
DLR

KONZEPTIONIERUNG, PORTIERUNG UND
EVALUIERUNG EINES ECHTZEIT-ETHERCAT-
FELDBUS-MAINDEVICES

auf einem Mikrocontroller ohne Betriebssystem

ii

Masterarbeit
zur Erlangung des akademischen Grades

Master of Engineering

im Studiengang

Informations- und Kommunikationstechnik
am

Fachbereich 1: Energie und Information
an der

Hochschule für Technik und Wirtschaft Berlin (HTW Berlin)

erstellt von

Marcel Beausencourt

erstellt am

Deutschen Zentrum für Luft- und Raumfahrt e.V. (DLR)
Institut

Robotik und Mechatronik Zentrum (RMC)
Abteilung

Autonomie und Fernprogrammierung (AUF)

Erstgutachter

Prof. Dr. Thomas Scheffler (HTW Berlin)
Zweitgutachter

Robert Burger (DLR)

Oberpfaffenhofen, den 12. April 2025

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Dokument-Identifikation iii

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Robotik und Mechatronik Zentrum

Prof. Dr. Alin Albu-Schäffer, Dr.-Ing. Johann Bals, Prof. Dr. rer. nat. Heinz-Wilhelm Hübers
Münchener Straße 20
82234 Weßling
Tel: +49 8153 28-3689
Fax: +49 8153 28-1134
Web: https://www.dlr.de/rm

Marcel Beausencourt
Tel: +49 8153 28-3305
Mail: marcel.beausencourt@dlr.de

Dokument-Identifikation:

Titel Konzeptionierung, Portierung und
Evaluierung eines
Echtzeit-EtherCAT-Feldbus-MainDevices

Thema Masterarbeit
Autor(en) Marcel Beausencourt
Dateiname masters.tex
Zuletzt gespeichert von . beau_mr
Zuletzt gespeichert am . . 12. April 2025

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Dokument-Identifikation I

Abstract

Diese Masterarbeit erläutert alle Schritte, die nötig sind, um die beiden Bibliotheken
libethercat und libosal vom Betrieb in einem Betriebssystem auf einen STM32-Mikro-
controller ohne Betriebssystem zu portieren. Diese Arbeit ist als Machbarkeitsstudie zur
Portierung zu verstehen.
EtherCAT wird als Kommunikationsstandard am Deutschen Zentrum für Luft- und Raumfahrt
in vielen Robotersystemen eingesetzt, um Daten über deren Peripherie (v.a. Sensoren und
Aktoren) zu sammeln, diese zu konfigurieren und zu steuern. Die Bibliothek libethercat

stellt Funktionen bereit, um das EtherCAT MainDevice auf der gegebenen Hardware zu
implementieren. Die Bibliothek libosal stellt Funktionen bereit, welche den Betrieb von
der Hardware und den Zugriff auf Betriebssystemressourcen abstrahieren.

Es wird eine Einführung in bestimmte Aspekte von Echtzeit, Feldbussen und des EtherCAT
Standards gegeben, welche wichtig für die Realisierung des MainDevices sind. Daraufhin
werden sowohl Hardware als auch Software analysiert und die wichtigsten Punkte hinsicht-
lich einer Konzeptionierung herausgearbeitet.

Nötige Anpassungen und Vorarbeiten wie bspw. das Umlöten der Hardware und Konfigura-
tion der Hardware-Module des STM32 werden fokussiert dargestellt, da diese unerlässlich
für die Portierung waren. Änderungen an den beiden Bibliotheken werden dargestellt,
um ersichtlich zu machen, welche Anpassungen nötig waren, um den Betrieb auf einem
STM32 zu gewährleisten. Dazu zählen auch Änderungen in hardware-spezifischen Files,
die teilweise erst bei Inbetriebnahme des EtherCAT MainDevices und den angeschlossenen
SubDevices auffielen.

Es wurden zeitliche Messungen und Plots zu je zwei verschiedenen Netzwerktopologien
auf dem STM32 angefertigt, bevor diese mit Messungen von einem Linux-PC als Main-
Device verglichen wurden. Die Netzwerktopologien unterscheiden sich in Art und Anzahl
der SubDevices. Anschließend wird eine Bewertung der Implementierung hinsichtlich der
Vergleichsmessungen gegeben.

Abschließend wird diese Arbeit zusammengefasst und ein Ausblick auf zukünftige Arbeiten
gegeben, die auf diese Arbeit folgen können, bevor Schlussfolgerungen zur gesamten
Arbeit gemacht werden.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Inhaltsverzeichnis

Abstract I

Inhaltsverzeichnis V

Abbildungsverzeichnis VIII

Tabellenverzeichnis IX

Codeverzeichnis XII

1. Einleitung 1
1.1. Motivation . 1
1.2. Zielsetzung und Aufgabenstellung . 2
1.3. Aufbau der Arbeit . 3

2. Grundlagen 5
2.1. Echtzeitsysteme . 5

2.1.1. Scheduling in Echtzeitsystemen . 5
2.1.2. Rechtzeitigkeit . 6
2.1.3. Deadlines . 7
2.1.4. Tasks . 8
2.1.5. Gleichzeitigkeit und Auslastung . 9
2.1.6. Determinismus . 9
2.1.7. Zuverlässigkeits-/Performancebedingungen 10
2.1.8. Umgebung . 10

2.2. Feldbusse . 10
2.3. EtherCAT . 12

2.3.1. Funktionsprinzip . 12
2.3.2. EtherCAT Packet Flow . 13
2.3.3. Das EtherCAT Protokoll . 14
2.3.4. Flexible Topologie . 18
2.3.5. Distributed Clocks für High-Precision Synchronisierung 19
2.3.6. Diagnose und Fehlerlokalisierung 21

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
III

IV Inhaltsverzeichnis

2.3.7. Anforderung an hohe Verfügbarkeit 22
2.3.8. Mailbox und Kommunikationsprofile 23
2.3.9. Fieldbus Memory Management Unit 24
2.3.10. SyncManager . 25
2.3.11. Implementierung von EtherCAT Interfaces 26
2.3.12. EtherCAT State Machine . 29
2.3.13. Working Counter . 32
2.3.14. Wichtige Kommandos . 32

2.4. Mikrocontroller ohne Betriebssystem . 34
2.5. Anforderungen an Echtzeitfähigkeit und Latenz 35

3. Konzeption des EtherCAT-Feldbus-MainDevices 37
3.1. Systemanforderungen und Designziele . 37
3.2. Analyse und Auswahl der Zielhardware . 40

3.2.1. Analyse der Zielhardware . 40
3.2.2. Auswahl und Beschreibung der Zielhardware 40

3.3. Architektur des EtherCAT MainDevices . 42
3.4. Konzeption des Echtzeit-Verarbeitungsmodells 42

4. Implementierung und Portierung auf den Mikrocontroller 45
4.1. Hardwarekonfiguration und -anpassung . 46

4.1.1. Anpassung des STM32-H747-DISC0 Evaluation Boards 46
4.1.2. Boardkonfiguration . 47

4.2. Kommunikationskonfiguration . 55
4.2.1. UART-Konfiguration . 55
4.2.2. Ethernetkonfiguration . 56

4.3. Softwarekonfiguration . 56
4.3.1. Interrupts . 57
4.3.2. Ausgabe von UART Nachrichten . 58
4.3.3. Senden und Empfangen eines Raw Ethernet Frames 59

4.4. Entwicklung der Bibliothekskomponenten 61
4.4.1. Critical Sections . 62
4.4.2. Debugging Nachrichten . 64
4.4.3. EtherCAT Send und Receive Frame 65
4.4.4. Timer ISRs und Zeitfunktionen . 67
4.4.5. Semaphoren . 67
4.4.6. Mutexe . 68

4.5. Anpassungen für die Zielhardware . 69
4.5.1. Aktivieren der Caches . 69
4.5.2. Config File . 70
4.5.3. Abfrage des Ethernet Link Status . 72

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Inhaltsverzeichnis V

4.5.4. EK1100 LED Second Display . 73
4.6. Debugging und Fehlerbehebung . 74

5. Evaluierung des Echtzeitverhaltens und der Leistung 75
5.1. Testverfahren und Testaufbau . 75

5.1.1. Trace Funktionen aus libosal . 76
5.1.2. Testaufbau 1 . 79
5.1.3. Testaufbau 2 . 80

5.2. Messung der Latenz und des Jitters . 81
5.2.1. Testaufbau 1 . 81
5.2.2. Testaufbau 2 . 83
5.2.3. Aktivieren der Caches . 84

5.3. Interpretation und Diskussion der Ergebnisse 85

6. Zusammenfassung und Ausblick 87
6.1. Zusammenfassung der Arbeit . 87
6.2. Ausblick auf zukünftige Arbeiten . 88
6.3. Schlussfolgerungen . 90

Eigenständigkeitserklärung i

Quellenverzeichnis iv

Appendix I
A. Vollständiger Log-Output EtherCAT StartUP Testaufbau 1 I
B. Vollständiger Log-Output EtherCAT StartUP Testaufbau 2 IX
C. Erstellte Dateien und Ordner . XVII
D. Excluded Build-Files . XIX
E. libethercat config File . XX
F. libosal config File . XXVI
G. analyze.py Skripte . XXIX

G.1. analyze_histos.py . XXIX
G.2. analyze_boxplot.py . XXXIV

H. EtherCAT Wireshark Capture . XXXVII
I. Programmdateien als .zip . XXXVIII

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Abbildungsverzeichnis

1.1. Rollin’ Justin Roboter des DLR [DLRb] . 2

2.1. Echtzeitsysteme und ihre Zeitanforderungen [Mäc04] 7
2.2. Kostenfunktion harter und weicher Echtzeit [Mäc04] 8
2.3. EtherCAT Packet Flow . 13
2.4. EtherCAT in einem standard Ethernet Frame (nach IEEE 802.3) 14
2.5. EtherCAT Datagramm . 14
2.6. Einfügen von Prozessdaten on-the-fly . 17
2.7. Flexible Topologie – Bus, Baum oder Stern 19
2.8. Hardwarebasierte Synchronisierung inkl. Kompensation der Propagation Delays 20
2.9. Synchronität und Simultanität - zwei distributed Devices mit 300 Nodes und

120m Kabellänge . 20
2.10.Billige Kabelredundanz bei Standard EtherCAT SubDevices 23
2.11.Koexistenz von verschiedenen Kommunikationsprofilen im selben System . . 24
2.12.Typische EtherCAT MainDevice Architektur 27
2.13.SubDevice Hardware: ESC mit direktem I/O 28
2.14.EtherCAT State Machine [Tecc] . 30

4.1. STM32-H747-DISC0 zu lötende Pins . 47
4.2. CubeIDE Überblick . 47
4.3. CubeIDE .ioc-File Kontext . 48
4.4. Zuweisung Timer Module zum CM7-Kontext 49
4.5. STM32 Clock Configuration Kontext . 50
4.6. TIM5 Konfiguration im .ioc-File . 53
4.7. USART1 Konfiguration im .ioc-File . 55
4.8. Ethernet Konfiguration im .ioc-File . 56
4.9. Cache Konfiguration im .ioc-File . 69

5.1. SubDevices Testaufbau 1 . 79
5.2. Testaufbau 1: EK1100, EL2008, ELMO Servo Drive 79
5.3. SubDevices Testaufbau 2 . 80
5.4. Testaufbau 2: Caesar Simulator mit 4 SubDevices 80

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
VII

VIII Abbildungsverzeichnis

5.5. Testaufbau 1: Vergleichsmessungen tx_start 81
5.6. Testaufbau 1: Vergleichsmessungen tx_duration 82
5.7. Testaufbau 1: Vergleichsmessungen roundtrip_duration 82
5.8. Testaufbau 2: Vergleichsmessungen tx_start 83
5.9. Testaufbau 2: Vergleichsmessungen tx_duration 83
5.10.Testaufbau 2: Vergleichsmessungen roundtrip_duration 84

1. EtherCAT Wireshark Capture . XXXVII

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Tabellenverzeichnis

2.1. Eingesetzte Bussysteme . 11
2.2. EtherCAT Header Fields . 14
2.3. EtherCAT Datagram Fields . 15
2.4. EtherCAT Addressing [Tecb] . 16
2.5. EtherCAT Working Counter [Tecb] . 32
2.6. EtherCAT Commands [Tecb] . 33

3.1. Vergleich STM32 und ESP32 . 42

4.1. STM32-H747-DISC0 zu lötende Pins . 46
4.2. Funktionen in binary_semaphore.c . 68
4.3. Funktionen in semaphore.c . 68

5.1. Erklärung Tracing Variablen . 75
5.2. Linux MainDevice Spezifikation . 76
5.3. Testaufbau 1 - Werte der Messungen . 81
5.4. Testaufbau 2 - Werte der Messungen . 84
5.5. Laufzeitunterschiede Caches . 84
5.6. Testaufbau 1 - Prozentualer Vergleich . 85
5.7. Testaufbau 2 - Prozentualer Vergleich . 85

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
IX

Listings

4.1. Flashspeicherkonfiguration . 54
4.2. TIM5 Interrupt Handler . 57
4.3. TIM3 Interrupt Handler . 58
4.4. USART Test Code . 59
4.5. Ethernet Send Frame Function . 60
4.6. TX Frame Init . 61
4.7. Ethernet Receive DMA Flash Config . 61
4.8. Inkludieren der HW-spezifischen Header Files für libosal 62
4.9. CRITICAL SECTION Declaration . 62
4.10.CRITICAL SECTION in der Senderoutine . 63
4.11.osal_puts Funktion . 64
4.12.no_verbose_log Funktion in main.c . 65
4.13.Deklaration no_verbose_log als ec_log_func in main.c 65
4.14.EtherCAT Receive Function in hw_stm32.c 66
4.15.EtherCAT STM32 Hardware Struct . 66
4.16.OSAL GET TIME Funktion . 67
4.17.OSAL Mutex Unlock Funktion . 68
4.18.Data Cache Invalidation . 70
4.19.Data Cache Flushing . 70
4.20.Config-File . 71
4.21.Ethernet Port LinkStatus Abfrage . 73
4.22.EK1100 LED Second Display . 73

5.1. Trace Binary Export . 76
5.2. libosal Tracing in main.c . 76
5.3. Group0 Callback Funktion in main.c . 77
5.4. Log-Output bzgl. Tracing . 78

1. EtherCAT Log Output Testaufbau 1 . I
2. EtherCAT Log Output Testaufbau 2 . IX
3. libethercat Config-File . XX
4. libosal Config-File . XXVI

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
XI

XII Listings

5. analyze_histos.py . XXIX
6. analyze_boxplot.py . XXXIV

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

1. Einleitung

1.1. Motivation

Am Institut für Robotik und Mechatronik (RMC) des Deutschen Zentrums für Luft- und
Raumfahrt (DLR) werden Roboter für verschiedene Zwecke gebaut. Diese Roboter sollen
bspw. helfen schwere Objekte zu transportieren oder auch herumfliegenden Müll im Erdor-
bit zu beseitigen und ggf. zu recyclen. Weitere Anwendungsfelder sind u.a. Medizinrobotik,
Assistenzrobotik, Produktion der Zukunft und Planetare Explorationsrobotik 1. Der Roboter
Rollin’ Justin2 (s. Abbildung 1.1) ist hierbei eine zentrale Plattform für die Forschung im
Bereich der Servicerobotik. Er wurde 2008 erstmals der Öffentlichkeit präsentiert und ist
insbesondere im Bereich Haushalt und Assistenz von Astronauten im Weltall im Einsatz.
Die einzelnen Komponenten des Roboters wie Aktoren oder Sensoren kommunizieren
hierbei mittels des Feldbusses EtherCAT (Ethernet for Control Automation Technology). Um
die Präzision dieser Roboter zu gewährleisten, müssen die anfallenden Daten determinis-
tisch gesendet, empfangen und verarbeitet werden. Durch die schritthaltende Regelung
werden natürliche Bewegungen realisiert, da auf Ereignisse reagiert wird. Für diesen Zweck
wurden in RMC von Robert Burger zwei OpenSource Bibliotheken geschrieben und auf
Github zur Verfügung gestellt. Die Bibliothek libethercat3 implementiert die EtherCAT-
Standard spezifischen Abläufe der EtherCAT Technology Group (ETG)4 und baut auf die
Betriebssystem-unabhängige Abstraktionsbibliothek libosal5 auf. Die beiden Bibliotheken
sind in C geschrieben. libosal zielt darauf ab betriebssystem-unabhängigen Code zu
generieren, um eine einfache Portabilität des Codes zwischen verschiedenen Systemen
und Architekturen zu gewährleisten. Folgende Betriebssysteme können mit libosal bisher
verwendet werden:

PikeOS

1DLR RM Forschung Anwendungsfelder
2DLR Rollin Justin Website
3GitHub Libethercat
4EtherCAT Website
5GitHub Libosal

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
1

https://www.dlr.de/de/rm/forschung/anwendungsfelder
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://github.com/robert-burger/libethercat
https://www.ethercat.org/default.htm
https://github.com/robert-burger/libosal

2 1. Einleitung

POSIX like OS (Unix, Linux und weitere)

VXWorks

Win32

Abbildung 1.1.: Rollin’ Justin Roboter des DLR [DLRb]

1.2. Zielsetzung und Aufgabenstellung

Da die meisten Anwender- als auch Echtzeitbetriebssysteme Nebenläufigkeit in Form von
Tasks, Prozessen oder Threads unterstützen, sind diese meist auf einen Scheduler ange-
wiesen, welcher die CPU-Ressourcen effizient den einzelnen Aufgaben zuweist. Dieses
Scheduling kann dabei die Anforderungen an die Echtzeitdatenverarbeitung und den Deter-
minismus gefährden. Diese beiden Anforderungen können auch durch andere Software,
welche auf den Betriebssystemen und den damit verbundenen Systemen in den Robotern
läuft, beeinträchtigt werden. Hierzu zählt beispielweise der Einsatz der Software Simulink.6

Simulink wird für die Regelungstechnik in den Systemen des DLR genutzt. Aus diesem Grund
sollen die beiden Bibliotheken für eine Nutzung auf einem zu definierenden Mikrocontroller
erweitert werden, um dedizierte EtherCAT Kommunikation auf dem Mikrocontroller zu
realisieren. Dadurch soll die Kommunikation via EtherCAT von der restlichen Software,

6Simulink Website

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://de.mathworks.com/products/simulink.html

1.3. Aufbau der Arbeit 3

die für den Betrieb der Roboter benötigt wird, abgekoppelt werden, um Echtzeit und
Determinismus in den Systemen weiter zu verbessern. Auf diesem Mikrocontroller soll kein
Betriebssystem wie z.B. RTOS (Real-Time Operating System)7 laufen, weil jedes Betriebssys-
tem auch gewissen Overhead mit sich bringt und die ohnehin schon knappen Ressourcen
eines Mikrocontrollers noch mehr verringert. Die Installation eines RTOS macht einen PC
nicht direkt echtzeitfähig. Es müssen Mechanismen zu Threads und Hyperthreading erstellt
werden und auch jede Hardware noch einmal speziell konfiguriert werden. Dies sind weitere
Punkte, die berücksichtigt werden müssen, und einen hohen Grat an Aufwand bedeuten,
wenn ein OS wirklich echtzeitfähig gemacht werden soll. Beispielweise muss die Ethernet-
Karte für niedrige Latenzen in einen PCIe-Slot verbaut werden und infolgedessen müssen
Stromsparmodi von mehreren Hardwaremodulen deaktiviert werden, um Echtzeitanforde-
rungen nicht zu gefährden. Deshalb ist diese Arbeit in erster Linie eine Machbarkeitsstudie,
ob es möglich ist, die EtherCAT Kommunikation von den restlichen Softwareapplikation zu
trennen und auf einem Mikrocontroller ohne OS zu realisieren.
Hardware-naher Code in C soll direkt auf dem Mikrocontroller implementiert werden, um
Einflüsse auf Jitter und Latenz der versendeten Daten zu minimieren. Dadurch soll ein deter-
ministisches System aufgebaut werden. Dafür soll die Funktionsweise der gegenwärtigen
Implementierungen zuerst analysiert werden. Anschließend soll ein Konzept zur Realisierung
auf der entsprechenden Hardware erstellt und in Betrieb genommen werden. Die Schnittstel-
len zum Senden und Empfangen von Ethernet-Frames sollen evaluiert und Nebenläufigkeit
ohne Betriebssystem oder Scheduler implementiert werden. Daraufhin sollen Messungen
zum Echtzeitverhalten und Determinismus erstellt werden. Diese werden mit Messungen
der gegenwärtigen Implementierung auf einem Betriebssystem gegenübergestellt. Hierfür
müssen Schnittstellen des Mikrocontrollers definiert werden, um zyklische Prozessdaten und
azyklischen Daten auszutauschen (s. Abschnitt 2.3). In diesem Abschnitt werden auch die
beiden Begriffe zyklische und azyklische Kommunikation vertieft. Deshalb wird an dieser
Stelle auf eine detaillierte Beschreibung verzichtet.

1.3. Aufbau der Arbeit

Kapitel 2 beschäftigt sich mit den nötigen Grundlagen für diese Arbeit. Dazu zählen Begriffs-
definitionen zu Echtzeitsystemen und Feldbussystemen. Anschließend wird der EtherCAT
Standard erklärt, bevor Vor- und Nachteile eines Mikrocontrollers ohne Betriebssystem
erläutert werden. Das Ende des Kapitels zeigt die die nötigen Anforderungen bzgl. Echtzeit-
fähigkeit und Latenz für diese Arbeit.
Kapitel 3 erläutert die Konzeption des EtherCAT MainDevices. Dazu zählen Systemanforde-

7FreeRTOS Website

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.freertos.org/

4 1. Einleitung

rungen und Designziele. Anschließend wird Hardware auf diese Anforderungen analysiert
und eine begründete Auswahl auf eine Hardware getroffen, die dessen Architektur und
Echtzeitanforderungen betreffen.
Kapitel 4 stellt die Portierung der beiden Bibliotheken und Konfiguration der Hardware in-
folgedessen dar. Außerdem wird auf Tuning der Performance und Debugging eingegangen.
Kapitel 5 beschäftigt sich mit zwei Testaufbauten der Implementierung. Dafür werden
Messdaten erfasst und mit einer Implementierung eines Linux-MainDevices verglichen und
evaluiert.
Das finale Kapitel 6 gibt eine Zusammenfassung dieser Arbeit, Ausblicke in die Zukunft
dieser Arbeit und bewertet den Projekterfolg samt Methodik.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2. Grundlagen

Dieses Kapitel erläutert die technischen Grundlagen, die für den Betrieb der beiden Bi-
bliotheken auf einem Mikrocontroller ohne Betriebssystem nötig sind. Zunächst wird der
Begriff Echtzeit definiert (s. Abschnitt 2.1). Im Anschluss werden Feldbbusse und deren
Einsatz am DLR erläutert (s. Abschnitt 2.2). Abschnitt 2.3 erklärt den EtherCAT Standard
inklusive technischer Parameter und dessen Vorteile. Am Ende des Kapitels werden Vor-
und Nachteile eines Mikrocontrollers ohne Betriebssystem genannt (s. Abschnitt 2.4) und
anschließend die Anforderungen bzgl. Echtzeit und Latenz erläutert (s. Abschnitt 2.5).

2.1. Echtzeitsysteme

Obwohl es keine klare Trennung zwischen Real-Time und Non-Real-Time Systemen gibt,
existieren mehrere Faktoren, die bei der Eingrenzung von Real-Time Applikationen helfen
[Wil05]. Diese werden in den folgenden Teilabschnitten erklärt. Echtzeit hat nicht alleine
etwas mit Schnelligkeit zu tun, sondern hängt vielmehr von der Rechtzeitigkeit (s. Abschnitt
2.1.2) ab. Diese Rechtzeitigkeit wird durch die Umgebung (s. Abschnitt 2.1.8), in der sie
stattfindet, definiert. Typischerweise müssen Echtzeitsysteme in Luft- und Raumfahrt binnen
weniger Millisekunden reagieren. Anderen Echtzeitsystemen wie bspw. Bahnübergängen
genügt eine Reaktionszeit im Sekundenbereich. Für Echtzeitsysteme ist auch von besonderer
Bedeutung, dass diese Reaktion unter allen Umständen erfolgt und nicht nur, wenn diese
gerade „günstig“ sind [Mäc04].

2.1.1. Scheduling in Echtzeitsystemen

Für Echtzeitbetriebssysteme ist die Zeit der Schlüsselparameter. Normalerweise generieren
ein oder mehrere externe Geräte Stimuli und das Echtzeitbetriebssystem muss innerhalb
einer bestimmten Zeit reagieren. Beispielsweise muss ein CD-Player die Bits auf einer CD

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
5

6 2. Grundlagen

auslesen und in einer bestimmten Zeit ausgeben. Ist dies nicht der Fall, so klingt die ausgege-
bene Musik eigenartig. Andere Echtzeitsysteme sind Monitoring von Patienten, Autopiloten
im Luftverkehr oder Robotersteuerung in einer automatisierten Fabrik. In all diesen Fällen
ist das zu späte Abrufen/Bereitstellen der Daten genauso schlimm, wie wenn diese Daten
gar nicht vorhanden wären.
Für alle Echtzeitsysteme ist es deshalb wichtig das Programm in mehrere Prozesse zu unter-
teilen. Die Eigenschaft dieser Prozesse sollen vorhersagbar und a-priori bekannt sein. Wenn
ein externes Event festgestellt wird, ist es die Aufgabe des Schedulers diese Prozesse so
zu organisieren, dass alle Deadlines eingehalten werden. Manchmal ist dies nicht möglich,
abhängig davon wie viel Zeit diese Events beanspruchen. Diese Events können in periodische
und aperiodische Events unterteilt werden. Beispielsweise kann ein Event i mit Periode Pi
aus m periodischen Events, die jeweils Ci Sekunden an CPU-Zeit benötigen, nur vollständig
erfüllt werden, wenn folgende Gleichung gilt:

m∑

k=1

Ci
Pi
≤ 1 (2.1)

Ein Echtzeitsystem, welches diese Gleichung erfüllt, kann mit einem Scheduler realisiert
werden. In dieser Gleichung ist ein implizite Annahme, dass das Kontext-Switching über
einen so geringen Overhead verfügt, dass es ignoriert werden kann [Tan09].

2.1.2. Rechtzeitigkeit

Real-Time Systeme müssen in einem definierten Zeitabschnitt korrekte und vollständige
Berechnungen durchführen und deren Ergebnisse zur Verfügung stellen. Tasks müssen
zugewiesen und durchgeführt werden, bevor deren Deadline (s. Abschnitt 2.1.3) verstreicht.
Nachrichten zwischen interagierenden Real-Time Systemen müssen rechtzeitig gesendet
und empfangen werden. Die Genauigkeit von Daten hängt nicht nur von deren logischer
Korrektheit ab, sondern auch von der Zeit, wann diese erfasst, produziert und pünktlich zur
Verfügung gestellt wurden [IEE94]. Steht das Ergebnis eines Prozesses zu spät oder zu früh
zur Verfügung, so sind die Daten ungültig, weil sie unbrauchbar sind, obwohl die Daten
numerisch korrekt sind. Dies hängt damit zusammen, dass die Daten von einem falschen -
einem zu frühen oder zu späten - Zustand des stammen. Deshalb muss die Reaktionszeit
größer oder gleich der minimal zulässigen Reaktionszeit liegen. Gleichzeitig muss die Reakti-
onszeit kleiner oder gleich der maximal zulässigen Reaktionszeit (= Deadline) liegen. Anhand
von Abbildung 2.1 ist ersichtlich, dass Echtzeitbetriebssysteme bis zu einer Genauigkeit im
Mikrosekunden-Bereich operieren. Echtzeitsysteme im Bereich von Nanosekunden können
nur durch Hardware-Lösungen realisiert werden.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.1. Echtzeitsysteme 7

Abbildung 2.1.: Echtzeitsysteme und ihre Zeitanforderungen [Mäc04]

Die zeitlichen Bedingungen eines Echtzeitsystems lassen sich in zwei Kategorien untertei-
len:

Absolute Zeitbedingungen→ die Daten müssen zu einem fest definierten Zeitpunkt
ausgegeben werden→ z.B. 4:20 Uhr

Relative Zeitbedingungen→ die Daten müssen in einem bestimmten Intervall nach
einem Ereignis vorliegen→ z.B. 420 s nach Empfang eines Ethernet Frames

2.1.3. Deadlines

Deadlines werden in folgende Kategorieren unterteilt:

Hard→ Nichteinhalten der Deadline führt zu katastrophalen Konsequenzen

Firm→ die meisten aperiodischen Tasks gehören zu dieser Kategorie→ Nichteinhalten
der Deadline führt dazu, dass

– die Resultate des Tasks nicht mehr nützlich sind

– keine schwerwiegenden Konsequenzen zu erwarten sind

Soft → alle restlichen Tasks → der Nutzen der Ergebnisse des Tasks nehmen bei
Nichteinhalten der Deadline mit der Zeit ab

Die Einteilung der Tasks in diese Kategorieren ist abhängig von der Applikation [IEE94]. Mit
Hilfe der Kostenfunktion (s. Abbildung 2.2) kann die Notwendigkeit von Echtzeitschranken

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

8 2. Grundlagen

beurteilt werden [Mäc04].

Abbildung 2.2.: Kostenfunktion harter und weicher Echtzeit [Mäc04]

2.1.4. Tasks

Real-Time Applikationen bestehen normalerweise aus mehreren kooperierenden Tasks. Die-
se Tasks werden in regulären Intervallen aufgerufen/aktiviert und müssen ihre Ausführung
innerhalb ihrer Deadlines abgeschlossen haben. Bei jedem Aufruf muss ein Task den Status
des Systems determinieren, bestimmte Berechnung ausführen und (falls nötig) Kommandos
senden, um den Status des Systems zu ändern oder anzuzeigen. Beispielsweise muss ein
Task in einer Flugzeugsteuerung die Ansteuerung des Gaspedals monitoren, Berechnungen
zur aktuellen Position durchführen und anschließend die Schubkraft eines Triebwerks durch
Anpassung der Kraftstoffeinspritzung ändern.
Dies sind periodische Tasks. Sie sind zeitkritisch in dem Sinne, dass das System nicht funktio-
nieren würde, wenn diese Tasks nicht in einer bestimmten Zeit ausgeführt werden. Deshalb
ist es für ein Computersystem sehr wichtig, dass die Kriterien bzgl. Deadlines der kritischen
Tasks eingehalten werden - unabhängig von den Zuständen anderer Systemkomponenten.
Aperiodische Tasks werden ausgeführt, wenn bestimmte Events eintreten. Beispielsweise

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.1. Echtzeitsysteme 9

wird ein Systemkonfigurations-Task nur bei Auftreten eines Fehlers aktiviert. Da diese Events
nicht in regulären Intervallen auftreten, werden die korrespondierenden Tasks auch nicht
regelmäßig ausgeführt. Wenn das Event zeitkritisch ist, hat der zugehörige aperiodische
Task eine Deadline. Wenn das Event nicht zeitkritisch ist, dann hat der Task keine Deadline.
Er muss so schnell wie möglich abgearbeitet werden ohne dabei die Deadlines anderer
Tasks zu beeinträchtigen [IEE94].

2.1.5. Gleichzeitigkeit und Auslastung

Echtzeitsysteme stehen auch vor der Herausforderung, dass mehrere Aufgaben gleichzeitig
auftreten und bearbeitet werden müssen. Auch dann müssen diese Aufgaben pünktlich
und korrekt erledigt werden. Um dies zu gewährleisten, können bspw. mehrere Subsysteme
diese Ereignisse verarbeiten. Dazu können die auszuführenden Aufgaben auf mehrere Tasks
verteilt werden, die sich unterbrechen können. Dies stellt eine weitere Herausforderung bei
der Konzeption und Realisierung von Echtzeitsystemen dar. Andererseits kann das gleichzei-
tige Eintreten von Aufgaben auch durch den Einsatz von sehr schnellen, verarbeitenden
Systemen sichergestellt werden, da diese Systeme die Daten sehr viel schneller verarbeiten
als neue Ereignisse auftreten. Wichtig ist hierbei, dass die Gesamtkapazität zur Erledigung
der einzelnen Prozesse in Summe nicht überschritten wird [Mäc04].

