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Abstract

To this day there is no universal localization system for underwater environments. To
address this limitation, swarm-based localization approaches are gaining attention
since they enable the estimation of the relative position between multiple vehicles.
In those systems, multiple Autonomous Surface Vehicles and Autonomous Underwa-
ter Vehicles create a local reference frame, enabling coordinated navigation without
the need for an external localization system.
Due to the complexity and inherent limitations of the underwater environment, this
localization is generally based on acoustic ranging between the vehicles.
The thesis presents the potential and limitations of short range acoustic localization,
with particular focus on environmental variability, sensor geometry and estimation
accuracy. It is demonstrated that both the Particle Filter and the Extended Kalman
Filter, when combined with suitable initialization, facilitate accurate and continu-
ous position estimations, provided that geometric constraints and maximum range
limitations are taken into account.
These findings are substantiated by data collected during a dedicated measurement
campaign, validating the theoretical analysis and highlighting the practical chal-
lenges of real-world deployment.
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Zusammenfassung

Da bis heute kein universelles Lokalisierungssystem für Unterwasserumgebungen ex-
istiert, gelten schwarmbasierte Lokalisierungsverfahren als vielversprechender Ansatz
für die Unterwasserlokalisierung, weil diese die Schätzung der relativen Position zwis-
chen den einzelnen Einheiten ermöglichen. In diesen Systemen erstellen mehrere
autonome Oberflächen- und Unterwasser- fahrzeuge einen lokalen Referenzrahmen,
der eine koordinierte Navigation ohne ein externes Lokalisierungssystem ermöglicht.
Aufgrund der Komplexität und den inherenten Einschränkungen der
Unterwasserumgebung basiert diese Lokalisierung generell auf akustischen Entfer-
nungsmessungen zwischen den Fahrzeugen.
Die Masterarbeit veranschaulicht das Potential und die Grenzen der akustischen
Nahbereichslokalisierung unter Berücksichtigung von Umweltvariabilitäten, Sensor-
geometrie und Schätzgenauigkeit. Es wird dargestellt, dass sowohl der Particle
Filter als auch der Extended Kalman Filter in Kombination mit einer geeigneten
Initialisierung genaue und kontinuierliche Positionsschätzung ermöglichen, sofern
geometrische Einschränkungen sowie maximale Entfernungsbegrenzungen berück-
sichtigt werden.
Diese Ergebnisse werden durch in der Ostsee aufgenommene Messdaten bekräftigt,
wodurch die theoretische Analyse bestätigt und die praktischen Herausvorderungen
in der realen Welt hervorgehoben werden.
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1. Introduction

1.1. Motivation

In recent years, awareness of the critical importance of knowledge about the un-
derwater environment has grown significantly. Incidents such as the break down of
Nord Stream 1 and 2 [1], the loss of the Titan submersible during its mission to
the Titanic wreck [2], and ongoing geopolitical developments have emphasized the
increasing relevance of reliable situational awareness below the ocean surface [3].
Achieving such awareness requires advanced sensing technologies as well as precise
knowledge of where these measurements originate. Accurate localization therefore
is fundamental for any underwater observation, inspection, or communication sys-
tem. Establishing reliable underwater positioning thus forms a major step toward
improving situational awareness and enabling coordinated autonomous operations.
While Global Navigation Satellite Systems (GNSS), such as the Global Positioning
System (GPS) and Galileo [4] allow for precise terrestrial localization and naviga-
tion, underwater localization remains a significant challenge. This is due to the
fact that in underwater environments, Electromagnetic (EM) waves such as radio
signals and visible light are strongly attenuated due to high absorption and scat-
tering in seawater. Therefore, acoustic signals, which are only slightly attenuated
underwater, are the primary means for underwater communication and localization
[5]. However, other challenges arise since the underwater channel is highly variable,
influenced by changes in temperature, salinity and pressure. These properties cause
sound speed variations, resulting in effects like refraction, multipath propagation,
and signal distortion. Therefore, underwater localization systems must adapt to
these dynamic environmental conditions [6].
The development of the proposed localization framework is based on a swarm sys-
tem comprised of multiple Autonomous Surface Vehicles (ASV) and Autonomous
Underwater Vehicles (AUV). Since ASVs and AUVs typically operate in clusters,
only short range communication and localization is required. This thesis therefore
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1. Introduction

focuses on short range transmission scenarios, which serve as a foundation for fu-
ture swarm-based localization system. The influence of the channel characteristics,
such as spatial variations in the sound speed and the resulting refraction of acoustic
rays, on the propagation paths and corresponding Time of Flight (ToF) measure-
ments is investigated. The analysis further addresses how these effects contribute
to localization bias. Based on these findings, a simplified swarm localization sys-
tem is developed, which aims to track the trajectory of an AUV based on Round
Trip Time of Flight (RTToF) measurements between the AUV and multiple ASVs.
The developed localization scheme is then tested on experimental data, obtained by
a measurement campaign conducted by the German Aerospace Center (DLR), to
determine the feasibility of the underlying system.

1.2. Outline
In order to address the challenges of underwater swarm localization and the devel-
opment of suitable estimation algorithms, this thesis is divided into eight chapters.
The motivation, objective, and an the general structure of the thesis is introduced
in Chapter 1. In Chapter 2, an overview of the underwater acoustic channel and its
fundamental properties, including attenuation, ambient noise, and sound propaga-
tion is provided. Moreover, a channel simulator is introduced, and the characteristics
of ASVs and AUVs are discussed. The chapter concludes with a summary of the
theoretical fundamentals of estimation theory. The measurement setup and data
generation process, which account for real-world conditions in the context of the
localization simulations, are described in Chapter 3. The various localization algo-
rithms investigated in this work are presented in Chapter 4. The initial estimations
involve static algorithms that localize the AUV based on snapshot information. Sub-
sequently, two recursive filters are presented, which extend the estimations to track
a continuous trajectory of the AUV. Within Chapter 5 the simulation results are
discussed and the performance of the implemented localization algorithms, based on
the principles introduced in the preceding chapters, is presented. The application
of the developed algorithms to experimental data is outlined in Chapter 6. The key
findings of this thesis are summarized in Chapter 7, and potential improvements
together with future research directions related to underwater swarm localization
are presented in Chapter 8.
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2. Fundamentals

This chapter provides the background information required for this thesis. This
includes details of the characteristics of the underwater channel, a simulator for
the propagation of acoustic waves, ASVs and AUVs as well as the fundamentals of
estimation theory.

2.1. Underwater Channel

The underwater channel is a model of highly complex propagation environment that
exhibits unique characteristics concerning signal transmission. Its varying proper-
ties, particularly with regard to attenuation, require a careful selection of the trans-
mission signal.

2.1.1. Propagation Loss

An important aspect to consider when examining a communication channel is the
Propagation Loss (PL) experienced by different types of signals, which depends pri-
marily on the traveled distance and the attenuation of the transmitted signal.
Electromagnetic (EM) waves, for instance, are well suited for communication in air
due to their high data rates and low propagation delay. In the underwater environ-
ment, however, especially high-frequency EM waves are severely attenuated, partic-
ularly in seawater. This attenuation of EM waves is dependent on the properties of
the medium, mainly magnetic and dielectric permittivity, as well as the electrical
conductivity. While the magnetic permeability underwater is approximately equal
to that in air, the dielectric permittivity and the electrical conductivity of seawa-
ter are significantly higher due to the presence of dissolved ions (salt) and polar
molecules. As a result, EM waves experience exponential decay with increasing dis-
tance, leading to an effective range of a few meters, thus rendering them unsuitable
for underwater localization [5].
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2. Fundamentals

In contrast, acoustic waves present a practical alternative for underwater communi-
cation due to their relatively low attenuation in seawater. Their total PL is modeled
as the product of their geometric spreading and frequency dependent absorption

A(d, f) = dkα(f)d (2.1)

[7]. Here, k denotes the spreading factor, which characterizes the geometry of the
signal propagation. It’s value ranges from 1 to 2, with k = 1 corresponding to
cylindrical spreading and k = 2 to spherical spreading. For high-frequency signals,
the absorption coefficient in dB can be calculated with

10 log α(f) = 0.11 × f 2

1 + f 2 + 44 × f 2

4100 + f 2 + 2.75 × 10−4f 2 + 0.003, (2.2)

where f is the frequency denoted in kilohertz (e.g. f = 10 kHz corresponds to
f = 10). The absorption coefficient for acoustic and EM signals as a function of
frequency is illustrated in Figure 2.1.

Figure 2.1.: The attenuation of EM and acoustic waves underwater as a function of
frequency [8].

It is evident that, particularly for lower frequencies, the attenuation of acoustic
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2.1. Underwater Channel

signals remains considerably lower in comparison to EM signals, rendering them
more suitable for underwater communication. Consequently, the measurement sys-
tem considered in this thesis is based on acoustic signals.

2.1.2. Noise

Another important aspect in signal transmission is the noise associated with the
respective system, as it directly influences the Signal-to-Noise Ratio (SNR) of the
measurements. In underwater environments, ambient and site-specific noise must
be considered [9]. Ambient noise is present throughout the ocean, caused by factors
such as currents, shipping or rain, and is often approximated as Additive White
Gaussian Noise (AWGN). The Power Spectral Density (PSD) of the ambient noise
is frequency dependent and can be determined with

10 log N(f) = 10 log (Nt(f) + Ns(f) + Nw(f) + Nth(f)), (2.3)

where Nt(f), Ns(f), Nw(f) and Nth(f) denote the noise components due to turbu-
lence, ships, wind and thermal effects, respectively and can be calculated with

10 log Nt(f) = 17 − 30 log (f), (2.4)

10 log Ns(f) = 40 + 20(s − 0.5) + 26 log (f) − 60 log (f + 0.03), (2.5)

10 log Nw(f) = 50 + 7.5w 1
2 + 20 log (f) − 40 log (f + 0.4), (2.6)

10 log Nth(f) = −15 + 20 log (f) (2.7)

[7]. While noise caused by turbulence only influences very low frequencies (f ≤
10 Hz), shipping activities dominate the noise in the frequency region of 10 Hz ≤
f ≤ 100 Hz. Wind leads to surface motion, which is the major factor contributing
to the noise for frequencies 100 Hz ≤ f ≤ 100 kHz and thermal noise is dominant for
frequencies above 100 kHz [9]. The PSD of the noise for varying levels of shipping
activity and wind speed for the frequencies up to 100 kHz is illustrated in Figure
2.2, which shows that the noise PSD primarily decreases with frequency.
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2. Fundamentals

Figure 2.2.: Ambient noise underwater as a function of frequency [7]1.

In contrast, site-specific noise is only perceptible in particular places, for example
near wind farms, due to ice cracking in polar regions or as a result of other local-
ized sources. Unlike ambient noise, it generally contains non-Gaussian components
[10]. Since this thesis focuses on general underwater communication scenarios, only
ambient noise will be considered.

2.1.3. Sound Speed Profile

In underwater environments, the speed of sound is not constant but depends pri-
marily on pressure, temperature, and salinity, with values ranging between 1450
and 1540 m/s [11]. Within a given water mass, these properties mainly change with
depth; therefore the sound speed is commonly expressed as a function of depth (c(z)).
The resulting curve is referred to as the Sound Speed Profile (SSP) [11]. However,
salinity and temperature are not only depth-dependent, but also vary with location
and, especially in shallow regions, can change considerably over time due to seasonal
effects or long-term trends such as global warming.
An example of this effect can be observed in the Baltic Thalweg, for which the
local temperature distribution is shown in Figures 2.3(a) and 2.3(b) for February

1s = 0 denotes low shipping activity and s = 1 high shipping activity.

6



2.1. Underwater Channel

and August 2019, respectively. A substantial seasonal variation is apparent, with
shallow-water temperatures increasing from approximately 3 ◦C to 5 ◦C in February
to about 17 ◦C to 19 ◦C in August. Consequently, an SSP is often only valid for the
specific time and place from which it is derived.

(a) February (b) August

Figure 2.3.: Temperature profiles along the Baltic Thalweg for February (a) and
August (b) 2019 [12].

A variety of mostly statistical models for the SSP exists, differing in complexity
and intended application purposes. In shallow regions, the sound speed generally
decreases monotonically with depth, primarily caused by the downward-decreasing
temperature profile. This decline in sound velocity is illustrated in Figure 2.4(a),
which shows the SSP of a coastal region in the Gotland Basin for August 2019
(latitude: 54.5927849, longitude: 11.0795898). It is computed based on the Medwin
model (2.8) with depth dependent data about the temperature and salinity collected
by the Leibniz Institut für Ostseeforschung Warnemünde in August 2019 [12]. This
profile serves as the foundation for subsequent simulations in coastal regions that rely
on a depth-dependent SSP. The Medwin model is an empirical formula, widely used
for shallow marine environments. It is valid for temperatures of 0 ◦C ≤ T ≤ 35 ◦C,
salinities of 0 ‰ ≤ S ≤ 45 ‰ and depths z up to 1000 m

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34 − 0.010T )(S − 35) + 0.016z (2.8)

[11].
In deep-sea regions, the sound speed typically decreases near the surface due to
cooling, reaches a minimum at a depth of approximately 1200 m - depending on
the ocean - and then increases again due to pressure. This characteristic shape is
represented by the Munk profile, shown in Figure 2.4(b), which is a classic analytical
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2. Fundamentals

model describing the sound speed in deep-sea regions:

c(z) = c0[1 + ϵ(e−η − (1 − η)], (2.9)

where η denotes the depth of the minimum sound speed and ϵ the magnitude of the
deviation from this minimum [13].
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(a) Coastal region in the Gotland Basin
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(b) Deep-sea region (Munk profile)

Figure 2.4.: SSP for (a) a coastal region in Gotland Basin and (b) for a deep-sea
regions (Munk profile).

