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Bicontinuous geometries, both ordered and amorphous, are commonly found in many soft
matter systems. Ordered bicontinuous phases can be modelled by periodic minimal surfaces,
including Schoen’s gyroid (G) or Schwarz’ primitive (P) and diamond (D) surfaces. By contrast,
a minimal surface model for amorphous phases has been lacking. Here, we study minimal
surface models for amorphous bicontinuous phases, such as sponge phases. Using the surface
evolver with a novel topology-stabilizing minimization scheme, we numerically construct
amorphous minimal surfaces from both a continuous random network (CRN) model for
amorphous diamond and from a randomly perforated parallel sheet model. As per Hilbert’s
embedding theorem, the Gaussian curvature of these surfaces cannot be constant. Our analysis
of Gaussian curvature variances finds no substantial long-wavelength curvature variations
in the amorphous diamond minimal surfaces. However, their Gaussian curvature variance is
substantially larger than that of the cubic P, D and G surfaces. Our work demonstrates the
superior curvature homogeneity of the cubic P, D and G surfaces compared to their entropy-
favoured amorphous counterparts and to other periodic minimal surfaces. This general
geometric result is relevant to bicontinuous structure formation in soft matter and biology
across all length scales.

1. Introduction
Hilbert’s famous embedding theorem [1] stipulates that in our Euclidean space E

3, an infinite
smooth saddle-shaped surface cannot have constant Gaussian curvature. Any physical system
that strives for constant negative Gaussian curvature is necessarily frustrated. A ‘perfect’ interface
with constant negative Gaussian curvature—as idealized by the hyperbolic plane H

2—does not
exist in E

3. In the absence of a perfect interface, the fundamental question for any real-world
system is: which saddle-shaped interface has the least variation in Gaussian curvature?

Figure 1 illustrates this question. Local constructions for surface patches in E
3 with constant

Gaussian curvature equal to −1 exist, as illustrated by crocheted hyperbolic corals [2,6] and other
hyperbolic sculptures [7] or by the pseudosphere [8]. However, when sufficiently extended such
surfaces lose their smoothness (C2 differentiability), they may also develop self-intersections and
they cannot be minimal.1 By contrast, triply periodic minimal surfaces (TPMS), including Alan
Schoen’s gyroid surface, are infinite and smooth saddle surfaces. Consequently, their Gaussian
curvature varies across the surface; their Gaussian curvatures density function is non-zero over a
finite range of values (figure 1e).

In the context of soft matter and biological membranes, curvature homogeneity is foremost
relevant for the self-assembled phases based on bicontinuous minimal surfaces, such as the gyroid
phase in copolymers [9,10], the bicontinuous cubic phases [11] or the biological intracellular
bicontinuous cubic membranes [12]. Their bilayer, membrane or matrix mid-surface is given by
a TPMS. Interface curvatures are central to modelling these phases, including in Helfrich-type
bending functionals [13], the competition of surface tension with chain stretching terms [14–16]
and the relationship between the molecular shape and interface curvatures [11,17].

Curvature distributions and variances have been analysed for cubic minimal surfaces [13,18]
and for surface families that contain the cubic primitive (P), diamond (D) and gyroid (G) surfaces
[19,20], see also earlier scalar measures of homogeneity [17,21]. Those analyses have found that
these three cubic surfaces have the smallest Gaussian curvature variances among all investigated
periodic minimal surfaces.

This raises two questions: first, are these three cubic minimal surfaces truly the best interface
geometries in terms of minimizing curvature variations or has the best interface geometry just
not yet been found? Second, what aspects of their geometry enable these cubic minimal surfaces
to achieve their Gaussian curvature homogeneity? Some insight into these questions is afforded

1The Codazzi equation implies that no surface in E
3 can, even locally, have K = κ1κ2 = −1 and be minimal, H = (κ1 + κ2)/