2.1.6. Determinismus

Die Berechenbarkeit des Zeitverhaltens in einem System nennt sich zeitlicher Determinis-
mus. Nur wenn sich ein System zeitlich-deterministisch verhält, kann Echtzeitverhalten
garantiert werden [Mäc04]. Bereits beim Design des Systems sollte es möglich sein, dass
alle Zeitvorgaben der Anwendungen erfüllt werden, solange bestimmte Systemannahmen
vorliegen. Deshalb müssen die Einschränkungen aller Tasks a-priori bekannt sein. Dazu
zählen die Anzahl, Ausführungszeiten und Ressourcenbedingungen aller Tasks. Zeitliche
Veränderungen innerhalb der Systemumgebung können das Verhalten des Systems maß-
geblich beeinflussen. Garantien zu Deadlines sind nur möglich, wenn die Ausführungs- und
Ankunftzeit von Tasks a-priori bekannt sind.
Während des Systemdesigns liegen meist nicht alle Information über diese Anforderungen
vor. Deshalb werden oft Annahmen bzgl. des Worst-Case genutzt, um voraussagen zu
können, ob die Echtzeit eingehalten werden kann. Die Daten des Worst-Case stammen
aus Simulationen, Tests und anderen Vorgängen. Die tatsächlichen Daten der Worst-Cases
können die Annahmen überschreiten. Da es keine andere Alternativen gibt, muss zuerst
mit den Annahmen des Worst-Cases gearbeitet werden [IEE94]. Dies stellt einen Gegensatz

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

10 2. Grundlagen

zu vielen Modellen in der Informatik dar, da diese für den Durchschnittsfall optimiert sind.
Echtzeitsysteme müssen gegenüber des Worst-Cases optimiert werden. Dafür wird oft
davon ausgegangen, dass alle Ereignisse zum selben Zeitpunkt eintreten und ihre maximale
Ausführungszeit in Anspruch nehmen [Mäc04].

2.1.7. Zuverlässigkeits-/Performancebedingungen

Ein Task muss bestimmte Zuverlässigkeits-, Verfügbarkeits und/oder Performancebedingun-
gen erfüllen. Zuverlässigkeit ist extrem wichtig. Der Ausfall eines Real-Time Systems könnte
zu einem ökonomischen Desaster oder dem Verlust von Menschenleben führen [IEE94]. Die
Zuverlässigkeit eines Systems hängt stark mit dessen Hard Deadlines ab. Beispiele hierfür
sind Systeme in Flugzeugen, Kraftwagen oder auch Kraftwerken [Mäc04].

2.1.8. Umgebung

Die Umgebung, in welcher ein Computer arbeitet, ist eine aktive Komponente jedes Real-
Time Systems. Beispielsweise ist der Einsatz von On-Board Computern in einem Drive-by-
Wire System nutzlos ohne das Auto selbst [IEE94]. Die Umgebung wird auch externes System
genannt. Dieses externe System gibt die relevanten Bedingungen für das Echtzeitsystem vor
[Mäc04].

2.2. Feldbusse

Feldbusse sind Netzwerke, um Geräte wie Sensoren, Aktuatoren, PLCs (Programmable Logic
Controllers), Regulatoren oder auch Man-Machine-Interfaces miteinander zu verbinden,
damit diese Daten miteinander austauschen können. Die verschiedenen Feldbussysteme
adressieren alle ähnliche Probleme, unterscheiden sich jedoch leicht in Art und Weise. Sie
hängen primär von folgenden Punkten ab:

Anforderungen der End-User in verschiedenen Branchen

Anzahl und Vielfalt der angeschlossenen Hosts

technische Möglichkeiten zur Zeit der Entwicklung

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.2. Feldbusse 11

Abhängig davon entwickelten Unternehmen ihre properitären Lösungen und standardisier-
ten diese [Tho05]. Zu einem Feldbussystem gehören spezifische Hardwarekomponenten wie
Kabel und Konnektoren. Zusätzlich müssen für jeden Feldbus Kommunikationsprotokolle
definiert sein. Gängige Feldbussysteme sind:

Profibus / Profinet1

Modbus2

DeviceNet3

CAN4

SERCOS-III5

EtherCAT (s. Abschnitt 2.3)

Die Entwicklungen am DLR sind heterogene Systeme bzgl. der Kommunikationsbusse.
Folgende Busse sind im Einsatz:

Tabelle 2.1.: Eingesetzte Bussysteme

Bussystem Einsatz
Ethernet RT, non-RT, Kameras

SERCOS-II LWR Joints
SpaceWire HAND-II, HaSy/David, MiroSurge
EtherCAT Beckhoff Terminals, ELMO Boxes, Digi-I/O

CAN Heinzmann Wheels, Schunk Grippers/Pan-Tilt
SSI Positionsenkoder
USB Asus Xtion, XSense IMU’s, verschiedene Mikrocontroller
Serial Medical Hands, Dynamixel Servis, DLR FTS-78

1Profibus Website
2Modbus Website
3DeviceNet Einführung von Beckhoff
4Can knowledge in CiA (CAN in Automation)
5Sercos III Erklärung der Sercos

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.profibus.de/
https://www.modbus.org/
https://infosys.beckhoff.com/index.php?content=../content/1031/bc5250/2578437003.html&id=
https://www.can-cia.org/can-knowledge
https://www.sercos.de/technologie/sercos-iii/

12 2. Grundlagen

2.3. EtherCAT

EtherCAT steht für Ethernet for Control Automation Technology. Es ist eine Echtzeit-
Industrie-Ethernet-Technologie, die ursprünglich von Beckhoff Automation6 entwickelt
wurde und im IEC (International Electrotechnical Commission) Standard IEC61158 ver-
öffentlicht wurde. Sie ist geeignet für Hard- und Soft-Real-Time-Anforderungen in der
Automationstechnik, Tests, Messungen und andere Anwendungen. Während der Entwick-
lung lag der Fokus vor allem auf kurzen Zykluszeiten (≤ 100µs), niedrigem Jitter für akkurate
Synchronisation (≤ 1µs) und niedrigen Hardwarekosten.
EtherCAT wurde im April 2003 vorgestellt und die EtherCAT Technology Group (ETG) wurde
im November 2003 gegründet. In der Zwischenzeit hat sich die ETG zur weltweit größten
Organisation für Industrial Ethernet und Feldbusse entwickelt. Sie vereint viele Hersteller und
Nutzer, welche zum Fortschritt der EtherCAT Technologie in technischen Arbeitsgruppen
zusammenarbeiten [Eth].

2.3.1. Funktionsprinzip

Das EtherCAT MainDevice (veraltet: Master) sendet ein Telegram, das durch alle am Bus
angeschlossenen Nodes geht. Jedes SubDevice (veraltet: Slave) liest die Daten, welche für
sie bestimmt sind „on-the-fly“ aus dem Telegram aus und fügt eigene Daten an diese
Stelle im Frame ein. Der Frame verzögert sich nur durch Hardware Propagation Delays.
Das letzte Device im Bus erkennt einen offenen (nicht angeschlossenen) Port und sendet
die Nachricht via Full-Duplex zurück an das MainDevice. Die SubDevices nutzen einen
EtherCAT SubDevice Controller (ESC). Dies ermöglicht, dass die Daten on-the-fly und in
Hardware verarbeitet werden können, um die Network-Performance vorhersagbar und
unabhängig von der individuellen SubDevice Implementierung zu machen [Eth]. Dies ähnelt
dem Cut-Through Forwarding in geswitchten Netzwerken. Die SubDevices verfügen dafür
über spezielle ASICs (Anwedungsspezifische integrierte Schaltung), damit die Frames mit
einem Delay im Nanosekundenbereich versendet werden können.
Die maximale, effektive Datenrate erhöht sich auf über 90%. Durch das Nutzen des Full-
Duplex Features ist die theoretisch erreichbare, effektive Datenrate höher als 100 MBit/s
(> 90%× 2× 100 MBit/s).
Das EtherCAT MainDevice ist das einzige Gerät innerhalb eines Segments, das aktiv einen
EtherCAT Frame versenden darf; die restlichen Nodes leiten die Frames lediglich im Down-
stream weiter. Dieses Konzept verhindert unvorhersagbare Delays und garantiert Echtzeit-
Fähigkeit.

6Beckhoff Website

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/

2.3. EtherCAT 13

Das MainDevice nutzt einen Standard Ethernet Media Access Controller (MAC) ohne
zusätzlichen Kommunikationsprozessor. Dies ermöglicht, dass das MainDevice auf jeder
Hardwareplattform implementiert werden kann, das über einen Ethernet Port verfügt. Dies
ist unabhängig davon, ob ein Echtzeit-Betriebssystem (RTOS) oder welche Anwendungssoft-
ware genutzt wird.

2.3.2. EtherCAT Packet Flow

EtherCAT Devices verfügen üblicherweise über zwei Ports, können aber auch mehr haben.
Das MainDevice hat im Normalfall nur einen Port in Benutzung, an den das erste SubDevice
angeschlossen ist (s. Abbildung 2.3). Das MainDevice sendet über seine TX-Leitung den
EtherCAT Frame an den ersten Port des angeschlossenen SubDevices. Das SubDevice
empfängt den Frame auf der RX-Leitung des Ports. Dieses SubDevice verarbeitet die Daten
und sendet diese über die TX-Leitung des zweiten Ports weiter (= Downstream ≡ gelber
Pfeil in der Skizze). Wenn ein SubDevice erkennt, dass nur ein Port in Benutzung ist, sendet
es die Daten über die TX-Leitung seines Eingangsports wieder zurück an das vorherige
Device (= Upstream ≡ blauer Pfeil in der Skizze). Dies geschieht solange bis der Frame am
MainDevice über dessen RX-Leitung wieder empfangen wird. Sollte der zweite Port des
letzten SubDevices in der Kette direkt mit dem zweiten Port des MainDevices verbunden
sein, werden die Daten über diese Ports in einer Ringstruktur gesendet (s. Abbildung 2.10).

Abbildung 2.3.: EtherCAT Packet Flow

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

14 2. Grundlagen

2.3.3. Das EtherCAT Protokoll

EtherCAT bettet seinen Payload in einen Standard Ethernet Frame ein (s. Abbildung 2.4).
Der Ethertype ist hierbei 0x88A4. Da EtherCAT für kurze, zyklische Prozessdaten optimiert
wurde, ist das Nutzen von Protokollstacks wie TCP/IP oder UDP/IP obsolet [Eth].

Abbildung 2.4.: EtherCAT in einem standard Ethernet Frame (nach IEEE 802.3)

Der 2-Byte-lange EtherCAT Header ist in drei Felder (vgl. Tabelle 2.2) unterteilt. Ein EtherCAT

Tabelle 2.2.: EtherCAT Header Fields

Feld Länge Wert/Beschreibung
Length 11 Bit Länge des EtherCAT Datagrams ohne FCS

Reserved 1 Bit Reserviert, 0
Type 4 Bit Protokoll-Typ, SubDevices unterstützen nur Type = 0x1

Telegramm kann aus bis zu 15 EtherCAT Datagrammen bestehen. Jedes Datagramm in
einem EtherCAT Telegramm besteht aus einem Datagramm Header, zugehörigen Daten
und dem Working Counter (s. Abbildung 2.5).

Abbildung 2.5.: EtherCAT Datagramm

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 15

Tabelle 2.3.: EtherCAT Datagram Fields

Feld Länge Wert/Beschreibung

Cmd 1 Byte EtherCAT Kommando-Typ

Idx 1 Byte
numerische Kennung für die Identifizierung des MainDevices

von Duplikaten oder verlorengegangenen Datagrammen;
SubDevices sollten diesen Index nicht ändern

Address 4 Byte
Adresse: Auto-Inkrement, Configured Station

oder Logische Adresse

Len 11 Bit Länge der Datagramm-Daten

R 3 Bit Reserviert, 0

C 1 Bit
Umlaufender Frame:

0 = Frame läuft nicht um
1 = Frame ist einmal umgelaufen

M 1 Bit
Mehrere Datagramme:
0 = Letztes Datagramm

1 = mindestens 1 weiteres folgt noch

IRQ 1 WORD
Ereignis-Abfrage-Register

Kombination aller SubDevices mit logischen OR

Data n Bytes zu lesende/schreibende Daten

WKC WORD Working Counter

Der Datagramm Header ist in zehn Felder unterteilt, welche wie in Tabelle 2.3 spezifiziert
sind.
Das 4-Byte-lange Adressfeld (vgl. Tabelle 2.4) kann auf mehrere Arten genutzt werden:

Position Addressing→ nur für Startup des EtherCAT Systems und um neu hinzuge-
fügte SubDevices zu erkennen; jedes SubDevice erhöht diese Adresse um 1

Node Addressing→ Registerzugriff auf einzelne, schon identifizierte Geräte

Logical Addressing→ bitweise Zuordnung von Daten in einem 32-bit breiten, virtuel-
len Adressraum

Broadcast Addressing→ Initialisierung aller SubDevices

Je nachdem welche Adressierungsart genutzt wird, werden die 4 Byte anders aufgeteilt

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

16 2. Grundlagen

und genutzt (s. Tabelle 2.4) [Tecb]. Um Ethernet IT-Kommunikation zwischen den Nodes

Tabelle 2.4.: EtherCAT Addressing [Tecb]
Modus Feld Länge Wert/Beschreibung

Position Address ODER
Auto Increment Address

Position WORD
jedes SubDevices erhöht den Wert

SubDevice wird angesprochen,
wenn Position = 0

Offset WORD Lokale Register- oder Speicheradresse des ESCs

Node Address ODER
Configured Station Address

Address WORD
SubDevice wird adressiert,

wenn Address = Configured Station Address

ODER Address = Configured Station Alias

Offset WORD Lokale Register- oder Speicheradresse des ESCs
Broadcast Position WORD SubDevice erhöht den Wert

Offset WORD Lokale Register- oder Speicheradresse des ESCs

Logical Address Address DWORD
Logische Adresse (konfiguriert von FMMUs)

SubDevice wird adressiert,
wenn FMMU Konfiguration = Wert im Adressfeld

zu gewährleisten, können TCP/IP Verbindungen optional durch einen Mailbox Channel
getunnelt werden, ohne dabei den Echtzeit-Datenaustausch zu gefährden. Während des
Startvorgangs des Busses konfiguriert und mappt das MainDevice die Prozessdaten auf den
SubDevices. Verschiedene Mengen an Daten (1 Bit bis zu mehreren Kilobytes) können pro
SubDevice ausgetauscht werden.
Der EtherCAT Frame beinhaltet ein oder mehrere Datagramme. Der Datagram Header gibt
an, welche Art des Zugriffs das MainDevice gerne ausführen würde:

Read, Write, Read-Write

Zugriff auf ein bestimmtes SubDevice durch direkte Adressierung oder Zugriff auf
mehrere SubDevices durch logische bzw. implizite Adressierung

Logische Adressierung wird für den zyklischen Austausch von Prozessdaten verwendet.
Jedes Datagram adressiert einen spezifischen Teil des Prozessabbildes im EtherCAT Segment.
Dafür sind 4 GByte im Adressraum vorhanden. Während des Hochfahrens des Netzwerks
wird jedem SubDevice eine oder mehrere Adressen in diesem globalem Adressraum zuge-
wiesen. Wenn mehrere SubDevices im selben Adressraum liegen, können sie alle mit einem
einzigen Datagram adressiert werden. Da das Datagram alle Daten beinhaltet, die für den
Zugriff benötigt werden, kann das MainDevice entscheiden, wann und auf welche Daten
es zugreift. Beispielsweise kann das MainDevice kurze Zykluszeiten nutzen, um die Daten
in den Speichern aktualisieren, und längere Zykluszeiten, um die I/O Daten zu samplen.
Deshalb ist eine fixe Prozessdatenstruktur nicht notwendig. Dies entlastet das MainDevice
im Vergleich zu konventionellen Feldbussen. In konventionellen Feldbussen müssen die
Daten der Nodes individuell ausgelesen, mit Hilfe eines Prozesscontrollers sortiert und in

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 17

den Speicher kopiert werden.
Mit EtherCAT muss das MainDevice nur einen einzelnen EtherCAT Frame mit neuen Output-
Daten initialisieren und den Frame via Direct Memory Access (DMA) an den MAC-Controller
senden. Wenn ein Frame mit neuen Input-Daten am MAC-Controller empfangen wird,
kopiert das MainDevice diese Daten via DMA in den Speicher des Geräts. Dies geschieht
ohne aktive Nutzung der CPU. Ergänzend zu den zyklischen Daten können Datagramme
benutzt werden, um asynchrone oder event-basierte Kommunikation zu realisieren.
Zusätzlich zur logischen Adressierung kann das MainDevice die SubDevices durch die

Abbildung 2.6.: Einfügen von Prozessdaten on-the-fly

Position im Netzwerk adressieren. Diese Methode wird während des Network-Boots ver-
wendet, um die Netzwerktopologie zu bestimmen und diese mit der geplanten Topologie
zu vergleichen.
Nachdem die Netzwerkkonfiguration überprüft wurde, kann das MainDevice jedem Node
eine konfigurierte Node-Adresse zuweisen und durch diese mit den Nodes kommunizieren.
Dies ermöglicht gezielten Zugriff auf Geräte, auch wenn sich die Netzwerktopologie im
laufenden Betrieb verändert, was durch Hot Connect Groups geschehen kann. Es gibt zwei
verschiedene Ansätze für SubDevice-to-SubDevice-Kommunikation. Ein SubDevice kann Da-
ten direkt an andere SubDevices senden, die sich im Downstream-Pfad des Netzes befinden.
Da EtherCAT Frames nur in Vorwärtsrichtung verarbeitet werden können, ist dieser Ansatz
von der Netzwerktopologie abhängig und nur für ein unveränderliches Machine-Design
geeignet (z.B. für Drucker oder Verpackungsanlagen).

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

18 2. Grundlagen

Im Gegensatz dazu findet die freie SubDevice-to-SubDevice-Kommunikation über das
MainDevice statt. Diese Kommunikation benötigt zwei Buszyklen (nicht zwangsweise zwei
Kontrollzyklen). Aufgrund der hervorragenden Performance von EtherCAT ist diese Art der
SubDevice-to-SubDevice-Kommunikation immer noch schneller als andere Kommunikati-
onstechniken [Eth].

2.3.4. Flexible Topologie

EtherCAT unterstützt fast alle Topologien wie bspw. Bus, Baum, Stern oder auch Daisy-
Chain. EtherCAT baut eine reine Bustopologie mit hunderten von Nodes auf. Die Umsetzung
erfolgt ohne die standardmäßigen Limitationen, die auftreten, wenn Switches oder Hubs
kaskadiert werden.
Beim Verkabeln des Netzes ist eine Kombination aus Anschlussleitungen hilfreich: die Ports,
welche für die Anschlussleitungen benötigt werden, sind direkt in viele I/O Module integriert.
Deshalb werden keine zusätzlichen Switches oder andere aktive Hardware benötigt. Die für
Ethernet standardmäßige Sterntopologie kann so natürlich genutzt werden.
Modulare Maschinen oder Tool Changers setzen Voraus, dass Netzwerksegmente oder
individuelle Nodes während des Betriebs angeschlossen oder abgetrennt werden. EtherCAT
SubDevice-Controllers haben die Voraussetzungen dieses Hot-Connect-Features’ standard-
mäßig implementiert. Wenn ein Nachbarnode vom Bus getrennt wird, wird der Port auto-
matisch geschlossen, damit der Rest des Netzes weiterhin ohne Interferenzen funktionieren
kann. Kurze Detektionszeiten von < 15µs garantieren eine reibungslose Anpassung (=
ChangeOver) der Topologie.
EtherCAT bietet eine große Flexibilität, was die Art der verwendeten Kabel betrifft. Jedes
Segment kann mit genau den Kabeln bestückt werden, die dessen Anforderungen am
besten erfüllt. Billige Industrial-Ethernet-Kabel können im 100BASE-TX Mode zwischen zwei
Nodes genutzt werden, die sich bis zu 100m entfernt befinden. Mit der Protokoll Erweite-
rung EtherCAT P können sowohl Daten als auch Strom über lediglich ein Kabel übertragen
werden. Dadurch können Geräte wie Sensoren in einer Bustopologie angeschlossen werden.
Glasfaseroptiken und deren Kommunikationsstandard wie z.B. 100BASE-FX können genutzt
werden, um Geräte zu verbinden, die sich mehr als 100m voneinander entfernt befinden.
Die vollständige Breite von Ethernet Verkabelung ist deshalb für EtherCAT verfügbar.
Bis zu 65535 (216) Geräte können an einem EtherCAT Segment angeschlossen werden.

Deshalb ist die Erweiterung des Netzes virtuell unlimitiert und modulare Geräte wie „sliced“
I/O-Stationen können so designt werden, dass jedes Modul wie eine unabhängige EtherCAT
Node operiert. Dadurch entfällt der lokale Erweiterungsbus. Durch die hohe Performance
von EtherCAT wird jedes Modul direkt und ohne jegliche Delays erreicht, da es kein Gateway
im Buskoppler oder in der Kopfstation gibt [Eth].

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 19

Abbildung 2.7.: Flexible Topologie – Bus, Baum oder Stern

2.3.5. Distributed Clocks für High-Precision Synchronisierung

Insbesondere in Anwendungen mit räumlich verteilten Prozessen, welche simultane Ausfüh-
rung benötigen, ist Synchronisierung sehr wichtig; beispielweise in Anwendungen, welche
mehrere Servoaxen ansprechen, um koordinierte Bewegungen gleichzeitig auszuführen.
Die Qualität von vollständig synchroner Kommunikation leidet direkt unter Kommunikati-
onsfehlern. Im Gegensatz dazu haben Distributed Synchronized Clocks einen hohen Grad
an Fehlertoleranz bzgl. des Jitters in einem Kommunikationssystem. Deshalb erfolgt die
Synchronisierung der Nodes in EtherCAT durch Distributed Clocks (DC). Die Kalibierung
der Clocks in den Nodes ist komplett hardwarebasiert. Die Zeit des ersten DC SubDevice
wird zyklisch an alle anderen Geräte im System weitergegeben. Mit diesem Mechanismus
können die SubDevice Clocks präzise an diese Referenz-Clock angepasst werden. Der daraus
resultierende Jitter ist <1µs.
Da diese Referenz-Clock leicht verzögert an den SubDevices empfangen wird, muss das
Propagation Delay für jedes SubDevice gemessen und kompensiert werden. Dies stellt Syn-
chronität und Simultanität sicher. Dieses Delay wird während des Netzwerkstarts gemessen.
Zusätzlich kann dies während laufenden Betriebs stattfinden, um sicherzustellen, dass die
Clocks simultan innerhalb von 1µs zueinander laufen. Wenn alle Nodes die selbe Informati-
on über die Zeit haben, können sie ihre Output-Signale simultan setzen und einen hoch
präzisen Timestamp an ihre Input-Signale anhängen. In Motion Control Anwendungen ist

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

20 2. Grundlagen

Abbildung 2.8.: Hardwarebasierte Synchronisierung inkl. Kompensation der Propa-
gation Delays

Abbildung 2.9.: Synchronität und Simultanität - zwei distributed Devices mit 300
Nodes und 120m Kabellänge

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 21

die Zyklusgenauigkeit zusammen mit Synchronität und Simultanität sehr wichtig. In solchen
Anwendungen wird die Geschwindigkeit anhand der gemessenen Position bestimmt. Des-
halb ist es wichtig, dass die Ortsbestimmung äquidistant (z.B. genaue Zyklen) vorgenommen
wird. Kleine Ungenauigkeiten in der Ortsbestimmung können zu größeren Ungenauigkeiten
in der berechneten Geschwindigkeit führen; vor allem relativ zu kurzen Zykluszeiten. In
EtherCAT werden Positionsmessungen durch die präzise, lokale Clock getriggert und nicht
durch das Bussystem. Dies führt zu einer deutlich höheren Genauigkeit.
Zusätzlich wird das MainDevice durch den Einsatz von DCs entlastet. Positionsmessungen
werden durch die lokale Clock getriggert und nicht durch den Empfang eines Frames. Des-
halb unterliegt das MainDevice keinen strengen Anforderung bzgl. dem Senden der Frames.
Dadurch kann das MainDevice in Software auf Standard Ethernet-Hardware implementiert
werden. Ein Jitter im Bereich von einigen Mikrosekunden vermindert nicht Genauigkeit der
DCs. Die Genauigkeit der Clock ist unabhängig vom Zeitpunkt, an dem sie gesetzt wird.
Deshalb ist die absolute Transmissionszeit des Frames irrelevant. Das EtherCAT MainDevice
muss lediglich sicherstellen, dass der EtherCAT Frame gesendet wird, bevor das DC-Signal
den Output der SubDevices triggert [Eth].

2.3.6. Diagnose und Fehlerlokalisierung

Erfahrungen mit konventionellen Feldbussen haben gezeigt, dass Diagnosecharakteristiken
eine bedeutende Rolle spielen, wenn die Verfügbarkeit eines Gerät und dessen Inbetrieb-
nahmedauer bestimmt werden soll. Zusätzlich zur Fehlererkennung ist Fehlerlokalisierung
wichtig beim Troubleshooting. EtherCAT verfügt über das Feature, die aktuelle Netzwerkto-
pologie während des Hochfahrens des Netzes zu scannen und mit der geplanten Topologie
zu vergleichen. EtherCAT hat weitere Diagnosefähigkeiten inhärent zu seinem System.
Der ESC jedes SubDevices prüft den Frame auf Fehler anhand der Checksumme. Die Infor-
mationen werden der Applikation bereitgestellt, sofern der Frame ohne Fehler empfangen
wurde. Sollte ein Fehler vorliegen, wird der Error Counter inkrementiert und alle folgen-
den Nodes darüber informiert. Das MainDevice wird ebenfalls feststellen, dass der Frame
fehlerbehaftet ist und die Daten verwerfen. Das MainDevice kann anhand der Error Counter
der SubDevices feststellen, wo der Fehler aufgetreten ist. Dies stellt einen enormen Vorteil
im Gegensatz zu konventionellen Feldbussen dar, da dort der Fehler über den gesamtem
Bus weitergegeben wird, was es unmöglich macht den Ursprung des Fehlers zu lokalisieren.
EtherCAT kann gelegentlich auftretende Unterbrechungen detektieren und lokalisieren,
bevor der Vorfall andere Geräte beeinflussen kann.
Bei gleicher Zykluszeit ist die Wahrscheinlichkeit von Störungen durch Bitfehler innerhalb
eines EtherCAT Frames wesentlich geringer. Dadurch ist EtherCATs einzigartiges Prinzip der
Bandbreitennutzung um Größenordnungen besser als bei Ethernet Technologien, welche
Single-Frames nutzen. Werden deutlich kürzere Zykluszeiten verwendet, wird die Zeit der

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

22 2. Grundlagen

Fehlerbehebung drastisch reduziert. Dadurch wird es auch einfacher solche Probleme in der
Applikation zu adressieren.
Die Informationen innerhalb eines Frames können anhand des Working Counters besser
auf Konsistenz gemonitort werden. Jedes verfügbare Node inkrementiert den Working
Counter automatisch, sofern es durch das Datagram adressiert und sein Speicher ausgelesen
werden kann. Das MainDevice kann dann zyklisch bestätigen, dass alle Nodes mit konsis-
tenten Daten arbeiten. Wenn der Working Counter einen abweichenden Wert beinhaltet,
leitet das MainDevice das Datagramm nicht an die Kontrollapplikation weiter. Mit Hilfe
von Status- und Fehlermeldungen der Nodes und des Link-Status, ist es dem MainDevice
automatisch möglich den Grund für das unerwartete Verhalten festzustellen. Aufgrund
der Tatsache, dass EtherCAT in Standard Ethernet Frames eingebettet ist, ist es möglich
den Netzwerkverkehr mit Hilfe von freien Ethernet Tools aufzunehmen. Beispielsweise
hat Wireshark7 einen EtherCAT Protokoll Dissektor bereits integriert. So können protokoll-
spezifische Informationen wie der Working Counter, Kommandos und weitere direkt als
Klartext ausgegeben werden. Weitere nützliche Informationen können unter den folgenden
beiden Links eingesehen werden [Eth]:
EtherCAT Diagnosis for Users
EtherCAT Diagnosis for Developers

2.3.7. Anforderung an hohe Verfügbarkeit

Kabelbrüche oder fehlfunktionierende Nodes sollten in Geräten mit hohen Anforderungen
an die Verfügbarkeit nicht dazu führen, dass das gesamte Netzwerksegment nicht mehr
verfügbar ist. EtherCAT stellt die Redundanz von Kabeln mit einfachen Maßnahmen zur
Verfügung. Durch eine Kabelverbindung zwischen dem letzten Node und einem zusätzlichen
Port am MainDevice, wird die Bustopologie zu einer Ringtopologie erweitert. Fälle, in
denen redundant umgeschalten werden muss (z.B. Kabelbrüche oder fehlfunktionierende
Nodes), werden durch ein Software Add-On im Stack des MainDevice erkannt. Die Nodes
selbst müssen dafür nicht angepasst werden und wissen nicht darüber Bescheid, dass sie
aktuell in einem redundantem Netz betrieben werden. Link Detection in den SubDevices
erkennt und löst redundante Fälle automatisch mit einer Recovery-Time ≤ 15µs. So wird
maximal ein einziger Kommunikationszyklus unterbrochen. Das bedeutet, dass sogar Motion
Applications mit kurzen Zykluszeiten weiterarbeiten können, wenn ein Kabel bricht. Mit
EtherCAT ist es auch möglich das MainDevice redundant in einem Hot-Standby Modus zu
betreiben. Anfällige Netzwerkkomponenten, wie z. B. solche, die mit einer Drag Chain
verbunden sind, können mit einer Stichleitung verkabelt werden, so dass selbst bei einem
Kabelbruch der Rest der Maschine weiterläuft [Eth].

7Wireshark Website

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.ethercat.org/en/downloads/downloads_60F2A51B4B114D8D81C2668AF90B2312.htm
https://www.ethercat.org/en/downloads/downloads_C530D44B66104E778FB47A6A0A4FFF68.htm
https://www.wireshark.org/download.html

2.3. EtherCAT 23

Abbildung 2.10.: Billige Kabelredundanz bei Standard EtherCAT SubDevices

2.3.8. Mailbox und Kommunikationsprofile

Um SubDevices konfigurieren und Diagnosen anfertigen zu können, ist es mit Hilfe von azy-
klischer Kommunikation möglich auf Variablen, welche das Netzwerk betreffen, zuzugreifen.
Sie basieren auf dem zuverlässigen Mailbox-Protokoll, welches über eine Auto-Recover
Funktion für fehlerbehaftete Nachrichten verfügt. Um eine breite Auswahl an Geräten und
Anwendungslayern unterstützen zu können, wurden die folgenden EtherCAT Kommunika-
tionsprofile eingeführt:

CAN8 application protocol over EtherCAT (CoE)

Servo drive profile, according to IEC 61800-7-2049 (SoE)

Ethernet over EtherCAT (EoE)

File Access over EtherCAT (FoE)

Automation Device Protocol over EtherCAT (ADS over EtherCAT, AoE)

Ein SubDevice muss nicht alle Kommunikationsprofile unterstützen. Es entscheidet selbst,
welches Profil für die Anforderungen am besten geeignet ist. Das MainDevice wird anhand
des SubDevice Description Files in Kenntnis gesetzt, welche Profile implementiert sind [Eth].
Diese Profile wurden eingeführt, um eine breitere Masse an Feldgeräten und infolgedessen
auch Application Layers ansprechen zu können. Im Gegensatz zu zyklischen Prozessdaten
gibt es für azyklische Kommunikation keine Garantie, dass die Daten in Echtzeit ausgeliefert

8Controller Area Network
9IEC 61800-7-204

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.vde-verlag.de/iec-normen/222326/iec-61800-7-204-2015.html

24 2. Grundlagen

Abbildung 2.11.: Koexistenz von verschiedenen Kommunikationsprofilen im selben
System

werden [gmb].