2.1.4. Sound Propagation

The SSP leads to a nonlinear propagation of acoustic waves, as variations in the
sound speed cause changes in the refractive properties of the water. This effect is
described by Snell’s Law, which displays the relationship between the angles of inci-
dence and refraction of waves passing through a boundary layer between two media
[11].
In the domain of underwater acoustics, acoustic waves are frequently modelled as
rays, an approach particularly prevalent in ray-tracing simulations. In such mod-
els, each ray represents a discrete propagation path of energy. The curvature of
these rays is determined by the local sound speed gradient with the rays bending
towards regions of lower sound speed. In the ocean, where the sound speed changes
continuously with depth, the refraction of sound rays is described by

cos β(z)
c(z) = const. (2.10)
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2.1. Underwater Channel

[14]. Since in shallow water, the sound speed c(z) is often approximated as mono-
tonically decreasing with depth, the sound rays are predominantly bent downward,
leading to a propagation profile dominated by reflections at the bottom and surface
of the ocean. This behaviour is illustrated in Figure 2.5(a), which depicts the mod-
eled ray paths for a coastal region with a sender depth of 5 m. The different colours
indicate the number of reflections: red corresponds to a rays without reflections,
green to rays with one reflection at the surface, blue to rays with one reflection at
the bottom and black rays undergo multiple reflections.
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(a) Coastal region in the Gotland Basin
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(b) SOFAR channel

Figure 2.5.: Propagation of sound rays in (a) a coastal region in the Gotland Basin
and in (b) the SOFAR channel.

In contrast, for deep-sea regions, the sound speed profile often exhibits a mini-
mum at a certain depth, forming the Sound Fixing and Ranging (SOFAR) channel.
Rays above this minimum experience downward refraction, while rays below it are
refracted upward, creating a waveguide effect and thus enabling sound rays to prop-
agate over distances of several thousand kilometers. This phenomenon is illustrated
in Figure 2.5(b), which displays the ray paths in a deep-sea environment with the
same color scheme as in Figure 2.5(a).
The curvature of the sound rays can result in regions, where no direct Line of Sight
(LoS) connection exists between the transmitter and receiver. Furthermore, the
combination of multiple ray launch angles and boundary reflections results in muli-
path propagation, causing different rays with distinct travel times and intensities to
arrive between the same source-receiver pair. This complicates the analysis of the
received signals, since it can be difficult to distinguish between the different arrivals.
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2. Fundamentals

2.2. Bellhop Simulator

Bellhop is a widely used acoustic ray-tracing program designed for modeling sound
propagation in depth dependent ocean environments [15]. It simulates the effects
of refraction due to variations in the SSP as well as reflections at the sea surface
and bottom. By launching a fan of rays at different take-off angles from the source,
Bellhop computes both general ray trajectories and eigenrays that directly connect
a source-receiver pair. This enables the extraction of key propagation characteristics
such as travel times, angles of arrival and the occurrence of multipath propagation.
In addition to eigenray analysis, Bellhop can calculate propagation-loss fields, visual-
ize acoustic ray paths, and estimate the distribution of received signal intensity. All
simulation parameters - including acoustic frequency, source and receiver geometry,
the SSP, bottom properties, and the file output type - are specified in a dedicated
environmental file, which ensures reproducibility and flexible scenario design.

2.3. Autonomous Surface and Underwater Vehicles

Autonomous Surface Vehicle (ASV) are unmanned robotic vehicles, that are located
on the sea surface and are primarily used for environmental monitoring or marine
research. They operate based on various, mostly electrical or hybrid, propulsion
systems [16]. For the purpose of the DLR measurements, the ASVs are equipped
with GNSS sensors, hydrophones to record and transmit acoustic signals, as well as
onboard processing units for signal analysis.
Autonomous Underwater Vehicle (AUV) are similarly unmanned robotic systems
that operate below the sea surface and usually navigate along pre-programmed
routes. AUVs are commonly deployed for tasks such as seabed mapping or en-
vironmental monitoring. In the DLR setup, the AUVs are likewise equipped with
hydrophones and processing units, enabling acoustic communication with the ASVs.

2.4. Estimation Theory

Estimation theory is a branch of statistics that deals with determining numerical
values for unknown parameters based on sample data, which is obtained via mea-
surements or simulations. There are different aspects to consider when evaluating
the performance of an estimator.
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2.4. Estimation Theory

2.4.1. Unbiased and Biased Estimation

Let Θ denote the true parameter and Θ̂ an estimation computed from available
data. An estimator is considered unbiased, if the expectation of the estimation is
the parameter itself

E{Θ̂} = Θ. (2.11)

Otherwise the estimator exhibits a nonzero systematic error which is called bias

E{Θ̂} = Θ + bias. (2.12)

Here, the systematic error refers to the deterministic offset of the mean from the
true value, whereas the random error is quantified by the estimator’s variance [17].

2.4.2. Cramér Rao Lower Bound

To evaluate the performance of an estimator the Mean Square Error (MSE) or
Root Mean Square Error (RMSE) of the estimation is often analyzed. Within this
thesis, the so called Cramér Rao Lower Bound (CRLB) is used to determine the
theoretical minimal achievable error for the considered estimator. The CRLB is
derived under the regularity condition and based on the Cauchy-Schwarz inequality.
Since a complete derivation would exceed the scope of this thesis, only a shortened
version is presented here. A more detailed derivation can be found in [17].
For an unbiased estimator, the CRLB directly bounds the variance of the estimated
parameter Θ̂ and for biased estimators, a generalized form exists in which both the
variance and the bias contribute to the lower bound. In both cases the CRLB defines
the theoretical limit of achievable estimation accuracy, based on the expectation of
the estimator E{Θ̂} and the Probability Density Function (PDF) p(y|Θ) of the
observed measurements, given the unknown parameter:

VAR{Θ̂(y)} ≥
| d

dΘE{Θ̂}|2

E{| d
dΘ ln p(y|Θ)|2}

. (2.13)
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2. Fundamentals

Cramér Rao Lower Bound for Scalar Parameters

For an unbiased estimator, the expected value of the estimation equals the true
parameter. Under this condition, (2.13) simplifies to

VAR{Θ̂(y)} ≥ 1

E
{∣∣∣ d

dΘ ln p(y|Θ)
∣∣∣2} . (2.14)

For individual measurements yi the observation consists of a signal component si,
dependent on the parameter Θ and an noise term

yi = si(Θ) + ni, i = 1, ..., m, (2.15)

where m denotes the number of measurements. If ni is zero-mean and statistically
independent AWGN with variance σ2, the PDF of the measurement values is given
by

p(y|Θ) = 1√
2πσ2

e− (si(Θ)−yi)2

2σ2 , (2.16)

which leads to the following variance bound for the estimation of the parameter Θ
based on the observations yi:

VAR{Θ̂} ≥ σ2

∑m
i=1

(
d

dΘsi(Θ)
)2 . (2.17)

For ToF estimations, where the signals are observed sample by sample, the mea-
surements can be expressed as

yi = s(iT − τ) + ni, (2.18)

with T representing the sampling time and τ the time delay, which leads to the
following threshold for the variance in the time domain:

VAR{Θ̂} ≥ σ2

2∑m
i=1

(
d

dτ
si(iT − τ)

)2 . (2.19)

The factor σ2 in the denominator shows that the CRLB depends linearly on the
variance of the noise, and consequently the SNR.
Examining the properties of the CRLB in the frequency domain, reveals that it is
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2.4. Estimation Theory

dependent on the characteristics of the signal as well. For a sampled, bandlimited
signal with the sampling time T = 1

B
, the signal can be expressed as

s(iT ) =
+ 1

2T∫
− 1

2T

S(f)ej2πfiT df, (2.20)

with S(f) denoting the spectrum of the signal in the Fourier domain. A derivation of
the CRLB using the property F{ d

dt
x(t)} = j2πfX(f) as well as Parseval’s theorem

leads to
VAR{Θ̂} ≥ σ2T

8π2
+ 1

2T∫
− 1

2T

f 2|S(f)|2 df

(2.21)

(derivation in [17]). As the signal energy is distributed more widely in the higher
frequencies, the integral over f 2|S(f)| increases and consequently the lower bound
decreases.
When assuming a signal with unlimited Bandwidth B = 1

T
−→ ∞ with the noise

PSD N0 = σ2T = σ2

B
, the variance threshold can be expressed as

VAR{τ̂} ≥ 1
8π2 Es

N0
β2 , (2.22)

which reveals that the lower variance threshold of the timing estimation is inversely
proportional to the SNR. The effective bandwidth β can be calculated with

β =

√√√√∫+∞
−∞ f 2|S(f)|2 df∫+∞

−∞ |S(f)|2 df
. (2.23)

Cramér Rao Lower Bound for Vector Parameters

The information an observation contains about one of the parameters is denoted
within the so called Fisher Information. When considering a parameter vector with
multiple estimation parameters Θ = [Θ1, Θ2, ..., Θn], the Fisher information is a
matrix, with the size (No. parameters × No. observations). For the unbiased case,
the CRLB matrix is the inverse of the Fisher Information Matrix (FIM)

CRLB = FIM−1 (2.24)
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2. Fundamentals

[17]. In case of an AWGN channel, the FIM can be calculated with the Jacobian
matrix J and the covariance matrix Σ

FIM = JT Σ−1J. (2.25)

The Jacobian Matrix J, contains the partial derivatives of the individual measure-
ment functions (h1, ..., hm) with respect to the different parameters (Θ1, ...Θn)

J =



∂h1
∂Θ1

∂h1
∂Θ2

. . . ∂h1
∂Θn

∂h2
∂Θ1

∂h2
∂Θ2

. . . ∂h2
∂Θn... ... . . . ...

∂hm

∂Θ1
∂hm

∂Θ2
. . . ∂hm

∂Θn

 . (2.26)

The covariance matrix Σ consists of the variances and covariances of the various
measurements

Σ =


σ2

1,1 σ1,2 . . . σ1,m

σ2,1 σ2
2,2 . . . σ2,m

... ... . . . ...
σm,1 σm,2 . . . σ2

m,m

 . (2.27)

Posterior Cramér Rao Lower Bound

For iterative estimation methods (e.g., recursive filters), where information from the
previous estimation step is carried forward, the CRLB must be extended accordingly.
In such cases, the Posterior Cramér Rao lower bound (PCRLB) is calculated. It is
based on the PDF of the estimates, the measurement and transition model, as well
as the a-priori information about the parameters. Its computation is performed
iteratively as

Jn+1 = D22
n − D21

n (Jn + D11
n )−1D12

n (2.28)

[18]. Here, Jn denotes the Fisher Information at the time step n, such that the
posterior variance bound corresponds to inverse of Jn. The submatrices D11

n , D12
n ,

D21
n and D22

n are defined based on the expected values of the measurement and the
transition model. For an AWGN channel the submatrices can be calculated with

D11
n = E{[∇xnfT

n (xn)]Q−1
n [∇xnfT

n (xn)]T }, (2.29)

D12
n = −E{[∇xnfT

n (xn)]Q−1
n }, (2.30)
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2.4. Estimation Theory

D21
n = [D21

n ]T , (2.31)

D22
n = Q−1

n + E{[∇xn+1hT
n+1(xn+1)]R−1

n+1[∇xn+1hT
n+1(xn+1)]T }, (2.32)

with Qn and Rn denoting the covariance matrices of the transition and measurement
noise, respectively [18]. The transition model is defined as

xn+1 = fn(xn) + wn = Fnxn + wn (2.33)

and the measurement model as

zn = hn(xn) + vn = Hnxn + vn. (2.34)

For a linear transition model, the deviation of the transition model is constant thus
the expectation of the deviation can be neglected (∇xnfT

n (xn) = Fn). Therefore,
the calculations of the submatrices D11

n and D12
n simplify to

D11
n = FT

n Q−1
n Fn, (2.35)

D12
n = −FT

n Q−1
n . (2.36)

In case of a single estimation incorporating a-priori knowledge, a shortened version
of the PCRLB applies, in which prior information is directly added to the Fisher
Information

FIM = FIMmeas + FIMprior (2.37)

Cramér Rao Lower Bound for Biased Estimators

When dealing with biased estimators, the CRLB also has to account for the error
introduced by the bias. In this case, the numerator of the variance bound includes
the deviation of the expected value of the estimator

VAR{Θ̂(y)} ≥
| d

dΘE{Θ̂}|2

E{| d
dΘ ln p(y|Θ)|2}

. (2.38)

The total estimation error is therefore represented by including the bias term in
this bound. This way, the CRLB for biased estimation (BCRLB) provides a lower
bound on the MSE instead of only on the variance of the estimates. Thus, for a
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given parameter i, the BCRLB can be expressed as

E{Θ − Θ̂} ≥ b2
i (Θ) + {[I + ∇Θ(b)]FIM−1[I + ∇Θ(b)]T }ii, (2.39)

where b denotes a vector containing bias functions of each parameter Θi, the index
i indicates the corresponding Parameter, I is the identity matrix, and FIM denotes
the Fisher Information Matrix [19].
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3. Measurement System and Data
Simulation

This chapter describes the measurement system and the simulation framework used
to generate synthetic data for the localization of the AUV. The experimental setup,
consisting of four ASVs and one AUV as illustrated in Figure 3.1, is designed to
reflect realistic conditions in coastal environments, including the depth dependent
SSP.

Figure 3.1.: Measurement setup employed for the simulations.