2 = 0 ⇔ κ1 = −κ2, with κ1, κ2 the two principal curvatures, see theorem 2.6 in [8].
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Figure 1. Gaussian curvatures and irregularity of saddle surfaces inR
3. As per the embedding theorem, it is not possible to

find a C2 embedding of the hyperbolic planeH
2 inR

3 that maintains its constant Gaussian curvature K = −1. (a) Poincaré
disc model ofH2 decoratedwith the symmetric single-tile *246 tiling (colour is for presentation only). (b) The crochetedmodel
for the hyperbolic plane by Taimina [2] has, by construction, constant Gaussian curvature with the curvature distribution, a δ

function at K = −1. However, if extended infinitely, it would not be twice continuously differentiable and thus cannot have
principal curvatures at all points [3] (image source: [2]). (c) Embedded TPMSs, here the gyroid, are smooth intersection-free
saddle surfaces. The Gaussian curvature of such surfaces (represented by the surface colour) is negative, 〈K〉 = χ/(2πA)< 0
(whereχ is the Euler–Poincaré index and A is the surface area). However, all TPMS have isolated flat points where the Gaussian
curvature is equal to zero [4], and hence must have a Gaussian curvature distribution of finite width that includes a finite
area patch near K = 0 [5, corollary 3.3]. (d) Gauss curvature distribution function for the hyperbolic plane; as K = −1, the
distribution function is a δ-function at K = −1. (e) Gauss curvature distribution function for the gyroid (with 〈K〉 = −1),
showing finite values over a range of curvature values.

by comparing their curvature properties to those of amorphous bicontinuous minimal surfaces
without periodicity.

Amorphous bicontinuous saddle surfaces are not only a reference point for their ordered
counterparts, but are highly relevant in their own right. Any amorphous spatial network
can be transformed into a ‘network solid’ (e.g. by tubifying [22]), bounded by an interface
that is, on average, saddle-shaped with 〈K〉 = χ/(2πA) < 0. There is an abundance of systems
that form amorphous and, on average, negatively curved interfaces, ranging from porous
materials in geology, chemistry and biology, to phase separation processes such as spinodal
decomposition, to biological membranes, sponge-like carbon phases and many others. While
curvature homogeneity is probably relevant to many of these systems, it may be most pertinent
to systems with interfaces close to minimal surfaces, such as in the L3 sponge phase in ternary
lipid systems [23] or in the calcium carbonate skeleton of the sea urchin [24].

Synthetic amorphous meta-materials have garnered interest for optical applications [25,26]
and biomaterial applications [27], largely owing to their isotropic material properties that cannot
be achieved with crystalline structures. Given the interest in ordered bicontinuous geometries
for tissue engineering and bone scaffold designs, it seems likely that amorphous bicontinuous
minimal surfaces are valuable fully isotropic candidate structures for such applications.
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Figure 2. Evolution froma tubular initial configuration to aminimal surface under a topology-stabilized version of theWillmore
functional. A surface mesh approximating an amorphous diamond minimal surface (bottom left) is obtained from an initial
tubular representation of the amorphous diamond network (top left) by minimizing the functional En(M), equation (4.1),
using the Surface Evolver software [30]. In the initial stages, a termα(n)

∫
K 2 dA penalizing high absolute values of Gaussian

curvature is includedwith amodulusα(n) that decays as the evolution progresses; this termprevents ‘pinch-off’ effects, thereby
stabilizing the topology and a smooth negatively curved surface.

Mathematically, the existence and curvature properties of amorphous bicontinuous minimal
surfaces are open questions. We hope that the numerical construction algorithm presented here
will inspire rigorous mathematical analyses of the existence and uniqueness of amorphous
minimal surface forms, as well as their optimality with respect to higher-order integral Gaussian
curvature properties. Such studies will probably involve random fields, specifically Gaussian
random fields whose statistical Gaussian curvature properties have been studied in the context of
microemulsion interfaces [28,29].

2. Results

(a) Minimal companion surfaces to the amorphous diamond net
Embedded minimal (H = 0) companion surfaces of the amorphous diamond network can be
generated by a robust minimization scheme in Surface Evolver [30], see §4a.
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Figure 3. Gaussian curvature variance and isotropy of amorphous diamond minimal surface and of TPMS families. Gaussian
curvature variancesσ 2/(〈K〉)2 and isotropy indicesβ0,2

1 are shown for realizations of differing size of the amorphous diamond
minimal surface (χ = −432 triangle, χ = −2000 5-star, χ = −8192 8-star), cubic subsets of all amorphous diamond
samples at random positions and of various sizes (filled diamond symbols: χ = −16 green, χ = −23 × 16 blue), TPMS
with cubic symmetry (solid discs and square) and one-parameter TPMS families (solid lines). The ellipse represents a principal
component analysis of data points from the cubic subsamples. For the construction of the hexagonal diamondminimal surface,
refer to electronic supplementary material, §1.

