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Abstract Measuring and mapping vegetation structure is essential for understanding the functioning of
terrestrial ecosystems and for informing environmental policies. Recent years have seen a growing demand for
high-resolution data on vegetation structure, driving their prediction at fine resolutions (1-30 m) at state,
continental, and global spatial extents by combining satellite data with machine learning. As these initiatives
expand, it is crucial to actively discuss the quality and usability of these products. Here, we briefly summarize
current efforts to map vegetation structure and show that continental-to-global canopy height models (CHMs)
exhibit significant errors in canopy heights compared to national airborne laser scanning (ALS) data. We
recommend that regions with abundant ALS data, such as Europe, prioritize using ALS-based canopy height
metrics rather than relying on less accurate predictions from satellite products. Despite variations in ALS data
characteristics, such as temporal inconsistencies and differences in acquisition characteristics and classification
accuracy, the generation of spatially contiguous canopy height products in raster format at fine spatial resolution
is necessary and feasible. This requires coordinating efforts for data and survey harmonization, developing
standardized processing pipelines and continent-wide ALS products, and ensuring free access for research and
environmental policy. We show that ALS data now cover most of Europe, with newer surveys achieving higher
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point densities, improving their suitability for vegetation mapping. Beyond numerous applications in forestry,
ecology, and conservation, such data sets are crucial for calibrating future Earth Observation missions, making
them essential for producing reliable and accurate global, fine-resolution vegetation structure data.

Plain Language Summary Understanding the structure of vegetation is important for studying
ecosystems and making informed environmental decisions. To meet the growing need for detailed vegetation
data, scientists are combining satellite data with machine learning to estimate vegetation structure at very fine
scales. However, these satellite-based models can have large errors when compared to more accurate
measurements collected from airborne laser scanning (ALS). In this study, we show that in regions such as
Europe, where extensive ALS data are available, it's better to use these local data than to rely on less accurate
predictions from satellite products. Currently, around 30 European countries have completed or are close to
completing nationwide airborne laser scanning, with several others partially covered. Newer acquisitions are
being collected at increasingly higher point densities, providing more detailed information about 3D vegetation
structure. We therefore emphasize the need to create consistent and accessible vegetation height maps using
ALS data. This will require better coordination of data collection, standardized processing, and open data
access. These detailed maps are not only useful for applications in forestry, ecology, and conservation, but they
are also essential for improving future satellite missions that monitor Earth's vegetation.

1. Introduction

Ecosystem structure—the spatial arrangement of biotic and abiotic elements that make up an ecosystem—is an
Essential Biodiversity Variable (EBV) considered critical for monitoring the cover, distribution, and vertical
profile of ecosystems (Pereira et al., 2013; Valbuena et al., 2020; Skidmore et al., 2021). Vegetation structure—
the horizontal and vertical distribution of vegetation biomass—is one of the key components of ecosystem
structure, especially in terrestrial ecosystems. It plays a crucial role in modulating multiple ecosystem processes.
In particular, it regulates energy flow, water cycling, carbon sequestration, and primary productivity (Murphy
et al., 2022; LaRue, Knott, et al., 2023; Li et al., 2024). Furthermore, vegetation structure creates unique habitats
that support species coexistence across different vegetation layers (Davies & Asner, 2014; Kemppinen
et al., 2024; Moudra et al., 2025; Moudry et al., 2021; Wildermuth et al., 2023). The prevailing theory is that
structurally complex vegetation stands are most effective in optimizing the incoming light and water resources,
leading to better carbon assimilation (Atkins et al., 2018; Seidel & Ammer, 2023), and that they provide a large
number of ecological niches, thereby enhancing biodiversity (Coverdale & Davies, 2023; LaRue, Fahey,
et al., 2023; Stein et al., 2014; Tews et al., 2004; Torresani et al., 2020). Consequently, data on vegetation
structure is essential for a global biodiversity observing system (Gonzalez et al., 2023), supports the United
Nations' System of Environmental-Economic Accounting (United Nations, 2021, 2022), contributes to the EU
Forest Strategy for 2030 (European Commission, 2021), and plays a key role in tracking progress toward global
biodiversity targets and Sustainable Development Goals (SDGs) (Skidmore et al., 2021).

Remote sensing technologies, such as light detection and ranging (LiDAR), have played a key role in addressing
knowledge gaps, providing a way to accurately map vegetation structure across a variety of habitats and land-
scapes, including grasslands (Zlinszky et al., 2014), shrublands (Kloucek et al., 2022), wetlands (Koma
et al., 2021), forests (Toivonen et al., 2023), agricultural areas (Grondard et al., 2025), urban areas (Caynes
et al., 2016), and Natura 2000 sites (Shi et al., 2025), from local to global scales (Herold et al., 2019; Janiec
etal., 2025; Jutras-Perreault et al., 2023; Liu et al., 2023; Rosen et al., 2024; Sterericzak et al., 2018; Vaglio Laurin
et al., 2025; Valbuena et al., 2020; White et al., 2025). Particularly, LiDAR sensors onboard airplanes (i.e.,
airborne laser scanning; ALS) have considerable potential to advance national monitoring programs (e.g., Ass-
mann et al., 2022; Kissling et al., 2023). Moreover, robust approaches to convert ALS data into structural metrics
are available (Fischer et al., 2019, 2024; Hawrylo et al., 2024; Kissling et al., 2024). However, while ALS data
provides high spatial resolution, its spatial extent and temporal availability are limited (e.g., Moudry et al., 2023;
Okyay et al., 2019). Access costs for end users of ALS have decreased in recent years, especially where national
programmes or mapping agencies release data openly, but large-scale continuous coverage exists only in a few
regions, mostly in Europe, North America, and Australia, with several other countries, such as New Zealand and
Japan. A few countries (e.g., Denmark, Estonia, Netherlands, or Spain) have even mapped their entire territory
more than once.
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Recent advances in spaceborne LiDAR missions, such as the Global Ecosystem Dynamics Investigation (GEDI)
and the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), can help to address the limited spatial and temporal
extent of ALS data (Dubayah et al., 2020; Markus et al., 2017). These missions provide free data that have enabled
the creation of global models of vegetation structure (e.g., Burns et al., 2024; Mulverhill et al., 2022), supporting
innovative and impactful research. For instance, vegetation structure products derived from spaceborne LiDAR
data have been used to monitor forest and woodland structure and regrowth (Jucker et al., 2023; Milenkovi¢
et al., 2022; Stritih et al., 2023), track carbon losses from disturbances (Holcomb et al., 2024), evaluate the
effectiveness of protected areas from the perspective of carbon stocks and vegetation structure (Brodie
etal., 2023; Ceccherini et al., 2023; Lang et al., 2023; Liang et al., 2023), and assess species diversity and species-
environment relationships (Marselis et al., 2022; Smith et al., 2022; Vogeler et al., 2023; Xu et al., 2024).
However, the spatial coverage of spaceborne LiDAR measurements is sparse and discrete, and their derived
products, such as global canopy height models (CHMs), have a low spatial resolution (Burns et al., 2024) or suffer
from accuracy issues (Mandl et al., 2023; Moudry, Gébor, et al., 2024), which constrain their applicability
(Hakkenberg et al., 2023).