The positions of the vehicles are represented in three dimensions by vectors con-
taining their coordinates along the x-, y-, and z-axes in meter

ra = [xa, ya, za]T m, (3.1)

ri = [xi, yi, zi]T m, i ∈ {1, ..., 4}. (3.2)
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3. Measurement System and Data Simulation

The index a denotes the AUV and the index i represents the ASVs, which re-
main fixed throughout the simulations. The ASVs are equipped with GNSS re-
ceivers mounted above the water surface, which allow accurate position determina-
tion; therefore, their positions are assumed to be known. Communication between
the ASVs and the AUV is established via acoustic signals with a carrier frequency
of 40 kHz. Since the Bellhop simulator does not support the simulation of signal
waveforms (e.g., chirp, OFDM, pulse), the specific signal waveform is not explicitly
modeled in this thesis. However, the system is assumed to operate with signals
characterized by a well-defined effective bandwidth β and initial energy E0. The
hydrophones of the ASVs, employed for transmission and reception, are mounted at
a depth of 30 cm beneath the surface of the sea.
For the purposes of the simulation scenarios, an area of interest is defined, for which
the ASV geometry is optimized to achieve accurate localization. The area in ques-
tion is a square area of 2500 m2, located in a horizontal plane parallel to the sea
surface at a depth of 10 m. Furthermore, while the current simulations assume fixed
ASVs, future designs could support extensions in which the ASVs are mobile and
capable of following the AUV. Such a setup would enable extended trajectories be-
yond the limitations of fixed anchor configurations.
The coordinate system is defined such that the origin [0, 0, 0]Tm coincides with the
point on the water surface directly above the center of the square of the area of
interest. The x- and y- axes lie in the horizontal plane, while the z-axis is oriented
vertically, with negative values corresponding to increasing depth. Consequently,
the ASVs are positioned at z = −0.3 m, while the AUV operates at z = −10 m.

3.1. Joint Ranging and Sound Speed Estimation

The underwater environment is unknown and spatially varying, particularly in
coastal regions. Therefore, accurate localization of the AUV requires joint estima-
tion of its 3D position and the average sound speed along the acoustic propagation
path. This necessity arises from the fact that the sound speed directly affects the
Round Trip Time of Flight (RTToF) measurements used for ranging, and any error
in its assumed value propagates into localization inaccuracies. The parameter vector
is thus defined as Θ = [xa, ya, za, c]T, where xa, ya and za denote the AUVs position
coordinates, and c the average sound speed.
To obtain the RTToF measurements, acoustic signals are transmitted from the in-
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3.1. Joint Ranging and Sound Speed Estimation

dividual ASVs to the AUV, where they are processed, amplified, and retransmitted
back to the respective ASVs. The measured propagation delay τi provides informa-
tion about the distance di between the ASVi and the AUV as well as the average
sound speed c. This relationship can be expressed by the measurement function
h(Θ), which depends on the parameter vector Θ and shows an idealized relation
between the parameters and the time delay

τideal = h(Θ) = 2di

c
, (3.3)

with
di =

√
(xa − xi)2 + (ya − yi)2 + (za − zi)2. (3.4)

The corresponding measurement model accounts for random deviations in the mea-
sured time delays and can therefore be expressed as

τi = h(Θ) + ϵ, (3.5)

where ϵ represents zero-mean Gaussian measurement noise with a variance that
depends on the distance between the ASV and the AUV (Section 3.3.1).
Since both the 3D position of the AUV and the average sound speed c are unknown,
the set of equations derived from four RTToF measurements results in a system with
four unknowns. Solving this can be achieved by using the measurements obtained
from the four different ASVs.
As stated beforehand, due to the SSP, the propagation paths of the sound waves
are not linear, but bent on a curve. For rays in this scenario, where the ASVs
hydrophones are 30 cm underneath the surface and the AUVs at 10 m depth, this
behaviour is illustrated in Figure 3.2. The color coding of the rays is analogous to
that used for Figures 2.5(a) and 2.5(b).
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3. Measurement System and Data Simulation

Figure 3.2.: Propagation profile for a sender depth of 0.3 m and a receiver depth of
10 m.

For the calculation of distances during the ranging process, an Euclidean distance
between the transmitter and the receiver is assumed. This leads to a modelling
error, dependent on the curvature of the rays. In Table 3.1 the difference between
the Euclidean distance and the travelled distance for various horizontal ranges with
a transmitter depth of 0.3 m and a receiver depth of 10 m are shown.

horizontal range [m] travelled dist. [m] euclidean dist. [m] deviation [%]
10 14.705 14.705 6.9e-05
20 24.234 24.234 2.76 e-04
50 56.382 56.381 1.67e-03
100 100.449 100.444 4.96e-03

Table 3.1.: Difference between the travelled and Euclidean distances for different
horizontal ranges.

It can be observed, that the differences between the Euclidean distances and the
travelled paths are insignificant and can therefore be neglected for short range ap-
plications.
Another impact of the depth dependent SSP and the resulting ray curvature is the
occurrence of an effective average sound speed along the propagation path. With
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the available measurements it is only possible to estimate an average sound speed
and not the whole, depth dependent SSP. However, an approximation of a constant
average sound speed for all four propagation paths during the given time period
introduces a model inaccuracy. This inaccuracy arises because the average sound
speed experienced by each acoustic ray depends on its specific propagation path,
which in turn is determined by the vertical gradient of the SSP. For instance, in the
coastal region in the Gotland Basin the sound speed typically decreases with depth
(Figure 2.4(a)), which leads to the propagation paths in Figure 3.2.
Rays that propagate mainly in the vertical direction experience a lower average
sound speed than those propagating more horizontally, since the latter spend more
time in the shallow-water region, where the sound speed is higher. Consequently,
even when the vertical separation between the ASVs and the AUV remains constant,
the differences in the horizontal distances can lead to path-dependent variations in
the effective sound speed. This path dependency introduces a range-dependent bias
in the estimated distances if a single constant average sound speed is assumed across
all measurements. The magnitude of this error increases with the disparity in the
horizontal ranges between the ASVs and the AUV.
To account for this effect during localization, this thesis investigates an approach
in which the effective sound speed is estimated for each new set of incoming mea-
surements. This approach allows the system to account for path-specific variations
in the average sound speed, thus improving robustness and accuracy in complex,
real-world environments.

3.2. Multipath Propagation

Another aspect that requires consideration is multipath propagation. When an
acoustic signal is transmitted from a hydrophone, it propagates omnidirectionally,
which is modeled as a multitude of rays in all directions. These rays can be reflected
at the surface or bottom of the ocean or other obstacles in the environment, result-
ing in multiple propagation paths. This behaviour is illustrated in Figure 3.3 for a
horizontal range of 50 m, showing both direct, Line of Sight (LoS), and reflected,
Non Line of Sight (NLoS) rays, with the same color scheme as in the ray figures
above.
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3. Measurement System and Data Simulation

Figure 3.3.: Eigenrays for a horizontal range of 50 m, a sender depth of 0.3 m and a
receiver depth of 10 m.

This propagation pattern leads to multiple arrivals at the receiver from a single
source. Consequently, the impulse response at the receiving hydrophone is charac-
terized by a sequence of discrete impulses, each corresponding to a different propa-
gation path. The first arriving ray exhibits the highest amplitude, while subsequent
arrivals exhibit decreasing amplitudes, which can be contributed to the additional
path loss incurred by the longer propagation paths and loss due to reflection (Figure
A.1 Appendix A).
The hydrophones employed in this thesis operate at a frequency of 40 kHz providing
a temporal resolution of about ∆t = 1

f
= 25 µs. Therefore rays arriving with a

time difference of at least 25 µs can be resolved, which corresponds to a path length
difference of about 3.75 cm for a sound speed of 1500 m/s. For the ranges considered
- greater than 9.7 m, corresponding to the AUV depth of 10 m - such a difference is
insignificant, and the resolution is therefore sufficient to separate direct and reflected
rays. The first-arriving ray is assumed as LoS, therefore it is amplified by the AUV
and transmitted back to the corresponding ASV.
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3.3. Simulation of Data

3.3. Simulation of Data

For the simulations it is assumed that the channel is time invariant during the mea-
surement period. Moreover, the processing time at the AUV is assumed known and
can thus be disregarded. The ASVs are synchronized and RTToF measurements are
utilized. Therefore, clock offsets between the AUV and the ASVs are not considered,
as only the time delay is of relevance. Two simulation scenarios are considered:
Static Simulation: A static localization scenario, where the AUV is assumed to
be stationary during each measurement period. This setup is representative of an
initial position estimation using a static localization algorithm. The snapshot data,
representing a single set of measurements acquired at one time instance, is used to
compute an initial state estimate, which serves as the starting point for dynamic
tracking.
Trajectory Simulation: A dynamic scenario, where the AUV follows a trajectory.
In practical applications, an iterative filter for trajectory tracking is often initialized
using the initial state estimate obtained from the static localization step. This ini-
tial estimate is derived from the first snapshot of measurements.
Each scenario is repeated 3000 times with independent noise realizations to obtain
statistically reliable results.

3.3.1. Noise Model

The transmission channel is assumed to be AWGN with the noise samples modeled
as

ni(d) ∼ N (0, σ2(d)). (3.6)

The variance (σ2) of the RTToF signal is derived from the CRLB for a given Signal-
to-Noise Ratio (SNR) (2.22). The linear SNR is computed based on the initial signal
energy E0, the ambient noise PSD N0 and the path loss APL

SNRlin = Es

N0
= E0

N0

1
APL(d) . (3.7)

Since the initial energy of the signal and the ambient noise are assumed constant,
the variance of the timing estimation can be expressed as

VAR(τ̂) ≥ 1
8π2 Es

N0
β2 = APL(d)

const. . (3.8)
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The path loss depends on the geometric spreading as well as the signal absorption
(2.1). The simulations are based on a short range scenario, where absorption is
negligible and spherical spreading applies (k = 2). Thus, the path loss simplifies to

APL(d) = d2, (3.9)

which leads to a linear decrease of SNRlin with distance (SNRlin ∝ 1
d2 ) and con-

sequently a quadratic increase of the variance, resulting in a linear increase of the
standard deviation with distance στ ∝ d.
In the idealized case, the CRLB predicts VAR(τ̂) ≥ 0 for d → 0 m. However, in
practice this is not achievable, as real systems exhibit a distance-independent error
floor caused by synchronization jitter, quantization noise or other effects. Therefore,
a more realistic model adds a constant offset term σ2

τ,0 to represent this error floor

VAR(τ̂) ≥ d2

8π2 E0
N0

β2 + σ2
τ,0. (3.10)

For the simulations, the standard deviation of the ToF measurements is approx-
imated as a linear increase, ranging from 0.1 m at the transmitter (d → 0 m) to
approximately 1.01 m at d = 100 m, which is realistic behaviour for acoustic signals
in the underwater channel. This simplified model accurately reflects realistic uncer-
tainty in the underwater acoustic channel. The standard deviation applied in the
ToF simulations is illustrated in Figure 3.4 as a function of SNR. Since the results
are later evaluated for the total two-way travel distance, the RTToF factor is not
shown explicitly here.
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Figure 3.4.: Standard deviation of the simulation data as a function of SNR.

3.3.2. Snapshot Data

For the first static localization scenario, snapshot data is generated using four RT-
ToF measurements from the ASVs. The AUV is assumed to be stationary during
each measurement period. To evaluate the performance and robustness of the local-
ization algorithms, the AUV is simulated at various, equidistant positions along a
diagonal path across the area of interest. This allows for the assessment of position-
dependent observability and estimation accuracy.
Additionally, the system is tested at positions outside the bounded area of interest
to evaluate the localization performance for non-ideal geometries, as these configu-
rations are relevant for assessing the systems robustness in practical scenarios. This
’outside the area of interest’ only refers to the horizontal position, as the vertical
position remains unchanged at −10 m, allowing the evaluation of horizontal drifts.
Accordingly, the simulated AUV positions lie at
ra(x, y) = [ x, y, −10 ]Tm, x, y ∈ {−60 + 15k|k = 0 . . . 8}.

In the static simulation scenarios, the AUV’s position in the x-y-plane is collectively
referred to as the ’x- and y-position [m]’, reflecting the constraint that x = y along
the diagonal path. The arrival times are simulated in two different ways. First,
using Bellhop, configured for a carrier frequency of 40 kHz and the representative
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SSP (Figure 2.4(a)). Second, by generating the measurements directly according
to the measurement function (3.3), assuming a constant average sound speed of
1500 m/s. This allows the evaluation of whether the estimation performance differs
significantly when using realistically simulated data from Bellhop compared to ideal-
ized measurements generated with the correct analytical model. For both simulation
cases, distant dependent noise is added (Section 3.3.1).

