE
4 \ 4 \ 4 4
s R
Mailbox Process data
EtherCAT SubDevice Controller
A

\ 4
Physical layer

| |
Abbildung 2.11.: Koexistenz von verschiedenen Kommunikationsprofilen im selben
System

werden [gmb].

2.3.9. Fieldbus Memory Management Unit

Die Fieldbus Memory Management Unit (FMMU) befindet sich im Data Link Layer und ist
in jedem SubDevice integriert. FMMUs werden fur die logischen EtherCAT Kommandos
benutzt, welche Ublicherweise mit nur einem Frames ausgetauscht werden und so die
zyklische Kommunikation realisieren. FMMUs implementieren logische Adressen bit- oder
byteweise auf die physikalischen Adressen des ESCs.

Wahrend des Bootvorgangs konfiguriert das MainDevice die FMMU aller SubDevices. Da-
durch wird dem Bereich des logischen Prozessdatenabbildes ein lokaler Adressraum zu-
geordnet. Jeder FMMU-Kanal ordnet einen kontinuierlichen logischen Adressraum einem
kontinuierlichen physikalischen Adressraum auf dem SubDevice zu. Die FMMU entnimmt
dem durchlaufendem Telegramm Daten und fiigt welche hinzu. Das Delay betragt hierbei
nur wenige Nanosekunden [Teca].

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 25

2.3.10. SyncManager

Der SyncManager ist fir Datenkonsistenz und sicheren Datenaustausch zwischen MainDevi-
ce und den Applikationen auf den SubDevices verantwortlich. Er schiitzt einen DPRAM'°-
Bereich vor gleichzeitigem Zugriff. Das MainDevice konfiguriert die SyncManager auf den
SubDevices. Dabei werden die Richtung und die Art und Weise der Kommunikation festge-
legt. Dafir steht ein Datenpuffer zur Verfigung. Es gibt zwei Arten von Sync-Managern:

— Buffered-Type-SyncManager (Drei-Buffer-SyncManager)

- genutzt fur zyklische Prozessdatenkommunikation

drei physikalisch Buffer mit identischer GréBe

immer ein freier Buffer zum Schreiben

immer ein konsistenter Buffer zum Lesen (auBer beim ersten Mal Schreiben)

Lesen und Schreiben ist zu jeder Zeit fir Main- und SubDevices mdglich

wird schneller geschrieben als gelesen, gehen dltere Daten verloren

die Adressen des Buffers werden in der SyncManager Konfiguration eingestellt

— Zugriffe auf den ersten Bereich des Buffers, werden an die drei Buffer weiterge-
leitet

- andere SyncManager werden so konfiguriert, dass sie den Speicherbereich des
zweiten und dritten Buffers nicht adressieren

- ein Buffer wird fur Schreibzugriff dem Producer zugeordnet; ein anderer Buffer
dem Consumer fur Lesezugriff; ein Buffer halt die Daten konsistent

7 Mailbox-Type-SyncManager (Ein-Buffer-SyncManager)
- genutzt fir Mailboxkommunikation der Protokolle der SubDevice-Applikationsschicht

- ein Buffer mit zuvor konfigurierter GroBe

%Dual-Port RAM

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

26 2. Grundlagen

— Schutz vor Dateniberlauf

— Leseseite liest, bevor Schreibseite schreiben kann und vice-versa — Buffer wird
nach Zugriff gesperrt

— Handshake zwischen Main- und SubDevice fur Datenaustausch [Teca]

2.3.11. Implementierung von EtherCAT Interfaces

Die EtherCAT-Technologie wurde speziell flr ein kostenginstiges Design optimiert, so dass
das Hinzuflgen einer EtherCAT-Schnittstelle zu einem Sensor, I1/0-Gerat oder Embedded-
Controller die Geratekosten nicht wesentlich erhéhen sollte. Dartiber hinaus erfordert die
EtherCAT-Schnittstelle auch keine leistungsstarkere CPU - die CPU-Anforderungen richten
sich lediglich nach den Anforderungen der Zielanwendung. Bei der Entwicklung einer
Schnittstelle sind neben den Hard- und Softwareanforderungen auch der Entwicklungssup-
port und die Verflgbarkeit von Kommunikationsstacks wichtig. Die EtherCAT Technology
Group bietet weltweiten Entwicklersupport, um Fragen oder technische Probleme schnell
zu beantworten. Evaluierungskits verschiedener Hersteller, Entwickler-Workshops sowie
kostenloser Beispielcode erleichtern den Einstieg in die Entwicklung. Fir den Endanwender
ist der wichtigste Faktor die Interoperabilitat von EtherCAT-Geraten verschiedener Hersteller.
Um die Interoperabilitat zu gewahrleisten, sind die Geratehersteller verpflichtet, einen
Konformitatstest durchzufthren, bevor sie ihr Gerat auf den Markt bringen. Der Test prift,
ob die Implementierung der EtherCAT-Spezifikation entspricht, und kann mit dem EtherCAT
Conformance Test Tool durchgefihrt werden. Der Test kann auch wahrend der Gerdteent-
wicklung eingesetzt werden, um Implementierungsprobleme frihzeitig zu erkennen und zu
korrigieren [Eth].

MainDevice

Die Schnittstelle fir ein EtherCAT MainDevice hat eine einzige, unglaublich einfache Hard-
wareanforderung: einen Ethernet-Port.

Die Implementierung verwendet entweder den On-Board-Ethernet-Controller oder eine kos-
tenglnstige Standard-Netzwerkkarte, so dass keine spezielle Schnittstellenkarte erforderlich
ist. Das bedeutet, dass ein MainDevice mit nur einem Standard-Ethernet-Port eine harte
Echtzeit-Netzwerkldsung implementieren kann.

In den meisten Fallen ist der Ethernet-Controller Gber Direct Memory Access (DMA) inte-
griert, so dass keine CPU-Kapazitat fir die Datenlbertragung zwischen dem MainDevice

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 27

und dem Netzwerk benotigt wird. In einem EtherCAT-Netzwerk erfolgt das Mapping bei
den SubDevices. Jedes SubDevice schreibt seine Daten an die richtige Stelle im Prozessabbild
und liest die an es adressierten Daten, wahrend der Frame das Device durchlduft. Daher ist
das Prozessabbild, das am MainDevice ankommt, bereits korrekt sortiert. Da die MainDevice-
CPU nicht mehr fur die Sortierung zustandig ist, hdngen ihre Leistungsanforderungen
nur noch von der gewlnschten Anwendung und nicht von der EtherCAT-Schnittstelle ab.
Besonders fir kleine, mittlere und klar definierte Anwendungen ist die Implementierung
eines EtherCAT MainDevices sehr einfach. EtherCAT MainDevices sind fur eine Vielzahl von
Betriebssystemen implementiert worden wie bspw. Windows und Linux in verschiedenen
lterationen, QNX, RTX, VxWorks, Intime, eCos. Die ETG-Mitglieder bieten eine Vielzahl von

[Control task]

/A_\ 1

N -
Process image
description (XML)

o o\

MainDevice

>

XML parser

e }

M A

System

configuration EihetCat
tool

network
information

HW configuration HDR Process data
Init Commands
. \T/ i
online functions ~ =
EtherCAT MainDevice driver
EtherCat K A
SubDevice *
information
(ESI)
Standard Ethernet MAC
XML

Abbildung 2.12.: Typische EtherCAT MainDevice Architektur

Optionen an, um die Implementierung eines EtherCAT MainDevice zu unterstitzen. Diese
reichen vom kostenlosen Download der EtherCAT MainDevice Libraries tber Beispielcode
far MainDevices bis hin zu Komplettpaketen (inklusive Services) flr verschiedene Echtzeit-
Betriebssysteme und CPUSs.

Um ein Netzwerk zu betreiben, bendtigt das EtherCAT MainDevice die zyklische Prozessda-
tenstruktur sowie Boot-Up-Kommandos fur jedes SubDevice. Diese Kommandos kénnen
mit Hilfe eines EtherCAT-Konfigurationstools, das die EtherCAT SubDevice Information (ESI)-
Dateien der angeschlossenen Gerate verwendet, in eine EtherCAT-Network-Information-
(ENI)-Datei exportiert werden.

Der Umfang der verfligbaren MainDevice-Implementierungen und ihrer unterstttzten Funk-
tionen variiert. Je nach Zielanwendung werden optionale Funktionen unterstltzt oder

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

28 2. Grundlagen

bewusst weggelassen, um die Auslastung der Hard- und Softwareressourcen zu optimieren.
Aus diesem Grund werden EtherCAT MainDevices in zwei Klassen eingeteilt:

— ein Class-A-MainDevice ist ein Standard EtherCAT MainDevice
7 ein Class-B-MainDevice ist ein MainDevice mit weniger Funktionen

Grundsatzlich sollten alle MainDevice-Implementierungen eine Class-A-Klassifizierung an-
streben. Die Klasse B wird nur fir Falle empfohlen, in denen die verfligbaren Ressourcen
nicht ausreichen, um alle Funktionalitdten zu unterstitzen, wie z. B. in eingebetteten
Systemen [Eth].

SubDevice

EtherCAT SubDevices nutzen kostengtnstige EtherCAT-SubDevice-Controller (ESC) in Form
eines ASICs, FPGAs oder integriert in einen Standard-Mikrocontroller. Einfache SubDevices
bendtigen nicht einmal einen zusatzlichen Mikrocontroller, da die Ein- und Ausgdnge direkt
an den ESC angeschlossen werden kénnen. Bei komplexeren SubDevices hangt die Kom-
munikationsleistung nur geringfligig von der Leistung des Mikrocontrollers ab.

Die Hardwarekonfiguration wird in einem non-volatile Speicher (z. B. einem EEPROM) -

A

PDI (Process data interface)

~
ESC
Process data EtherCAT

SubDevice
L Dual port memory Controller
SYNC-manager, FMMU } ‘ Registers }
EtherCAT processing unit
and auto-forwarder with loop back
EtherCAT port o EtherCAT port n
k Ml Mil j

1 |
RJ45 J Magne!ich PHY] PHY] Magnetich RJ45 J

Abbildung 2.13.: SubDevice Hardware: ESC mit direktem I/0

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 29

dem SubDevice Information Interface (Sll) - gespeichert, der Informationen tber die grundle-
genden Gerateeigenschaften enthalt. Dadurch kann das MainDevice diese beim Hochfahren
lesen und das Gerat betreiben, auch wenn die Geradtebeschreibungsdatei nicht verfugbar ist.
Die mit dem Gerat gelieferte ESI-Datei ist XML-basiert und enthalt die vollstandige Beschrei-
bung seiner Uber das Netzwerk zuganglichen Eigenschaften. Dazu zéhlen Informationen
wie z. B. Prozessdaten und deren Mapping-Optionen, die unterstitzten Mailbox-Protokolle
einschlieBlich optionaler Funktionen sowie die unterstitzten Synchronisationsmodi.

Auf der ETG-Website findet sich ein SubDevice Implementation Guide mit nitzlichen Tipps
und Hinweisen auf weiterfihrende Dokumentationen zur Implementierung von SubDevices
[Eth]:

EtherCAT SubDevice Implementation Guide

2.3.12. EtherCAT State Machine

EtherCAT SubDevices werden durch das MainDevice gesteuert. Dafur gibt es in den Sub-
Devices die EtherCAT State Machine (ESM). Je nach State sind verschiedene Funktionen
auf den SubDevices ausfuhrbar. Vor allem wahrend des Initialisierungs-Prozesses mussen
spezifische Befehle vom MainDevice an die SubDevices gesendet werden. Es gibt folgende
States:

= |Initialisierung (INIT)

= Pre-Operational (PREOP)

- Safe-Operational (SAFEQP)

7 Operational (OP)

- Wartungszustand (B0OOT)
Die einzelnen States werden in den folgenden Unterkapiteln erklart. Die méglichen Uber-

gange zwischen den States sind in Abbildung 2.14 zu sehen. Nach dem Bootvorgang des
SubDevices befindet es sich regular im State 0P [Tecc].

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.ethercat.org/en/downloads/downloads_7BA2567EB9F443219AD0014448F674F2.htm

30 2. Grundlagen

Init
(P) <Pl>l CHIC
e —— -
. (Sl) . Bootstrap
Pre-Operational el
(o1 (PS)I (SP)
(OF) Safe-Operational
(SO)| (0S)
Operational

Abbildung 2.14.: EtherCAT State Machine [Tecc]

INIT State

7 Zustand nach Einschalten des Gerats
- weder Mailbox- noch Prozessdatenkommunikation méglich

— flr die Mailbox-Kommunikation initialisiert das MainDevice die Sync-Manager-Kanale
0 und 1 [Tecc]

Im INIT-State fUhrt das MainDevice eine Discovery des Busses und somit der angeschlos-
senen SubDevices durch. Daflr wird die Auto Increment Address genutzt.

PREOP State

— beim Ubergang INIT — PREOP Uberprift das SubDevice, ob die Mailbox korrekt
initialisiert wurde

—~ Mailbox-Kommunikation méglich (sofern Mailbox-Support vorhanden) ; Prozessda-

tenkommunikation nicht

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 31

- das MainDevice initialisiert:
- Sync-Manager-Kanale (ab Kanal 2) fr die Prozessdaten
- FMMU Kanale

- PDO-Mapping oder Sync-Manager-PDO-Assignment, sofern auf SubDevice ver-
flgbar

— Ubertragung der Einstellungen fir Prozessdateniibertragung sowie ggf. klemmenspe-
zifische Parameter, welche von den Defaulteinstellungen abweichen [Tecc]

SAFEOP State

— beim Ubergang PREOP — SAFEOP Uberprift das SubDevice, ob die Sync-Manager-
Kanale fur Prozessdatenkommunikation und die Einstellungen der DCs korrekt initiali-
siert wurde

7 Mailbox-Kommunikation und Prozessdatenkommunikation méglich
= das SubDevice kopiert Input-Daten in den entsprechenden DPRAM-Bereich des ESCs
= das SubDevice halt seine Outputs im sicheren Zustand und gibt diese nicht aus

— Input-Daten werden am SubDevice zyklisch aktualisiert [Tecc]

OP State

— vor dem Ubergang SAFEOP — OP miissen bereits giltige Output-Daten (ibertragen
werden

7 Mailbox-Kommunikation und Prozessdatenkommunikation méglich

= das SubDevice kopiert seine Ausgangsdaten auf seine Ausgange [Tecc]

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

32 2. Grundlagen

BOOT State

— genutzt fur: Wartung und Firmwareupdate der SubDevices
7 Mailbox-Kommunikation nur via FOE maglich

7 Prozessdatenkommunikation nicht maglich [Tecc]

2.3.13. Working Counter

Sobald ein EtherCAT Device erfolgreich adressiert und eine Lese-/Schreiboperation erfolg-
reich durchgefthrt wurde, wird der Working Counter erhdht. Nach dem Durchlauf des
Telegramms durch das ganze Netz, kann jedem Datagramm ein zu erwartender Wert fr
den Working Counter zugewiesen werden. Das MainDevice kann den tatsachlichen mit
dem zu erwartenden Wert vergleichen und so feststellen, ob das Datagramm erfolgreich
verarbeitet wurde [Tecb].

Tabelle 2.5.: EtherCAT Working Counter [Tecb]

Kommando Erfolg Erhohung
Lese-Kommando kein Erfolg +0
erfolgreiches Lesen +1
Schreib-Kommando kein Erfolg +0
erfolgreiches Schreiben +1
Lese-/Schreib-Kommando kein Erfolg +0
erfolgreiches Lesen +1
erfolgreiches Schreiben +2
erfolgreiches Lesen und Schreiben +3

2.3.14. Wichtige Kommandos

Tabelle 2.6 listet die wichtigsten EtherCAT Kommandos auf:

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT

33

Tabelle 2.6.: EtherCAT Commands [Tecb]

Cmd

Abkiirzung

Name

Beschreibung

NOP

No Operation

SubDevice ignoriert das Kommando

APRP

Auto Increment Read

SubDevice inkrementiert Adresse und
schreibt gelesene Daten in Datagram,
falls address ==

APWR

Auto Increment Write

SubDevice inkrementiert Adresse und
schreibt Daten in Speicher,
falls address ==

APRW

Auto Increment Read Write

SubDevice inkrementiert Adresse und

schreibt Daten ins Datagramm und

neu bezogene Daten in denselben Speicherbereich ,
falls address ==

FPRD

Configured Address Read

SubDevice schreibt die ausgelesenen Daten ins Datagram,
wenn seine Adresse == Adresse im Datagram

FPWR

Configured Address Write

SubDevice schreibt Daten in Speicherbereich,
wenn seine Adresse == Adresse im Datagram

FPRW

Configured Address Read Write

SubDevice schreibt die ausgelesenen Daten ins Datagram und
schreibt neue Daten in denselben Speicherbereich,
wenn seine Adresse == Adresse im Datagram

BRD

Broadcast Read

alle SubDevices schreiben ein logisches OR der Speicher-
und der Datagrammdaten ins Datagramm
alle SubDevices inkrementieren das Positionsfeld

BWR

Broadcast Write

alle SubDevices schreiben Daten in den Speicherbereich und
inkrementieren das Positionsfeld

BRW

Broadcast Read Write

alle SubDevices schreiben ein logisches OR der Speicher-
und der Datagrammdaten ins Datagramm

alle SubDevices schreiben Daten in den Speicherbereich
alle SubDevices inkrementieren das Positionsfeld

LRD

Logical Memory Read

SubDevices schreiben Daten in den Speicherbereich,
wenn: empfangene Adresse ==
eine der zum Schreiben konfigurierten FMMU-Bereiche

LWR

Logical Memory Write

SubDevices schreiben ausgelesene Daten in den Speicherbereich,
wenn: empfangene Adresse ==
eine der zum Lesen konfigurierten FMMU-Bereiche

LRW

Logical Memory Read Write

SubDevices schreiben ausgelesene Daten ins Datagramm,
wenn empfangene Adresse ==

eine der zum Lesen konfigurierten FMMU-Bereiche
SubDevices schreiben Daten in den Speicherbereich,

wenn: empfangene Adresse ==

eine der zum Schreiben konfigurierten FMMU-Bereiche

13

ARMR

Auto Increment Read Multiple Write

SubDevices inkrementieren das Adressfeld und
schreiben ausgelesene Daten ins Datagram,

wenn: empfangene Adresse == 0,

ansonsten: Daten in den Speicherbereich schreiben

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

34 2. Grundlagen

2.4. Mikrocontroller ohne Betriebssystem

Mikrocontroller ohne Betriebssystem haben im Vergleich zu herkémmlichen PCs, auf denen
ein Betriebssystem lauft, die folgenden Vor- und Nachteile bzw. Herausforderungen.

7 Vorteile:
— kein Scheduling
— kein Teilen der Ressource
— volle Kontrolle Gber die Hardware
7 Nachteile/Herausforderungen:
— keine betriebssystemiblichen Mechanismen wie Threads/Mutexe/Semaphore
- keine abstrakten Methoden fur Hardwarezugriffe, Clocks, usw.
- begrenzte Ressourcen (Rechenzeit, Speicher (RAM, FLASH))

Diese Herausforderungen missen beim Redesign der Bibliotheken beachtet werden, da die
bisherigen Implementierungen der beiden Bibliotheken fir den Einsatz auf Betriebssystemen
geschrieben wurden.

Einerseits haben wir so also vollen Zugriff auf alle Ressourcen (CPU, Peripherie, Speicher)
und mussen diese nicht mit anderen konkurrierenden Systemen teilen, sondern nur internen
Prozessen. Andererseits mussen infolgedessen die Zugriffe auf eben diese Ressourcen
sinnvoll getatigt werden. Dazu zahlen das Sperren und die Freigabe der Ressourcen bzw.
eine Uberpriifung, ob diese zum Zeitpunkt des Zugriffs bereits in Benutzung sind. Da es
ohne das Benutzen eines Betriebssystem keinen Scheduler gibt, der den verschiedenen
Tasks Rechenzeit bereitstellt, und auch keine Tasks bzw. Threads fir nebenldufige Prozesse
angelegt werden kénnen, missen diese Aufgaben bspw. durch das Aufrufen von Interrupt
Service Routinen (ISRs) der Timer getriggert werden. Dies stellt sicher, dass bestimmte
Prozesse in einem fest definierten Zyklus stattfinden kénnen.

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.5. Anforderungen an Echtzeitfahigkeit und Latenz 35

2.5. Anforderungen an Echtzeitfdhigkeit und Latenz

Nach den in Kapitel 2.1 beschriebenen Kriterien fir ein Echtzeitsystem bestehen folgende
Anforderungen an EtherCAT und den eingesetzten Mikrocontroller:
— Reaktion auf Ereignisse innerhalb festgelegter Deadlines
—~ Garantierte Ausfihrung / Laufzeit von Tasks innerhalb vorgebener zeitlicher Kriterien
7 Einhalten von harten und weichen Echtzeitkriterien
— Ausfihrung periodischer Tasks
- Ausfiihrung von sporadischen (azyklischen) Tasks und deren Einfluss

= Fahigkeit , zeitgleicher” Ausflihrung von ereignis- und zeitgesteuerten Events

Ausgearbeitete Details zu diesen Punkten werden im folgenden Kapitel konkretisiert.

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3. Konzeption des
EtherCAT-Feldbus-MainDevices

Dieses Kapitel beschaftigt sich mit der Konzeption des EtherCAT MainDevices. Abschnitt
3.1 listet die nétigen Systemanforderungen auf, die flr den Einsatz von libethercat
auf einem MainDevice nétig sind. Daraufhin wird auf die Bedingungen eingegangen, die
hardwaretechnisch aus dem EtherCAT Standard fur ein MainDevice entstehen (s. Abschnitt
3.2). Dort wird auBerdem die Auswahl eines geeigneten Mikrocontrollers getroffen und
mogliche Alternativen dargelegt. Im Anschluss werden die Bedingungen der geplanten
Softwarearchitektur erldutert (s. Abschnitt 3.3). Das Ende des Kapitels stellt das Konzept
des geplanten Echtzeitverarbeitungsmodell dar (s. Abschnitt 3.4).

3.1. Systemanforderungen und Designziele

Aktuell werden die beiden Bibliotheken libethercat und libosal auf einem Linux mit
PREEMPT-RT! Patch betrieben. Dies zielt auf eine nahezu vollstdndige Unterbrechbarkeit
der laufenden Ressourcen (Kernel, Treiber, Prozesse) ab. Daflr werden die IRQ-Handler
(Interrupt Request-Handler) in Top-Half (kurzer IRQ-Kontext) und Bottom-Half (IRQ-Kernel-
Thread — eigentliche Behandlung des Interrupts) aufgeteilt, so dass diese beinahe jederzeit
unterbrechbar werden.

libethercat im Linux EtherCAT MainDevice lauft hier als normaler User-Level Prozess
und wird lediglich mit einer héheren RealTime-Prioritdat gestartet. Die Anbindung an die
Netzwerkhardware erfolgt entweder Uber den Netzwerkstack des Betriebssystems oder
Uber einen modifizierten Treiber des eingesetzten Netzwerkkontrollers.

