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Abstract
Wepropose aminimal, fully thermalmechanism that resolves the long-standing
tension between achieving the observed dark-matter relic abundance and
explaining the astrophysical signatures of self-interactions. The framework
introduces two mediators: a light scalar ϕ (MeV scale) that yields the required,
velocity-dependent self-interactions, and a heavy scalar resonance Φh (TeV
scale) with mass mΦh ≈2mχ that opens an s-channel resonant annihilation
during freeze-out. This clearly decouples early-Universe annihilation from
late-time halo dynamics. A detailed numerical analysis identified a narrow pre-
dictive island of viability. A representative benchmark with mχ=600GeV,
mϕ=15MeV, and mΦh ≃1.2 TeV reproduces the relic density and yields
σT/mχ ∼ 0.1–1 cm2g−1 at dwarf-galaxy velocities while satisfying cluster
bounds. The model makes sharp, testable predictions: a narrow t̄t resonance
near 1.2 TeV within HL-LHC reach, and a spin-independent direct-detection
signal σSI∼7× 10−48 cm2 within next-generation sensitivity. As an optional
UV completion, we show that walking SU(3)H gauge theory with Nf = 10
naturally realizes the near-threshold relation mΦh ≈2mχ and can furnish an
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effective anomalous dimension γ≈0.5 which underlies a density-responsive
dark-energy sector, suggesting a unified origin for the dark sector.

Keywords: self-interacting dark matter, resonant annihilation,
Sommerfeld enhancement, thermal freeze-out, halo dynamics,
two-mediator dark sector

1. Introduction

The standard cosmological model relies on two mysteries: dark energy (DE) and dark mat-
ter (DM), which together constitute approximately 95% of the cosmic energy budget [1].
While DM, essential for structure formation, faces persistent challenges on sub–galactic
scales, known as the ‘small–scale crisis’ [2, 3], self-interacting DM (SIDM) models are well-
motivated for their ability to address these issues [4, 5].

However, a fundamental tension arises in such minimal models: the parameter space
required to achieve the observed relic abundance (Ωh2 = 0.120± 0.001 [1]) is generically
disjointed from the region providing sufficient self-interaction (σT/m∼ 1 cm2 g−1 at dwarf
galaxy velocities) [6, 7]. We argue that this apparent tension indicates a richer dark sector
structure.

In this study, we demonstrate that this tension can be resolved using minimal, two-mediator
effective field theory (EFT). Alongside the light mediator ϕ, which governs late-time self-
interactions, we introduce a heavy scalar resonance Φh with mass mΦh ≈ 2mχ. This reson-
ance provides a crucial enhancement of the annihilation cross-section during thermal freeze-
out, cleanly decoupling the early-Universe annihilation rate from the late-time self-interaction
strength and allowing both constraints to be satisfied simultaneously. The theoretical valid-
ity of combining resonant annihilation with long-range Sommerfeld forces has recently been
established [8], providing a solid foundation for our approach.

Our study transformed this inconsistency into a highly predictive and testable framework.
Through detailed numerical scans, we identified a narrow, viable parameter space with a rep-
resentative benchmark featuring mχ = 600GeV, mϕ = 15MeV, and mΦh = 1201GeV. This
leads to sharp experimental signatures, including a narrow resonance at 1.2 TeV accessible at
the LHC and a specific direct detection rate. Furthermore, we argue that the key features of
this EFT find a compelling microphysical origin in an underlying composite SU(3)H gauge
theory, as detailed in section 6. In this picture, the crucial resonance condition mΦh ≈ 2mχ

emerges as a dynamical prediction. Remarkably, the same gauge theory can also generate the
anomalous dimension γ≈ 0.5 required for the density-responsive DE model proposed in [9].
However, our main phenomenological results concerning the resolution of SIDM tension are
self-contained and do not depend on this optional unified picture.

The remainder of this study is organized as follows. Section 2 introduces the complete
Lagrangian EFT method. Section 3 quantitatively demonstrates the tension in one–mediator
models. Section 4 presents our solution and benchmark points. Section 5 details the model’s
testable signatures, including new analyses of the light mediator’s cosmology and direct detec-
tion rate. Finally, section 6 outlines the optional microphysical origin of the framework.

2. Effective Lagrangian for the two-mediator dark sector model

In this section, we derive the complete EFT Lagrangian that underpins our two-mediator DM
model. We begin by defining the full Lagrangian including the field content and symmet-
ries that govern the dark sector (section 2.1). We then demonstrate how the physical particle
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content, light mediator ϕ, heavy resonance Φh, and DM fermion χ, emerge from the spon-
taneous symmetry breaking (SSB) of a single complex scalar field (section 2.2). Finally, we
briefly outline the mechanism that generates the optional density–responsive DE component
(section 2.3). This section provides a rigorous and self-contained theoretical basis from which
all phenomenological results in this study are derived, following the standard EFT construction
principles [10, 11].

2.1. Complete EFT Lagrangian

Our framework is described by an EFT that is valid up to a cutoff scale Λ≫ TeV. The theory
comprises the standard model (SM), general relativity (GR), and a dark sector containing a
Dirac fermion χ and a complex scalar field Σ. The total Lagrangian is

L= LSM +LGR +LDarkSector +LPortal, (1)

with the Einstein–Hilbert term LGR =
M2

Pl
2 R. The dark sector is governed by

LDarkSector = χ̄ i��∂χ −[yfΣ χ̄LχR+ h.c.] + |∂µΣ|2 −V(Σ)−U(Σ,X) , (2)

where X denotes a Lorentz scalar constructed from the ambient matter stress tensor (we take
X≡ uαuβT

αβ
matter; see section 2.3 and appendix A for details).

Symmetry and stability. The stability of the DM candidate χ is ensured by an exact global
U(1)χ symmetry, under which χ→ eiαχ. For simplicity, we set the bare Dirac mass to zero at
the cutoff (the physical mass is generated by ⟨Σ⟩); allowing a small m0

χ would not change our
conclusions and can be absorbed into the Yukawa sector. The scalar potential is split into two
components: (i) a self-interaction potential V(Σ) that dictates the particle physics of the dark
sector and triggers SSB, and (ii) a density–responsive functional U(Σ,X) that optionally gen-
erates a dark–energy–like component. The latter is conceptually analogous to the mechanisms
employed in chameleon or symmetron models [12, 13]. The portal Lagrangian parameterizes
the interactions between the dark and visible sectors; in our benchmark, it is dominated by a
Higgs–portal term [14, 15]

LPortal ⊃ −κ |Σ|2 |H|2 (+ higher− dimensional terms suppressed by Λ) . (3)

A fully explicit construction, including the minimal Mexican–hat form of V(Σ), definition
and variational origin of U(Σ,X), and normalization conventions, is provided in appendix A.
The physical couplings that enter our phenomenology (the DMcouplings to the light and heavy
scalars, yχ and gDMY1 , respectively) arise from the fundamental Yukawa coupling yf after SSB
and mixing, as detailed in sections 2.2 and A.3.