Here, we aim to highlight the potential of ALS data to complement spaceborne LiDAR products. In particular, we
(a) provide a brief overview of spaceborne LiDAR missions that measure vegetation structure, (b) examine the
accuracy of CHMs predicted from these missions, (c) highlight recent developments in potential mapping of the
Earth's surface integrating airborne and satellite data, and (d) propose a broader use of ALS data, emphasizing the
need to develop continental (e.g., Europe-wide) CHMs. We identify the challenges involved and offer general
recommendations for future progress.

2. Measuring Vegetation Structure With Spaceborne LiDAR

Details and examples of the usability and advantages of LIDAR remote sensing for mapping vegetation structure
can be found in Lefsky et al. (2002), Bergen et al. (2009), and Moudry et al. (2023). Simply put, LIDAR is ideal
for measuring vegetation structure because it can penetrate through the gaps in the vegetation, capturing its
vertical structure as well as the shape of the terrain underneath. LiDAR sensors can be installed on various
platforms, including tripods, backpacks, cars, drones, helicopters, planes, and satellites. Notably, spaceborne
LiDAR is valuable for large-scale mapping due to its consistent and extensive global coverage.

Satellite sensors are expected to become the primary data source for mapping vegetation structure in response to
global monitoring requirements, with LiDAR playing an important role (Skidmore et al., 2021). The first global
data set characterizing canopy structure was obtained from the Geoscience Laser Altimeter System (GLAS)
onboard the Ice, Cloud, and land Elevation Satellite (ICESat), operational from 2003 to 2009 (Abshire
et al., 2005). That mission was primarily intended for measuring polar ice caps, but it also enabled the devel-
opment of data sets for ground elevation and canopy height (Schutz et al., 2005; Simard et al., 2011). In 2018,
NASA launched two spaceborne LiDAR missions, ICESat-2 (Magruder et al., 2021; Markus et al., 2017) and
GEDI (Dubayah et al., 2020), aimed at providing near-global data on terrain and canopy height, among other
objectives. Yet, technical challenges related to spatial and temporal coverage as well as data accuracy persist
(Fernandez-Diaz et al., 2022; Hancock et al., 2012, 2021; Liu et al., 2021; Pang et al., 2022; Velikova et al., 2024).

Although current spaceborne LiDAR missions have substantially higher sampling densities than their pre-
decessors, the derived products still have limited spatial and temporal coverage. A major limitation of spaceborne
LiDAR sensors is that they collect discrete data samples along narrow orbital tracks (transects) rather than
producing continuous, wall-to-wall coverage. This sampling design means that spaceborne LiDAR observations
represent only a small fraction of the Earth's surface, leaving large gaps between ground tracks and individual
footprints. As a result, these sensors cannot directly capture spatially contiguous patterns of vegetation structure.
Notably, for some applications, such as in forestry, transect-based (profiling) LiDAR data are sufficient to
characterize forest conditions over large regions in a timely and cost-effective manner, though their use has been
increasingly overshadowed by scanning LiDAR instruments (see review by Wulder et al., 2012). In contrast,
applications such as ecosystem (habitat) mapping and ecosystem extent accounting, assessing habitat fragmen-
tation, or species-environment relationship analyses require spatially continuous data sets to capture fine-scale
patterns across the landscape. For example, within agricultural landscapes, structural complexity is often pro-
vided by isolated trees and linear features such as hedgerows and tree belts, which serve as important habitats
contributing to biodiversity and carbon storage (Grondard et al., 2025; Liu et al., 2023). Similarly, urban
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vegetation is recognized for its multiple ecological and societal benefits, such as mitigating the urban heat island
effect, improving air quality, and sequestering carbon, making detailed monitoring of tree attributes essential
(Dong, Tang, et al., 2025; Tang et al., 2024). However, spaceborne LiDAR data remain insufficient for producing
high-resolution, continuous vegetation structure data for such purposes.

GEDI was expected to sample only 4% of the Earth's land surface over a 2-year mission, enabling the generation
of near-global gridded vegetation structure metrics from aggregated GEDI waveforms, including canopy height
and structural diversity at three spatial resolutions: 1, 6, and 12 km (Burns et al., 2024). Similarly, the ICESat-2
mission is designed to generate a global canopy height product at a 1-km resolution (Guenther et al., 2024).
However, in Europe, the sampling intensity of ICESat-2 is even lower than that of GEDI due to its orbital
configuration (Markus et al., 2017). Furthermore, GEDI and ICESat-2 missions are not designed to acquire laser
pulses over the same location twice (i.e., they cannot provide direct observations of vegetation change (but see
Clark et al., 2025; Holcomb et al., 2024; Liu et al., 2025)). In addition, various factors, including atmospheric
conditions, solar background photons, laser pulse energy, and topography, affect data accuracy and require
filtering, resulting in significant reductions in available data (e.g., Hayashi et al., 2013; Moudry, Prosek,
et al., 2024; Moudry et al., 2022; Pardini et al., 2019). Indeed, the operational use of GEDI and ICESat-2 data
remains limited, as canopy height accuracy falls short of the thresholds typically required for environmental and
forestry applications (approx. 2 m; Bergen et al., 2009; Fassnacht et al., 2025), and sampling density and coverage
are strongly shaped by the trade-offs between observation accuracy and required spatial resolution of derived
products (Pracnd et al., 2025). Moreover, GEDI observations are limited to latitudes between approximately —52°
and 52°, excluding higher-latitude regions (Dubayah et al., 2020). This means that large parts of Europe are not
covered by GEDI observations, which, in turn, restricts the usability of the data for continent-wide studies. A near
global-scale 1 km resolution CHM is a significant achievement but has limited utility for applications such as
ecosystem mapping or species-environment relationship assessments, which typically require finer spatial res-
olution (Anderle et al., 2023; Davison et al., 2023; Smith et al., 2022; Vogeler et al., 2023). Development of fine-
resolution continuous data sets so far relies on interpolation or data fusion with other remote sensing products
(e.g., optical or radar imagery), which is associated with known limitations of the resulting models (Section 3).
Although future advances are expected to significantly enhance accuracy and resolution (Section 4), alternative
solutions must also be explored to meet immediate monitoring needs (Section 5).