2.3.9. Fieldbus Memory Management Unit

Die Fieldbus Memory Management Unit (FMMU) befindet sich im Data Link Layer und ist
in jedem SubDevice integriert. FMMUs werden für die logischen EtherCAT Kommandos
benutzt, welche üblicherweise mit nur einem Frames ausgetauscht werden und so die
zyklische Kommunikation realisieren. FMMUs implementieren logische Adressen bit- oder
byteweise auf die physikalischen Adressen des ESCs.
Während des Bootvorgangs konfiguriert das MainDevice die FMMU aller SubDevices. Da-
durch wird dem Bereich des logischen Prozessdatenabbildes ein lokaler Adressraum zu-
geordnet. Jeder FMMU-Kanal ordnet einen kontinuierlichen logischen Adressraum einem
kontinuierlichen physikalischen Adressraum auf dem SubDevice zu. Die FMMU entnimmt
dem durchlaufendem Telegramm Daten und fügt welche hinzu. Das Delay beträgt hierbei
nur wenige Nanosekunden [Teca].

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 25

2.3.10. SyncManager

Der SyncManager ist für Datenkonsistenz und sicheren Datenaustausch zwischen MainDevi-
ce und den Applikationen auf den SubDevices verantwortlich. Er schützt einen DPRAM10-
Bereich vor gleichzeitigem Zugriff. Das MainDevice konfiguriert die SyncManager auf den
SubDevices. Dabei werden die Richtung und die Art und Weise der Kommunikation festge-
legt. Dafür steht ein Datenpuffer zur Verfügung. Es gibt zwei Arten von Sync-Managern:

Buffered-Type-SyncManager (Drei-Buffer-SyncManager)

– genutzt für zyklische Prozessdatenkommunikation

– drei physikalisch Buffer mit identischer Größe

– immer ein freier Buffer zum Schreiben

– immer ein konsistenter Buffer zum Lesen (außer beim ersten Mal Schreiben)

– Lesen und Schreiben ist zu jeder Zeit für Main- und SubDevices möglich

– wird schneller geschrieben als gelesen, gehen ältere Daten verloren

– die Adressen des Buffers werden in der SyncManager Konfiguration eingestellt

– Zugriffe auf den ersten Bereich des Buffers, werden an die drei Buffer weiterge-
leitet

– andere SyncManager werden so konfiguriert, dass sie den Speicherbereich des
zweiten und dritten Buffers nicht adressieren

– ein Buffer wird für Schreibzugriff dem Producer zugeordnet; ein anderer Buffer
dem Consumer für Lesezugriff; ein Buffer hält die Daten konsistent

Mailbox-Type-SyncManager (Ein-Buffer-SyncManager)

– genutzt für Mailboxkommunikation der Protokolle der SubDevice-Applikationsschicht

– ein Buffer mit zuvor konfigurierter Größe

10Dual-Port RAM

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

26 2. Grundlagen

– Schutz vor Datenüberlauf

– Leseseite liest, bevor Schreibseite schreiben kann und vice-versa→ Buffer wird
nach Zugriff gesperrt

– Handshake zwischen Main- und SubDevice für Datenaustausch [Teca]

2.3.11. Implementierung von EtherCAT Interfaces

Die EtherCAT-Technologie wurde speziell für ein kostengünstiges Design optimiert, so dass
das Hinzufügen einer EtherCAT-Schnittstelle zu einem Sensor, I/O-Gerät oder Embedded-
Controller die Gerätekosten nicht wesentlich erhöhen sollte. Darüber hinaus erfordert die
EtherCAT-Schnittstelle auch keine leistungsstärkere CPU - die CPU-Anforderungen richten
sich lediglich nach den Anforderungen der Zielanwendung. Bei der Entwicklung einer
Schnittstelle sind neben den Hard- und Softwareanforderungen auch der Entwicklungssup-
port und die Verfügbarkeit von Kommunikationsstacks wichtig. Die EtherCAT Technology
Group bietet weltweiten Entwicklersupport, um Fragen oder technische Probleme schnell
zu beantworten. Evaluierungskits verschiedener Hersteller, Entwickler-Workshops sowie
kostenloser Beispielcode erleichtern den Einstieg in die Entwicklung. Für den Endanwender
ist der wichtigste Faktor die Interoperabilität von EtherCAT-Geräten verschiedener Hersteller.
Um die Interoperabilität zu gewährleisten, sind die Gerätehersteller verpflichtet, einen
Konformitätstest durchzuführen, bevor sie ihr Gerät auf den Markt bringen. Der Test prüft,
ob die Implementierung der EtherCAT-Spezifikation entspricht, und kann mit dem EtherCAT
Conformance Test Tool durchgeführt werden. Der Test kann auch während der Geräteent-
wicklung eingesetzt werden, um Implementierungsprobleme frühzeitig zu erkennen und zu
korrigieren [Eth].

MainDevice

Die Schnittstelle für ein EtherCAT MainDevice hat eine einzige, unglaublich einfache Hard-
wareanforderung: einen Ethernet-Port.
Die Implementierung verwendet entweder den On-Board-Ethernet-Controller oder eine kos-
tengünstige Standard-Netzwerkkarte, so dass keine spezielle Schnittstellenkarte erforderlich
ist. Das bedeutet, dass ein MainDevice mit nur einem Standard-Ethernet-Port eine harte
Echtzeit-Netzwerklösung implementieren kann.
In den meisten Fällen ist der Ethernet-Controller über Direct Memory Access (DMA) inte-
griert, so dass keine CPU-Kapazität für die Datenübertragung zwischen dem MainDevice

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 27

und dem Netzwerk benötigt wird. In einem EtherCAT-Netzwerk erfolgt das Mapping bei
den SubDevices. Jedes SubDevice schreibt seine Daten an die richtige Stelle im Prozessabbild
und liest die an es adressierten Daten, während der Frame das Device durchläuft. Daher ist
das Prozessabbild, das am MainDevice ankommt, bereits korrekt sortiert. Da die MainDevice-
CPU nicht mehr für die Sortierung zuständig ist, hängen ihre Leistungsanforderungen
nur noch von der gewünschten Anwendung und nicht von der EtherCAT-Schnittstelle ab.
Besonders für kleine, mittlere und klar definierte Anwendungen ist die Implementierung
eines EtherCAT MainDevices sehr einfach. EtherCAT MainDevices sind für eine Vielzahl von
Betriebssystemen implementiert worden wie bspw. Windows und Linux in verschiedenen
Iterationen, QNX, RTX, VxWorks, Intime, eCos. Die ETG-Mitglieder bieten eine Vielzahl von

Abbildung 2.12.: Typische EtherCAT MainDevice Architektur

Optionen an, um die Implementierung eines EtherCAT MainDevice zu unterstützen. Diese
reichen vom kostenlosen Download der EtherCAT MainDevice Libraries über Beispielcode
für MainDevices bis hin zu Komplettpaketen (inklusive Services) für verschiedene Echtzeit-
Betriebssysteme und CPUs.
Um ein Netzwerk zu betreiben, benötigt das EtherCAT MainDevice die zyklische Prozessda-
tenstruktur sowie Boot-Up-Kommandos für jedes SubDevice. Diese Kommandos können
mit Hilfe eines EtherCAT-Konfigurationstools, das die EtherCAT SubDevice Information (ESI)-
Dateien der angeschlossenen Geräte verwendet, in eine EtherCAT-Network-Information-
(ENI)-Datei exportiert werden.
Der Umfang der verfügbaren MainDevice-Implementierungen und ihrer unterstützten Funk-
tionen variiert. Je nach Zielanwendung werden optionale Funktionen unterstützt oder

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

28 2. Grundlagen

bewusst weggelassen, um die Auslastung der Hard- und Softwareressourcen zu optimieren.
Aus diesem Grund werden EtherCAT MainDevices in zwei Klassen eingeteilt:

ein Class-A-MainDevice ist ein Standard EtherCAT MainDevice

ein Class-B-MainDevice ist ein MainDevice mit weniger Funktionen

Grundsätzlich sollten alle MainDevice-Implementierungen eine Class-A-Klassifizierung an-
streben. Die Klasse B wird nur für Fälle empfohlen, in denen die verfügbaren Ressourcen
nicht ausreichen, um alle Funktionalitäten zu unterstützen, wie z. B. in eingebetteten
Systemen [Eth].

SubDevice

EtherCAT SubDevices nutzen kostengünstige EtherCAT-SubDevice-Controller (ESC) in Form
eines ASICs, FPGAs oder integriert in einen Standard-Mikrocontroller. Einfache SubDevices
benötigen nicht einmal einen zusätzlichen Mikrocontroller, da die Ein- und Ausgänge direkt
an den ESC angeschlossen werden können. Bei komplexeren SubDevices hängt die Kom-
munikationsleistung nur geringfügig von der Leistung des Mikrocontrollers ab.
Die Hardwarekonfiguration wird in einem non-volatile Speicher (z. B. einem EEPROM) -

Abbildung 2.13.: SubDevice Hardware: ESC mit direktem I/O

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 29

dem SubDevice Information Interface (SII) - gespeichert, der Informationen über die grundle-
genden Geräteeigenschaften enthält. Dadurch kann das MainDevice diese beim Hochfahren
lesen und das Gerät betreiben, auch wenn die Gerätebeschreibungsdatei nicht verfügbar ist.
Die mit dem Gerät gelieferte ESI-Datei ist XML-basiert und enthält die vollständige Beschrei-
bung seiner über das Netzwerk zugänglichen Eigenschaften. Dazu zählen Informationen
wie z. B. Prozessdaten und deren Mapping-Optionen, die unterstützten Mailbox-Protokolle
einschließlich optionaler Funktionen sowie die unterstützten Synchronisationsmodi.
Auf der ETG-Website findet sich ein SubDevice Implementation Guide mit nützlichen Tipps
und Hinweisen auf weiterführende Dokumentationen zur Implementierung von SubDevices
[Eth]:
EtherCAT SubDevice Implementation Guide

2.3.12. EtherCAT State Machine

EtherCAT SubDevices werden durch das MainDevice gesteuert. Dafür gibt es in den Sub-
Devices die EtherCAT State Machine (ESM). Je nach State sind verschiedene Funktionen
auf den SubDevices ausführbar. Vor allem während des Initialisierungs-Prozesses müssen
spezifische Befehle vom MainDevice an die SubDevices gesendet werden. Es gibt folgende
States:

Initialisierung (INIT)

Pre-Operational (PREOP)

Safe-Operational (SAFEOP)

Operational (OP)

Wartungszustand (BOOT)

Die einzelnen States werden in den folgenden Unterkapiteln erklärt. Die möglichen Über-
gänge zwischen den States sind in Abbildung 2.14 zu sehen. Nach dem Bootvorgang des
SubDevices befindet es sich regulär im State OP [Tecc].

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.ethercat.org/en/downloads/downloads_7BA2567EB9F443219AD0014448F674F2.htm

30 2. Grundlagen

Abbildung 2.14.: EtherCAT State Machine [Tecc]

INIT State

Zustand nach Einschalten des Geräts

weder Mailbox- noch Prozessdatenkommunikation möglich

für die Mailbox-Kommunikation initialisiert das MainDevice die Sync-Manager-Kanäle
0 und 1 [Tecc]

Im INIT-State führt das MainDevice eine Discovery des Busses und somit der angeschlos-
senen SubDevices durch. Dafür wird die Auto Increment Address genutzt.

PREOP State

beim Übergang INIT → PREOP überprüft das SubDevice, ob die Mailbox korrekt
initialisiert wurde

Mailbox-Kommunikation möglich (sofern Mailbox-Support vorhanden) ; Prozessda-
tenkommunikation nicht

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 31

das MainDevice initialisiert:

– Sync-Manager-Kanäle (ab Kanal 2) für die Prozessdaten

– FMMU Kanäle

– PDO-Mapping oder Sync-Manager-PDO-Assignment, sofern auf SubDevice ver-
fügbar

Übertragung der Einstellungen für Prozessdatenübertragung sowie ggf. klemmenspe-
zifische Parameter, welche von den Defaulteinstellungen abweichen [Tecc]

SAFEOP State

beim Übergang PREOP → SAFEOP überprüft das SubDevice, ob die Sync-Manager-
Kanäle für Prozessdatenkommunikation und die Einstellungen der DCs korrekt initiali-
siert wurde

Mailbox-Kommunikation und Prozessdatenkommunikation möglich

das SubDevice kopiert Input-Daten in den entsprechenden DPRAM-Bereich des ESCs

das SubDevice hält seine Outputs im sicheren Zustand und gibt diese nicht aus

Input-Daten werden am SubDevice zyklisch aktualisiert [Tecc]

OP State

vor dem Übergang SAFEOP→ OP müssen bereits gültige Output-Daten übertragen
werden

Mailbox-Kommunikation und Prozessdatenkommunikation möglich

das SubDevice kopiert seine Ausgangsdaten auf seine Ausgänge [Tecc]

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

32 2. Grundlagen

BOOT State

genutzt für: Wartung und Firmwareupdate der SubDevices

Mailbox-Kommunikation nur via FoE möglich

Prozessdatenkommunikation nicht möglich [Tecc]

2.3.13. Working Counter

Sobald ein EtherCAT Device erfolgreich adressiert und eine Lese-/Schreiboperation erfolg-
reich durchgeführt wurde, wird der Working Counter erhöht. Nach dem Durchlauf des
Telegramms durch das ganze Netz, kann jedem Datagramm ein zu erwartender Wert für
den Working Counter zugewiesen werden. Das MainDevice kann den tatsächlichen mit
dem zu erwartenden Wert vergleichen und so feststellen, ob das Datagramm erfolgreich
verarbeitet wurde [Tecb].

Tabelle 2.5.: EtherCAT Working Counter [Tecb]

Kommando Erfolg Erhöhung
Lese-Kommando kein Erfolg ±0

erfolgreiches Lesen +1
Schreib-Kommando kein Erfolg ±0

erfolgreiches Schreiben +1
Lese-/Schreib-Kommando kein Erfolg ±0

erfolgreiches Lesen +1
erfolgreiches Schreiben +2

erfolgreiches Lesen und Schreiben +3

2.3.14. Wichtige Kommandos

Tabelle 2.6 listet die wichtigsten EtherCAT Kommandos auf:

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.3. EtherCAT 33

Tabelle 2.6.: EtherCAT Commands [Tecb]
Cmd Abkürzung Name Beschreibung

0 NOP No Operation SubDevice ignoriert das Kommando

1 APRP Auto Increment Read SubDevice inkrementiert Adresse und
schreibt gelesene Daten in Datagram,
falls address == 0

2 APWR Auto Increment Write SubDevice inkrementiert Adresse und
schreibt Daten in Speicher,
falls address == 0

3 APRW Auto Increment Read Write SubDevice inkrementiert Adresse und
schreibt Daten ins Datagramm und
neu bezogene Daten in denselben Speicherbereich ,
falls address == 0

4 FPRD Configured Address Read SubDevice schreibt die ausgelesenen Daten ins Datagram,
wenn seine Adresse == Adresse im Datagram

5 FPWR Configured Address Write SubDevice schreibt Daten in Speicherbereich,
wenn seine Adresse == Adresse im Datagram

6 FPRW Configured Address Read Write SubDevice schreibt die ausgelesenen Daten ins Datagram und
schreibt neue Daten in denselben Speicherbereich,
wenn seine Adresse == Adresse im Datagram

7 BRD Broadcast Read alle SubDevices schreiben ein logisches OR der Speicher-
und der Datagrammdaten ins Datagramm
alle SubDevices inkrementieren das Positionsfeld

8 BWR Broadcast Write alle SubDevices schreiben Daten in den Speicherbereich und
inkrementieren das Positionsfeld

9 BRW Broadcast Read Write alle SubDevices schreiben ein logisches OR der Speicher-
und der Datagrammdaten ins Datagramm
alle SubDevices schreiben Daten in den Speicherbereich
alle SubDevices inkrementieren das Positionsfeld

10 LRD Logical Memory Read SubDevices schreiben Daten in den Speicherbereich,
wenn: empfangene Adresse ==

eine der zum Schreiben konfigurierten FMMU-Bereiche

11 LWR Logical Memory Write SubDevices schreiben ausgelesene Daten in den Speicherbereich,
wenn: empfangene Adresse ==

eine der zum Lesen konfigurierten FMMU-Bereiche

12 LRW Logical Memory Read Write SubDevices schreiben ausgelesene Daten ins Datagramm,
wenn empfangene Adresse ==

eine der zum Lesen konfigurierten FMMU-Bereiche

SubDevices schreiben Daten in den Speicherbereich,
wenn: empfangene Adresse ==

eine der zum Schreiben konfigurierten FMMU-Bereiche

13 ARMR Auto Increment Read Multiple Write SubDevices inkrementieren das Adressfeld und
schreiben ausgelesene Daten ins Datagram,
wenn: empfangene Adresse == 0,
ansonsten: Daten in den Speicherbereich schreiben

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

34 2. Grundlagen

2.4. Mikrocontroller ohne Betriebssystem

Mikrocontroller ohne Betriebssystem haben im Vergleich zu herkömmlichen PCs, auf denen
ein Betriebssystem läuft, die folgenden Vor- und Nachteile bzw. Herausforderungen.

Vorteile:

– kein Scheduling

– kein Teilen der Ressource

– volle Kontrolle über die Hardware

Nachteile/Herausforderungen:

– keine betriebssystemüblichen Mechanismen wie Threads/Mutexe/Semaphore

– keine abstrakten Methoden für Hardwarezugriffe, Clocks, usw.

– begrenzte Ressourcen (Rechenzeit, Speicher (RAM, FLASH))

Diese Herausforderungen müssen beim Redesign der Bibliotheken beachtet werden, da die
bisherigen Implementierungen der beiden Bibliotheken für den Einsatz auf Betriebssystemen
geschrieben wurden.
Einerseits haben wir so also vollen Zugriff auf alle Ressourcen (CPU, Peripherie, Speicher)
und müssen diese nicht mit anderen konkurrierenden Systemen teilen, sondern nur internen
Prozessen. Andererseits müssen infolgedessen die Zugriffe auf eben diese Ressourcen
sinnvoll getätigt werden. Dazu zählen das Sperren und die Freigabe der Ressourcen bzw.
eine Überprüfung, ob diese zum Zeitpunkt des Zugriffs bereits in Benutzung sind. Da es
ohne das Benutzen eines Betriebssystem keinen Scheduler gibt, der den verschiedenen
Tasks Rechenzeit bereitstellt, und auch keine Tasks bzw. Threads für nebenläufige Prozesse
angelegt werden können, müssen diese Aufgaben bspw. durch das Aufrufen von Interrupt
Service Routinen (ISRs) der Timer getriggert werden. Dies stellt sicher, dass bestimmte
Prozesse in einem fest definierten Zyklus stattfinden können.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

2.5. Anforderungen an Echtzeitfähigkeit und Latenz 35

2.5. Anforderungen an Echtzeitfähigkeit und Latenz

Nach den in Kapitel 2.1 beschriebenen Kriterien für ein Echtzeitsystem bestehen folgende
Anforderungen an EtherCAT und den eingesetzten Mikrocontroller:

Reaktion auf Ereignisse innerhalb festgelegter Deadlines

Garantierte Ausführung / Laufzeit von Tasks innerhalb vorgebener zeitlicher Kriterien

Einhalten von harten und weichen Echtzeitkriterien

Ausführung periodischer Tasks

Ausführung von sporadischen (azyklischen) Tasks und deren Einfluss

Fähigkeit „zeitgleicher“ Ausführung von ereignis- und zeitgesteuerten Events

Ausgearbeitete Details zu diesen Punkten werden im folgenden Kapitel konkretisiert.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3. Konzeption des
EtherCAT-Feldbus-MainDevices

Dieses Kapitel beschäftigt sich mit der Konzeption des EtherCAT MainDevices. Abschnitt
3.1 listet die nötigen Systemanforderungen auf, die für den Einsatz von libethercat

auf einem MainDevice nötig sind. Daraufhin wird auf die Bedingungen eingegangen, die
hardwaretechnisch aus dem EtherCAT Standard für ein MainDevice entstehen (s. Abschnitt
3.2). Dort wird außerdem die Auswahl eines geeigneten Mikrocontrollers getroffen und
mögliche Alternativen dargelegt. Im Anschluss werden die Bedingungen der geplanten
Softwarearchitektur erläutert (s. Abschnitt 3.3). Das Ende des Kapitels stellt das Konzept
des geplanten Echtzeitverarbeitungsmodell dar (s. Abschnitt 3.4).

3.1. Systemanforderungen und Designziele

Aktuell werden die beiden Bibliotheken libethercat und libosal auf einem Linux mit
PREEMPT-RT1 Patch betrieben. Dies zielt auf eine nahezu vollständige Unterbrechbarkeit
der laufenden Ressourcen (Kernel, Treiber, Prozesse) ab. Dafür werden die IRQ-Handler
(Interrupt Request-Handler) in Top-Half (kurzer IRQ-Kontext) und Bottom-Half (IRQ-Kernel-
Thread→ eigentliche Behandlung des Interrupts) aufgeteilt, so dass diese beinahe jederzeit
unterbrechbar werden.
libethercat im Linux EtherCAT MainDevice läuft hier als normaler User-Level Prozess
und wird lediglich mit einer höheren RealTime-Priorität gestartet. Die Anbindung an die
Netzwerkhardware erfolgt entweder über den Netzwerkstack des Betriebssystems oder
über einen modifizierten Treiber des eingesetzten Netzwerkkontrollers.

Vorteile:

– Einfache Entwicklung eines System mit gewohntem OS und Tools

1Linux Foundation Realtime

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
37

https://wiki.linuxfoundation.org/realtime/start

38 3. Konzeption des EtherCAT-Feldbus-MainDevices

– Datenaustausch mit Regelung erfolgt meist mittels RAM

– bei Nutzung des Netzwerkstacks:

* Kein Wissen über den Aufbau der Netzwerkhardware notwendig, es werden
lediglich Ethernet-Frames gesendet und empfangen

* automatische Unterstützung aller Netzwerkcontroller mit Linux-Support

Nachteile:

– Gutes Tuning/Einstellen des Systems und aller darin befindlichen Prozesse erfor-
derlich

– Zu viel Scheduling-Overhead, zu viele IRQs können das Verhalten beeinflussen

– Geteilte Resourcen wie RAM, Busse (z.B. PCIe, PCI) können sich als Flaschenhals
herausstellen

– Genauigkeit des Timers für die Generierung der deterministischen/zyklischen
Kommunikation

libethercat implementiert das EtherCAT MainDevice auf dessen Netzwerkinterface, damit
dieser die EtherCAT SubDevices konfigurieren und mit diesen kommunizieren kann. Wichtig
ist hierbei eine minimale Latenz bei stabiler Kommunikation. libethercat unterstützt
deshalb die folgenden Anforderungen, um ein voll funktionsfähiges EtherCAT Netzwerk
aufbauen zu können:

Distributed Clock Support

Scannen des EtherCAT Busses in INIT-to-INIT Transition; Wechseln zum INIT-State
veranlasst einen erneuten Bus-Scan

Wechseln in den PREOP-State ermöglicht vollen Mailbox-Support (sofern auf dem
SubDevice verfügbar)

PREOP-to-SAFEOP Transition bereitet alle SubDevices in einer ProcessDataGroup (PDO)
vor für:

– Senden des INIT-Kommandos

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3.1. Systemanforderungen und Designziele 39

– Berechnen der zyklischen Prozessdaten

– Anlegen der Sync-Manager Konfiguration

– Anlegen der FMMU Konfiguration

– Konfigurieren der SubDevices für Distributed Clocks

– zyklisches Bereitstellen von gemessenen Prozessdaten

SAFEOP-to-OP Transition sendet zyklische Kommandos an die SubDevices in jedem
Gruppendurchlauf

effizientes Frame-Scheduling: EtherCAT Datagramme kommen nur in SAFEOP und OP

in die Warteschlange. Diese Datagramme werden in einen oder mehrere Ethernet
Frames gepackt und durch einen Aufruf von hw_tx() zyklisch versendet

Unterstützung einer Queue mit Mailbox Initalisierungskommando für alle SubDevices

Mailbox Support CoE, SoE, FoE

Um dies zu gewährleisten, müssen alle Funktionen, die mit den oben genannten Punkten
in Verbindung stehen, für den Betrieb auf dem Mikrocontroller angepasst werden. Diese
Funktionen werden in Kapitel 4 aufgeführt und erläutert.
Das Anpassen von Funktionen muss auch in libosal getätigt werden. Dazu zählen bspw.
das Erstellen bzw. Anpassen rudimentärer Mutexe und Semaphoren und das Auslesen von
Timern. Dies gewährleistet die Hardware/Betriebssystem-Abstraktion.
Das zyklische Senden der Daten muss deterministisch gemäß den jeweiligen Anforderungen
erfolgen. Dies soll in dieser Arbeit alle 1ms erfolgen. Ob Daten für azyklische Kommunikati-
on vorliegen, soll alle 10ms überprüft werden. Azyklische Daten sollen dann zusammen mit
den zyklischen Daten versendet werden. Hierbei ist es wichtig, dass die zyklischen Daten
eine höhere Priorität genießen als die azyklischen, um Unterbrechungen im Betrieb des
EtherCAT Netzes auszuschließen. Deswegen werden in jedem Zyklus zunächst die zyklischen
Prozessdaten in einem Ethernet-Frame verschickt. Falls azyklische (nicht zeitkritische) Daten
vorliegen, sollen diese im Anschluss versendet werden.
Da libosal Zeiten mit einer Genauigkeit von Nanosekunden erfasst und für Funktionen
bereitstellt, muss diese Fähigkeit auch bei der Portierung auf den STM32 erhalten bleiben.
Dies ist auch eine Anforderungen an die Distributed Clocks, da diese im Nanosekunden-
bereich arbeiten.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

40 3. Konzeption des EtherCAT-Feldbus-MainDevices

3.2. Analyse und Auswahl der Zielhardware

3.2.1. Analyse der Zielhardware

Die einzige Anforderung an das EtherCAT MainDevice ist laut EtherCAT Standard das Vor-
handensein einer Ethernet Schnittstelle. Desweiteren müssen jedoch andere Parameter bei
der Auswahl eines Mikrocontrollers wie Taktfrequenz, Speicher und weitere Peripherie be-
trachtet werden. EtherCAT basiert auf 100Base-T2, also einer Übertragungsgeschwindigkeit
von 100 MBit/s. Dies bedeutet, dass es 10 Nanosekunden dauert, um 1 Bit zu senden.

100 MBit/s ≡
1 Bit

10 ns
(3.1)

Da für die Bereitstellung der Distributed Clocks Zeiten mit Nanosekunden-Genauigkeit
benötigt werden, müssen die Ressourcen der Hardware diese Anforderung erfüllen. Einer-
seits müssen die Timer Zeiten im einstelligen Nanobereich erfassen, andererseits muss die
Bitbreite des Timer-Counters groß genug sein, um 1 Sekunde in Nanosekunden zählen zu
können.

1s = 1.000.000.000 ns

216 < 1.000.000.000

232 > 1.000.000.000

⇒ Nutzung eines 32-bit Timer-Counters

1 ns =
1

1.000.000.000
= 1 GHz

(3.2)

Zeiten im einstelligen Nanosekunden-Bereich sind für diese Arbeit ausreichend. Daraus
folgt:

10 ns =
10

1.000.000.000
= 100 MHz

⇒ Taktfrequenz > 100 MHz

(3.3)

3.2.2. Auswahl und Beschreibung der Zielhardware

Als Mikrocontroller wurde ein STM32-H747-DISCO3 von STMicroelectronics4 ausgewählt,
da dieser sämtliche Anforderungen an einen Mikrocontroller ohne Betriebssystem und Ether-

2100BASE-T
3STM32-H747-DISCO Produktwebsite
4STMicroelectronics Website

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.computerweekly.com/de/definition/100BASE-T
https://www.st.com/en/evaluation-tools/stm32h747i-disco.html
https://www.st.com/content/st_com/en.html

3.2. Analyse und Auswahl der Zielhardware 41

CAT erfüllt. Folgende Eigenschaften des Mikrocontrollers sind von besonderer Bedeutung
bei der Auswahl der Hardware:

32 Bit Arm-based Mikrocontroller

2 MBytes Flash Memory, 1 MByte RAM

Ethernet-fähige RJ45-Schnittstelle (100 MBits/s) nach IEEE802.3-2002 mit dediziertem
Netzwerkcontroller

max. 480 MHz Takt

256 MBit SDRAM

On-board STLINK-V3E in-circuit debugger/programmer mit USB-re-enumeration Fä-
higkeit: Massenspeicher, Virtual COM Port und Debug Port

niedrige Interrupt Latenz

Weitere Eigenschaften können im Datasheet des STM32H747 nachgelesen werden. Entschei-
dend für die Auswahl des STM32-H747 war vor allem das Vorhandensein eines dedizierten
Netzwerkcontrollers, was die meisten Mikrocontroller nicht haben. Folgende Mikrocontroller
wurden demnach auch in Betracht gezogen:

PoE5-fähiger ESP32

Microchip PIC SAM E Family

Microchip PIC32 Ethernet Starterkit

Da das STM32-H747-DISCO Board performanter läuft als ein ESP32 und vor Ort verfüg-
bar war, fiel die Entscheidung zugunsten des STM32-H747-DISCO Boards. Eine grobe
Gegenüberstellung der Performance von STM32 im Gegensatz zu ESP32 gibt Tabelle 3.1
[STMb][Ger].

5Power over Ethernet

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.st.com/resource/en/datasheet/stm32h747ag.pdf
https://www.olimex.com/Products/IoT/ESP32/ESP32-POE/open-source-hardware
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e
https://de.rs-online.com/web/p/entwicklungstools-microcontroller/8148992

42 3. Konzeption des EtherCAT-Feldbus-MainDevices

Tabelle 3.1.: Vergleich STM32 und ESP32

Ressource STM32 ESP32
Main processor Arm Cortex-M7 und M4 Tensilica Xtensa 32-bit LX6

max. Clock Frequency 480 MHz 240 MHz
Performance 1327 DMIPS6 660 DMIPS
Internal ROM 2 MB 448 kB

SRAM 1 MB 520 kB
Ethernet RMII, MII RMII

3.3. Architektur des EtherCAT MainDevices

Da auf einem Mikrocontroller ohne Betriebssystem keine Mechanismen wie Scheduler
verfügbar sind, müssen diese auf anderem Wege realisiert werden. Das Scheduling soll hier
mittels Timern und damit verbundenen Interrupts erfolgen. Da das Senden der zyklischen
Prozessdaten wichtiger ist als das zyklische Überprüfen und Senden der azyklischen Daten,
müssen die Interrupts priorisiert werden. Dies kann via NVICs (Nested Vector Interrupt
Control) erzielt werden. NVICs weisen jeder Interrupt-Quelle eine Priorität zu. Der STM32
verfügt über 16 Level (0-15) von Interrupt-Prioritäten. Je niedriger der Wert der Priorität
ist, desto höher ist die Dringlichkeit seiner Ausführung. Ein Interrupt mit Priorität=0 kann
dadurch alle ISRs, deren Priorität > 0 ist, unterbrechen. Dafür wird zunächst der Programm-
kontext gespeichert, bevor der Interrupt-Handler ausgeführt wird. Sollte während dieser
Speicheroperation ein Interrupt mit niedrigerem Wert ausgelöst werden, so wechselt der
Handler direkt zu diesem Interrupt, sobald die Speicheroperation beendet ist. Sobald alle
Interrupts abgearbeitet sind, stellt der Prozessor den vorherigen Kontext aus dem Stack
wieder her und fährt mit seiner normalen Ausführung fort [STMa].