Figure 2 shows the evolution of a tubular continuous random network (CRN) [31] under this
topology-preserving algorithm. This demonstrates that embedded minimal (H = 0) companion
surfaces of the amorphous diamond network exist, at least to a good numerical approximation.
The second term in the objective function En in equation (4.1) prevents ‘pinch-off’ effects, such as
the degeneration of catenoidal necks to a line (see electronic supplementary material, §4).

Converged solutions have average Willmore energy less than 10−3, with pointwise mean
curvatures very close to zero, 〈H〉/|〈K〉|1/2 < 10−6, with small standard and maximal deviations
(see electronic supplementary material, table 2). We find no indication of emerging translational
symmetry within the simulation box with periodic boundary conditions.

These surfaces, termed amorphous diamond minimal surfaces, are not balanced; the volumes
of the two domains (labyrinths) differ, with the volume fraction of the domain that emerged
from the original amorphous diamond network equal to 0.4837 ± 0.0064 (±variations across five
realizations). See the channel thickness analysis in electronic supplementary material, §9 for
further details.

(b) Variances of Gaussian curvature
The key result of this study is that the amorphous diamond minimal surfaces, while close to
isotropic and more uniform in Gaussian curvature than other amorphous minimal surfaces, have
significantly larger Gaussian curvature variances than the cubic P, D and G surfaces (figure 3).

The Gaussian curvature variance is defined as σ 2 = 〈(K2 − 〈K)2〉 = 〈K2〉 − 〈K〉2. The average value
〈K〉 and the average square value 〈K2〉 are calculated as 〈Kn〉 = (1/A)

∫
S[K(p)]n dA.
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As the Gaussian curvature is a dimensional quantity, with SI unit [K] = m−2, the length scale
needs to be set. Our analysis of σ 2/(〈K〉)2 corresponds to a length scale set such that the average
Gaussian curvature is 〈K〉 = −1.

The degree of anisotropy is measured using the isotropy index β = β
0,2
1 ∈ [0, 1] based on the

second-rank (Minkowski) interface tensor [32,33]. A value of β = 1 indicates an interface that
is isotropic in the sense that the eigenvalues of the rank-two interface tensor are all equal (this
includes interfaces with cubic symmetry). Values below unity indicate anisotropic interfaces.

Figure 3 shows Gaussian curvature variances. The cubic P, D and G surfaces have the lowest,
but finite, variance, with σ 2/|〈K〉|2 ≈ 0.2188 (as the P, D and G surfaces are isometric when
〈K〉 = −1, their variance value is the same). Here, division by |〈K〉|2 corresponds to length
normalization such that 〈K〉 = −1. Their isotropy is β

0,2
1 = 1, reflective of their cubic symmetry.

The amorphous diamond surfaces have variances σ 2/|〈K〉|2 > 0.4, about twice as large as the
cubic P, D and G surfaces. They are highly isotropic, with β

0,2
1 > 0.95. σ 2/|〈K〉|2 decreases slightly

with sample size.
A subset analysis of the χ = −53 × 16 amorphous diamond surfaces is performed with

randomly placed cubic subsets whose size is chosen so that the average Euler characteristic is
(−16) and 23 × (−16), respectively. These random cubic subsets cut out surface patches from the
amorphous diamond surfaces, which we refer to as cubic subset samples. The Gaussian curvature
variances differ significantly between subsets (see principal component analysis in figure 3), but
remain above the value of the cubic P, D, and G surfaces.

Figure 3 also shows data for one-parameter families of TPMS with non-cubic symmetry
[20,34,35]. These families can be understood as deformations of particular members with higher
symmetry (which for the tG, tD, tP, rG, rPD are the cubic P, D and G surfaces) or with particularly
high spatial isotropy (the members of H and hexagonal diamond hD with β

0,2
1 = 1). These

deformations exhibit small continuous changes of σ 2/|〈K〉|2, at the expense of lesser isotropy.
Like the H surface [35], the member of the hexagonal diamond family with the lowest curvature
variance is not the most isotropic one.

(c) Distributions of Gaussian curvatures
Figure 4 shows distributions of Gaussian curvatures. The Gaussian curvature distribution
function is ρ(K) = ∫

S δ(K − K(p)) dA with the delta distribution δ and ρ(K) dK the total surface
area of patches in S with Gaussian curvature between K and K + dK.