2.2. Particle content and couplings from SSB

The particle content of the dark sector is determined by the dynamics of the complex scalar
fieldΣ. TheMexican–hat potential V(Σ) (see appendix A.3, equation (A.26)) triggers the SSB
of a global U(1) symmetry at the scale vs, a mechanism first described by Goldstone [16, 17].
This gives rise to two physical scalar states: a heavy, CP–even radial mode and a light, CP–odd
pseudo Nambu–Goldstone boson (PNGB), in direct analogy to the linear σ-model of hadron
physics [18].
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To describe these states, we parameterize the field Σ around its vacuum expectation value
(VEV) in terms of its radial and phase components, s(x) and a(x):

Σ(x) =
1√
2
(vs+ s(x)) eia(x)/vs . (4)

At the tree level, the radial mode acquires a mass m2
s = 2λv2s , whereas the phase mode a(x)

is a massless Goldstone boson. A small, explicit breaking term VSB in the potential gives the
PNGB a mass ma ≪ vs, which is technically natural in the sense of’t Hooft, as its smallness is
protected by the approximate symmetry [19].

For the phenomenology of SIDM, an attractive potential is generated by the exchange of
a CP–even scalar. We achieve this through a small, CP–violating mixing between the funda-
mental s and a states, which is also induced by VSB. The resulting mass eigenstates, identified
with the light mediator ϕ and heavy resonance Φh, are given by the rotation(

ϕ
Φh

)
=

(
cosθ sinθ
−sinθ cosθ

)(
a
s

)
, |θ| ≪ 1, (5)

with the explicit expression for θ given in appendix A.3. Thus, the light state ϕ inherits a
CP–even (scalar) admixture sufficient to mediate an attractive Yukawa force.

This structure fixes the interaction pattern of the DM fermion χ. The fundamental Yukawa
term

L ⊃−yfΣ χ̄LχR+ h.c. (6)

generates the DM mass mχ = yfvs/
√
2 and its couplings to the mass eigenstates. Using

equation (4), the tree–level mass is

mχ =
yf vs√
2
, (7)

and the scalar interactions in the physical basis read

Lint ⊃−yχ χ̄χϕ − gDMY1 χ̄χΦh, (8)

with

yχ ≃
yf√
2
sinθ, gDMY1 ≃

yf√
2
cosθ. (9)

This setup cleanly separates the roles of the two mediators:

• Light mediator ϕ: has a small, technically natural mass and a suppressed coupling yχ ∝
sinθ, making it ideal for generating long–range self-interactions in galactic halos.

• Heavy resonance Φh: has a mass of order the VEV, mΦh ≃ ms, and an unsuppressed coup-
ling gDMY1 ≃ yf/

√
2, making it the dominant channel for thermal annihilation in the early

Universe.

Finally, the resonant annihilation conditionmΦh ≈ 2mχ translates into a simple relation among
the fundamental couplings:

√
2λvs ≃ 2 ·

yfvs√
2

=⇒ λ ≃ y2f , (10)

up to small corrections from the explicit breaking and mixing appendix (A.3). Couplings to
the SM arise via the portal interactions introduced in section 2.1 are be specified where needed
(e.g. in sections 5 and appendix C).
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2.3. The density-responsive DE sector

Webriefly summarize themechanism that generates the density–responsive DE in our EFT and
refer to appendix A.2 for the full derivation. The key ingredient is the functionalU(Σ,X), with
X≡ uαuβTmatter

αβ the local rest–frame matter density (thus X= ρm in FRW). We model U by
integrating out a non-propagating auxiliary scalarΦ, a technique used to generate environment-
dependent potentials in cosmology [13, 20]:

U(Σ,X) = min
Φ

[Vaux (Φ) + C(|Σ|) ΦX ] , C(|Σ|)≃M−4
∗ = constant, (11)

so that the algebraic equation of motion is

∂Vaux

∂Φ

∣∣∣
Φ=Φ∗(X)

= − X
M4

∗
, (12)

fixes the local equilibrium value Φ∗(X). Substituting back yields an effective vacuum energy

ρΦ (X) = Vaux(Φ∗ (X)) +
Φ∗ (X) X
M4

∗
≡ L(Φ)

eff

∣∣
on shell

, (13)

which is formally a Legendre transform of Vaux [21]. For a broad class of convex choices of
Vaux, the low-density limit relevant to late-time cosmology is reduced to the simple closed
form used in phenomenology:

ρΦ (X) =
AM4

U

1+X/M4
U

, (14)

with A=O(1). Two immediate properties follow: (i) ρΦ is monotonic in X with ∂ρΦ/∂X< 0
(screening at high X), and (ii) ρΦ→AM4

U as X→0, acting as a cosmological constant in the
late Universe.

Effective equation of state and limits. On an FRW background where X= ρm(a)∝ a−3,

equation (14) implies ρΦ(a) = AM4
U

[
1+ ρm(a)/M4

U

]−1
. Hence the background equation of

state deviates from −1 only by wΦ(a)+ 1=O
(
ρm/M4

U

)
, so wΦ ≃−1 once X≪M4

U
1. The

construction is EFT–controlled provided X≲ AM4
U and Vaux remains convex along the branch

selected by 12.

Running scale and link to microphysics. The characteristic scale MU runs with the renor-
malization scale µ with an anomalous dimension γ set by the hidden SU(3)H dynamics
(section 6). An effective γ ≃ 0.5 naturally connects MPl to the present dark–energy scale,
MU(H0)∼MPl (H0/MPl)

γ ∼meV,without fine–tuning, as detailed in [9]. Importantly, theDM
phenomenology discussed in sections 3 and 4 is self-contained and does not rely on this sector.

3. Phenomenological constraints and the tension in minimal models

Having established the complete effective Lagrangian in section 2, we now analyze the phe-
nomenological constraints on this model. We begin by quantitatively demonstrating why a

1 The auxiliary field is non-dynamical in our EFT (no kinetic term at the scales of interest), so no light propagating
mode is introduced and no fifth-force constraints arise from Φ. Stability follows from the convexity of Vaux, i.e.
∂2Vaux/∂Φ2 > 0.
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simplified version of our framework, containing only the light mediator ϕ (i.e. a minimal
SIDM model), cannot simultaneously satisfy the stringent requirements from the observed
relic abundance and galactic dynamics. This well-known tension is the primary motivation for
the two-mediator structure, particularly the resonant mechanism introduced in section 2.2.

3.1. Relic density requirement

The observed abundance of DM provides a precise target for any thermal production mechan-
ism. In the standard freeze-out scenario, the relic density today is given by [22]

Ωχ h
2 ≃ 1.07× 109GeV−1

MPl

xF√
g∗ (xF)

1
⟨σv⟩F

, (15)

whereMPl = 1.22× 1019 GeV is the Planckmass, xF = mχ/TF ≃ 20–25 is the freeze-out para-
meter, and g∗(xF)≃ 100 counts the relativistic degrees of freedom.

The Planck satellite measured the DM relic abundance to percent-level precision [1]

ΩDMh
2 = 0.1200± 0.0012. (16)

This measurement implies a canonical value for the thermally averaged annihilation cross-
section

⟨σv⟩F = (2.2± 0.1)× 10−26 cm3s−1. (17)

In minimal SIDM models, DM is annihilated through χχ̄→ ϕϕ, where ϕ is the same light
mediator responsible for self-interactions. For s-wave annihilation, the tree-level cross-section
is [23]

σv=
y4χ

32πm2
χ

√
1−

m2
ϕ

m2
χ

(
1−

m2
ϕ

2m2
χ

)2

. (18)

For light mediators (mϕ ≪ mχ), the cross-section can be enhanced by the Sommerfeld
effect to reach the canonical value. The enhancement factor S depends on the parameter
ϵv = αχ/v, where αχ = y2χ/(4π) and v is the relative velocity [24]. For the attractive Yukawa
potential relevant here, the s-wave enhancement is approximately given by

S(ϵv) =
2πϵv

1− e−2πϵv
. (19)

At freeze-out, vF ≃ 0.3c, yielding modest enhancement factors SF ∼ 1–10 for typical para-
meters. Thus, condition (17) requires

yrelicχ ≃ 0.3
( mχ

100 GeV

)1/2(10
SF

)1/4

. (20)

This defines a one-dimensional constraint surface in the three-dimensional parameter space
{mχ,mϕ,yχ}.