3.4. Konzeption des Echtzeit-Verarbeitungsmodells

Folgende Anforderungen entstehen aus den beiden Bibliotheken bezüglich der Echtzeit:

Zähler im ns-Bereich

Zähler im s-Bereich

Aussenden eines EtherCAT Frames alle 1 ms (Hard Deadline)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

3.4. Konzeption des Echtzeit-Verarbeitungsmodells 43

Überprüfen der Mailbox alle 10 ms und ggf. Senden der Daten (Firm Deadline)

Priorisierung der Interrupts (via NVIC)

Techniken zur Minimierung der Latenz (z.B. direkte Registerzugriffe, DMA, ISR)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4. Implementierung und Portierung
auf den Mikrocontroller

Dieses Kapitel beschäftigt sich mit der Implementierung und Portierung der beiden Biblio-
theken. Dafür müssen zunächst Arbeiten an der Hardware des STM32-H747 Boards getätigt
werden, um die benötigte Hardware nutzen zu können, bevor diese konfiguriert werden
kann (s. Abschnitt 4.1). Im Anschluss werden weitere nötige Vorarbeiten wie die Hardware-
Konfiguration des Ethernet- und des UART-Moduls sowie der Interrupts thematisiert (s.
Abschnitt 4.2). Daraufhin wird auf die nötigen Anpassungen im Code eingegangen, damit
die Kommunikation via Ethernet und UART ausgeführt werden kann (s. Abschnitt 4.3).
Abschnitt 4.4 erläutert die nötigen Anpassungen der Bibliotheksdateien, damit EtherCAT-
Kommunikation auf dem STM32-H747 stattfinden kann. Das Ende das Kapitels erläutert
nötiges Finetuning von Hard- und Software (s. Abschnitt 4.5) und beschäftigt sich mit
Debugging und Fehlerbehebung (s. Abschnitt 4.6).
Für die Implementierung der beiden Bibliotheken libethercat und libosal wurde zu-
nächst jeweils ein Fork der Bibliotheken gemacht und in meinem persönlichen GitHub
Repository innerhalb des RMC-GitHubs erstellt. In diesem Repository wurden zusätzlich zum
Code auch anderen Dateien wie bspw. Literatur, Captures und Skripte gesichert. Zusätzlich
befinden sich darin auch die STM32-Projekte, die als Vorarbeit für diese Arbeit dienten
(UART- und Ethernet-Kommunikation). Damit keine Konflikte beim Pushen des Repositories
mit dem aktuellen Stand des Master-Branches entstehen, wurde für libosal ein Feature-
Branch namens feat/stm32 erstellt, auf welchem gearbeitet und zu dem gepusht wird.
[...] in den nachfolgenden Codeauszügen steht für nicht dargestellte Teile des Codes im
File, da dieser unverändert geblieben ist. Dies dient der Lesbarkeit und dem Fokus auf die
wichtigen Teile des Codes. Sofern dies sinnvoll möglich war, wurde in den Codeauszügen
auch die Zeilennummerierung passend zum File, aus dem sie stammen, angepasst. Sollte
im laufenden Text nur eine Zeilennummer angegeben sein, so bezieht sich diese auf den
zuvor genannten Codeauszug.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
45

46 4. Implementierung und Portierung auf den Mikrocontroller

4.1. Hardwarekonfiguration und -anpassung

Bevor die beiden Bibliotheken für den Einsatz auf dem STM32-H747 portiert werden
können, muss die Hardware des Mikrocontrollers angepasst und konfiguriert werden.

4.1.1. Anpassung des STM32-H747-DISC0 Evaluation Boards

Um die Ethernet-Schnittstelle des STM32 nutzen zu können, müssen im Voraus Lötar-
beiten an der Hardware vorgenommen werden. Dies resultiert aus der Tatsache, dass das
STM32-H747-DISC0 Board standardmäßig für den Gebrauch des MEMS1-Digitalmikrophons
konfiguriert bzw. gelötet ist. Der Ethernet-Port und das Mikrophon teilen sich bestimmte
Pins auf dem Mikrocontroller, was zu Konflikten führt.
Um die Ethernet-Schnittstelle nutzen zu können, müssen Pins (s. Tabelle 4.1) umgelötet
werden. Die vier Pins sind in Abbildung 4.1 eingezeichnet. Die Lötarbeiten wurden von der
institutseigenen Werkstatt getätigt.

Tabelle 4.1.: STM32-H747-DISC0 zu lötende Pins

Pin zu Löten zugehöriger Port verbunden mit
SB8 offen

SB21 geschlossen
PC1 ETH_MDC

SB17 offen
R87 geschlossen

PE2 ETH_nINT (Ethernet Interrupt)

1Micro-Electro-Mechanical System

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung 47

Abbildung 4.1.: STM32-H747-DISC0
zu lötende Pins

In der Konfiguration für den Betrieb des Mikro-
phons sind die Pins aus Tabelle 4.1 invertiert zu
löten (Offen → Geschlossen; Geschlossen → Of-
fen). Port PC1 ist dann mit MEMS Digital Micro-
phone DOUT verbunden; PE2 mit MEMS Digital
Microphone CLK [STM20].

4.1.2. Boardkonfiguration

Die Hardwarekonfiguration des STM32 wurde mit
der STM32-CubeIDE2 (Version 1.16; s. Abbildung
4.2) von STMicroelectronics gemacht. Mit der IDE
ist es möglich per grafischer Umgebung die Hard-
warekomponenten des STM32 zu konfigurieren,
Code zu schreiben und diesen auch zu debuggen.
Das in dieser Arbeit erstellte Projekt trägt den Na-
men eth_rx_tx.
Zunächst wird ein neues STM32 Project angelegt.

Abbildung 4.2.: CubeIDE Überblick

Dort kann unter Board Selector das in dieser Ar-
beit benutzte STM32-H747-DISC0 ausgewählt wer-

2STM32-CubeIDE

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.st.com/en/development-tools/stm32cubeide.html

48 4. Implementierung und Portierung auf den Mikrocontroller

den. Im anschließenden Dialog wird der Projektname eth_rx_tx vergeben und die restlichen
Einstellungen beibehalten. Um die Module des STM32 konfigurieren zu können, wird in
der CubeIDE das .ioc-File des Projekts geöffnet (vgl. Abbildung 4.3: eth_rx_tx.ioc).
Mit Öffnen des .ioc-Files ist es möglich das Pinout und die Clock des STM32 zu
konfigurieren. Außerdem werden hier Projekteinstellungen getätigt. Bspw. wurde unter
Project Manager/Code Generator die Option Generate peripheral initialization

as a pair of ’.c/.h’ files per peripheral ausgewählt, um für die Peripherie je-
weils ein eigenes Header- (.h) und Code-File (.c) zu generieren. Ansonsten wurden im
Bereich Project Manager und Tools keine weiteren Änderungen getätigt, die von der
Standard-Konfiguration abweichen.
Standardmäßig verwendet CubeIDE die für Mikrocontroller optimierte Version
newlib-nano3 der Bibliothek newlib4. Newlib ist eine Portierung von Teilen der C-Standard-
Bibliothek, die für Geschwindigkeit und Speicherplatz auf eingebetetten Systemen opti-
miert wurde. Da die Ausgabe von Floats und 64-bit Variablen mit newlib-nano auf dem
STM32 und in Verbindung mit libethercat und libosal nur eingeschränkt genutzt
werden kann, wurde das Nutzen von newlib in der Standardversion aktiviert (vgl. Ab-
schnitt 4.3.2). Dafür wurde unter Project/Settings/C_C++ Build/Settings/MCU_MPU

Settings/Runtime library/ die Option Standard C ausgewählt. Die Einstellungen in
den Bereichen Pinout & Configuration und Clock Configuration werden in den fol-
genden Abschnitten erklärt.

Abbildung 4.3.: CubeIDE .ioc-File Kontext

3Newlib Nano on GitHub
4Newlib on Sourceware

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://github.com/32bitmicro/newlib-nano-1.0?tab=readme-ov-file
https://sourceware.org/newlib/

4.1. Hardwarekonfiguration und -anpassung 49

Modulkonfiguration

Da für die Realisierung des EtherCAT MainDevices auf dem STM32 das Nutzen eines CPU-
Kerns ausreichend ist und der CM7-Kern des STM32 über eine schnellere Taktrate und
mehr direkt angebundenen Speicher als der CM4 verfügt, wird nur der CM7 benutzt. Am
CM7 ist der einzige TCM (Tightly Coupled Memory) (64 kB Instruction + 128 kB Data)
angeschlossen, der mit voller Taktrate läuft. Deshalb müssen sämtliche Module wie bspw.
Timer im Kontext des CM7 aktiviert werden. Der CM7 ist an die D2-Domain via AHB5-
on-chip-Bus verbunden. Diese Verbindung ist wichtig, da die Hardware von Ethernet und
den Timern direkt mit der D2-Domain verbunden ist und diese Domain direkt an den
CM4 angebunden ist. Das Aktivieren der Module auf dem CM7 wird in Abbildung 4.4
am Beispiel der Timer-Module (TIM2, TIM3, TIM4, TIM5) gezeigt. Die restlichen Module
müssen analog dazu dem CM7-Kontext hinzugefügt werden. Dazu gehören das Ethernet-
und ein UART-Modul (USART1), die beide in der Kategorie Connectivity zu finden sind.
Ansonsten wurden die Standardeinstellungen beibehalten.

Abbildung 4.4.: Zuweisung Timer Module zum CM7-Kontext

5Advanced High-Performance Bus

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

50 4. Implementierung und Portierung auf den Mikrocontroller

Clockkonfiguration

Die Clockkonfiguration des STM32 wurde im Reiter Clock Configuration des .ioc-Files
getätigt. Die maximale Taktrate der Clock des STM32-H747-DISCO beträgt 480 MHz. Diese
Taktrate wurde aus den folgenden Gründen auf 400 MHz reduziert:

bessere Periode für eine einfachere Erfassung der Zeit:

– 400 MHz ≡ 2, 5 ns

– 480 MHz ≡ 2, 083 ns

Taktrate > 400 MHz
→ Direct SMPS (Switched Mode Power Supply) wird deaktiviert
→ Spannungsversorgung muss über bestimmte Pins manuell vorgegeben werden
→ umständlicher und nicht zielführend

Abbildung 4.5.: STM32 Clock Configuration Kontext

Dafür wurde als Input HSE (High-Speed External clock) im Phase Locked Loop (PLL)

Source Mux mit 25 MHz gewählt und der PLLCLK (Phase Locked Loop Clock) im System

Clock Mux ausgewählt, damit die 25 MHz auf 400 MHz hochskaliert werden. Durch Aus-
wählen des PLLCLK wird auch das CSS (Clock Security System) aktiviert, welches sicherstellt,

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung 51

dass die System Clocks auch im Fehlerfall zuverlässig funktionieren.
Der CM7 Core läuft infolgedessen mit 400 MHz. Alle anderen Ressourcen haben eine
maximale Frequenz von 200 MHz, da der HPRE (Advanced High Performance Bus Prescaler)
auf den niedrigsten Wert (= 2) konfiguriert wurde. Dazu zählen unter anderem der CM4
Core und auch die D1-, D2- und D3-Bus-Matrix. Außerdem stellen 240 MHz die allgemein
einstellbare, maximale Taktfrequenz für diese Ressourcen dar [STM23].

Timerkonfiguration

Aufgrund der Echtzeitanforderungen der beiden Bibliotheken (vgl. 3.4) wurden vier Timer
konfiguriert.

Timer2 (TIM2)→ Zähler ns-Bereich

Timer3 (TIM3)→ Checken der Mailbox Daten alle 10 ms

Timer4 (TIM4)→ Zähler s-Bereich

Timer5 (TIM5)→ Aussenden der EtherCAT Frames alle 1 ms

Diese vier Timer sind alle mit APB1 (Advanced Peripheral Bus) verbunden [STM23]. Aufgrund
der Clockkonfiguration ist deren Internal Clock auf 200 MHz eingestellt (vgl. Abbildung
4.5: To APB1 Timer Clocks (MHz)). Die Frequenz, mit welcher ein Timer arbeitet, ist
abhängig von dessen Clock Frequency FCLK (≡ Internal Clock), dem Prescaler Value
PSC und dem Auto-Reload Register ARR. Der Kehrwert dieser Frequenz ist die Output Time
TOUT und wird wie folgt berechnet [MBe] :

TOUT =
(ARR + 1)(PSC + 1)

FCLK
(4.1)

TIM2 hat eine Taktfrequenz von 200 MHz, d.h. dass ein Takt 5 ns dauert. Dies stellt in unserer
Konfiguration die kleinste zu erfassende Zeiteinheit dar. Außerdem verfügt dieser Timer über
einen 32-bit großen Zähler. Dieser ist wichtig, da so die Nanosekunden bis zu einer Sekunde
erfasst werden können und dadurch zusätzlich nach 1s ein Signal an TIM4 gesendet werden
kann, da TIM4 die abgelaufenen Sekunden zählen soll (s. Absatz von TIM4). Die Counter

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

52 4. Implementierung und Portierung auf den Mikrocontroller

Period bzw. das ARR und der PSC wurden deshalb wie folgt konfiguriert:

TOUT =
(ARR + 1)(PSC + 1)

FCLK

5 ns =
((200.000.000− 1) + 1)((0) + 1)

200 MHz
⇒

ARR = 200.000.000− 1

PSC = 0

(4.2)

TIM3 hat ebenfalls eine Taktfrequenz von 200 MHz, da er den Takt durch die Internal

Clock erhält. Der aktivierte, globale Interrupt zum Überprüfen, ob Mailbox-Daten vorliegen,
soll alle 10 ms erfolgen. TIM3 wurde analog zu TIM2 (vgl. Gleichung 4.1) mit folgenden
Werten konfiguriert:

10 ms =
((10.000− 1) + 1)((200− 1) + 1)

200 MHz
⇒

ARR = 10.000− 1

PSC = 200− 1

(4.3)

Da TIM4 seine Signale zum Inkrementieren des Counters durch den Reset des ARR von
TIM2 bezieht, wurde für TIM4 der Slave Mode auf External Clock Mode 1 gesetzt. Da-
mit dieser den Interrupt von TIM2 nutzt, muss als Trigger Source die Option ITR1 gewählt
werden. Desweiteren wurde der Slave Mode Controller auf ETR mode 1 gesetzt. TIM4
ist ein 16 Bit Timer, d.h. er kann maximal bis 216 = 65536 zählen. Ein Tag hat insgesamt
24 ∗ 60 ∗ 60 = 86400 Sekunden. Deshalb können mit diesem Timer keine ganzen Tage in
Sekunden gezählt werden. Deshalb wurde TIM4 so konfiguriert, dass er halbe Tage zählt,
also eine Counter Period bzw. das ARR = 43200− 1 ist.

Da TIM5 für das zyklische Versenden der EtherCAT Frames alle 1 ms zuständig ist und diese
Funktion per Interrupt ausgelöst werden soll, wurde unter NVIC Settings der globale
Interrupt für TIM5 aktiviert. PSC und ARR wurden folgendermaßen konfiguriert:

1 ms =
((2.000− 1) + 1)((100− 1) + 1)

200 MHz
⇒

ARR = 2.000− 1

PSC = 100− 1

(4.4)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.1. Hardwarekonfiguration und -anpassung 53

Für die beiden Timer TIM5 und TIM3 mussten die Interrupts noch priorisiert werden. Deshalb
wurde im .ioc File im Bereich System Core/NVIC1 TIM5 die Priorität 0 und für TIM3 die
Priorität 10 vergeben. Zyklische Daten müssen für einen zuverlässigen Betrieb zwingend
immer alle 1 ms versendet werden. Azyklische Daten können auch etwas später versendet
werden ohne die Echtzeit des Systems zu gefährden. Die ISR von TIM5 darf also die ISR

von TIM3 unterbrechen, andersherum nicht.
Die Settings in den Reitern User Constants und DMA Settings blieben für alle vier Timer
unverändert.

Abbildung 4.6.: TIM5 Konfiguration im .ioc-File

Speicherkonfiguration

Die Bootbereiche des Speichers für CM7 und CM4 Core liegen in direkt aufeinander-
folgenden Speicherbereichen (CM7: 0x08000000; CM4: 0x08100000) und nehmen ins-
gesamt 2 MByte ein. Da CM4 aktuell nicht genutzt wird, wird der Flashbereich im File
STM32H747XIHX_FLASH.ld für CM7 von 2 auf 1 MByte reduziert (vgl. Codeauszug 4.1
Z.5), um unvorhersehbares Verhalten zwischen den Speicherbereich der beiden Cores zu
vermeiden. Ansonsten müssten Boot Optionen im Code neu gesetzt werden (BOOT_CM4 =

0). Damit das Ethernet Modul funktioniert, muss RAM_D1 auf Speicherposition 0x24000000

zeigen. Die nachfolgende ETH Section konfiguriert den Speicherbereich, der für die Ether-

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

54 4. Implementierung und Portierung auf den Mikrocontroller

net bzw. EtherCAT Kommunikation zur Verfügung stehen soll. Er teilt dem Speicher mit, an
welcher Stelle die RX- und TX-Deskriptoren und deren zugehörige Arrays (= Payload) sind.
Dies hat den Sinn, dass die Ethernet Kommunikation direkt über DMA erledigt wird und
insofern schneller ist, als wenn die CPU diese Aufgabe übernehmen würde. Im Bereich der
Arrays liegen die zu versendenden Daten des EtherCAT Frames.
USART-Log-Nachrichten sollen auch durch die DMA gesendet werden. Deshalb wurde dafür
auch ein eigener Speicherbereich festgelegt (s. Codeauszug 4.1 Z. 27-32).

1 /* Memories definition */

2 MEMORY

3 {

4 RAM_D1 (xrw) : ORIGIN = 0x24000000, LENGTH = 512K

5 FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K /* Memory is divided. ←↩

Actual start is 0x08000000 and actual length is 2048K */

6 DTCMRAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K

7 RAM_D2 (xrw) : ORIGIN = 0x30000000, LENGTH = 288K

8 RAM_D3 (xrw) : ORIGIN = 0x38000000, LENGTH = 64K

9 ITCMRAM (xrw) : ORIGIN = 0x00000000, LENGTH = 64K

10 [...]

11 /* ETH Section */

12 .eth_sec (NOLOAD) : {

13 . = ABSOLUTE(0x30040000);

14 *(.RxDecripSection)

15
16 . = ABSOLUTE(0x30040080);

17 *(.TxDecripSection)

18
19 . = ABSOLUTE(0x30040100);

20 *(.RxArraySection)

21
22 . = ABSOLUTE(0x30042100);

23 *(.TxArraySection)

24
25 } >RAM_D2 AT> FLASH

26 [...]

27 /* ETH Section */

28 .uart_sec (NOLOAD) : {

29 . = ABSOLUTE(0x30044100);

30 *(.UARTSection)

31
32 } >RAM_D2 AT> FLASH

33 [...]

Codeauszug 4.1: Flashspeicherkonfiguration

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.2. Kommunikationskonfiguration 55

4.2. Kommunikationskonfiguration

4.2.1. UART-Konfiguration

Das UART-Modul des STM32 wurde für die serielle Ausgabe von Debugging-Nachrichten
aktiviert. libethercat sendet standardmäßig Debugging-Nachrichten, deren genaue Kon-
figuration in 4.4 erklärt wird. Für die Ausgabe wurde das Modul USART1 (Universal Syn-
chronous/Asynchronous Receiver Transmitter) ausgewählt, da dieses im Gegensatz zu den
gängigen UART-Modulen direkt mit der ST-Link-Schnittstelle verbunden werden kann. Dafür
wurden die Pins PA9 und PA10 als GPIO-Pins für das Modul gewählt, damit die Kommunika-
tion über die ST-Link-Schnittstelle (Mikro-USB) stattfindet, da diese Schnittstelle auch das
genutzte Programming-Interface des STM32 ist. Für USART1 wurden Interrupts deaktiviert.
Außerdem wurde als Data Direction die Option Transmit Only gewählt, da lediglich
Log-Nachrichten gesendet und keine Eingaben empfangen werden sollen. Die restliche
Konfiguration ist in Abbildung 4.7 zu sehen.

Abbildung 4.7.: USART1 Konfiguration im .ioc-File

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

56 4. Implementierung und Portierung auf den Mikrocontroller

4.2.2. Ethernetkonfiguration

Die Konfiguration des Ethernet Moduls ist in Abbildung 4.8 zu sehen. Der globale Interrupt
wurde deaktiviert. Wichtig ist hierbei, dass die Speicheradressen für die TX-/RX-Deskriptoren
und der RX-Buffer mit den zuvor in 4.1.2 definierten Adressen übereinstimmen. Der spe-
zifische Network Interface Controller Teil der MAC-Adresse wurde zu c0:ff:fe geändert.
Die L2 MTU (Layer 2 Maximum Transfer Unit) (vgl. Abbildung 4.8: Rx Buffers Length)
war standardmäßig bereits 1524. Die Einstellung der GPIO Settings und User Constants

blieben unverändert.

Abbildung 4.8.: Ethernet Konfiguration im .ioc-File

4.3. Softwarekonfiguration

In diesem Abschnitt wird der nötige Code erläutert, damit die beiden Kommunikationsmo-
dule Ethernet und USART sowie die Interrupts funktionieren.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.3. Softwarekonfiguration 57

4.3.1. Interrupts

Die Interrupt Service Routinen (ISRs) werden im File CM7/Core/Src/stm32h7xx_it.c konfi-
guriert.

TIM5

Für das zyklische Senden der Prozessdaten wurden dem Interrupt Handler von TIM5 die
Zeilen 4-21 in Codeauszug 4.2 hinzugefügt.

1 void TIM5_IRQHandler(void)

2 {

3 /* USER CODE BEGIN TIM5_IRQn 0 */

4 struct ec *pec = &ec;

5 osal_uint64_t time_start;

6
7 if ((ec.master_state == EC_STATE_SAFEOP) || (ec.master_state == ←↩

EC_STATE_OP)) {

8 // send cyclic (1ms) EthCat frames

9 // execute one EtherCAT cycle

10 time_start = osal_trace_point(tx_start);

11 ec_send_distributed_clocks_sync(pec);

12 ec_send_process_data(pec);

13
14 // transmit cyclic packets (and also acyclic if there are any)

15 osal_timer_init(&ec.phw->next_cylce_start, ←↩

ec.phw->pec->main_cycle_interval);

16 hw_tx_pool(ec.phw, POOL_HIGH);

17
18 osal_trace_time(tx_duration, osal_timer_gettime_nsec() - time_start);

19
20 hw_tx_pool(ec.phw, POOL_LOW);

21 }

22 /* USER CODE END TIM5_IRQn 0 */

23 HAL_TIM_IRQHandler(&htim5);

24 }

Codeauszug 4.2: TIM5 Interrupt Handler

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

58 4. Implementierung und Portierung auf den Mikrocontroller

TIM3

Für das Überprüfen, ob azyklische Mailbox-Daten vorliegen, wurde die ISR von TIM3

folgendermaßen ergänzt (Codeauszug 4.3 Z. 4-26):

1 void TIM3_IRQHandler(void)

2 {

3 /* USER CODE BEGIN TIM3_IRQn 0 */

4 int ret, slave;

5 struct ec *pec = &ec;

6 //osal_timer_t to;

7
8 /* USER CODE END TIM3_IRQn 0 */

9 HAL_TIM_IRQHandler(&htim3);

10 /* USER CODE BEGIN TIM3_IRQn 1 */

11
12 for (slave = 0; slave < ec.slave_cnt; ++slave) {

13 ec_slave_ptr(slv, pec, slave);

14 if (!slv->eeprom.mbx_supported) {

15 continue;

16 }

17 // wait for mailbox event

18 ret = osal_binary_semaphore_trywait(&slv->mbx.sync_sem);

19
20 if ((ec.master_state != EC_STATE_SAFEOP) && (ec.master_state != ←↩

EC_STATE_OP)) {

21 //slv->mbx.handler_flags |= 0x1u; //MBX_HANDLER_FLAGS_SEND;

22 slv->mbx.handler_flags |= 0x2u; //MBX_HANDLER_FLAGS_RECV;

23 }

24
25 ec_mbx_do_handle(pec, slave);

26 }

27 }

Codeauszug 4.3: TIM3 Interrupt Handler

4.3.2. Ausgabe von UART Nachrichten

UART-Nachrichten werden mit der standardmäßig eingebauten Funktion
HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_-

t Size, uint32_t Timeout) versendet. Die Funktion ist im File stm32h7xx_hal_uart.c

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.3. Softwarekonfiguration 59

deklariert. Um verschiedene Datentypen für Prints zu testen, wurde der Codeauszug 4.4 in
einem anderen Projekt geschrieben. Sobald Konfiguration und Code funktionsfähig waren,
wurden die nötigen Einstellungen in eth_rx_tx übernommen. Hierbei fiel auf, dass 64-bit
Variablen und Floats nicht sauber ausgegeben werden. Dies liegt daran, dass standardmäßig
newlib-nano für STM32-Projekte eingestellt ist. Daraufhin wurde newlib aktiviert (vgl.
Abschnitt 4.1.2).
Analog zu uint64_t vierundsechsig wurden auch uint8_t, uint16_t und uint32_t

Variablen angelegt. Für diese Datentypen wurden auch eigene Print-Funktionen geschrieben
(vgl. Codeauszug 4.4: void test_func64(void)) und erfolgreich ausgeführt.

1 [...]

2 uint64_t vierundsechszig = 192837u;

3 float single_float = 1.23f;

4 double single_double = 3.1415;

5 [...]

6 void test_func64(void) {

7 sprintf(buffer, "%lu \r\n", vierundsechszig);

8 }

9 void test_func_float(void) {

10 sprintf(buffer, "%f \r\n", single_float);

11 }

12 void test_func_double(void) {

13 sprintf(buffer, "%f \r\n", single_double);

14 }

15 [...]

16 test_func64();

17 HAL_UART_Transmit(&huart1, (uint8_t *)buffer, strlen(&buffer[0]), 10);

18 test_func_float();

19 HAL_UART_Transmit(&huart1, (uint8_t *)buffer, strlen(&buffer[0]), 10);

20 test_func_double();

21 HAL_UART_Transmit(&huart1, (uint8_t *)buffer, strlen(&buffer[0]), 10);

22 HAL_Delay(1000);

Codeauszug 4.4: USART Test Code

4.3.3. Senden und Empfangen eines Raw Ethernet Frames

Für das Versenden von Ethernet Frames wird die HAL6-Funktion HAL_ETH_Transmit(ETH_-

HandleTypeDef *heth, ETH_TxPacketConfigTypeDef *pTxConfig, uint32_t Timeout)

6Hardware Abstraction Layer

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

60 4. Implementierung und Portierung auf den Mikrocontroller

aus dem File CM7/Drivers/STM32H7xx_HAL_Driver/stm32h7xx_hal_eth.c genutzt.
Da für jeden Frame Buffer und weitere Daten erzeugt und bereitgestellt werden müs-
sen, wurde die Funktion HAL_ETH_SendFrame(uint8_t *frame, size_t frame_len) (s.
Codeauszug 4.5) im File CM7/Core/Src/eth.c in einem Testprojekt angelegt. Für die Imple-
mentierung für das eigentliche Projekt wurden die Erkenntnisse dieser Funktion genutzt
und noch einmal angepasst. Diese Anpassungen werden im Abschnitt 4.4 erklärt.

1 int HAL_ETH_SendFrame(uint8_t *frame, size_t frame_len) {

2 int errval = ETH_OK;

3 ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT];

4
5 // Invalidate if cache is enabled

6 SCB_CleanDCache_by_Addr((uint32_t*) frame, frame_len);

7
8 Txbuffer[0].buffer = frame;

9 Txbuffer[0].len = frame_len;

10 Txbuffer[0].next = NULL;

11
12 TxConfig.Length = frame_len;

13 TxConfig.TxBuffer = Txbuffer;

14 TxConfig.pData = NULL;

15
16 do {

17 if (HAL_ETH_Transmit(&heth, &TxConfig, ETH_TX_TIMEOUT) == HAL_OK) {

18 HAL_ETH_ReleaseTxPacket(&heth);

19 errval = ETH_OK;

20 } else {

21 if (HAL_ETH_GetError(&heth) & HAL_ETH_ERROR_BUSY) {

22 /* Wait for descriptors to become available */

23 errval = ETH_ERR_NO_BUFFER;

24 } else {

25 /* Other error */

26 errval = ETH_ERR_OTHER;

27
28 Error_Handler();

29 }

30 }

31 } while (errval == ETH_ERR_NO_BUFFER);

32
33 return errval;

34 }

Codeauszug 4.5: Ethernet Send Frame Function

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 61

Um die Funktion nutzen zu können, müssen zuvor der zu versendende Frame intialisiert
werden (s. Codeauszug 4.6) und dessen Länge mittels sizeof(tx_frame_brd) bestimmt
und übergeben werden.

1 uint8_t tx_frame_brd[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x14,

2 0x4f, 0x23, 0x98, 0xcf, 0x88, 0xa4, 0x0e, 0x10, 0x07, 0x02, 0x00,

3 0x00, 0x30, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

4 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

5 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

6 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

Codeauszug 4.6: TX Frame Init

Für das Empfangen der Ethernet Frames wird die HAL-Funktion HAL_ETH_ReadData(ETH_-

HandleTypeDef *heth, void **pAppBuff) aus dem File CM7/Drivers/STM32H7xx_HAL_-
Driver/stm32h7xx_hal_eth.c genutzt. Die Funktion HAL_ETH_ReleaseTxPacket() (s.
Codeauszug 4.5 Z. 18) wurde in der finalen Version des Projektes nicht mehr genutzt.
Wenn diese Funktion weiterhin Teil des Codes ist, beeinträchtigen sich ISRs und das Pro-
gramm läuft in einen ErrorHandler und ist dort dann in einer while(1) Loop. Außerdem
wächst sonst die Liste der empfangenen Frames unendlich an, wodurch auch die Zeiten der
Traces (s. Kapitel 5) stetig ansteigen und insofern nicht sinnvoll nutzbar sind.
Damit die empfangenen Daten via DMA transferiert werden, muss der Ethernet-Handler
noch für die Nutzung des definierten Speicherbereichs konfiguriert werden. Dafür wurde
folgender Code in CM7/Core/Src/eth.c ergänzt:

50 [...]

51 typedef uint8_t ETH_RxBuffer[ETH_RX_BUFFER_SIZE];

52 ETH_RxBuffer Rxbuffer[ETH_RX_BUFFERS] ←↩

__attribute__((section(".RxArraySection")));

53 int Rxbuffer_next = 0;

54 [...]

Codeauszug 4.7: Ethernet Receive DMA Flash Config

4.4. Entwicklung der Bibliothekskomponenten

Funktionen und Datentypen aus libethercat fangen mit dem Präfix ec_ an. Datentypen
und Funktionen aus libosal beginnen mit dem Präfix osal_. Da jede Hardware/Betriebs-
system Kombination teilweise spezifische Header- und Codefiles benötigt, wurden diese

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

62 4. Implementierung und Portierung auf den Mikrocontroller

zu Beginn der Arbeit auch für den STM32 erstellt. Die Files und deren Einbinden in die
Ordnerstruktur können in Anhang C betrachtet werden.
Die allgemeinen Header in CM7/Core/libosal/include/libosal/ wurden so erweitert,
dass diese die Header in CM7/Core/libosal/include/libosal/stm32/ inkludieren. Als
Beispiel dient hierfür folgender Codeauszug aus dem File CM7/Core/libosal/include/

libosal/binary_semaphore.h:

1 [...]

2 #ifdef LIBOSAL_BUILD_STM32

3 #include <libosal/stm32/binary_semaphore.h>

4 #endif

5 [...]

Codeauszug 4.8: Inkludieren der HW-spezifischen Header Files für libosal

Zusätzlich wurde bestimmte Files aus dem Build in der CubeIDE ausgeschlossen, da sie in
dieser Arbeit nicht benötigt wurden. Diese sind in Anhang D zu sehen.
Zusätzlich wurden folgende Include-Pfade für das gesamte Projekt hinzugefügt:

../CM7/Core/Inc

../CM7/Core/libethercat/include

../CM7/Core/libosal/include

4.4.1. Critical Sections

Während des Betriebs des EtherCAT Netzes und beim Analysieren der LogOutputs fiel auf,
dass es Probleme gibt, wenn manche Funktionen durch die ISR für das zyklische Senden der
Daten unterbrechen werden. Deshalb wurden um spezifische Funktionen eine CRITICAL

SECTION gebaut. DECLARE_CRITICAL_SECTION() überprüft, ob Interrupts eingeschaltet
sind. Anschließend schaltet ENTER_CRITICAL_SECTION() die Interrupts während der Aus-
führung der gegebenen Funktionen ggf. kurzzeitig aus und LEAVE_CRITICAL_SECTION

danach wieder ein. Dafür wurde im hardwarespezifischen File osal.h in libosal/include/

libosal/stm32/ folgender Code hinzugefügt:

1 [...]