For the cubic gyroid, the distribution is finite between 0 and K/|〈K〉| = −1.72 where it sharply
drops to 0. For all members of the rG family, the distributions extend from 0 to a value K/|〈K〉,
less than the value −1.72 of the cubic P, D and G surfaces, where the value sharply drops to zero
(cf. electronic supplementary material, §14 for the behaviour of other surface families tD, tG, tP,
rPD and H).

The Gaussian curvature distribution of the amorphous diamond surface, analysed over the
χ = −53 × 16 sample, appears as a smooth function with a tail that continuously decays and
reaches zero at K/|〈K〉| ≈ −4. It has a relatively broad and smooth maximum; the mode of the
distribution (maximal value), at K/|〈K〉| ≈ −0.45, is greater than its average value (−1), different
from the cubic P, D and G surfaces.

Guided by the first and third quartiles of the curvature distribution of the P, D and G surfaces,
we set thresholds to define high, medium and low curvature as K/|〈K〉| < −1.36, K/|〈K〉| ∈
[−1.36, −0.65) and K/|〈K〉| ∈ [−0.65, 0], respectively. Electronic supplementary material, table 3
provides the corresponding area fractions for all surfaces. The amorphous diamond surfaces have
significantly larger area fractions of both low and high curvature than the P, D and G surfaces.

To discern inherent local curvature from larger-scale variations, the χ = −33 × 16 sample is
subdivided into a grid of equal-sized cubic domains such that the average Euler–Poincaré number
is χ = −8 in each domain. Gaussian curvature distribution functions evaluated for individual
domains fluctuate around the distribution for the whole surface and show no indication of sharp
peaks.
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Figure 4. Curvature distributions of amorphous diamond surfaces and symmetry deformations of the cubic G surface. The
main plot shows the curvature distribution function for the cubic gyroid (purple curve), for theχ = −83 × 16 sample of the
amorphous diamond surface (black curve) and for ten randomly placedχ = −16 cubic samples of that surface. The function
|〈K〉|ρ(K/|〈K〉|) is the density functionwhen the length scale is normalized to give 〈K〉 = −1. The insert shows distributions
for various rG surface members, including the cubic gyroid as the member with φ0 = π/3. For each surface, there is a point
of greatest curvature, where the minimal surface attains its most negative Gaussian curvature Kmin; this point is different for
different surfaces. The distributions are finite between Kmin and 0. (For the cubic gyroid, the flat point corresponds to symmetry
point *6, the maximally curved point to symmetry *4 and the maximum at K/|〈K〉| = −1.30 to symmetry *2.) The vertical
green dashes above the x-axis near−1 are the averages of 〈K〉i in the cubic subset samples, and the bar chart their distribution.

A one-way analysis of variances confirms the absence of substantial large-scale curvature
variations. The within-sample variance for the cubic subset sample i is σw = 〈(K − 〈K〉i)2〉i =
0.3834; here, 〈x〉i := (

∫
Si

x dA)/Ai is the average of x within the sample i, Ai is the surface

area in the cubic subset samples i and x := ∑M
i=1(Aix)/A is the area-weighted average over

all M cubic subset samples. With 〈K〉 (which is equal to 〈K〉i), the between-samples variance is
σb = 〈K〉i − 〈K〉2 = 0.012. The value F = σb/σw = 0.03 � 1 demonstrates that the inherent Gaussian
curvature variations within each samples are far greater than the larger-scale variations of average
Gaussian curvatures between samples.

3. Interpretation and discussion
We have demonstrated the numerical construction of an amorphous analogue of the bicontinuous
TPMS. Our algorithm for the amorphous diamond minimal surface enables its use in material
design and as a model for amorphous phases.

In terms of its curvature properties, the amorphous minimal surfaces provide an (as of yet
missing) reference point for the homogeneity of its periodic counterparts. None of the amorphous
minimal surfaces come close in curvature homogeneity to the cubic P, D and G surfaces, which
are again confirmed as the surfaces with the lowest degree of Gaussian curvature heterogeneity
amongst all investigated surfaces. However, the amorphous diamond minimal surfaces are
of similar Gaussian curvature homogeneity to other cubic TPMS, such as the S or I-WP
surface.
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(a) The amorphous diamond surface has significant Gaussian curvature variations, but no
long-range variations

The Gaussian curvature heterogeneity of the amorphous D is a localized property. Its variations in
Gaussian curvature are evident in small subsets of the surface, with only small variations between
different subsets, see §2c. This finding is perhaps expected given the narrow distributions of bond
angles and lengths [31]. This absence of long-range curvature variations, together with the high
degree of isotropy, will probably enhance the surface’s relevance as a model for self-assembled
(equilibrium) sponge phases and its usefulness for metamaterial designs.