3.2. Self-interaction requirement

Astrophysical observations of DM halos reveal systematic deviations from the predictions of
collisionless cold DM (CDM). Although CDM predicts universal density profiles ρ∝ r−1 in
halo centers [25], observations of dwarf spheroidal and low-surface-brightness galaxies con-
sistently show cored profiles with ρ≃ const [26, 27]. SIDM provides an elegant solution:
elastic scattering thermalizes the inner halo, creating an isothermal core [4].
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The self-interaction strength required to match the observations is empirically determined
to be on the order of [5]

σT
mχ

∼ 1 cm2 g−1 (21)

at the characteristic velocities of dwarf galaxies, with a velocity dependence that suppresses
the cross-section at the cluster scales. Specifically, the observations require:

• Dwarf galaxies (v∼ 10–50 km s−1): σT/mχ ∼ 0.1–10 cm2 g−1 to create cores of size rc ∼
0.3–1 kpc [28, 29].

• Galaxy clusters (v∼ 1000–1500 km s−1): σT/mχ ≲ 1 cm2 g−1 (and often much tighter)
from observations of merging systems, such as the Bullet Cluster [30, 31].

In our framework, as defined in section 2, self-interactions arise from the t-channel
exchange of light mediator ϕ. The momentum transfer cross-section must be computed non-
perturbatively by solving the Schrödinger equation for the generated Yukawa potential, as
detailed in appendix F. The scattering enters distinct regimes depending on the dimensionless
parameter [6]

β =
2αχmϕ

mχ v2
, (22)

where αχ = y2χ/(4π).
For β ≪ 1 (Born regime), the cross-section scales as

σBorn
T ≃

8πα2
χ

m2
χv4

ln

(
1+

m2
χv

2

m2
ϕ

)
. (23)

For β ≫ 1 (classical regime), multiple partial waves contribute, yielding

σclassical
T ≃


4π
m2

ϕ

ln(1+β) forβ ≲ 102

8π
m2

ϕ

(lnβ)2 forβ ≫ 102.
(24)

The transition between these regimes naturally provides the required velocity dependence.
For the parameter space of interest (mχ ∼ 100–1000 GeV, mϕ ∼ 10–100 MeV), achieving
σT/mχ ∼ 1 cm2 g−1 at dwarf velocities constrains the Yukawa coupling yχ. This defines a
second constraint surface in the parameter space that is distinct from the relic density require-
ment discussed in the previous subsection.

3.3. Quantifying the tension in minimal models

We now quantitatively demonstrate that minimal SIDM models cannot simultaneously satisfy
relic density and self-interaction constraints. Both observables depend on the same Yukawa
coupling yχ, leading to an overconstrained system.

3.3.1. Systematic parameter space analysis. For each point in the mass plane (mχ,mϕ),
we determined two critical coupling values:

(i) yrelicχ : the coupling required to achieveΩh2 = 0.120 via thermal freeze-out, computed using
micrOMEGAs [32] with full Sommerfeld enhancement.
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(ii) ySIDMχ : the coupling needed for σT/mχ = 1 cm2 g−1 at v= 30 km s−1, calculated using
micrOMEGAs’ integrated Yukawa scattering routines including non-perturbative effects.

Consistency requires yrelicχ ≃ ySIDMχ . However, our analysis revealed a fundamental
incompatibility.

3.3.2. Quantitative demonstration. Considering a benchmark point inspired by [6]: mχ =
100GeV, mϕ = 20MeV. Our calculations yield:

• Self-interaction requirement: Achieving σT/mχ = 1 cm2 g−1 at v= 30 km s−1 requires
ySIDMχ = 0.35± 0.05, placing the system in the classical scattering regime with β ≃ 15.

• Resulting relic density: With yχ = 0.35, the annihilation cross-section including
Sommerfeld enhancement gives

⟨σv⟩F = 8.8× 10−27 cm3s−1, (25)

yielding Ωh2 = 0.30 (a factor of 2.5 overabundance).
• Required coupling for relic density: Achieving the correct relic density would require yrelicχ ≳
0.55, which would in turn increase the self-interaction to σT/mχ ≳ 6 cm2 g−1, violating
cluster constraints.

3.3.3. General scaling arguments. The tension arises from incompatible parameter depend-
encies. In the regime of interest,

σT ∼
α2
χ

m2
ϕ

ln2
(
αχmχ

mϕ v2

)
,

⟨σv⟩F ∼
α2
χ

m2
χ

× SF (αχ/vF) ,

(26)

where SF ∼O(1–10) is the Sommerfeld enhancement factor at the freeze-out velocity. The
key insight is that σT has a much stronger dependence on the mediator mass mϕ than the
annihilation cross-section. This incompatibility is generic and holds across a wide range of
masses, as confirmed by the scans.

This robust failure of the minimal models provides the primary motivation for the two-
mediator framework defined in section 2. By introducing a heavy resonance Φh with mΦh ≃
2mχ, we can boost the annihilation rate by orders of magnitude via the Breit-Wigner mechan-
ism (see sections 4 and appendix E), thereby resolving the tension without affecting late-time
self-interactions mediated by ϕ.

4. Results: a consistent solution via resonant freeze-out

The tension identified in the minimal model highlights the need for a mechanism that
can enhance the DM annihilation rate without significantly affecting the low-velocity self-
interaction cross-section. As defined in our EFT in section 2, extending the scalar sector to
include a heavy resonance Φh with a mass near the kinematic threshold, mΦh ≈ 2mχ, provides
exactly such a solution. The key insight is that this resonance dramatically enhances the anni-
hilation cross-section during thermal freeze-out, while leaving the t-channel mediated self-
interactions essentially unchanged.
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In this section, we demonstrate that this two-mediator framework leads to a fully consistent
solution. First, we outline our systematic numerical strategy (section 4.1). Then, we present
the viable parameter space where both relic density and self-interaction constraints are sim-
ultaneously satisfied (section 4.2), revealing a narrow but robust region of solutions. From
this analysis, we extracted a predictive benchmark point (section 4.3). Finally, we address the
apparent fine-tuning in the resonance condition and demonstrate that it represents a technically
natural and testable feature (section 4.4).

4.1. Numerical methodology

We implemented the extended SIDM model in micrOMEGAs 6.2.3 [32], by extending the
publicly available DMsimp_s_spin0_MO model from the DMsimp framework [33] to include
the heavy scalar resonanceΦh. This allows for consistent numerical treatment of both resonant
annihilation and non-perturbative self-scattering. Further details of model implementation are
provided in appendix D.

Our scan of the parameter space employs a two-stage approach for a fixed DM mass mχ:

(i) Self-interaction constraint: we first identify the parameters (mϕ,yχ) that yield a self-
interaction cross-section in the astrophysically favored range (σT/mχ ∼ 0.1–10 cm2 g−1 at
dwarf velocities). The transfer cross-section was computed non-perturbatively, as detailed
in appendix F.