- Vorteile:

- Einfache Entwicklung eines System mit gewohntem OS und Tools

"Linux Foundation Realtime

4#;& DLR - Konzeptionierung, Portierung und

37
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://wiki.linuxfoundation.org/realtime/start

38 3. Konzeption des EtherCAT-Feldbus-MainDevices

- Datenaustausch mit Regelung erfolgt meist mittels RAM
— bei Nutzung des Netzwerkstacks:

» Kein Wissen tber den Aufbau der Netzwerkhardware notwendig, es werden
lediglich Ethernet-Frames gesendet und empfangen

» automatische Unterstitzung aller Netzwerkcontroller mit Linux-Support
=~ Nachteile:

— Gutes Tuning/Einstellen des Systems und aller darin befindlichen Prozesse erfor-
derlich

— Zu viel Scheduling-Overhead, zu viele IRQs kénnen das Verhalten beeinflussen

— Geteilte Resourcen wie RAM, Busse (z.B. PCle, PCI) kdnnen sich als Flaschenhals
herausstellen

— Genauigkeit des Timers fur die Generierung der deterministischen/zyklischen
Kommunikation

libethercat implementiert das EtherCAT MainDevice auf dessen Netzwerkinterface, damit
dieser die EtherCAT SubDevices konfigurieren und mit diesen kommunizieren kann. Wichtig
ist hierbei eine minimale Latenz bei stabiler Kommunikation. 1libethercat unterstitzt
deshalb die folgenden Anforderungen, um ein voll funktionsfahiges EtherCAT Netzwerk
aufbauen zu kénnen:

= Distributed Clock Support

= Scannen des EtherCAT Busses in INIT-to-INIT Transition; Wechseln zum INIT-State
veranlasst einen erneuten Bus-Scan

—~ Wechseln in den PREOP-State ermdglicht vollen Mailbox-Support (sofern auf dem
SubDevice verflgbar)

— PREOP-to-SAFEQP Transition bereitet alle SubDevices in einer ProcessDataGroup (PDO)
vor fur:

— Senden des INIT-Kommandos

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3.1. Systemanforderungen und Designziele 39

- Berechnen der zyklischen Prozessdaten

- Anlegen der Sync-Manager Konfiguration

— Anlegen der FMMU Konfiguration

— Konfigurieren der SubDevices fir Distributed Clocks
— zyklisches Bereitstellen von gemessenen Prozessdaten

7 SAFEOP-to-0P Transition sendet zyklische Kommandos an die SubDevices in jedem
Gruppendurchlauf

— effizientes Frame-Scheduling: EtherCAT Datagramme kommen nur in SAFEQOP und OP
in die Warteschlange. Diese Datagramme werden in einen oder mehrere Ethernet
Frames gepackt und durch einen Aufruf von hw_tx () zyklisch versendet

7 Unterstltzung einer Queue mit Mailbox Initalisierungskommando fir alle SubDevices
—~ Mailbox Support CoE, SoE, FoE

Um dies zu gewahrleisten, missen alle Funktionen, die mit den oben genannten Punkten
in Verbindung stehen, fur den Betrieb auf dem Mikrocontroller angepasst werden. Diese
Funktionen werden in Kapitel 4 aufgefuhrt und erldutert.

Das Anpassen von Funktionen muss auch in 1ibosal getdtigt werden. Dazu zahlen bspw.
das Erstellen bzw. Anpassen rudimentdrer Mutexe und Semaphoren und das Auslesen von
Timern. Dies gewahrleistet die Hardware/Betriebssystem-Abstraktion.

Das zyklische Senden der Daten muss deterministisch gemaB den jeweiligen Anforderungen
erfolgen. Dies soll in dieser Arbeit alle Tms erfolgen. Ob Daten fur azyklische Kommunikati-
on vorliegen, soll alle 10ms Uberpruft werden. Azyklische Daten sollen dann zusammen mit
den zyklischen Daten versendet werden. Hierbei ist es wichtig, dass die zyklischen Daten
eine hohere Prioritat genieBen als die azyklischen, um Unterbrechungen im Betrieb des
EtherCAT Netzes auszuschlieBen. Deswegen werden in jedem Zyklus zunachst die zyklischen
Prozessdaten in einem Ethernet-Frame verschickt. Falls azyklische (nicht zeitkritische) Daten
vorliegen, sollen diese im Anschluss versendet werden.

Da libosal Zeiten mit einer Genauigkeit von Nanosekunden erfasst und fir Funktionen
bereitstellt, muss diese Fahigkeit auch bei der Portierung auf den STM32 erhalten bleiben.
Dies ist auch eine Anforderungen an die Distributed Clocks, da diese im Nanosekunden-
bereich arbeiten.

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

40 3. Konzeption des EtherCAT-Feldbus-MainDevices

3.2. Analyse und Auswahl der Zielhardware

3.2.1. Analyse der Zielhardware

Die einzige Anforderung an das EtherCAT MainDevice ist laut EtherCAT Standard das Vor-
handensein einer Ethernet Schnittstelle. Desweiteren mussen jedoch andere Parameter bei
der Auswahl eines Mikrocontrollers wie Taktfrequenz, Speicher und weitere Peripherie be-
trachtet werden. EtherCAT basiert auf 100Base-T?, also einer Ubertragungsgeschwindigkeit
von 100 MBit/s. Dies bedeutet, dass es 10 Nanosekunden dauert, um 1 Bit zu senden.

1 Bit

10 ns
Da fur die Bereitstellung der Distributed Clocks Zeiten mit Nanosekunden-Genauigkeit
bendtigt werden, mussen die Ressourcen der Hardware diese Anforderung erfillen. Einer-
seits missen die Timer Zeiten im einstelligen Nanobereich erfassen, andererseits muss die
Bitbreite des Timer-Counters gro3 genug sein, um 1 Sekunde in Nanosekunden zahlen zu
kdnnen.

100 MBit/s =

(3.1

1s = 1.000.000.000 ns
216 < 1.000.000.000

232 > 1.000.000.000 (3.2)
= Nutzung eines 32-bit Timer-Counters

1
~ 1.000.000.000

Zeiten im einstelligen Nanosekunden-Bereich sind fir diese Arbeit ausreichend. Daraus
folgt:

1ns =1GHz

10
1015 = T550.000.000 — 100 MH?

(3.3)
= Taktfrequenz > 100 MHz

3.2.2. Auswahl und Beschreibung der Zielhardware

Als Mikrocontroller wurde ein STM32-H747-DISCO? von STMicroelectronics* ausgewahlt,
da dieser samtliche Anforderungen an einen Mikrocontroller ohne Betriebssystem und Ether-

2100BASE-T
3STM32-H747-DISCO Produktwebsite
4STMicroelectronics Website

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.computerweekly.com/de/definition/100BASE-T
https://www.st.com/en/evaluation-tools/stm32h747i-disco.html
https://www.st.com/content/st_com/en.html

3.2. Analyse und Auswahl der Zielhardware 41

CAT erfillt. Folgende Eigenschaften des Mikrocontrollers sind von besonderer Bedeutung
bei der Auswahl der Hardware:

= 32 Bit Arm-based Mikrocontroller
- 2 MBytes Flash Memory, 1 MByte RAM

7 Ethernet-fahige RJ45-Schnittstelle (100 MBits/s) nach IEEE802.3-2002 mit dediziertem
Netzwerkcontroller

— max. 480 MHz Takt
-~ 256 MBit SDRAM

7 On-board STLINK-V3E in-circuit debugger/programmer mit USB-re-enumeration Fa-
higkeit: Massenspeicher, Virtual COM Port und Debug Port

7 niedrige Interrupt Latenz

Weitere Eigenschaften kénnen im Datasheet des STM32H747 nachgelesen werden. Entschei-
dend fur die Auswahl des STM32-H747 war vor allem das Vorhandensein eines dedizierten
Netzwerkcontrollers, was die meisten Mikrocontroller nicht haben. Folgende Mikrocontroller
wurden demnach auch in Betracht gezogen:

— PoE>-fahiger ESP32
— Microchip PIC SAM E Family
— Microchip PIC32 Ethernet Starterkit

Da das STM32-H747-DISCO Board performanter lauft als ein ESP32 und vor Ort verflg-
bar war, fiel die Entscheidung zugunsten des STM32-H747-DISCO Boards. Eine grobe
Gegenuberstellung der Performance von STM32 im Gegensatz zu ESP32 gibt Tabelle 3.1
[STMDb][Ger].

>Power over Ethernet

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.st.com/resource/en/datasheet/stm32h747ag.pdf
https://www.olimex.com/Products/IoT/ESP32/ESP32-POE/open-source-hardware
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e
https://de.rs-online.com/web/p/entwicklungstools-microcontroller/8148992

42 3. Konzeption des EtherCAT-Feldbus-MainDevices

Tabelle 3.1.: Vergleich STM32 und ESP32

Ressource STM32 ESP32
Main processor Arm Cortex-M7 und M4 | Tensilica Xtensa 32-bit LX6
max. Clock Frequency 480 MHz 240 MHz
Performance 1327 DMIPS® 660 DMIPS
Internal ROM 2 MB 448 kB
SRAM 1 MB 520 kB
Ethernet RMII, Ml RMII

3.3. Architektur des EtherCAT MainDevices

Da auf einem Mikrocontroller ohne Betriebssystem keine Mechanismen wie Scheduler
verfligbar sind, mussen diese auf anderem Wege realisiert werden. Das Scheduling soll hier
mittels Timern und damit verbundenen Interrupts erfolgen. Da das Senden der zyklischen
Prozessdaten wichtiger ist als das zyklische Uberpriifen und Senden der azyklischen Daten,
mussen die Interrupts priorisiert werden. Dies kann via NVICs (Nested Vector Interrupt
Control) erzielt werden. NVICs weisen jeder Interrupt-Quelle eine Prioritat zu. Der STM32
verflgt Uber 16 Level (0-15) von Interrupt-Prioritaten. Je niedriger der Wert der Prioritat
ist, desto hoher ist die Dringlichkeit seiner Ausfihrung. Ein Interrupt mit Prioritat=0 kann
dadurch alle ISRs, deren Prioritat > O ist, unterbrechen. Dafur wird zunéchst der Programm-
kontext gespeichert, bevor der Interrupt-Handler ausgefihrt wird. Sollte wahrend dieser
Speicheroperation ein Interrupt mit niedrigerem Wert ausgel®st werden, so wechselt der
Handler direkt zu diesem Interrupt, sobald die Speicheroperation beendet ist. Sobald alle
Interrupts abgearbeitet sind, stellt der Prozessor den vorherigen Kontext aus dem Stack
wieder her und féhrt mit seiner normalen Ausfthrung fort [STMal].

3.4. Konzeption des Echtzeit-Verarbeitungsmodells

Folgende Anforderungen entstehen aus den beiden Bibliotheken beziiglich der Echtzeit:
7 Zahler im ns-Bereich
7 Zahler im s-Bereich

— Aussenden eines EtherCAT Frames alle 1 ms (Hard Deadline)

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3.4. Konzeption des Echtzeit-Verarbeitungsmodells

43

— Uberprifen der Mailbox alle 10 ms und ggf. Senden der Daten (Firm Deadline)
=7 Priorisierung der Interrupts (via NVIC)

— Techniken zur Minimierung der Latenz (z.B. direkte Registerzugriffe, DMA, ISR)

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4. Implementierung und Portierung
auf den Mikrocontroller

Dieses Kapitel beschaftigt sich mit der Implementierung und Portierung der beiden Biblio-
theken. Daflr missen zunachst Arbeiten an der Hardware des STM32-H747 Boards getatigt
werden, um die benétigte Hardware nutzen zu kénnen, bevor diese konfiguriert werden
kann (s. Abschnitt 4.1). Im Anschluss werden weitere nétige Vorarbeiten wie die Hardware-
Konfiguration des Ethernet- und des UART-Moduls sowie der Interrupts thematisiert (s.
Abschnitt 4.2). Daraufhin wird auf die nétigen Anpassungen im Code eingegangen, damit
die Kommunikation via Ethernet und UART ausgefihrt werden kann (s. Abschnitt 4.3).
Abschnitt 4.4 erldutert die nétigen Anpassungen der Bibliotheksdateien, damit EtherCAT-
Kommunikation auf dem STM32-H747 stattfinden kann. Das Ende das Kapitels erldutert
notiges Finetuning von Hard- und Software (s. Abschnitt 4.5) und beschaftigt sich mit
Debugging und Fehlerbehebung (s. Abschnitt 4.6).

Fur die Implementierung der beiden Bibliotheken 1ibethercat und libosal wurde zu-
nachst jeweils ein Fork der Bibliotheken gemacht und in meinem persénlichen GitHub
Repository innerhalb des RMC-GitHubs erstellt. In diesem Repository wurden zusatzlich zum
Code auch anderen Dateien wie bspw. Literatur, Captures und Skripte gesichert. Zusatzlich
befinden sich darin auch die STM32-Projekte, die als Vorarbeit fir diese Arbeit dienten
(UART- und Ethernet-Kommunikation). Damit keine Konflikte beim Pushen des Repositories
mit dem aktuellen Stand des Master-Branches entstehen, wurde flr 1ibosal ein Feature-
Branch namens feat/stm32 erstellt, auf welchem gearbeitet und zu dem gepusht wird.
[...] in den nachfolgenden Codeausziigen steht fur nicht dargestellte Teile des Codes im
File, da dieser unverandert geblieben ist. Dies dient der Lesbarkeit und dem Fokus auf die
wichtigen Teile des Codes. Sofern dies sinnvoll méglich war, wurde in den Codeausziigen
auch die Zeilennummerierung passend zum File, aus dem sie stammen, angepasst. Sollte
im laufenden Text nur eine Zeilennummer angegeben sein, so bezieht sich diese auf den
zuvor genannten Codeauszug.

4#;& DLR — Konzeptionierung, Portierung und 45
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

46 4. Implementierung und Portierung auf den Mikrocontroller

4.1. Hardwarekonfiguration und -anpassung

Bevor die beiden Bibliotheken fir den Einsatz auf dem STM32-H747 portiert werden
kdnnen, muss die Hardware des Mikrocontrollers angepasst und konfiguriert werden.

4.1.1. Anpassung des STM32-H747-DISCO Evaluation Boards

Um die Ethernet-Schnittstelle des STM32 nutzen zu kénnen, mussen im Voraus Lotar-
beiten an der Hardware vorgenommen werden. Dies resultiert aus der Tatsache, dass das
STM32-H747-DISCO Board standardméBig firr den Gebrauch des MEMS' -Digitalmikrophons
konfiguriert bzw. gel6tet ist. Der Ethernet-Port und das Mikrophon teilen sich bestimmte
Pins auf dem Mikrocontroller, was zu Konflikten fuhrt.

Um die Ethernet-Schnittstelle nutzen zu kénnen, mussen Pins (s. Tabelle 4.1) umgeldtet
werden. Die vier Pins sind in Abbildung 4.1 eingezeichnet. Die Létarbeiten wurden von der
institutseigenen Werkstatt getatigt.

Tabelle 4.1.: STM32-H747-DISCO zu I6tende Pins

Pin zu Loten | zugehoriger Port verbunden mit

SB8 offen

SB21 | geschlossen PC1 ETH_MDC

SB17 offen

R87 | geschlossen PE2 ETH_nINT (Ethernet Interrupt)

"Micro-Electro-Mechanical System

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung

47

In der Konfiguration fir den Betrieb des Mikro-
phons sind die Pins aus Tabelle 4.1 invertiert zu
|6ten (Offen — Geschlossen; Geschlossen — Of-
fen). Port PC1 ist dann mit MEMS Digital Micro-
phone DOUT verbunden; PE2 mit MEMS Digital
Microphone CLK [STM20].

4.1.2. Boardkonfiguration

Die Hardwarekonfiguration des STM32 wurde mit
der STM32-CubelDE? (Version 1.16; s. Abbildung
4.2) von STMicroelectronics gemacht. Mit der IDE
ist es moglich per grafischer Umgebung die Hard-
warekomponenten des STM32 zu konfigurieren,
Code zu schreiben und diesen auch zu debuggen.
Das in dieser Arbeit erstellte Projekt tragt den Na-
men eth_rx_tx.

Zunachst wird ein neues STM32 Project angelegt.

Abbildung 4.1.: STM32-H747-DISCO
zu lotende Pins

Abbildung 4.2.: CubelDE Uberblick

Dort kann unter Board Selector das in dieser Ar-
beit benutzte STM32-H747-DISCO ausgewahlt wer-

2STM32-CubelDE

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.st.com/en/development-tools/stm32cubeide.html

48 4. Implementierung und Portierung auf den Mikrocontroller

den. Im anschlieBenden Dialog wird der Projektname eth_rx_tx vergeben und die restlichen
Einstellungen beibehalten. Um die Module des STM32 konfigurieren zu kénnen, wird in
der CubelDE das .ioc-File des Projekts gedffnet (vgl. Abbildung 4.3: eth_rx_tx.ioc).
Mit Offnen des .ioc-Files ist es moglich das Pinout und die Clock des STM32 zu
konfigurieren. AuBerdem werden hier Projekteinstellungen getatigt. Bspw. wurde unter
Project Manager/Code Generator die Option Generate peripheral initialization
as a pair of ’.c/.h’ files per peripheral ausgewahlt, um fir die Peripherie je-
weils ein eigenes Header- (.h) und Code-File (.c) zu generieren. Ansonsten wurden im
Bereich Project Manager und Tools keine weiteren Anderungen getétigt, die von der
Standard-Konfiguration abweichen.

StandardmaBig verwendet CubelDE die fur Mikrocontroller optimierte Version
newlib-nano> der Bibliothek newlib®. Newlib ist eine Portierung von Teilen der C-Standard-
Bibliothek, die fir Geschwindigkeit und Speicherplatz auf eingebetetten Systemen opti-
miert wurde. Da die Ausgabe von Floats und 64-bit Variablen mit newlib-nano auf dem
STM32 und in Verbindung mit libethercat und libosal nur eingeschrankt genutzt
werden kann, wurde das Nutzen von newlib in der Standardversion aktiviert (vgl. Ab-
schnitt 4.3.2). Dafur wurde unter Project/Settings/C_C++ Build/Settings/MCU_MPU
Settings/Runtime library/ die Option Standard C ausgewahlt. Die Einstellungen in
den Bereichen Pinout & Configuration und Clock Configuration werden in den fol-
genden Abschnitten erklart.

Abbildung 4.3.: CubelDE .ioc-File Kontext

3Newlib Nano on GitHub
4Newlib on Sourceware

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://github.com/32bitmicro/newlib-nano-1.0?tab=readme-ov-file
https://sourceware.org/newlib/

4.1. Hardwarekonfiguration und -anpassung 49

Modulkonfiguration

Da fur die Realisierung des EtherCAT MainDevices auf dem STM32 das Nutzen eines CPU-
Kerns ausreichend ist und der CM7-Kern des STM32 Uber eine schnellere Taktrate und
mehr direkt angebundenen Speicher als der CM4 verfiigt, wird nur der CM7 benutzt. Am
CM7 ist der einzige TCM (Tightly Coupled Memory) (64 kB Instruction + 128 kB Data)
angeschlossen, der mit voller Taktrate lauft. Deshalb missen samtliche Module wie bspw.
Timer im Kontext des CM7 aktiviert werden. Der CM7 ist an die D2-Domain via AHB>-
on-chip-Bus verbunden. Diese Verbindung ist wichtig, da die Hardware von Ethernet und
den Timern direkt mit der D2-Domain verbunden ist und diese Domain direkt an den
CM4 angebunden ist. Das Aktivieren der Module auf dem CM7 wird in Abbildung 4.4
am Beispiel der Timer-Module (TIM2, TIM3, TIM4, TIMS5) gezeigt. Die restlichen Module
muUssen analog dazu dem CM7-Kontext hinzugeftgt werden. Dazu gehoéren das Ethernet-
und ein UART-Modul (USART1), die beide in der Kategorie Connectivity zu finden sind.
Ansonsten wurden die Standardeinstellungen beibehalten.

Timers

s | Cortex-M7__ | Cortex-Vid |
O

000000000’/ @QoOooooog
OO0o0ooOoO0ooOoOooOoooooooooon

| |
Abbildung 4.4.: Zuweisung Timer Module zum CM7-Kontext

>Advanced High-Performance Bus

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

50 4. Implementierung und Portierung auf den Mikrocontroller

Clockkonfiguration

Die Clockkonfiguration des STM32 wurde im Reiter Clock Configurationdes .ioc-Files
getatigt. Die maximale Taktrate der Clock des STM32-H747-DISCO betragt 480 MHz. Diese
Taktrate wurde aus den folgenden Grinden auf 400 MHz reduziert:

7 bessere Periode fur eine einfachere Erfassung der Zeit:
- 400 MHz = 2,5 ns
- 480 MHz = 2,083 ns
7 Taktrate > 400 MHz
— Direct SMPS (Switched Mode Power Supply) wird deaktiviert

— Spannungsversorgung muss tUber bestimmte Pins manuell vorgegeben werden
— umstandlicher und nicht zielfuhrend

Clock Configuration

o e[[=]
oLk~ S e

Abbildung 4.5.: STM32 Clock Configuration Kontext

Dafur wurde als Input HSE (High-Speed External clock) im Phase Locked Loop (PLL)
Source Mux mit 25 MHz gewahlt und der PLLCLK (Phase Locked Loop Clock) im System
Clock Mux ausgewahlt, damit die 25 MHz auf 400 MHz hochskaliert werden. Durch Aus-
wahlen des PLLCLK wird auch das €SS (Clock Security System) aktiviert, welches sicherstellt,

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung 51

dass die System Clocks auch im Fehlerfall zuverlassig funktionieren.

Der CM7 Core lauft infolgedessen mit 400 MHz. Alle anderen Ressourcen haben eine
maximale Frequenz von 200 MHz, da der HPRE (Advanced High Performance Bus Prescaler)
auf den niedrigsten Wert (= 2) konfiguriert wurde. Dazu zahlen unter anderem der CM4
Core und auch die D1-, D2- und D3-Bus-Matrix. AuBerdem stellen 240 MHz die allgemein
einstellbare, maximale Taktfrequenz flr diese Ressourcen dar [STM23].

Timerkonfiguration

Aufgrund der Echtzeitanforderungen der beiden Bibliotheken (vgl. 3.4) wurden vier Timer
konfiguriert.

— Timer2 (TIM2) — Zahler ns-Bereich

7 Timer3 (TIM3) — Checken der Mailbox Daten alle 10 ms

— Timer4 (TIM4) — Zahler s-Bereich

— Timer5 (TIM5) — Aussenden der EtherCAT Frames alle 1 ms

Diese vier Timer sind alle mit APB1 (Advanced Peripheral Bus) verbunden [STM23]. Aufgrund
der Clockkonfiguration ist deren Internal Clock auf 200 MHz eingestellt (vgl. Abbildung
4.5: To APB1 Timer Clocks (MHz)). Die Frequenz, mit welcher ein Timer arbeitet, ist
abhangig von dessen Clock Frequency Fcik (= Internal Clock), dem Prescaler Value
PSC und dem Auto-Reload Register ARR. Der Kehrwert dieser Frequenz ist die Output Time
TouT und wird wie folgt berechnet [MBe] :

(ARR + 1)(PSC + 1)
Feik

Tout = 4.1)

TIM2 hat eine Taktfrequenz von 200 MHz, d.h. dass ein Takt 5 ns dauert. Dies stellt in unserer
Konfiguration die kleinste zu erfassende Zeiteinheit dar. AuBerdem verfligt dieser Timer Uber
einen 32-bit groBBen Zahler. Dieser ist wichtig, da so die Nanosekunden bis zu einer Sekunde
erfasst werden kénnen und dadurch zusatzlich nach 1s ein Signal an TIM4 gesendet werden
kann, da TIM4 die abgelaufenen Sekunden zahlen soll (s. Absatz von TIM4). Die Counter

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

52 4. Implementierung und Portierung auf den Mikrocontroller

Period bzw. das ARR und der PSC wurden deshalb wie folgt konfiguriert:

(ARR + 1)(P5C + 1)
Fcik

Tout =

200.000.000 - 1)+ 1)((0) +1
5ns = (« 200 M)/—lt (O +1) = (4.2)

ARR = 200.000.000 — 1
PSC=0

TIM3 hat ebenfalls eine Taktfrequenz von 200 MHz, da er den Takt durch die Internal
Clock erhalt. Der aktivierte, globale Interrupt zum Uberprifen, ob Mailbox-Daten vorliegen,
soll alle 10 ms erfolgen. TIM3 wurde analog zu TIM2 (vgl. Gleichung 4.1) mit folgenden
Werten konfiguriert:

((10.000 — 1) + 1)((200 — 1) + 1)

10.ms = 200 MHz

ARR =10.000 -1
PSC=200-1

Da TIM4 seine Signale zum Inkrementieren des Counters durch den Reset des ARR von
TIM2 bezieht, wurde fUr TIM4 der Slave Mode auf External Clock Mode 1 gesetzt. Da-
mit dieser den Interrupt von TIM2 nutzt, muss als Trigger Source die Option ITR1 gewahlt
werden. Desweiteren wurde der Slave Mode Controller auf ETR mode 1 gesetzt. TIM4
ist ein 16 Bit Timer, d.h. er kann maximal bis 21® = 65536 zahlen. Ein Tag hat insgesamt
24 % 60 * 60 = 86400 Sekunden. Deshalb kénnen mit diesem Timer keine ganzen Tage in
Sekunden gezahlt werden. Deshalb wurde TIM4 so konfiguriert, dass er halbe Tage zahlt,
also eine Counter Period bzw. das ARR = 43200 — 1 ist.