3. Spatially Contiguous, High-Resolution CHMs, and Their Limitations

The lack of global high-resolution data on vertical vegetation structure has stimulated the use of spaceborne
LiDAR data in combination with other satellite products to make spatially contiguous predictions of vegetation
structure (see review by Coops et al., 2021), such as canopy height, total canopy cover, above-ground biomass
density, and foliage height diversity at fine resolutions, such as 10 m or 30 m (e.g., Diaz-Kloch & Murray, 2024;
Kacic et al., 2021, 2023; Schwartz et al., 2023). A common approach to producing high-resolution, wall-to-wall
data on vegetation structure lies in training predictive models that combine direct but discrete height measure-
ments (e.g., from spaceborne LiDAR ICESat, GEDI, or ICESat-2) with spatially contiguous data (e.g., from
spaceborne optical and radar data). The model establishes a relationship between the discrete and the continuous
data that enables the estimation of canopy height at locations not directly measured by LiDAR (Bergen
et al., 2009; Lefsky, 2010). Predicted CHMs are among the most common high-resolution vegetation structure
products available at continental (Liu et al., 2023; Turubanova et al., 2023) and global scales (Lang et al., 2023;
Pauls et al., 2024; Potapov et al., 2021; Weber et al., 2025), making them suitable for illustrating the pros and cons
of such data. Recently, a web application for predicting canopy height, which combines GEDI with other remote
sensing data, has been developed, making this approach easily accessible (Alvites et al., 2025).

Several continental or global predicted CHMs have been produced. The first such data set was developed by
Lefsky (2010), who combined canopy heights derived from GLAS with MODIS data to produce a patch-based
global CHM. Similarly, Simard et al. (2011) used the relationships between the GLAS-derived canopy heights
and multiple environmental variables (e.g., tree cover, climate, altitude) to predict a global model of canopy
heights at a 1 km spatial resolution. Recently, Potapov et al. (2021) and Lang et al. (2023) used optical satellite
data (Landsat, Sentinel-2) trained on GEDI measurements to create global CHMs at 30 and 10 m spatial reso-
lutions, respectively. Instead of deriving training canopy heights from satellite LiDARs, models can also be
calibrated using ALS data, which, when combined with very high-resolution (VHR) satellite imagery, enables
predictions at substantially finer spatial resolutions (e.g., Liu et al., 2023; Wagner et al., 2025). For example, Liu
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Table 1
Predicted Global (Continental) Canopy Height Models (CHMs) Evaluated in This Study
Global CHM Author Resolution RMSE Valid for year
Global forest canopy height Potapov et al. (2021) 30 m 9.1m 2019
High-resolution canopy height model of the Earth Lang et al. (2023) 10 m 2.8-9.6 m 2020
Canopy height map for Europe Liu et al. (2023) 3m 4.3-6.4 m 2019
Global map of tree canopy height Meta and World Resource Institute; Tolan et al. (2024) 1m 44 m 2018-2020

Note. The root mean square error (RMSE) value reported by the authors of individual CHMs in the original publications is presented here.

et al. (2023) used canopy height from ALS data and PlanetScope imagery to predict canopy heights in Europe at a
resolution of 3 m. Likewise, Meta, in cooperation with the World Resources Institute, combined high-resolution
data from optical satellites, ALS, and GEDI to develop a global CHM at a 1 m resolution (Tolan et al., 2024).

The main benefit of predicted CHMs based on spaceborne LiDAR lies in their easy availability, especially as
there are no alternatives at scales beyond the regional level. These CHMs are usually readily available as open
data in a raster format, allowing researchers to use them as input data in common GIS software to inform their
analyses. This contrasts with the high data volume, time-consuming, and often challenging process of working
with more accurate ALS point clouds, which can be difficult for many researchers to store and handle (Kissling
etal., 2022; Kissling & Shi, 2023; Moudry et al., 2023; Wang et al., 2024). However, the easy accessibility of such
predicted CHMs is both a blessing and a curse as users may be unaware of data limitations, and the reliability of
predicted global data sets is questionable (Duncanson et al., 2019; Meyer & Pebesma, 2022). Modeling canopy
height is a complex process that involves errors and biases from multiple sources, ranging from ground detection
with spaceborne LiDAR to the saturation of optical data in closed-canopy forests (e.g., Réjou-Méchain
et al., 2019). Indeed, independent validation studies showed that the accuracy of these satellite-derived global
CHMs is low (e.g., Bolton et al., 2013; Pascual et al., 2022), and their use in biodiversity modeling leads to
erroneous results (Moudry, Gabor, et al., 2024).

3.1. Validation of Predicted Global CHMs' Accuracies

To demonstrate the limitations of predicted CHMs, we followed a recent study by Moudry, Gabor, et al. (2024),
who compared three global predicted CHMs. In addition to their evaluation, we added a continental canopy height
map for Europe produced by Liu et al. (2023) and a ten-year-old ALS scan, which allowed us to assess whether
the accuracy of the predicted CHMs is higher than that of the outdated ALS data. We used a 2022 ALS scan from
the Giant Mountains National Park (Czechia) as a reference and compared it to four recent satellite-derived
predicted CHMs (Table 1) as well as to another ALS scan acquired 10 years earlier (i.e., 2012; all ALS data were
processed with standard methods, cf. Moudry, Gébor, et al., 2024).