(b) The amorphous diamond surface is not balanced or self-dual, and exhibits channel
thickness variations

In contrast to the cubic P, D and G surfaces, the amorphous diamond surface is not balanced.
The two channels differ slightly in volume and in their channel thickness structure (see electronic
supplementary material, fig. 9 and table 2). This lack of duality is not unexpected given that the
amorphous diamond net combines elements of the self-dual cubic diamond net (adjacent four-
coordinated nodes are rotated by 60◦) and of the hexagonal diamond (Lonsdaleite; where adjacent
four-coordinated nodes are aligned). The relation between these two nets and their corresponding
surfaces is highlighted in figure 5. The Lonsdaleite net is not self-dual in the notion of [37] and
its dual is the graphite net (see electronic supplementary material, §3). Moreover, the hexagonal
diamond minimal surface is not balanced (φ 	= 1/2, see electronic supplementary material,
table 2). Although the primal amorphous diamond net is four-coordinated, our construction
algorithm does not take into account the dual net at all (see electronic supplementary material, §2).
As a consequence, the dual network is generally not four-coordinated, leading to imbalances
and inhomogeneities in the resulting amorphous diamond minimal surface. In particular, this
fact highlights that the self-duality of the skeletal graphs of the primitive, diamond and gyroid
surfaces is a rare and special property among nets.

It remains an open question whether there is a self-dual amorphous minimal surface. Similarly,
it is unclear if there is a relationship between self-duality (or lack thereof) and homogeneity,
especially concerning variations in domain size rather than curvature homogeneity.

Further exploration of the amorphous version of the Laves graph (or srs net, which is the
skeletal graph of the gyroid), proposed by Sellers et al. [38], would be highly relevant. In the
cubic TPMS, differences in homogeneity related to domain sizes—and the resulting packing
frustration—are key distinguishing features of the diamond and the gyroid surfaces [20,39,40].
Therefore, considering a gyroid-like rather a diamond-like amorphous net would be highly
relevant.

In combination, the above discussion hints at the big overarching question of whether and
how surface curvature homogeneity relates to the properties of the two skeletal graphs that the
surface defines, such as links, angles, loops and other topological or combinatorial properties.
Relationships of the skeletal graphs with the surface’s Euler characteristic (related to the number,
or density, of flat points) and symmetry (relating to the size of the asymmetric unit, see §3d)
appear likely. Still, the correlation with more complex measures is harder to explore but of
great interest; this particularly includes constructions generating the interfaces from ‘mesatomic’
volumetric units [41].

(c) Origin of the superior homogeneity of the cubic P, D and G surfaces
None of the amorphous minimal surfaces considered here come close in Gaussian curvature
homogeneity to that of the cubic P, D and G surfaces. Among surfaces with a high degree of
isotropy, these three cubic surfaces stand out; only their continuous symmetry deformations
(including tD, tP, tG, rG and rPD) approach the same Gaussian curvature homogeneity; however,
at the expense of a significantly lower isotropy.
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Figure 5. The three-periodic cubic diamond structure and the Lonsdaleite (‘hexagonal diamond’) structure and their dual
nets. The diamond net dia (a) and the Lonsdaleite net lon (b), also known as hexagonal diamond, are generated from the
same tetrahedral building block. Associated minimal surfaces are generated from triangular catenoidal frames, aligned with
or without a 60◦ rotation (c,d). The translational unit cells of the diamond net (e) and Lonsdaleite structure (f) demonstrate the
cubic and hexagonal symmetry, respectively, and also show the dual nets. The dia net is self-dual, leading to the well-known
‘balanced’ diamond structure where the diamond minimal surface separates two identical nets. The dual net of Lonsdaleite is
the graphite net (gra, with three- and five-coordinated vertices); therefore the hexagonal diamond surface is not balanced and
rather separates space into two domains of different shapes and volumes. For additional details on these nets, see [36].