Da TIM5 fir das zyklische Versenden der EtherCAT Frames alle 1 ms zustandig ist und diese
Funktion per Interrupt ausgel®st werden soll, wurde unter NVIC Settings der globale
Interrupt fUr TIM5 aktiviert. PSC und ARR wurden folgendermal3en konfiguriert:

_ ((2.000—1) +1)((100 1) +1)

Lms 200 MHz

(4.4)
ARR =2.000 — 1

PSC=100—-1

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung 53

Fur die beiden Timer TIM5 und TIM3 mussten die Interrupts noch priorisiert werden. Deshalb
wurde im .ioc File im Bereich System Core/NVIC1 TIM5 die Prioritdt O und fir TIM3 die
Prioritat 10 vergeben. Zyklische Daten missen fur einen zuverldssigen Betrieb zwingend
immer alle 1 ms versendet werden. Azyklische Daten kdnnen auch etwas spater versendet
werden ohne die Echtzeit des Systems zu gefahrden. Die ISR von TIM5 darf also die ISR
von TIM3 unterbrechen, andersherum nicht.

Die Settings in den Reitern User Constants und DMA Settings blieben fur alle vier Timer

unverandert.

TIM5 Mode and Configuration

| Configuation |
Reset Configuration
s

| - |
Abbildung 4.6.: TIM5 Konfiguration im .ioc-File

Speicherkonfiguration

Die Bootbereiche des Speichers fir CM7 und CM4 Core liegen in direkt aufeinander-
folgenden Speicherbereichen (CM7: 0x08000000; CM4: 0x08100000) und nehmen ins-
gesamt 2 MByte ein. Da CM4 aktuell nicht genutzt wird, wird der Flashbereich im File
STM32H747XIHX_FLASH.1d fur CM7 von 2 auf 1 MByte reduziert (vgl. Codeauszug 4.1
Z.5), um unvorhersehbares Verhalten zwischen den Speicherbereich der beiden Cores zu
vermeiden. Ansonsten mussten Boot Optionen im Code neu gesetzt werden (BOOT_CM4 =
0). Damit das Ethernet Modul funktioniert, muss RAM_D1 auf Speicherposition 0x24000000
zeigen. Die nachfolgende ETH Section konfiguriert den Speicherbereich, der fir die Ether-

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

54 4. Implementierung und Portierung auf den Mikrocontroller

net bzw. EtherCAT Kommunikation zur Verflgung stehen soll. Er teilt dem Speicher mit, an
welcher Stelle die RX- und TX-Deskriptoren und deren zugehorige Arrays (= Payload) sind.
Dies hat den Sinn, dass die Ethernet Kommunikation direkt Gber DMA erledigt wird und
insofern schneller ist, als wenn die CPU diese Aufgabe Gbernehmen wiurde. Im Bereich der
Arrays liegen die zu versendenden Daten des EtherCAT Frames.

USART-Log-Nachrichten sollen auch durch die DMA gesendet werden. Deshalb wurde daftr
auch ein eigener Speicherbereich festgelegt (s. Codeauszug 4.1 Z. 27-32).

11 /* Memories definition */
2 || MEMORY
3] {
4 RAM_D1 (xrw) : ORIGIN = 0x24000000, LENGTH = 512K
5 FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K /* Memory is divided. <=
Actual start is 0xz08000000 and actual length is 2048K */
6 DTCMRAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
7 RAM_D2 (xrw) : ORIGIN = 0x30000000, LENGTH = 288K
8 RAM_D3 (xrw) : ORIGIN = 0x38000000, LENGTH = 64K
9 ITCMRAM (xrw) : ORIGIN = 0x00000000, LENGTH = 64K
10 [...]
1M /* ETH Section */
12 .eth_sec (NOLOAD) : {
13 . = ABSOLUTE(0x30040000) ;
14 *(.RxDecripSection)
15
16 . = ABSOLUTE(0x30040080) ;
17 *(.TxDecripSection)
18
19 . = ABSOLUTE (0x30040100) ;
20 *(.RxArraySection)
21
22 . = ABSOLUTE(0x30042100) ;
23 *(.TxArraySection)
24
25 } >RAM_D2 AT> FLASH
26 [...]
27 /% ETH Section */
28 .uart_sec (NOLOAD) : {
29 . = ABSOLUTE (0x30044100) ;
30 *(.UARTSection)
31
32 } >RAM_D2 AT> FLASH
33) [...]

Codeauszug 4.1: Flashspeicherkonfiguration

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.2. Kommunikationskonfiguration 55

4.2. Kommunikationskonfiguration

4.2.1. UART-Konfiguration

Das UART-Modul des STM32 wurde fir die serielle Ausgabe von Debugging-Nachrichten
aktiviert. 1ibethercat sendet standardmaBig Debugging-Nachrichten, deren genaue Kon-
figuration in 4.4 erklart wird. Fur die Ausgabe wurde das Modul USART1 (Universal Syn-
chronous/Asynchronous Receiver Transmitter) ausgewahlt, da dieses im Gegensatz zu den
gangigen UART-Modulen direkt mit der ST-Link-Schnittstelle verbunden werden kann. Dafir
wurden die Pins PA9 und PA10 als GPIO-Pins fir das Modul gewahlt, damit die Kommunika-
tion Uber die ST-Link-Schnittstelle (Mikro-USB) stattfindet, da diese Schnittstelle auch das
genutzte Programming-Interface des STM32 ist. Fiir USART1 wurden Interrupts deaktiviert.
AuBerdem wurde als Data Direction die Option Transmit Only gewadhlt, da lediglich
Log-Nachrichten gesendet und keine Eingaben empfangen werden sollen. Die restliche
Konfiguration ist in Abbildung 4.7 zu sehen.

USART! Mode and Configuration
Mode

Runtime contexts:
TSV TR PowerDomain
m]

sighth full configuration
eighth full configuration

 Advanced Features
Auto Baudrate
TX Pin Acti
RX Pin Act

Di

1

1

Disable
sion Disable

Di

Di

ion Disable
Data Inver: isable

| |
Abbildung 4.7.: USART1 Konfiguration im .ioc-File

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

56 4. Implementierung und Portierung auf den Mikrocontroller

4.2.2. Ethernetkonfiguration

Die Konfiguration des Ethernet Moduls ist in Abbildung 4.8 zu sehen. Der globale Interrupt
wurde deaktiviert. Wichtig ist hierbei, dass die Speicheradressen fir die TX-/RX-Deskriptoren
und der RX-Buffer mit den zuvor in 4.1.2 definierten Adressen tbereinstimmen. Der spe-
zifische Network Interface Controller Teil der MAC-Adresse wurde zu c0: ff: fe geandert.
Die L2 MTU (Layer 2 Maximum Transfer Unit) (vgl. Abbildung 4.8: Rx Buffers Length)
war standardmaBig bereits 1524. Die Einstellung der GPI0 Settings und User Constants
blieben unverandert.

i

ETH Mode and Configuration

Runtime contexts

TS A T PowerDomain

O
Made(RmIl]
J, £ te
O Activate Tx Ei
Reset Configuration

[Constants @ NVIC Settings @ GPIO Settings

© Parameter Settings

Configure the below parameters

C'Ll o
~ General : Ethernet Configuration

Ethernet MAC Address 00:80:E1:CO:FF:FE

Tx Descriptor Length 4

First Tx Descriptor Address ~ 0x30040080

Rx Descriptor Length 4

First Rx Descriptor Address ~ 0x30040000

Rx Buffers Address 0x30040100

Rx Buffers Length 1524

| |
Abbildung 4.8.: Ethernet Konfiguration im .ioc-File

4.3. Softwarekonfiguration

In diesem Abschnitt wird der nétige Code erlautert, damit die beiden Kommunikationsmo-
dule Ethernet und USART sowie die Interrupts funktionieren.

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.3. Softwarekonfiguration 57

4.3.1. Interrupts

Die Interrupt Service Routinen (ISRs) werden im File CM7/Core/Src/stm32h7xx_it.c konfi-
guriert.

TIM5

Fur das zyklische Senden der Prozessdaten wurden dem Interrupt Handler von TIM5 die
Zeilen 4-21 in Codeauszug 4.2 hinzugeflgt.

NoubhwN =

10
M
12
13
14
15

16
17
18
19
20
21
22
23
24

void TIM5_IRQHandler(void)

{

/* USER CODE BEGIN TIM5_IRQn 0 */
struct ec *pec = &ec;
osal_uint64_t time_start;

if ((ec.master_state == EC_STATE_SAFEOP) || (ec.master_state == <«

}

EC_STATE_OP)) {

// send cyclic (1ms) EthCat frames

// ezecute one EtherCAT cycle
time_start = osal_trace_point(tx_start);
ec_send_distributed_clocks_sync(pec);
ec_send_process_data(pec);

// transmit cyclic packets (and also acyclic if there are any)

osal_timer_init(&ec.phw->next_cylce_start, ¢
ec.phw->pec->main_cycle_interval) ;

hw_tx_pool(ec.phw, POOL_HIGH) ;

osal_trace_time(tx_duration, osal_timer_gettime_nsec() - time_start);

hw_tx_pool(ec.phw, POOL_LOW) ;

/* USER CODE END TIM5_IRQ@n 0 */
HAL_TIM_IRQHandler (&htim5) ;

}

Codeauszug 4.2: TIM5 Interrupt Handler

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

58

4. Implementierung und Portierung auf den Mikrocontroller

TIM3

Fir das Uberpriifen, ob azyklische Mailbox-Daten vorliegen, wurde die ISR von TIM3
folgendermalBen erganzt (Codeauszug 4.3 Z. 4-26):

1
20 {
3
4
5
6
7
8

9
10
1M
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27(¥

void TIM3_IRQHandler(void)

/* USER CODE BEGIN TIM3_IR(n 0 */
int ret, slave;
struct ec *pec = &ec;
//osal_timer_t to;

/% USER CODE END TIM3_IRGn 0 */
HAL_TIM_IRQHandler (&htim3) ;
/* USER CODE BEGIN TIM3_IRGn 1 */

for (slave = 0; slave < ec.slave_cnt; ++slave) {
ec_slave_ptr(slv, pec, slave);
if (!slv->eeprom.mbx_supported) {
continue;
}
// wait for matlboxr event
ret = osal_binary_semaphore_trywait (&slv->mbx.sync_sem) ;

if ((ec.master_state !'= EC_STATE_SAFEOP) && (ec.master_state != «
EC_STATE_0P)) {
//slv->mbz.handler_flags [= Oxiw; //MBX_HANDLER_FLAGS_SEND;
slv->mbx.handler_flags |= Ox2u; //MBX_HANDLER_FLAGS_RECV;

}

ec_mbx_do_handle(pec, slave);

Codeauszug 4.3: TIM3 Interrupt Handler

4.3.2. Ausgabe von UART Nachrichten

UART-Nachrichten werden mit der standardmaBig eingebauten Funktion
HAL_UART_Transmit (UART_HandleTypeDef *huart, const uint8_t #*pData, uintl6_-
t Size, uint32_t Timeout) versendet. Die Funktion ist im File stm32h7xx_hal_uart.c

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.3. Softwarekonfiguration 59

deklariert. Um verschiedene Datentypen fur Prints zu testen, wurde der Codeauszug 4.4 in
einem anderen Projekt geschrieben. Sobald Konfiguration und Code funktionsfahig waren,
wurden die nétigen Einstellungen in eth_rx_tx Ubernommen. Hierbei fiel auf, dass 64-bit
Variablen und Floats nicht sauber ausgegeben werden. Dies liegt daran, dass standardmaBig
newlib-nano flr STM32-Projekte eingestellt ist. Daraufhin wurde newlib aktiviert (vgl.
Abschnitt 4.1.2).

Analog zu uint64_t vierundsechsig wurden auch uint8_t, uint16_t und uint32_t
Variablen angelegt. Fir diese Datentypen wurden auch eigene Print-Funktionen geschrieben
(vgl. Codeauszug 4.4: void test_func64(void)) und erfolgreich ausgefihrt.

1 [...]
2| uint64_t vierundsechszig = 192837u;
3| float single_float = 1.23f;
4| double single_double = 3.1415;
50 [...]
6l void test_func64(void) {
7 sprintf (buffer, , vierundsechszig);
81 }
9] void test_func_float(void) {
10 sprintf (buffer, , single_float);
1My
12} void test_func_double(void) {
13 sprintf (buffer, , single_double);
144 }
150 [...]
16 test_func64();
17§ HAL_UART_Transmit (&huartl, (uint8_t *)buffer, strlen(&buffer[0]), 10);
181 test_func_float();
191 HAL_UART_Transmit (&huartl, (uint8_t *)buffer, strlen(&buffer[0]), 10);
20} test_func_double();
21} HAL_UART_Transmit (&huartl, (uint8_t *)buffer, strlen(&buffer[0]), 10);
22| HAL_Delay(1000);

Codeauszug 4.4: USART Test Code

4.3.3. Senden und Empfangen eines Raw Ethernet Frames

Fr das Versenden von Ethernet Frames wird die HAL®-Funktion HAL_ETH_Transmit (ETH_-
HandleTypeDef *heth, ETH_TxPacketConfigTypeDef #pTxConfig, uint32_t Timeout)

SHardware Abstraction Layer

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

60 4. Implementierung und Portierung auf den Mikrocontroller

aus dem File CM7/Drivers/STM32H7xx_HAL_Driver/stm32h7xx_hal_eth.c genutzt.

Da fiur jeden Frame Buffer und weitere Daten erzeugt und bereitgestellt werden mus-
sen, wurde die Funktion HAL_ETH_SendFrame (uint8_t *frame, size_t frame_len) (S.
Codeauszug 4.5) im File CM7/Core/Src/eth.c in einem Testprojekt angelegt. Fur die Imple-
mentierung fir das eigentliche Projekt wurden die Erkenntnisse dieser Funktion genutzt
und noch einmal angepasst. Diese Anpassungen werden im Abschnitt 4.4 erklart.

11 int HAL_ETH_SendFrame (uint8_t *frame, size_t frame_len) {
2 int errval = ETH_OK;

3 ETH_BufferTypeDef Txbuffer [ETH_TX_DESC_CNT];

4

5 // Invalidate if cache ts enabled

6 SCB_CleanDCache_by_Addr ((uint32_t*) frame, frame_len);
7

8 Txbuffer [0] .buffer = frame;

9 Txbuffer[0] .len = frame_len;

10 Txbuffer[0] .next = NULL;

11

12 TxConfig.Length = frame_len;

13 TxConfig.TxBuffer = Txbuffer;

14 TxConfig.pData = NULL;

15

16 do {

17 if (HAL_ETH_Transmit(&heth, &TxConfig, ETH_TX_TIMEQUT) == HAL_0K) {
18 HAL_ETH_ReleaseTxPacket (&heth) ;

19 errval = ETH_OK;
20 } else {
21 if (HAL_ETH_GetError(&heth) & HAL_ETH_ERROR_BUSY) {
22 /* Wait for descriptors to become available */
23 errval = ETH_ERR_NO_BUFFER;
24 } else {
25 /* Other error */
26 errval = ETH_ERR_OTHER;
27
28 Error_Handler();
29 }

30 }

31 } while (errval == ETH_ERR_NO_BUFFER);
32

33 return errval;

341 %

Codeauszug 4.5: Ethernet Send Frame Function

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 61

Um die Funktion nutzen zu konnen, missen zuvor der zu versendende Frame intialisiert
werden (s. Codeauszug 4.6) und dessen Lange mittels sizeof (tx_frame_brd) bestimmt
und Ubergeben werden.

11 uint8_t tx_frame_brd[] = { Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x00, 0x14,
2 0x4f, 0x23, 0x98, Oxcf, 0x88, Oxa4, 0xOe, 0x10, 0x07, 0x02, 0x00,
3 0x00, 0x30, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
4 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
5 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
6 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

Codeauszug 4.6: TX Frame Init

Fur das Empfangen der Ethernet Frames wird die HAL-Funktion HAL_ETH_ReadData (ETH_-
HandleTypeDef *heth, void **pAppBuff) aus dem File CM7/Drivers/STM32H7xx_HAL_-
Driver/stm32h7xx_hal_eth.c genutzt. Die Funktion HAL_ETH_ReleaseTxPacket () (5.
Codeauszug 4.5 Z. 18) wurde in der finalen Version des Projektes nicht mehr genutzt.
Wenn diese Funktion weiterhin Teil des Codes ist, beeintrachtigen sich ISRs und das Pro-
gramm lduft in einen ErrorHandler und ist dort dann in einer while (1) Loop. AuBerdem
wachst sonst die Liste der empfangenen Frames unendlich an, wodurch auch die Zeiten der
Traces (s. Kapitel 5) stetig ansteigen und insofern nicht sinnvoll nutzbar sind.

Damit die empfangenen Daten via DMA transferiert werden, muss der Ethernet-Handler
noch far die Nutzung des definierten Speicherbereichs konfiguriert werden. Dafur wurde
folgender Code in CM7/Core/Src/eth.c erganzt:

500 [...]

51| typedef uint8_t ETH_RxBuffer [ETH_RX_BUFFER_SIZE];

52| ETH_RxBuffer Rxbuffer [ETH_RX_BUFFERS] <+
__attribute__((section(1)

53} int Rxbuffer_next = 0;

547 [...]

Codeauszug 4.7: Ethernet Receive DMA Flash Config

4.4. Entwicklung der Bibliothekskomponenten

Funktionen und Datentypen aus 1ibethercat fangen mit dem Prafix ec_ an. Datentypen
und Funktionen aus 1ibosal beginnen mit dem Prafix osal_. Da jede Hardware/Betriebs-
system Kombination teilweise spezifische Header- und Codefiles benétigt, wurden diese

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

62 4. Implementierung und Portierung auf den Mikrocontroller

zu Beginn der Arbeit auch flr den STM32 erstellt. Die Files und deren Einbinden in die
Ordnerstruktur kénnen in Anhang C betrachtet werden.

Die allgemeinen Header in CM7/Core/libosal/include/libosal/ wurden so erweitert,
dass diese die Header in CM7/Core/libosal/include/libosal/stm32/ inkludieren. Als
Beispiel dient hierfir folgender Codeauszug aus dem File CM7/Core/libosal/include/
libosal/binary_semaphore.h:

[...]

#ifdef LIBOSAL_BUILD_STM32

#include <libosal/stm32/binary_semaphore.h>
#endif

[...]

Codeauszug 4.8: Inkludieren der HW-spezifischen Header Files fiir libosal

u b wNn —

Zusatzlich wurde bestimmte Files aus dem Build in der CubelDE ausgeschlossen, da sie in
dieser Arbeit nicht bendtigt wurden. Diese sind in Anhang D zu sehen.
Zusatzlich wurden folgende Include-Pfade fUr das gesamte Projekt hinzugefugt:

7 ../CM7/Core/Inc
7 ../CM7/Core/libethercat/include

- ../CM7/Core/libosal/include

4.4.1. Critical Sections

Waéhrend des Betriebs des EtherCAT Netzes und beim Analysieren der LogOutputs fiel auf,
dass es Probleme gibt, wenn manche Funktionen durch die ISR fir das zyklische Senden der
Daten unterbrechen werden. Deshalb wurden um spezifische Funktionen eine CRITICAL
SECTION gebaut. DECLARE_CRITICAL_SECTION() Uberprift, ob Interrupts eingeschaltet
sind. AnschlieBend schaltet ENTER_CRITICAL_SECTION() die Interrupts wahrend der Aus-
fuhrung der gegebenen Funktionen ggf. kurzzeitig aus und LEAVE_CRITICAL_SECTION
danach wieder ein. Dafir wurde im hardwarespezifischen File osal.hin 1ibosal/include/
libosal/stm32/ folgender Code hinzugefigt:

14 L...]

2| #define DECLARE_CRITICAL_SECTION() uint32_t __primask
3| #define ENTER_CRITICAL_SECTION() \

4 __primask = __get_PRIMASK(); \

5 __disable_irq();

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten

63

6

7| #define LEAVE_CRITICAL_SECTION() \

8
9
10
1M

Lo c

if (__primask == 0) { \
_enable_irq(); \

}

o)

Codeauszug 4.9: CRITICAL SECTION Declaration

Als Beispiel dient hierfur die Funktion hw_device_stm32_send(...) (EtherCAT Senderouti-
ne) aus dem File 1ibethercat/src/hw_stm32.c.

1

ONOYUT D~ WN

Xe]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

int hw_device_stm32_send(struct hw_common *phw, ec_frame_t *pframe, ¢

pooltype_t pool_type) {
assert(phw != NULL);
assert(pframe != NULL);
(void)pool_type;

int ret = EC_OK;

struct hw_stm32 *phw_stm32 = container_of (phw, struct hw_stm32, common);

int errval = ETH_OK;
size_t frame_len = ec_frame_length(pframe);

// Clean 1if cache ts enabled

if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {
SCB_CleanDCache_by_Addr ((void*)pframe, pframe->len);

}

DECLARE_CRITICAL_SECTION();

ENTER_CRITICAL_SECTIONQ) ;

Txbuffer[0] .buffer = (uint8_t *) (pframe);
Txbuffer[0] .len = frame_len;
Txbuffer [0] .next = NULL;

phw_stm32->TxConfig.Length = frame_len;
phw_stm32->TxConfig.TxBuffer = Txbuffer;
phw_stm32->TxConfig.pData = NULL;

do {
if (HAL_ETH_Transmit(&heth, &(phw_stm32->TxConfig), ¢
ETH_TX_TIMEOUT) == HAL_OK) {

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

64 4. Implementierung und Portierung auf den Mikrocontroller

31 errval = ETH_OK;

32 } else {

33 if (HAL_ETH_GetError (&heth) & HAL_ETH_ERROR_BUSY) {
34 /* Wait for descriptors to become available */
35 errval = ETH_ERR_NO_BUFFER;

36 } else {

37 /* Other error */

38 errval = ETH_ERR_OTHER;

39 ret = EC_ERROR_HW_SEND;

40

41 break;

42 }

43 }

44 } while (errval == ETH_ERR_NO_BUFFER);

45

46 phw_stm32->common.bytes_sent += frame_len;
47 phw_stm32->frames_sent++;

48

49 LEAVE_CRITICAL_SECTION();

50 return ret;

511 }

Codeauszug 4.10: CRITICAL SECTION in der Senderoutine

4.4.2. Debugging Nachrichten

Samtliche Log-Nachrichten werden via osal_puts() aus libosal/src/stm32/io.c ver-
sendet. In den meisten Fallen wird osal_puts() von osal_printf () (ebenfalls in io.c)
aufgerufen. Fir den Output von EtherCAT Log-Nachrichten wird 1ibethercat ein Pointer
auf eine selbstdefinierte Log-Funktion (s. Codeauszug 4.12) Ubergeben (s. Codeauszug
4.13). Die GroBe des Log-Buffers (char buf [520]={0}) wurde auf 520 Byte festgelegt,
da die Buffer in den weiteren Log-Funktionen (io.c/osal_printf () und ec.c/ec_log())
512 Byte groB sind und somit noch etwas Overhead zur Verfliigung steht.

11 osal_retval_t osal_puts(const osal_char_t *msg) {

2 assert(msg != NULL);

3 HAL_UART _Transmit (&huartl, (const uint8_t *)msg, strlen(&msg[0]), 10);
4 return OSAL_OK;

502

Codeauszug 4.11: osal_puts Funktion

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 65

11 void no_verbose_log(int 1lvl, void *user, const char *format, ...) {
2 char buf[520] = {0};

3

4 (void)user;

5

6 if (1vl > max_print_level)

7 return;

8

9 va_list ap;

10 va_start(ap, format);

11 int written = vsnprintf (&buf[0], sizeof(buf), format, ap);
12 va_end (ap) ;

13

14 snprintf (&buf [written], sizeof(buf) - written, E

15 osal_puts (&buf [0]) ;

16(3};

Codeauszug 4.12: no_verbose_log Funktion in main.c

1} ec_log_func = &no_verbose_log;

Codeauszug 4.13: Deklaration no_verbose_log als ec_log_func in main.c

4.4.3. EtherCAT Send und Receive Frame

Die Funktionen flr das Versenden (int hw_device_stm32_send(struct hw_common *phw,
ec_frame_t *pframe, pooltype_t pool_type))und Empfangen (int hw_device_stm32_-
recv(struct hw_common *phw))von EtherCAT Frames sind im File 1ibethercat/src/hw_-
stm32.c angelegt. Der Code fir die Senderoutine ist in Codeauszug 4.5 zu sehen. Code-
auszug 4.14 zeigt die Empfangsroutine far EtherCAT Frames.