The study area was selected because it provides both a representative example of European landscape hetero-
geneity and access to high-quality ALS data collected at multiple time points. The Giant Mountains National Park
can be regarded as broadly representative of many European landscapes, as it encompasses a mosaic of natural
and human-modified ecosystems. These cover a diverse, rugged landscape shaped by glacial and postglacial
processes and a broad altitudinal gradient (approximately 400-1,600 m a.s.l.). Canopy height of forest stands is
typically up to 35 m, with some mature patches reaching up to 45 m. Vegetation transitions from lowland
managed forests and extensive spruce (Picea abies) monocultures to montane and subalpine zones with thickets of
dwarf pine (Pinus mugo), alpine meadows, and sparsely vegetated rocky areas. The park also includes peat bogs
and remnants of native deciduous and mixed forests dominated by beech (Fagus sylvatica). This heterogeneous
mosaic of open areas with low vegetation, interspersed with forested patches of varying canopy height (Figures 1
and 2) mirrors ecological and structural variability found across much of Central and Western Europe, with the
exception of extensive flat coastal regions, such as in the Netherlands or northern Germany. Therefore, although
regionally specific, the Giant Mountains landscape represents a realistic and data-rich test environment for
evaluating CHMs.

The evaluation demonstrated that current global and continental CHMs exhibit limited accuracy in our study area,
with RMSEs ranging from 6.4 to 11.7 m (Figures 1 and 2). This is consistent with several recent independent
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Figure 1. A representative canopy height profile (10 m deep) from the Giant Mountains National Park, Czechia. Note the
limited ability, especially in the CHM by Lang et al. (2023), to capture variations in canopy height, making the transition
between forest and non-forest areas unclear. The mosaic of pastures and forests appears as a continuous forest with heights
ranging from 10 to 30 m. In contrast, the CHMs by Tolan et al. (2024) and Liu et al. (2023) more effectively differentiate
between forest and non-forest areas due to the substantially higher resolution of their input data. However, both CHMs tend
to underestimate the height of vegetation. This suggests that there may be room for improvement in combining multiple
predicted CHMs, such as the one by Tolan et al. (2024), which accurately distinguishes forests from non-forested areas, and
the model by Lang et al. (2023), which is relatively successful in predicting top canopy height. The resolution of the CHM by
Potapov et al. (2021) is too coarse to capture smaller stands.

validation studies. For example, Chen et al. (2025) and Ng et al. (2025) highlighted limitations and notable
accuracy differences in global CHMs over China and New Zealand, respectively. Similarly, Dong, Xu,
et al. (2025) identified consistent limitations across products, including widespread canopy misclassification, and
systematic biases in canopy height predictions in urban environments. Importantly, all studies indicate that low
canopies are typically overestimated and high canopies are underestimated, resulting in a limited ability of
predicted CHMs to capture canopy height variability (Chen et al., 2025; Dong, Xu, et al., 2025; Moudry, Gébor,
et al., 2024; Ng et al., 2025). Together, these findings illustrate that despite recent progress, substantial uncer-
tainty remains in predicted CHM products (Besic et al., 2025; Lencinas, 2025).

Strikingly, we found that the 2012 ALS data had a much lower error in predicting 2022 canopy height than any of
the global or regional CHMs. Figure 1 presents a cross-section comparison of vegetation heights extracted from
four predicted spaceborne data-based CHMs to reference heights extracted from ALS CHMs. Both large over-
and underestimation of vegetation height can be observed in spaceborne CHMs (Figure 1; see Moudry, Gabor,
et al. (2024) for evaluation in other temperate forests). The continental canopy height map for Europe (Liu
et al., 2023) exhibited a lower root mean square error than the three global products (Figure 2), consistent with the
results of a recent comparison of the same CHMs conducted by Fogel et al. (2025). However, the change in
vegetation height over 10 years is lower than the canopy height error in the four models for the selected area
(Figure 2). In this example, such an error hinders effective change detection in canopy height. This limitation can
be further influenced by the amount of disturbance, which is relatively low in our study area (Figure 2). In cases of
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Figure 2. Canopy heights from four predicted canopy height maps from spaceborne LiDAR: Tolan et al. (2024), Liu et al. (2023), Lang et al. (2023), and Potapov
etal. (2021) and an outdated (2012) ALS compared with a recent (2022) ALS model (reference data set). The figures on the left show canopy height, while the figures on
the right show the difference in canopy height compared to the ALS 2022 data (i.e., the error of the predicted maps). ME stands for mean error, and RMSE stands for root
mean square error.
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large-scale deforestation detectable by optical data, the signal should still be visible in predicted CHMs. However,
to estimate changes in vegetation height accurately, we must first know the vegetation height before such dis-
turbances occur.

3.2. What to Report and Consider When Generating and Using CHMs

Global CHM data sets are indispensable for answering large-scale ecological questions, and with the increasing
availability of suitable data, the number of such products will continue to grow (Lencinas, 2025). It is, therefore,
imperative to improve the reporting of accuracy and uncertainty in predicted CHMs. In addition, new products
should be routinely compared with existing ones to identify systematic discrepancies between products and to
enable users to select the most appropriate data set for their purposes (e.g., Markonis et al., 2024). A detailed
discussion of validation approaches is beyond the scope of this study. However, the Committee on Earth
Observation Satellites (CEOS) protocol for biomass products provides a useful reference for best practices in
estimating and reporting uncertainties, and similar principles can be applied to CHM products (Duncanson
et al., 2021).