How the P, D and G surfaces achieve their high degree of curvature homogeneity is elucidated
by the curvature distributions: first, for any minimal surface, the curvature distribution extends
from 0 (the flat points) to a maximum curvature value −Kmax. The P, D and G surfaces achieve a
lower value of Kmax > 0 than all other surfaces studied here. Second, compared to other surfaces,
the P, D and G surfaces keep the area fraction that corresponds to highly curved regions and to
nearly flat regions, respectively, small; a bigger fraction of the surface has curvatures near the
average Gaussian curvature of −1 (cf. electronic supplementary material, table 3).

(d) Cubic P, D and G surfaces confine curvature variations to the smallest possible
asymmetric unit patch

The following two sections explore geometric aspects influencing a surface’s curvature
distribution, offering insights into why the cubic P, D and G surfaces hold a special status as
the TPMS with the most uniform Gaussian curvature distribution.

If an embedded surface with constant Gaussian curvature K = −1 existed, its Gaussian
curvature variance would, trivially, vanish. For any portion S of such a K = −1 surface, the surface
area and Euler characteristic would be proportional,

A = −2πχ , (3.1)
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by virtue of the Gauss–Bonnet theorem: 2πχ = ∫
S K dA and as

∫
S K dA = ∫

S(−1) dA =
− ∫

S dA = −A.
For a TPMS, this equation does not apply for arbitrary patches, as K = −1 cannot hold

everywhere. However, for any portion of a TPMS that is composed of an integer multiple of the
asymmetric unit patch,2 equation (3.1) holds as 2πχ = ∫

S K dA = A〈K〉 when the length scale is set
so that 〈K〉 = −1.

This means that TPMS confine Gaussian curvature fluctuations to a small patch—the
asymmetric unit patch. There are no larger-scale curvature fluctuations (as the application of
symmetries and translations do not change curvatures).

Importantly, the asymmetric unit patch of the cubic P and D surfaces—corresponding to the
single-tile in the *246 tiling [42–44]—is the smallest possible unit patch from which a TPMS can be
built, with 96 asymmetric unit patches each with χ (Sasy) = −4/96 = −1/24 required to construct
the genus 3 translational unit cell. For the G surface, the asymmetric unit patch corresponds to
the tile of the 246 tiling which is the union of two adjacent tiles of the *246 tiling. However, the
intrinsic properties (Gaussian curvature) are the same for each half of the 246 tile.

This does not guarantee that the variance of Gaussian curvature is smallest for the P, D and G
amongst all TPMS, as the argument says nothing about variations within the patch. However, it
ensures that the variations are confined, by symmetry, to the smallest possible patch amongst all
TPMS.

(e) Minimization of curvature variances by uniform placement of flatpoints akin to the
quantizer problem

A TPMS is determined by the position and order of its flat points. This motivates a perspective
where the flat points are viewed as the generators (and minima) of a monotonously increasing
curvature function. Using a watershed concept, the surface can then be partitioned into Voronoi-
like regions with respect to the curvature function. This perspective enables a comparison to the
quantizer problem [45], and insights into the arrangement of flat points with the lowest curvature
variance.

We adopt the perspective that the negative Gaussian curvature −K is a scalar field on the
surface where the flat points with K = 0 are local minima. In practice, it seems that there are no
minima other than the Nf flat points at ri (i = 1, . . . , Nf ).

Using the concept of a watershed transform, the minimal surface (or its preimage in the
complex or hyperbolic plane, or its multi-fold Gauss map) can be partitioned into patches Ci,
which we refer to as ‘regions’, each surrounding a flat point. That is, the (Riemannian) gradient
descent path of −K from each point in Ci ends at the flat point ri. This alludes to a possible
construction of these regions via a gradient descent method restricted to the minimal surface,
which is initialized with each vertex of its triangulation. With this approach, the surface is
tessellated into exactly Nf regions, akin to a Voronoi partition in Euclidean space.

Up to a constant, the Gaussian curvature variance is a surface integral over the squared
Gaussian curvature (with the usual 〈K〉 = −1 normalization):

σ 2 = 〈K2〉 − (〈K〉)2 = 〈K2〉 − 1 = (1/A)
∫

S
K2 dA − 1.

This integral can be broken up into a sum over contributions from each region,
∫

S K2 dA =∑
i
∫

Ci
[K(r)]2 dA.