Um ein erfolgreiches Senden und Empfangen zu gewahrleisten, muss ein hardwarespe-
zifisches struct angelegt werden (s. Codeauszug 4.15). In diesem struct sind folgende
Variablen angelegt:

- Variable zum Zahlen der versendeten Frames — int frames_sent
- TX Packet Konfiguration — ETH_TxPacketConfig TxConfig

- Variable, die den TX-Frame beinhaltet — osal_uint8_t send_frame[ETH_FRAME_-
LEN]

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

66

4. Implementierung und Portierung auf den Mikrocontroller

O~NOoOYuUuUT s WN —

S G\ G
Ooo~NJoOulhWN-—-O0U0VO

20
21
22
23
24
25
26
27

28

O~NOoOYuUlTh~ WN —

— Variable, die den RX-Frame beinhaltet — osal_uint8_t recv_frame [ETH_FRAME_-
LEN]

int hw_device_stm32_recv(struct hw_common *phw) {
assert(phw != NULL);

// mew code MB
HAL_StatusTypeDef status;
void *app_buff;

osal_timer_t to;
osal_timer_init(&to, 100000) ;

DECLARE_CRITICAL_SECTION();

do {
ENTER_CRITICAL_SECTIONQ) ;
status = HAL_ETH_ReadData(&heth, &app_buff);
LEAVE_CRITICAL_SECTION() ;

if ((status == HAL_OK) && (app_buff != NULL)) {
// Invalidate tf cache is enabled
if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {
SCB_InvalidateDCache_by_Addr((uint32_t *)app_buff,
((ec_frame_t *)app_buff)->len);

hw_process_rx_frame(phw, app_buff);
return EC_0K;
}
} while (osal_timer_expired(&to) != OSAL_ERR_TIMEOUT) ;

return EC_ERROR_UNAVAILABLE; // maybe write some other ERROR code in <

the error_code.h!?

Codeauszug 4.14: EtherCAT Receive Function in hw_stm32.c

typedef struct hw_stm32 {
struct hw_common common;

int frames_sent;
ETH_TxPacketConfig TxConfig;

osal_uint8_t send_frame[ETH_FRAME_LEN]; //!< \brief Static send frame.
osal_uint8_t recv_frame[ETH_FRAME_LEN]; //!< \brief Static receive frame.

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 67

9! } hw_stm32_t;
Codeauszug 4.15: EtherCAT STM32 Hardware Struct

4.4.4. Timer ISRs und Zeitfunktionen

Die Anpassungen der ISRs von TIM3 und TIM5 wurden bereits in Abschnitt 4.3.1 dargestellt

und erklart.

Da das MainDevice seine Uhrzeit an die SubDevices als Distributed Clock bereitstellt, muss

auf dem MainDevice die Zeit erfasst werden. Dies wird durch die Funktion . . ./libosal/src/
stm32/timer.c/osal_timer_gettime ()(s. Codeauszug 4.16) erledigt. Die Funktion liest

dabei die Werte von TIM2 und TIM4 aus. Auf diese Funktion wird durch andere Funktionen,

welche die Zeit benétigen, zugegriffen. Diese Funktionen sind ebenfalls in timer. c dekla-
riert.

osal_retval_t osal_timer_gettime(osal_timer_t *timer) {
assert(timer != NULL);
osal_retval_t ret = 0OSAL_OK;

timer->sec = TIM4->CNT;
timer->nsec = (TIM2->CNT) * 5; //TIM2 <s working at 200MHz --> 1 clock
cycle = bns

1
2
3
4
5
6

return ret;

O 0

Codeauszug 4.16: OSAL GET TIME Funktion

4.4.5. Semaphoren

libosal stellt sowohl bindre als auch normale Semaphoren fiir das Betreiben des EtherCAT
Netzes bereit. Semaphoren kénnen einen Maximalwert N > 1 haben; bindre Semaphoren
maximal 1. Die beiden Typen von Semaphoren werden genutzt, um Threads zu synchroni-
sieren. In diesem Projekt werden sie genutzt, um Signale zwischen den ISRs und der main.c
zu senden. Dafur gibt es die beiden Files 1ibosal/src/stm32/binary_semaphore.c und
libosal/src/stm32/semaphore.c. Erkldrungen zu den ATOMIC Functions (s. Tabellen
4.2 und 4.3) kdnnen unter folgenden Links nachgelesen werden:

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

68 4. Implementierung und Portierung auf den Mikrocontroller

Atomics and Memory Ordering
GNU Atomic Built-Ins
Die Funktionen in semaphore. c besitzen im Gegensatz zu denen aus binary_semaphore.c

Tabelle 4.2.: Funktionen in binary_semaphore.c

Funktion Critical Section | Atomic Function | Pointer | Value Memory Order
semaphore_init X Clear sem->value X __ ATOMIC_RELAXED
semaphore_post v Test_and_Set sem->value X __ATOMIC_ACQUIRE
semaphore_wait v Exchange_N sem->value 0 __ATOMIC_RELAXED
semaphore_trywait v Exchange_N sem->value 0 __ATOMIC_RELAXED
semaphore_timedwait v Exchange_N sem->value 0 __ ATOMIC_RELAXED
semaphore_destroy X X X X X

keine Critical Sections.

Tabelle 4.3.: Funktionen in semaphore.c

Funktion Atomic Function | Pointer | Value Memory Order
semaphore_init Store_N sem->cnt | initval | __ ATOMIC_RELAXED
semaphore_post Add_fetch sem->cnt 1 __ATOMIC_RELAXED
cemanhore wait Load_N sem->cnt X __ATOMIC_ACQUIRE

- Fetch_Sub sem->cnt 1 __ ATOMIC_RELEASE

semaphore=tnvail Load_N sem->cnt X _ ATOMIC_ACQUIRE

- Fetch_Sub sem->cnt 1 __ ATOMIC_RELEASE

R T Load_N sem->cnt X __ ATOMIC_ACQUIRE

- Fetch_Sub sem->cnt 1 __ ATOMIC_RELEASE
semaphore_destroy X X X X

4.4.6. Mutexe

Wenn das MainDevice in einem Betriebssystem betrieben wird, werden die Mutexe dazu
verwendet, um konkurrierenden Zugriff auf gemeinsame Speicherbereiche zu schitzen.
Dieser Mechanismus ist in dieser Arbeit durch die Critical Sections realisiert worden.
Insofern mussen die Mutexe nicht direkt genutzt werden. Da die Mutexe in den beiden
Bibliotheken von anderen Funktionen aufgerufen werden, wurde der Code in den einzelnen
Mutex-Funktionen geldscht und nur ein Return-Value festgelegt und zurlickgegeben (s.
Codeauszug 4.17).

1] osal_retval_t osal_mutex_unlock(osal_mutex_t *mtx) {
2 assert(mtx != NULL);
3 osal_retval_t ret = 0SAL_OK;

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://dev.to/kprotty/understanding-atomics-and-memory-ordering-2mom
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

4.5. Anpassungen fir die Zielhardware 69

4 return ret;

Codeauszug 4.17: OSAL Mutex Unlock Funktion

4.5. Anpassungen fur die Zielhardware

4.5.1. Aktivieren der Caches

Um das Versenden und Empfangen der EtherCAT Frames zu beschleunigen, wurden
Instruction- und Data-Cache des CM7 aktiviert. Deren Konfiguration wurde unter
.ioc-File/Pinout & Configuration/System Core/CORTEX_M7 vorgenommen. Dafirwur-
de MPU (Memory Protection Unit) Region 0 konfiguriert (s. Abbildung 4.9). Die restli-
chen MPU Regions blieben deaktiviert.

Um die Vorteile der aktivierten Data Caches zu realisieren, mussten auch im Code Anderun-

CORTEX_M7 Mode and Configuration

Runtime contexts

A T PoverDomain

Reset Configuration

‘arameter Settings

® User Constants

 Speculation default mode Settings
Speculation default mode Disabled
v Cortex Interface Settings

CPU ICache Enabled

CPU DCache Enabled
+ Cortex Memory Protection Unit Control Settings

MPU Control Mode Background Region Priv.
~ Cortex Memory Protection Unit Region 0 Settings

MPU Region Enabled
MPU Region Base Address (0C
MPU Region Size

MPU SubRegion Disable
MPU TEX field level

MPU Access Permission

MPU Instruction Access ENABLE

MPU Shareability Permission ENABLE

MPU Cacheable Permission DISABLE

MPU Bufferable Permission ENABLE
~ Cortex Memory Protection Unit Region 1 Settings

MPU Region Disabled

| |
Abbildung 4.9.: Cache Konfiguration im .ioc-File

gen vorgenommen werden. Daflir mussen die Caches invalidiert und geflusht werden, da
CPU und DMA ber keine Signalisierungsmechanismen verfugen, die der jeweils anderen

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

70 4. Implementierung und Portierung auf den Mikrocontroller

Ressource mitteilen, dass gedanderte Daten zum Senden bzw. Empfangen vorliegen. Ansons-
ten wirden falsche Daten gelesen oder gesendet werden. Daflr wurde im File hw_stm32.c
in der Empfangsfunktion int hw_device_stm32_recv(...) der Code 4.18 und in der
Sendefunktion int hw_device_stm32_send(...) der Code 4.19 hinzugefugt. Die beiden
Funktionen (Z. 155 und Z. 219) sind aus dem File Drivers/CMSIS/Include/core_cm7.h.
Hierbei werden nur spezifische Adressraume des Caches angesprochen. Nur die Daten,
welche Uber den Ethernet Port empfangen (app_buff) bzw. versendet werden (pframe),

sollen von diesen Operationen betroffen sein.

152
153

[...]
// Invaltidate if cache is enabled

154} if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {
155 SCB_InvalidateDCache_by_Addr((uint32_t *)app_buff, ((ec_frame_t ¢«
*)app_buff)->len);
156 }
1574 [...]
Codeauszug 4.18: Data Cache Invalidation
216 [...]
217{ // Invalidate if cache is enabled
218| if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {
219 SCB_CleanDCache_by_Addr ((void*)pframe, pframe->len);
220) }
221 [...]

Codeauszug 4.19: Data Cache Flushing

Die daraus resultierenden, zeitlichen Vorteile im Betrieb des Systems sind im Abschnitt
5.2.3 zu sehen. Bei der Implementierung war wichtig, dass der Data Cache erst nach
Erreichen von SAFEOP aktiviert wird. Ansonsten konnten die SubDevices nicht korrekt
in Betrieb genommen werden. Der Instruction Cache konnte am Beginn der main.c
standardmaBig aktiviert werden.

4.5.2. Config File

Je nachdem auf welcher Hardware das MainDevice implementiert und in welcher Netztopo-
logie es eingesetzt wird, muss ein entsprechendes Konfigurationsfile angelegt werden. Da
libethercat kein dynamisches Alloziieren von Speicher benutzt, muss der Ressourcenbe-
darf zur Kompilierzeit festgelegt werden. Dies geschieht im Konfigurationsfile. Dieses File

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.5. Anpassungen fir die Zielhardware 71

ist unter Core/Inc/libethercat/config.h gespeichert. Zuerst werden andere Betriebs-
/Hardwaresysteme (s. Abschnitt 1.1) deaktiviert (analog zu Codeauszug 4.20 Z. 4-7 andere
0S). Das ganze File kann in Anhang E betrachtet werden. Im Config-File werden u.a. fol-

gende Punkte konfiguriert:

OO UT DS WN —

NN
N — O O

13
14
15
16
17
18
19
20
21
22

7 benutztes OS/Hardware

7 max. Anzahl an SubDevices

7 zyklische Gruppen Anzahl

— max. Prozessdatenlange (zyklisch)

7 max. Features (FMMUs, SMs)

—Z max. Anzahl an Datagramm, mailbox buffern

7 Mailbox Support (und explizit welcher Support: CoE, FoE, ...)

#ifndef _INCLUDE_LIBETHERCAT_CONFIG_H

#define _INCLUDE_LIBETHERCAT_CONFIG_H 1

[...]

/* Build with pikeos hw device layer. */

#ifndef LIBETHERCAT_BUILD_DEVICE_PIKEQOS

#define LIBETHERCAT_BUILD_DEVICE_PIKEQOS O

#endif

[...]

/* Use STM32 build */

#ifndef LIBETHERCAT_BUILD_STM32

#define LIBETHERCAT_BUILD_STM32 1

#define htons(x) (((((osal_uint16_t)(x)) << 8) & O0xFF00) | <
((((osal_uint16_t) (x)) >> 8) & 0xOOFF))

#endif

[...]

/* Define to 1 if you have the <inttypes.h> header file. */

#ifndef LIBETHERCAT_HAVE_INTTYPES_H

#define LIBETHERCAT_HAVE_INTTYPES_H 1

#endif

[...]

/* Mazimum number of datagrams supported. */

#ifndef LIBETHERCAT_MAX_DATAGRAMS

#define LIBETHERCAT_MAX_DATAGRAMS 10

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

72

4. Implementierung und Portierung auf den Mikrocontroller

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#endif

[...]

/* Mazimum number of eeprom-cat-fmmu supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_FMMU
#define LIBETHERCAT_MAX_EEPROM_CAT_FMMU 8
#endif

[...]

/* Mazimum number of groups supported. */
#ifndef LIBETHERCAT_MAX_GROUPS

#define LIBETHERCAT_MAX_GROUPS 2

#endif

[...]

/* Mazimum number of mbz-entries supported. */
#ifndef LIBETHERCAT_MAX_MBX_ENTRIES
#define LIBETHERCAT_MAX_MBX_ENTRIES 16
#endif

/* Mazimum number of slaves supported. */
#ifndef LIBETHERCAT_MAX_SLAVES

#define LIBETHERCAT_MAX_SLAVES 16

#define LIBETHERCAT_MAX_SLAVES_STRING
#endif

/* Mazimum number of slave-fmmu supported. */
#ifndef LIBETHERCAT_MAX_SLAVE_FMMU
#define LIBETHERCAT_MAX_SLAVE_FMMU 8
#endif

[...]

/* Version number of package */

#ifndef LIBETHERCAT_VERSION

#define LIBETHERCAT_VERSION

#endif

[...]

Codeauszug 4.20: Config-File

Fir 1ibosal wurde ebenfalls das Config-File unter Core/Inc/libosal/config.h angelegt
und angepasst. Dieses ist in Anhang F zu sehen.

4.5.3. Abfrage des Ethernet Link Status

Da beim PowerUp des STM32 die Abarbeitung des Codes in main.c bis zur ersten
Hardware-Funktion int hw_device_stm32_open(...) schneller ist als die vollstandige

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.5. Anpassungen fir die Zielhardware 73

Auto-Negotiation des Ethernet Ports, kann der EtherCAT Bus nicht funktionsfahig starten.
Deshalb wurde in main.c eine Abfrage des LinkStatus des Ethernet Ports eingefligt (s.
Code 4.21). Die dortige Schleife wird erst verlassen, wenn der LinkStatus UP ist.

2700 [...]

271\ // wait for Ethernet port is up
272 uint32_t phy_adr = 0;

273 uint32_t phy_reg = 1;

2741 uint32_t phy_val;

275) do // 0 = Link doun

276 {

277 HAL_ETH_ReadPHYRegister (&heth, phy_adr, phy_reg, &phy_val);
278{ } while((phy_val & 0x00000004u) == Ou);

279 [...]

Codeauszug 4.21: Ethernet Port LinkStatus Abfrage

4.5.4. EK1100 LED Second Display

Um das korrekte Auslesen des Sekundenzahlers von TIM4 und das korrekte Ansteuern von
LEDs in der EL2008 Klemme (s. Abschnitt 5.1.2) zu Uberprifen, wurde folgender Code
geschrieben. Die EL2008 hat 8 digitale Ausgange. Deren Zustand kann mittels integrierter
LEDs Uberprift und mit dem Kommando in Z.388 des Codeauszugs angesteuert werden.
Wenn jede LED einen bindren Wert darstellt, kdnnen 28 = 256 (Sekunden-)Werte durch die
LEDs dargestellt werden. Daflr werden die Sekunden aus TIM4 ausgelesen (Z. 387).

385) // EK1100 LED second display

386 {

387 seconds = (TIM4->CNT) ¥ 256;

388 ec.slaves[1] .pdout.pd[0] = seconds;
389 }

Codeauszug 4.22: EK1100 LED Second Display

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

74 4. Implementierung und Portierung auf den Mikrocontroller

4.6. Debugging und Fehlerbehebung

Fur das Debugging und die Fehlerbehebung wurden folgende Tools in dieser Arbeit verwen-
det:

- Wireshark

—~ Minicom

—~ GNU Debugger (GDB)
— OpenOCD

Alle oben genannten Tools (bis auf Wireshark) werden in der Kommandozeile gestartet und
betrieben.

In Wireshark ist bereits ein Dissektor fur EtherCAT implementiert. Wireshark wurde genutzt,
um die Latenz zwischen zwei Frames und den Inhalt der Frames auszuwerten. Durch das
Auswerten der Latenz zwischen zwei Frames konnte nachgewiesen werden, dass die Timer
inkl. Interrupts im vorgesehenen Takt (1 ms) laufen. Ein Screenshot des Wiresharks PCAPs
kann in Anhang H betrachtet werden.

Minicom wurde als serielles Terminal genutzt, um die Debugging-Nachrichten auszugeben.
GDB wurde genutzt, um neue Programmversion auf den STM32 zu Ubertragen, Breakpoints
im Programm zu setzen und Werte von Variablen auszulesen und als Binary zu speichern.
OpenOCD stellt hierbei die Verbindung zwischen Hardware und GDB her.

Um sich mit der Hardware zu verbinden, muss zunachst OpenOCD gestartet werden. Die
Kommunikation findet hierbei Uber den Mikro-USB Port des STM32 statt. AnschlieBend wird
GDB im Projektverzeichnis gestartet. Dort wird eine Verbindung zum STM32 via target
remote localhost:3333 hergestellt, anschlieBend das ELF-File geladen und auf dem
Mikrocontroller gestartet. Das Kompilieren des Programmes wurde in der CubelDE gemacht.

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.wireshark.org/download.html
https://salsa.debian.org/minicom-team/minicom
https://www.sourceware.org/gdb/
https://openocd.org/

5. Evaluierung des Echtzeitverhaltens
und der Leistung

Dieses Kapitel beschaftigt sich mit der Evaluierung des Echtzeitverhaltens und der Leistung
des implementierten Systems. Abschnitt 5.1 zeigt zunachst das Testverfahren und die dazu-
gehdrigen Testaufbauten. Die Messungen von Latenz und Jitter werden in Abschnitt 5.2
dargestellt, dazu zahlen auch Vergleichsmessungen der Implementierung der Bibliotheken
auf einem Linux-Betriebssystem. Zum Abschluss des Kapitels werden die Ergebnisse inter-
pretiert und diskutiert (s. Abschnitt 5.3).

5.1. Testverfahren und Testaufbau

Fur die Messungen wurden jeweils 1000 Frames ausgewertet. Die verschiedenen Mes-
sungen werden in den Variablen tx_start, tx_duration und roundtrip_duration (5.
Codeauszug 5.2 Z. 2-4) gespeichert. Die Inhalte der drei Tracing-Variablen sind in Tabelle
5.1 erklart.

Diese Daten kdnnen in GDB Uber den Befehl in Codeauszug 5.1 als Binary exportiert werden.

Tabelle 5.1.: Erklarung Tracing Variablen

Variable Inhalt

Speichert Timestamps beim Senden eines EtherCAT Frames
— Genauigkeit der 1 ms TIM5 ISR

tx_start

Speichert Timestamps, wie lange es gedauert hat

e den EtherCAT Frame komplett zu senden

roundtrip_duration | Speichert Timestamps des Roundtrips eines EtherCAT Frames

Das Binary ist dann auf dem per USB angeschlossenen PC gespeichert.

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

75

76 5. Evaluierung des Echtzeitverhaltens und der Leistung

Tabelle 5.2.: Linux MainDevice Spezifikation

Eigenschaft Details
Manufacturer Dell Inc. Desktop
Product Name Precision 3440
CPU Intel(R) Core(TM) i5-10600 CPU @ 3.30GHz
4.80 GHz max. turbo frequency
Kerne 6 cores, 12 threads
Cache size 12288 KB
Netzwerk Intel Corporation 1210 Gigabit Network Connection (rev 03)
0S Ubuntu 22.04.2 LTS
Kernel 5.15.0-1038-realtime PREEMPT_RT

1} dump binary memory VAR_NAME.bin START_ADDRESS START_ADDRESS+8000
Codeauszug 5.1: Trace Binary Export

Die Spezifikation des Linux-PC MainDevices, zu dem die Vergleichsmessungen angefertigt
wurden, sind in Tabelle 5.2 aufgelistet.

5.1.1. Trace Funktionen aus libosal

Um Messungen bzgl. Laufzeit und Jitter der Frames anfertigen zu kénnen, wurden Funk-
tionen aus 1ibosal verwendet. Diese Funktionen sind im File . ./1ibosal/src/trace.c
gespeichert. Daflr mussen Trace-Variablen angelegt und anschlieBend mit Funktionen
ausgewertet werden. Diese Funktionen werden nach Erreichen des States OP gestartet
und geben dann Log-Nachrichten (vgl. Codeauszug 5.2 Z. 25) in einer while(1) aus.
Zuvor kann mit capture_time noch die Zeit festgelegt werden Uber welche die Traces
messen. Dementsprechend andern sich die Anzahl der Frames, die ausgewertet werden
muUssen (num_samples). Damit diese Funktionen richtig arbeiten, missen in der Sende- und
Empfangsroutine der EtherCAT Frames dementsprechende Tracing-Points angelegt und
ausgewertet werden (Z. 2-4, 17-23).

L]

2| osal_trace_t *tx_start;

3| osal_trace_t *tx_duration;

4| osal_trace_t *roundtrip_duration;

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.1. Testverfahren und Testaufbau 77

50 [...]

6] uint64_t capture_time = 1 * 1E9; // capture time in s multiplied by 1E9 <=
so you get mns

7| int num_samples = capture_time / 1E6; //1 sample every ms

9| osal_trace_alloc(&tx_start, num_samples);

10} osal_trace_alloc(&tx_duration, num_samples) ;

11} osal_trace_alloc(&roundtrip_duration, num_samples);
120 [...]

13| #define to_us(x) ((double) (x)/1000.)

14 while (1) {

15 if (osal_binary_semaphore_trywait(&tx_start->sync_sem) == OSAL_OK) {

16 // Trace analyze

17 osal_uint64_t tx_timer_med = 0, tx_timer_avg_jit = 0, ¢
tx_timer_max_jit = 0;

18 osal_uint64_t tx_duration_med = 0, tx_duration_avg_jit = 0, <
tx_duration_max_jit = O;

19 osal_uint64_t roundtrip_duration_med = O, roundtrip_duration_avg_jit <
= 0, roundtrip_duration_max_jit = 0;

20

21 osal_trace_analyze(tx_start, &tx_timer_med, &tx_timer_avg_jit, <
&tx_timer_max_jit);

22 osal_trace_analyze_rel (tx_duration, &tx_duration_med, <
&tx_duration_avg_jit, &tx_duration_max_jit);

23 osal_trace_analyze_rel (roundtrip_duration, &roundtrip_duration_med, <
&roundtrip_duration_avg_jit, &roundtrip_duration_max_jit);

24

25 no_verbose_log(0, ec_log_func_user, PRIu64

, ec.phw->bytes_last_sent, (10 * 8 * ¢

ec.phw->bytes_last_sent) / 1000.);

26 [...]

Codeauszug 5.2: libosal Tracing in main.c

Bei Empfang eines Frames wird automatisch eine Callback-Funktion getriggert. Diese
ist in main.c angelegt und erfasst Timestamps und legt einen Trace an (s. Codeauszug
5.3). Auf diese Weise werden fir jeden Frame die Timestamps zu roundtrip_duration
erfasst. Die Timestamps fUr tx_start und tx_duration werden in der TIM5 ISR erfasst (s.
Codeauszug 4.2 Z. 10 und Z. 18).