3.3.3. Trajectory Data

In a second set of simulations, the AUV is modeled as moving. Since Bellhop
is limited to static scenarios and can not simulate time-varying trajectories, the
measurements are generated using the measurement (3.5) and a transition model
(3.12), that reflect the dynamics of the underwater environment. The state vector
at time step n is defined as

xn = [xa, ya, za, vx, vy, vz, c]T , (3.11)

where xa, ya, and za denote the 3D position of the AUV, vx, vy and vz its velocity
components, and c the effective average sound speed. The transition from state xn−1

to xn is modeled as a stochastic process

xn = Fxn−1 + Ba + nn, (3.12)

which is a standard model employed by DLR. F denotes the state transition Matrix

F =


I3 (∆t − γ ∆t2

2 )I3 0
03,3 (1 − γ∆t)I3 0
01,3 01,3 1

 , (3.13)

B the control input matrix

B =


∆t2

2 I3

∆tI3

01,3

 , (3.14)

and nn ∼ N (0, Qn) the transition noise. The 3 × 3 identity matrix is denoted by
I3, the 3 × 3 zero matrix by 03,3 and the 1 × 3 zero row vector by 01,3. The drag-
coefficient γ[s−1] is introduced to model hydrodynamic resistance, simulating the
deceleration of the AUV due to the high density in water and thereby preventing
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unrealistic velocity growth. The time step ∆t represents the sampling interval be-
tween consecutive measurements. B is the control input matrix for the trajectory of
the AUV and a denotes the direction, in which the AUV is accelerated. The transi-
tion noise nn is modeled as continuous white acceleration noise, which is integrated
over the sampling interval ∆t, resulting in a covariance matrix that simultaneously
influences the position and velocity of the AUV

Q =



∆t3

3 σ2
a 0 0 ∆t2

2 σ2
y 0 0 0

0 ∆t3

3 σ2
a 0 0 ∆t2

2 σ2
a 0 0

0 0 ∆t3

3 σ2
az 0 0 ∆t2

2 σ2
az 0

∆t2

2 σ2
a 0 0 ∆t2σ2

a 0 0 0
0 ∆t2

2 σ2
a 0 0 ∆tσ2

a 0 0
0 0 ∆t2

2 σ2
az 0 0 ∆tσ2

az 0
0 0 0 0 0 0 ∆t2σ2

c


. (3.15)

[20]. Here, σ2
a denotes continuous PSD of the acceleration noise in x- and y-direction,

σ2
a,z in z-direction, and σ2

c the corresponding PSD of the noise on the sound speed
c. The unit of σa is m2/s3, corresponding to the PSD of the acceleration noise.
The AUV trajectory simulations are initialized using a position from the snapshot-
based simulations at r(0)

a = [−15, −15, −10]T with an initial assumed sound speed
of 1500 m/s. The vehicle starts from rest, i.e., with an initial velocity of 0 m/s in all
directions.
Two simulation sets were considered to investigate the filter behavior under different
motion dynamics. In both sets, the AUV followed a pre-planned diagonal trajec-
tory across the area of interest, implemented by applying identical accelerations in
the x- and y-directions while maintaining zero acceleration in the z-direction. This
predefined motion ensures that the underlying transition model is known to the
tracking algorithms. The corresponding measurement data is generated according
to the measurement model (3.5).
In both sets, a constant acceleration of 0.5 m/s2 is applied in the x- and y-directions,
while the acceleration in the z-direction is set to 0 m/s2. The process noise is mod-
eled with standard deviations of σx,y = 0.5 m2/s3 in the horizontal plane for Set 1
and σx,y = 1 m2/s3 for Set 2. The noise in the vertical direction for Set 1 and Set
2 is σz = 0.001 m2/s3 to maintain an approximate depth of 10 m. Correspondingly,
the damping factors were adjusted to γx,y = 0.8 s−1 in x- and y-direction and a
vertical damping of γz = 0.4 s−1 is applied to avoid unintended upward drift due to
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the acceleration noise. The trajectory is simulated over a total of 150 time steps.
While Bellhop inherently accounts for ray curvature and depth dependent variations
of the SSP, these effects must be explicitly modeled in the trajectory simulations.
To this end, the previously discussed effective average sound speed is modeled as
a dynamic state by adding a small stochastic noise term σ2

c to c. Although this
approach does not replicate the exact physical effect of the SSP, which assigns an
independent different effective average sound speed to each propagation path, it re-
flects the fact, that the average sound velocity varies with the AUV’s position. Thus,
a single effective sound speed is applied for all propagation paths simultaneously,
which changes depending on the position of the AUV.
Additionally, the LoS condition, which determines, whether a direct acoustic path
between the ASV and AUV exists, is dynamically evaluated at each time step. This
maximum LoS distance is computed based on the current sender and receiver depths
as well as the corresponding SSP (Figure 2.4(a)), ensuring that the model correctly
identifies regions where direct acoustic communication between the AUV and the
ASVs is limited due to the curvature of the sound rays.

Maximum Propagation Distance Due to Ray Curvature

Due to the curvature of acoustic rays, the horizontal propagation range of direct
signals is inherently limited. This limitation depends on the depths of ASVs and
the AUV, as well as on the gradient of the SSP. For the simulation of the trajectory
data, it is crucial to determine the maximum horizontal distance between the AUV
and an ASV beyond which direct communication is no longer possible. To compute
this limit, a simplified model with a linearly varying SSP is assumed within the
relevant water mass, such that the gradient g of the sound speed is constant. Under
this assumption, the ray curvature can be modeled as circular with the radius R

given by
R = − c0

cos γ0 · g
(3.16)

[14]. Here, c0 is the sound speed at the transmitter (ASV), γ0 the initial transmission
angle relative to the horizontal, and g = ∂c

∂z
the sound speed gradient (typically

negative in shallow waters). Figure 3.5 illustrates the geometric relations governing
the acoustic ray propagation.
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Figure 3.5.: Geometric relations of the acoustic ray propagation underwater.

The red curve represents the bent ray path, determined by the initial angle γ0

and the dashed blue line the surface of the water. The heights h1 and h2 denote
the effective depths of the transmitter and receiver respectively. Here, h1 and h2 are
positive in z- directions, so that a depth of 0.5 m corresponds to h1 = 0.5 m. It has
to be noted that the figure is not to scale; in reality, the radius R of the curve on
which the ray is bent is significantly larger.
For horizontal transmission (γ0 = 0◦), the maximum horizontal range between the
receiver and the transmitter is constrained by the relative depth between the trans-
mitter and receiver

d =

√√√√( c0

−g

)2
−
[(

c0

−g

)
− (h2 − h1)

]2

. (3.17)

However, when the signal is launched at a slight upward angle, the ray can propagate
farther before bending downward, thereby increasing the horizontal range. The total
horizontal distance can be decomposed into two segments d = d1 + d2, where d1
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denotes the distance traveled while the ray propagates upward, and d2 the distance
traveled while the ray propagates downward.
To determine the largest possible horizontal distance, the maximum send-off angle
must be found such that the ray does not reflect at the sea surface:

h1(γ0) = tan γ0 · d1 − ∆h, (3.18)

substituting with ∆h = R
cos γ0

− R and rearranging leads to

h1(γ0) = tan γ0 · c0 · sin γ0

−g · cos γ0

−

 c0

−g · cos γ0
· 1

cos γ0
− c0

−g · cos γ0

.

(3.19)

This results in the final equation

h1(γ0) = tan2(γ0) · c0

−g
−

 c0

−g · cos2(γ0)
+ c0

g · cos γ0

, (3.20)

which can be solved numerically, yielding a maximum launch angle that still allows
a direct path to the receiver. The corresponding maximum horizontal distance is
then computed by

d = d1 + d2 = sin γ0 · c0

−g · cos γ0

+

√√√√√( c0

−g · cos γ0

)2
−

( c0

−g · cos γ0

)
− (h2)

2

.

(3.21)

The maximum range between the transmitter and receiver can be calculated with

dEuclidean =
√

d2 + (h2 − h1)2. (3.22)

At the given depths for the sender and receiver, no ranges larger than dEuclidean are
possible. Using the linear SSP assumption, the computed ray path closely matches
the ray trajectories simulated by Bellhop, which is illustrated in Figure 3.6. This
validates the analytical approach for the purposes of this thesis and therefore allows
for the evaluation of LoS conditions during trajectory simulations.
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Figure 3.6.: Comparison between approximated ray propagation under the linear
sound speed assumption and a ray simulated using Bellhop.

3.4. System Geometry

Since the ASVs are stationary, in a preliminary step their optimal geometric config-
uration has to be determined. The ASVs are arranged such that three of them form
an equilateral triangle, which is known to be favourable for position estimation with
three reference points [21]. The fourth ASV, which is needed for the additional esti-
mation of the sound speed, is placed at the center of this triangle, which is aligned
with the center of the area of interest.
To determine the optimal side length of the triangle, the CRLB is computed at
various positions of the AUV across the area of interest for different triangle sizes.
For simplicity, the error introduced by assuming a constant average sound speed
is neglected in the CRLB calculations, and it is assumed that the sound speed is
identical for all propagation paths. Therefore, the Jacobian of the measurements
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can be calculated with

J =



2t(xa−x1)
cd1

2(ya−y1)
cd1

2t(za−z1)
cd1

−2d1
c2

2(xa−x2)
cd2

2(ya−y2)
cd2

2(za−z2)
cd2

−2d2
c2

... ... ... ...
2(xa−xi)

cdi

2(ya−yi)
cdi

2(za−zi)
cdi

−2di

c2

 , (3.23)

where di represents the euclidean distance between the AUV and the corresponding
ASVi:

di =
√

(xa − xi)2 + (ya − yi)2 + (za − zi)2

and the factor 2 is introduced due to the round-trip ranging. The absolute value
of the average sound speed does not influence the bound, as it is a multiplicative
factor in the calculation that affects both the Jacobian and the covariance matrix
equally. The individual variances of the measurements are calculated based on the
noise model in Section 3.3.1.
The corner of the area of interest that is farthest from the anchor triangle is se-
lected to determine the optimal sensor geometry. This is due to the fact that the
estimation performance is typically worst at the most distant and geometrically un-
favorable positions. Consequently, the ASV configuration must ensure robustness
even for this setup. Figure 3.7 shows the CRLB for this AUV position as a function
of the triangle’s side length. The results indicate, that the optimal side length for
localization of the AUV is 61 m, where the positioning CRLB is minimized. In con-
trast, the optimal side length for sound speed estimation differs, but since position
accuracy is the primary objective of this work, the configuration is selected based
on the minimum CRLB for position estimation. Hence, the positions of the ASVs
are defined as

r1 = [−30.5, 17.6091, −0.3]Tm, (3.24)

r2 = [30.5, 17.6091, −0.3]Tm, (3.25)

r3 = [0, −35.2184, −0.3]Tm, (3.26)

r4 = [0, 0, −0.3]Tm. (3.27)

32



3.4. System Geometry

0 50 100 150 200 250 300 350
Sidelength of Anchor Triangle [m]

0

50

100

150

200

R
M

SE
 [m

/s
]

0

50

100

150

200

250

R
M

SE
 [m

]

Sound Speed Estimation
Position Estimation

Figure 3.7.: CRLB for different side length of the ASV triangle.
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4. Localization Algorithms

This chapter presents various localization algorithms that utilize the RTToF mea-
surements τ = [τ1, ..., τi]T to localize the AUV.

4.1. Static Methods

First, static estimation techniques used to compute the parameter vector Θ =
[xa, ya, za, c]T, representing the AUVs position and the average sound speed in water,
are outlined.

4.1.1. Maximum Likelihood Estimator

The Maximum Likelihood (ML) estimation is based on an assumed PDF of the ob-
served measurements given the unknown parameter vector Θ [17]. It determines the
parameter vector that maximizes the likelihood function p(τ |Θ), i.e. the probability
that the observed signals τi occur, calculated based on the measurement function
and the estimated parameters Θ̂

Θ̂ = arg max p(τ |Θ). (4.1)

The likelihood is evaluated by comparing the actual measurements τi with the model
based predictions τ̂i = hi(Θi), obtained from the current parameter estimate. As-
suming independent, zero-mean Gaussian measurement noise with the variances σ2

i ,
the likelihood of the measurements is given by

p(τ |Θ) =
I∏

i=1

1√
2πσi

exp
{
−(τi − τ̂i)2

2σ2
i

}
. (4.2)
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Taking the logarithm yields the log-likelihood

ln p(τ |Θ) =
I∑

i=1
ln 1√

2πσi

−
I∑

i=1

(τi − τ̂i)2

2σ2
i

. (4.3)

The first term is independent of the estimation parameters and can therefore be
discarded for estimation. Consequently, the most probable parameters are estimated
by maximizing the second part of the sum

Θ̂ = arg max
x,y,z,c

−
I∑

i=1

(τi − τ̂i)2

2σ2
i

. (4.4)

Thus, for Gaussian measurement noise, maximizing the likelihood function is equiv-
alent to minimizing the sum of the weighted squared residuals. Consequently, the
ML estimation corresponds to solving a weighted least-squares problem

Θ̂ = arg min
x,y,z,c

I∑
i=1

(τi − τ̂i)2

2σ2
i

. (4.5)

Several numerical optimization techniques can be employed to solve the ML estima-
tion problem.

Iterative Weighted Least Squares

The Iterative Weighted Least Suqares (IWLS) algorithm provides a numerical ap-
proach to solve the ML problem for linear or locally linearized problems [17]. It
minimises the sum of squared residuals between the measured and predicted ob-
servations, incorporating the measurement uncertainty through a weighting matrix
derived from the inverse of the measurement covariance matrix. The update equa-
tion for a single iteration is given by

Θ̂wls = (JTWJ)−1JTWτ, (4.6)

where J denotes the Jacobian matrix of the measurements derived at J = ∂h
∂Θ |Θ̂,

W = Σ−1 the diagonal weighting matrix and τ the vector containing the observed
time delays.
In this thesis the IWLS algorithm is applied to jointly estimate the position of the
AUV and the average sound speed using the RTToF measurements.
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4.1. Static Methods

Linearization via Taylor Expansion In a preliminary step the measurement model
(3.5) is linearized around the current estimate Θ. The first-order Taylor expansion
[22] leads to

τ ≈ τ̂ + J · (Θ − Θ̂) = J · Θ + τ̂ − J · Θ̂, (4.7)

where τ̂ = h(Θ̂) denotes the predicted time delay, based on the current parameter
estimate Θ̂. This results in the linearized equation

τ̂ − τ + J · Θ̂ = J · (Θ − Θ̂) + ϵ, (4.8)

which is in the linear form y = Ax+ϵ, with y = τ − τ̂ , A = J, and x = Θ, making
it suitable for IWLS estimation. The localization performance of the algorithms is
also investigated for AUV positions that fall outside the area of interest; therefore,
the estimation problem is potentially ill-posed in these cases. To ensure numerical
stability, the Tikhonov regularization [23] is introduced, resulting in a regularized
update

Θ̂new = (JTWJ + λD)−1JTW(τ − τ̂) + Θ̂old. (4.9)

Here, Θ̂old and Θ̂new denote the parameter estimates before and after the update,
respectively, D a diagonal scaling matrix, which adjusts the regularization strength
per parameter and λ a regularization parameter controlling a maximum step size of
the estimator for each iteration. This regularization stabilizes the optimization by
dampening the gradient steps.
The algorithm proceeds as follows:

1. Initialization: Set initial estimates for the AUVs position and sound speed,
ensuring, that the z-position is underwater (z < 0).