To select the best vegetation structure product, the overall evaluation metrics (e.g., Hohle & Hohle, 2009), such as
mean error (ME) or root mean square error (RMSE), provided by existing products, are fundamental, despite
providing a limited insight into the local map quality. Even if the user selects the most accurate map (i.e., that with
the lowest overall RMSE), there may be considerable biases in the subregions. Rather than relying on a few
individual metrics, products should provide a spatially explicit uncertainty layer; however, this is rarely imple-
mented. The study by Lang et al. (2023) is a notable exception, explicitly evaluating both model and data un-
certainty. Model uncertainty reflects uncertainty in the learned relationships and the model's ability to generalize
beyond the conditions represented in the calibration data. Indeed, unevenly distributed calibration data can force
the model to make predictions under conditions not represented during training, leading to invalid or unreliable
predictor—response relationships. This issue is typical of CHMs developed using ALS data, as available samples
typically do not capture the full range of ecosystems (e.g., Liu et al., 2023; Wagner et al., 2025). One way to
improve the reporting of such uncertainties is to assess the area to which a prediction can be reliably applied.
Methods such as the Area of Applicability (Meyer & Pebesma, 2021) inform users about regions where the
predictor space resembles the training data, thereby reducing the risk of extrapolation-driven errors. In addition,
uncertainty can arise from discrepancies in the data, such as between the true canopy height and the height
measured by the satellite (or airborne) LIDAR sensors. These discrepancies are mainly caused by co-registration
errors and by measurement inaccuracies of the sensor. These issues are particularly relevant for satellite LIDARSs
(e.g., Lahssini et al., 2024; Moudry, Prosek, et al., 2024; Urbazaev et al., 2022). Another factor contributing to
data uncertainty may be the discrepancy between the size of the LIDAR footprint and the spatial resolution of
predictors (e.g., CHMs are often produced at a 10 m resolution, whereas the GEDI footprint is 25 m in diameter).

Importantly, uncertainty estimates themselves must be validated; recent findings show that the uncertainty layer
of the global CHM by Lang et al. (2023) is inaccurate (see supplementary material in Moudry, Gébor,
et al., 2024). This can be easily added, for example, by comparing the estimated uncertainty with the error
observed in the CHM relative to more accurate validation data (e.g., ALS). Furthermore, we suggest that in
addition to validation with ALS data, the predicted CHM products should include representative profiles (as in
Figure 1) in addition to standard 2D visualizations. Most authors of the global data sets only showed product
visualizations in 2D space (e.g., Lang et al., 2023; Potapov et al., 2021; Schwartz et al., 2023), which can make
even poorly performing models appear plausible (Figure 2). Vertical cross-sections reveal structural in-
consistencies and over- or underestimation patterns that are otherwise hidden in 2D, thereby helping users better
understand model limitations and associated uncertainty. Finally, ALS data are increasingly available worldwide
(e.g., Fischer et al., 2025); users can validate global CHMs in representative regions, helping to select the most
suitable product when multiple CHMs are available for a given region.

4. Continuous Mapping of the Earth's Surface by Integrating Airborne and Satellite
Data

In contrast to costly and typically infrequent ALS campaigns (though see the next section), satellite data provide
frequent, contiguous coverage, enabling dynamic estimation of vegetation structure. A potential solution to
providing global fine-resolution data on the vertical structure of vegetation at a reasonable cost could lie in the
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creation of a fleet of LiDAR satellites that would continuously map the Earth (Hancock et al., 2021; Lowe
et al., 2024). Such a constellation would enable consistent and repeatable monitoring of vegetation structure
dynamics at a global scale. Hancock et al. (2021) estimated that producing such continuous data at a 30 m res-
olution every 5 years would require a constellation of 12 satellites acting concurrently. More recently, Lowe
et al. (2024) investigated which platform-optics-constellation design offers the most promising and cost-effective
solution, and suggested that micro-satellites, with a mass in the order of 150 kg, may present the most attractive
performance-to-cost ratio. They estimated that a constellation of eight such satellites would be sufficient to
produce CHMs at a 20-m resolution annually. The development of such a satellite constellation was announced
relatively recently by the geospatial technology startup NUVIEW, which aims to deploy 20 commercial satellites
equipped with LiDAR to map the Earth's entire land surface annually. In addition, NASA currently has an
advanced proposal for the next-generation spaceborne laser altimetry mission, known as Earth Dynamics
Geodetic Explorer (EDGE), which aims to significantly improve spatial accuracy and coverage, vertical preci-
sion, and change detection.

At present, however, such satellite systems do not exist, and an operational mission capable of delivering higher-
resolution global LiDAR data is unlikely before 2030. Therefore, the assessment of vegetation structure (e.g.,
canopy height) and its changes at fine resolution will continue to rely on data fusion approaches in the foreseeable
future (Valbuena et al., 2020). However, this remains a challenging task (see reviews by Coops et al., 2021;
Balestra et al., 2024). To improve the accuracy and reliability of such fused products (see the previous section on
the limitations of existing ones), continued development and refinement of modeling approaches are essential.
This requires exploring and testing new algorithms, as recently demonstrated by Fogel et al. (2025), who eval-
uated the applicability of computer vision models for this purpose and suggested that transformer-based archi-
tectures exhibit superior performance. Moreover, the increasing availability of suitable auxiliary data sets from
recent satellite missions, such as NASA-ISRO Synthetic Aperture Radar (NISAR) and the European Space
Agency (ESA) Biomass mission (note, however, that Biomass mission data are not available over Europe and
North America), is also expected to improve estimates of vegetation characteristics (e.g., Silva et al., 2021;
Valbuena et al., 2020). In the relatively near future, these efforts may also benefit from planned missions, such as
Landsat Next, which is expected to offer more spectral bands and improved spatial resolution compared to
previous Landsat missions (Roy et al., 2026). Finally, continued refinement of GEDI and ICESat-2 data pro-
cessing is also valuable, as they do not yet provide perfect ground truth. Some of the error in predicted CHMs
likely stems from the limited accuracy with which both GEDI and ICESat-2 can measure terrain and canopy
height (Lahssini et al., 2024; Moudry, Prosek, et al., 2024; Pracna et al., 2025; Urbazaev et al., 2022). Enhancing
the accuracy of data produced by these missions requires high-quality benchmark data sets, and ALS data
represent an indispensable source for this purpose (e.g., Duncanson et al., 2019; Tang et al., 2023). Indeed, even if
we manage to build a constellation of LiDAR satellites capable of dense spatio-temporal mapping of vegetation
structure in the near future, it will need precise and consistent benchmark data sets over large geographical areas
for its calibration and validation.