125§ [...]
126 void groupO_cb(void *arg, int num) {
127 osal_uint64_t time_end = osal_timer_gettime_nsec();

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

78 5. Evaluierung des Echtzeitverhaltens und der Leistung

128 osal_uint64_t time_start = osal_trace_get_last_time(tx_start);
129

130 osal_trace_time(roundtrip_duration, time_end - time_start);
1314

1324 [...]

Codeauszug 5.3: Group0 Callback Funktion in main.c

Der Log-Output bzgl. der Traces ist in Codeauszug 5.4 zu sehen. Dort werden die in
Codeauszug 5.2 (Z. 17-19) angelegten Variablen ausgegeben (Z. 25ff). Diese werden mittels
der Analyse-Funktionen (Z. 21-23) berechnet. Dadurch wird einerseits die Genauigkeit des
eingestellten Timers (s. Codeauszug 5.4 Z. 3) sowie Informationen zu den Distributed
Clocks (Z. 6) sichtbar. Andererseits werden Zeiten (inkl. Jitter Average und maximaler Jitter)
zur tx_duration (Z. 4) und der roundtrip_duration (Z. 5) ausgegeben.

[...]

Frame len 36 bytes/ 2.9 us

Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)
Duration +34.1 us (jitter avg +0.3 us, max +6.3 us)
Round trip +31.6 us (jitter avg +0.3 us, max +5.8 us)
DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns
[...]

NoubhwN -

Codeauszug 5.4: Log-Output bzgl. Tracing

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.1. Testverfahren und Testaufbau 79

5.1.2. Testaufbau 1

Testaufbau 1 besteht aus dem MainDevice (STM32), einem Beckhoff EK1100 EtherCat-
Koppler! und einer darin eingesteckten Beckhoff EL2008 EtherCAT-Klemme (8-Kanal-Digital-
Ausgang)? sowie einem ELMO EtherCAT Servo Drive Gold DC Whistle? als SubDevices.
Die LogOutputs (StartUp und Trace) dieses Testaufbaus sind in Anhang A zu sehen.

(a) Beckhoff EK1100(b) ELMO Gold DC
und EL2008 Whistle

Abbildung 5.1.: SubDevices Testaufbau 1

|- (T T

EK1100 EL2008 ELMO Servo Drive

Abbildung 5.2.: Testaufbau 1: EK1100, EL2008, ELMO Servo Drive

"Beckhoff EK1100 EtherCAT-Koppler Produktwebsite
2Beckhoff EL2008 EtherCAT-Klemme Produktwebsite
3ELMO EtherCAT Servo Drive Gold DC Whistle Produktwebsite

4#;3: DLR - Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/produkte/i-o/ethercat-klemmen/ek1xxx-bk1xx0-ethercat-koppler/ek1100.html
https://www.beckhoff.com/de-de/produkte/i-o/ethercat-klemmen/el2xxx-digital-ausgang/el2008.html
https://www.elmomc.com/product/gold-dc-whistle/

80 5. Evaluierung des Echtzeitverhaltens und der Leistung

5.1.3. Testaufbau 2

Testaufbau 2 besteht aus dem MainDevice (STM32) und einem Beckhoff C6640-00604,
welche den Caesar Arm® des DLR simulieren. Dabei werden mittels vier Beckhoff FC1100°
Einsteckkarten vier SubDevices simuliert.

Die LogOutputs (StartUp und Trace) dieses Testaufbaus sind in Anhang B zu sehen.

(a) Caesar Arm [DLRa] (b) Caesar Arm Simu-
lator (Beckhoff
C6640-0060)

Abbildung 5.3.: SubDevices Testaufbau 2

— | (]I (III

DI

| |
Abbildung 5.4.: Testaufbau 2: Caesar Simulator mit 4 SubDevices

4Beckhoff C6640-0060 Produkwebsite
°>Caesar Arm DLR Website
5Beckhoff FC1100 Produktwebsite

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/produkte/ipc/pcs/c6xxx-schaltschrank-industrie-pcs/c6640-0060.html
https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.beckhoff.com/de-de/produkte/ipc/pcs/zubehoer/fc1100.html)

5.2. Messung der Latenz und des Jitters

81

5.2. Messung der Latenz und des Jitters

Fur die Messungen in beiden Testaufbauten wurden jeweils 1000 Frames analysiert. Dafur
wurde die Daten der Traces via gdb als Binary exportiert und anschlieBend mit zwei Python-
Skripten (s. Anhang G) ausgewertet und Histogramme bzw. Box-Plots erstellt.

5.2.1. Testaufbau 1

AnschlieBend werden die Auswertungen der Messungen fur Testaufbau 1 mit dem STM32
und Linux-PC als MainDevice als Histogramm und Box-Plot dargestellt.

N w
=3 o
S S

Number of frames
=
(=3
o

....,.n..,ﬂl.llun.llg

Mean (1.00000)

== +15Std

1
1
1
: ~~ -15td Dev (0.99994)
1
1

Dev (1.00006)

0
—0.00020 -0.00015 -0.00010 -—0.00005 0.00000

At from 1 ms in ns

Linux

0.00005

0.00010

0.00015 0.00020

+1

-
w N o
o u o

Number of frames

N
o u

Mean (1.00000)

- = +15Std

== -15td Dev (0.99999)

Dev (1.00000)

—0.00020 -0.00015 -0.00010 -0.00005 0.00000

At from 1 msin ns

(a) Histogramme

0.00005

0.00010

0.00015 0.00020

+1

Time in ms

Box Plot

0.00015

{000

0.00010

0.00005

~0.00005

~0.00010

000t

~0.00015

°

0.00000 |::|

oo

STM32

Linux

MainDevice

(b) Box-Plot

Abbildung 5.5.: Testaufbau 1: Vergleichsmessungen tx_start

Tabelle 5.3.: Testaufbau 1 - Werte der Messungen

Variable Mean Varianz Std. Deviation

STM32 Linux STM32 Linux STM32 | Linux
tx_start [ms] 1.00 1.00 3.57e-9 | 7.05e-11 || 5.97e-5 | 8.40e-6
tx_duration [ns] 34230.79 | 31769.94 || 37280.08 | 23070.14 || 193.08 | 151.89
roundtrip_duration [ns] | 31818.52 | 31677.97 || 34000.21 | 16262.66 || 184.39 | 127.53

4#;& DLR - Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

82

. Evaluierung des Echtzeitverhaltens und der Leistung

Number of frames

Number of frames

Number of frames

Number of frames

36000

STM32
604 Mean (34230.79000) P
—— +1 Std Dev (34423.87049) IIM' 1
40 —— -15td Dev (34037.70951) |:
204 1 |
0 “ .
30000 31000 32000 33000 34000 35000
Time in ns
Linux
60 i Mean (31769.93800)
il — = +1 Std Dev (31921.82656)
404 ! : — = -15td Dev (31618.04944)
1
20 1 N
0
30000 31000 32000 33000 34000 35000
Time in ns

(a) Histogramme

36000

Time in ns

36000

35000

34000

33000

32000

Box Plot
o
°
]
8
°
STM32 Linux

MainDevice

(b) Box-Plot

Abbildung 5.6.: Testaufbau 1

: Vergleichsmessungen tx_duration

36000

STM32
60 i Mean (31818.52000)
Wil — = +1 Std Dev (32002.91146)
204 ! — =~ -15td Dev (31634.12854)
204
0
30000 31000 32000 33000 34000 35000
Time in ns
Linux
H Mean (31677.97100)
401 il i —— +15td Dev (31805.49612)
! — =~ -15td Dev (31550.44588)
| 1
20 !
0 .
30000 31000 32000 33000 34000 35000
Time in ns

(a) Histogramme

36000

Time in ns

33000

32500

32000

31500

31000

Box Plot

o ©® 0000 ©

o
[}

STM32
MainDevice

Linux

(b) Box-Plot

Abbildung 5.7.: Testaufbau 1: Vergleichsmessungen roundtrip_duration

4#;3: DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.2. Messung der Latenz und des Jitters 83

5.2.2. Testaufbau 2

AnschlieBend werden die Auswertungen der Messungen fr Testaufbau 2 mit dem STM32
und Linux-PC als MainDevice als Histogramm und Box-Plot dargestellt.

+1 Box Plot
STM32 o
0.00020
g 200 H H Mean (1.00000) !
5 1504 1 I == +15td Dev (1.00006)
= ! I —— .15td Dev (0.99994) 000015 S ?
5 1] S °
5 100 T T T o
e} I I
£ 504 H H 0.00010
z TINTRARITINET
I ETEINEENEEE lalnwguns

0 ; I
-0.00020 —0.00015 —0.00010 —0.00005 0.00000 0.00005 0.00010 0.00015 0.00020 0.00005

At from 1 ms in ns +1 <
. = 0.00000
Linux

Mean (1.00000)
== +1 Std Dev (1.00004)
== -1 5td Dev (0.99996)

Time in ms

~0.00005

w
o

~0.00010

Number of frames
~
o

i °
10 2 §
04 —0.00015 s
—0.00020 -0.00015 —0.00010 —0.00005 0.00000 0.00005 0.00010 0.00015 0.00020
At from 1 ms in ns +1 STM32 " Linux
lainDevice
(a) Histogramme (b) Box-Plot

Abbildung 5.8.: Testaufbau 2: Vergleichsmessungen tx_start

Box Plot
98000
STM32 H
)
] Mean (95336.72000) 97000
E 404 —~ +1 Std Dev (95679.07806) 8
& ~ = -1 Std Dev (94994.36194)
° 96000
320
€
=3
=4 95000
0
90000 91000 92000 93000 94000 u
Time in ns $ 94000
£
Linux
93000
8 401 i Mean (90756.22600)
£ 1Lt 1 ~ = +1 Std Dev (90916.20279)
& 301 I : ~~ -15td Dev (90596.24921) 92000
s}
5 20 |
o]
g 104 91000
z
0 L
90000 91000 92000 93000 94000 95000 96000 e
. . TM: Linux
Time in ns MainDevice
(a) Histogramme (b) Box-Plot

Abbildung 5.9.: Testaufbau 2: Vergleichsmessungen tx_duration

4#;3: DLR - Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

84

Evaluierung des Echtzeitverhaltens und der Leistung

Number of frames

Number of frames

401

204

40 -

Mean (92929.30000)
== +1 Std Dev (93259.80433)
== -1 Std Dev (92598.79567)

0
90000

91000

92000

93000
Time in ns

Linux

95000 96000

Mean (90678.45100)
+1 Std Dev (90836.34242)
-1 Std Dev (90520.55958)

20 4 |

0
90000 92000

93000
Time in ns

(a) Histogramme

94000

95000

96000

Time in ns

Box Plot

95000

94000

93000

92000

91000

(b) Box-Plot

Abbildung 5.10.: Testaufbau 2: Vergleichsmessungen roundtrip_duration

Tabelle 5.4.: Testaufbau 2 - Werte der Messungen

Variable Mean Varianz Std. Deviation

STM32 Linux STM32 Linux STM32 | Linux
tx_start [ms] 1.00 1.00 3.55e-9 1.78e-9 || 5.96e-5 | 4.22e-5
tx_duration [ns] 95336.72 | 90756.23 || 117209.04 | 25592.57 || 342.36 | 159.98
roundtrip_duration [ns] || 92929.30 | 90678.45 || 109233.11 | 24929.70 || 330.50 | 157.89

5.2.3. Aktivieren der Caches

Tabelle 5.5 zeigt die Unterschiede bzgl. deaktivierten und aktivierten Caches in der Duration
und Round-Trip Zeit. Die Jitter blieben nahezu gleich (< 2.4us Unterschied). Diese Messun-
gen wurden in Testaufbau 1 angefertigt.

Tabelle 5.5.: Laufzeitunterschiede Caches

Modus Duration | Round-Trip
deaktivierte Caches 65.0 us 61.1 us
aktivierter Instruction Cache 49.9 us 47 .2 us
aktivierter Data und Instruction Cache | 28.5 us 27.1 us

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.3. Interpretation und Diskussion der Ergebnisse 85

5.3. Interpretation und Diskussion der Ergebnisse

Aufgrund der Tatsache, dass in diesem Projekt direkt nach Senden eines EtherCAT Frames
der Mikrocontroller fiir das Empfangen des Frames aktiviert wird, sind die Zeiten in tx_-
duration auch gréBer als die in roundtrip_duration. Im Allgemeinen sind die Werte fur
gut befunden worden, da sie in einem dhnlichen Bereich liegen wie die Vergleichsmessun-
gen mit dem Linux-PC. Zusatzlich dazu hat die Implementation auf dem STM32 den Vorteil,
dass das deterministische Senden der EtherCAT Frames nicht durch Regelungsprozesse und
andere Software beeinflusst wird.

In Testaufbau 1 sind die Werte der drei Tracing-Variablen in folgendem Verhaltnis (s. Tabelle
5.6):

STM32
Linux
Fur Testaufbau 2 wurden die Werte ins selbe Verhaltnis wie fur Testaufbau 1 gesetzt (s.

(5.1)

Tabelle 5.6.: Testaufbau 1 - Prozentualer Vergleich

Variable Mean Varianz Std. Deviation
tx_start 100.00 % | 5063.83 % 710.71 %
tx_duration 107.75 % 161.59 % 127.12 %
roundtrip_duration | 100.44 % | 209.07 % 144.59 %
Tabelle 5.7).

Aus den beiden Tabellen wird ersichtlich, dass sich die Durchschnittswerte fur alle drei

Tabelle 5.7.: Testaufbau 2 - Prozentualer Vergleich

Variable Mean Varianz | Std. Deviation
tx_start 100.00 % | 199.44 % 141.23 %
tx_duration 105.05 % | 457.98 % 214.00 %
roundtrip_duration | 102.48 % | 438.16 % 209.32 %

Variablen bei beiden Testaufbauten auf beiden MainDevices kaum unterscheiden (einstel-
liger Prozentbereich). Noch einmal deutlicher wird dieser Vergleich, wenn man bedenkt,
dass die absoluten Werte von tx_start im Millisekundenbereich und tx_duration und
roundtrip_duration im Nanosekundenbereich liegen. Die prozentualen Unterschiede in
Testaufbau 2 sind generell groBer als die in Testaufbau 1, da Testaufbau 2 Gber vier SubDe-
vices verfugt (Testaufbau 1: 3) und dies eine Anwendungssimulation des Caesar Arms inkl.
realem Mailbox-Betrieb ist.

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

86 5. Evaluierung des Echtzeitverhaltens und der Leistung

Da der Prozessor des Linux-PCs mit einer deutlich héheren Taktrate lauft als der STM32
(> 8x so schnell), ist das Senden und Empfangen eines EtherCAT Frames, nachdem dieser
das vollstandige Busnetzwerk durchlaufen hat, dort auch schneller. Deshalb sind auch die
Standardabweichungen und Varianzen mit dem STM32 MainDevice gréBer als die des Linux
MainDevice. Davon ist auch die Auflésung der Distributed Clocks betroffen. Die DCs
des STM32 laufen mit einer Genauigkeit von 5 ns; die des Linux-PCs mit 1 ns. Dies macht
sich auch in den diskreten Werten von tx_start auf dem STM32 in den Abbildungen 5.5
und 5.8 bemerkbar.

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

6. Zusammenfassung und Ausblick

Dieses Kapitel beginnt mit einer Zusammenfassung dieser Arbeit und deren wichtigste
Erkenntnisse und Ergebnisse (s. Abschnitt 6.1). Abschnitt 6.2 gewahrt einen Einblick in
zukunftige Arbeiten, die durch diese Arbeit ermdglicht und beeinflusst werden. AuBerdem
zeigt es mogliche Erweiterungen und sowohl deren Einsatzpotential als auch Herausforde-
rungen dabei. Abschnitt 6.3 gibt eine zusammenfassende Bewertung des Projekterfolgs
und der angewandten Methodik.

6.1. Zusammenfassung der Arbeit

Mit Hilfe dieser Arbeit konnte bewiesen werden, dass ein EtherCAT MainDevice auf einem
STM32-Mikrocontroller ohne installiertes Betriebssystem realisiert werden kann. Das STM32
MainDevice erfillt alle Anforderungen, die in dieser Arbeit gestellt wurden. Die hier erreichte
Realisierung stellt einen wichtigen Schritt fur weitere Implementierungen am DLR dar, da
so nachgewiesen werden konnte, dass die Kommunikation via EtherCAT innerhalb von
Robotersystemen von einem Betriebssystem entkoppelt werden kann. Infolgedessen ist
diese Implementierung deterministischer und robuster verglichen mit der Linux Variante, da
der STM32 ausschlieBlich fur die EtherCAT Kommunikation verantwortlich ist und deshalb
nicht durch andere Prozesse unterbrochen wird.

Durch den Vergleich der Implementierung auf dem STM32 mit einem Linux-PC MainDevice
in zwei unterschiedlichen Testaufbauten wurde ersichtlich, dass die Performance nahezu
gleich ist und mit keinen groBen EinbuBungen einhergeht. Lediglich die Roundtrip Time
(roundtrip_duration) sowie die Zeit zum Aussenden eines vollstandigen EtherCAT Frames
(tx_duration) stieg leicht an. Durch eine gemeinsame Analyse und Bewertung der Daten
mit Robert Burger konnte dies als ausreichend gut befunden werden, vor allem unter der
Tatsache, dass die Taktrate des Linux-PCs deutlich hoher ist.

Das Senden von Raw Ethernet Frames via DMA stellte zu Beginn der Arbeit eine der gréBten
Herausforderungen dar. Das lag vor allem daran, dass kein Beispielcode auf gangigen Platt-

4#;& DLR - Konzeptionierung, Portierung und

87
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

88 6. Zusammenfassung und Ausblick

formen wie GitHub' oder dem STMicroelectronics Forum? vorlag bzw. dass es nur Beispiele
einer Implementierung auf einem Betriebssystem wie RTOS gab. Auch das Umléten der
Hardware aufgrund des Portsharings von Ethernet und MEMS Mikrofon stellte eine kleine
Hurde dar, welche anfangs nicht bedacht wurde.

Eine weitere groBe Herausforderungen stellte der Umgang mit den Interrupts dar, da es
teilweise groBe Probleme gab, dass die Interrupts sich gegenseitig unterbrachen und in-
folgedessen der gesamte Mikrocontroller in einen Fail-State lief. Dies konnte durch die
EinfUhrung der Critical Sections unterbunden werden. Ob dies zu bisher unbekannten
Folgeproblemen fihrt, kann zum jetzigen Zeitpunkt noch nicht sicher gesagt werden und
muss in der Zukunft noch einmal analysiert und bewertet werden. Dazu zahlt ebenfalls das
Aktivieren des Data Caches. Dieser konnte nicht zum standardmaBigen Zeitpunkt im Code
aktiviert werden, da das Programm ansonsten in einen Error Handler lief. Der Data Cache
konnte erst nach Erreichen des States SAFEOP aktiviert werden. Damit wurde das Symptom
hinreichend behandelt und eine funktionsfahige Implementierung realisiert. Flr eine genaue
Bewertung, warum der Data Cache nicht direkt nach dem Instruction Cache aktiviert
werden kann, musste weitere Recherche betrieben werden und die Hardware (Register,
Speicher) noch einmal analysiert werden.

6.2. Ausblick auf zukiinftige Arbeiten

In der gesamten Arbeit wurde der CM4-Core des STM32 nicht genutzt. Dieser kdnnte bei-
spielsweise auch die Aufgabe Gbernehmen, die Log-Daten per UART auszugeben und dabei
auch Nutzereingaben anzunehmen. AuBerdem kénnte der zweite Kern auch Berechnungen
far die Konfiguration der SubDevices via Mailbox durchfihren. Dabei mussten Konzepte
und Lésungen zum Datenaustausch, -synchronisation und Zugriff auf weitere gemeinsame
Ressourcen erstellt werden.

Desweiteren konnte das mitgelieferte LED-Display wieder direkt auf dem H747 angebracht
werden, um so Log-Nachrichten auszugeben und keinen dedizierten PC mit Terminal mehr
zu bendtigen. Dies hatte zum Vorteil, dass die Critical Sections aufgelockert werden
kdnnten, da sich Interrupts und Ausgabe der Log-Nachrichten teilweise negativ beeinflusst
haben. Dies konnte ebenfalls durch das Nutzen des CM4 Kernes verbessert werden, da der
CM7 dann dediziert fur die Senden und Empfangen der EtherCAT Frames zustandig ware.

'GitHub
2ST Community

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://github.com/
https://community.st.com/

6.2. Ausblick auf zuklinftige Arbeiten 89

Die hier realisierte Implementierung ist so konzipiert, dass das STM32 MainDevice direkt
nach dem Senden eines EtherCAT Frames fur den Empfang des ricklaufigen Frames aktiviert
wird (= Polling Mode). Dies kdnnte durch den Modus IRQ Mode ersetzt werden. Diese
Option besteht ebenfalls bei der Linux MainDevice Implementierung. Zusatzlich dazu gibt
es auf Linux die RAW Socket-Variante. Implementierungen und Vergleichsmessungen zu
diesen beiden Modi wurden bereits fr mehrere Betriebssysteme angefertigt und kénnen
im Wiki des Main-libethercat-Repository> begutachtet werden.

Das STM32-H747-DISCO Board kénnte durch ein Board der STM32MP2-Series* ersetzt wer-
den, vorzugsweise (ber das Modell STM32MP2257F°. Dieses Board verfiigt Giber folgende
Vorteile:

7 64-bit Plattform

— Arm-Cortex-A35 Dual-Core (1.5 GHz max. Taktfrequenz)

- Arm-Cortex-M33 Single-Core (400 MHz max. Taktfrequenz)

— Ethernet TSN (Time-Sensitive Networking®) Switch mit drei Gigabit-Ethernet Ports
7 PCle Schnittstelle

— Al (Artificial Intelligence) Support (TensorFlowLite”)

Mit dem schnelleren Takt der CPUs kénnen die Laufzeitunterschiede der STM-Implementierung
(im Gegensatz zu Linux) weiter verbessert werden. Desweiteren kann sowohl der 2. Kern
des A35 und der M33 flr zusatzliche Aufgaben genutzt werden wie bspw. Redundanz. Die
Redundanz kann weiter durch die drei Ethernet Ports erhdht werden. Mit diesen ist es auch
moglich mehrere EtherCAT Netze auf einem Mikrocontroller zu realisieren. Mit Hilfe des
PCle Slots kann der STM32MP2257F auch direkt in einen Robotersteuerungs-PC (z.B. Linux)
eingesteckt werden. So kann einfacher Datenaustausch zwischen Robotersteuerung auf
dem PC und EtherCAT Kommunikation auf dem STM32 stattfinden. Der Al Support kann
genutzt werden, um Modelle zu bauen, die den EtherCAT Betrieb oder Datenkommunikati-
on und daraus folgende Steuerung effizienter und dynamischer zu gestalten.

AuBerdem koénnte der zusatzliche 256 MBit SDRAM (s. Abschnitt 3.2.2) dafur genutzt

3libethercat Repository Wiki

4STM32MP2-Series Website

>STM32MP257F Produktwebsite

SIEEE 802 TSN Task Group

’Getting Started Converting TensorFlow to ONNX

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://rmc-github.robotic.dlr.de/common/libethercat/wiki
https://www.st.com/en/microcontrollers-microprocessors/stm32mp2-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32mp257f.html
https://www.ieee802.org/1/pages/tsn.html
https://onnxruntime.ai/docs/tutorials/tf-get-started.html

90 6. Zusammenfassung und Ausblick

werden, um die GréBe der Variablen im Config-File (s. Abschnitt 4.5.2) wieder hdher zu
setzen. Diese Werte wurden aufgrund von Speicherknappheit manuell heruntergesetzt, um
die Systemressourcen des STM32-H747 nicht zu Uberlasten. Der zusatzliche Speicher kann
insofern auch fir noch zu definierende Aufgaben genutzt werden.