If—as is not the case—(−K(r)) was proportional to the distance to the nearest flat point
(K(r) ∝ d(r) where d is the distance field to the flat points) then the problem would correspond
to a quantizer problem. The quantizer problem is defined for a set of points ri in a space subject to
an energy E[{ri}] = ∑

i
∫

Vi
[d(r)]2 dA where Vi is the Voronoi cell of point ri and d is the Euclidean

2An asymmetric unit patch is the smallest patch of a TPMS from which the infinite surface can be generated by application of
symmetries and translations.
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distance map. The quantizer energy is minimized when the points are arranged such that their
Voronoi cells have the same volume, are centred on their generating point and are as close to
circular as the requirement to tessellate space allows. These uniform partitions are favoured
because of the square in the integrand (or, more generally, the convexity of the integrand in d).

Our analysis in electronic supplementary material, fig. 11 shows that K is neither simply
proportional to d, nor is it even a function of d alone. For the tG, tD, tP, rPD surface families,
we find that, along paths emanating from the flat points in various radial directions, the Gaussian
curvature is for small values of the in-surface distance d, a parabola: K = −a · d2 + h.o.t. (the linear
term vanishes), but the value a is not universal for all surfaces (electronic supplementary material,
fig. 12). Also, for larger d, the curves differ from a parabola and vary for different directions
(electronic supplementary material, fig. 11). Not unexpectedly, for the cubic P, D and G surfaces,
the functions K(d) show the greatest degree of homogeneity for different directions.

While there is no strict equivalence, the perspective of the quantizer problem remains useful
and relevant. Controlling the variance of Gaussian curvature corresponds to controlling how far
the Gaussian curvature can grow within a Voronoi-like region from its minimum at the flat point.
Keeping variances low corresponds to avoiding large values of K. It appears that, just like in
the quantizer problem, this is achieved by having many and therefore small regions (that means,
having first-order flat points, rather than higher-order flat points), having regions centred on their
generating flat point, uniformly sized regions and regions that are close to geodesic circles (which
probably relates to the packing efficiency of the corresponding disc packing in H

2 [46]).
The quantizer problem hence provides an interesting perspective on the question of optimal

curvature homogeneity and motivates a future investigation of the relationships between
hyperbolic tilings, disc packings and curvature variances.

4. Material and methods

(a) Topology-stabilized minimization scheme for minimal surface generation using the
‘Surface Evolver’

Our curvature analysis is based on mesh models of minimal surfaces obtained using the ‘Surface
Evolver’ programme [30], through an adaption of a Willmore flow process. Mesh surfaces
are generated for which the Willmore functional (the integral of the squared mean curvature
over the surface) equals zero within a small numerical tolerance,

∫
[H(p)]2 dA = 0, representing

minimal surfaces with vanishing mean curvature H(p) = 0 for all points. These are obtained by
iteratively adapting an initial coarse non-minimal polyhedral surface M, through an iterative
scheme involving mesh refinement and minimization of the functional

En(M) =
∫
M

[H(p)]2 dA + α(n) ·
∫
M

[K(p)]2 dA, (4.1)

where H and K are the mean and Gaussian curvature at a surface point p, the first term represents
the Willmore energy W[M] = ∫

M[H(p)]2 dA and α(n) is a parameter that, from an initial positive
value, decreases and is equal (or very close) to zero during the final stages of the minimization,
see figure 2. For the first few iterations, a volume constraint, implemented through Lagrange
multipliers, is enforced within the first iteration so that both domains (on either side of the surface)
occupy exactly 50% of the volume.

The second term in electronic supplementary material, equation (4.1) stabilizes the initial
stages of the iteration against pinch-off effects that change the topology of the surface by
collapsing surface annuli to line-like objects without any area (see figure 6). For the evolution of
high-genus structures without symmetry and pronounced variations in channel diameters, such
pinch-off effects are common when minimizing the Willmore functional alone. In particular, these
effects occur during our experiments (see electronic supplementary material, §4 for more details).
By adding the Gaussian curvature term to En[M], we manage to stabilize the tendencies of narrow
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Figure 6. The pinch-off effect in the catenoid. From the soap film model’s application to two parallel circular frames, the
catenoid minimal surface can be constructed (a). It comes with a one-dimensional deformation family that is parametrized by
the circle’s radius,whenfixing the catenoid’s height to 2. There exists a critical radiusRc ≈ 1.50888,where the catenoid collapses
and ‘pinches off’ [47] (b). For radii R0 < Rc , the only minimal surface inscribed in the two circles is the Goldschmidt solution
consisting of two parallel discs. This behaviour can also be observed in the initial configurations produced by the algorithms
from electronic supplementary material, §§3 and 7 that we use in our experiments (c).

catenoidal necks to collapse in the early stages of the optimization routine. An explanation for
this phenomenon is that the Gaussian curvature term favours large flat regions and thus causes
narrow catenoids to bulge outwards. This ultimately enables the algorithmic generation of the
high-genus sections of the amorphous minimal surface models studied here.