2. Prediction: Compute the expected Round Trip Time of Arrivals τ̂ = h(Θ̂).

3. Jacobian Computation: Evaluate J = ∂h
∂Θ |Θ̂.

4. Update: Applying the regularized Weighted Least Squares update.

5. Convergence Check: Repeat steps 2-4 until either the change in Θ̂ falls
below a certain threshold or a maximum number of iterations is reached.
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4. Localization Algorithms

Minimum search algorithm

An alternative approach to solve the ML problem is using a predefined nonlin-
ear optimization algorithm, such as MATLAB’s fmincon function to search for the
minimum. This method directly seeks the parameter vector that minimizes the
likelihood cost function using a Quasi-Newton algorithm [24]. In this implementa-
tion, the fmincon optimization is further constrained, to ensure that the z-position
remains negative.

4.1.2. Maximum A-Posteriori Estimator

Maximum A-Posteriori (MAP) estimation is a Bayesian generalization of ML estima-
tion that incorporates prior knowledge about the parameters to improve estimation
accuracy [17]. It determines the parameter values that maximize the posterior prob-
ability p(Θ|τ ), which combines the likelihood of the observed data p(τ |Θ) with the
prior distribution of the parameters p(Θ)

Θ̂ = arg max p(Θ|τ ) = arg max
Θ

p(τ |Θ)p(Θ)
p(τ ) . (4.10)

Since the marginal probability p(τ ) of the observation is not dependent on Θ it can
be neglected for the maximization

Θ̂ = arg max
Θ

p(τ |Θ)p(Θ). (4.11)

Owing to the monotonicity of the natural logarithm, maximizing the product of the
likelihood and the prior distribution is equivalent to maximizing their sum in the
logarithmic domain

ln p(τ |Θ)p(Θ) = ln p(τ |Θ) + ln p(Θ). (4.12)

In this context, prior knowledge of the sound speed c is represented by a Gaussian
distribution with mean of µc = 1500 m/s [25] and a standard deviation of σc =
30 m/s, reflecting realistic conditions for the sound speed in seawater

p(Θc) = 1√
2πσc

e− 1
2 ( ĉ−µc

σc
)2

. (4.13)
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4.2. Dynamic Methods

Since - similarly to the ML estimation - the maximization is invariant to terms that
do not depend on the parameters Θi they can be omitted from the optimization
function

Θ̂ = arg min
Θ

(ĉ − µc)2

2 σ2
c

+
I∑

i=1

(τi − τ̂)2

2 σ2
τ,i

, (4.14)

which is solved numerically with the fmincon search algorithm under the constraint
that the z-position must be negative.

4.2. Dynamic Methods

To track the trajectory of the AUV, two different filters are implemented: a Particle
Filter (PF) and an Extended Kalman Filter (EKF), which estimate the state vector
xn = [xa, ya, zy, vx, vy, vz, c]T at each time step. The underlying principle of both
methods is the iterative prediction of the next state based on the system dynamics
and the correction of this prediction according to the incoming measurements.

4.2.1. Particle Filter

The PF is a sequential Monte Carlo method that approximates the posterior proba-
bility distribution of a system’s state by using a set of weighted particles [26]. Each
particle represents a possible state of the system, and the sum of particles, along
with their weights, provides an empirical representation of the full posterior PDF
[27]. The particle weights are updated according to the likelihood of the measure-
ments, and resampling is applied to prevent particle degeneracy. This approach
allows the PF to adapt to nonlinear system dynamics and non-Gaussian noise.

Particle Filter Algorithm The algorithm for the PF consists of five main steps:
initialization, prediction, update, resampling and iteration.

1. Initialization: N particles are drawn from the a-priori probability distribu-
tion of the state, which reflects the initial uncertainty of the system. This
initial distribution is usually based on prior knowledge, often obtained from a
static localization, and modeled as a multivariate Gaussian with

x0 ∼ N (µ0, P0), (4.15)
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where µ0 denotes the a-priori mean and P0 the corresponding covariance ma-
trix.
Each particle is assigned an equal initial weight:

w(0)
i = 1

N
, i = 1, ..., N. (4.16)

2. Prediction: The next state of each particle is propagated according to the
transition model

xn = Fxn−1 + Ba + nn.

The resulting PDF is based on both the previous density and the transition
model

p(xn|τ1:n−1) =
∫

p(xn|xn−1)p(xn|τ1:n−1) dxn−1, (4.17)

where p(xn|xn−1) represents the transition model and p(xn|τ1:n−1) the poste-
rior PDF from the previous time step.

3. Update: The weights of the particles are updated based on the likelihood of
the received measurements

w(i)
n = p(τn|xn)w(i)

n−1 (4.18)

and subsequently normalized as

N∑
i=1

w(i)
n = 1. (4.19)

If resampling is performed at every step, the weights of the old particles w(i)
n−1

can be omitted.

4. Resampling: To prevent particle degeneracy, a new set of particles is drawn
in proportion to their normalized weights

p(xn|τ1:n) ∝ p(τn|xn)
∫

p(xn|xn−1)p(xn−1|τ1:n−1) dxn−1. (4.20)

To further counteract particle impoverishment, regularized resampling is ap-
plied. The resampled particles are slightly perturbed by adding small, zero-
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mean gaussian noise

x(i)
n → x(i)

n + ϵ, ϵ(i)
n ∼ N (0, σ2

res).

5. Iteration: For each time step, the sequence of the prediction, update and
resampling is repeated with every new set of measurements. If no new mea-
surements are available for a longer period, the particles are propagated using
solely the transition model to maintain a continuous estimate of the state.

4.2.2. Extended Kalman Filter

The EKF is a deterministic filtering algorithm that extends the classical Kalman
Filter to handle nonlinear systems [27]. To this end, the system models are lin-
earized around the current state estimate using the Jacobian matrices of the state
transition and measurement functions.
The EKF operates in an iterative two-step process. First the prior state estimate
x̂−

n and its covariance P̂
−
n are predicted with the transition model. Afterwards the

predictions are corrected using the actual measurements.
The relative influence of the measurements on the state update is incorporated with
the Kalman gain, which is determined by the covariance matrices of the transition
noise Qn and the measurement noise Rn. To ensure consistency between the simu-
lation and the filter, the measurement and transition model for the simulation and
the EKF are identical.

Extended Kalman Filter Algorithm

1. Prediction: The prior state and covariance are predicted using the transition
model with the posterior state and covariance:

x̂−
n = Fx̂n−1 + Ba (4.21)

P−
n = FPn−1FT + Qn (4.22)

2. Update: The predicted prior states are updated with the current measure-
ments. To that end the residual is computed as the difference between the
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actual measurements and the predicted measurements (h(x̂−
n ))

rn = τn − h(x̂−
n ). (4.23)

The covariance of the residuals is computed as

Sn = HnP−
n HT

n + Rn, (4.24)

with Hn = ∂h
∂x

|x̂−
n

denoting the Jacobian of the measurement model evaluated
at the predicted state. The Kalman gain is obtained from

Kn = P−
n HT

n S−1
n . (4.25)

Finally, the state and covariance are updated accordingly:

x̂n = x̂−
n + Knrn, (4.26)

Pn = (I − KnHk)P−
n . (4.27)
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5. Simulation Results and Discussion

This chapter presents and analyzes the results of the performed simulations, focusing
on the performance of the different estimation algorithms and the influence of the
measurement data sets. The objective is to assess the estimation accuracy and
robustness of the proposed methods.
To quantify the estimation performance, the RMSE is used as a benchmark for the
quality of the estimator

RMSE =
√

E[||Θ̂ − Θ||2]. (5.1)

Although the sound speed and the AUV position are estimated jointly, their respec-
tive errors are evaluated individually to assess the overall localization performance.
For comparison with the theoretical lower bound the square root of the trace of
the CRLB - including its biased and posterior form - is used, as it represents the
minimum achievable RMSE of the estimator, such that

RMSEcrlb,pos =
√

tr(CRLB(1 : 3, 1 : 3) (5.2)

and
RMSEcrlb,c =

√
tr(CRLB(4, 4). (5.3)

5.1. Static Localization

This section presents and discusses the results of the static localization problem. The
performance of the Maximum Likelihood and Maximum A-Posteriori estimators is
analyzed and compared to the corresponding CRLB and to each other.
Furthermore, potential model mismatches in the ranging model are assessed based
on the idealized data set and the more realistic acoustic environment simulated
using Bellhop. By comparing localization results derived from both data sets, it is
possible to quantify the extent to which deviations from the assumed propagation
model affect the estimation accuracy. The outcome of this static evaluation provides
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5. Simulation Results and Discussion

insight into the sensitivity of the estimators to modeling assumptions and serves as
a foundation for the subsequent investigation of the dynamic tracking performance.

5.1.1. Maximum Likelihood Estimation Results

First, the performance of the Maximum Likelihood estimator is evaluated to estab-
lish a baseline for subsequent comparison with Bayesian estimators. The ML esti-
mation problem is asymptotically unbiased for N → ∞. Therefore, the ML based
solvers, Regularized Weighted Iterative Least Squares and fmincon, are evaluated
against the classical CRLB for unbiased estimators.

Mapping of Cramer-Rao Lower Bound

Spatial maps of the CRLB are presented to illustrate the theoretical limits of esti-
mation accuracy across a 160 m × 160 m area, encompassing and extending beyond
the defined 120 m × 120 m region in which the AUV positions are simulated. The
minimum achievable RMSE (

√
CRLB) for position estimation is illustrated in Fig-

ure 5.1 , while the corresponding values for sound speed estimation are shown in
Figure 5.2. It can be observed that the CRLB for position estimation exhibits a
predominantly triangular structure, whereas the CRLB for sound speed estimation
appears more spherical.
The positioning CRLB is governed by the directional gradients of the measurements.
Within the triangular ASV formation, high geometric diversity causes these gradi-
ents to intersect at steep angles, resulting in high Fisher information and therefore a
low CRLB. Outside the triangular region, these gradients become increasingly par-
allel, the intersection angles flatten, consequently the Fisher information decreases
and the CRLB enlarges, which results in the triangular pattern.
In contrast, the sound speed acts as a multiplicative factor in the measurement
model, affecting only the absolute scale of the RTToF measurements and not their
direction. Consequently, the information content related to sound speed depends on
the relative differences between the measurements, and not their direction. These
differences are largest at the center of the triangular formation, where the measure-
ments from the corner ASVs deviate most strongly from that at the central ASV,
resulting in the lowest CRLB. Toward the edges and outside the formation, the
RTToF measurements become more similar, which reduces the independent infor-
mation about the sound speed and therefore increases the CRLB. Consequently, the
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Figure 5.1.: Mapping of the CRLB for position estimation.
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Figure 5.2.: Mapping of the CRLB for sound speed estimation.
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resulting CRLB mapping of the sound speed displays a more spherical layout.
Both CRLB maps visualize a rapid increase in estimation uncertainty outside the
area of interest. This is consistent with the ASV configuration, which was optimized
to provide maximum information within the defined area of interest, whereas areas
beyond this boundary exhibit unfavourable (or poor) geometry and consequently
degraded estimation performance.

Performance of Maximum Likelihood Estimation

The performance of the solvers for the ML estimation problem is evaluated by com-
paring the RMSE of the estimated parameters to the theoretical CRLB. The RMSE
of the position estimates is illustrated Figure 5.3 and the RMSE of the sound speed
estimates is depicted in Figure 5.4. Since for the Bellhop-based simulations, the
average sound speed across the individual propagation paths differs slightly, the
RMSE is computed with respect to the mean sound speed averaged over the four
propagation paths.
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Figure 5.3.: RMSE of the ML estimation of the position.
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Figure 5.4.: RMSE of the ML estimation of the sound speed.

Both solver algorithms yield consistent results for the data generated with Bell-
hop and for the idealized data generated based on the measurement model. This
indicates that the model mismatch, stemming from the assumption of an identical
average sound speed for all propagation paths, has insignificant influence on the
estimation performance in this scenario.
Furthermore, both solvers demonstrate similar overall accuracy. In particular, both
approach the CRLB for AUV positions within the region ra = [xa, ya, −10]Tm,

i ∈ {−30 + 15k|k = 0, ..., 4}.
This behavior confirms that the ML estimation achieves near-optimal performance
for the joint estimation of position and sound speed within this region, with the
localization RMSE falling below 0.2 m in its central part.
For AUV positions farther outside the area of interest, the RMSE of the ML esti-
mates fall below the theoretical threshold. Since the CRLB represents the minimum
achievable RMSE of any unbiased estimator, this behavior indicates that the ML es-
timator becomes biased in these regions. The bias of the ML estimates is presented
in Table 5.1, exemplary shown for the fmincon-based solver using data generated
with the measurement model at various AUV positions. The remaining positions
exhibit either comparable bias characteristics or no noticeable bias (within the area
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of interest).

AUV pos. [m] Bias x [m] Bias y [m] Bias z [m] Bias c [m/s]
-60 2.16 1.97 -1.66 -26.86
-45 0.64 0.54 1.14 -9.20
-30 0.03 0.05 0.70 1.00
-15 0.00 0.00 0.07 0.09
0 0.00 0.00 0.01 0.09

Table 5.1.: Bias of ML estimation for different positions of the AUV.

The results reveal that for AUV positions increasingly distant from the area of
interest, the estimates exhibit a systematic deviation from the true parameters.
Consequently, the estimator must be regarded as biased in these regions and the
classical CRLB is no longer applicable as reference for a minimum achievable RMSE.
To further investigate this behaviour, the bias of the solvers is analyzed in more
detail.