6.3. Schlussfolgerungen

Schon wahrend der Anfertigung dieser Arbeit sprachen uns mehrere Kolleginnen des DLR
auf die Ziele des Projektes an. Sie waren bereits wahrend der Entwicklung stark von unserem
Vorhaben begeistert und stellten bereits Anfragen, wann unsere Portierung nutzbar sei.
Dies liegt einerseits an der Tatsache, dass EtherCAT in vielen Systemen innerhalb von RMC
eingesetzt wird. Andererseits werden STM32-Boards in vielerlei Hinsicht vom Kollegium
genutzt. Insofern ist die erfolgreiche Realisierung dieser Machbarkeitsstudie der erste Schritt,
um Veranderungen und Verbesserungen innerhalb der RMC-Systeme in Gang zu setzen.
Dafdr muss der in dieser Arbeit geschriebene Code noch in die Main-Repositories von
libethercat und libosal eingepflegt werden. AuBerdem soll ein Paper zur Arbeit verof-
fentlicht werden und der Code zum Versenden der Raw Ethernet Frames auch in meinem
personlichen GitHub Repository frei zur Verfigung gestellt werden, damit kinftige Bare-
Metal-Realisierungen auf dem STM32 schneller angefertigt werden kénnen.

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Eigenstandigkeitserklarung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbststandig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe. Die Arbeit wurde
bisher in gleicher oder dhnlicher Form keiner anderen Prifungsbehdrde vorgelegt.

DieBen, den 12. April 2025

Marcel Beausencourt

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Literatur

[DLRa] DLR. Caesar. [letzter Zugriff: 2025-03-06]. URL: https://www.dlr.de/de/rm/
forschung/robotersysteme/arme/caesar.

[DLRb] DLR. Rollin” Justin. [letzter Zugriff: 2025-03-06]. URL: https://www.dlr.de/de/

rm/forschung/robotersysteme/humanoide/rollin- justin.

[Eth] EtherCAT Technology Group. EtherCAT Technology. https://www .ethercat.
org/en/technology.html. [letzter Zugriff: 2025-01-27].

[Ger] Gertech. ESP32 Specification Sheet. [letzter Zugriff: 2025-02-27]. URL: https:
//gertech.se/gertech/files/ESP32_Specification.pdf.

[gmb] acontis technologies gmbh. What is the EtherCAT Communication Protocol.
https://www.acontis.com/en/what-is-ethercat-communication-protocol.html. [letz-
ter Zugriff: 2025-02-04].

[[EE94] IEEE. “Real-time computing: a new discipline of computer science and enginee-
ring - Proceedings of the IEEE”. In: (1994). [letzter Zugriff: 2025-01-28].

[Mac04] Dr. Michael Machtel. Echtzeitsysteme - Script zur Vorlesung an der FH Mdnchen.
Version 1.21. 2004.

[MBe] Deep Blue MBedded. STM32 Timer Interrupt HAL Example — Timer Mode LAB.
[letzter Zugriff: 2025-02-03]. URL: https: //deepbluembedded . com/ stm32 -
timer-interrupt-hal-example-timer-mode-lab/.

[STMa] STMicroelectronics. STM32G4 - NVIC. [letzter Zugriff: 2025-03-11]. URL: https:
//www.st.com/resource/en/product_training/STM32G4-System-Nested_

Vectored_Interrupt_Control_NVIC.pdf.
[STMb] STMicroelectronics. STM32H747/757 Overview. [letzter Zugriff: 2025-02-27].

URL: https ://www . st .com/en/microcontrollers - microprocessors /
stm32h747-757 .html.

[STM20] STMicroelectronics. UM2411 User manual Discovery kit with STM32H747XI MCU.
2020.

[STM23] STMicroelectronics. RM0399 Reference Manual STM32H745/755 and STM32H747/757
advanced Arm®-based 32-bit MCUs. 2023.

4#;1 DLR - Konzeptionierung, Portierung und

ii
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://gertech.se/gertech/files/ESP32_Specification.pdf
https://gertech.se/gertech/files/ESP32_Specification.pdf
https://deepbluembedded.com/stm32-timer-interrupt-hal-example-timer-mode-lab/
https://deepbluembedded.com/stm32-timer-interrupt-hal-example-timer-mode-lab/
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32h747-757.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h747-757.html

iV Literatur

[Tan09] Andrew S. Tanenbaum. Modern Operating Systems. Pearson Education Inc.,
2009.

[Teca] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: All-
gemein FMMU / SM. [letzter Zugriff: 2025-01-27]. URL: https://infosys.
beckhoff . com/index . php? content=. . /content /1031/tc3_io_intro/
4981170059 . html&id=.

[Tecb] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: All-
gemein TwinCAT 3 | /0. [letzter Zugriff: 2025-01-28]. URL: https://infosys.
beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore,
7B%7Dio%5Ctextunderscore’7B%7Dintro/1257993099 . html&id=.

[Tecc] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: Ether-
CAT State Machine. [letzter Zugriff: 2025-01-28]. URL: https : // infosys .
beckhoff . com/ index . php 7 content =. . /content / 1031/ ek1110 - 004x /
1036980875 . html&id=.

[ThoO5] J.-P. Thomesse. “Fieldbus Technology in Industrial Automation”. In: Proceedings
of the IEEE 93.6 (2005), S. 1073-1101. pbol: 10.1109/JPROC.2005.849724.

[Wil05] R. Williams. Real-Time Systems Development. Chantilly: Elsevier Science & Tech-
nology, Okt. 2005.

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://doi.org/10.1109/JPROC.2005.849724

Appendix

A. Vollstandiger Log-Output EtherCAT StartUP
Testaufbau 1

Der folgende Auszug zeigt die Log-Outputs des MainDevices via USART1 zu Testaufbau
1 (s. Abschnitt 5.1.2). Diese wurde an einem per USB angeschlossenen PC via Minicom
aufgenommen. Es zeigt den kompletten Startup des EtherCAT Busses (Z. 1 - 282) mit drei
angeschlossenen SubDevices. Die Zeilen 283 - 288 werden dann im Loop mit aktualisierten
Werten bzw. Zeiten ausgegeben (s. Z. 289 - 293).

1 Welcome to EtherCAT on bare-metal STM32!

2| MASTER_OPEN : libethercat version : 0.5.1

3| MASTER_OPEN : MAX_SLAVES : 16

4] MASTER_OPEN : MAX_GROUPS : 2

5/ MASTER_OPEN : MAX_PDLEN : 3036

6| MASTER_OPEN : MAX_MBX_ENTRIES : 16

7| MASTER_OPEN : MAX_INIT_CMD_DATA : 128

8| MASTER_OPEN : MAX_SLAVE_FMMU : 8

9| MASTER_OPEN : MAX_SLAVE_SM : 8

10| MASTER_OPEN : MAX_DATAGRAMS : 10

111 MASTER_OPEN : MAX_EEPROM_CAT_SM : 8

12| MASTER_OPEN : MAX_EEPROM_CAT_FMMU : 8

13| MASTER_OPEN : MAX_EEPROM_CAT_PDO : 16

14| MASTER_OPEN : MAX_EEPROM_CAT_PDO_ENTRIES : 8
15] MASTER_OPEN : MAX_EEPROM_CAT_STRINGS : 16

16| MASTER_OPEN : MAX_EEPROM_CAT_DC : 8

17| MASTER_OPEN : MAX_STRING_LEN : 128

18| MASTER_OPEN : MAX_DATA : 4096

19| MASTER_OPEN : MAX_DS402_SUBDEVS : 2
20| MASTER_OPEN : MAX_COE_EMERGENCIES : 10
21} MASTER_OPEN : MAX_COE_EMERGENCY_MSG_LEN : 32
22| MASTER_OPEN : Master struct needs 156592 bytes
23

4#;1 DLR - Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Appendix

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66

====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

MASTER_SET_STA
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :

EC_STATE_ INIT 3
EC_STATE_INIT :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EEPROM_ STRINGS g
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :

E-Bus)

EEPROM_GENERAL :
EEPROM_GENERAL :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT
INIT_2_INIT :

EC_STATE_INIT :
EC_STATE_INIT :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

TE : switching from EC_STATE_UNKNOWN to EC_STATE_INIT
slave 0: auto inc 0, fixed 1000

slave 1: auto inc -1, fixed 1001

slave 2: auto inc -2, fixed 1002

found 3 ethercat slaves

slave 0 is directly connected to slave -1
slave 0: port O is MII/RMII/RGMII

slave 0: port 1 is EBUS

slave 0: port 2 is MII/RMII/RGMII

slave 1 is directly connected to slave O
slave 1: port O is EBUS

slave 1: port 1 is EBUS

slave 1: port 3 is not configured (SII EEPROM)
slave 2 is directly connected to slave O
slave 2: port O is MII/RMII/RGMII

slave 2: port 1 is MII/RMII/RGMII

slave 0, with_group O, assigned -1

setting state for slave 0

slave O executing transition 101

slave O rewriting fixed address

slave O disable dcs

slave O get number of sm

slave 0 get number of fmmu

slave 0: pdi ctrl 0xODO0O, fmmus 8, syncm 8, features OxFC
slave 0: cat_len 34

slave 0: stored strings 4

(S) string 0, length 6 : EK1100

(8) string 1, length 8 : SystemBk

(8) string 2, length 14 : System Koppler

(8) string 3, length 34 : EK1100 EtherCAT-Koppler (2A

slave O:

group_idx 2, img_idx O, order_idx 1, name_idx 4

slave 0: vendor 0x00000002, product 0x72100946, mbx 0x0000
slave O0: INIT state requested

: slave O: state 1, act_state 1, wkc 1

slave 0: INIT state reached

slave 1, with_group O, assigned -1
setting state for slave 1

slave 1 executing transition 101
slave 1 rewriting fixed address
slave 1 disable dcs

slave 1 get number of sm

4#;; DLR — Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 1

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

INIT_2_INIT :
INIT_2_INIT :

EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_GENERAL :
EEPROM_GENERAL :

EEPROM_FMMU :

EEPROM_FMMU :

EEPROM_SM : sl
EEPROM_SM : sm
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
INIT_2_INIT :

INIT_2_INIT :

INIT_2_INIT :

INIT_2_INIT :

slave 1 get number of fmmu

slave 1: pdi ctrl 0x0104, fmmus 3, syncm 4, features Ox1FC
cat_len 85
slave 1: stored strings 13

()
()
()
()
()
()
()
()
()
()
()
()
€

slave 1:

slave 1:

string
string
string
string
string
string
string
string
string
string
string
string
string

slave 1:
group_idx 2, img_idx O, order_idx 1, name_idx 4
entries 1

fmmuO, type 1

ave 1:

0x1600,

0, length 6 :
1, length 6 :

length
length
length
length
length
length

- -

© 0 N O WN

-

© © © © o ©

10, length 9 :
11, length 9 :
12, length 9 :

entries 1
0 adr 0xFO0O, len 0, flags 0x90044
slave 1:

0x1600: 0 ->

0x1601,

0x1601: 0 ->

0x1602,

0x1602: 0 ->

0x1603,

0x1603: 0 ->

0x1604,

0x1604: 0 ->

0x1605,

0x1605: 0 ->

0x1606,

0x1606: 0 ->

0x1607,

0x1607: 0 ->

slave
slave
slave
slave

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

1:

lg
1:
1

entries 1

0x7000

entries 1

0x7010

entries 1

0x7020

entries 1

0x7030

entries 1

0x7040

entries 1

0x7050

entries 1

0x7060

entries 1

0x7070

length 33 :
length 33 :

EL2008
DigOut

Digitale Ausgangsklemmen (EL2xxx)
EL2008 8K. Dig. Ausgang 24V, 0.5A
: Channel 1
: Output

: Channel 2
: Channel 3
: Channel 4

: Channel 5

Channel 6
Channel 7
Channel 8

vendor 0x00000002, product 0x131608658, mbx 0x0000
INIT state requested

state 1, act_state 1, wkc 1
INIT state reached

Appendix

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

EC_STATE_INI
EC_STATE_INI
INIT_2_INIT

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EEPROM_GENER
EEPROM_GENER

EEPROM_SM :
EEPROM_SM :
EEPROM_SM :
EEPROM_SM :
EEPROM_SM :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

====== STATE FINISHED ====== STARTING NEXT TRANSITION
switching from EC_STATE_INIT to EC_STATE_PREOP

MASTER_SET_S
EC_STATE_PRE
EC_STATE_PRE

INIT_2_PREQP :
INIT_2_PREQP :
INIT_2_PREQOP :
INIT_2_PREQOP :
INIT_2_PREQOP :

EC_STATE_PRE
EC_STATE_PRE

INIT_2_PREOP :
INIT_2_PREOP :
INIT_2_PREQP :
INIT_2_PREQOP :
INIT_2_PREQOP :

EC_STATE_PRE
EC_STATE_PRE

INIT_2_PREOP :

INIT_2_PREOP

MAILBOX_INIT :

T : slave 2, with_group 0, assigned -1
T : setting state for slave 2

: slave
slave
slave
slave
slave
slave

AL : group_idx O, img_idx O, order_idx O, name_idx O
EEPROM_FMMU :
EEPROM_FMMU :
EEPROM_FMMU :

slave
fmmuO,
fmmul,
slave 2:
sm0 adr
sml adr
sm2 adr
sm3 adr
slave
slave
slave
slave

TATE :

2 executing t
rewriting f
disable dcs
get number

2
2
2
2 get number

ransition 101
ixed address

of sm
of fmmu

2: pdi ctrl 0x0CO5, fmmus 8, syncm 8, features OxFC
AL : slave 2:

2: entries 1
type 1

type 2
entries 4
0x1800, len 1
0x1900, len 1
0x1100, len 3
0x1180, len 3

40, flags 0x10026
40, flags 0x10022
2, flags 0x10064
2, flags 0x10020

2: vendor 0x00000154, product 0x00198948, mbx 0xOOOE

2: INIT state
2: state 1,
2: INIT state

requested

act_state 1, wkc 1

reached

OP : slave O, with_group O, assigned -1
OP : setting state for slave O

slave
slave
slave
slave
slave

0 executing

transition 102

0, vendor 0x00000002, product 0x72100946, mbx 0x0000

0: PRE-OPERATIONAL state requested

0: state 2,

0: PRE-OPERATIONAL state reached
OP : slave 1, with_group O,

act_state 2, wkc 1

assigned -1

OP : setting state for slave 1

slave
slave
slave
slave
slave

1 executing

transition 102

1, vendor 0x00000002, product 0x131608658, mbx 0x0000

1: PRE-OPERATIONAL state requested

1: state 2,

1: PRE-OPERATIONAL state reached
OP : slave 2, with_group O,

act_state 2, wkc 1

assigned -1

OP : setting state for slave 2

slave 2 executing transition 102

: slave 2, vendor 0x00000154, product 0x00198948, mbx 0xO00E

slave

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2: initializ

ing mailbox

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 1

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175

176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

COE_INIT : slave 2: initializing CoE mailbox.

INIT_2_PREQOP : slave 2: smO, adr 0x1800, len 140, flags 0x00065574
INIT_2_PREQOP : slave 2: sml, adr 0x1900, len 140, flags 0x00065570
INIT_2_PREQOP : slave 2: PRE-OPERATIONAL state requested
INIT_2_PREQOP : slave 2: state 2, act_state 2, wkc 1

INIT_2_PREQOP : slave 2: PRE-OPERATIONAL state reached

====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

MASTER_SET_STATE : switching from EC_STATE_PREOP to EC_STATE_SAFEQOP

DC_CONFIG : master packet duration 21730 ns

DC_CONFIG : slave 0: receive time port 0 is 1172201482

DC_CONFIG : slave O: receive time port 1 is 1172201792

DC_CONFIG : slave O: receive time port 2 is 1172202962

DC_CONFIG : slave 0O: available_ports 0x7, entry_port O

DC_CONFIG : initial dc_sto 0, rtc_sto 1019593445

DC_CONFIG : slave O: parent -1

DISTRIBUTED_CLOCK : slave O: delay_childs 1480, delay_slave 0, <
delay_parent_previous_slaves 0, deDC_CONFIG : slave 0: sysdelay O

DC_CONFIG : slave 1: receive time port O is 1180753012

DC_CONFIG : slave 1: available_ports Oxl, entry_port O

DC_CONFIG : slave 1: parent O

DISTRIBUTED_CLOCK : slave 1: delay_childs O, delay_slave 165, <
delay_parent_previous_slaves 0, delay_DC_CONFIG : slave 1: sysdelay 165

DC_CONFIG : slave 2: receive time port O is 1825259170

DC_CONFIG : slave 2: available_ports Oxl, entry_port O

DC_CONFIG : slave 2: parent O

DISTRIBUTED_CLOCK : slave 2: delay_childs O, delay_slave 595, <
delay_parent_previous_slaves 310, delDC_CONFIG : slave 2: sysdelay 905

EC_STATE_SAFEQP : prepare state transition for slave O

PREOP_2_SAFEQP : slave 0: sending init cmds

EC_STATE_SAFEOP : generate mapping for slave 0

SLAVE_GENERATE_MAPPI: slave O: txpdos O, rxpdos O, bitlenO O
SLAVE_GENERATE_MAPPI: slave 0: txpdos O, rxpdos O, bitlenl O
SLAVE_GENERATE_MAPPI: slave 0: txpdos O, rxpdos O, bitlen2 0O
SLAVE_GENERATE_MAPPI: slave 0: txpdos O, rxpdos O, bitlen3 0O
SLAVE_GENERATE_MAPPI: slave 0: txpdos O, rxpdos O, bitlen4 O
SLAVE_GENERATE_MAPPI: slave O: txpdos O, rxpdos O, bitlen5 O
SLAVE_GENERATE_MAPPI: slave O: txpdos O, rxpdos O, bitlen6 O
SLAVE_GENERATE_MAPPI: slave O: txpdos O, rxpdos O, bitlen7 O

EC_STATE_SAFEOP : prepare state transition for slave 1
PREOP_2_SAFEOP : slave 1: sending init cmds
EC_STATE_SAFEOP : generate mapping for slave 1
SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm O
SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm O

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

VI

Appendix

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232

233
234
235
236
237

SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:
SLAVE_GENERATE_MAPPI:

EC_STATE_SAFEQP :
PREOP_2_SAFEQP :
EC_STATE_SAFEQP :

COE_MAPPING : slave 2:
slave 2: 0x7186/1 mapped pdo 0x1600

COE_MAPPING :

slave
slave
slave
slave
slave
slave
slave
slave
slave
slave
slave

1:

e e

: got rxpdo
: got rxpdo
: got rxpdo
: got rxpdo
: got rxpdo
: got rxpdo
: txpdos O,

sm20x7186count 1

COE_MAPPING : pdo: 0x1600 count 3

COE_MAPPING
COE_MAPPING
COE_MAPPING
COE_MAPPING :
COE_MAPPING :
COE_MAPPING :

sm30x7187count 1

COE_MAPPING : pdo: 0x1A00 count 3

COE_MAPPING
COE_MAPPING :
COE_MAPPING

bit_len
bit_len
bit_len
bit_len
bit_len

>
>

1
1,
1
1

>

1,

sm
sm
sSm
sSm
sSm

bit_len 1, sm

rxpdos 8, bitlen0O 8
: sm0 length bits 8, bytes 1

: txpdos O, rxpdos 0O, bitlenl O
: txpdos O, rxpdos 0, bitlen2 O
txpdos 0, rxpdos 0, bitlen3 0
prepare state transition for slave 2
slave 2: sending init cmds

generate mapping for slave 2

: mapped entry 0x24698/ 0-> 32bits
: mapped entry 0x24830/ 1-> 32bits
: mapped entry 0x24640/ 0-> 16bits
slave 2: sm2length bits 80, bytes 10
slave 2:
slave 2: 0x7187/1 mapped pdo 0x1A00

: mapped entry 0x24676/ 0-> 32bits
mapped entry 0x24829/ 0-> 32bits
: mapped entry 0x24641/ 0-> 16bits

COE_MAPPING : slave 2: sm3length bits 80, bytes 10

EC_STATE_PREO

CREATE_LOGICAL_MAPPI: group O:

11 bytes, lrw window 11

CREATE_LOGICAL_MAPPI: group O:
CREATE_LOGICAL_MAPPI: group O:
CREATE_LOGICAL_MAPPI: group O:

EC_STATE_SAFEQP :
EC_STATE_SAFEQP :
PREQOP_2_SAFEQP :
PREQOP_2_SAFEQP :

DC_SYNC :
DC_SYNC :
PREOP_2_SAFEQP :
PREOP_2_SAFEQP :
PREOP_2_SAFEQP :

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

slave O:

O O O O O

0

: group O: using LRW, support from all slaves in group

pd out 0x00010000 11 bytes, in 0x0001000b <~

expected working counter O
expected working counter 2
expected working counter 5
slave 0, with_group 1, assigned O
setting state for slave O
slave O executing transition 204

slave 0: configuring actiavtion reg. 3, cycle_times <
1000000/0, cycle_shift O

slave 0: dc_systime 0.0 s, dc_start 1.0 s, slv dc_s

slave 0: cycletime_0 1000000, cycletime_1 O, dc_active 3
slave O0: SAFE-OPERATIONAL state requested

state 4, act_state 4, wkc 1
slave 0: SAFE-OPERATIONAL state reached

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 1 VI

238
239
240
241

242
243
244

245
246
247
248
249
250
251

252
253
254
255

256

257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

EC_STATE_SAFEOP : slave 1, with_group 1, assigned O

EC_STATE_SAFEOP : setting state for slave 1

PREOP_2_SAFEQP : slave 1 executing transition 204

PREOP_2_SAFEQP : slave 1: configuring actiavtion reg. 3, cycle_times ¢
1000000/0, cycle_shift ODC_SYNC : slave 1: dc_systime 0.0 s, dc_start <

1.0 s,

slv dc_s

DC_SYNC : slave 1: cycletime_O 1000000, cycletime_1 O, dc_active 3

PREOP_2_SAFEOP : slave 1: sm0O, adr OxOF00, len 1, flags 0x00589892

PREOP_2_SAFEQP : slave 1: log00x00065536/0/7, len 1, phys 0x0F00/0, type <
2, active 1

PREOP_2_SAFEOP : slave 1: SAFE-OPERATIONAL state requested

PREOP_2_SAFEQOP : slave 1: state 4, act_state 4, wkc 1

PREOP_2_SAFEQOP : slave 1: SAFE-OPERATIONAL state reached

EC_STATE_SAFEOP : slave 2, with_group 1, assigned O

EC_STATE_SAFEOP : setting state for slave 2

PREOP_2_SAFEOP : slave 2 executing transition 204

PREOP_2_SAFEOP : slave 2: configuring actiavtion reg. 3, cycle_times <>
1000000/0, cycle_shift ODC_SYNC : slave 2: dc_systime 0.0 s, dc_start <«
1.0 s, slv dc_s

DC_SYNC : slave 2: cycletime_O 1000000, cycletime_1 O, dc_active 3

PREOP_2_SAFEOP : slave 2: sm2, adr 0x1100, len 10, flags 0x00065636

PREOP_2_SAFEOP : slave 2: sm3, adr 0x1180, len 10, flags 0x00065568

PREOP_2_SAFEQP : slave 2: log00x00065537/0/7, len 10, phys 0x1100/0, type ¢
2, active 1

PREOP_2_SAFEOP : slave 2: logl0x00065537/0/7, len 10, phys 0x1180/0, type ¢«
1, active 1

PREOP_2_SAFEOP : slave 2: 1og20x150994944/0/0, len 1, phys 0x080D/3, type
1, active 1

PREOP_2_SAFEOP : slave 2: SAFE-OPERATIONAL state requested

PREOP_2_SAFEQOP : slave 2: state 4, act_state 4, wkc 1

PREOP_2_SAFEQOP : slave 2: SAFE-OPERATIONAL state reached

====== STATE FINISHED ====== STARTING NEXT TRANSITION ======
MASTER_SET_STATE : switching from EC_STATE_SAFEQOP to EC_STATE_OP

EC_STATE_OP

EC_STATE_OP :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
EC_STATE_OP :
EC_STATE_OP :
SAFEOP_2_0P :
SAFEOP_2_0P :

: slave O, with_group 1, assigned O
setting state for slave O

slave O executing transition 408
slave 0: OPERATIONAL state requested
slave 0: state 8, act_state 8, wkc 1
slave O: OPERATIONAL state reached
slave 1, with_group 1, assigned O
setting state for slave 1

slave 1 executing transition 408
slave 1: OPERATIONAL state requested

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

VI

Appendix

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

SAFEOP_2_0P : slave 1: state 8, act_state 8, wkc 1
SAFEQP_2_0P : slave 1: OPERATIONAL state reached
EC_STATE_OP : slave 2, with_group 1, assigned 0
EC_STATE_OP : setting state for slave 2
SAFEOP_2_0P : slave 2 executing transition 408
SAFEOP_2_0P : slave 2: OPERATIONAL state requested
SAFEOP_2_0P : slave 2: state 8, act_state 8, wkc O
SAFEOP_2_0P : slave 2: OPERATIONAL state reached

====== (QPERATIONAL ======

Frame len 36 bytes/ 2.9 us

Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)
Duration +34.1 us (jitter avg +0.3 us, max +6.3 us)
Round trip +31.6 us (jitter avg +0.3 us, max +5.8 us)
DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns
Frame len 36 bytes/ 2.9 us

Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)
Duration +34.1 us (jitter avg +0.2 us, max +2.4 us)
Round trip +31.6 us (jitter avg +0.2 us, max +1.9 us)
DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns
Frame len 36 bytes/ 2.9 us

Codeauszug 1: EtherCAT Log Output Testaufbau 1

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 2 IX

B. Volistandiger Log-Output EtherCAT StartUP
Testaufbau 2

Der folgende Auszug zeigt die Log-Outputs des MainDevices via USART1 zu Testaufbau
1 (s. Abschnitt 5.1.2). Diese wurde an einem per USB angeschlossenen PC via Minicom
aufgenommen. Es zeigt den kompletten Startup des EtherCAT Busses (Z. 1 - 282) mit drei
angeschlossenen SubDevices. Die Zeilen 283 - 288 werden dann im Loop mit aktualisierten
Werten bzw. Zeiten ausgegeben (s. Z. 289 - 293).