2 #define DECLARE_CRITICAL_SECTION() uint32_t __primask

3 #define ENTER_CRITICAL_SECTION() \

4 __primask = __get_PRIMASK(); \

5 __disable_irq();

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 63

6
7 #define LEAVE_CRITICAL_SECTION() \

8 if (__primask == 0) { \

9 __enable_irq(); \

10 }

11 [...]

Codeauszug 4.9: CRITICAL SECTION Declaration

Als Beispiel dient hierfür die Funktion hw_device_stm32_send(...) (EtherCAT Senderouti-
ne) aus dem File libethercat/src/hw_stm32.c.

1 int hw_device_stm32_send(struct hw_common *phw, ec_frame_t *pframe, ←↩

pooltype_t pool_type) {

2 assert(phw != NULL);

3 assert(pframe != NULL);

4
5 (void)pool_type;

6
7 int ret = EC_OK;

8 struct hw_stm32 *phw_stm32 = container_of(phw, struct hw_stm32, common);

9
10 int errval = ETH_OK;

11
12 size_t frame_len = ec_frame_length(pframe);

13
14 // Clean if cache is enabled

15 if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {

16 SCB_CleanDCache_by_Addr((void*)pframe, pframe->len);

17 }

18 DECLARE_CRITICAL_SECTION();

19 ENTER_CRITICAL_SECTION();

20
21 Txbuffer[0].buffer = (uint8_t *)(pframe);

22 Txbuffer[0].len = frame_len;

23 Txbuffer[0].next = NULL;

24
25 phw_stm32->TxConfig.Length = frame_len;

26 phw_stm32->TxConfig.TxBuffer = Txbuffer;

27 phw_stm32->TxConfig.pData = NULL;

28
29 do {

30 if (HAL_ETH_Transmit(&heth, &(phw_stm32->TxConfig), ←↩

ETH_TX_TIMEOUT) == HAL_OK) {

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

64 4. Implementierung und Portierung auf den Mikrocontroller

31 errval = ETH_OK;

32 } else {

33 if (HAL_ETH_GetError(&heth) & HAL_ETH_ERROR_BUSY) {

34 /* Wait for descriptors to become available */

35 errval = ETH_ERR_NO_BUFFER;

36 } else {

37 /* Other error */

38 errval = ETH_ERR_OTHER;

39 ret = EC_ERROR_HW_SEND;

40
41 break;

42 }

43 }

44 } while (errval == ETH_ERR_NO_BUFFER);

45
46 phw_stm32->common.bytes_sent += frame_len;

47 phw_stm32->frames_sent++;

48
49 LEAVE_CRITICAL_SECTION();

50 return ret;

51 }

Codeauszug 4.10: CRITICAL SECTION in der Senderoutine

4.4.2. Debugging Nachrichten

Sämtliche Log-Nachrichten werden via osal_puts() aus libosal/src/stm32/io.c ver-
sendet. In den meisten Fällen wird osal_puts() von osal_printf() (ebenfalls in io.c)
aufgerufen. Für den Output von EtherCAT Log-Nachrichten wird libethercat ein Pointer
auf eine selbstdefinierte Log-Funktion (s. Codeauszug 4.12) übergeben (s. Codeauszug
4.13). Die Größe des Log-Buffers (char buf[520]={0}) wurde auf 520 Byte festgelegt,
da die Buffer in den weiteren Log-Funktionen (io.c/osal_printf() und ec.c/ec_log())
512 Byte groß sind und somit noch etwas Overhead zur Verfügung steht.

1 osal_retval_t osal_puts(const osal_char_t *msg) {

2 assert(msg != NULL);

3 HAL_UART_Transmit(&huart1, (const uint8_t *)msg, strlen(&msg[0]), 10);

4 return OSAL_OK;

5 }

Codeauszug 4.11: osal_puts Funktion

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 65

1 void no_verbose_log(int lvl, void *user, const char *format, ...) {

2 char buf[520] = {0};

3
4 (void)user;

5
6 if (lvl > max_print_level)

7 return;

8
9 va_list ap;

10 va_start(ap, format);

11 int written = vsnprintf(&buf[0], sizeof(buf), format, ap);

12 va_end(ap);

13
14 snprintf(&buf[written], sizeof(buf) - written, "\r");

15 osal_puts(&buf[0]);

16 };

Codeauszug 4.12: no_verbose_log Funktion in main.c

1 ec_log_func = &no_verbose_log;

Codeauszug 4.13: Deklaration no_verbose_log als ec_log_func in main.c

4.4.3. EtherCAT Send und Receive Frame

Die Funktionen für das Versenden (int hw_device_stm32_send(struct hw_common *phw,

ec_frame_t *pframe, pooltype_t pool_type)) und Empfangen (int hw_device_stm32_-

recv(struct hw_common *phw)) von EtherCAT Frames sind im File libethercat/src/hw_-
stm32.c angelegt. Der Code für die Senderoutine ist in Codeauszug 4.5 zu sehen. Code-
auszug 4.14 zeigt die Empfangsroutine für EtherCAT Frames.
Um ein erfolgreiches Senden und Empfangen zu gewährleisten, muss ein hardwarespe-
zifisches struct angelegt werden (s. Codeauszug 4.15). In diesem struct sind folgende
Variablen angelegt:

Variable zum Zählen der versendeten Frames→ int frames_sent

TX Packet Konfiguration→ ETH_TxPacketConfig TxConfig

Variable, die den TX-Frame beinhaltet→ osal_uint8_t send_frame[ETH_FRAME_-

LEN]

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

66 4. Implementierung und Portierung auf den Mikrocontroller

Variable, die den RX-Frame beinhaltet→ osal_uint8_t recv_frame[ETH_FRAME_-

LEN]

1 int hw_device_stm32_recv(struct hw_common *phw) {

2 assert(phw != NULL);

3
4 // new code MB

5 HAL_StatusTypeDef status;

6 void *app_buff;

7 osal_timer_t to;

8 osal_timer_init(&to, 100000);

9
10 DECLARE_CRITICAL_SECTION();

11 do {

12 ENTER_CRITICAL_SECTION();

13 status = HAL_ETH_ReadData(&heth, &app_buff);

14 LEAVE_CRITICAL_SECTION();

15
16 if ((status == HAL_OK) && (app_buff != NULL)) {

17 // Invalidate if cache is enabled

18 if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {

19 SCB_InvalidateDCache_by_Addr((uint32_t *)app_buff, ←↩

((ec_frame_t *)app_buff)->len);

20 }

21
22 hw_process_rx_frame(phw, app_buff);

23 return EC_OK;

24 }

25 } while (osal_timer_expired(&to) != OSAL_ERR_TIMEOUT);

26
27 return EC_ERROR_UNAVAILABLE; // maybe write some other ERROR code in ←↩

the error_code.h!?

28 }

Codeauszug 4.14: EtherCAT Receive Function in hw_stm32.c

1 typedef struct hw_stm32 {

2 struct hw_common common;

3
4 int frames_sent;

5 ETH_TxPacketConfig TxConfig;

6
7 osal_uint8_t send_frame[ETH_FRAME_LEN]; //!< \brief Static send frame.

8 osal_uint8_t recv_frame[ETH_FRAME_LEN]; //!< \brief Static receive frame.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.4. Entwicklung der Bibliothekskomponenten 67

9 } hw_stm32_t;

Codeauszug 4.15: EtherCAT STM32 Hardware Struct

4.4.4. Timer ISRs und Zeitfunktionen

Die Anpassungen der ISRs von TIM3 und TIM5 wurden bereits in Abschnitt 4.3.1 dargestellt
und erklärt.
Da das MainDevice seine Uhrzeit an die SubDevices als Distributed Clock bereitstellt, muss
auf dem MainDevice die Zeit erfasst werden. Dies wird durch die Funktion .../libosal/src/

stm32/timer.c/osal_timer_gettime()(s. Codeauszug 4.16) erledigt. Die Funktion liest
dabei die Werte von TIM2 und TIM4 aus. Auf diese Funktion wird durch andere Funktionen,
welche die Zeit benötigen, zugegriffen. Diese Funktionen sind ebenfalls in timer.c dekla-
riert.

1 osal_retval_t osal_timer_gettime(osal_timer_t *timer) {

2 assert(timer != NULL);

3 osal_retval_t ret = OSAL_OK;

4
5 timer->sec = TIM4->CNT;

6 timer->nsec = (TIM2->CNT) * 5; //TIM2 is working at 200MHz --> 1 clock ←↩

cycle = 5ns

7
8 return ret;

9 }

Codeauszug 4.16: OSAL GET TIME Funktion

4.4.5. Semaphoren

libosal stellt sowohl binäre als auch normale Semaphoren für das Betreiben des EtherCAT
Netzes bereit. Semaphoren können einen Maximalwert N > 1 haben; binäre Semaphoren
maximal 1. Die beiden Typen von Semaphoren werden genutzt, um Threads zu synchroni-
sieren. In diesem Projekt werden sie genutzt, um Signale zwischen den ISRs und der main.c
zu senden. Dafür gibt es die beiden Files libosal/src/stm32/binary_semaphore.c und
libosal/src/stm32/semaphore.c. Erklärungen zu den ATOMIC Functions (s. Tabellen
4.2 und 4.3) können unter folgenden Links nachgelesen werden:

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

68 4. Implementierung und Portierung auf den Mikrocontroller

Atomics and Memory Ordering
GNU Atomic Built-Ins
Die Funktionen in semaphore.c besitzen im Gegensatz zu denen aus binary_semaphore.c

Tabelle 4.2.: Funktionen in binary_semaphore.c
Funktion Critical Section Atomic Function Pointer Value Memory Order

semaphore_init × Clear sem->value × __ATOMIC_RELAXED
semaphore_post ! Test_and_Set sem->value × __ATOMIC_ACQUIRE
semaphore_wait ! Exchange_N sem->value 0 __ATOMIC_RELAXED

semaphore_trywait ! Exchange_N sem->value 0 __ATOMIC_RELAXED
semaphore_timedwait ! Exchange_N sem->value 0 __ATOMIC_RELAXED

semaphore_destroy × × × × ×

keine Critical Sections.

Tabelle 4.3.: Funktionen in semaphore.c

Funktion Atomic Function Pointer Value Memory Order
semaphore_init Store_N sem->cnt initval __ATOMIC_RELAXED
semaphore_post Add_fetch sem->cnt 1 __ATOMIC_RELAXED

Load_N sem->cnt × __ATOMIC_ACQUIRE
semaphore_wait

Fetch_Sub sem->cnt 1 __ATOMIC_RELEASE
Load_N sem->cnt × __ATOMIC_ACQUIRE

semaphore_trywait
Fetch_Sub sem->cnt 1 __ATOMIC_RELEASE

Load_N sem->cnt × __ATOMIC_ACQUIRE
semaphore_timedwait

Fetch_Sub sem->cnt 1 __ATOMIC_RELEASE
semaphore_destroy × × × ×

4.4.6. Mutexe

Wenn das MainDevice in einem Betriebssystem betrieben wird, werden die Mutexe dazu
verwendet, um konkurrierenden Zugriff auf gemeinsame Speicherbereiche zu schützen.
Dieser Mechanismus ist in dieser Arbeit durch die Critical Sections realisiert worden.
Insofern müssen die Mutexe nicht direkt genutzt werden. Da die Mutexe in den beiden
Bibliotheken von anderen Funktionen aufgerufen werden, wurde der Code in den einzelnen
Mutex-Funktionen gelöscht und nur ein Return-Value festgelegt und zurückgegeben (s.
Codeauszug 4.17).

1 osal_retval_t osal_mutex_unlock(osal_mutex_t *mtx) {

2 assert(mtx != NULL);

3 osal_retval_t ret = OSAL_OK;

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://dev.to/kprotty/understanding-atomics-and-memory-ordering-2mom
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

4.5. Anpassungen für die Zielhardware 69

4 return ret;

5 }

Codeauszug 4.17: OSAL Mutex Unlock Funktion

4.5. Anpassungen für die Zielhardware

4.5.1. Aktivieren der Caches

Um das Versenden und Empfangen der EtherCAT Frames zu beschleunigen, wurden
Instruction- und Data-Cache des CM7 aktiviert. Deren Konfiguration wurde unter
.ioc-File/Pinout & Configuration/System Core/CORTEX_M7 vorgenommen. Dafür wur-
de MPU (Memory Protection Unit) Region 0 konfiguriert (s. Abbildung 4.9). Die restli-
chen MPU Regions blieben deaktiviert.
Um die Vorteile der aktivierten Data Caches zu realisieren, mussten auch im Code Änderun-

Abbildung 4.9.: Cache Konfiguration im .ioc-File

gen vorgenommen werden. Dafür müssen die Caches invalidiert und geflusht werden, da
CPU und DMA über keine Signalisierungsmechanismen verfügen, die der jeweils anderen

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

70 4. Implementierung und Portierung auf den Mikrocontroller

Ressource mitteilen, dass geänderte Daten zum Senden bzw. Empfangen vorliegen. Ansons-
ten würden falsche Daten gelesen oder gesendet werden. Dafür wurde im File hw_stm32.c

in der Empfangsfunktion int hw_device_stm32_recv(...) der Code 4.18 und in der
Sendefunktion int hw_device_stm32_send(...) der Code 4.19 hinzugefügt. Die beiden
Funktionen (Z. 155 und Z. 219) sind aus dem File Drivers/CMSIS/Include/core_cm7.h.
Hierbei werden nur spezifische Adressräume des Caches angesprochen. Nur die Daten,
welche über den Ethernet Port empfangen (app_buff) bzw. versendet werden (pframe),
sollen von diesen Operationen betroffen sein.

152 [...]

153 // Invalidate if cache is enabled

154 if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {

155 SCB_InvalidateDCache_by_Addr((uint32_t *)app_buff, ((ec_frame_t ←↩

*)app_buff)->len);

156 }

157 [...]

Codeauszug 4.18: Data Cache Invalidation

216 [...]

217 // Invalidate if cache is enabled

218 if ((SCB->CCR & SCB_CCR_DC_Msk) != 0U) {

219 SCB_CleanDCache_by_Addr((void*)pframe, pframe->len);

220 }

221 [...]

Codeauszug 4.19: Data Cache Flushing

Die daraus resultierenden, zeitlichen Vorteile im Betrieb des Systems sind im Abschnitt
5.2.3 zu sehen. Bei der Implementierung war wichtig, dass der Data Cache erst nach
Erreichen von SAFEOP aktiviert wird. Ansonsten konnten die SubDevices nicht korrekt
in Betrieb genommen werden. Der Instruction Cache konnte am Beginn der main.c
standardmäßig aktiviert werden.

4.5.2. Config File

Je nachdem auf welcher Hardware das MainDevice implementiert und in welcher Netztopo-
logie es eingesetzt wird, muss ein entsprechendes Konfigurationsfile angelegt werden. Da
libethercat kein dynamisches Alloziieren von Speicher benutzt, muss der Ressourcenbe-
darf zur Kompilierzeit festgelegt werden. Dies geschieht im Konfigurationsfile. Dieses File

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.5. Anpassungen für die Zielhardware 71

ist unter Core/Inc/libethercat/config.h gespeichert. Zuerst werden andere Betriebs-
/Hardwaresysteme (s. Abschnitt 1.1) deaktiviert (analog zu Codeauszug 4.20 Z. 4-7 andere
OS). Das ganze File kann in Anhang E betrachtet werden. Im Config-File werden u.a. fol-
gende Punkte konfiguriert:

benutztes OS/Hardware

max. Anzahl an SubDevices

zyklische Gruppen Anzahl

max. Prozessdatenlänge (zyklisch)

max. Features (FMMUs, SMs)

max. Anzahl an Datagramm, mailbox buffern

Mailbox Support (und explizit welcher Support: CoE, FoE, ...)

1 #ifndef _INCLUDE_LIBETHERCAT_CONFIG_H

2 #define _INCLUDE_LIBETHERCAT_CONFIG_H 1

3 [...]

4 /* Build with pikeos hw device layer. */

5 #ifndef LIBETHERCAT_BUILD_DEVICE_PIKEOS

6 #define LIBETHERCAT_BUILD_DEVICE_PIKEOS 0

7 #endif

8 [...]

9 /* Use STM32 build */

10 #ifndef LIBETHERCAT_BUILD_STM32

11 #define LIBETHERCAT_BUILD_STM32 1

12 #define htons(x) (((((osal_uint16_t)(x)) << 8) & 0xFF00) | ←↩

((((osal_uint16_t)(x)) >> 8) & 0x00FF))

13 #endif

14 [...]

15 /* Define to 1 if you have the <inttypes.h> header file. */

16 #ifndef LIBETHERCAT_HAVE_INTTYPES_H

17 #define LIBETHERCAT_HAVE_INTTYPES_H 1

18 #endif

19 [...]

20 /* Maximum number of datagrams supported. */

21 #ifndef LIBETHERCAT_MAX_DATAGRAMS

22 #define LIBETHERCAT_MAX_DATAGRAMS 10

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

72 4. Implementierung und Portierung auf den Mikrocontroller

23 #endif

24 [...]

25 /* Maximum number of eeprom-cat-fmmu supported. */

26 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_FMMU

27 #define LIBETHERCAT_MAX_EEPROM_CAT_FMMU 8

28 #endif

29 [...]

30 /* Maximum number of groups supported. */

31 #ifndef LIBETHERCAT_MAX_GROUPS

32 #define LIBETHERCAT_MAX_GROUPS 2

33 #endif

34 [...]

35 /* Maximum number of mbx-entries supported. */

36 #ifndef LIBETHERCAT_MAX_MBX_ENTRIES

37 #define LIBETHERCAT_MAX_MBX_ENTRIES 16

38 #endif

39 /* Maximum number of slaves supported. */

40 #ifndef LIBETHERCAT_MAX_SLAVES

41 #define LIBETHERCAT_MAX_SLAVES 16

42 #define LIBETHERCAT_MAX_SLAVES_STRING "16"

43 #endif

44 /* Maximum number of slave-fmmu supported. */

45 #ifndef LIBETHERCAT_MAX_SLAVE_FMMU

46 #define LIBETHERCAT_MAX_SLAVE_FMMU 8

47 #endif

48 [...]

49 /* Version number of package */

50 #ifndef LIBETHERCAT_VERSION

51 #define LIBETHERCAT_VERSION "0.5.1"

52 #endif

53 [...]

Codeauszug 4.20: Config-File

Für libosal wurde ebenfalls das Config-File unter Core/Inc/libosal/config.h angelegt
und angepasst. Dieses ist in Anhang F zu sehen.

4.5.3. Abfrage des Ethernet Link Status

Da beim PowerUp des STM32 die Abarbeitung des Codes in main.c bis zur ersten
Hardware-Funktion int hw_device_stm32_open(...) schneller ist als die vollständige

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

4.5. Anpassungen für die Zielhardware 73

Auto-Negotiation des Ethernet Ports, kann der EtherCAT Bus nicht funktionsfähig starten.
Deshalb wurde in main.c eine Abfrage des LinkStatus des Ethernet Ports eingefügt (s.
Code 4.21). Die dortige Schleife wird erst verlassen, wenn der LinkStatus UP ist.

270 [...]

271 // wait for Ethernet port is up

272 uint32_t phy_adr = 0;

273 uint32_t phy_reg = 1;

274 uint32_t phy_val;

275 do // 0 = Link down

276 {

277 HAL_ETH_ReadPHYRegister(&heth, phy_adr, phy_reg, &phy_val);

278 } while((phy_val & 0x00000004u) == 0u);

279 [...]

Codeauszug 4.21: Ethernet Port LinkStatus Abfrage

4.5.4. EK1100 LED Second Display

Um das korrekte Auslesen des Sekundenzählers von TIM4 und das korrekte Ansteuern von
LEDs in der EL2008 Klemme (s. Abschnitt 5.1.2) zu überprüfen, wurde folgender Code
geschrieben. Die EL2008 hat 8 digitale Ausgänge. Deren Zustand kann mittels integrierter
LEDs überprüft und mit dem Kommando in Z.388 des Codeauszugs angesteuert werden.
Wenn jede LED einen binären Wert darstellt, können 28 = 256 (Sekunden-)Werte durch die
LEDs dargestellt werden. Dafür werden die Sekunden aus TIM4 ausgelesen (Z. 387).

385 // EK1100 LED second display

386 {

387 seconds = (TIM4->CNT) % 256;

388 ec.slaves[1].pdout.pd[0] = seconds;

389 }

Codeauszug 4.22: EK1100 LED Second Display

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

74 4. Implementierung und Portierung auf den Mikrocontroller

4.6. Debugging und Fehlerbehebung

Für das Debugging und die Fehlerbehebung wurden folgende Tools in dieser Arbeit verwen-
det:

Wireshark

Minicom

GNU Debugger (GDB)

OpenOCD

Alle oben genannten Tools (bis auf Wireshark) werden in der Kommandozeile gestartet und
betrieben.
In Wireshark ist bereits ein Dissektor für EtherCAT implementiert. Wireshark wurde genutzt,
um die Latenz zwischen zwei Frames und den Inhalt der Frames auszuwerten. Durch das
Auswerten der Latenz zwischen zwei Frames konnte nachgewiesen werden, dass die Timer
inkl. Interrupts im vorgesehenen Takt (1 ms) laufen. Ein Screenshot des Wiresharks PCAPs
kann in Anhang H betrachtet werden.
Minicom wurde als serielles Terminal genutzt, um die Debugging-Nachrichten auszugeben.
GDB wurde genutzt, um neue Programmversion auf den STM32 zu übertragen, Breakpoints
im Programm zu setzen und Werte von Variablen auszulesen und als Binary zu speichern.
OpenOCD stellt hierbei die Verbindung zwischen Hardware und GDB her.
Um sich mit der Hardware zu verbinden, muss zunächst OpenOCD gestartet werden. Die
Kommunikation findet hierbei über den Mikro-USB Port des STM32 statt. Anschließend wird
GDB im Projektverzeichnis gestartet. Dort wird eine Verbindung zum STM32 via target

remote localhost:3333 hergestellt, anschließend das ELF-File geladen und auf dem
Mikrocontroller gestartet. Das Kompilieren des Programmes wurde in der CubeIDE gemacht.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.wireshark.org/download.html
https://salsa.debian.org/minicom-team/minicom
https://www.sourceware.org/gdb/
https://openocd.org/

5. Evaluierung des Echtzeitverhaltens
und der Leistung

Dieses Kapitel beschäftigt sich mit der Evaluierung des Echtzeitverhaltens und der Leistung
des implementierten Systems. Abschnitt 5.1 zeigt zunächst das Testverfahren und die dazu-
gehörigen Testaufbauten. Die Messungen von Latenz und Jitter werden in Abschnitt 5.2
dargestellt, dazu zählen auch Vergleichsmessungen der Implementierung der Bibliotheken
auf einem Linux-Betriebssystem. Zum Abschluss des Kapitels werden die Ergebnisse inter-
pretiert und diskutiert (s. Abschnitt 5.3).

5.1. Testverfahren und Testaufbau

Für die Messungen wurden jeweils 1000 Frames ausgewertet. Die verschiedenen Mes-
sungen werden in den Variablen tx_start, tx_duration und roundtrip_duration (s.
Codeauszug 5.2 Z. 2-4) gespeichert. Die Inhalte der drei Tracing-Variablen sind in Tabelle
5.1 erklärt.
Diese Daten können in GDB über den Befehl in Codeauszug 5.1 als Binary exportiert werden.

Tabelle 5.1.: Erklärung Tracing Variablen

Variable Inhalt

tx_start
Speichert Timestamps beim Senden eines EtherCAT Frames

→ Genauigkeit der 1 ms TIM5 ISR

tx_duration
Speichert Timestamps, wie lange es gedauert hat

den EtherCAT Frame komplett zu senden

roundtrip_duration Speichert Timestamps des Roundtrips eines EtherCAT Frames

Das Binary ist dann auf dem per USB angeschlossenen PC gespeichert.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
75

76 5. Evaluierung des Echtzeitverhaltens und der Leistung

Tabelle 5.2.: Linux MainDevice Spezifikation

Eigenschaft Details

Manufacturer Dell Inc. Desktop

Product Name Precision 3440

CPU
Intel(R) Core(TM) i5-10600 CPU @ 3.30GHz

4.80 GHz max. turbo frequency

Kerne 6 cores, 12 threads

Cache size 12288 KB

Netzwerk Intel Corporation I210 Gigabit Network Connection (rev 03)

OS Ubuntu 22.04.2 LTS

Kernel 5.15.0-1038-realtime PREEMPT_RT

1 dump binary memory VAR_NAME.bin START_ADDRESS START_ADDRESS+8000

Codeauszug 5.1: Trace Binary Export

Die Spezifikation des Linux-PC MainDevices, zu dem die Vergleichsmessungen angefertigt
wurden, sind in Tabelle 5.2 aufgelistet.

5.1.1. Trace Funktionen aus libosal

Um Messungen bzgl. Laufzeit und Jitter der Frames anfertigen zu können, wurden Funk-
tionen aus libosal verwendet. Diese Funktionen sind im File ../libosal/src/trace.c

gespeichert. Dafür müssen Trace-Variablen angelegt und anschließend mit Funktionen
ausgewertet werden. Diese Funktionen werden nach Erreichen des States OP gestartet
und geben dann Log-Nachrichten (vgl. Codeauszug 5.2 Z. 25) in einer while(1) aus.
Zuvor kann mit capture_time noch die Zeit festgelegt werden über welche die Traces
messen. Dementsprechend ändern sich die Anzahl der Frames, die ausgewertet werden
müssen (num_samples). Damit diese Funktionen richtig arbeiten, müssen in der Sende- und
Empfangsroutine der EtherCAT Frames dementsprechende Tracing-Points angelegt und
ausgewertet werden (Z. 2-4, 17-23).

1 [...]

2 osal_trace_t *tx_start;

3 osal_trace_t *tx_duration;

4 osal_trace_t *roundtrip_duration;

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.1. Testverfahren und Testaufbau 77

5 [...]

6 uint64_t capture_time = 1 * 1E9; // capture time in s multiplied by 1E9 ←↩

so you get ns

7 int num_samples = capture_time / 1E6; //1 sample every ms

8
9 osal_trace_alloc(&tx_start, num_samples);

10 osal_trace_alloc(&tx_duration, num_samples);

11 osal_trace_alloc(&roundtrip_duration, num_samples);

12 [...]

13 #define to_us(x) ((double)(x)/1000.)

14 while (1) {

15 if (osal_binary_semaphore_trywait(&tx_start->sync_sem) == OSAL_OK) {

16 // Trace analyze

17 osal_uint64_t tx_timer_med = 0, tx_timer_avg_jit = 0, ←↩

tx_timer_max_jit = 0;

18 osal_uint64_t tx_duration_med = 0, tx_duration_avg_jit = 0, ←↩

tx_duration_max_jit = 0;

19 osal_uint64_t roundtrip_duration_med = 0, roundtrip_duration_avg_jit ←↩

= 0, roundtrip_duration_max_jit = 0;

20
21 osal_trace_analyze(tx_start, &tx_timer_med, &tx_timer_avg_jit, ←↩

&tx_timer_max_jit);

22 osal_trace_analyze_rel(tx_duration, &tx_duration_med, ←↩

&tx_duration_avg_jit, &tx_duration_max_jit);

23 osal_trace_analyze_rel(roundtrip_duration, &roundtrip_duration_med, ←↩

&roundtrip_duration_avg_jit, &roundtrip_duration_max_jit);

24
25 no_verbose_log(0, ec_log_func_user, "Frame len %" PRIu64 " bytes/ ←↩

%7.1f us\n", ec.phw->bytes_last_sent, (10 * 8 * ←↩

ec.phw->bytes_last_sent) / 1000.);

26 [...]

Codeauszug 5.2: libosal Tracing in main.c

Bei Empfang eines Frames wird automatisch eine Callback-Funktion getriggert. Diese
ist in main.c angelegt und erfasst Timestamps und legt einen Trace an (s. Codeauszug
5.3). Auf diese Weise werden für jeden Frame die Timestamps zu roundtrip_duration

erfasst. Die Timestamps für tx_start und tx_duration werden in der TIM5 ISR erfasst (s.
Codeauszug 4.2 Z. 10 und Z. 18).

125 [...]

126 void group0_cb(void *arg, int num) {

127 osal_uint64_t time_end = osal_timer_gettime_nsec();

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

78 5. Evaluierung des Echtzeitverhaltens und der Leistung

128 osal_uint64_t time_start = osal_trace_get_last_time(tx_start);

129
130 osal_trace_time(roundtrip_duration, time_end - time_start);

131 }

132 [...]

Codeauszug 5.3: Group0 Callback Funktion in main.c

Der Log-Output bzgl. der Traces ist in Codeauszug 5.4 zu sehen. Dort werden die in
Codeauszug 5.2 (Z. 17-19) angelegten Variablen ausgegeben (Z. 25ff). Diese werden mittels
der Analyse-Funktionen (Z. 21-23) berechnet. Dadurch wird einerseits die Genauigkeit des
eingestellten Timers (s. Codeauszug 5.4 Z. 3) sowie Informationen zu den Distributed

Clocks (Z. 6) sichtbar. Andererseits werden Zeiten (inkl. Jitter Average und maximaler Jitter)
zur tx_duration (Z. 4) und der roundtrip_duration (Z. 5) ausgegeben.

1 [...]

2 Frame len 36 bytes/ 2.9 us

3 Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)

4 Duration +34.1 us (jitter avg +0.3 us, max +6.3 us)

5 Round trip +31.6 us (jitter avg +0.3 us, max +5.8 us)

6 DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

7 [...]

Codeauszug 5.4: Log-Output bzgl. Tracing

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.1. Testverfahren und Testaufbau 79

5.1.2. Testaufbau 1

Testaufbau 1 besteht aus dem MainDevice (STM32), einem Beckhoff EK1100 EtherCat-
Koppler1 und einer darin eingesteckten Beckhoff EL2008 EtherCAT-Klemme (8-Kanal-Digital-
Ausgang)2 sowie einem ELMO EtherCAT Servo Drive Gold DC Whistle3 als SubDevices.
Die LogOutputs (StartUp und Trace) dieses Testaufbaus sind in Anhang A zu sehen.

(a) Beckhoff EK1100
und EL2008

(b) ELMO Gold DC
Whistle

Abbildung 5.1.: SubDevices Testaufbau 1

Abbildung 5.2.: Testaufbau 1: EK1100, EL2008, ELMO Servo Drive

1Beckhoff EK1100 EtherCAT-Koppler Produktwebsite
2Beckhoff EL2008 EtherCAT-Klemme Produktwebsite
3ELMO EtherCAT Servo Drive Gold DC Whistle Produktwebsite

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/produkte/i-o/ethercat-klemmen/ek1xxx-bk1xx0-ethercat-koppler/ek1100.html
https://www.beckhoff.com/de-de/produkte/i-o/ethercat-klemmen/el2xxx-digital-ausgang/el2008.html
https://www.elmomc.com/product/gold-dc-whistle/

80 5. Evaluierung des Echtzeitverhaltens und der Leistung

5.1.3. Testaufbau 2

Testaufbau 2 besteht aus dem MainDevice (STM32) und einem Beckhoff C6640-00604,
welche den Caesar Arm5 des DLR simulieren. Dabei werden mittels vier Beckhoff FC11006

Einsteckkarten vier SubDevices simuliert.
Die LogOutputs (StartUp und Trace) dieses Testaufbaus sind in Anhang B zu sehen.