(ii) Resonance tuning: along this SIDM solution band, we then adjusted the heavy sector
parameters, primarily the detuning δ = (mΦh − 2mχ)/(2mχ) and the coupling gDMY1 , to
reproduce the observed relic abundance, Ωh2 = 0.120± 0.001. This calculation includes
the full Breit-Wigner resonance and Sommerfeld effects, w ith the formalism outlined in
appendix E.

All calculations were performed with a relative accuracy of 10−4.

4.2. Viable parameter space

Following the scan strategy outlined in the previous section, we successfully identified a region
in the parameter space where all the constraints were simultaneously met. The results of the
comprehensive scan are shown in figure 1. This plot, presented in the (mϕ,yχ) plane, shows
the two primary constraints for a fixed DM mass of mχ = 600GeV, after the heavy sector has
been tuned to yield the correct relic abundance.

The blue band represents the region consistent with the observed relic density, Ωh2 =
0.120± 0.001 [1]. Although this constraint is primarily sensitive to the resonance paramet-
ers, its precise location depends weakly on the light sector parameters shown, as detailed in
appendix E.

The red contours represent lines of constant self-interaction cross-section, σT/mχ, at a velo-
city of v= 30 km s−1, calculated using the non-perturbative methods described in appendix F.
The region between the contours for 0.1 and 10 cm2 g−1 is the target’self-interaction band’
required to address small-scale structure problems while remaining consistent with cluster
constraints [31, 34].

The crucial result of our analysis is the existence of a non-empty intersection between these
two independent constraints. This viable parameter space is shown as the green shaded region
in figure 1. The existence of this’island of viability’ is a non-trivial outcome and serves as the
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Figure 1. Viable parameter space for self-interacting dark matter with resonant annihila-
tion in the (mϕ,yχ) plane for a fixed dark matter mass ofmχ = 600GeV. The blue band
shows the region satisfying the relic density constraint. The red contours define the target
region for self-interactions (0.1< σT/mχ < 10 cm2 g−1 at v= 30 km s−1). The green
shaded region marks the intersection where both constraints are simultaneously satis-
fied. Yellow stars indicate all viable points found, with the large green star marking our
final benchmark point. The heavy sector parameters (mΦh = 1201GeV, gDMY1 = 0.190)
have been tuned to achieve the correct relic density.

central proof of concept for our resonant annihilation model. It demonstrates that the intro-
duction of the heavy resonance resolves the tension present in the minimal model. All the
parameter points within this region represent a fully consistent phenomenological solution to
the DM puzzle.

The viable region spans approximately mϕ ∈ [12,18]MeV and yχ ∈ [0.28,0.32]. The yel-
low stars indicate all parameter combinations that satisfy both constraints within our numerical
accuracy, whereas the large green star marks our chosen benchmark point, which provides
optimal agreement with astrophysical observations. Further details of the numerical imple-
mentation are provided in appendix D.

4.3. A predictive benchmark point

Although our scan revealed a narrow, continuous region of viable parameter space for DM
masses in the range mχ ∈ [200,1000]GeV, we selected a single representative benchmark
point for a detailed study. As shown in appendix I, the solutions exhibit strong correlations
between the parameters. We choose the point at mχ = 600GeV as our primary benchmark

10
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Figure 2. Scaling relations in the viable parameter space. Left: Light mediator mass
versus dark matter mass. Right: Yukawa coupling versus dark matter mass. Green bands
show the full viable region satisfying all constraints, circles indicate central values at
discrete masses from our scan, and the red star marks our benchmark point. The dashed
lines show the best-fit power laws mϕ ∝ m0.83

χ and yχ ∝ m0.51
χ .

because it provides an optimal fit to astrophysical constraints on self-interactions, and its asso-
ciated heavy resonance at ≈ 1.2 TeV is within the discovery reach of the High-Luminosity
Large Hadron Collider (HL-LHC).

The viable solutions followed clear scaling relations across the allowed mass range, as
shown in figure 2. The left panel shows that the light mediator mass scales as mϕ ∝ m0.83

χ ,
reflecting the requirement that the Yukawa potential range∼ 1/mϕ matches the relevant astro-
physical scales. The right panel shows the milder scaling yχ ∝ m0.51

χ , ensuring that the fine-
structure constant αχ = y2χ/(4π) provides the correct self-interaction strength across different
dark-matter masses. The narrow width of these bands, less than 20% variation in each para-
meter, demonstrates the high predictability of the model.

The choice of this benchmark point is motivated by its ability to align perfectly with astro-
physical requirements. A self-interaction cross-section of nearly 1 cm2 g−1 at the lowest dwarf
galaxy velocities (v∼ 10 km s−1, see section 5.2) is ideal for producing the observed cores.
Simultaneously, the strong velocity dependence ensures that the cross-section drops by more
than four orders of magnitude at cluster scales, safely evading the tight constraints from sys-
tems such as the Bullet Cluster.

This benchmark point represents a concrete and highly predictive realization of our
framework.

4.4. On the naturalness of the resonance condition

The viability of our benchmark point relies on the near-degeneracy condition mΦh ≈ 2mχ,
which at first glance might appear to require fine-tuning. However, we argue that this mass
relation is not an arbitrary coincidence but a technically natural feature that can be motivated
by an underlying strongly-coupled gauge theory.

First, the required proximity to the resonance is physically constrained by the resonance
width. As discussed in section 5.1, the viable window for the detuning parameter δ is of the
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order δ ∼ ΓΦh/(2mχ)∼ 10−3. This means that the required ‘tuning’ is set by the particle phys-
ics of the resonance itself. Furthermore, as demonstrated in appendix H this small value of δ
is radiatively stable and thus technically natural.

Second, this mass relation can emerge dynamically. In composite theories, the mass ratios
between different hadron-like states are determined by the dynamics of confinement and are
typicallyO(1) numbers [10, 35]. As detailed in section 6, if our dark sector arises from a con-
fining SU(3)H gauge theory, the specific ratio mΦh/mχ ≈ 2 can be naturally obtained. In this
picture, χ is identified with the lightest dark baryon and Φh with the lightest scalar meson.
Standard scaling relations, supported by lattice studies, then predict this near-degeneracy
[36–38].

This transforms what can be perceived as a fine-tuning problem into one of the most com-
pelling features of this framework. The resonance condition is not imposed by hand, but can
emerge from the first principles, making it:

• theoretically motivated by quantum chromodynamics (QCD)-like dynamics,
• radiatively stable, as shown in appendix H, and
• experimentally testable via the search for a narrow scalar at mΦh ≈ 1.2 TeV.

Therefore, the moderate Barbieri–Giudice index, ∆mΦh
∼103, should not be interpreted as a

measure of fine-tuning but rather as a quantification of the sharpness of this theoretical pre-
diction. Just as the ρ meson mass is close to twice the pion mass in QCD which is a dynam-
ical outcome [39], our resonance condition represents a robust prediction of the underlying
strong dynamics. Full details of the microphysical motivation are presented in sections 6 and
appendix G.

5. Phenomenological implications and experimental verification

Having identified a fully consistent benchmark point, we now explore its phenomenolo-
gical consequences in detail. The viability of the model depends on two pillars: the resonant
enhancement of the annihilation rate, which ensures the correct relic density, and velocity-
dependent self-interaction, which addresses the small-scale structure crisis. In this section,
we analyze both phenomena and then discuss the model’s cosmological consistency and
its prospects for experimental verification at colliders and in direct and indirect detection
experiments.