(b) Generation of amorphous diamond minimal surfaces
Minimal surface mesh approximations (with E ≤ 10−3) were generated from tubular versions of
the CRNs generated by Barkema & Mousseau [31]. Five separate realizations were investigated,
within simulation boxes with periodic boundary conditions.

The resulting network structures are composed exclusively of tetravalent (four-coordinated)
vertices. These network structures were inflated to a water-tight mesh representing a tubular
version. The minimal surfaces obtained from these networks are referred to as ‘amorphous
diamond minimal surfaces’.

The size of a network or surface sample is conveniently characterized by its Euler characteristic
χ which, like the surface area or toroidal volume, is additive and easy to calculate, and has the
benefit of being dimensionless. For a four-valent network with N nodes, χ = −2N (see electronic
supplementary material, §7). With χ = −16, the Euler characteristic of the diamond surface’s
Fd3m unit cell (four nodes), χ/16 conveniently measures the size in equivalent multiples of this
diamond building block. (N is also the number of ‘pants’ in Thurston’s pants decomposition
[48].) Details of the amorphous diamond samples are listed in electronic supplementary
material, table 2 and their sizes are χ = 33 × (−16) = −432, χ = 53 × (−16) = −2000 and
χ = 83 × (−16) = −8192.

(c) Minimal surfaces from parallel layers with catenoidal connections
Further minimal surface approximations (with E ≤ 10−3) are obtained from an initial non-minimal
mesh inspired by Chen [49], in which catenoidal necks are placed to connect adjacent layers in a
stack of parallel planes under a repulsive lateral potential (see electronic supplementary material,
§7 for details). A polyhedral mesh is constructed by an adaption of the set Voronoi diagram
algorithm [50] implemented in pomelo [51]. The surface optimization scheme of §4a evolves
these polyhedral meshes to minimal surfaces. Minimal surfaces with Euler characteristic up to
χ = −180 are examined with this model. Surfaces without or with low symmetry are favoured by
choosing numbers of necks that are incompatible with regular arrangements.

(d) Curvature calculations and isotropy characterization for surface meshes
For the amorphous diamond surfaces and for the hexagonal diamond, C(Y), I-WP and S
surfaces, Gauss and mean curvatures were calculated on triangulated mesh representations.
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Details are listed in electronic supplementary material, table 2, with the finest meshes consisting
of up to 12 300 triangles per χ . Pointwise and integral curvatures were determined using
standard curvature routines implemented in Surface Evolver. For the tD, tG, tP, rPD, rG and H
surfaces, Weierstrass parametrizations were used for the curvature calculations (see electronic
supplementary material, §12).

A first-order measure of the orientational distribution of a surface M is given by the
Minkowski tensor W0,2

1 = 1
3

∫
M n ⊗ n dA where n is the surface normal vector and the integration

extends over the surface M, as per [33]. The ratio β
0,2
1 ∈ [0, 1] ⊂ R of the smallest to the

largest eigenvalue provides an indication of the degree of anisotropy. Surfaces with cubic
symmetry and isotropic surfaces have β = 1; values β < 1 indicate an anisotropy in the
orientational distribution of surface normal directions. Minkowski tensors were calculated with
the programme karambola [32].

5. Concluding remarks
Research into bicontinuous minimal surfaces has seen a diverse range of approaches,
including architectural soap film models, physical free energy modelling, structure enumeration,
experimental and numerical mathematics and rigorous mathematical proofs (e.g. of
embeddedness or uniqueness). The results of this article open up the rich ensemble of amorphous
surfaces, with likely relevance to all of these research directions.

The specific question of which minimal surfaces minimize the curvature fluctuation σ 2/〈K〉2

may lend itself to a more rigorous mathematical analysis, perhaps informed by our results. For
now, the hypothesis is that the cubic gyroid, diamond and primitive minimal surfaces represent
the best solution stands. These surfaces may well be nature’s best, albeit imperfect, attempt at
embedding the hyperbolic plane in Euclidean space.
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