(a) Caesar Arm [DLRa] (b) Caesar Arm Simu-
lator (Beckhoff
C6640-0060)

Abbildung 5.3.: SubDevices Testaufbau 2

Abbildung 5.4.: Testaufbau 2: Caesar Simulator mit 4 SubDevices

4Beckhoff C6640-0060 Produkwebsite
5Caesar Arm DLR Website
6Beckhoff FC1100 Produktwebsite

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://www.beckhoff.com/de-de/produkte/ipc/pcs/c6xxx-schaltschrank-industrie-pcs/c6640-0060.html
https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.beckhoff.com/de-de/produkte/ipc/pcs/zubehoer/fc1100.html)

5.2. Messung der Latenz und des Jitters 81

5.2. Messung der Latenz und des Jitters

Für die Messungen in beiden Testaufbauten wurden jeweils 1000 Frames analysiert. Dafür
wurde die Daten der Traces via gdb als Binary exportiert und anschließend mit zwei Python-
Skripten (s. Anhang G) ausgewertet und Histogramme bzw. Box-Plots erstellt.

5.2.1. Testaufbau 1

Anschließend werden die Auswertungen der Messungen für Testaufbau 1 mit dem STM32
und Linux-PC als MainDevice als Histogramm und Box-Plot dargestellt.

(a) Histogramme (b) Box-Plot

Abbildung 5.5.: Testaufbau 1: Vergleichsmessungen tx_start

Tabelle 5.3.: Testaufbau 1 - Werte der Messungen
Variable Mean Varianz Std. Deviation

STM32 Linux STM32 Linux STM32 Linux
tx_start [ms] 1.00 1.00 3.57e-9 7.05e-11 5.97e-5 8.40e-6

tx_duration [ns] 34230.79 31769.94 37280.08 23070.14 193.08 151.89
roundtrip_duration [ns] 31818.52 31677.97 34000.21 16262.66 184.39 127.53

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

82 5. Evaluierung des Echtzeitverhaltens und der Leistung

(a) Histogramme (b) Box-Plot

Abbildung 5.6.: Testaufbau 1: Vergleichsmessungen tx_duration

(a) Histogramme (b) Box-Plot

Abbildung 5.7.: Testaufbau 1: Vergleichsmessungen roundtrip_duration

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.2. Messung der Latenz und des Jitters 83

5.2.2. Testaufbau 2

Anschließend werden die Auswertungen der Messungen für Testaufbau 2 mit dem STM32
und Linux-PC als MainDevice als Histogramm und Box-Plot dargestellt.

(a) Histogramme (b) Box-Plot

Abbildung 5.8.: Testaufbau 2: Vergleichsmessungen tx_start

(a) Histogramme (b) Box-Plot

Abbildung 5.9.: Testaufbau 2: Vergleichsmessungen tx_duration

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

84 5. Evaluierung des Echtzeitverhaltens und der Leistung

(a) Histogramme (b) Box-Plot

Abbildung 5.10.: Testaufbau 2: Vergleichsmessungen roundtrip_duration

Tabelle 5.4.: Testaufbau 2 - Werte der Messungen
Variable Mean Varianz Std. Deviation

STM32 Linux STM32 Linux STM32 Linux
tx_start [ms] 1.00 1.00 3.55e-9 1.78e-9 5.96e-5 4.22e-5

tx_duration [ns] 95336.72 90756.23 117209.04 25592.57 342.36 159.98
roundtrip_duration [ns] 92929.30 90678.45 109233.11 24929.70 330.50 157.89

5.2.3. Aktivieren der Caches

Tabelle 5.5 zeigt die Unterschiede bzgl. deaktivierten und aktivierten Caches in der Duration
und Round-Trip Zeit. Die Jitter blieben nahezu gleich (≤ 2.4µs Unterschied). Diese Messun-
gen wurden in Testaufbau 1 angefertigt.

Tabelle 5.5.: Laufzeitunterschiede Caches

Modus Duration Round-Trip
deaktivierte Caches 65.0 µs 61.1 µs

aktivierter Instruction Cache 49.9 µs 47.2 µs
aktivierter Data und Instruction Cache 28.5 µs 27.1 µs

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

5.3. Interpretation und Diskussion der Ergebnisse 85

5.3. Interpretation und Diskussion der Ergebnisse

Aufgrund der Tatsache, dass in diesem Projekt direkt nach Senden eines EtherCAT Frames
der Mikrocontroller für das Empfangen des Frames aktiviert wird, sind die Zeiten in tx_-

duration auch größer als die in roundtrip_duration. Im Allgemeinen sind die Werte für
gut befunden worden, da sie in einem ähnlichen Bereich liegen wie die Vergleichsmessun-
gen mit dem Linux-PC. Zusätzlich dazu hat die Implementation auf dem STM32 den Vorteil,
dass das deterministische Senden der EtherCAT Frames nicht durch Regelungsprozesse und
andere Software beeinflusst wird.
In Testaufbau 1 sind die Werte der drei Tracing-Variablen in folgendem Verhältnis (s. Tabelle
5.6):

STM32

Linux
(5.1)

Für Testaufbau 2 wurden die Werte ins selbe Verhältnis wie für Testaufbau 1 gesetzt (s.

Tabelle 5.6.: Testaufbau 1 - Prozentualer Vergleich

Variable Mean Varianz Std. Deviation
tx_start 100.00 % 5063.83 % 710.71 %

tx_duration 107.75 % 161.59 % 127.12 %
roundtrip_duration 100.44 % 209.07 % 144.59 %

Tabelle 5.7).
Aus den beiden Tabellen wird ersichtlich, dass sich die Durchschnittswerte für alle drei

Tabelle 5.7.: Testaufbau 2 - Prozentualer Vergleich

Variable Mean Varianz Std. Deviation
tx_start 100.00 % 199.44 % 141.23 %

tx_duration 105.05 % 457.98 % 214.00 %
roundtrip_duration 102.48 % 438.16 % 209.32 %

Variablen bei beiden Testaufbauten auf beiden MainDevices kaum unterscheiden (einstel-
liger Prozentbereich). Noch einmal deutlicher wird dieser Vergleich, wenn man bedenkt,
dass die absoluten Werte von tx_start im Millisekundenbereich und tx_duration und
roundtrip_duration im Nanosekundenbereich liegen. Die prozentualen Unterschiede in
Testaufbau 2 sind generell größer als die in Testaufbau 1, da Testaufbau 2 über vier SubDe-
vices verfügt (Testaufbau 1: 3) und dies eine Anwendungssimulation des Caesar Arms inkl.
realem Mailbox-Betrieb ist.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

86 5. Evaluierung des Echtzeitverhaltens und der Leistung

Da der Prozessor des Linux-PCs mit einer deutlich höheren Taktrate läuft als der STM32
(> 8x so schnell), ist das Senden und Empfangen eines EtherCAT Frames, nachdem dieser
das vollständige Busnetzwerk durchlaufen hat, dort auch schneller. Deshalb sind auch die
Standardabweichungen und Varianzen mit dem STM32 MainDevice größer als die des Linux
MainDevice. Davon ist auch die Auflösung der Distributed Clocks betroffen. Die DCs

des STM32 laufen mit einer Genauigkeit von 5 ns; die des Linux-PCs mit 1 ns. Dies macht
sich auch in den diskreten Werten von tx_start auf dem STM32 in den Abbildungen 5.5
und 5.8 bemerkbar.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

6. Zusammenfassung und Ausblick

Dieses Kapitel beginnt mit einer Zusammenfassung dieser Arbeit und deren wichtigste
Erkenntnisse und Ergebnisse (s. Abschnitt 6.1). Abschnitt 6.2 gewährt einen Einblick in
zukünftige Arbeiten, die durch diese Arbeit ermöglicht und beeinflusst werden. Außerdem
zeigt es mögliche Erweiterungen und sowohl deren Einsatzpotential als auch Herausforde-
rungen dabei. Abschnitt 6.3 gibt eine zusammenfassende Bewertung des Projekterfolgs
und der angewandten Methodik.

6.1. Zusammenfassung der Arbeit

Mit Hilfe dieser Arbeit konnte bewiesen werden, dass ein EtherCAT MainDevice auf einem
STM32-Mikrocontroller ohne installiertes Betriebssystem realisiert werden kann. Das STM32
MainDevice erfüllt alle Anforderungen, die in dieser Arbeit gestellt wurden. Die hier erreichte
Realisierung stellt einen wichtigen Schritt für weitere Implementierungen am DLR dar, da
so nachgewiesen werden konnte, dass die Kommunikation via EtherCAT innerhalb von
Robotersystemen von einem Betriebssystem entkoppelt werden kann. Infolgedessen ist
diese Implementierung deterministischer und robuster verglichen mit der Linux Variante, da
der STM32 ausschließlich für die EtherCAT Kommunikation verantwortlich ist und deshalb
nicht durch andere Prozesse unterbrochen wird.
Durch den Vergleich der Implementierung auf dem STM32 mit einem Linux-PC MainDevice
in zwei unterschiedlichen Testaufbauten wurde ersichtlich, dass die Performance nahezu
gleich ist und mit keinen großen Einbußungen einhergeht. Lediglich die Roundtrip Time
(roundtrip_duration) sowie die Zeit zum Aussenden eines vollständigen EtherCAT Frames
(tx_duration) stieg leicht an. Durch eine gemeinsame Analyse und Bewertung der Daten
mit Robert Burger konnte dies als ausreichend gut befunden werden, vor allem unter der
Tatsache, dass die Taktrate des Linux-PCs deutlich höher ist.
Das Senden von Raw Ethernet Frames via DMA stellte zu Beginn der Arbeit eine der größten
Herausforderungen dar. Das lag vor allem daran, dass kein Beispielcode auf gängigen Platt-

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
87

88 6. Zusammenfassung und Ausblick

formen wie GitHub1 oder dem STMicroelectronics Forum2 vorlag bzw. dass es nur Beispiele
einer Implementierung auf einem Betriebssystem wie RTOS gab. Auch das Umlöten der
Hardware aufgrund des Portsharings von Ethernet und MEMS Mikrofon stellte eine kleine
Hürde dar, welche anfangs nicht bedacht wurde.
Eine weitere große Herausforderungen stellte der Umgang mit den Interrupts dar, da es
teilweise große Probleme gab, dass die Interrupts sich gegenseitig unterbrachen und in-
folgedessen der gesamte Mikrocontroller in einen Fail-State lief. Dies konnte durch die
Einführung der Critical Sections unterbunden werden. Ob dies zu bisher unbekannten
Folgeproblemen führt, kann zum jetzigen Zeitpunkt noch nicht sicher gesagt werden und
muss in der Zukunft noch einmal analysiert und bewertet werden. Dazu zählt ebenfalls das
Aktivieren des Data Caches. Dieser konnte nicht zum standardmäßigen Zeitpunkt im Code
aktiviert werden, da das Programm ansonsten in einen Error Handler lief. Der Data Cache

konnte erst nach Erreichen des States SAFEOP aktiviert werden. Damit wurde das Symptom
hinreichend behandelt und eine funktionsfähige Implementierung realisiert. Für eine genaue
Bewertung, warum der Data Cache nicht direkt nach dem Instruction Cache aktiviert
werden kann, müsste weitere Recherche betrieben werden und die Hardware (Register,
Speicher) noch einmal analysiert werden.

6.2. Ausblick auf zukünftige Arbeiten

In der gesamten Arbeit wurde der CM4-Core des STM32 nicht genutzt. Dieser könnte bei-
spielsweise auch die Aufgabe übernehmen, die Log-Daten per UART auszugeben und dabei
auch Nutzereingaben anzunehmen. Außerdem könnte der zweite Kern auch Berechnungen
für die Konfiguration der SubDevices via Mailbox durchführen. Dabei müssten Konzepte
und Lösungen zum Datenaustausch, -synchronisation und Zugriff auf weitere gemeinsame
Ressourcen erstellt werden.
Desweiteren könnte das mitgelieferte LED-Display wieder direkt auf dem H747 angebracht
werden, um so Log-Nachrichten auszugeben und keinen dedizierten PC mit Terminal mehr
zu benötigen. Dies hätte zum Vorteil, dass die Critical Sections aufgelockert werden
könnten, da sich Interrupts und Ausgabe der Log-Nachrichten teilweise negativ beeinflusst
haben. Dies könnte ebenfalls durch das Nutzen des CM4 Kernes verbessert werden, da der
CM7 dann dediziert für die Senden und Empfangen der EtherCAT Frames zuständig wäre.

1GitHub
2ST Community

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://github.com/
https://community.st.com/

6.2. Ausblick auf zukünftige Arbeiten 89

Die hier realisierte Implementierung ist so konzipiert, dass das STM32 MainDevice direkt
nach dem Senden eines EtherCAT Frames für den Empfang des rückläufigen Frames aktiviert
wird (= Polling Mode). Dies könnte durch den Modus IRQ Mode ersetzt werden. Diese
Option besteht ebenfalls bei der Linux MainDevice Implementierung. Zusätzlich dazu gibt
es auf Linux die RAW Socket-Variante. Implementierungen und Vergleichsmessungen zu
diesen beiden Modi wurden bereits für mehrere Betriebssysteme angefertigt und können
im Wiki des Main-libethercat-Repository3 begutachtet werden.

Das STM32-H747-DISCO Board könnte durch ein Board der STM32MP2-Series4 ersetzt wer-
den, vorzugsweise über das Modell STM32MP2257F5. Dieses Board verfügt über folgende
Vorteile:

64-bit Plattform

Arm-Cortex-A35 Dual-Core (1.5 GHz max. Taktfrequenz)

Arm-Cortex-M33 Single-Core (400 MHz max. Taktfrequenz)

Ethernet TSN (Time-Sensitive Networking6) Switch mit drei Gigabit-Ethernet Ports

PCIe Schnittstelle

AI (Artificial Intelligence) Support (TensorFlowLite7)

Mit dem schnelleren Takt der CPUs können die Laufzeitunterschiede der STM-Implementierung
(im Gegensatz zu Linux) weiter verbessert werden. Desweiteren kann sowohl der 2. Kern
des A35 und der M33 für zusätzliche Aufgaben genutzt werden wie bspw. Redundanz. Die
Redundanz kann weiter durch die drei Ethernet Ports erhöht werden. Mit diesen ist es auch
möglich mehrere EtherCAT Netze auf einem Mikrocontroller zu realisieren. Mit Hilfe des
PCIe Slots kann der STM32MP2257F auch direkt in einen Robotersteuerungs-PC (z.B. Linux)
eingesteckt werden. So kann einfacher Datenaustausch zwischen Robotersteuerung auf
dem PC und EtherCAT Kommunikation auf dem STM32 stattfinden. Der AI Support kann
genutzt werden, um Modelle zu bauen, die den EtherCAT Betrieb oder Datenkommunikati-
on und daraus folgende Steuerung effizienter und dynamischer zu gestalten.
Außerdem könnte der zusätzliche 256 MBit SDRAM (s. Abschnitt 3.2.2) dafür genutzt

3libethercat Repository Wiki
4STM32MP2-Series Website
5STM32MP257F Produktwebsite
6IEEE 802 TSN Task Group
7Getting Started Converting TensorFlow to ONNX

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://rmc-github.robotic.dlr.de/common/libethercat/wiki
https://www.st.com/en/microcontrollers-microprocessors/stm32mp2-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32mp257f.html
https://www.ieee802.org/1/pages/tsn.html
https://onnxruntime.ai/docs/tutorials/tf-get-started.html

90 6. Zusammenfassung und Ausblick

werden, um die Größe der Variablen im Config-File (s. Abschnitt 4.5.2) wieder höher zu
setzen. Diese Werte wurden aufgrund von Speicherknappheit manuell heruntergesetzt, um
die Systemressourcen des STM32-H747 nicht zu überlasten. Der zusätzliche Speicher kann
insofern auch für noch zu definierende Aufgaben genutzt werden.

6.3. Schlussfolgerungen

Schon während der Anfertigung dieser Arbeit sprachen uns mehrere KollegInnen des DLR
auf die Ziele des Projektes an. Sie waren bereits während der Entwicklung stark von unserem
Vorhaben begeistert und stellten bereits Anfragen, wann unsere Portierung nutzbar sei.
Dies liegt einerseits an der Tatsache, dass EtherCAT in vielen Systemen innerhalb von RMC
eingesetzt wird. Andererseits werden STM32-Boards in vielerlei Hinsicht vom Kollegium
genutzt. Insofern ist die erfolgreiche Realisierung dieser Machbarkeitsstudie der erste Schritt,
um Veränderungen und Verbesserungen innerhalb der RMC-Systeme in Gang zu setzen.
Dafür muss der in dieser Arbeit geschriebene Code noch in die Main-Repositories von
libethercat und libosal eingepflegt werden. Außerdem soll ein Paper zur Arbeit veröf-
fentlicht werden und der Code zum Versenden der Raw Ethernet Frames auch in meinem
persönlichen GitHub Repository frei zur Verfügung gestellt werden, damit künftige Bare-
Metal-Realisierungen auf dem STM32 schneller angefertigt werden können.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe. Die Arbeit wurde
bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt.

Dießen, den 12. April 2025

Marcel Beausencourt

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
i

M

Literatur

[DLRa] DLR. Caesar. [letzter Zugriff: 2025-03-06]. URL: https://www.dlr.de/de/rm/
forschung/robotersysteme/arme/caesar.

[DLRb] DLR. Rollin’ Justin. [letzter Zugriff: 2025-03-06]. URL: https://www.dlr.de/de/
rm/forschung/robotersysteme/humanoide/rollin-justin.

[Eth] EtherCAT Technology Group. EtherCAT Technology. https://www.ethercat.
org/en/technology.html. [letzter Zugriff: 2025-01-27].

[Ger] Gertech. ESP32 Specification Sheet. [letzter Zugriff: 2025-02-27]. URL: https:
//gertech.se/gertech/files/ESP32_Specification.pdf.

[gmb] acontis technologies gmbh. What is the EtherCAT Communication Protocol.
https://www.acontis.com/en/what-is-ethercat-communication-protocol.html. [letz-
ter Zugriff: 2025-02-04].

[IEE94] IEEE. “Real-time computing: a new discipline of computer science and enginee-
ring - Proceedings of the IEEE”. In: (1994). [letzter Zugriff: 2025-01-28].

[Mäc04] Dr. Michael Mächtel. Echtzeitsysteme - Script zur Vorlesung an der FH München.
Version 1.21. 2004.

[MBe] Deep Blue MBedded. STM32 Timer Interrupt HAL Example – Timer Mode LAB.
[letzter Zugriff: 2025-02-03]. URL: https://deepbluembedded.com/stm32-
timer-interrupt-hal-example-timer-mode-lab/.

[STMa] STMicroelectronics. STM32G4 - NVIC. [letzter Zugriff: 2025-03-11]. URL: https:
//www.st.com/resource/en/product_training/STM32G4-System-Nested_

Vectored_Interrupt_Control_NVIC.pdf.

[STMb] STMicroelectronics. STM32H747/757 Overview. [letzter Zugriff: 2025-02-27].
URL: https : / / www . st . com / en / microcontrollers - microprocessors /

stm32h747-757.html.

[STM20] STMicroelectronics. UM2411 User manual Discovery kit with STM32H747XI MCU.
2020.

[STM23] STMicroelectronics. RM0399 Reference Manual STM32H745/755 and STM32H747/757
advanced Arm®-based 32-bit MCUs. 2023.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
iii

https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.dlr.de/de/rm/forschung/robotersysteme/arme/caesar
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://www.dlr.de/de/rm/forschung/robotersysteme/humanoide/rollin-justin
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://gertech.se/gertech/files/ESP32_Specification.pdf
https://gertech.se/gertech/files/ESP32_Specification.pdf
https://deepbluembedded.com/stm32-timer-interrupt-hal-example-timer-mode-lab/
https://deepbluembedded.com/stm32-timer-interrupt-hal-example-timer-mode-lab/
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/resource/en/product_training/STM32G4-System-Nested_Vectored_Interrupt_Control_NVIC.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32h747-757.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h747-757.html

iv Literatur

[Tan09] Andrew S. Tanenbaum. Modern Operating Systems. Pearson Education Inc.,
2009.

[Teca] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: All-
gemein FMMU / SM. [letzter Zugriff: 2025-01-27]. URL: https://infosys.
beckhoff.com/index.php?content=../content/1031/tc3_io_intro/

4981170059.html&id=.

[Tecb] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: All-
gemein TwinCAT 3 | I/O. [letzter Zugriff: 2025-01-28]. URL: https://infosys.
beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%

7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=.

[Tecc] Beckhoff New Automation Technology. EtherCAT System-Dokumentation: Ether-
CAT State Machine. [letzter Zugriff: 2025-01-28]. URL: https : / / infosys .

beckhoff . com / index . php ? content = . . /content / 1031 / ek1110 - 004x /

1036980875.html&id=.

[Tho05] J.-P. Thomesse. “Fieldbus Technology in Industrial Automation”. In: Proceedings
of the IEEE 93.6 (2005), S. 1073–1101. DOI: 10.1109/JPROC.2005.849724.

[Wil05] R. Williams. Real-Time Systems Development. Chantilly: Elsevier Science & Tech-
nology, Okt. 2005.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3_io_intro/4981170059.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tc3%5Ctextunderscore%7B%7Dio%5Ctextunderscore%7B%7Dintro/1257993099.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/ek1110-004x/1036980875.html&id=
https://doi.org/10.1109/JPROC.2005.849724

Appendix

A. Vollständiger Log-Output EtherCAT StartUP
Testaufbau 1

Der folgende Auszug zeigt die Log-Outputs des MainDevices via USART1 zu Testaufbau
1 (s. Abschnitt 5.1.2). Diese wurde an einem per USB angeschlossenen PC via Minicom
aufgenommen. Es zeigt den kompletten Startup des EtherCAT Busses (Z. 1 - 282) mit drei
angeschlossenen SubDevices. Die Zeilen 283 - 288 werden dann im Loop mit aktualisierten
Werten bzw. Zeiten ausgegeben (s. Z. 289 - 293).

1 Welcome to EtherCAT on bare-metal STM32!

2 MASTER_OPEN : libethercat version : 0.5.1

3 MASTER_OPEN : MAX_SLAVES : 16

4 MASTER_OPEN : MAX_GROUPS : 2

5 MASTER_OPEN : MAX_PDLEN : 3036

6 MASTER_OPEN : MAX_MBX_ENTRIES : 16

7 MASTER_OPEN : MAX_INIT_CMD_DATA : 128

8 MASTER_OPEN : MAX_SLAVE_FMMU : 8

9 MASTER_OPEN : MAX_SLAVE_SM : 8

10 MASTER_OPEN : MAX_DATAGRAMS : 10

11 MASTER_OPEN : MAX_EEPROM_CAT_SM : 8

12 MASTER_OPEN : MAX_EEPROM_CAT_FMMU : 8

13 MASTER_OPEN : MAX_EEPROM_CAT_PDO : 16

14 MASTER_OPEN : MAX_EEPROM_CAT_PDO_ENTRIES : 8

15 MASTER_OPEN : MAX_EEPROM_CAT_STRINGS : 16

16 MASTER_OPEN : MAX_EEPROM_CAT_DC : 8

17 MASTER_OPEN : MAX_STRING_LEN : 128

18 MASTER_OPEN : MAX_DATA : 4096

19 MASTER_OPEN : MAX_DS402_SUBDEVS : 2

20 MASTER_OPEN : MAX_COE_EMERGENCIES : 10

21 MASTER_OPEN : MAX_COE_EMERGENCY_MSG_LEN : 32

22 MASTER_OPEN : Master struct needs 156592 bytes

23

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices
I

II Appendix

24 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

25 MASTER_SET_STATE : switching from EC_STATE_UNKNOWN to EC_STATE_INIT

26 MASTER_SCAN : slave 0: auto inc 0, fixed 1000

27 MASTER_SCAN : slave 1: auto inc -1, fixed 1001

28 MASTER_SCAN : slave 2: auto inc -2, fixed 1002

29 MASTER_SCAN : found 3 ethercat slaves

30 MASTER_SCAN : slave 0 is directly connected to slave -1

31 MASTER_SCAN : slave 0: port 0 is MII/RMII/RGMII

32 MASTER_SCAN : slave 0: port 1 is EBUS

33 MASTER_SCAN : slave 0: port 2 is MII/RMII/RGMII

34 MASTER_SCAN : slave 1 is directly connected to slave 0

35 MASTER_SCAN : slave 1: port 0 is EBUS

36 MASTER_SCAN : slave 1: port 1 is EBUS

37 MASTER_SCAN : slave 1: port 3 is not configured (SII EEPROM)

38 MASTER_SCAN : slave 2 is directly connected to slave 0

39 MASTER_SCAN : slave 2: port 0 is MII/RMII/RGMII

40 MASTER_SCAN : slave 2: port 1 is MII/RMII/RGMII

41 EC_STATE_INIT : slave 0, with_group 0, assigned -1

42 EC_STATE_INIT : setting state for slave 0

43 INIT_2_INIT : slave 0 executing transition 101

44 INIT_2_INIT : slave 0 rewriting fixed address

45 INIT_2_INIT : slave 0 disable dcs

46 INIT_2_INIT : slave 0 get number of sm

47 INIT_2_INIT : slave 0 get number of fmmu

48 INIT_2_INIT : slave 0: pdi ctrl 0x0D00, fmmus 8, syncm 8, features 0xFC

49 EEPROM_STRINGS : slave 0: cat_len 34

50 EEPROM_STRINGS : slave 0: stored strings 4

51 EEPROM_STRINGS : (S) string 0, length 6 : EK1100

52 EEPROM_STRINGS : (S) string 1, length 8 : SystemBk

53 EEPROM_STRINGS : (S) string 2, length 14 : System Koppler

54 EEPROM_STRINGS : (S) string 3, length 34 : EK1100 EtherCAT-Koppler (2A ←↩

E-Bus)