5.1. Resonant annihilation mechanism in detail

The key to reconciling the relic density with the small Yukawa couplings required for the SIDM
is the s-channel resonance mediated by the heavy scalarΦh. This effect is illustrated in figure 3.
The top panel shows the calculated relic density Ωh2 as a function of resonance parameter
δ = (mΦh/(2mχ)− 1), which measures the deviation from the exact on-shell condition.

The calculation, performed with micrOMEGAs [32], shows a sharp dip in the relic density
precisely at the resonance pole (δ→ 0). Far from resonance (e.g. |δ|> 5%), annihilation is
inefficient, leading to an overproduction of DM by several orders of magnitude. As the system
approaches resonance, the annihilation cross-section is dramatically enhanced, causing the
relic density to decrease. The observed value of Ωh2 ≈ 0.12 is achieved in a narrow window
around the pole. Our benchmark point, marked by a red circle at δ ≈ 8.3× 10−4, lies exactly
in this region.
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Figure 3. Resonant enhancement of dark matter annihilation. Top panel: Relic density
Ωh2 as a function of the resonance parameter δ = (mΦh/2mχ − 1). The solid blue line
shows the full micrOMEGAs calculation including thermal and Sommerfeld effects. The
gray band indicates the observed Planck 2018 value [1]. The red circle marks our bench-
mark point at δ ≈ 8.3× 10−4, yielding the correct relic abundance. Bottom panel: The
corresponding total enhancement factor Stotal, reaching a peak of over 500 near exact
resonance and providing a boost of 143× at our benchmark point.

The resonant enhancement is governed by the Breit-Wigner formula (see appendix E for
details)

⟨σv⟩ ∝
(
gDMY1

)2
Γ(Φh → SM)(

s−m2
Φh

)2
+m2

Φh
Γ2
Φh

, (27)

where s≈ 4m2
χ(1+ v2/4) is the squared center-of-mass energy. Near the threshold dur-

ing freeze-out, the denominator becomes minimal when mΦh ≈ 2mχ, providing the resonant
enhancement.

The bottom panel of figure 3 quantifies this effect, showing the total enhancement factor
Stotal as a function of δ. This factor includes both the resonant contribution and additional
Sommerfeld enhancement from the light mediator exchange. At our benchmark point, the
total annihilation rate is boosted by a factor of Stotal ≈ 143. This powerful enhancement allows
a model with otherwise weak interactions to satisfy the stringent relic density constraints.
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Figure 4. Velocity-dependent self-interaction cross-section for our benchmark SIDM
model. The solid green line shows σT/mχ for the best-fit parameters (mϕ = 15MeV,
yχ = 0.30), calculated using micrOMEGAs. Dashed and dotted lines illustrate the effect
of varyingmϕ and yχ. Colored circles mark the cross-sections at astrophysically relevant
velocities: dwarf galaxies (10 km s−1), MW satellites (30 km s−1), and galaxy clusters
(1000 km s−1). The gray shaded region indicates the target range for solving small-scale
structure problems. The gray dotted line shows the v−2 scaling expected in the classical
regime.

The characteristic scale for detuning is set by the larger of the intrinsic width and the thermal
during freeze-out. With our quark-only portal, ΓΦh ≃ 0.17GeV⇒ ΓΦh/(2mχ)≃ 1.4× 10−4,
while thermal averaging typically allows a somewhat broader window. Our benchmark at
δ ≃ 8.3× 10−4 lies within the thermally effective region, as confirmed by the full micrOMEGAs
computation. This relationship demonstrates that the apparent fine-tuning is set by the particle
physics of the resonance, which is central to the discussion on technical naturalness in
section 4.4.

5.2. Velocity-dependent self-interactions

The second crucial pillar of our model is its ability to naturally explain the observed velocity-
dependent self-interaction of the DM. This is mediated by the t-channel exchange of the
light scalar ϕ. The resulting phenomenology is shown in figure 4, which plots the transfer
cross-section per unit mass, σT/mχ, as a function of the relative velocity of the scattered DM
particles.

The solid green line represents the cross-section of our benchmark point parameters (mχ =
600GeV, mϕ = 15MeV, yχ = 0.30). The calculation, performed with micrOMEGAs’ non-
perturbative Yukawa scattering routines, shows that the cross-section has precisely the desired
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behavior. At the low velocities characteristic of dwarf spheroidal galaxies (v∼ 10–30 km s−1),
the cross-section is large, lying in the target range of 0.1–10 cm2 g−1 (gray shaded region)
required to form DM cores [5, 28, 29]. Specifically, for our benchmark, we find the following

• at v= 10 km s−1: σT/mχ = 0.96 cm2 g−1,
• at v= 30 km s−1: σT/mχ = 0.11 cm2 g−1.

As the velocity increases, the cross-section is naturally suppressed. At the high velocities found
in galaxy clusters (v∼ 1000 km s−1), the cross-section decreases by more than four orders of
magnitude:

• at v= 1000 km s−1: σT/mχ = 9.5× 10−5 cm2 g−1.

This value lies far below the upper limit from the Bullet Cluster (≲1 cm2 g−1) [30, 31], ensur-
ing the model is consistent with all major astrophysical constraints. The dashed and dotted
lines in the figure illustrate the sensitivity of the cross-section to the light mediator mass mϕ

and the Yukawa coupling yχ, highlighting the parameter space probed by our scan.
The velocity dependence arises from the quantummechanical nature of scattering in a long-

range Yukawa potential, which is solved via a partial wave analysis as detailed in appendix F.
The scaling transitions from an approximately classical regime with σT/mχ ∝ v−2 at dwarf
galaxy velocities (as indicated by the gray dotted line) to a steeper behavior at higher velocities,
demonstrating that the model naturally produces both the correct magnitude and the velocity
structure required by observations.

5.3. Cosmology of the light mediator ϕ

A crucial consistency check for any model with a new light particle is its cosmological history.
The light mediator ϕ (with mϕ = 15MeV in our benchmark) must not upset the successful
predictions of Big Bang nucleosynthesis (BBN) or contribute excessively to the relativistic
energy density of the early Universe (∆Neff).

In our framework, cosmological viability is ensured by a secluded setup in which ϕ has
no appreciable couplings to quarks and only a tiny leptophilic portal to the SM. This has two
consequences:

(i) Suppressed production: with no strong coupling to the thermal plasma, ϕ never thermalizes
with the SM bath. Its abundance is feebly produced via freeze-in (e.g. e+e− → ϕ), yielding
an energy density that is a negligible fraction of radiation at BBN.

(ii) Prompt decay: a minute coupling to electrons suffices for ϕ to decay into e+e− well before
the BBN. Using

Γ
(
ϕ → e+e−

)
=

c2emϕ

8π
, τϕ =

8π
c2emϕ

, (28)

one finds that formϕ = 15MeV a coupling of order ce ≳ few× 10−11 gives τϕ ≪ 1 s. For
instance ce = 5× 10−11 yields τϕ ≃ 0.44 s.