Bias Analysis

The focus of this section lies on the behaviour of the ML solvers themselves, rather
than on discrepancies due to model mismatch between the analytical ranging model
and the ranges obtained from the Bellhop simulations.
To analyze the estimator related bias in more detail, the snapshot simulations de-
scribed in Section 3.3.2 are repeated using a higher spatial sampling along the same
diagonal path of the AUV. The simulation data was generated according to the
measurement model (3.5) using a constant sound speed of 1500 m/s and distance-
dependent noise. The bias of the ML estimates obtained with MATLAB’s fmincon
solver, based on this data, is illustrated in Figure 5.5. Applying the RWILS al-
gorithm to the same estimation problem results in a similar bias distribution. It
can be seen, that as the estimation geometry becomes unfavorable - when the AUV
moves farther outside the triangle formed by the ASVs - both the estimated posi-
tion and the estimated sound speed deviate systematically from their true values.
In these regions, the sound speed tends to be underestimated, which increases any
position errors since a bias in the sound speed directly propagates into the range
estimates. Therefore, the ranges are underestimated (d = cτ

2 ), which can be seen in
the bias curves. In the vicinity of the area of interest, where the geometric resolution
in x- and y- direction remains better than in z- direction, the x- and y- position
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Figure 5.5.: Bias of ML estimation derived with the fmincon solver

of the AUV is only marginally underestimated and z-position is also slightly un-
derestimated. At larger horizontal distances from that area, where the geometric
resolution for the horizontal directions declines, the underestimation of the x- and
y-position becomes more pronounced, leading to an overestimation of the vertical
position. The point-symmetric shape of the horizontal bias curve originates from
the coordinate system definition, in which x- and y- position can take both positive
and negative values. Thus, for negative positions, a positive bias corresponds to an
underestimation, and vice versa.
This systematic bias arises from the ill-conditioning of the estimation geometry
which creates flat valleys in the cost function - regions where changes in the esti-
mated parameters result in only small variations of the predicted measurement error,
thereby reducing the sensitivity of the optimization. Such valleys are challenging for
numerical solvers, fmincon terminates when the step size falls below a specified tol-
erance and RWILS stops when the parameter updates become sufficiently small or
after a fixed number of iterations. Adjusting these convergence thresholds directly
influences the resulting bias: lower tolerances generally reduce the bias and increase
the variance, while higher ones increase the bias. However, reaching the global min-
imum is hindered by numerical limitations, as the cost function becomes excessively
flat in the vicinity of the optimum [28]. In both cases, premature termination leads
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to convergence toward locally stable but biased solutions. The regularization inher-
ent to RWILS stabilizes the numerical solution but can also amplify this effect by
overly constraining the parameter space, making the algorithm less suitable for this
type of estimation problem.
To account for this bias, the Biased Cramér Rao lower bound (BCRLB) is computed
as a lower error bound with

E{Θ − Θ̂} ≥ b2
i (Θ) + {[I + ∇Θ(b)]FIM−1[I + ∇Θ(b)]T }ii.

Here, the vector b contains the bias function of the 3D position and the sound speed

b = [bx(Θ), by(Θ), bz(Θ), bc(Θ)]T .

Consequently, at each point of evaluation, the absolute bias and the Jacobian Matrix

∇Θ(b) =
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 (5.4)

of the bias functions need to be determined.
Since the bias originates from the solver itself and cannot be derived analytically,
its approximate deviation and absolute value are obtained by fitting curves to em-
pirically observed bias values. This approach may lead to small inaccuracies in the
approximation, resulting from imprecision in the locally fitted bias parameters.
In Figure 5.6, the resulting approximated BCRLB together with the ML position es-
timation results are illustrated, showing that outside the area of interest, the biased
bound lies significantly below the classical CRLB. In Figure 5.7 analogous results
for the sound speed estimation are presented, showing a similar trend.
The observed RMSE of both position and sound speed estimation remain below the
classical CRLB but align well with the BCRLB, confirming that the solvers exploit
bias-related information due to convergence in flat likelihood valleys, exhibiting a
smaller variance for the biased case. This relationship is reflected in the BCRLB
formulation (2.39), where the additional term couples the gradient of the bias func-
tion with the CRLB. Consequently, certain tendencies of the bias function effectively
decrease the variance of the estimation.
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Figure 5.6.: RMSE of ML estimation of the position with the approximated BCRLB.
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Figure 5.7.: RMSE of Maximum Likelihood estimation of the sound speed with with
approximated BCRLB.
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5.1.2. Maximum A-Posteriori Estimation Results

In the following, the performance of the Maximum A-Posteriori (MAP) estimation
is analyzed to assess the impact of prior information on localization accuracy. The
MAP estimation problem was solved using MATLAB’s optimization function fmin-
con under the constraint that the z-position has to be negative. In the following,
this method is referred to simply as the MAP estimator.
The performance of the MAP estimator is evaluated by comparing the achieved
RMSE with the corresponding CRLB, which in this case includes the a-priori infor-
mation about the sound speed (2.37). As shown previously for the ML estimation,
the unfavourable geometry for AUV positions located farther outside the area of
interest can lead to biased estimation results. To account for this, the biased CRLB
is approximated analogous to the procedure used for the ML case, with the key
difference, that the BCRLB now incorporates the prior information:

E{Θ − Θ̂} ≥ b2
i (Θ) + {[I + ∇Θ(b)][FIMmeas + FIMprior]−1[I + ∇Θ(b)]T }ii. (5.5)

It should be noted that again the BCRLB is approximated based on the numerically
obtained bias curves since they cannot be derived analytically. Consequently, the
presented BCRLB does not represent the exact theoretical RMSE, but provides an
approximation that reflects the expected behavior of the MAP estimation.
The RMSE of the MAP-based position estimates, together with the corresponding
CRLB and BCRLB, is depicted in Figure 5.8. The results indicate that within
the area of interest the position estimation accuracy for both the data sets - simu-
lated with Bellhop and with the measurement model - is nearly identical and both
approach the CRLB. Therefore, within the area of interest the model mismatch
between the analytical measurement model and the Bellhop-simulated data is in-
consequential, which coincides with the findings of the ML estimation. For less
favorable geometries, the RMSE of the estimations converges towards the BCRLB,
which decreases in those regions. This indicates that under poor geometric condi-
tions, the estimator exhibits reduced variance as a result of bias in the estimates. For
the positions located farthest from the center of the area, the results based on the
analytical measurement model exhibit a lower RMSE (approximately 1 m less) than
those obtained with the Bellhop-simulated data, indicating that for unfavourable
conditioning, the data set generated with Bellhop exhibits slightly worse localiza-
tion performance.
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Figure 5.8.: RMSE of the MAP estimation of the position.

In Figure 5.9 the RMSE of the MAP estimator for sound speed estimation is
illustrated, which shows a distinctly different behaviour compared to the CRLB.
For increasingly poor geometric conditions, the BCRLB decreases strongly, while
the classical CRLB asymptotically approaches the a-priori knowledge. The RMSE
obtained from the idealized data follows the BCRLB, again demonstrating that un-
der such conditions, the estimator exhibits reduced variance due to the premature
termination of the optimization, effectively introducing a bias. The approximated
BCRLB, however, lies slightly below the actual RMSE of the estimator, as the in-
fluence of the prior information in flat-valley regions of the cost function can lead to
an overestimation of the bias gradient and thus an underestimation of the bound.
In contrast, the RMSE of the Bellhop-based estimation increases with larger dis-
tances of the AUV from the center, reaching a maximum value of approximately
25 m/s at the position ra = [−60, −60, −10]Tm.
The deviations in position and sound speed estimation across the various measure-
ment sets are caused by the differing bias tendencies between the two data sets,
which can be attributed to the influence of the prior knowledge.
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Figure 5.9.: RMSE of the MAP estimation of the sound speed.

Influence of A-Priori Information

To examine this effect in more detail, the bias of the MAP estimation is shown in Ta-
ble 5.2 for both data sets at positions ra = [xa, ya, −10]Tm, i ∈ {−60, −45, −30}.
For the idealized measurement data, the bias is minor, with a maximum deviation
of −3.56 m/s for the sound speed estimation and −0.73 m for position estimation.
Similar to the ML estimation, this bias originates from unfavorable geometry at
AUV positions located outside the area of interest, where the cost function exhibits
a flat gradient valley.

Data AUV pos. [m] Bias x [m] Bias y [m] Bias z [m] Bias c [m/s]
Bellhop -60 1.89 1.78 -3.77 -23.27

ideal -60 0.73 0.49 -0.17 -3.56
Bellhop -45 1.10 1.05 -0.89 -20.18

ideal -45 0.30 0.17 1.14 -2.05
Bellhop -30 0.34 0.39 0.65 -13.82

ideal -30 0.04 0.01 0.52 -0.13

Table 5.2.: Bias of MAP estimation for data simulated with Bellhop and idealized
data.
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In these regions, the estimator converges prematurely before reaching the global
minimum. These bias tendencies for the idealized data set resemble those observed
for the ML estimation, although the scale is smaller: the sound speed tends to be
underestimated, leading to a systematic underestimation of the ranges.
For the Bellhop-simulated data, the bias for unfavourable geometry is significantly
larger. This behaviour is primarily caused by the prior knowledge used in the MAP
estimation, defined as µc = 1500 m/s and σc = 30 m/s, which represent the expected
average sound speed in shallow waters without information about environmental
conditions. The SSP used for the Bellhop simulations (Figure 2.4(a)), corresponds
to conditions in August and therefore exhibits higher sound speed of approximately
1522 m/s in the near surface layers (upper 10 m), mainly due to elevated tempera-
ture. Consequently, the average sound speed increases, especially for larger horizon-
tal distances. This discrepancy between prior mean and true sound speed has only a
minor effect for favourable geometry, since the high Fisher information provided by
the measurements dominates the estimation. However, as the geometry becomes less
favourable, the estimation increasingly relies on the prior, drawing the sound speed
estimate toward its mean value of 1500 m/s and thereby introducing an additional
bias in the estimate. This bias subsequently propagates into the position estimates
and is particularly pronounced in the z-direction, since the ASVs are located within
a single horizontal plane and errors in the sound speed estimation translate most
strongly in to the vertical component. Consequently, the bias in z-direction reaches
values of up to −3.77 m at ra = [−60, −60, −10]Tm.
The influence of the prior knowledge on the bias can be further examined by con-
sidering the geometric relations of the measurement setup.

Geometric Interpretation

In three-dimensional range-based localization, each RTToF measurement between
the AUV and an ASV defines a sphere centered around the ASV, with radius pro-
portional to the assumed sound speed and the measured RTToF. The measurement
noise turns each sphere into a finite-thickness spherical layer, where the volume of
the noise corresponds to the thickness of the layer. The true AUV position lies
within the common intersection of all layers. Because of their finite thickness, this
intersection is a region rather than a single point and represents the estimation un-
certainty. Under poor geometry - e.g., when the ASVs are clustered on one side
- the spheres intersect at shallow angles and the intersection area expands into an
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elongated, approximately ellipsoidal volume. If the sound speed is jointly estimated,
it scales all radii proportionally, introducing an ambiguity that is coupled with the
position. This coupling amplifies the uncertainty of both position and sound speed,
especially under unfavorable geometry.
The introduction of prior knowledge about the sound speed stabilizes the estima-
tion process in such geometrically weak regions. The prior effectively constrains
the sphere radii, reducing the ambiguity between position and sound speed. As a
result, both the position and sound speed estimates become more stable. However,
the MAP estimate of the sound speed tends to be drawn toward the prior mean,
introducing a bias when the prior deviates from the true value. Under favorable
geometry, the high information content of the measurements dominates the prior,
and the MAP estimator remains practically unbiased even for a slightly inaccurate
prior mean.

5.1.3. Comparison

Within the area of interest, the results obtained with the MAP estimator closely
resemble those of the ML estimator, as the high Fisher information provided by the
measurements dominates the estimation. Outside this region, the MAP estimates of
both simulation sets exhibit improved performance compared to the ML estimator,
with the idealized data yielding an even smaller bias and RMSE. This indicates that
the degree of improvement strongly depends on the accuracy and strength of the
prior information.
While the ML estimator suffers from diverging position and sound speed estimates
under weak geometry, the MAP estimator remains more stable and produces sig-
nificantly lower bias based on the coupling of sound speed estimation and range
estimation for poor system geometry. However, the overall bias of the MAP esti-
mator inherently depends on the nature and accuracy of the a-priori information.
Stronger or more informative priors can mitigate the coupling bias arising from ill-
posed estimation conditions, but they may simultaneously introduce a systematic
bias reflecting the assumptions embedded in the prior itself.
Thus, the MAP estimation provides a robust trade-off between bias and stability. It
provides almost bias free estimates under well-conditioned geometry and maintains
higher stability in weak geometric conditions due to the softly bounded sound speed
assumption, with well-chosen priors leading to improved overall accuracy.
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5.1.4. Model Mismatch Concerning Sound Speed

The ranging model assumes an effective average sound speed for all simultaneously
incoming measurement paths. In the present scenario, this assumption results in
negligible model mismatch for the ML and MAP estimations. The extent of this
model mismatch depends on the propagation geometry. Differences in the effective
average sound speed increase with the horizontal range between the ASVs and the
AUV. For relatively closely spaced ASVs, as in the current setup, the variations
are minor, but for larger horizontal separations, these discrepancies become more
pronounced. The simulations with Bellhop reveal that for direct vertical propaga-
tion (AUV located directly under an ASV), the average sound speed is 1501.2 m/s,
whereas for the farthest horizontal range of about 100 m, it increases to 1522.4 m/s.
This confirms the assumption, that the average sound speed increases for larger hor-
izontal distances and indicates that too large spacing between ASVs may lead to a
measurable model mismatch, when assuming a constant average sound speed for all
propagation paths. This indicates that without a correction factor for the different
RTToF measurements, which accounts for path-dependent variations in the sound
speed, the vehicles in a swarm should avoid overly large spacing.
The bias exhibited by the MAP estimation does not originate from model mismatch
but from inaccurate prior information. Incorporating environmental knowledge -
such as seasonal effects (e.g., higher sound speed in summer), or typical conditions
in oceanic and coastal regions - into the prior information could mitigate this bias
and further improve the estimation accuracy.