ALS data are also crucial for training and validating data fusion models (Balestra et al., 2024; Fogel et al., 2025),
yet the lack of open-access high-resolution data sets hinders the reproducibility and evaluation of models (Fogel
et al., 2025). When combined with very high-resolution satellite imagery, ALS data further enable canopy height
prediction at spatial resolutions of up to 1 m (e.g., Tolan et al., 2024; Wagner et al., 2025), which can be
particularly useful for extending coverage to areas where ALS data are currently unavailable (see the next sec-
tion). Furthermore, the current status of vegetation structure derived from ALS data is essential for assessing
changes, either in combination with direct observations from satellite LiDAR (Guerra-Herndndez & Pasc-
ual, 2021; Parra & Simard, 2023) or through predicted CHMs (Fogel et al., 2025; Pauls et al., 2025). For all these
reasons, available state- and country-wide ALS data represent the cornerstone for advancing global vegetation
structure mapping—serving as a benchmark for future spaceborne missions, a driver of innovation in modeling
and data fusion, and a source for immediate monitoring needs. They should, therefore, be used to produce uni-
form, seamless vegetation structure products.

5. Toward European Canopy Height Model Derived From Airborne Laser Scanning
Data

Unlike spaceborne laser altimeters, which offer broader coverage but discrete and sparse measurements (Dubayah
et al., 2020), ALS offers dense continuous coverage and is commonly used for regional or state-wide mapping.
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However, processing of ALS point clouds and their integration into a single product is challenging for large-scale
analyses covering multiple countries (Fischer et al., 2024). As a result, large-scale studies are impeded by the
absence of consistent, accurate, and accessible vegetation structure data, and generally rely on global predicted
products from satellites (see Section 3) due to the difficulties in managing and processing ALS data at a conti-
nental scale.

The United States sets a good example with the 3D Elevation Program (3DEP), managed by the U.S. Geological
Survey (USGS), which aims to collect ALS data for the conterminous United States, following specific collection
requirements to ensure consistent LIDAR coverage across the entire territory (USGS, 2024). So far, however, it
only aims at providing a digital terrain model (DTM; Stoker, 2020; Stoker & Miller, 2022), not seamless CHMs
(or other vegetation structure products) in a raster format. Digital surface models (DSMs) could, however, be
created through OpenTopography (https://opentopography.org/), where most U.S. LiDAR data are also hosted.
Europe is lagging behind, as no common data collection requirements or methodology that regulates mapping
activities exists. This responsibility falls to the individual states and countries. As a result, ALS coverage in
Europe is managed at the national (e.g., in Denmark, France, Netherlands, Poland, Spain) or sub-national (e.g., in
Austria, Belgium, Germany, Italy) level and data are scattered among providers, leading to different character-
istics across regions (D'Amico et al., 2021; Kakoulaki et al., 2021).

Of the 44 countries in Europe, ALS data are collected by governmental institutions in at least 33 countries
(Figures 3 and 4; see Supporting Information S1 for more details on ALS campaigns in individual countries).
However, national ALS acquisitions are typically designed to capture terrain information rather than vegetation
structure, which means that the data are often collected using acquisition parameters that are suboptimal for
characterizing vegetation structure (e.g., low point densities or acquisitions under the leaf-off period). Notable
exceptions are France's LIDAR HD program, carried out by the Institut National de 1’ Information Géographique
et Forestiere (IGN, https://geoservices.ign.fr/lidarhd), with dedicated summer acquisitions for forest resource
assessments, and a recent effort by the Federal Agency for Cartography and Geodesy of Germany, which aims to
map the entire Germany under leaf-on conditions and with point cloud density of 40 points per square meter
between 2024 and 2025 as a part of the Digital Twin Germany initiative (GIM International, 2025; Hopfstock
et al., 2022).

At the moment, only a few European countries provide ALS-derived metrics of vegetation structure in a raster
format (Denmark, Netherlands, and Switzerland; see Assmann et al., 2022; Kissling et al., 2023; Kiilling
et al., 2024; Shi et al., 2025). These products typically include dozens of vegetation structure metrics describing,
for example, vegetation cover and density (often separated into vertical strata), as well as various measures of
vertical structural variability, such as skewness, kurtosis, or the coefficient of variation of vegetation height.
Nevertheless, the choice of vegetation metrics, the methods used to calculate them, and their resolution can vary
significantly among products (Cosgrove et al., 2024; Kissling & Shi, 2023; Moudry et al., 2023; Wang
et al., 2024). Therefore, it is important to coordinate these efforts from the outset to enable their harmonization
and the development of a transnational, Europe-wide product. Such a harmonized product would ensure
consistent interpretation and utilization of data across various studies and applications, and improve the reliability
and reproducibility of results, enabling comparable assessments of vegetation characteristics across broad spatial
extents.

Achieving this, however, will require addressing several challenges that currently limit the production of
consistent and reliable products: (a) inconsistencies in acquisition characteristics and classification accuracy
across data sets and countries, (b) temporal inconsistency (e.g., scans with differences in acquisitions in the order
of several years or scans conducted in leaf-on vs. leaf-off periods) and differences in coordinate reference sys-
tems, and (c) availability and reliability of (meta)data. Below, we illustrate these challenges using the example of
creating a near-continental CHM from existing ALS data, which we consider the first step toward this broader
goal.

5.1. Inconsistencies in Acquisition Characteristics and Classification Accuracy

Combining LiDAR data from different campaigns presents challenges, as the three-dimensional structure of the
point cloud, and consequently vegetation structural metrics, can vary with acquisition characteristics (Fischer
et al., 2024; Goodwin et al., 2007; Roussel et al., 2017; Wulder et al., 2012; Zhang et al., 2024). These in-
consistencies can, however, be mitigated by systematically evaluating how LiDAR-derived vegetation metrics
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Figure 3. Years of acquisition of airborne laser scanning campaigns conducted by governmental institutions in Europe,
including point density information where available. Note that the information provided is likely incomplete, both in terms of
available data and their metadata, as these are documented to varying degrees and reliability. In addition, the years of
acquisition may also include the preparation and processing time (i.e., =1 year), as it is often difficult to distinguish whether
only the acquisition years are reported or if they also include data processing. Similarly, it is difficult to distinguish whether
point or pulse density is reported, and whether these are nominal/minimal densities or realized densities (which are often
higher). Therefore, we use the single term point density.

respond to changes in factors such as spatial resolution, pulse density, and scan angle, and by selecting an
appropriate resolution for the final product (e.g., Kissling et al., 2024; Shi et al., 2025; van Lier et al., 2022).