A quantitative treatment of the freeze-in yield and the resulting bounds from BBN and
∆Neff is presented in appendix B. For the benchmarks used here we obtain |∆Neff|≲O(10−2),
comfortably below current limits from Planck [1]. The same secluded nature that ensures cos-
mological safety also suppresses the contribution of ϕ to direct detection, as shown in the next
subsection and appendix C.
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Table 1. Optimized parameters and resulting observables for our benchmark point.
This single point simultaneously satisfies all major cosmological and astrophysical con-
straints on dark matter.

Parameter Symbol Value

Model input parameters
Dark matter mass mχ 600GeV
Light mediator mass mϕ 15MeV
Heavy resonance mass mΦh 1201GeV
DM-light mediator coupling yχ 0.30
DM-heavy resonance coupling gDMY1 0.190
SM-heavy resonance coupling gh,SM 0.052
Derived observables
Relic density Ωh2 0.120± 0.001
Self-interaction (v= 30 km s−1) σT/mχ 0.11 cm2 g−1

Self-interaction (v= 1000 km s−1) σT/mχ 9.5× 10−5 cm2 g−1

Resonance parameter δ =
mΦh
2mχ

− 1 8.3× 10−4

Total enhancement factor (freeze-out) Stotal 143

5.4. Direct detection

A crucial test for our model comes from direct detection experiments, which search for DM
scattering off nuclei. In our two-mediator framework, spin-independent (SI) scattering is
primarily mediated by the exchange of the heavy resonanceΦh, which couples to the SM via a
small portal interaction. As discussed in section 5.3, the light mediator ϕ is part of a secluded
sector with suppressed couplings to quarks, and its contribution to the SI cross-section is there-
fore negligible.

The dominant scattering process proceeds via the exchange of Φh. For a heavy mediator,
this can be described by an effective contact interaction. The resulting SI cross-section per
nucleon is given by (see appendix C for a full derivation)

σ
(N)
SI ≃

µ2
χN

π

[
gDMY1 gh,SM
m2

Φh

mN

v
fN

]2
, (29)

where µχ N is the reduced DM-nucleon mass, v= 246GeV, and fN ≈ 0.30 is the effective nuc-
leon scalar form factor [40, 41].

Using the parameters from our benchmark point in table 1, we obtain the concrete predic-
tion

σpredicted
SI ≈ 6.7× 10−48 cm2. (30)

This target lies just below the current experimental bounds from the LZ experiment for a
600GeV DM particle [42] but is squarely within the discovery reach of next-generation G3
experiments such as DARWIN [43]. The suppression of the signal to this level is a natural
consequence of the model’s structure, where the portal coupling gh,SM is necessarily small to
be consistent with other constraints, rather than requiring additional fine-tuning.
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5.5. Collider searches for the resonance

The most direct and unique signature of our framework is the heavy scalar resonance Φh. For
the benchmark discussed in this work, mΦh ≃ 1.20 TeV, which makes it an excellent target for
the HL-LHC.

Production and decay pattern. In the quark-only portal benchmark (cf. appendix E.3), Φh is
produced dominantly via gluon–gluon fusion through the top-quark loop, and decays almost
entirely to top pairs. Close to the χχ̄ threshold, the invisible mode is strongly phase-space
suppressed. Numerically we find a very narrow total width,

ΓΦh ≃ 0.17 GeV ,
ΓΦh

mΦh

≃ 1.4× 10−4 , (31)

and branching ratios

BR(Φh → t̄t)≃ 99.85% , BR
(
Φh → bb̄

)
≃ 0.08% , BR(Φh → χχ̄)≃ 0.07% . (32)

(Opening Higgs-like mixings toW+W−/ZZ would broaden the resonance and reduce BR(t̄t),
but this is not part of our benchmark.)

Search strategy. The most promising search is a narrow resonance in the t̄t invariant mass
spectrum near mt̄t ≃ 1.2 TeV. Formally,

σ (pp→ Φh → t̄t) = σ (gg→ Φh)×BR(Φh → t̄t) . (33)

Given the tiny intrinsic width, the experimental lineshape is dominated by detector resolu-
tion (few×10GeV), so the signal behaves as a very narrow peak. A dedicated analysis in the
boosted-top regime (1 large-R top tag per hemisphere, or lepton+jets with one top tag) and
modern t̄t background modeling are appropriate. Interference with the QCD t̄t continuum can
induce a mild peak–dip structure, but the narrow width and sizeable BR(t̄t) keep the sensitivity
close to the narrow-resonance expectation.

Expected sensitivity. For the benchmark couplings (quark-only portal with gDMY1 = 0.190 and
gh,SM = 0.052), a production rate σ(pp→ Φh → t̄t) at theO(1−−10) fb level at

√
s= 14 TeV

is a realistic target, within the projected reach of the HL-LHC dataset of 3000 fb−1 [44]. A null
result would constrain the quark-portal mixing that controls both direct detection (section 5.4)
and collider production, while a discoverywould provide a confirmation of the resonant freeze-
out mechanism.

5.6. Indirect detection

Because the annihilation cross-section in our model is strongly velocity-dependent, the rate
that operates in halos today is far smaller than one that sets the relic abundance. Expressed in
terms of the total enhancement factor at freeze-out (Stotal ≈ 143) and in the Milky Way halo
today (where the enhancement is S0 ∼O(1)), we obtain

⟨σv⟩0 ≈
⟨σv⟩F
Stotal

S0 ≈
(
2.2× 10−26 cm3 s−1

) S0
Stotal

∼ 1.5× 10−28 cm3 s−1. (34)

Therefore, the corresponding gamma-ray flux is suppressed by more than two orders of
magnitude compared to the canonical thermal WIMP expectation, placing our model safely
below current constraints [45]. Nevertheless, annihilation into heavy quarks (t̄t,bb̄) yields a dis-
tinctive broad-spectrum signal from hadronization. In dense targets such as dwarf spheroidal
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galaxies, the ensuing high-energy photons could be a target for the next-generation Cherenkov
telescope array (CTA) [46], particularly in the multi-TeV range where astrophysical back-
grounds are lower.

6. A microphysical origin from a composite SU(3)H theory

The aforementioned EFT is self-contained and predictive. We now argue that its structure is
not ad hoc, but can be naturally motivated by a confining SU(3)H gauge theory with Nf = 10
fermion flavors in the fundamental representation.While none of the phenomenological results
rely on this specific UV completion, the composite scenario offers a unified rationale for two
key features: (i) the anomalous dimension that underpins the density-responsive DE sector and
(ii) the near-threshold relation mΦh ≃2mχ required by resonant freeze-out.

6.1. Anomalous dimension for DE

The dark-energy mechanism (section 2.3) involves a running scale MU(µ) governed by an
anomalous dimension γ≈0.5. An SU(3)H theory with Nf = 10 lies near the opening of the
conformal window and exhibits walking dynamics near a Banks–Zaks IR fixed point [47]. In
this regime, the composite operators acquire large anomalous dimensions.

As detailed in appendix G, the fermion bilinear Ψ̄Ψ that couples to the DE sector attains
an effective, RG-averaged anomalous dimension

γcosmo = ⟨γ (µ)⟩flow ≈ 0.50± 0.05, (35)

where the central value is informed by all-orders estimates [48] and is consistent with the
trends observed in recent lattice studies of near-conformal SU(3) theories [49]. This range
matches the phenomenologically required value to connect the Planck scale to the observed
meV DE scale without fine-tuning (section 2.3). Recent lattice work for SU(3) with Nf = 10
found an IR-stable fixed point at strong coupling and a large mass anomalous dimension γm ≃
0.6 [49], consistent with the walking-enhanced anomalous dimension assumed here. In our
setup, a small relevant deformation (e.g. tiny fermion masses/portal couplings) turns the near-
conformal flow into confinement below ΛH, while preserving the large γ along the walking
regime that feeds into MU(µ).