5.2. Trajectory Tracking

This section presents the results of the filters applied in the trajectory tracking sim-
ulations, extending the previous static localization analysis to the case of a moving
AUV. Both tracking algorithms - the EKF and the PF - are evaluated over 150 time
steps, corresponding to a total simulation duration of the AUVs trajectory for 75 s.
Two of the simulated trajectories in the x-y plane are illustrated in Figure 5.10. The
blue trajectory correspond to Set 1, with an according horizontal acceleration noise
of σx,y = 0.5 m2/s3 and the green one to Set 2, with a noise of σx,y = 1 m2/s3.

The resulting trajectories reflect the influence of the applied acceleration noise,
with the trajectory of Set 2 exhibiting stronger perturbations. The average AUV
position over all trajectory simulations after the 150 simulated time steps for both
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Figure 5.10.: Exemplary trajectories of simulation Set 1 and Set 2.

simulation sets is ra = [68, 68, −10]Tm. The dampening factor in z-direction, which
prevents upward drift of the AUV, leads to a minimum depth of approximately 8 m
in the simulation data. Based on the calculation for the maximum LoS distance
derived in Section 3.3.3, this corresponds to a maximum horizontal range of 254 m
for the given sender depth of 0.3 m, using the simplified model of the SSP in Fig-
ure 2.4(a). Consequently, the AUV remained within the LoS connectivity region
throughout all simulated time steps.

5.2.1. Evaluation of Filter-Based Localization Performance

The localization performance of both filters is evaluated by comparing the RMSE
of the position estimation with the minimum achievable RMSE presented by the
PCRLB. The performance of the EKF and PF for simulation Set 1 and Set 2 are
illustrated in Figure 5.11. Both filters were initialized with the results from the
snapshot estimation, at position ra = [−15, −15, −10]Tm. A similar tendency can
be observed for both filters. At the beginning of the trajectory (approximately the
first 10 time steps), the position estimates of both the PF and the EKF improve
significantly. This increase in accuracy is due to the filters benefiting from both the
accumulation of new measurements and the more favourable measurement geometry
in the initial stages.
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Figure 5.11.: Localization performance of the EKF and the PF for simulation Set
1 and Set 2.

Subsequently, up to approximately time step 30, the estimation improves more
gradually, as the additional information gain after the initial steps decreases. Af-
terwards, a slight increase in the RMSE is apparent, which coincides with the AUV
leaving the center of the ASV triangle, which exhibits the best geometric condition-
ing. Beyond approximately 90 time steps, both filters begin to deviate noticeably
from the PCRLB, which continues to increase at a similar rate. This behaviour
occurs as the AUV reaches an average position of ra = [32, 32, −10]Tm across all
simulated trajectories, corresponding to the onset of the region with increasingly
poor geometry where the system becomes less well-conditioned. The divergence of
the filters is therefore consistent with the problems of unfavourable geometry, which
is further discussed in Section 5.2.3.
Comparing the RMSEs of the simulation Set 1 and Set 2, allows an assessment
of the impact of the increased acceleration noise. Once the AUVs average position
over the simulation trajectories moves beyond the center of the area of interest,
the PCRLB for the simulation Set 2 displays slightly higher values, reflecting the
greater uncertainty in the transition model. Both filters exhibit similar performance
trends, as the relative differences between each filters RMSE values and the corre-
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sponding PCRLB remains nearly identical for both simulation sets. This indicates
that neither filter is significantly affected by the increased transition noise. The
absolute RMSE difference between Set 1 and Set 2 remains below 0.2 m, indicat-
ing that the heightened transition noise has negligible impact on the localization
performance.
A direct comparison between the two filters reveals that the EKF generally achieves
slightly lower RMSE values than the PF across both simulation sets. This differ-
ence is likely related to sub-optimal parameter tuning rather than to fundamental
limitations of either algorithm.
Each filter offers distinct advantages. The PF provides increased flexibility through
parameter tuning, such as adjustable resampling noise and scheme, or the option
to broaden the likelihood function, making it more robust under uncertain condi-
tions but potentially leading to suboptimal performance if tuned incorrectly. Since
it approximates the posterior PDF of the different parameters, it can adapt to
non-Gaussian distributions. In addition, particularly in localization scenarios, the
visualization of the particle cloud can be highly informative for diagnosing issues in
the filter implementation or in the underlying measurement or simulation setup.
A drawback of the PF is its higher computational complexity, since all particles
must be propagated and weighted at each time step. Moreover, due to the stochas-
tic nature of the algorithm and the finite number of particles used, its convergence
is not deterministic.
In contrast, the EKF is a deterministic filter that remains computationally efficient
and performs reliably under well-defined motion models, making it advantageous for
real-time applications with limited processing resources. However, the EKF relies
on local linearization of the nonlinear measurement model, which can introduce es-
timation errors, when the nonlinearity of the model comes more pronounced, (for
example at very small distances between the ASV and the AUV). Moreover, since
the EKF operates solely based on the predefined transition and measurement model,
it lacks the flexibility to adapt internal parameters for increased robustness.
Overall, both filters exhibit consistent qualitative behavior, indicating that the es-
timation performance is primarily governed by the measurement geometry rather
than by the specific filter structure. Consequently, both filters are well suited for
the considered localization problem. The choice of the filter is therefore based on
the specifications of the problem.
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5.2.2. Impact of Sound Speed Estimation

To analyze the impact of the sound speed estimation on the filter performance,
the RMSE of the estimated sound speed and the corresponding PCRLBs for both
data sets are illustrated in Figure 5.12. It can be observed, that the sound speed
estimation for both filters approaches the PCRLB, without diverging for regions of
unfavourable geometry. This indicates, that the sound speed estimation does not
have a negative impact on the localization performance for bad geometry.
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Figure 5.12.: Performance of sound speed estimation of the EKF and the PF for
simulation Set 1 and Set 2.

To validate this assumption, an EKF was implemented for the case of a known
sound speed for simulation Set 1. Figure 5.13 includes the localization performance
of this EKF. It can be observed, that the trend of the localization performance is the
same when the sound speed is known, which confirms that the deviations between
the filters and the PCRLB are not caused by the joint estimation of position and
sound speed.
This behavior arises because the transition model for the sound speed allows only
small variations, representing slow environmental fluctuations in the effective sound
speed. Consequently, the associated process noise is minor, and errors introduced by
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slightly inaccurate sound speed estimates remain limited, as the model inherently
constrains large deviations. If the initial sound speed estimate is sufficiently accu-
rate, its impact on the range estimates is minimal. Therefore, the coupling between
sound speed and position estimation, which has previously shown to induce bias
in the static case under unfavorable geometry, has only a negligible effect in the
filter-based trajectory tracking when the initial geometry is favorable.
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Figure 5.13.: Localization of the EKF and the PF for simulation Set 1 and Set 2,
including the EKF for the case of known sound speed for Set 1.

However, if the initial sound speed estimate is biased due to an unfavorable initial
geometry and this bias is not reflected by a sufficiently large initial uncertainty, the
error tends to persist over time. Because the transition model typically assumes low
process noise, only limited correction can occur at each time step. In such a case, a
PF would be preferable, as an increased resampling noise for the sound speed could
help mitigate this incorrect initial estimate and enable faster convergence toward
the true value, although the overall performance would still remain suboptimal.
Furthermore, if the estimated sound speed only remains within a reasonable range
because of the restrictive transition model rather than due to informative mea-
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surements, its relevance for the estimation under unfavourable system geometry is
questionable. In such cases, the sound speed estimate is unlikely to provide addi-
tional useful information and the localiztaion performance will not be improved by
this estimation.
This illustrates once more the importance of geometric conditioning. If the ini-
tial geometry is unfavorable, the filter will struggle to correct biased sound speed
estimates which would automatically influence the range estimates. Therefore, es-
pecially initializing the localization in regions with favorable geometry is crucial for
accurate and stable sound speed estimation.

5.2.3. Deviation from the PCRLB

The deviations of the filter performance from the PCRLB primarily originate from
the intrinsic limitations of the filtering process rather than from a bias introduced
by the coupling between sound speed and position estimation. When the informa-
tion from the measurements becomes insufficient, the filters increasingly rely on the
transition model, which leads to a noticeable divergence from the theoretical lower
bound. This can be attributed to poor geometric conditions, under which the di-
rectional gradients of the measurements become highly similar, resulting in only a
minor information gain.
For the PF, which can assign wrong weights when the positioning geometry is un-
favourable, this effect can be visualized. A particle with a biased velocity estimate
can still obtain a high weight due to measurement noise, allowing the error to persist
over several iterations. As a result, the estimated AUV position drifts, leading to
an increasing localization error.
This becomes evident when the AUV moves outside the anchor triangle: the parti-
cle cloud expands and develops an elongated or banana-shaped structure, reflecting
the increased uncertainty resulting from poor geometric conditioning. This effect of
poor particle distribution is illustrated in Figure 5.14.

The particle cloud corresponding to the unfavourable geometry is significantly
larger and non-spherical, in comparison to a compact, nearly circular cloud, which
reflects the uncertainty, when the AUV remains within the ASV triangle (Figure
A.2 appendix A). In regions of unfavourable geometry, incorrectly weighted parti-
cles can dominate the posterior PDF and produce biased estimates, which lead to a
deviation from the PCRLB.
The deviation from the theoretical achievable RMSE shows, that the EKF and PF
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Figure 5.14.: Visualization of particle cloud for poor geometric conditions.

are not optimal filters under such a disadvantageous geometry. These results fur-
thermore underline the importance of maintaining a well-conditioned geometry for
trajectory tracking, which can be achieved with appropriate control inputs of the
AUV and, when applicable, through coordinated control of the ASVs.

5.3. Design Considerations for Underwater
Localization Algorithms

Based on the findings from the simulations, several key considerations can be de-
rived for the design of underwater tracking algorithms.
The tracking should be initialized using a MAP-based estimate of the position and
sound speed, where the prior information reflects general environmental conditions
that influence the sound speed such as seasonal temperature or salinity.
Both the EKF and the PF represent suitable approaches for trajectory tracking,
with the choice depending on the specific localization scenario, for example available
computational power and fidelity of the transition model. The simulation results
further emphasize the importance of maintaining favorable geometry throughout
the tracking process and especially for the initial estimate. The AUV should remain
within or close to the area enclosed by the ASVs, as large horizontal spacing can
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degrade geometric observability and introduce model mismatch in the range esti-
mation. Furthermore, too large horizontal distances combined with rather shallow
positions of the AUV can result in a loss of the direct path of acoustic connectivity,
as the curvature of the sound rays inherently limits horizontal LoS transmission.
In the next chapter, these findings are applied to acoustic measurement data, col-
lected in the Baltic Sea.
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In June 2025, the DLR conducted a measurement campaign in the Baltic Sea, off
the coast near Gothenburg, Sweden. The campaign aimed at demonstrating the
feasibility of using acoustic ranging data to estimate the relative position between the
AUV and the ASVs. To this end, the previously investigated localization algorithms
were tested using the gathered measurement data.

6.1. Measurement Setup

The measurement campaign was carried out over the course of one week. Five
waterproof tubes, each approximately 80 cm long and equipped with hydrophones
operating at a frequency of 40 kHz, were used to represent the AUV and ASVs
for the acoustic ranging measurements. Four of these tubes served as ASVs, with
GPS receivers mounted on one end and hydrophones on the other end. Cylindrical
flotation devices ensured that the tubes remained vertically oriented in the water,
positioning the hydrophones about 40 cm below, and the GPS receivers approxi-
mately 40 cm above the surface. An illustration of these tubes is given in Figure
6.1. The fifth tube, which did not contain a GPS receiver, was equipped with two
hydrophones attached to opposite ends of the tube and represents the AUV.
Unlike previous investigations, the ASVs in these experiments were not stationary.
However, since their position can be determined via GPS signals, relative position
estimation between the ASVs and the AUV is possible.
Because the tubes were not supplied with a propulsion system, different methods
were employed to maneuver them during the measurements. The ASVs were con-
nected by a rope, spaced about 7 m apart and towed by a boat, while the AUV was
maneuvered using different techniques depending on the experimental setup.
The following paragraphs provide an overview of these configurations for June 13,
14, 17, and 19.
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Figure 6.1.: Tubes with hydrophones and GPS receivers that served as ASVs.

June 13 On the 13th of June, the AUV was suspended from a free-floating buoy
by two 1.9 m long ropes attached symmetrically on both sides of the tube. A weight
was mounted beneath the AUV to keep it aligned with the buoy in the horizontal
plane. Therefore the AUV was positioned approximately 1.86 m below the buoy and
therefore the surface.

June 14 The following day, the AUV was attached to a second, remotely controlled,
boat via a rigid mast, ensuring that the AUV remained fixed approximately 1.5 m
underneath the surface. Only one ASV was employed this day.

June 17 and June 19 On the 17th and 19th of June, the AUV was attached on
top of a crawler provided by GEOMAR. The crawler was remotely operated and
capable of moving along the bottom of the sea at a depth of approximately 10 m in
this coastal region.

6.2. Analysis of Ranging Measurements

This section evaluates the ranging measurements with respect to the feasibility of
the underlying measurement concept. As demonstrated in Chapter 5, optimized
geometry is crucial for the joint estimation of sound speed and positions. In this
setup, where the ASVs were towed in one line, the geometry was disadvantageous
for this joint estimation and would inevitably lead to a bias in the sound speed
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estimation. Therefore, the ranges were calculated assuming an average sound speed
of 1500 m/s.
The ranging measurements recorded on June 13, obtained from two experiments
conducted with the configuration described above, are illustrated in Figure 6.2. The
results from the other days are provided in Appendix A.