1 Welcome to EtherCAT on bare-metal STM32!

2| MASTER_OPEN : libethercat version : 0.5.1

3| MASTER_OPEN : MAX_SLAVES : 16

41 MASTER_OPEN : MAX_GROUPS : 2

51 MASTER_OPEN : MAX_PDLEN : 3036

6| MASTER_OPEN : MAX_MBX_ENTRIES : 16

71 MASTER_OPEN : MAX_INIT_CMD_DATA : 128

8| MASTER_OPEN : MAX_SLAVE_FMMU : 8

O MASTER_OPEN : MAX_SLAVE_SM : 8

10§ MASTER_OPEN : MAX_DATAGRAMS : 10

11§ MASTER_OPEN : MAX_EEPROM_CAT_SM : 8

12| MASTER_OPEN : MAX_EEPROM_CAT_FMMU : 8

131 MASTER_OPEN : MAX_EEPROM_CAT_PDO : 16

14} MASTER_OPEN : MAX_EEPROM_CAT_PDO_ENTRIES : 8

151 MASTER_OPEN : MAX_EEPROM_CAT_STRINGS : 16

161 MASTER_OPEN : MAX_EEPROM_CAT_DC : 8

17§ MASTER_OPEN : MAX_STRING_LEN : 128

18] MASTER_OPEN : MAX_DATA : 4096

191 MASTER_OPEN : MAX_DS402_SUBDEVS : 2
20| MASTER_OPEN : MAX_COE_EMERGENCIES : 10
21/ MASTER_OPEN : MAX_COE_EMERGENCY_MSG_LEN : 32
22| MASTER_OPEN : Master struct needs 156592 bytes
23
24 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======
25| MASTER_SET_STATE : switching from EC_STATE_UNKNOWN to EC_STATE_INIT
26| MASTER_SCAN : slave 0: auto inc 0, fixed 1000
27 MASTER_SCAN : slave 1: auto inc -1, fixed 1001
28| MASTER_SCAN : slave 2: auto inc -2, fixed 1002
29| MASTER_SCAN : slave 3: auto inc -3, fixed 1003
30} MASTER_SCAN : found 4 ethercat slaves
31] MASTER_SCAN : slave O is directly connected to slave -1
32 || MASTER_SCAN : slave O: port O is MII/RMII/RGMII
33| MASTER_SCAN : slave O: port 1 is MII/RMII/RGMII

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Appendix

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :
MASTER_SCAN :

EC_STATE_INIT :
EC_STATE_INIT :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EEPROM_ STRINGS g
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_GENERAL :
EEPROM_GENERAL :

EEPROM_FMMU :
EEPROM_FMMU
EEPROM_FMMU :

EEPROM_FMMU :

EEPROM_SM : sl
EEPROM_SM : sm
EEPROM_SM : sm
EEPROM_SM : sm
EEPROM_SM : sm
EEPROM_ TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :

slave
slave
slave
slave
slave
slave
slave
slave
slave

slave
slave
slave
slave
slave
slave

()
()
()
()
()
()
()
()
()
(s)

slave

fmmul,

1
1
1
2
2:
2
3
3
3

slave

0

0
0
0
0

0:
slave O:
slave O:

is directly connected to slave O

: port O is MII/RMII/RGMII
: port 1 is MII/RMII/RGMII

is directly connected to slave 1
port O is MII/RMII/RGMII

: port 1 is MII/RMII/RGMII

is directly connected to slave 2

: port O is MII/RMII/RGMII
: port 1 is MII/RMII/RGMII
0, with_group O,
setting state for slave O

assigned -1

executing transition 101

rewriting fixed
disable dcs

get number of sm

address

get number of fmmu
pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

cat_len 67
0, length
length
length
length
length
length
length
length
length
length

© 00 N O O d W N -

img_idx
entries 2

fmmu2, type 3

ave O:
0 adr
1 adr
2 adr
3 adr

entries 4
0x1000,
0x1400,
0x2400,
0x1800,

1024,
1024,

len
len
len
len

slave O:

0x1A00,
0x1A80,
0x1A80: O

entries 0
entries 4
-> 0x0000

stored strings
string
string
string
string
string
string
string
string
string
string
slave O:

group_idx 2,
0:
: fmmuO, type 1
type 2

10

31 : FC1121 EtherCAT PCIe slave card
6 : FCcard

16 : EtherCAT PC card

7 : FreeRun

2 : DC

9 : IO Inputs

21 : Device Status Mapping
10 : TxPdoState

11 : TxPdoToggle

10 : IO Outputs

0, order_idx 1, name_idx 1

flags 0x10026
flags 0x10022

0, flags 0x64
0, flags 0x20

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 2

X

78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

EEPROM_TXPDO : O0x1A80: 1 -> 0x0000

EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

EEPROM_RXPDO : slave O:

EEPROM_RXPDO : 0x1600, entries O

EEPROM_DC : slave 0:

EEPROM_DC : cycle_time_O O, shift_time_O O, shift_time_1 0, <
sync_0_cycle_factor 0, sync_1_cycle_facEEPROM_DC : cycle_time_0 0, <
shift7

INIT_2_INIT : slave O: INIT state requested

INIT_2_INIT : slave O: state 1, act_state 1, wkc 1

INIT_2_INIT : slave O: INIT state reached

EC_STATE_INIT : slave 1, with_group O, assigned -1

EC_STATE_INIT : setting state for slave 1

INIT_2_INIT : slave 1 executing transition 101

INIT_2_INIT : slave 1 rewriting fixed address

INIT_2_INIT : slave 1 disable dcs

INIT_2_INIT : slave 1 get number of sm

INIT_2_INIT : slave 1 get number of fmmu

INIT_2_INIT : slave 1: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

EEPROM_ STRINGS : slave 1: cat_len 67

EEPROM_STRINGS : slave 1: stored strings 10

EEPROM_STRINGS : (S) string O, length 31 : FC1121 EtherCAT PCIe slave card

EEPROM_STRINGS : (S) string length 6 : FCcard

EEPROM_STRINGS : (S) string length 16 : EtherCAT PC card

EEPROM_STRINGS : (S) string length 7 : FreeRun

EEPROM_STRINGS : (S) string length 2 : DC

EEPROM_STRINGS : (S) string length 9 : IO Inputs

EEPROM_STRINGS : (S) string length 21 : Device Status Mapping

EEPROM_STRINGS : (S) string length 10 : TxPdoState

EEPROM_STRINGS : (S) string length 11 : TxPdoToggle

EEPROM_STRINGS : (8) string length 10 : IO Outputs

EEPROM_GENERAL : slave 1:

EEPROM_GENERAL : group_idx 2, img_idx O, order_idx 1, name_idx 1

EEPROM_FMMU : slave 1: entries 2

EEPROM_FMMU : fmmuO, type 1

EEPROM_FMMU : fmmul, type 2

EEPROM_FMMU : fmmu2, type 3

EEPROM_SM : slave 1: entries 4

EEPROM_SM : smO adr 0x1000, len 1024, flags 0x10026

EEPROM_SM : sml adr 0x1400, len 1024, flags 0x10022

EEPROM_SM : sm2 adr 0x2400, len O, flags 0x64

EEPROM_SM : sm3 adr 0x1800, len O, flags 0x20

EEPROM_ TXPDO : slave 1:

. - -

- - -

© 0 N O O dd W N+~

-

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Xl

Appendix

120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_DC : sl

0x1A00, entries O
0x1A80, entries 4
0x1A80: 0 -> 0x0000
0x1A80: 1 -> 0x0000
0x1A80: 2 -> 0xF100
0x1A80: 3 -> 0xF100
slave 1:

0x1600, entries O
ave 1:

EEPROM_DC : cycle_time_0 O, shift_time_O O, shift_time_1 0, <
sync_O_cycle_factor 0, sync_1_cycle_factor O, aEEPROM_DC :
cycle_time_0 7

o

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EC_STATE_INIT :
EC_STATE_INIT :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :
EEPROM_STRING

EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_GENERAL :
EEPROM_GENERAL :

EEPROM_FMMU :
EEPROM_FMMU :
EEPROM_FMMU :
EEPROM_FMMU :
EEPROM_SM : sl
EEPROM_SM : sm
EEPROM_SM : sm

slave 1: INIT state requested

state 1, act_state 1, wkc 1

INIT state reached

slave 2, with_group O, assigned -1

setting state for slave 2

2 executing transition 101

rewriting fixed address

disable dcs

get number of sm

get number of fmmu

pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184
cat_len 67
slave 2: stored strings
(S) string 0, length 31
(S) string length 6 :
(S) string length 16 : EtherCAT PC card

(8) string length 7 : FreeRun

(8) string length 2 : DC

(8) string length 9 : IO Inputs

(8) string length 21 : Device Status Mapping
(S) string length 10 : TxPdoState

(S) string length 11 : TxPdoToggle

(8) string length 10 : IO Outputs

slave 2:

group_idx 2, img_idx
slave 2: entries 2
fmmuO, type 1

fmmul, type 2

fmmu2, type 3

ave 2: entries 4

0 adr 0x1000, len 1024,
1 adr 0x1400, len 1024,

slave 1:
slave 1:

slave
slave 2
slave 2
slave 2
slave 2
2:
: slave 2:

slave

10
: FC1121 EtherCAT PCIe slave card
FCcard

© 00 N O U d W N+~

0, order_idx 1, name_idx 1

flags 0x10026
flags 0x10022

4#;; DLR — Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 2 Xl

162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

EEPROM_SM : sm2 adr 0x2400, len O, flags 0x64
EEPROM_SM : sm3 adr 0x1800, len O, flags 0x20

EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_TXPDO :
EEPROM_RXPDO :
EEPROM_RXPDO :
EEPROM_DC : sl
EEPROM_DC : cy

sync_0_cycle_factor O,
cycle_time_

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EC_STATE_INIT :
EC_STATE_INIT :

INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT
INIT_2_INIT :
INIT_2_INIT :
INIT_2_INIT :

EEPROM_ STRINGS g
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_STRINGS :
EEPROM_GENERAL :
EEPROM_GENERAL :

EEPROM_FMMU :
EEPROM_FMMU :
EEPROM_FMMU
EEPROM_FMMU :

slave 2:

0x1A00, entries O
0x1A80, entries 4
0x1A80: 0 -> 0x0000
0x1A80: 1 -> 0x0000
0x1A80: 2 -> 0xF100
0x1A80: 3 -> 0xF100
slave 2:

0x1600, entries O
ave 2:

cle_time_O O, shift_time_O0 O,
sync_1_cycle_factor 0, EEPROM_DC : <«

0 07

shift_time_1 0, ¢

slave 2: INIT state requested
slave 2: state 1, act_state 1, wkc 1

slave 2: INIT state reached
slave 3, with_group O, assigned -1
setting state for slave 3

slave 3 executing transition 101

slave

slave
slave

get number of sm
get number of fmmu

3 rewriting fixed address
: slave 3 disable dcs

3

3

slave 3: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

slave 3: cat_len 67

(8) string 0, length
(8) string 1, length
(8) string 2, length
(8) string 3, length
(S) string 4, length
(S) string 5, length
(S) string 6, length
(S) string 7, length
(S) string 8, length
(8) string 9, length
slave 3:

group_idx 2, img_idx
slave 3: entries 2
fmmuO, type 1

: fmmul, type 2

fmmu2, type 3

31

6 :
16 :
T :
2 :
9 :

21

11

slave 3: stored strings 10
: FC1121 EtherCAT PCIe slave card

FCcard

EtherCAT PC card
FreeRun

DC

I0 Inputs

: Device Status Mapping
10 :
: TxPdoToggle
10 :

TxPdoState

I0 Outputs

0, order_idx 1, name_idx 1

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XV Appendix

204 EEPROM_SM : slave 3: entries 4

205 EEPROM_SM : sm0 adr 0x1000, len 1024, flags 0x10026

206 EEPROM_SM : sml adr 0x1400, len 1024, flags 0x10022

207 EEPROM_SM : sm2 adr 0x2400, len 0, flags 0x64

208 | EEPROM_SM : sm3 adr 0x1800, len 0, flags 0x20

209} EEPROM_TXPDO : slave 3:

210 EEPROM_TXPDO : 0x1A00, entries O

211} EEPROM_TXPDO : 0x1A80, entries 4

212 | EEPROM_TXPDO : 0x1A80: 0 -> 0x0000

213 | EEPROM_TXPDO : 0x1A80: 1 -> 0x0000

214 | EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

215| EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

216 | EEPROM_RXPDO : slave 3:

217 EEPROM_RXPDO : 0x1600, entries O

218| EEPROM_DC : slave 3:

219} EEPROM_DC : cycle_time_O O, shift_time_O O, shift_time_1 0, ¢
sync_0_cycle_factor 0, sync_1_cycle_factor 0, aEEPROM_DC : <«
cycle_time_0 7

220 INIT_2_INIT : slave 3: INIT state requested

221) INIT_2_INIT : slave 3: state 1, act_state 1, wkc 1

222 | INIT_2_INIT : slave 3: INIT state reached

223

224 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

225| MASTER_SET_STATE : switching from EC_STATE_INIT to EC_STATE_PREQOP

226 EC_STATE_PREQP : slave 0, with_group O, assigned -1

227 EC_STATE_PREQP : setting state for slave O

228 INIT_2_PREQP : slave O executing transition 102

229 INIT_2_PREQP : slave 0, vendor 0x00000002, product 0x73469026, mbx 0x0007

230 MAILBOX_INIT : slave 0O: initializing mailbox

231} COE_INIT : slave O: initializing CoE mailbox.

232 INIT_2_PREQP : slave 0: smO, adr 0x1000, len 1024, flags 0x00065574

233 INIT_2_PREQP : slave 0: sml, adr 0x1400, len 1024, flags 0x00065570

234| INIT_2_PREQP : slave 0O: PRE-OPERATIONAL state requested

235} INIT_2_PREOP : slave 0: state 2, act_state 2, wkc 1

236| INIT_2_PREOP : slave 0: PRE-OPERATIONAL state reached

237 EC_STATE_PREQOP : slave 1, with_group O, assigned -1

238 EC_STATE_PREQOP : setting state for slave 1

239 INIT_2_PREQP : slave 1 executing transition 102

240f INIT_2_PREQP : slave 1, vendor 0x00000002, product 0x73469026, mbx 0x0007

241{ MAILBOX_INIT : slave 1: initializing mailbox

242 COE_INIT : slave 1: initializing CoE mailbox.

243 | INIT_2_PREQOP : slave 1: smO, adr 0x1000, len 1024, flags 0x00065574

2441 INIT_2_PREQP : slave 1: sml, adr 0x1400, len 1024, flags 0x00065570

245 INIT_2_PREQP : slave 1: PRE-OPERATIONAL state requested

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollstandiger Log-Output EtherCAT StartUP Testaufbau 2

XV

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

INIT_2_PREQP :
INIT_2_PREQP :

EC_STATE_PREQP :
EC_STATE_PREQP :

INIT_2_PREQOP :
INIT_2_PREOP :
MAILBOX_INIT :

INIT_2_PREQOP :
EC_STATE_PREQOP :
EC_STATE_PREQOP :

INIT_2_PREOP :
INIT_2_PREOP :
MAILBOX_INIT :

slave
slave

1:
1:

state 2, act_state 2, wkc 1
PRE-OPERATIONAL state reached

slave 2, with_group O, assigned -1
setting state for slave 2

slave 2 executing transition 102

slave 2, vendor 0x00000002, product 0x73469026, mbx 0x0007

slave 2: initializing mailbox
COE_INIT : slave 2: initializing CoE mailbox.
INIT_2_PREOP :
INIT_2_PREQOP :
INIT_2_PREQOP :
INIT_2_PREQOP :

slave
slave
slave
slave
slave

2:
2:
2:
2:
2:

sm0, adr 0x1000, len 1024, flags 0x00065574
sml, adr 0x1400, len 1024, flags 0x00065570
PRE-OPERATIONAL state requested

state 2, act_state 2, wkc 1

PRE-OPERATIONAL state reached

slave 3, with_group O, assigned -1
setting state for slave 3

slave 3 executing transition 102

slave 3, vendor 0x00000002, product 0x73469026, mbx 0x0007

slave 3: initializing mailbox
COE_INIT : slave 3: initializing CoE mailbox.
INIT_2_PREOP :
INIT_2_PREOP :
INIT_2_PREOP :
INIT_2_PREOP :
INIT_2_PREOP :

slave
slave
slave
slave
slave

83

83
83
83
83

====== STATE FINISHED

MASTER_SET_STATE :

DC_CONFIG

reDC_CONFIG :

====== STATE FINISHED

MASTER_SET_STATE :
EC_STATE_OP :

EC_STATE_OP :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
EC_STATE_OP :
EC_STATE_OP :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
SAFEOP_2_0P :
EC_STATE_OP :

sm0, adr 0x1000, len 1024, flags 0x00065574
sml, adr 0x1400, len 1024, flags 0x00065570
PRE-OPERATIONAL state requested

state 2, act_state 2, wkc 1

PRE-OPERATIONAL state reached

====== STARTING NEXT TRANSITION ======

switching from EC_STATE_PREOP to EC_STATE_SAFEQOP
: master packet duration DC_CONFIG : slaveDC_CONFIG : slave 0: <
slave DC_CONFIG : initiDC_CONFIG

====== STARTING NEXT TRANSITION ======

switching from EC_STATE_SAFEQOP to EC_STATE_OP

slave O, with_group 1, assigned O
setting state for slave 0O
0 executing transition 408

slave
slave
slave
slave
slave

0:
0:
0:
ilg

OPERATIONAL state requested
state 8, act_state 8, wkc 1
OPERATIONAL state reached
with_group 1, assigned 0

setting state for slave 1
1 executing transition 408

slave
slave
slave
slave
slave

1:

N~ -

OPERATIONAL state requested

: state 8, act_state 8, wkc 1
: OPERATIONAL state reached

with_group 1, assigned O

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XVI

Appendix

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

EC_STATE_OP : setting state for slave 2
SAFEOP_2_0P : slave 2 executing transition 408
SAFEOP_2_0P : slave 2: OPERATIONAL state requested
SAFEOP_2_0P : slave 2: state 8, act_state 8, wkc 1
SAFEOP_2_0P : slave 2: OPERATIONAL state reached
EC_STATE_OP : slave 3, with_group 1, assigned O
EC_STATE_OP : setting state for slave 3
SAFEOP_2_0P : slave 3 executing transition 408
SAFEOP_2_0P : slave 3: OPERATIONAL state requested
SAFEOP_2_0P : slave 3: state 8, act_state 8, wkc 1
SAFEOP_2_0P : slave 3: OPERATIONAL state reached

====== (PERATIONAL ======

Frame len 36 bytes/ 2.9 us

Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)
Duration +52.1 us (jitter avg +0.4 us, max +7.0 us)
Round trip +49.5 us (jitter avg +0.3 us, max +6.3 us)
DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns
Frame len 36 bytes/ 2.9 us

Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)
Duration +52.1 us (jitter avg +0.3 us, max +2.6 us)
Round trip +49.4 us (jitter avg +0.3 us, max +2.3 us)
DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

Codeauszug 2: EtherCAT Log Output Testaufbau 2

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Erstellte Dateien und Ordner XVII

C. Erstellte Dateien und Ordner

Die neu erstellten Files und Ordner sind im Git-Repository unter folgenden Pfaden zu finden:
GIT-Repo/stm32/eth_rx_tx/

—Z ../CM7/Core/libethercat/
— ../include/libethercat/hw_stm32.h
— ../src/hw_stm32.c
— ../CM7/Core/libosal/
— ../include/libosal/stm32/
*» binary_semaphore.h
* condvar.h
x* mqg.h
* mutex.h
% osal.h
= semaphore.h
% shm.h
x» spinlock.h
= task.h
* timer.h
- ../src/stm32/

* binary_semaphore.c

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XVII Appendix

% condvar.c

* MQg.C
* mutex.c
x semaphore.c
x» shm.c
= spinlock.c
x task.c
x timer.c
~ ../CM7/Core/Inc/libethercat/config.h

— ../CM7/Core/Inc/libosal/config.h

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Excluded Build-Files XIX

D. Excluded Build-Files

Folgende Files in der Ordnerstruktur wurden aus dem Build in der CubelDE ausgeschlos-
sen:

7 ../CM7/Core/libethercat/
— ../src/eoce.c
— ../src/foe.c
- ../src/soe.c
- ../src/hw_bpf.c
- ../src/hw_pikeos.c
- ../src/hw_sock_raw_mmaped.c
— ../src/hw_sock_raw.c
- ../linux/
- ../tools/

~ ../CM7/Core/libosal/src/
- ../pikeos/
- ../posix/
- ../tools/
- ../vxworks/

- ../win32/

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XX

Appendix

E.

ONOYUT D WN —

—_
N — O O

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

libethercat config File

#ifndef _INCLUDE_LIBETHERCAT_CONFIG_H

#define _INCLUDE_LIBETHERCAT_CONFIG_H 1

[...]

/* Butld with pikeos hw device layer. */

#ifndef LIBETHERCAT_BUILD_DEVICE_PIKEOS

#define LIBETHERCAT_BUILD_DEVICE_PIKEQS 0

#endif

[...]

/* Use STM32 build */

#ifndef LIBETHERCAT_BUILD_STM32

#define LIBETHERCAT_BUILD_STM32 1

#define htons(x) (((((osal_uint16_t)(x)) << 8) & O0xFF00) | <

((((osal_uint16_t) (x)) >> 8) & O0xOOFF))

#endif

[...]

/% Define to 1 if you have the <inttypes.h> header file. */

#ifndef LIBETHERCAT_HAVE_INTTYPES_H

#define LIBETHERCAT_HAVE_INTTYPES_H 1

#endif

/* Define to 1 if you have the <limits.h> header file. */

#ifndef LIBETHERCAT_HAVE_LIMITS_H

#define LIBETHERCAT_HAVE_LIMITS_H 1

#endif

/* Define to 1 if your system has a GNU libc compatible ‘malloc’ <
function, and
to 0 otherwise. */

#ifndef LIBETHERCAT_HAVE_MALLOC

#define LIBETHERCAT_HAVE_MALLOC 1

#endif

/* Define to 1 if you have the <memory.h> header file. */

#ifndef LIBETHERCAT_HAVE_MEMORY_H

#define LIBETHERCAT_HAVE_MEMORY_H 1

#endif

/% Define to 1 if you have the ‘memset’ function. */

#ifndef LIBETHERCAT_HAVE_MEMSET

#define LIBETHERCAT_HAVE_MEMSET 1

#endif

[...]