Identification of fields in the composite picture. In the composite SU(3)H framework, the
fundamental scalar field Φ that appears in the density-responsive mechanism (section 2.3)
should be understood as an effective description of the chiral condensate dynamics.
Specifically, we identify

Φ ↔ ⟨Ψ̄Ψ⟩H
Λ3
H

, (36)

where the normalization ensures Φ is dimensionless. The density-responsive functional
U(Φ,X) then encodes how the chiral condensate responds to the ambient matter density. This
is analogous to how the QCD condensate responds to nuclear density in dense matter. The aux-
iliary field construction in appendix A.2 provides the EFT description of this response, while
the microscopic dynamics is governed by the strongly-coupled SU(3)H gauge theory. Thus,
the same hidden sector that generates the composite DM spectrum also provides, through its
chiral condensate, the field that drives the DE mechanism.
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Table 2. Comparison of phenomenologically required parameters vs. natural expecta-
tions from a composite SU(3)H theory with ΛH ≃ 2.5TeV. NDA/lattice inputs imply
O(1) uncertainties on absolute masses and ∼10%–20% on ratios.

Parameter
Required by
phenomenology Composite SU(3)H expectation

Anomalous dimension γ ≈ 0.5 γcosmo = 0.50± 0.05
Dark-matter mass mχ ∼ 600 GeV ∼ Nc

4πΛH ≈ 600 GeV
Resonance ratio mΦh/mχ ≈ 2.0 ∼ 2.0 (from kΦ range)

6.2. Composite spectrum and the resonance condition

At confinement scaleΛH, the hidden theory forms a spectrum of dark hadrons set by this single
dynamical scale. In our mapping to the EFT:

• the DM χ is the lightest dark baryon,
• the heavy mediator Φh is the lightest scalar meson (Ψ̄Ψ),
• the light mediator ϕ is a pseudo Nambu–Goldstone boson of broken chiral symmetry.

Lattice studies in near-conformal SU(3) with Nf = 8 indeed observe a comparatively light
flavor-singlet scalar 0++ state [50], supporting our use of a relatively light composite scalar
Φh and the expectation that mΦh/mχ =O(1). Using naive dimensional analysis (NDA) and
lattice-informed scaling (appendix G), we find that

mχ ∼ Nc
4π

ΛH, mΦh ∼ kΦΛH, (37)

with an O(1) coefficient kΦ in the range suggested by near-conformal SU(3) lattice stud-
ies [38]. For ΛH∼2.5 TeV (benchmark) this yields mχ∼600GeV and mΦh ∼1.2 TeV, i.e.

mΦh

mχ
∼ kΦ

Nc/(4π)
≈ 2 (withinO (1)uncertainties). (38)

Thus, the resonance condition mΦh ≈2mχ emerges as a natural outcome of QCD-like scaling,
rather than a tuned input. A side-by-side comparison is presented in table 2.

6.3. Further predictions of the composite scenario

Beyond motivating the EFT parameters, the SU(3)H picture implies a richer spectrum of
excited dark hadrons (additional scalar/pseudoscalar mesons and baryons) and a possible first-
order confinement transition generating a stochastic gravitational-wave background poten-
tially accessible to LISA [51]. Most decisively, dedicated lattice simulations of SU(3)H with
Nf = 10 can test the predicted mass hierarchy and estimate kΦ, providing a first-principles
check of the resonance relation. We leave a systematic exploration of these signatures for
future work and appendix G provides technical details. We also note recent lattice indications
of a strong-coupling symmetric mass generation phase and a possible merged fixed point in
SU(3) with Nf = 8 [52], underscoring the rich dynamics near the opening of the conformal
window.

Chiral perturbation theory and the PNGBmass. The light mediator ϕ emerges as a pseudo
Nambu-Goldstone boson from the spontaneous breaking of the approximate chiral symmetry
SU(Nf)L× SU(Nf)R → SU(Nf)V in the hidden sector. In direct analogy with QCD, where the
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pion mass arises from explicit chiral symmetry breaking by quark masses, the mass of ϕ is
generated by small fermion masses in the hidden sector. Following the Gell–Mann-Oakes-
Renner relation [53], we expect

m2
ϕ ≈ 2⟨Ψ̄Ψ⟩HmΨ

Λ2
H

, (39)

where mΨ is the small explicit fermion mass and ⟨Ψ̄Ψ⟩H ∼ Λ3
H is the chiral condensate. For

mϕ ∼ 15MeV and ΛH ∼ 2.5 TeV, this implies mΨ ∼O(1)MeV, representing a natural hier-
archy mΨ/ΛH ∼ 10−6 that is radiatively stable due to the protective chiral symmetry. This
is precisely the PNGB mechanism that keeps mϕ ≪ mΦh without fine-tuning, as the limit
mΨ → 0 would restore the chiral symmetry and make ϕ exactly massless.

7. Discussion and conclusion

In this study, we present a comprehensive framework that resolves the long-standing ten-
sion between the requirements of thermal relic abundance and self-interactions for DM. We
demonstrated that a minimal, two-mediator EFT, featuring a resonantly-enhanced dark sector,
provides a consistent and predictive solution. Our analysis, based on a rigorous EFT definition
and detailed numerical calculations, shows that this picture is not only internally consistent but
also experimentally falsifiable. Furthermore, we have argued that this successful phenomeno-
logical model can be viewed as a low-energy manifestation of a unified dark sector, potentially
emerging from a single underlying SU(3)H gauge theory.

7.1. Summary of key results

Our study yielded several key findings that transform the abstract concept of a unified dark
sector into a concrete, testable theory:

• Solution to SIDM-relic-density tension: we have shown that minimal SIDM models cannot
to simultaneously satisfy the constraints of cosmology and galactic dynamics. This tension
is completely resolved in our two-mediator framework, where a heavy scalar resonance,Φh,
enhances the annihilation rate in the early Universe, cleanly decoupling it from late-time
self-interactions mediated by a separate light scalar, ϕ.

• Predictive benchmark scenario: our numerical scans identified a narrow, viable para-
meter space. A representative benchmark with mχ = 600GeV, mϕ = 15MeV, and mΦh =
1201GeV simultaneously satisfies all known constraints and served as a concrete target for
future experiments.

• A suite of falsifiable predictions: the model creates a range of sharp, observable signatures.
The most prominent is a narrow scalar resonance atmΦh ≈ 1.2 TeV, decaying predominantly
to t̄t and invisible particles, which is a key target for the HL-LHC. The model also predicts
a SI direct-detection cross section σSI ∼ 7× 10−48 cm2 within next-generation sensitivity.

• Natural and consistent framework: we established a complete EFT from first principles
(section 2) and demonstrated its cosmological viability (section 5.3). The crucial resonance
condition,mΦh ≈ 2mχ, is technically natural (appendix G) and can be dynamically generated
in a composite SU(3)H theory (section 6). The same theory can also provide the anomalous
dimension γ≈ 0.5 required for a linked DE model.