55 EEPROM_GENERAL : slave 0:

56 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 4

57 INIT_2_INIT : slave 0: vendor 0x00000002, product 0x72100946, mbx 0x0000

58 INIT_2_INIT : slave 0: INIT state requested

59 INIT_2_INIT : slave 0: state 1, act_state 1, wkc 1

60 INIT_2_INIT : slave 0: INIT state reached

61 EC_STATE_INIT : slave 1, with_group 0, assigned -1

62 EC_STATE_INIT : setting state for slave 1

63 INIT_2_INIT : slave 1 executing transition 101

64 INIT_2_INIT : slave 1 rewriting fixed address

65 INIT_2_INIT : slave 1 disable dcs

66 INIT_2_INIT : slave 1 get number of sm

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 1 III

67 INIT_2_INIT : slave 1 get number of fmmu

68 INIT_2_INIT : slave 1: pdi ctrl 0x0104, fmmus 3, syncm 4, features 0x1FC

69 EEPROM_STRINGS : slave 1: cat_len 85

70 EEPROM_STRINGS : slave 1: stored strings 13

71 EEPROM_STRINGS : (S) string 0, length 6 : EL2008

72 EEPROM_STRINGS : (S) string 1, length 6 : DigOut

73 EEPROM_STRINGS : (S) string 2, length 33 : Digitale Ausgangsklemmen (EL2xxx)

74 EEPROM_STRINGS : (S) string 3, length 33 : EL2008 8K. Dig. Ausgang 24V, 0.5A

75 EEPROM_STRINGS : (S) string 4, length 9 : Channel 1

76 EEPROM_STRINGS : (S) string 5, length 6 : Output

77 EEPROM_STRINGS : (S) string 6, length 9 : Channel 2

78 EEPROM_STRINGS : (S) string 7, length 9 : Channel 3

79 EEPROM_STRINGS : (S) string 8, length 9 : Channel 4

80 EEPROM_STRINGS : (S) string 9, length 9 : Channel 5

81 EEPROM_STRINGS : (S) string 10, length 9 : Channel 6

82 EEPROM_STRINGS : (S) string 11, length 9 : Channel 7

83 EEPROM_STRINGS : (S) string 12, length 9 : Channel 8

84 EEPROM_GENERAL : slave 1:

85 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 4

86 EEPROM_FMMU : slave 1: entries 1

87 EEPROM_FMMU : fmmu0, type 1

88 EEPROM_SM : slave 1: entries 1

89 EEPROM_SM : sm0 adr 0xF00, len 0, flags 0x90044

90 EEPROM_RXPDO : slave 1:

91 EEPROM_RXPDO : 0x1600, entries 1

92 EEPROM_RXPDO : 0x1600: 0 -> 0x7000

93 EEPROM_RXPDO : 0x1601, entries 1

94 EEPROM_RXPDO : 0x1601: 0 -> 0x7010

95 EEPROM_RXPDO : 0x1602, entries 1

96 EEPROM_RXPDO : 0x1602: 0 -> 0x7020

97 EEPROM_RXPDO : 0x1603, entries 1

98 EEPROM_RXPDO : 0x1603: 0 -> 0x7030

99 EEPROM_RXPDO : 0x1604, entries 1

100 EEPROM_RXPDO : 0x1604: 0 -> 0x7040

101 EEPROM_RXPDO : 0x1605, entries 1

102 EEPROM_RXPDO : 0x1605: 0 -> 0x7050

103 EEPROM_RXPDO : 0x1606, entries 1

104 EEPROM_RXPDO : 0x1606: 0 -> 0x7060

105 EEPROM_RXPDO : 0x1607, entries 1

106 EEPROM_RXPDO : 0x1607: 0 -> 0x7070

107 INIT_2_INIT : slave 1: vendor 0x00000002, product 0x131608658, mbx 0x0000

108 INIT_2_INIT : slave 1: INIT state requested

109 INIT_2_INIT : slave 1: state 1, act_state 1, wkc 1

110 INIT_2_INIT : slave 1: INIT state reached

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

IV Appendix

111 EC_STATE_INIT : slave 2, with_group 0, assigned -1

112 EC_STATE_INIT : setting state for slave 2

113 INIT_2_INIT : slave 2 executing transition 101

114 INIT_2_INIT : slave 2 rewriting fixed address

115 INIT_2_INIT : slave 2 disable dcs

116 INIT_2_INIT : slave 2 get number of sm

117 INIT_2_INIT : slave 2 get number of fmmu

118 INIT_2_INIT : slave 2: pdi ctrl 0x0C05, fmmus 8, syncm 8, features 0xFC

119 EEPROM_GENERAL : slave 2:

120 EEPROM_GENERAL : group_idx 0, img_idx 0, order_idx 0, name_idx 0

121 EEPROM_FMMU : slave 2: entries 1

122 EEPROM_FMMU : fmmu0, type 1

123 EEPROM_FMMU : fmmu1, type 2

124 EEPROM_SM : slave 2: entries 4

125 EEPROM_SM : sm0 adr 0x1800, len 140, flags 0x10026

126 EEPROM_SM : sm1 adr 0x1900, len 140, flags 0x10022

127 EEPROM_SM : sm2 adr 0x1100, len 32, flags 0x10064

128 EEPROM_SM : sm3 adr 0x1180, len 32, flags 0x10020

129 INIT_2_INIT : slave 2: vendor 0x00000154, product 0x00198948, mbx 0x000E

130 INIT_2_INIT : slave 2: INIT state requested

131 INIT_2_INIT : slave 2: state 1, act_state 1, wkc 1

132 INIT_2_INIT : slave 2: INIT state reached

133
134 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

135 MASTER_SET_STATE : switching from EC_STATE_INIT to EC_STATE_PREOP

136 EC_STATE_PREOP : slave 0, with_group 0, assigned -1

137 EC_STATE_PREOP : setting state for slave 0

138 INIT_2_PREOP : slave 0 executing transition 102

139 INIT_2_PREOP : slave 0, vendor 0x00000002, product 0x72100946, mbx 0x0000

140 INIT_2_PREOP : slave 0: PRE-OPERATIONAL state requested

141 INIT_2_PREOP : slave 0: state 2, act_state 2, wkc 1

142 INIT_2_PREOP : slave 0: PRE-OPERATIONAL state reached

143 EC_STATE_PREOP : slave 1, with_group 0, assigned -1

144 EC_STATE_PREOP : setting state for slave 1

145 INIT_2_PREOP : slave 1 executing transition 102

146 INIT_2_PREOP : slave 1, vendor 0x00000002, product 0x131608658, mbx 0x0000

147 INIT_2_PREOP : slave 1: PRE-OPERATIONAL state requested

148 INIT_2_PREOP : slave 1: state 2, act_state 2, wkc 1

149 INIT_2_PREOP : slave 1: PRE-OPERATIONAL state reached

150 EC_STATE_PREOP : slave 2, with_group 0, assigned -1

151 EC_STATE_PREOP : setting state for slave 2

152 INIT_2_PREOP : slave 2 executing transition 102

153 INIT_2_PREOP : slave 2, vendor 0x00000154, product 0x00198948, mbx 0x000E

154 MAILBOX_INIT : slave 2: initializing mailbox

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 1 V

155 COE_INIT : slave 2: initializing CoE mailbox.

156 INIT_2_PREOP : slave 2: sm0, adr 0x1800, len 140, flags 0x00065574

157 INIT_2_PREOP : slave 2: sm1, adr 0x1900, len 140, flags 0x00065570

158 INIT_2_PREOP : slave 2: PRE-OPERATIONAL state requested

159 INIT_2_PREOP : slave 2: state 2, act_state 2, wkc 1

160 INIT_2_PREOP : slave 2: PRE-OPERATIONAL state reached

161
162 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

163 MASTER_SET_STATE : switching from EC_STATE_PREOP to EC_STATE_SAFEOP

164 DC_CONFIG : master packet duration 21730 ns

165 DC_CONFIG : slave 0: receive time port 0 is 1172201482

166 DC_CONFIG : slave 0: receive time port 1 is 1172201792

167 DC_CONFIG : slave 0: receive time port 2 is 1172202962

168 DC_CONFIG : slave 0: available_ports 0x7, entry_port 0

169 DC_CONFIG : initial dc_sto 0, rtc_sto 1019593445

170 DC_CONFIG : slave 0: parent -1

171 DISTRIBUTED_CLOCK : slave 0: delay_childs 1480, delay_slave 0, ←↩

delay_parent_previous_slaves 0, deDC_CONFIG : slave 0: sysdelay 0

172 DC_CONFIG : slave 1: receive time port 0 is 1180753012

173 DC_CONFIG : slave 1: available_ports 0x1, entry_port 0

174 DC_CONFIG : slave 1: parent 0

175 DISTRIBUTED_CLOCK : slave 1: delay_childs 0, delay_slave 165, ←↩

delay_parent_previous_slaves 0, delay_DC_CONFIG : slave 1: sysdelay 165

176 DC_CONFIG : slave 2: receive time port 0 is 1825259170

177 DC_CONFIG : slave 2: available_ports 0x1, entry_port 0

178 DC_CONFIG : slave 2: parent 0

179 DISTRIBUTED_CLOCK : slave 2: delay_childs 0, delay_slave 595, ←↩

delay_parent_previous_slaves 310, delDC_CONFIG : slave 2: sysdelay 905

180 EC_STATE_SAFEOP : prepare state transition for slave 0

181 PREOP_2_SAFEOP : slave 0: sending init cmds

182 EC_STATE_SAFEOP : generate mapping for slave 0

183 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen0 0

184 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen1 0

185 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen2 0

186 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen3 0

187 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen4 0

188 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen5 0

189 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen6 0

190 SLAVE_GENERATE_MAPPI: slave 0: txpdos 0, rxpdos 0, bitlen7 0

191 EC_STATE_SAFEOP : prepare state transition for slave 1

192 PREOP_2_SAFEOP : slave 1: sending init cmds

193 EC_STATE_SAFEOP : generate mapping for slave 1

194 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

195 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

VI Appendix

196 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

197 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

198 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

199 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

200 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

201 SLAVE_GENERATE_MAPPI: slave 1: got rxpdo bit_len 1, sm 0

202 SLAVE_GENERATE_MAPPI: slave 1: txpdos 0, rxpdos 8, bitlen0 8

203 SLAVE_GENERATE_MAPPI: slave 1: sm0 length bits 8, bytes 1

204 SLAVE_GENERATE_MAPPI: slave 1: txpdos 0, rxpdos 0, bitlen1 0

205 SLAVE_GENERATE_MAPPI: slave 1: txpdos 0, rxpdos 0, bitlen2 0

206 SLAVE_GENERATE_MAPPI: slave 1: txpdos 0, rxpdos 0, bitlen3 0

207 EC_STATE_SAFEOP : prepare state transition for slave 2

208 PREOP_2_SAFEOP : slave 2: sending init cmds

209 EC_STATE_SAFEOP : generate mapping for slave 2

210 COE_MAPPING : slave 2: sm20x7186count 1

211 COE_MAPPING : slave 2: 0x7186/1 mapped pdo 0x1600

212 COE_MAPPING : pdo: 0x1600 count 3

213 COE_MAPPING : mapped entry 0x24698/ 0-> 32bits

214 COE_MAPPING : mapped entry 0x24830/ 1-> 32bits

215 COE_MAPPING : mapped entry 0x24640/ 0-> 16bits

216 COE_MAPPING : slave 2: sm2length bits 80, bytes 10

217 COE_MAPPING : slave 2: sm30x7187count 1

218 COE_MAPPING : slave 2: 0x7187/1 mapped pdo 0x1A00

219 COE_MAPPING : pdo: 0x1A00 count 3

220 COE_MAPPING : mapped entry 0x24676/ 0-> 32bits

221 COE_MAPPING : mapped entry 0x24829/ 0-> 32bits

222 COE_MAPPING : mapped entry 0x24641/ 0-> 16bits

223 COE_MAPPING : slave 2: sm3length bits 80, bytes 10

224 EC_STATE_PREOP : group 0: using LRW, support from all slaves in group

225 CREATE_LOGICAL_MAPPI: group 0: pd out 0x00010000 11 bytes, in 0x0001000b ←↩

11 bytes, lrw window 11

226 CREATE_LOGICAL_MAPPI: group 0: expected working counter 0

227 CREATE_LOGICAL_MAPPI: group 0: expected working counter 2

228 CREATE_LOGICAL_MAPPI: group 0: expected working counter 5

229 EC_STATE_SAFEOP : slave 0, with_group 1, assigned 0

230 EC_STATE_SAFEOP : setting state for slave 0

231 PREOP_2_SAFEOP : slave 0 executing transition 204

232 PREOP_2_SAFEOP : slave 0: configuring actiavtion reg. 3, cycle_times ←↩

1000000/0, cycle_shift 0

233 DC_SYNC : slave 0: dc_systime 0.0 s, dc_start 1.0 s, slv dc_s

234 DC_SYNC : slave 0: cycletime_0 1000000, cycletime_1 0, dc_active 3

235 PREOP_2_SAFEOP : slave 0: SAFE-OPERATIONAL state requested

236 PREOP_2_SAFEOP : slave 0: state 4, act_state 4, wkc 1

237 PREOP_2_SAFEOP : slave 0: SAFE-OPERATIONAL state reached

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 1 VII

238 EC_STATE_SAFEOP : slave 1, with_group 1, assigned 0

239 EC_STATE_SAFEOP : setting state for slave 1

240 PREOP_2_SAFEOP : slave 1 executing transition 204

241 PREOP_2_SAFEOP : slave 1: configuring actiavtion reg. 3, cycle_times ←↩

1000000/0, cycle_shift 0DC_SYNC : slave 1: dc_systime 0.0 s, dc_start ←↩

1.0 s, slv dc_s

242 DC_SYNC : slave 1: cycletime_0 1000000, cycletime_1 0, dc_active 3

243 PREOP_2_SAFEOP : slave 1: sm0, adr 0x0F00, len 1, flags 0x00589892

244 PREOP_2_SAFEOP : slave 1: log00x00065536/0/7, len 1, phys 0x0F00/0, type ←↩

2, active 1

245 PREOP_2_SAFEOP : slave 1: SAFE-OPERATIONAL state requested

246 PREOP_2_SAFEOP : slave 1: state 4, act_state 4, wkc 1

247 PREOP_2_SAFEOP : slave 1: SAFE-OPERATIONAL state reached

248 EC_STATE_SAFEOP : slave 2, with_group 1, assigned 0

249 EC_STATE_SAFEOP : setting state for slave 2

250 PREOP_2_SAFEOP : slave 2 executing transition 204

251 PREOP_2_SAFEOP : slave 2: configuring actiavtion reg. 3, cycle_times ←↩

1000000/0, cycle_shift 0DC_SYNC : slave 2: dc_systime 0.0 s, dc_start ←↩

1.0 s, slv dc_s

252 DC_SYNC : slave 2: cycletime_0 1000000, cycletime_1 0, dc_active 3

253 PREOP_2_SAFEOP : slave 2: sm2, adr 0x1100, len 10, flags 0x00065636

254 PREOP_2_SAFEOP : slave 2: sm3, adr 0x1180, len 10, flags 0x00065568

255 PREOP_2_SAFEOP : slave 2: log00x00065537/0/7, len 10, phys 0x1100/0, type ←↩

2, active 1

256 PREOP_2_SAFEOP : slave 2: log10x00065537/0/7, len 10, phys 0x1180/0, type ←↩

1, active 1

257 PREOP_2_SAFEOP : slave 2: log20x150994944/0/0, len 1, phys 0x080D/3, type ←↩

1, active 1

258 PREOP_2_SAFEOP : slave 2: SAFE-OPERATIONAL state requested

259 PREOP_2_SAFEOP : slave 2: state 4, act_state 4, wkc 1

260 PREOP_2_SAFEOP : slave 2: SAFE-OPERATIONAL state reached

261
262 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

263 MASTER_SET_STATE : switching from EC_STATE_SAFEOP to EC_STATE_OP

264 EC_STATE_OP : slave 0, with_group 1, assigned 0

265 EC_STATE_OP : setting state for slave 0

266 SAFEOP_2_OP : slave 0 executing transition 408

267 SAFEOP_2_OP : slave 0: OPERATIONAL state requested

268 SAFEOP_2_OP : slave 0: state 8, act_state 8, wkc 1

269 SAFEOP_2_OP : slave 0: OPERATIONAL state reached

270 EC_STATE_OP : slave 1, with_group 1, assigned 0

271 EC_STATE_OP : setting state for slave 1

272 SAFEOP_2_OP : slave 1 executing transition 408

273 SAFEOP_2_OP : slave 1: OPERATIONAL state requested

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

VIII Appendix

274 SAFEOP_2_OP : slave 1: state 8, act_state 8, wkc 1

275 SAFEOP_2_OP : slave 1: OPERATIONAL state reached

276 EC_STATE_OP : slave 2, with_group 1, assigned 0

277 EC_STATE_OP : setting state for slave 2

278 SAFEOP_2_OP : slave 2 executing transition 408

279 SAFEOP_2_OP : slave 2: OPERATIONAL state requested

280 SAFEOP_2_OP : slave 2: state 8, act_state 8, wkc 0

281 SAFEOP_2_OP : slave 2: OPERATIONAL state reached

282
283 ====== OPERATIONAL ======

284 Frame len 36 bytes/ 2.9 us

285 Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)

286 Duration +34.1 us (jitter avg +0.3 us, max +6.3 us)

287 Round trip +31.6 us (jitter avg +0.3 us, max +5.8 us)

288 DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

289 Frame len 36 bytes/ 2.9 us

290 Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)

291 Duration +34.1 us (jitter avg +0.2 us, max +2.4 us)

292 Round trip +31.6 us (jitter avg +0.2 us, max +1.9 us)

293 DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

294 Frame len 36 bytes/ 2.9 us

Codeauszug 1: EtherCAT Log Output Testaufbau 1

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 2 IX

B. Vollständiger Log-Output EtherCAT StartUP
Testaufbau 2

Der folgende Auszug zeigt die Log-Outputs des MainDevices via USART1 zu Testaufbau
1 (s. Abschnitt 5.1.2). Diese wurde an einem per USB angeschlossenen PC via Minicom
aufgenommen. Es zeigt den kompletten Startup des EtherCAT Busses (Z. 1 - 282) mit drei
angeschlossenen SubDevices. Die Zeilen 283 - 288 werden dann im Loop mit aktualisierten
Werten bzw. Zeiten ausgegeben (s. Z. 289 - 293).

1 Welcome to EtherCAT on bare-metal STM32!

2 MASTER_OPEN : libethercat version : 0.5.1

3 MASTER_OPEN : MAX_SLAVES : 16

4 MASTER_OPEN : MAX_GROUPS : 2

5 MASTER_OPEN : MAX_PDLEN : 3036

6 MASTER_OPEN : MAX_MBX_ENTRIES : 16

7 MASTER_OPEN : MAX_INIT_CMD_DATA : 128

8 MASTER_OPEN : MAX_SLAVE_FMMU : 8

9 MASTER_OPEN : MAX_SLAVE_SM : 8

10 MASTER_OPEN : MAX_DATAGRAMS : 10

11 MASTER_OPEN : MAX_EEPROM_CAT_SM : 8

12 MASTER_OPEN : MAX_EEPROM_CAT_FMMU : 8

13 MASTER_OPEN : MAX_EEPROM_CAT_PDO : 16

14 MASTER_OPEN : MAX_EEPROM_CAT_PDO_ENTRIES : 8

15 MASTER_OPEN : MAX_EEPROM_CAT_STRINGS : 16

16 MASTER_OPEN : MAX_EEPROM_CAT_DC : 8

17 MASTER_OPEN : MAX_STRING_LEN : 128

18 MASTER_OPEN : MAX_DATA : 4096

19 MASTER_OPEN : MAX_DS402_SUBDEVS : 2

20 MASTER_OPEN : MAX_COE_EMERGENCIES : 10

21 MASTER_OPEN : MAX_COE_EMERGENCY_MSG_LEN : 32

22 MASTER_OPEN : Master struct needs 156592 bytes

23
24 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

25 MASTER_SET_STATE : switching from EC_STATE_UNKNOWN to EC_STATE_INIT

26 MASTER_SCAN : slave 0: auto inc 0, fixed 1000

27 MASTER_SCAN : slave 1: auto inc -1, fixed 1001

28 MASTER_SCAN : slave 2: auto inc -2, fixed 1002

29 MASTER_SCAN : slave 3: auto inc -3, fixed 1003

30 MASTER_SCAN : found 4 ethercat slaves

31 MASTER_SCAN : slave 0 is directly connected to slave -1

32 MASTER_SCAN : slave 0: port 0 is MII/RMII/RGMII

33 MASTER_SCAN : slave 0: port 1 is MII/RMII/RGMII

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

X Appendix

34 MASTER_SCAN : slave 1 is directly connected to slave 0

35 MASTER_SCAN : slave 1: port 0 is MII/RMII/RGMII

36 MASTER_SCAN : slave 1: port 1 is MII/RMII/RGMII

37 MASTER_SCAN : slave 2 is directly connected to slave 1

38 MASTER_SCAN : slave 2: port 0 is MII/RMII/RGMII

39 MASTER_SCAN : slave 2: port 1 is MII/RMII/RGMII

40 MASTER_SCAN : slave 3 is directly connected to slave 2

41 MASTER_SCAN : slave 3: port 0 is MII/RMII/RGMII

42 MASTER_SCAN : slave 3: port 1 is MII/RMII/RGMII

43 EC_STATE_INIT : slave 0, with_group 0, assigned -1

44 EC_STATE_INIT : setting state for slave 0

45 INIT_2_INIT : slave 0 executing transition 101

46 INIT_2_INIT : slave 0 rewriting fixed address

47 INIT_2_INIT : slave 0 disable dcs

48 INIT_2_INIT : slave 0 get number of sm

49 INIT_2_INIT : slave 0 get number of fmmu

50 INIT_2_INIT : slave 0: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

51 EEPROM_STRINGS : slave 0: cat_len 67

52 EEPROM_STRINGS : slave 0: stored strings 10

53 EEPROM_STRINGS : (S) string 0, length 31 : FC1121 EtherCAT PCIe slave card

54 EEPROM_STRINGS : (S) string 1, length 6 : FCcard

55 EEPROM_STRINGS : (S) string 2, length 16 : EtherCAT PC card

56 EEPROM_STRINGS : (S) string 3, length 7 : FreeRun

57 EEPROM_STRINGS : (S) string 4, length 2 : DC

58 EEPROM_STRINGS : (S) string 5, length 9 : IO Inputs

59 EEPROM_STRINGS : (S) string 6, length 21 : Device Status Mapping

60 EEPROM_STRINGS : (S) string 7, length 10 : TxPdoState

61 EEPROM_STRINGS : (S) string 8, length 11 : TxPdoToggle

62 EEPROM_STRINGS : (S) string 9, length 10 : IO Outputs

63 EEPROM_GENERAL : slave 0:

64 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 1

65 EEPROM_FMMU : slave 0: entries 2

66 EEPROM_FMMU : fmmu0, type 1

67 EEPROM_FMMU : fmmu1, type 2

68 EEPROM_FMMU : fmmu2, type 3

69 EEPROM_SM : slave 0: entries 4

70 EEPROM_SM : sm0 adr 0x1000, len 1024, flags 0x10026

71 EEPROM_SM : sm1 adr 0x1400, len 1024, flags 0x10022

72 EEPROM_SM : sm2 adr 0x2400, len 0, flags 0x64

73 EEPROM_SM : sm3 adr 0x1800, len 0, flags 0x20

74 EEPROM_TXPDO : slave 0:

75 EEPROM_TXPDO : 0x1A00, entries 0

76 EEPROM_TXPDO : 0x1A80, entries 4

77 EEPROM_TXPDO : 0x1A80: 0 -> 0x0000

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 2 XI

78 EEPROM_TXPDO : 0x1A80: 1 -> 0x0000

79 EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

80 EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

81 EEPROM_RXPDO : slave 0:

82 EEPROM_RXPDO : 0x1600, entries 0

83 EEPROM_DC : slave 0:

84 EEPROM_DC : cycle_time_0 0, shift_time_0 0, shift_time_1 0, ←↩

sync_0_cycle_factor 0, sync_1_cycle_facEEPROM_DC : cycle_time_0 0, ←↩

shift7

85 INIT_2_INIT : slave 0: INIT state requested

86 INIT_2_INIT : slave 0: state 1, act_state 1, wkc 1

87 INIT_2_INIT : slave 0: INIT state reached

88 EC_STATE_INIT : slave 1, with_group 0, assigned -1

89 EC_STATE_INIT : setting state for slave 1

90 INIT_2_INIT : slave 1 executing transition 101

91 INIT_2_INIT : slave 1 rewriting fixed address

92 INIT_2_INIT : slave 1 disable dcs

93 INIT_2_INIT : slave 1 get number of sm

94 INIT_2_INIT : slave 1 get number of fmmu

95 INIT_2_INIT : slave 1: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

96 EEPROM_STRINGS : slave 1: cat_len 67

97 EEPROM_STRINGS : slave 1: stored strings 10

98 EEPROM_STRINGS : (S) string 0, length 31 : FC1121 EtherCAT PCIe slave card

99 EEPROM_STRINGS : (S) string 1, length 6 : FCcard

100 EEPROM_STRINGS : (S) string 2, length 16 : EtherCAT PC card

101 EEPROM_STRINGS : (S) string 3, length 7 : FreeRun

102 EEPROM_STRINGS : (S) string 4, length 2 : DC

103 EEPROM_STRINGS : (S) string 5, length 9 : IO Inputs

104 EEPROM_STRINGS : (S) string 6, length 21 : Device Status Mapping

105 EEPROM_STRINGS : (S) string 7, length 10 : TxPdoState

106 EEPROM_STRINGS : (S) string 8, length 11 : TxPdoToggle

107 EEPROM_STRINGS : (S) string 9, length 10 : IO Outputs

108 EEPROM_GENERAL : slave 1:

109 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 1

110 EEPROM_FMMU : slave 1: entries 2

111 EEPROM_FMMU : fmmu0, type 1

112 EEPROM_FMMU : fmmu1, type 2

113 EEPROM_FMMU : fmmu2, type 3

114 EEPROM_SM : slave 1: entries 4

115 EEPROM_SM : sm0 adr 0x1000, len 1024, flags 0x10026

116 EEPROM_SM : sm1 adr 0x1400, len 1024, flags 0x10022

117 EEPROM_SM : sm2 adr 0x2400, len 0, flags 0x64

118 EEPROM_SM : sm3 adr 0x1800, len 0, flags 0x20

119 EEPROM_TXPDO : slave 1:

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XII Appendix

120 EEPROM_TXPDO : 0x1A00, entries 0

121 EEPROM_TXPDO : 0x1A80, entries 4

122 EEPROM_TXPDO : 0x1A80: 0 -> 0x0000

123 EEPROM_TXPDO : 0x1A80: 1 -> 0x0000

124 EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

125 EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

126 EEPROM_RXPDO : slave 1:

127 EEPROM_RXPDO : 0x1600, entries 0

128 EEPROM_DC : slave 1:

129 EEPROM_DC : cycle_time_0 0, shift_time_0 0, shift_time_1 0, ←↩

sync_0_cycle_factor 0, sync_1_cycle_factor 0, aEEPROM_DC : ←↩

cycle_time_0 7

130 INIT_2_INIT : slave 1: INIT state requested

131 INIT_2_INIT : slave 1: state 1, act_state 1, wkc 1

132 INIT_2_INIT : slave 1: INIT state reached

133 EC_STATE_INIT : slave 2, with_group 0, assigned -1

134 EC_STATE_INIT : setting state for slave 2

135 INIT_2_INIT : slave 2 executing transition 101

136 INIT_2_INIT : slave 2 rewriting fixed address

137 INIT_2_INIT : slave 2 disable dcs

138 INIT_2_INIT : slave 2 get number of sm

139 INIT_2_INIT : slave 2 get number of fmmu

140 INIT_2_INIT : slave 2: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

141 EEPROM_STRINGS : slave 2: cat_len 67

142 EEPROM_STRINGS : slave 2: stored strings 10

143 EEPROM_STRINGS : (S) string 0, length 31 : FC1121 EtherCAT PCIe slave card

144 EEPROM_STRINGS : (S) string 1, length 6 : FCcard

145 EEPROM_STRINGS : (S) string 2, length 16 : EtherCAT PC card

146 EEPROM_STRINGS : (S) string 3, length 7 : FreeRun

147 EEPROM_STRINGS : (S) string 4, length 2 : DC

148 EEPROM_STRINGS : (S) string 5, length 9 : IO Inputs

149 EEPROM_STRINGS : (S) string 6, length 21 : Device Status Mapping

150 EEPROM_STRINGS : (S) string 7, length 10 : TxPdoState

151 EEPROM_STRINGS : (S) string 8, length 11 : TxPdoToggle

152 EEPROM_STRINGS : (S) string 9, length 10 : IO Outputs

153 EEPROM_GENERAL : slave 2:

154 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 1

155 EEPROM_FMMU : slave 2: entries 2

156 EEPROM_FMMU : fmmu0, type 1

157 EEPROM_FMMU : fmmu1, type 2

158 EEPROM_FMMU : fmmu2, type 3

159 EEPROM_SM : slave 2: entries 4

160 EEPROM_SM : sm0 adr 0x1000, len 1024, flags 0x10026

161 EEPROM_SM : sm1 adr 0x1400, len 1024, flags 0x10022

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 2 XIII

162 EEPROM_SM : sm2 adr 0x2400, len 0, flags 0x64

163 EEPROM_SM : sm3 adr 0x1800, len 0, flags 0x20

164 EEPROM_TXPDO : slave 2:

165 EEPROM_TXPDO : 0x1A00, entries 0

166 EEPROM_TXPDO : 0x1A80, entries 4

167 EEPROM_TXPDO : 0x1A80: 0 -> 0x0000

168 EEPROM_TXPDO : 0x1A80: 1 -> 0x0000

169 EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

170 EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

171 EEPROM_RXPDO : slave 2:

172 EEPROM_RXPDO : 0x1600, entries 0

173 EEPROM_DC : slave 2:

174 EEPROM_DC : cycle_time_0 0, shift_time_0 0, shift_time_1 0, ←↩

sync_0_cycle_factor 0, sync_1_cycle_factor 0, EEPROM_DC : ←↩

cycle_time_0 07

175 INIT_2_INIT : slave 2: INIT state requested

176 INIT_2_INIT : slave 2: state 1, act_state 1, wkc 1

177 INIT_2_INIT : slave 2: INIT state reached

178 EC_STATE_INIT : slave 3, with_group 0, assigned -1

179 EC_STATE_INIT : setting state for slave 3

180 INIT_2_INIT : slave 3 executing transition 101

181 INIT_2_INIT : slave 3 rewriting fixed address

182 INIT_2_INIT : slave 3 disable dcs

183 INIT_2_INIT : slave 3 get number of sm

184 INIT_2_INIT : slave 3 get number of fmmu

185 INIT_2_INIT : slave 3: pdi ctrl 0x0C80, fmmus 3, syncm 4, features 0x184

186 EEPROM_STRINGS : slave 3: cat_len 67

187 EEPROM_STRINGS : slave 3: stored strings 10

188 EEPROM_STRINGS : (S) string 0, length 31 : FC1121 EtherCAT PCIe slave card

189 EEPROM_STRINGS : (S) string 1, length 6 : FCcard

190 EEPROM_STRINGS : (S) string 2, length 16 : EtherCAT PC card

191 EEPROM_STRINGS : (S) string 3, length 7 : FreeRun

192 EEPROM_STRINGS : (S) string 4, length 2 : DC

193 EEPROM_STRINGS : (S) string 5, length 9 : IO Inputs

194 EEPROM_STRINGS : (S) string 6, length 21 : Device Status Mapping

195 EEPROM_STRINGS : (S) string 7, length 10 : TxPdoState

196 EEPROM_STRINGS : (S) string 8, length 11 : TxPdoToggle

197 EEPROM_STRINGS : (S) string 9, length 10 : IO Outputs

198 EEPROM_GENERAL : slave 3:

199 EEPROM_GENERAL : group_idx 2, img_idx 0, order_idx 1, name_idx 1

200 EEPROM_FMMU : slave 3: entries 2

201 EEPROM_FMMU : fmmu0, type 1

202 EEPROM_FMMU : fmmu1, type 2

203 EEPROM_FMMU : fmmu2, type 3

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XIV Appendix

204 EEPROM_SM : slave 3: entries 4

205 EEPROM_SM : sm0 adr 0x1000, len 1024, flags 0x10026

206 EEPROM_SM : sm1 adr 0x1400, len 1024, flags 0x10022

207 EEPROM_SM : sm2 adr 0x2400, len 0, flags 0x64

208 EEPROM_SM : sm3 adr 0x1800, len 0, flags 0x20

209 EEPROM_TXPDO : slave 3:

210 EEPROM_TXPDO : 0x1A00, entries 0

211 EEPROM_TXPDO : 0x1A80, entries 4

212 EEPROM_TXPDO : 0x1A80: 0 -> 0x0000

213 EEPROM_TXPDO : 0x1A80: 1 -> 0x0000

214 EEPROM_TXPDO : 0x1A80: 2 -> 0xF100

215 EEPROM_TXPDO : 0x1A80: 3 -> 0xF100

216 EEPROM_RXPDO : slave 3:

217 EEPROM_RXPDO : 0x1600, entries 0

218 EEPROM_DC : slave 3:

219 EEPROM_DC : cycle_time_0 0, shift_time_0 0, shift_time_1 0, ←↩

sync_0_cycle_factor 0, sync_1_cycle_factor 0, aEEPROM_DC : ←↩

cycle_time_0 7

220 INIT_2_INIT : slave 3: INIT state requested

221 INIT_2_INIT : slave 3: state 1, act_state 1, wkc 1

222 INIT_2_INIT : slave 3: INIT state reached

223
224 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

225 MASTER_SET_STATE : switching from EC_STATE_INIT to EC_STATE_PREOP

226 EC_STATE_PREOP : slave 0, with_group 0, assigned -1

227 EC_STATE_PREOP : setting state for slave 0

228 INIT_2_PREOP : slave 0 executing transition 102

229 INIT_2_PREOP : slave 0, vendor 0x00000002, product 0x73469026, mbx 0x0007

230 MAILBOX_INIT : slave 0: initializing mailbox

231 COE_INIT : slave 0: initializing CoE mailbox.

232 INIT_2_PREOP : slave 0: sm0, adr 0x1000, len 1024, flags 0x00065574

233 INIT_2_PREOP : slave 0: sm1, adr 0x1400, len 1024, flags 0x00065570

234 INIT_2_PREOP : slave 0: PRE-OPERATIONAL state requested

235 INIT_2_PREOP : slave 0: state 2, act_state 2, wkc 1

236 INIT_2_PREOP : slave 0: PRE-OPERATIONAL state reached

237 EC_STATE_PREOP : slave 1, with_group 0, assigned -1

238 EC_STATE_PREOP : setting state for slave 1

239 INIT_2_PREOP : slave 1 executing transition 102

240 INIT_2_PREOP : slave 1, vendor 0x00000002, product 0x73469026, mbx 0x0007

241 MAILBOX_INIT : slave 1: initializing mailbox

242 COE_INIT : slave 1: initializing CoE mailbox.

243 INIT_2_PREOP : slave 1: sm0, adr 0x1000, len 1024, flags 0x00065574

244 INIT_2_PREOP : slave 1: sm1, adr 0x1400, len 1024, flags 0x00065570

245 INIT_2_PREOP : slave 1: PRE-OPERATIONAL state requested

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Vollständiger Log-Output EtherCAT StartUP Testaufbau 2 XV

246 INIT_2_PREOP : slave 1: state 2, act_state 2, wkc 1

247 INIT_2_PREOP : slave 1: PRE-OPERATIONAL state reached

248 EC_STATE_PREOP : slave 2, with_group 0, assigned -1

249 EC_STATE_PREOP : setting state for slave 2

250 INIT_2_PREOP : slave 2 executing transition 102

251 INIT_2_PREOP : slave 2, vendor 0x00000002, product 0x73469026, mbx 0x0007

252 MAILBOX_INIT : slave 2: initializing mailbox

253 COE_INIT : slave 2: initializing CoE mailbox.

254 INIT_2_PREOP : slave 2: sm0, adr 0x1000, len 1024, flags 0x00065574

255 INIT_2_PREOP : slave 2: sm1, adr 0x1400, len 1024, flags 0x00065570

256 INIT_2_PREOP : slave 2: PRE-OPERATIONAL state requested

257 INIT_2_PREOP : slave 2: state 2, act_state 2, wkc 1

258 INIT_2_PREOP : slave 2: PRE-OPERATIONAL state reached

259 EC_STATE_PREOP : slave 3, with_group 0, assigned -1

260 EC_STATE_PREOP : setting state for slave 3

261 INIT_2_PREOP : slave 3 executing transition 102

262 INIT_2_PREOP : slave 3, vendor 0x00000002, product 0x73469026, mbx 0x0007

263 MAILBOX_INIT : slave 3: initializing mailbox

264 COE_INIT : slave 3: initializing CoE mailbox.

265 INIT_2_PREOP : slave 3: sm0, adr 0x1000, len 1024, flags 0x00065574

266 INIT_2_PREOP : slave 3: sm1, adr 0x1400, len 1024, flags 0x00065570

267 INIT_2_PREOP : slave 3: PRE-OPERATIONAL state requested

268 INIT_2_PREOP : slave 3: state 2, act_state 2, wkc 1

269 INIT_2_PREOP : slave 3: PRE-OPERATIONAL state reached

270
271 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

272 MASTER_SET_STATE : switching from EC_STATE_PREOP to EC_STATE_SAFEOP

273 DC_CONFIG : master packet duration DC_CONFIG : slaveDC_CONFIG : slave 0: ←↩

reDC_CONFIG : slave DC_CONFIG : initiDC_CONFIG

274 ====== STATE FINISHED ====== STARTING NEXT TRANSITION ======

275 MASTER_SET_STATE : switching from EC_STATE_SAFEOP to EC_STATE_OP

276 EC_STATE_OP : slave 0, with_group 1, assigned 0

277 EC_STATE_OP : setting state for slave 0

278 SAFEOP_2_OP : slave 0 executing transition 408

279 SAFEOP_2_OP : slave 0: OPERATIONAL state requested

280 SAFEOP_2_OP : slave 0: state 8, act_state 8, wkc 1

281 SAFEOP_2_OP : slave 0: OPERATIONAL state reached

282 EC_STATE_OP : slave 1, with_group 1, assigned 0

283 EC_STATE_OP : setting state for slave 1

284 SAFEOP_2_OP : slave 1 executing transition 408

285 SAFEOP_2_OP : slave 1: OPERATIONAL state requested

286 SAFEOP_2_OP : slave 1: state 8, act_state 8, wkc 1

287 SAFEOP_2_OP : slave 1: OPERATIONAL state reached

288 EC_STATE_OP : slave 2, with_group 1, assigned 0

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XVI Appendix

289 EC_STATE_OP : setting state for slave 2

290 SAFEOP_2_OP : slave 2 executing transition 408

291 SAFEOP_2_OP : slave 2: OPERATIONAL state requested

292 SAFEOP_2_OP : slave 2: state 8, act_state 8, wkc 1

293 SAFEOP_2_OP : slave 2: OPERATIONAL state reached

294 EC_STATE_OP : slave 3, with_group 1, assigned 0

295 EC_STATE_OP : setting state for slave 3

296 SAFEOP_2_OP : slave 3 executing transition 408

297 SAFEOP_2_OP : slave 3: OPERATIONAL state requested

298 SAFEOP_2_OP : slave 3: state 8, act_state 8, wkc 1

299 SAFEOP_2_OP : slave 3: OPERATIONAL state reached

300
301 ====== OPERATIONAL ======

302 Frame len 36 bytes/ 2.9 us

303 Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)

304 Duration +52.1 us (jitter avg +0.4 us, max +7.0 us)

305 Round trip +49.5 us (jitter avg +0.3 us, max +6.3 us)

306 DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

307 Frame len 36 bytes/ 2.9 us

308 Timer 1000.0 us (jitter avg +0.1 us, max +0.2 us)

309 Duration +52.1 us (jitter avg +0.3 us, max +2.6 us)

310 Round trip +49.4 us (jitter avg +0.3 us, max +2.3 us)

311 DC Diff +0.0 us, diffsum +0.0 ns, cycle_rate 1000000 ns

Codeauszug 2: EtherCAT Log Output Testaufbau 2

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Erstellte Dateien und Ordner XVII

C. Erstellte Dateien und Ordner

Die neu erstellten Files und Ordner sind im Git-Repository unter folgenden Pfaden zu finden:
GIT-Repo/stm32/eth_rx_tx/

../CM7/Core/libethercat/

– ../include/libethercat/hw_stm32.h

– ../src/hw_stm32.c

../CM7/Core/libosal/

– ../include/libosal/stm32/

* binary_semaphore.h

* condvar.h

* mq.h

* mutex.h

* osal.h

* semaphore.h

* shm.h

* spinlock.h

* task.h

* timer.h

– ../src/stm32/

* binary_semaphore.c

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XVIII Appendix

* condvar.c

* io.c

* mq.c

* mutex.c

* semaphore.c

* shm.c

* spinlock.c

* task.c

* timer.c

../CM7/Core/Inc/libethercat/config.h

../CM7/Core/Inc/libosal/config.h

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

Excluded Build-Files XIX

D. Excluded Build-Files

Folgende Files in der Ordnerstruktur wurden aus dem Build in der CubeIDE ausgeschlos-
sen:

../CM7/Core/libethercat/

– ../src/eoe.c

– ../src/foe.c

– ../src/soe.c

– ../src/hw_bpf.c

– ../src/hw_pikeos.c

– ../src/hw_sock_raw_mmaped.c

– ../src/hw_sock_raw.c

– ../linux/

– ../tools/

../CM7/Core/libosal/src/

– ../pikeos/

– ../posix/

– ../tools/

– ../vxworks/

– ../win32/

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XX Appendix

E. libethercat config File

1 #ifndef _INCLUDE_LIBETHERCAT_CONFIG_H

2 #define _INCLUDE_LIBETHERCAT_CONFIG_H 1

3 [...]