/* Define to 1 if your system has a GNU libc compatible ‘realloc’ function,
and to 0 otherwise. */

#ifndef LIBETHERCAT_HAVE_REALLOC

#define LIBETHERCAT_HAVE_REALLOC 1

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File

XXI

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83

#endif

[...]

/* Define to 1 if you have the <stdint.h> header file. */

#ifndef LIBETHERCAT_HAVE_STDINT_H

#define LIBETHERCAT_HAVE_STDINT_H 1

#endif

/* Define to 1 if you have the <stdlib.h> header file. */

#ifndef LIBETHERCAT_HAVE_STDLIB_H

#define LIBETHERCAT_HAVE_STDLIB_H 1

#endif

/* Define to 1 if you have the ‘strdup’ function. */

#ifndef LIBETHERCAT_HAVE_STRDUP

#define LIBETHERCAT_HAVE_STRDUP 1

#endif

/* Define to 1 if you have the ‘strerror’ function. */

#ifndef LIBETHERCAT_HAVE_STRERROR

#define LIBETHERCAT_HAVE_STRERROR 1

#endif

/* Define to 1 if you have the <strings.h> header file. */

#ifndef LIBETHERCAT_HAVE_STRINGS_H

#define LIBETHERCAT_HAVE_STRINGS_H 1

#endif

/* Define to 1 if you have the <string.h> header file. */

#ifndef LIBETHERCAT_HAVE_STRING_H

#define LIBETHERCAT_HAVE_STRING_H 1

#endif

/* Define to 1 if you have the ‘strndup’ function. */

#ifndef LIBETHERCAT_HAVE_STRNDUP

#define LIBETHERCAT_HAVE_STRNDUP 1

#endif

[...]

/* Define to 1 if you have the <sys/types.h> header file. */

#ifndef LIBETHERCAT_HAVE_SYS_TYPES_H

#define LIBETHERCAT_HAVE_SYS_TYPES_H 1

#endif

/* Define to 1 if you have the <unistd.h> header file. #*/

#ifndef LIBETHERCAT_HAVE_UNISTD_H

#define LIBETHERCAT_HAVE_UNISTD_H 1

#endif

[...]

/* Define to the sub-directory where libtool stores uninstalled
libraries. */

#ifndef LIBETHERCAT_LT_OBJDIR

#define LIBETHERCAT_LT_OBJDIR

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXII

Appendix

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

#endif

/* Mazimum number of coe-emergencies supported. */
#ifndef LIBETHERCAT_MAX_COE_EMERGENCIES

#define LIBETHERCAT_MAX_COE_EMERGENCIES 10

#endif

/* Mazimum number of data supported. */

#ifndef LIBETHERCAT_MAX_DATA

#define LIBETHERCAT_MAX_DATA 4096

#endif

/* Mazimum number of datagrams supported. */
#ifndef LIBETHERCAT_MAX_DATAGRAMS

#define LIBETHERCAT_MAX_DATAGRAMS 10

#endif

/* Mazimum number of ds402-subdevs supported. */
#ifndef LIBETHERCAT_MAX_DS402_SUBDEVS

#define LIBETHERCAT_MAX_DS402_SUBDEVS 2

#endif

/* Mazimum number of eeprom-cat-dc supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_DC

#define LIBETHERCAT_MAX_EEPROM_CAT_DC 8

#endif

/* Mazimum number of eeprom-cat-fmmu supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_FMMU

#define LIBETHERCAT_MAX_EEPROM_CAT_FMMU 8

#endif

/* Mazimum number of eeprom-cat-pdo supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_PDO

#define LIBETHERCAT_MAX_EEPROM_CAT_PDO 16

#endif

/* Mazimum number of eeprom-cat-pdo-entries supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_PDO_ENTRIES
#define LIBETHERCAT_MAX_EEPROM_CAT_PDO_ENTRIES 8
#endif

/* Mazimum number of eeprom-cat-sm supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_SM

#define LIBETHERCAT_MAX_EEPROM_CAT_SM 8

#endif

/* Mazimum number of eeprom-cat-strings supported. */
#ifndef LIBETHERCAT_MAX_EEPROM_CAT_STRINGS
#define LIBETHERCAT_MAX_EEPROM_CAT_STRINGS 16
#endif

/* Mazimum number of groups supported. */

#ifndef LIBETHERCAT_MAX_GROUPS

#define LIBETHERCAT_MAX_GROUPS 2

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File

XXIII

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

#endif

/* Mazimum number of init-cmd-data supported. */
#ifndef LIBETHERCAT_MAX_INIT_CMD_DATA
#define LIBETHERCAT_MAX_INIT_CMD_DATA 128
#endif

/* Mazimum number of mbz-entries supported. */
#ifndef LIBETHERCAT_MAX_MBX_ENTRIES

#define LIBETHERCAT_MAX_MBX_ENTRIES 16
#endif

/* Mazimum number of pdlen supported. */
#ifndef LIBETHERCAT_MAX_PDLEN

#define LIBETHERCAT_MAX_PDLEN 3036

#endif

/* Mazimum number of slaves supported. */
#ifndef LIBETHERCAT_MAX_SLAVES

#define LIBETHERCAT_MAX_SLAVES 16

#define LIBETHERCAT_MAX_SLAVES_STRING
#endif

/* Mazimum number of slave-fmmu supported. */
#ifndef LIBETHERCAT_MAX_SLAVE_FMMU

#define LIBETHERCAT_MAX_SLAVE_FMMU 8

#endif

/* Mazimum number of slave-sm supported. */
#ifndef LIBETHERCAT_MAX_SLAVE_SM

#define LIBETHERCAT_MAX_SLAVE_SM 8

#endif

/* Mazimum number of string-len supported. */
#ifndef LIBETHERCAT_MAX_STRING_LEN

#define LIBETHERCAT_MAX_STRING_LEN 128
#endif

/* Enable Mailboxz CoE support. */

#ifndef LIBETHERCAT_MBX_SUPPORT_COE

#define LIBETHERCAT_MBX_SUPPORT_COE 1
#endif

/* Enable Mailboxz EoE support. */

#ifndef LIBETHERCAT_MBX_SUPPORT_EOE

#define LIBETHERCAT_MBX_SUPPORT_EOE O
#endif

/* Enable Mailboxz FoE support. */

#ifndef LIBETHERCAT_MBX_SUPPORT_FOE

#define LIBETHERCAT_MBX_SUPPORT_FOE O
#endif

/* Enable Mailboxz SoE support. */

#ifndef LIBETHERCAT_MBX_SUPPORT_SOE

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXIV

Appendix

172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

#define LIBETHERCAT_MBX_SUPPORT_SOE O

#endif

/* Define to 1 if assertions should be disabled. */
#ifndef LIBETHERCAT_NDEBUG
#define LIBETHERCAT_NDEBUG 1

#endif

/* Name of package */
#ifndef LIBETHERCAT_PACKAGE
#define LIBETHERCAT_PACKAGE

#endif

/* Define to the address where bug reports for this package should be <

sent.

*/

#ifndef LIBETHERCAT_PACKAGE_BUGREPORT
#define LIBETHERCAT_PACKAGE_BUGREPORT

#endif

/* Define to the full name of this package. */
#ifndef LIBETHERCAT_PACKAGE_NAME
#define LIBETHERCAT_PACKAGE_NAME

#endif

/* Define to the full name and version of this package. */
#ifndef LIBETHERCAT_PACKAGE_STRING
#define LIBETHERCAT_PACKAGE_STRING

#endif

/* Define to the one symbol short name of this package. */
#ifndef LIBETHERCAT_PACKAGE_TARNAME
#define LIBETHERCAT_PACKAGE_TARNAME

#endif

/* Define to the home page for this package. */
#ifndef LIBETHERCAT_PACKAGE_URL
#define LIBETHERCAT_PACKAGE_URL

#endif

/* Define to the werstion of thtis package. */
#ifndef LIBETHERCAT_PACKAGE_VERSION
#define LIBETHERCAT_PACKAGE_VERSION

#endif

/* Define to 1 if you have the ANSI C header files. */
#ifndef LIBETHERCAT_STDC_HEADERS
#define LIBETHERCAT_STDC_HEADERS 1

#endif

/% Version number of package */
#ifndef LIBETHERCAT_VERSION
#define LIBETHERCAT_VERSION

#endif

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File XXV

2147 [...]
Codeauszug 3: libethercat Config-File

4#;& DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXVI

Appendix

F. libosal config File

Viele Zeilen im 1ibosal Config-File wurden auskommentiert, da sich diese auf spezifische
Betriebssysteme beziehen. Sie haben fir die Implementierung auf dem STM32 keine
Bedeutung. Deshalb werden diese hier nicht dargestellt.

1} #ifndef _INCLUDE_LIBOSAL_CONFIG_H
2| #define _INCLUDE_LIBOSAL_CONFIG_H 1
3
41 /* include/libosal/config.h. Generated automatically at end of configure. */
5] /* config.h. Generated from config.h.in by configure. */
6| /* config.h.in. Generated from configure.ac by autoheader. */
7
81 /* Use MINGW32 build on windows mingw32 */
9| /* #undef BUILD_MINGW32 */
10
111 /* Use Pike0S build */
12| /* #undef BUILD_PIKEOS */
13
14y /* Use STM32 build */
15} #ifndef LIBOSAL_BUILD_STM32
16| #define LIBOSAL_BUILD_STM32 1
17| #endif
18
19\ /* Use VzWorks build */
20| /* #undef BUILD_VIWORKS */
214 [...]
22| /* Check if errno ENOTRECOVERABLE <s present. */
23| #ifndef LIBOSAL_HAVE_ENOTRECOVERABLE
24| #define LIBOSAL_HAVE_ENOTRECOVERABLE 1
25| #endif
26
27 /* Define to 1 4if you have the <inttypes.h> header file. */
28| #ifndef LIBOSAL_HAVE_INTTYPES_H
29| #define LIBOSAL_HAVE_INTTYPES_H 1
30| #endif
31
32| /* Define to 1 if you have the <math.h> header file. */
33| #ifndef LIBOSAL_HAVE_MATH_H
34| #define LIBOSAL_HAVE_MATH_H 1
35| #endif
36
37 /# Define to 1 if you have the <memory.h> header file. */

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libosal config File

XXVII

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80

#ifndef LIBOSAL_HAVE_MEMORY_H
#define LIBOSAL_HAVE_MEMORY_H 1

#endif
[...]

/* Define to 1 if you have the <stdint.h> header file. */
#ifndef LIBOSAL_HAVE_STDINT_H
#define LIBOSAL_HAVE_STDINT_H 1

#endif

/* Define to 1 if you have the <stdlib.h> header file. */
#ifndef LIBOSAL_HAVE_STDLIB_H
#define LIBOSAL_HAVE_STDLIB_H 1

#endif

/* Define to 1 if you have the <strings.h> header file. */
#ifndef LIBOSAL_HAVE_STRINGS_H
#define LIBOSAL_HAVE_STRINGS_H 1

#endif

/* Define to 1 if you have the <string.h> header file. */
#ifndef LIBOSAL_HAVE_STRING_H
#define LIBOSAL_HAVE_STRING_H 1

#endif
[...]

/* Define to 1 if you have the <sys/types.h> header file. */
#ifndef LIBOSAL_HAVE_SYS_TYPES_H
#define LIBOSAL_HAVE_SYS_TYPES_H 1

#endif

/* Define to 1 if you have the <unistd.h> header file. */
#ifndef LIBOSAL_HAVE_UNISTD_H
#define LIBOSAL_HAVE_UNISTD_H 1

#endif

/* Define to the sub-directory where libtool stores uninstalled <

libraries. */
#ifndef LIBOSAL_LT_OBJDIR
#define LIBOSAL_LT_OBJDIR ".libs/"

#endif

/% Name of package */
#ifndef LIBOSAL_PACKAGE
#define LIBOSAL_PACKAGE "libosal"

#endif

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXV

Appendix

81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

/* Define to the address where bug reports for this package should be

sent. */
#ifndef LIBOSAL_PACKAGE_BUGREPORT

#define LIBOSAL_PACKAGE_BUGREPORT "Robert Burger <robert.burger@dlr.de>"

#endif

/* Define to the full name of this package. */
#ifndef LIBOSAL_PACKAGE_NAME

#define LIBOSAL_PACKAGE_NAME "libosal"

#endif

/% Define to the full nmame and version of this package.

#ifndef LIBOSAL_PACKAGE_STRING
#define LIBOSAL_PACKAGE_STRING "libosal 0.0.3"
#endif

/* Define to the one symbol short name of this package.

#ifndef LIBOSAL_PACKAGE_TARNAME
#define LIBOSAL_PACKAGE_TARNAME "libosal"
#endif

/% Define to the home page for this package. */
#ifndef LIBOSAL_PACKAGE_URL

#define LIBOSAL_PACKAGE_URL ""

#endif

/* Define to the werstion of thtis package. */
#ifndef LIBOSAL_PACKAGE_VERSION

#define LIBOSAL_PACKAGE_VERSION "0.0.3"
#endif

/* Define to 1 if you have the ANSI C header files. */
#ifndef LIBOSAL_STDC_HEADERS

#define LIBOSAL_STDC_HEADERS 1

#endif

/* Version number of package */
#ifndef LIBOSAL_VERSION

#define LIBOSAL_VERSION "0.0.3"
#endif

[...]

#endif

Codeauszug 4: libosal Config-File

*/

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXIX

G. analyze.py Skripte

Mit diesen beiden Python Skripten wurden die Binaries ausgewertet und Histogramme bzw.
Box-Plots erstellt.

G.1. analyze_histos.py

OOV WN —

N N — 8 8 08 08 8 o8 s s
0O LVWoONOUTd, WN — O VO

22
23
24

25
26
27
28
29
30
31
32

#!/usr/bin/python3

import sys
import os

def add_string_and_extension(arg, string_to_add, file_extension):
Make sure the file_extension starts with a dot (.)
if not file_extension.startswith(’.’):
file_extension = ’.’ + file_extension
Construct the new filename
new_filename = f"{string_to_add}{arg}{file_extension}"
return new_filename

argument = sys.argv[1]

Define the string you want to add and the file extension
string_to_add = "linux/lin_"
file_extension = ".bin"

Get the new filename
linux_file = add_string_and_extension(argument, string to_add, ¢
file_extension)

string_to_add = ""
stm32_file = add_string_and_extension(argument, string to_add, ¢
file_extension)

Opening a file and closing 2t manually
f_stm32 = open(stm32_file, ’rb’)
f_linux = open(linux_file, ’rb’)
#base, _ = os.path.splitext(sys.argu[1])
svg_filename = f"{sys.argv[1]}_histo.svg"

#vals (=0) or wal_diff (=1) plotting

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXX Appendix
33| print(
)
34} plotting_option = int(input())
35
36| try:
37 stm32_bin = f_stm32.read()
38 linux_bin = f_linux.read()
39| finally:
40 f_stm32.close()
41 f_linux.close()
42
43| import struct
441 count = 1000
45
46| stm32_vals = struct.unpack(% (count), stm32_bin)
47) linux_vals = struct.unpack(% (count), linux_bin)
48| #print (vals)
49
50) stm32_vals_diff = []
51| linux_vals_diff = []
52§ for i in range(0, 999):
53 stm32_vals_diff.append((stm32_vals[i+1] - stm32_vals[i])/1e6)
54 linux_vals_diff.append((linux_vals[i+1] - linux_vals[i])/1e6)
55 print(% (stm32_vals[i+1] - stm32_vals[i]))
56 print (stm32_vals_diff[i])
57 print(% (linux_vals[i+1] - linux_vals[i]))
58 print (linux_vals_diff[i])
59
60f import numpy as np
61| import matplotlib.pyplot as plt
62
63| # Create a figure
64| plt.figure(figsize=(8, 5))
65
66| # tz_duration and roundtrip_duration
67| if plotting_option==0:
68 xlim = (30000, 36000)
69 #H### STM32
70 plt.subplot(2, 1, 1) # 1 row, 2 columns, 1st subplot
71 plt.hist(stm32_vals, bins=100)
72 plt.xlabel()
73 plt.xlim(x1lim)
74 plt.ylabel()
75 plt.grid(True)

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXXI
76 # calc and plot mean, var, std dev
77 stm32_mean = np.mean(stm32_vals)
78 stm32_variance = np.var(stm32_vals)
79 stm32_standard_deviation = np.std(stm32_vals)
80 # Add lines to represent the mean and standard deviation
81 plt.axvline(stm32_mean, color= , linestyle= s
linewidth=2, label=f)
82 plt.axvline(stm32_mean + stm32_standard_deviation, color= >
linestyle= , linewidth=2, label=f
)
83 plt.axvline(stm32_mean - stm32_standard_deviation, color= <
linestyle= , linewidth=2, label=f
)
84 plt.legend ()
85 plt.gca() .set_title()
86 #H### Linuz
87 plt.subplot(2, 1, 2) # I row, 2 columns, 1st subplot
88 plt.hist(linux_vals, bins=100)
89 plt.xlabel()
90 plt.xlim(x1lim)
91 plt.ylabel()
92 plt.grid(True)
93 # calc and plot mean, var, std dev
94 linux_mean = np.mean(linux_vals)
95 linux_variance = np.var(linux_vals)
96 linux_standard_deviation = np.std(linux_vals)
97 # Add lines to represent the mean and standard deviation
98 plt.axvline(linux_mean, color= , linestyle= s
linewidth=2, label=f)
99 plt.axvline(linux_mean + linux_standard_deviation, color= =
linestyle= , linewidth=2, label=f
)
100 plt.axvline(linux_mean - linux_standard_deviation, color= «
linestyle= , linewidth=2, label=f
)
101 plt.legend()
102 plt.gca() .set_title()
103} #tz_start
104§ else:
105 plt.subplot(2, 1, 1) # 1 row, 2 columns, 1st subplot
106 plt.hist(stm32_vals_diff, bins=100)
107 plt.xlabel(r)
108 plt.x1im(0.9998, 1.0002)
109 plt.ylabel()

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXII Appendix
110 plt.grid(True)
111 # calc and plot mean, var, std dev
112 stm32_mean = np.mean(stm32_vals_diff)
113 stm32_variance = np.var(stm32_vals_diff)
14 stm32_standard_deviation = np.std(stm32_vals_diff)
115 # Add lines to represent the mean and standard deviation
116 plt.axvline(stm32_mean, color= , linestyle= , &
linewidth=2, label=f)
117 plt.axvline(stm32_mean + stm32_standard_deviation, color= , &
linestyle= , linewidth=2, label=f
)
118 plt.axvline(stm32_mean - stm32_standard_deviation, color= , &
linestyle= , linewidth=2, label=f
)
119 plt.legend()
120 plt.gca().set_title()
121 # Creating boz plot
122 plt.subplot(2, 1, 2) # 1 row, 2 columns, 1st subplot
123 plt.hist(linux_vals_diff, bins=100)
124 plt.xlabel(r)
125 plt.x1im(0.9998, 1.0002)
126 plt.ylabel()
127 plt.grid(True)
128 # calc and plot mean, var, std dev
129 linux_mean = np.mean(linux_vals_diff)
130 linux_variance = np.var(linux_vals_diff)
131 linux_standard_deviation = np.std(linux_vals_diff)
132 # Add lines to represent the mean and standard deviation
133 plt.axvline(linux_mean, color= , linestyle= , &
linewidth=2, label=f)
134 plt.axvline(linux_mean + linux_standard_deviation, color= , &
linestyle= , linewidth=2, label=f
)
135 plt.axvline(linux_mean - linux_standard_deviation, color= , &
linestyle= , linewidth=2, label=f
)
136 plt.legend ()
137 plt.gca() .set_title()
138
139

140} plt.subplots_adjust(hspace=5) # Increase hspace to make gap larger
1411 # Print the statistical measures

142 print(f)

143| print(f)

4#;; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXXIN
144) print (£"STM32 Standard Deviation: {stm32_standard_deviation}")
145
146 print(f"Linux Mean: {linux_mean}")
147} print(£"Linux Variance: {linux_variancel}")
148 print(£"Linux Standard Deviation: {linux_standard_deviationl}")
149
1500 # Adjust layout to prevent overlap
151} plt.tight_layout()
152} plt.show()
153 plt.savefig(svg_filename)
154
155 print("finished")

Codeauszug 5: analyze_histos.py

4#;3: DLR - Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXIV

Appendix

G.2. analyze_boxplot.py

ONOYUT D WN —

N N N — 08 08 08 s o8 s s o
N —~OCLVO~NOOUTDS, WN -0 L

23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38
39

#!/usr/bin/python3

import sys
import os

def add_string_and_extension(arg, string_to_add, file_extension):

Make sure the file_extension starts with a dot (.)
if not file_extension.startswith(’.’):

file_extension = ’.’° + file_extension
Construct the new filename
new_filename = f"{string_to_add}{arg}{file_extension}"
return new_filename

argument = sys.argv[1]
Define the string you want to add and the file extension
string_to_add = "linux/lin_"

file_extension = ".bin"

Get the new filename

linux_file = add_string_and_extension(argument, string to_add, ¢

file_extension)

string_to_add = ""

stm32_file = add_string_and_extension(argument, string_to_add, ¢

file_extension)

Opening a file and closing %t manually
f_stm32 = open(stm32_file, ’rb’)

f_linux = open(linux_file, ’rb’)

#base, _ = os.path.splitext(sys.argu[1])
svg_filename = f"{sys.argv[1]}_boxPlot.svg"

#vals (=0) or wal_diff (=1) plotting

print("please input whether you wanna plot tx_start(=1) or ¢«
tx_duration/roundtrip_duration(=0)")

plotting_option = int(input())

try:

4#;5 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte

XXXV

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

stm32_bin = f_stm32.read()

linux_bin = f_linux.read()
finally:

f_stm32.close()

f_linux.close()

import struct
count = 1000

stm32_vals = struct.unpack(% (count), stm32_bin)
linux_vals = struct.unpack(% (count), linux_bin)
#print (vals)

stm32_vals_diff [1

linux_vals_diff = []

for i in range(0, 999):
stm32_vals_diff.append((stm32_vals[i+1] - stm32_vals[i])/1e6)
linux_vals_diff.append((linux_vals[i+1] - linux_vals[i])/1e6)

print(% (stm32_vals[i+1] - stm32_vals[i]))
print (stm32_vals_diff[i])
print(% (linux_vals[i+1] - linux_vals[i]))

print (linux_vals_diff[i])

import numpy as np
import matplotlib.pyplot as plt

Create a figure
plt.figure(figsize=(5, 7))

txz_duration and roundtrip_duration
if plotting_option==0:
Creating box plot
data = [stm32_vals, linux_vals]
plt.boxplot(data)
plt.grid(True)
plt.ylabel()
#txz_start
else:
data = [stm32_vals_diff, linux_vals_diff]
plt.boxplot(data)
plt.grid(True)
plt.ylabel()

plt.xlabel()

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXVI Appendix
84| plt.xticks([1,2],[: D
85 plt.tight_layout()
86| plt.gca().set_title()
87 plt.show()
88| plt.savefig(svg_filename)
89
90| print()

Codeauszug 6: analyze_boxplot.py

4#; DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

EtherCAT Wireshark Capture XXXVII

H. EtherCAT Wireshark Capture

Capture Analy

A0 BB R

Lengtt Info

+ Frame 68: 60 byt ire (480 bits), 60 by! aptured (480 bits) o rface \Device\NPF_{A2E229
co:ff:fe), Dst: Broadcast (ff:ff:ff:ff:ff:ff)

— EthercAT datag
+ EtherCAT datagram: Cmd: 'FRM , Len: 8, Adp Ado 0x910, Cnt 1
+ EtherCAT datagram: Cmd: 'LRW' (Len: 1, Addr 6x10000, Cnt 2
Pad bytes: 0600080800000800000800

£ £f
oe f6
00 00
00 00 60 00 60 00 60 00 ©0 00 00 08

Abbildung 1.: EtherCAT Wireshark Capture

4#;: DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXVIII Appendix

I. Programmdateien als .zip

Die fur diese Arbeit geschriebenen Programme und zugehdérigen Dateien aus dem Git-

Repository sind als separater .zip-Ordner (Masterarbeit_BeausencourtMarcel _573019.zip)
angehangt.

4#;1 DLR — Konzeptionierung, Portierung und
Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