The typical point densities of LIDAR point clouds available in Europe are around 5-10 points per square meter
(see Figure 3 in Kissling et al., 2024); still, they vary considerably across the continent (Figures 3 and 4). For low
point densities, it is advisable to calculate vegetation metrics at coarser resolutions (e.g., 10 or 20 m) to minimize
potential errors in estimating the vegetation structure (D'Amico et al., 2021; Kamoske et al., 2019; Kissling
etal., 2024; Ruiz et al., 2014; Wilkes et al., 2015). On the other hand, vegetation metrics, such as upper percentiles
of height, are generally less sensitive to point cloud properties (Fischer et al., 2024; Kissling et al., 2024; LaRue
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Figure 4. Coverage of Europe by airborne laser scanning campaigns conducted by governmental institutions, including
information on point densities from the latest campaigns where available. Note that, to illustrate the overall extent of ALS
data availability in Europe, we also show countries where national scanning is currently underway as fully covered, even
though completion is expected only within the next one or 2 years (i.e., France, Italy, Northern Ireland; Scotland; see Figure 3
and Supporting Information S1 for more details).

et al., 2022; Roussel et al., 2017), and deriving a CHM at a 10-m resolution should provide a reasonable balance
between spatial resolution and vertical accuracy. The point cloud classification across countries, with differences
in methods such as automated classification, visual inspection, and Al algorithms, constitutes another factor.
While classes such as ground, low/medium/high vegetation, building, water, and unclassified are most commonly
available in open-access ALS data across Europe, power lines, bridges, and viaducts are less often included (see
Figure 3d in Kissling et al., 2024), potentially introducing bias in vegetation metrics (Shi & Kissling, 2023).
However, this may not be a major issue if the focus is primarily on forests or nature reserves, where even less
accurate classifications can still provide better results than predicted CHMs.

The scan angle of the laser pulses is another factor that has to be considered. The use of wider scan angles expands
the swath width, allowing larger areas to be surveyed and potentially helping to optimize costs. However, as scan
angles increase, the laser pulse travels a longer path through the canopy, increasing the likelihood of striking
upper-canopy and reducing the probability of reaching the ground (e.g., Disney et al., 2010; Goodwin et al., 2007,
Montaghi, 2013). With wider scan angles, the canopy effectively appears denser under otherwise identical
acquisition conditions, which can, in turn, introduce bias into vegetation-structure metrics (Roussel et al., 2018).
Although small deviations from nadir (up to approximately 15°-20°) generally have little effect on maximum
canopy height or upper percentiles metrics, larger off-nadir angles can introduce biases, particularly for metrics
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such as lower height percentiles or gap fraction (Dayal et al., 2020; Liu et al., 2018; Montaghi, 2013; van Lier
et al., 2022). Moreover, the effect of scan angle is influenced by the vegetation structure itself (e.g., by species
composition and crown shapes; Liu et al., 2018; van Lier et al., 2022). In general, the impact of scan angle is
modest and largely mitigated by overlapping flight lines and increased point density (Dayal et al., 2022; Lovell
etal., 2005; van Lier et al., 2022). For instance, national ALS in Sweden requires the use of maximum scan angles
of £20°, whereas Slovenia allows angles up to +£30°. This highlights the need to account for scan angle to
minimize systematic biases (Roussel et al., 2018), particularly when combining data sets from different ALS
campaigns, such as country-wide surveys in Europe, or when using multi-temporal ALS data (Liu et al., 2018;
Montaghi, 2013; Riofrio et al., 2022).

Additional acquisition characteristics, while beyond the scope of this study, may also influence the structure of
ALS point clouds and derived vegetation metrics. For example, the wavelength of the laser pulse can affect
canopy penetration and backscatter intensity (Lefsky et al., 2002). Similarly, the total power of the transmitted
pulse (i.e., pulse width) and footprint size can further modulate how the laser interacts with vegetation, potentially
altering the representation of vegetation structure in the point cloud (e.g., Hovi & Korpela, 2014). While these
parameters may introduce differences, their effects are typically secondary compared to above mentioned scan
angle and point density. Likewise, differences between sensor technologies, such as linear-mode versus single-
photon LiDAR (White et al., 2021), can introduce additional variability. However, to our knowledge, single-
photon LiDAR has so far seen very limited use in large-scale ALS acquisitions across Europe, with the likely
exception of ongoing surveys in Germany between 2024 and 2025 for the Digital Twin initiative.

5.2. Temporal Inconsistency and Differences in Coordinate Reference Systems

The temporal inconsistency of ALS data acquisition across countries is a concern, as ALS surveys remain costly
and infrequent. Moreover, ALS data collection often predominantly aims to provide accurate topographic
modeling, so many countries carry out scans under leaf-off conditions (such as Slovenia, England, Czechia, and
the Netherlands). In some countries, however, scanning is explicitly timed to occur close to the peak vegetation
greenness (e.g., Estonia), while in other countries it depends on the region (e.g., Spain). Some countries may even
merge point clouds across different scanning periods (France). Therefore, the density of vegetation returns may
vary considerably depending on when the data were collected. If unaccounted for, the resulting differences could
introduce substantial bias and limit the usability and accuracy of harmonized vegetation structure maps. In
addition, as new advancements in scanning technology emerge (e.g., higher pulse repetition frequency, wider
scan angles, use of multiple wavelengths, and different sensor types), older data sets can become less compatible
with current data (i.e., due to considerable differences in acquisition characteristics), making it challenging to
ensure compatibility. If we consider European countries where data have already been collected or are in the
process of being collected, the time span between the first and last scans amounts to about 16 years (2010-2025;
Figure 3). While this is not optimal, a 10-year difference can introduce (as illustrated above) less error than the
predicted maps (Figure 2), if the area under study did not experience major disturbance events. It also indicates
that with a coordinated effort, it should be possible to achieve a better temporal range similar to the US 3DEP
(9 years) for the entire continent of Europe within this decade. In addition, higher observation frequencies in
hotspots (e.g., areas experiencing considerable disturbances) could enhance the applicability of ALS data for
timely management decisions (e.g., Fassnacht et al., 2024; Kissling et al., 2024).