12:30 13:00 13:30 14:00
Time [UTC] Jun 13, 2025   

0

50

100

150

R
an

ge
 [m

]

ASV 1 to H1
ASV 2 to H1
ASV 3 to H1
ASV 4 to H1
ASV 1 to H2
ASV 2 to H2
ASV 3 to H2
ASV 4 to H2

Figure 6.2.: Range measurements obtained on the 13th of June, calculated with an
average sound speed of 1500 m/s.

ASV1 to ASV4 correspond to the hydrophones mounted on the different ASVs,
while H1 and H2 represent the hydrophones, on opposite sides of the AUV. While
most hydrophones provide consistent measurements only limited data is available
from ASV 4 during the first experiment, and none from ASV 2 during the sec-
ond. The ranges measured between the ASVs and the AUV demonstrate consistent
trends, which can be attributed to the ASVs being towed in one line by a single boat.
The continuous rise and fall of the ranging measurements reflect the boat’s move-
ment: As the boat moved farther away from the AUV, all the ranges increased at
the same rate and vice versa. This confirms that the calculated ranges are consistent
and reliable.
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Region Without Line of Sight Connection

A comparison of the range estimates from the various measurements reveals that at
a certain point, the communication between the vehicles breaks off. The threshold
for this connection loss increases with the depth of the receiving hydrophone, which
confirms that the loss of LoS connection is depth-dependent.
This behaviour for the different range estimates is illustrated in Figure 6.3. The
receiver depth of 0.4 m corresponds to ranges that were measured between two dif-
ferent ASVs, the receiver depth of 1.5 m to ranges measured between the ASVs and
AUV on June 14, 1.86 m to June 13 and the depth of 10 m to the 17th and 19th
of June. The black curve represents the theoretical threshold for a LoS connection,
calculated using the model presented in Section 3.3.3, with an approximation of the
sound speed gradient corresponding to the SSP in Figure 2.4(a) and an initial sound
speed c0 of 1500 m/s.
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Figure 6.3.: Comparison of measured and modeled ranges illustrating the LoS dis-
tance as a function of sender depth, for a receiver depth of 0.4 m.

It can be observed that the measured ranges approximate the theoretical curve.
The outliers for the sender depth of 1.5 m can be attributed to stochastic effects, that
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can increase the LoS communication region, such as surface waves that effectively
increase the sender- and receiver depth, thereby extending the LoS connectivity
region for that time. The circumstance that the depth-dependent maximum ranges
converge towards the modeled curve validates the applicability of this model - with
appropriate approximations about the SSP - for acoustic ranging applications in
shallow waters.

Multipath Propagation

The ranging measurements illustrated in Figure 6.2, exhibit a clear absence of sig-
nificant outliers. This indicates that at the operating frequency of the hydrophones,
direct and reflected rays - with greater time delays than 25 µs - can be distinguished.
Consequently, the hypothesis stated in Chapter 3, that multipath propagation does
not compromise the localization performance for this configuration, is confirmed.
The hydrophones distinguish between LoS propagation and NLoS propagation based
on the arrival times of the signal. Figure 6.2 and Figure 6.3 further reveal that as
soon as the LoS signal is lost, there is a total absence of ranging signals, meaning
that in this region likewise, the vehicles do not mistakenly identify a reflected ray
as LoS. The is due to the fact that for distances exceeding the maximum LoS con-
nectivity region, practically only rays that have been reflected at least once on the
bottom of the ocean, or other obstacles, can reach the AUV. These reflected rays
experience such a significant energy loss - likely due to absorption by the seabed -
that they are not detected by the hydrophones and therefore not included in the
measurements.
The fact that rays which are only reflected at the surface cannot reach the NLoS con-
nectivity region can be visualized with the simplified model, in which every acoustic
ray gets bent on a curve with the radius R. This radius is determined based on the
gradient of the SSP as well as the initial angle of the ray γ0

R = − c0

−g cos γ0
.

The maximum LoS distance corresponds to the maximum initial angle γ0 for which
the ray does not get reflected at the surface of the ocean. The relationship between
R and γ0 reveals that the radius of the ray curvature, increases with larger initial
angle γ0 (horizontal launch: γ0 = 0◦). As the initial angle γ0 becomes too large for
LoS connection, the ray intersects the sea surface closer to the transmitter, marking
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the highest point of its trajectory. At this point, the ray is reflected downward with
equal angles of incidence and reflection, continuing along a curved path determined
by the exit angle.
The maximum LoS ray reaches the surface without reflection, thus its highest point
of trajectory extends farthest horizontally.
For a constant sound speed gradient and relatively small transmitter and receiver
depths, the total horizontal range of rays reflected at the surface remains shorter than
that of the maximum LoS ray. Although the reflected ray follows a path with a larger
curvature radius, the reflection angle causes the ray to propagate downward rather
than horizontally, therefore the additional path after reflection can not compensate
for the shorter distance covered before reflection.
This behaviour is illustrated in Figure 6.4 for a sender depth of 0.4 m and a receiver
depth of 1.5 m. Analogous to the ray-figures in Chapter 2 and 3 the red rays represent
LoS paths, while the green rays correspond to a single reflection at the surface. It
has to be noted, that this is idealized behaviour, based not only on linearly changing
sound speed, but also an even surface of the ocean.

Figure 6.4.: Farthest ray propagation for a sender depth of 0.4 m and a receiver
depth of 1.5 m
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6.3. Localization Based on Experimental Data
The ranging data from June 17, illustrated in Figure 6.5, was selected for an exem-
plary localization algorithm, as this day presents the most promising results with
regard to both range and GPS measurements.
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Figure 6.5.: Range measurements obtained on the 17th of June, calculated with an
average sound speed of 1500 m/s.

A PF was implemented for the localization estimates due to its flexibility and its
capability to visualize estimation uncertainty via the corresponding particle cloud.
Owing to the unfavourable geometry, no joint estimation of position and sound speed
was performed and the PF was initialized with a ML position estimate derived from
the ranges calculated based on a sound speed of 1500 m/s.
The transition model was defined without explicit control inputs that reflect deter-
ministic relative movement between the AUV and ASVs, as there is no information
available about the planned relative movement between the vehicles. To compen-
sate for this lack of information, the noise of the transition model was increased.
Figure 6.6(a)-(d) was selected to illustrate the performance of the PF at different
time steps. The first and the last time steps correspond to the earliest and the latest
available range measurements, the intermediate time steps represent different stages
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of the PFs development.
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-120 -100 -80 -60 -40 -20 0 20
x-Position [m]

60

80

100

120

140

160

180

200

y-
Po

si
tio

n 
[m

]

2025-06-17 13:59:04

ASV positions
est. traj. AUV
Particles

(c) After 14 minutes (poor geometry).
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Figure 6.6.: PF on July 17 at (a) the first time step, (b) after four minutes, (c) after
14 minutes, and (d) at the last time step.

It can be observed, that localization with that setup is feasible and enables con-
tinuous tracking of the relative motion between the AUV and the ASVs. Although
no ground truth data is available to quantify the performance of the position esti-
mation and evaluate possible influence of a bias caused by wrongly assumed sound
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speed or poor geometry, several qualitative aspect can be identified. The estimated
position of the AUV changes only gradually over time, while the ASVs exhibit faster
movement. This behaviour is consistent faster motion of the towing boat and the
limited mobility of the underwater crawler, to which the AUV was attached.
The performance of the PF for different geometric conditions is further illustrated
in Figure 6.6(b) and Figure 6.6(c). The particle cloud for a filter configuration with
rather favourable geometric conditioning is depicted in Figure 6.6(b), where the
ASVs are in close proximity to the estimated position of the AUV, such that two
main directional gradient can be identified - one approximately along the towing
direction of the boat and one perpendicular to it. The ranging measurements from
these directions provide complementary information, which improve the localization
accuracy and results in an elliptically shaped particle cloud. The longer axis of the
ellipse corresponds to the direction in which no range information is available.
In contrast, the geometry illustrated in Figure 6.6(c) is unfavourable, as the ASVs
are aligned almost in one line with the AUV. Consequently, their directional gradi-
ents are nearly identical, leading to a banana shaped particle cloud which represents
the increased estimation uncertainty. This configuration can cause biased particles
to receive disproportionately high weights, resulting in biased position estimates.
The observed behaviour underlines the importance of optimized geometric condi-
tioning discussed in Section 5.2.1.
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7. Conclusion

This thesis presents a comprehensive investigation into the challenges associated
with short range underwater localization, with a focus on the interrelations between
geometric configuration, sound speed estimation, and filter initialization.
A central problem with ASV based localization is that the ASVs are constrained
to a common horizontal plane, leading to localization difficulties for non-optimized
geometric conditioning within this constraint. It is demonstrated that tracking al-
gorithms based on the EKF and PF, when initializing with Maximum A-Posteriori
estimation, show highly promising performance. This initialization strategy allows
for accurate joint estimation of sound speed and position, while mitigating the risk of
large initial estimation bias due to poor geometry, by incorporating prior knowledge
about the sound speed. The accuracy of this prior knowledge is greatly improved by
rough estimation of environmental parameters like seasonal temperature or salinity.
The estimation results confirm that joint estimation of position and sound speed,
particularly during initialization phases, enhance the robustness of the algorithm
against erroneous prior assumptions by preventing the propagation of persistent bi-
ases that otherwise degrade range estimates. A key insight from the analysis is
that unfavourable initial geometry not only reduces precision, but can also induce
long-lasting bias in the sound speed estimation, which propagates systematically
into range estimations. This underlines the importance of geometric conditioning
for practical deployment scenarios.
The impact of model mismatch caused by depth-dependent sound speed variations,
which result in refraction and different average sound velocities along the individual
propagation paths, is evaluated as well. For short range applications those sound
speed variations result in negligible deviations when assuming a constant average
sound speed for different propagation paths, provided that the spatial separation
between the AUV and ASVs remains comparable. This validates the use of a sim-
plified propagation model, allowing for ranging based on an effective average sound
speed and an Euclidean distance between the different vehicles.
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However, the simulations have revealed that as range disparities increase, the av-
erage sound speed for the different propagation paths deviate more strongly from
one another, implying that for the simplified measurement model, limitations for
horizontal spacing must be applied. Moreover, due to ray refraction, horizontal LoS
propagation is inherently limited, further constraining the inter-vehicle ranges in
horizontal direction.
Data collected during a dedicated measurement campaign demonstrates that consis-
tent position estimation is achievable for this setup under real underwater conditions.
The measurement data confirmed the limitations of the estimation performance for
unfavourable geometric conditioning. Furthermore, the restrictions on inter-vehicle
LoS connectivity at large horizontal spacing were evident in the data, validating the
practical relevance of this limit. In addition, the derived model for the maximum LoS
distance in shallow waters accurately approximates the depth-dependent communi-
cation range. An integration of this model into swarm control and swarm navigation
algorithms allow for continuous evaluation of the LoS condition and therefore en-
sures connectivity and mission reliability.
In conclusion, this thesis establishes that successful short range underwater local-
ization not only depends on filtering techniques but on a holistic consideration of
geometry, initialization and environmental modeling, with special constraints re-
garding maximum LoS connectivity for swarm control applications.
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The next step in advancing an underwater localization system is to expand the setup
to cover a wider area. This can be achieved by employing more ASVs and AUVs to
create a network encompassing a larger region, and by increasing spacing between
the ASVs and AUV. The latter would be possible in terms of signal transmission
properties, due to the low attenuation of acoustic signals underwater. This enables
communication over large distances, although it is limited by the LoS constraint
imposed by the curvature of the acoustic rays.
To maintain localization accuracy in a more widely spaced setup, different ap-
proaches could be considered. One possibility would be to incorporate barometric
measurements to estimate the depth (z-position) of the AUV. This would reduce
the ambiguity in coupled sound speed and position estimation, effectively reducing
the estimation uncertainty.
Another potential improvement would be to incorporate a range- and depth-dependent
correction term. Due to the depth-dependent variations in the sound speed, differ-
ent ray paths effectively experience different average sound speeds. Generally, the
sound speed experienced by rays that travel larger horizontal distances, is higher
than that experienced by rays that travel mainly vertically. If the average sound
speed for a specific propagation path - for example direct vertical propagation - is
known, this correction term could account for these variations, by determining a
higher sound speed for rays that travel larger horizontal distances. With such a
setup, an initial accurate estimation of the sound speed would still be crucial, as
this initial estimation would serve as the reference on which the correction factor
would be imposed to account for path-specific variations.
An additional way to increase accuracy could be to eliminate the need for estimation
of both sound speed and position, as this joint approach leads to biased estimation in
poor geometric conditions. This could be achieved by including temperature sensors
in the ASVs and AUV. Roughly assuming the salinity of the given body of water
- for example, the Baltic sea has very low salinity, whereas oceans usually exhibits
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higher salinity - and utilizing the temperature measurements from the ASVs and
the AUV enables the calculation of the sound speed at those depth with the Med-
win model. Furthermore, assuming a linear gradient of the sound speed profile for
the given water mass would allow for an approximation of the sound speed profile
within that region. This knowledge could further improve the correction term for
the path-specific variations in the average sound speed, as it does not only incorpo-
rate tendencies - higher sound speed for larger horizontal ranges -, but the actual
approximated sound speed profile.
These approaches could initially be tested via simulations using Bellhop to capture
the differences between the approximated ray specific average sound speed and the
more realistically simulated sound speed. Subsequently, they could be validated
with a measurement campaign, for instance by fixing the AUV to a stationary un-
derwater crawler. This setup would allow for precise ground truth acquisition - using
the crawlers initial position for horizontal reference and barometer measurements
for depth - while the GPS-equipped ASVs are moved to asses relative positioning
performance.
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A. Additional Figures
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Figure A.1.: Impulse response at the receiver for a 50 m horizontal range.
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Figure A.2.: Particle cloud for favourable geometric conditions.
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Figure A.3.: Range measurements obtained on the 14th of June, calculated with an
average sound speed of 1500 m/s.
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Figure A.4.: Range measurements obtained on the 19th of June, calculated with an
average sound speed of 1500 m/s.
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