4 /* Build with pikeos hw device layer. */

5 #ifndef LIBETHERCAT_BUILD_DEVICE_PIKEOS

6 #define LIBETHERCAT_BUILD_DEVICE_PIKEOS 0

7 #endif

8 [...]

9 /* Use STM32 build */

10 #ifndef LIBETHERCAT_BUILD_STM32

11 #define LIBETHERCAT_BUILD_STM32 1

12 #define htons(x) (((((osal_uint16_t)(x)) << 8) & 0xFF00) | ←↩

((((osal_uint16_t)(x)) >> 8) & 0x00FF))

13 #endif

14 [...]

15 /* Define to 1 if you have the <inttypes.h> header file. */

16 #ifndef LIBETHERCAT_HAVE_INTTYPES_H

17 #define LIBETHERCAT_HAVE_INTTYPES_H 1

18 #endif

19 /* Define to 1 if you have the <limits.h> header file. */

20 #ifndef LIBETHERCAT_HAVE_LIMITS_H

21 #define LIBETHERCAT_HAVE_LIMITS_H 1

22 #endif

23 /* Define to 1 if your system has a GNU libc compatible ‘malloc’ ←↩

function, and

24 to 0 otherwise. */

25 #ifndef LIBETHERCAT_HAVE_MALLOC

26 #define LIBETHERCAT_HAVE_MALLOC 1

27 #endif

28 /* Define to 1 if you have the <memory.h> header file. */

29 #ifndef LIBETHERCAT_HAVE_MEMORY_H

30 #define LIBETHERCAT_HAVE_MEMORY_H 1

31 #endif

32 /* Define to 1 if you have the ‘memset’ function. */

33 #ifndef LIBETHERCAT_HAVE_MEMSET

34 #define LIBETHERCAT_HAVE_MEMSET 1

35 #endif

36 [...]

37 /* Define to 1 if your system has a GNU libc compatible ‘realloc’ function,

38 and to 0 otherwise. */

39 #ifndef LIBETHERCAT_HAVE_REALLOC

40 #define LIBETHERCAT_HAVE_REALLOC 1

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File XXI

41 #endif

42 [...]

43 /* Define to 1 if you have the <stdint.h> header file. */

44 #ifndef LIBETHERCAT_HAVE_STDINT_H

45 #define LIBETHERCAT_HAVE_STDINT_H 1

46 #endif

47 /* Define to 1 if you have the <stdlib.h> header file. */

48 #ifndef LIBETHERCAT_HAVE_STDLIB_H

49 #define LIBETHERCAT_HAVE_STDLIB_H 1

50 #endif

51 /* Define to 1 if you have the ‘strdup’ function. */

52 #ifndef LIBETHERCAT_HAVE_STRDUP

53 #define LIBETHERCAT_HAVE_STRDUP 1

54 #endif

55 /* Define to 1 if you have the ‘strerror’ function. */

56 #ifndef LIBETHERCAT_HAVE_STRERROR

57 #define LIBETHERCAT_HAVE_STRERROR 1

58 #endif

59 /* Define to 1 if you have the <strings.h> header file. */

60 #ifndef LIBETHERCAT_HAVE_STRINGS_H

61 #define LIBETHERCAT_HAVE_STRINGS_H 1

62 #endif

63 /* Define to 1 if you have the <string.h> header file. */

64 #ifndef LIBETHERCAT_HAVE_STRING_H

65 #define LIBETHERCAT_HAVE_STRING_H 1

66 #endif

67 /* Define to 1 if you have the ‘strndup’ function. */

68 #ifndef LIBETHERCAT_HAVE_STRNDUP

69 #define LIBETHERCAT_HAVE_STRNDUP 1

70 #endif

71 [...]

72 /* Define to 1 if you have the <sys/types.h> header file. */

73 #ifndef LIBETHERCAT_HAVE_SYS_TYPES_H

74 #define LIBETHERCAT_HAVE_SYS_TYPES_H 1

75 #endif

76 /* Define to 1 if you have the <unistd.h> header file. */

77 #ifndef LIBETHERCAT_HAVE_UNISTD_H

78 #define LIBETHERCAT_HAVE_UNISTD_H 1

79 #endif

80 [...]

81 /* Define to the sub-directory where libtool stores uninstalled ←↩

libraries. */

82 #ifndef LIBETHERCAT_LT_OBJDIR

83 #define LIBETHERCAT_LT_OBJDIR ".libs/"

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXII Appendix

84 #endif

85 /* Maximum number of coe-emergencies supported. */

86 #ifndef LIBETHERCAT_MAX_COE_EMERGENCIES

87 #define LIBETHERCAT_MAX_COE_EMERGENCIES 10

88 #endif

89 /* Maximum number of data supported. */

90 #ifndef LIBETHERCAT_MAX_DATA

91 #define LIBETHERCAT_MAX_DATA 4096

92 #endif

93 /* Maximum number of datagrams supported. */

94 #ifndef LIBETHERCAT_MAX_DATAGRAMS

95 #define LIBETHERCAT_MAX_DATAGRAMS 10

96 #endif

97 /* Maximum number of ds402-subdevs supported. */

98 #ifndef LIBETHERCAT_MAX_DS402_SUBDEVS

99 #define LIBETHERCAT_MAX_DS402_SUBDEVS 2

100 #endif

101 /* Maximum number of eeprom-cat-dc supported. */

102 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_DC

103 #define LIBETHERCAT_MAX_EEPROM_CAT_DC 8

104 #endif

105 /* Maximum number of eeprom-cat-fmmu supported. */

106 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_FMMU

107 #define LIBETHERCAT_MAX_EEPROM_CAT_FMMU 8

108 #endif

109 /* Maximum number of eeprom-cat-pdo supported. */

110 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_PDO

111 #define LIBETHERCAT_MAX_EEPROM_CAT_PDO 16

112 #endif

113 /* Maximum number of eeprom-cat-pdo-entries supported. */

114 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_PDO_ENTRIES

115 #define LIBETHERCAT_MAX_EEPROM_CAT_PDO_ENTRIES 8

116 #endif

117 /* Maximum number of eeprom-cat-sm supported. */

118 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_SM

119 #define LIBETHERCAT_MAX_EEPROM_CAT_SM 8

120 #endif

121 /* Maximum number of eeprom-cat-strings supported. */

122 #ifndef LIBETHERCAT_MAX_EEPROM_CAT_STRINGS

123 #define LIBETHERCAT_MAX_EEPROM_CAT_STRINGS 16

124 #endif

125 /* Maximum number of groups supported. */

126 #ifndef LIBETHERCAT_MAX_GROUPS

127 #define LIBETHERCAT_MAX_GROUPS 2

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File XXIII

128 #endif

129 /* Maximum number of init-cmd-data supported. */

130 #ifndef LIBETHERCAT_MAX_INIT_CMD_DATA

131 #define LIBETHERCAT_MAX_INIT_CMD_DATA 128

132 #endif

133 /* Maximum number of mbx-entries supported. */

134 #ifndef LIBETHERCAT_MAX_MBX_ENTRIES

135 #define LIBETHERCAT_MAX_MBX_ENTRIES 16

136 #endif

137 /* Maximum number of pdlen supported. */

138 #ifndef LIBETHERCAT_MAX_PDLEN

139 #define LIBETHERCAT_MAX_PDLEN 3036

140 #endif

141 /* Maximum number of slaves supported. */

142 #ifndef LIBETHERCAT_MAX_SLAVES

143 #define LIBETHERCAT_MAX_SLAVES 16

144 #define LIBETHERCAT_MAX_SLAVES_STRING "16"

145 #endif

146 /* Maximum number of slave-fmmu supported. */

147 #ifndef LIBETHERCAT_MAX_SLAVE_FMMU

148 #define LIBETHERCAT_MAX_SLAVE_FMMU 8

149 #endif

150 /* Maximum number of slave-sm supported. */

151 #ifndef LIBETHERCAT_MAX_SLAVE_SM

152 #define LIBETHERCAT_MAX_SLAVE_SM 8

153 #endif

154 /* Maximum number of string-len supported. */

155 #ifndef LIBETHERCAT_MAX_STRING_LEN

156 #define LIBETHERCAT_MAX_STRING_LEN 128

157 #endif

158 /* Enable Mailbox CoE support. */

159 #ifndef LIBETHERCAT_MBX_SUPPORT_COE

160 #define LIBETHERCAT_MBX_SUPPORT_COE 1

161 #endif

162 /* Enable Mailbox EoE support. */

163 #ifndef LIBETHERCAT_MBX_SUPPORT_EOE

164 #define LIBETHERCAT_MBX_SUPPORT_EOE 0

165 #endif

166 /* Enable Mailbox FoE support. */

167 #ifndef LIBETHERCAT_MBX_SUPPORT_FOE

168 #define LIBETHERCAT_MBX_SUPPORT_FOE 0

169 #endif

170 /* Enable Mailbox SoE support. */

171 #ifndef LIBETHERCAT_MBX_SUPPORT_SOE

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXIV Appendix

172 #define LIBETHERCAT_MBX_SUPPORT_SOE 0

173 #endif

174 /* Define to 1 if assertions should be disabled. */

175 #ifndef LIBETHERCAT_NDEBUG

176 #define LIBETHERCAT_NDEBUG 1

177 #endif

178 /* Name of package */

179 #ifndef LIBETHERCAT_PACKAGE

180 #define LIBETHERCAT_PACKAGE "libethercat"

181 #endif

182 /* Define to the address where bug reports for this package should be ←↩

sent. */

183 #ifndef LIBETHERCAT_PACKAGE_BUGREPORT

184 #define LIBETHERCAT_PACKAGE_BUGREPORT "RobertBurger<robert.burger@dlr.de>"

185 #endif

186 /* Define to the full name of this package. */

187 #ifndef LIBETHERCAT_PACKAGE_NAME

188 #define LIBETHERCAT_PACKAGE_NAME "libethercat"

189 #endif

190 /* Define to the full name and version of this package. */

191 #ifndef LIBETHERCAT_PACKAGE_STRING

192 #define LIBETHERCAT_PACKAGE_STRING "libethercat 0.5.1"

193 #endif

194 /* Define to the one symbol short name of this package. */

195 #ifndef LIBETHERCAT_PACKAGE_TARNAME

196 #define LIBETHERCAT_PACKAGE_TARNAME "libethercat"

197 #endif

198 /* Define to the home page for this package. */

199 #ifndef LIBETHERCAT_PACKAGE_URL

200 #define LIBETHERCAT_PACKAGE_URL ""

201 #endif

202 /* Define to the version of this package. */

203 #ifndef LIBETHERCAT_PACKAGE_VERSION

204 #define LIBETHERCAT_PACKAGE_VERSION "0.5.1"

205 #endif

206 /* Define to 1 if you have the ANSI C header files. */

207 #ifndef LIBETHERCAT_STDC_HEADERS

208 #define LIBETHERCAT_STDC_HEADERS 1

209 #endif

210 /* Version number of package */

211 #ifndef LIBETHERCAT_VERSION

212 #define LIBETHERCAT_VERSION "0.5.1"

213 #endif

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libethercat config File XXV

214 [...]

Codeauszug 3: libethercat Config-File

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXVI Appendix

F. libosal config File

Viele Zeilen im libosal Config-File wurden auskommentiert, da sich diese auf spezifische
Betriebssysteme beziehen. Sie haben für die Implementierung auf dem STM32 keine
Bedeutung. Deshalb werden diese hier nicht dargestellt.

1 #ifndef _INCLUDE_LIBOSAL_CONFIG_H

2 #define _INCLUDE_LIBOSAL_CONFIG_H 1

3
4 /* include/libosal/config.h. Generated automatically at end of configure. */

5 /* config.h. Generated from config.h.in by configure. */

6 /* config.h.in. Generated from configure.ac by autoheader. */

7
8 /* Use MINGW32 build on windows mingw32 */

9 /* #undef BUILD_MINGW32 */

10
11 /* Use PikeOS build */

12 /* #undef BUILD_PIKEOS */

13
14 /* Use STM32 build */

15 #ifndef LIBOSAL_BUILD_STM32

16 #define LIBOSAL_BUILD_STM32 1

17 #endif

18
19 /* Use VxWorks build */

20 /* #undef BUILD_VXWORKS */

21 [...]

22 /* Check if errno ENOTRECOVERABLE is present. */

23 #ifndef LIBOSAL_HAVE_ENOTRECOVERABLE

24 #define LIBOSAL_HAVE_ENOTRECOVERABLE 1

25 #endif

26
27 /* Define to 1 if you have the <inttypes.h> header file. */

28 #ifndef LIBOSAL_HAVE_INTTYPES_H

29 #define LIBOSAL_HAVE_INTTYPES_H 1

30 #endif

31
32 /* Define to 1 if you have the <math.h> header file. */

33 #ifndef LIBOSAL_HAVE_MATH_H

34 #define LIBOSAL_HAVE_MATH_H 1

35 #endif

36
37 /* Define to 1 if you have the <memory.h> header file. */

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

libosal config File XXVII

38 #ifndef LIBOSAL_HAVE_MEMORY_H

39 #define LIBOSAL_HAVE_MEMORY_H 1

40 #endif

41 [...]

42 /* Define to 1 if you have the <stdint.h> header file. */

43 #ifndef LIBOSAL_HAVE_STDINT_H

44 #define LIBOSAL_HAVE_STDINT_H 1

45 #endif

46
47 /* Define to 1 if you have the <stdlib.h> header file. */

48 #ifndef LIBOSAL_HAVE_STDLIB_H

49 #define LIBOSAL_HAVE_STDLIB_H 1

50 #endif

51
52 /* Define to 1 if you have the <strings.h> header file. */

53 #ifndef LIBOSAL_HAVE_STRINGS_H

54 #define LIBOSAL_HAVE_STRINGS_H 1

55 #endif

56
57 /* Define to 1 if you have the <string.h> header file. */

58 #ifndef LIBOSAL_HAVE_STRING_H

59 #define LIBOSAL_HAVE_STRING_H 1

60 #endif

61 [...]

62 /* Define to 1 if you have the <sys/types.h> header file. */

63 #ifndef LIBOSAL_HAVE_SYS_TYPES_H

64 #define LIBOSAL_HAVE_SYS_TYPES_H 1

65 #endif

66
67 /* Define to 1 if you have the <unistd.h> header file. */

68 #ifndef LIBOSAL_HAVE_UNISTD_H

69 #define LIBOSAL_HAVE_UNISTD_H 1

70 #endif

71
72 /* Define to the sub-directory where libtool stores uninstalled ←↩

libraries. */

73 #ifndef LIBOSAL_LT_OBJDIR

74 #define LIBOSAL_LT_OBJDIR ".libs/"

75 #endif

76
77 /* Name of package */

78 #ifndef LIBOSAL_PACKAGE

79 #define LIBOSAL_PACKAGE "libosal"

80 #endif

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXVIII Appendix

81
82 /* Define to the address where bug reports for this package should be ←↩

sent. */

83 #ifndef LIBOSAL_PACKAGE_BUGREPORT

84 #define LIBOSAL_PACKAGE_BUGREPORT "Robert Burger <robert.burger@dlr.de>"

85 #endif

86
87 /* Define to the full name of this package. */

88 #ifndef LIBOSAL_PACKAGE_NAME

89 #define LIBOSAL_PACKAGE_NAME "libosal"

90 #endif

91
92 /* Define to the full name and version of this package. */

93 #ifndef LIBOSAL_PACKAGE_STRING

94 #define LIBOSAL_PACKAGE_STRING "libosal 0.0.3"

95 #endif

96
97 /* Define to the one symbol short name of this package. */

98 #ifndef LIBOSAL_PACKAGE_TARNAME

99 #define LIBOSAL_PACKAGE_TARNAME "libosal"

100 #endif

101
102 /* Define to the home page for this package. */

103 #ifndef LIBOSAL_PACKAGE_URL

104 #define LIBOSAL_PACKAGE_URL ""

105 #endif

106
107 /* Define to the version of this package. */

108 #ifndef LIBOSAL_PACKAGE_VERSION

109 #define LIBOSAL_PACKAGE_VERSION "0.0.3"

110 #endif

111
112 /* Define to 1 if you have the ANSI C header files. */

113 #ifndef LIBOSAL_STDC_HEADERS

114 #define LIBOSAL_STDC_HEADERS 1

115 #endif

116
117 /* Version number of package */

118 #ifndef LIBOSAL_VERSION

119 #define LIBOSAL_VERSION "0.0.3"

120 #endif

121 [...]

122 #endif

Codeauszug 4: libosal Config-File

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXIX

G. analyze.py Skripte

Mit diesen beiden Python Skripten wurden die Binaries ausgewertet und Histogramme bzw.
Box-Plots erstellt.

G.1. analyze_histos.py

1 #!/usr/bin/python3

2
3 import sys

4 import os

5
6 def add_string_and_extension(arg, string_to_add, file_extension):

7 # Make sure the file_extension starts with a dot (.)

8 if not file_extension.startswith(’.’):

9 file_extension = ’.’ + file_extension

10 # Construct the new filename

11 new_filename = f"{string_to_add}{arg}{file_extension}"

12 return new_filename

13
14 argument = sys.argv[1]

15
16 # Define the string you want to add and the file extension

17 string_to_add = "linux/lin_"

18 file_extension = ".bin"

19
20 # Get the new filename

21 linux_file = add_string_and_extension(argument, string_to_add, ←↩

file_extension)

22
23 string_to_add = ""

24 stm32_file = add_string_and_extension(argument, string_to_add, ←↩

file_extension)

25
26 # Opening a file and closing it manually

27 f_stm32 = open(stm32_file, ’rb’)

28 f_linux = open(linux_file, ’rb’)

29 #base, _ = os.path.splitext(sys.argv[1])

30 svg_filename = f"{sys.argv[1]}_histo.svg"

31
32 #vals (=0) or val_diff (=1) plotting

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXX Appendix

33 print("please input whether you wanna plot tx_start(=1) or ←↩

tx_duration/roundtrip_duration(=0)")

34 plotting_option = int(input())

35
36 try:

37 stm32_bin = f_stm32.read()

38 linux_bin = f_linux.read()

39 finally:

40 f_stm32.close()

41 f_linux.close()

42
43 import struct

44 count = 1000

45
46 stm32_vals = struct.unpack("%dQ" % (count), stm32_bin)

47 linux_vals = struct.unpack("%dQ" % (count), linux_bin)

48 #print(vals)

49
50 stm32_vals_diff = []

51 linux_vals_diff = []

52 for i in range(0, 999):

53 stm32_vals_diff.append((stm32_vals[i+1] - stm32_vals[i])/1e6)

54 linux_vals_diff.append((linux_vals[i+1] - linux_vals[i])/1e6)

55 print("diff %u" % (stm32_vals[i+1] - stm32_vals[i]))

56 print(stm32_vals_diff[i])

57 print("diff %u" % (linux_vals[i+1] - linux_vals[i]))

58 print(linux_vals_diff[i])

59
60 import numpy as np

61 import matplotlib.pyplot as plt

62
63 # Create a figure

64 plt.figure(figsize=(8, 5))

65
66 # tx_duration and roundtrip_duration

67 if plotting_option==0:

68 xlim = (30000, 36000)

69 ##### STM32

70 plt.subplot(2, 1, 1) # 1 row, 2 columns, 1st subplot

71 plt.hist(stm32_vals, bins=100)

72 plt.xlabel(’Time in ns’)

73 plt.xlim(xlim)

74 plt.ylabel(’Number of frames’)

75 plt.grid(True)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXXI

76 # calc and plot mean, var, std dev

77 stm32_mean = np.mean(stm32_vals)

78 stm32_variance = np.var(stm32_vals)

79 stm32_standard_deviation = np.std(stm32_vals)

80 # Add lines to represent the mean and standard deviation

81 plt.axvline(stm32_mean, color=’orange’, linestyle=’dashed’, ←↩

linewidth=2, label=f’Mean ({stm32_mean:.5f})’)

82 plt.axvline(stm32_mean + stm32_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’+1 Std Dev ({stm32_mean + ←↩

stm32_standard_deviation:.5f})’)

83 plt.axvline(stm32_mean - stm32_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’-1 Std Dev ({stm32_mean - ←↩

stm32_standard_deviation:.5f})’)

84 plt.legend()

85 plt.gca().set_title(’STM32’)

86 ##### Linux

87 plt.subplot(2, 1, 2) # 1 row, 2 columns, 1st subplot

88 plt.hist(linux_vals, bins=100)

89 plt.xlabel(’Time in ns’)

90 plt.xlim(xlim)

91 plt.ylabel(’Number of frames’)

92 plt.grid(True)

93 # calc and plot mean, var, std dev

94 linux_mean = np.mean(linux_vals)

95 linux_variance = np.var(linux_vals)

96 linux_standard_deviation = np.std(linux_vals)

97 # Add lines to represent the mean and standard deviation

98 plt.axvline(linux_mean, color=’orange’, linestyle=’dashed’, ←↩

linewidth=2, label=f’Mean ({linux_mean:.5f})’)

99 plt.axvline(linux_mean + linux_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’+1 Std Dev ({linux_mean + ←↩

linux_standard_deviation:.5f})’)

100 plt.axvline(linux_mean - linux_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’-1 Std Dev ({linux_mean - ←↩

linux_standard_deviation:.5f})’)

101 plt.legend()

102 plt.gca().set_title(’Linux’)

103 #tx_start

104 else:

105 plt.subplot(2, 1, 1) # 1 row, 2 columns, 1st subplot

106 plt.hist(stm32_vals_diff, bins=100)

107 plt.xlabel(r’Δt from 1 ms in ns’)

108 plt.xlim(0.9998, 1.0002)

109 plt.ylabel(’Number of frames’)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXII Appendix

110 plt.grid(True)

111 # calc and plot mean, var, std dev

112 stm32_mean = np.mean(stm32_vals_diff)

113 stm32_variance = np.var(stm32_vals_diff)

114 stm32_standard_deviation = np.std(stm32_vals_diff)

115 # Add lines to represent the mean and standard deviation

116 plt.axvline(stm32_mean, color=’orange’, linestyle=’dashed’, ←↩

linewidth=2, label=f’Mean ({stm32_mean:.5f})’)

117 plt.axvline(stm32_mean + stm32_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’+1 Std Dev ({stm32_mean + ←↩

stm32_standard_deviation:.5f})’)

118 plt.axvline(stm32_mean - stm32_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’-1 Std Dev ({stm32_mean - ←↩

stm32_standard_deviation:.5f})’)

119 plt.legend()

120 plt.gca().set_title(’STM32’)

121 # Creating box plot

122 plt.subplot(2, 1, 2) # 1 row, 2 columns, 1st subplot

123 plt.hist(linux_vals_diff, bins=100)

124 plt.xlabel(r’Δt from 1 ms in ns’)

125 plt.xlim(0.9998, 1.0002)

126 plt.ylabel(’Number of frames’)

127 plt.grid(True)

128 # calc and plot mean, var, std dev

129 linux_mean = np.mean(linux_vals_diff)

130 linux_variance = np.var(linux_vals_diff)

131 linux_standard_deviation = np.std(linux_vals_diff)

132 # Add lines to represent the mean and standard deviation

133 plt.axvline(linux_mean, color=’orange’, linestyle=’dashed’, ←↩

linewidth=2, label=f’Mean ({linux_mean:.5f})’)

134 plt.axvline(linux_mean + linux_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’+1 Std Dev ({linux_mean + ←↩

linux_standard_deviation:.5f})’)

135 plt.axvline(linux_mean - linux_standard_deviation, color=’magenta’, ←↩

linestyle=’dashed’, linewidth=2, label=f’-1 Std Dev ({linux_mean - ←↩

linux_standard_deviation:.5f})’)

136 plt.legend()

137 plt.gca().set_title(’Linux’)

138
139
140 plt.subplots_adjust(hspace=5) # Increase hspace to make gap larger

141 # Print the statistical measures

142 print(f"STM32 Mean: {stm32_mean}")

143 print(f"STM32 Variance: {stm32_variance}")

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXXIII

144 print(f"STM32 Standard Deviation: {stm32_standard_deviation}")

145
146 print(f"Linux Mean: {linux_mean}")

147 print(f"Linux Variance: {linux_variance}")

148 print(f"Linux Standard Deviation: {linux_standard_deviation}")

149
150 # Adjust layout to prevent overlap

151 plt.tight_layout()

152 plt.show()

153 plt.savefig(svg_filename)

154
155 print("finished")

Codeauszug 5: analyze_histos.py

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXIV Appendix

G.2. analyze_boxplot.py

1 #!/usr/bin/python3

2
3 import sys

4 import os

5
6
7 def add_string_and_extension(arg, string_to_add, file_extension):

8 # Make sure the file_extension starts with a dot (.)

9 if not file_extension.startswith(’.’):

10 file_extension = ’.’ + file_extension

11 # Construct the new filename

12 new_filename = f"{string_to_add}{arg}{file_extension}"

13 return new_filename

14
15 argument = sys.argv[1]

16
17 # Define the string you want to add and the file extension

18 string_to_add = "linux/lin_"

19 file_extension = ".bin"

20
21 # Get the new filename

22 linux_file = add_string_and_extension(argument, string_to_add, ←↩

file_extension)

23
24 string_to_add = ""

25 stm32_file = add_string_and_extension(argument, string_to_add, ←↩

file_extension)

26
27
28
29 # Opening a file and closing it manually

30 f_stm32 = open(stm32_file, ’rb’)

31 f_linux = open(linux_file, ’rb’)

32 #base, _ = os.path.splitext(sys.argv[1])

33 svg_filename = f"{sys.argv[1]}_boxPlot.svg"

34
35 #vals (=0) or val_diff (=1) plotting

36 print("please input whether you wanna plot tx_start(=1) or ←↩

tx_duration/roundtrip_duration(=0)")

37 plotting_option = int(input())

38
39 try:

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

analyze.py Skripte XXXV

40 stm32_bin = f_stm32.read()

41 linux_bin = f_linux.read()

42 finally:

43 f_stm32.close()

44 f_linux.close()

45
46 import struct

47 count = 1000

48
49 stm32_vals = struct.unpack("%dQ" % (count), stm32_bin)

50 linux_vals = struct.unpack("%dQ" % (count), linux_bin)

51 #print(vals)

52
53 stm32_vals_diff = []

54 linux_vals_diff = []

55 for i in range(0, 999):

56 stm32_vals_diff.append((stm32_vals[i+1] - stm32_vals[i])/1e6)

57 linux_vals_diff.append((linux_vals[i+1] - linux_vals[i])/1e6)

58 print("diff %u" % (stm32_vals[i+1] - stm32_vals[i]))

59 print(stm32_vals_diff[i])

60 print("diff %u" % (linux_vals[i+1] - linux_vals[i]))

61 print(linux_vals_diff[i])

62
63 import numpy as np

64 import matplotlib.pyplot as plt

65
66 # Create a figure

67 plt.figure(figsize=(5, 7))

68
69 # tx_duration and roundtrip_duration

70 if plotting_option==0:

71 # Creating box plot

72 data = [stm32_vals, linux_vals]

73 plt.boxplot(data)

74 plt.grid(True)

75 plt.ylabel(’Time in ns’)

76 #tx_start

77 else:

78 data = [stm32_vals_diff, linux_vals_diff]

79 plt.boxplot(data)

80 plt.grid(True)

81 plt.ylabel(’Time in ms’)

82
83 plt.xlabel(’MainDevice’)

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXVI Appendix

84 plt.xticks([1,2],[’STM32’,’Linux’])

85 plt.tight_layout()

86 plt.gca().set_title(’Box Plot’)

87 plt.show()

88 plt.savefig(svg_filename)

89
90 print("finished")

Codeauszug 6: analyze_boxplot.py

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

EtherCAT Wireshark Capture XXXVII

H. EtherCAT Wireshark Capture

Abbildung 1.: EtherCAT Wireshark Capture

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

XXXVIII Appendix

I. Programmdateien als .zip

Die für diese Arbeit geschriebenen Programme und zugehörigen Dateien aus dem Git-
Repository sind als separater .zip-Ordner (Masterarbeit_BeausencourtMarcel_573019.zip)
angehängt.

DLR
DLR – Konzeptionierung, Portierung und

Evaluierung eines Echtzeit-EtherCAT-Feldbus-MainDevices