The standardization of coordinate reference systems (both horizontal and vertical) is another important aspect in
creating a near-continental CHM across Europe. Europe is historically fragmented in terms of coordinate
reference systems, with individual countries having developed their own horizontal and vertical datums, which
adds complexity to creating a unified CHM and can introduce misalignments and inconsistencies when merging
point clouds. Ensuring that all data sets are converted to a common horizontal and vertical reference system is,
therefore, a prerequisite for producing seamless and accurate CHMs at a continental scale. Ideally, all ALS data
across Europe should be available in the ETRS89 reference system with ellipsoidal heights referenced to the
GRS80 ellipsoid (i.e., the system in which all ALS data across Europe are originally acquired, since the positions
of the aircraft collecting the data are determined using differential Global Navigation Satellite Systems methods
relying on reference station networks realized in this system). Nevertheless, for distribution to end users, ALS
point clouds are typically converted into local horizontal projected coordinate systems and either orthometric
heights (e.g., in Spain) or normal heights (e.g., in Czechia), and access to the original ETRS89 data is, in most
cases, complicated.
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Standardizing vertical reference systems to a single unified system requires access to all local geoid or quasi-
geoid heights (i.e., undulations) to enable conversion of the data to ellipsoidal heights. However, this can be
challenging, as geoid or quasi-geoid data are not freely available in many countries. Fortunately, in the specific
case of vegetation metrics such as canopy height, which express relative height above the ground rather than
absolute height above sea level, the issue of unifying vertical reference systems can effectively be ignored.
Although not ideal, a similar solution is also often used when combining multitemporal ALS acquisitions (Riofrio
et al., 2022). This, of course, does not apply when creating a continental DTM, and although focusing here solely
on vegetation structure allows us to largely circumvent this issue, we acknowledge that local geoid (and quasi-
geoid) information will eventually be necessary for fully unified elevation products. In the first step, point clouds
should be transformed into the same horizontal coordinate reference system (e.g., ETRS89) and height-
normalized. Subsequently, the CHM can be obtained using any existing method (Fisher et al., 2024). Alterna-
tively, these steps can be reversed, and the transformation applied to raster data after the CHM (or other vegetation
metric) generation. This approach may be necessary in the case of countries where point cloud data are not freely
available, but raster-based DSM and DTM products are accessible.

5.3. (Meta)Data Availability and Reliability

Although the data have different characteristics as mentioned above, it is possible to derive vegetation structure
metrics in raster format at a relatively fine resolution (Assmann et al., 2022; Kissling et al., 2023; Shi et al., 2025).
This requires detailed documentation of the metadata in order to develop standardized processing pipelines that
can account for differences in scanning properties (Fischer et al., 2024). However, metadata, if available, are
documented with various degrees of depth and reliability, which significantly limits their accessibility and utility
for potential users. For example, we made every effort to review the characteristics of ALS data available in
Europe (see Supporting Information S1), but we had to limit our focus to point density and the year of data
acquisition. This was due to the difficulty of narrowing down the acquisition time to the exact month, the lack of
announcements regarding future acquisitions, and the absence of information on the classification categories and
methods used to classify them. Therefore, in line with the FAIR guiding principles (Wilkinson et al., 2016), it is
important that ALS surveys provide standardized, machine-readable metadata of survey variables and sensor
characteristics, as well as documentation of preprocessing steps and provenance of (sub)national ALS point cloud
data sets (Kissling et al., 2024). For ecological applications, it is also important to provide the flight line time-
stamps in a spatially explicit way because the actual date/month during which an area is scanned can vary within a
national ALS data set (Shi et al., 2025).

In addition, in many cases, accessing the data itself remains challenging. Point clouds are still not freely available
in several European states (e.g., Austria, Bosnia and Hercegovina, Romania, Malta), may not be easily accessible
through web interfaces and require formal requests for release (e.g., Croatia), or the portals may be difficult to log
into (e.g., Montenegro). Furthermore, while ALS data have been collected over multiple time periods in some
parts of Europe (Figure 3), and countries such as Estonia, the Netherlands, and Spain openly provide all existing
data, in other areas, only the data from the most recent period are easily accessible (e.g., Saxony, Switzerland).
Hence, establishment of a centralized repository, and creation of a metadata catalog with human- and machine-
readable metadata would be a major step forward (Kissling et al., 2024). Access to funding will be a crucial factor
in this effort. A European funding initiative similar to 3DEP, supported by the EU, would be a good approach to
generate vegetation structure metrics from existing data, to establish a centralized repository, and to collect data in
European countries where ALS data is not yet available or where only limited coverage exists, such as the
Balkans, Hungary, and Moldova.

6. Conclusions and Outlook

The availability of remote sensing data greatly facilitates forestry and ecological research. On the other hand, the
growing number of data sets of varying quality introduces challenges regarding which data sets to choose. Users
typically do not have the chance (and/or expertise) to critically evaluate the available data. It is, therefore,
essential to ensure that data producers clearly communicate the limitations of their data sets. Predicted CHM
products should provide reliable uncertainty estimates and visualizations of vegetation profiles (Figure 1) for
representative areas and ecosystems.
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For vegetation structure, accurate, consistent, and repeatable continental products derived from ALS data are key
and should be prioritized over predicted spaceborne products. We strongly recommend that ALS-rich regions
prioritize the production of ALS-based canopy height maps over relying solely on modeled global data. In
Europe, the first step lies in creating a near-continental CHM using existing data (Figure 4), which, even given the
differences in the data collected, is possible at a reasonably fine spatial (e.g., 10-20 m) and temporal (e.g.,
15 years) resolution. While canopy height represents a key structural attribute, it should be viewed as only the first
step toward a broader objective. The next step lies in expanding this coordinated effort to encompass additional
ALS-based metrics (e.g., skewness, kurtosis, and the coefficient of variation of vegetation height, as well as
vegetation density and cover; Moudry et al., 2023; Kissling & Shi, 2023), thus enabling a more comprehensive
assessment of ecosystem structure.

To ensure the effective use of ALS across Europe in the future, better transnational coordination is needed. It is
necessary to establish a common data collection protocol to harmonize mapping activities (e.g., time of acqui-
sition, pulse density, update period), a centralized repository for data sharing, as well as a metadata catalog. A
European-wide coordination of data collection would lead to improved forest management, ecosystem moni-
toring, and climate change modeling on a continental scale. Beyond forestry and ecology, such data would also
provide a valuable foundation for numerous other disciplines—including geomorphology, hydrology, and urban
studies—where detailed and consistent 3D information on terrain, vegetation, and built structures is essential.
Finally, they would provide a benchmark for calibrating spaceborne laser altimetry products.
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