For a consolidated overview of the viable domain across mχ and the origin of the scaling
relations, see appendix I.
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7.2. The bigger picture: from phenomenology to fundamental theory

The central goal of this study is to demonstrate that both conditions can emerge naturally from
a single SU(3)H gauge theory with Nf = 10 flavors. This transforms our framework from a
phenomenological model into a potential consequence of fundamental dynamics:

• The anomalous dimension emerges from the ‘walking’ dynamics near a Banks–Zaks fixed
point, yielding a cosmologically-averaged value of γcosmo ≈ 0.50± 0.05.

• The mass spectrum of the composite states, including the crucial ratiomΦh/mχ ≈ 2, follows
from the standard scaling relations in the confined phase, analogous to the hadron masses in
the QCD.

• The confinement scale ΛH ≈ 2.5 TeV is dynamically generated through dimensional trans-
mutation, fixing the entire dark sector mass spectrum from first principles.

The full details of this microphysical motivation are provided in sections 6 and appendix G.
This unified origin reframes what looked like ‘tuning’ in the EFT as a structural prediction

of the same strong dynamics that can also underwrite the dark–energy mechanism. Thus, a
single calculable gauge theory can plausibly account for the meV scale of DE (via anomalous–
dimension–controlled running) and the TeV scale of DM (via confinement), bridging many
orders of magnitude without fine–tuning. We emphasize that our phenomenological results do
not rely on this UV completion and the EFT remains self-contained. Conversely, the composite
SU(3)H scenario provides a concrete realization, but not necessarily the unique one, of the
required EFT features. Future work, especially dedicated lattice studies of SU(3)H with Nf =
10 and improved cosmological simulations including SIDM dynamics, can further sharpen
these connections.

Large-scale structure and the S8 tension. In our baseline benchmark, the SIDM phenomen-
ology affects halo interiors on sub-Mpc scales and leaves the linear matter power spectrum
on k∼ 0.1h/Mpc scales essentially unchanged; standard SIDM therefore does not directly
resolve the S8 tension (lower weak-lensing–inferred fluctuation amplitudes compared to CMB
extrapolations within ΛCDM) [54]. However, the density-responsive dark-energy sector sum-
marized in section 2.3 (and derived in appendix A.2) naturally admits mild departures from
w=−1 with time variation w(a). Such evolutions can reduce the late-time growth and poten-
tially lower the predicted S8 [55]. A quantitative assessment in our specific ρΦ(X) model
requires a dedicated Boltzmann analysis (e.g. with CAMB/CLASS) including background and
perturbations, which we leave for future work. Targeted N-body simulations with our bench-
mark parameters would also be needed to quantify any subdominant non-linear effects (e.g.
halo concentrations and splashback) on weak-lensing observables.

7.3. Final outlook

We demonstrated that a minimal, two-mediator dark sector can resolve the long-standing ten-
sion between the requirements of thermal relic abundance and self-interaction constraints for
DM. Our framework transforms what appears as inconsistency into a set of interconnected
predictions of a single underlying theory. The resonant annihilation mechanism, rather than
an ad hoc solution, emerges as a necessary consequence of the particle spectrum. What might
have been interpreted as fine-tuning was revealed to be a sharp, testable prediction.

The predictive power of this framework manifests in concrete experimental signatures
across multiple frontiers:
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• Collider physics: a narrow scalar resonance atmΦh ≈ 1.2 TeVwith a relative width ofΓ/m∼
10−3, decaying predominantly to t̄t and invisible states, provides a smoking-gun signature
at the HL-LHC.

• Direct detection: although naturally suppressed, the predicted signal of σSI ∼ 7× 10−48 cm2

remains within the reach of next-generation experiments.
• Astrophysical probes: the predicted velocity-dependent self-interaction cross-section can be
precisely tested through improved measurements of DM halo profiles and cluster mergers.

• Gravitational waves: in the composite picture, the confinement phase transition at Tc ∼
ΛH predicts a stochastic background that is potentially accessible to future space-based
detectors.

Beyond phenomenology, we argued that the key EFT features find a natural origin in a single,
confining SU(3)H gauge theory. In this picture, the resonant mass relation mΦh ≃ 2mχ arises
dynamically from the composite spectrum, while the same dynamics can generate the anom-
alous dimension needed for the density–responsive dark–energy sector (sections 6, appendix
G). Thus, the dominant components of the cosmic energy budget could plausibly stem from
one calculable, strongly–coupled framework, bridging the meV and TeV scales without fine–
tuning. Finally, first-principles lattice results in glueball DM [56, 57] highlight the potential
of nonperturbative control in composite dark sectors. A dedicated lattice program for near-
conformal SU(3) with Nf=10 would directly test the spectrum and couplings underlying our
resonant scenario (e.g. mΦh/mχ and the size of scalar matrix elements), providing a first-
principles cross-check of the EFT assumptions used here.

In conclusion, we have elevated the resonant SIDM from a phenomenological possibility
to a well-defined EFT with a compelling microphysical motivation. Because the framework
resolves the core SIDM tension while making sharp, multi-pronged predictions, it provides a
clear roadmap for the coming decade: either forthcoming collider, direct–detection, and astro-
physical data will reveal the telltale pattern predicted here, or they will decisively falsify this
mechanism for the dark sector.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Appendix A. The full effective Lagrangian and its properties

In this appendix we lay out the effective field theory (EFT) that underlies the phenomeno-
logy developed in sections 2–5. We first define the complete dark-sector Lagrangian, its field
content, and its symmetries appendix (A.1). We then demonstrate how the density–responsive
contribution ρΦ(X) for dark energy (DE) follows from a well-defined minimization principle
applied to an auxiliary scalar functional U( · ,X) appendix (A.2). Finally, we detail the scalar
potential relevant for dark-matter phenomenology and demonstrate how the physical mass
eigenstates, the light mediator ϕ and the heavy scalar resonance Φh, arise after symmetry
breaking appendix (A.3). This appendix provides the formal backbone for the results quoted
in Sections 4 and 5 and clarifies the precise relationship between the fields Φ, ϕ and Φh.
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A.1. Complete Lagrangian for the unified dark sector

We work with an EFT valid up to a cutoff Λ≫ TeV [10, 11]. The field content consists of the
SM, GR, a Dirac dark fermion χ, and complex dark scalar Σ. The total Lagrangian is

L = LSM + LGR + Ldark + Lportal , (A.1)

with LGR =
M2

Pl
2 R and

Ldark = χ̄ i��∂χ − [yfΣ χ̄LχR + h.c. ] + |∂µΣ|2 − V(Σ) − U(Σ,X) . (A.2)

A globalU(1)χ acting as χ → eiαχ ensures the stability of χ2; this is the standard approach
in simplified DM EFTs [58].

The scalar potential splits into a self-interaction piece V(Σ) and a density–responsive func-
tional U(Σ,X),

V(Σ) = λ

(
|Σ|2 − v2s

2

)2

+ VSB (Σ) ,

U(Σ,X) = U(|Σ|,X) , (A.3)

where X≡ uµuνT
µν
matter is the Lorentz scalar built from the ambient matter stress tensor and

local 4–velocity uµ. The term VSB provides a soft, explicit breaking of the global U(1) phase
symmetry of Σ, thereby giving a small mass to the otherwise massless Nambu–Goldstone
mode–i.e. producing a PNGB, which is in direct analogy with explicit chiral symmetry break-
ing in QCD and its chiral perturbation theory description [59, 60]. The functional U(Σ,X)
captures the density–response familiar from chameleon/symmetron–type constructions [12,
13, 61], but with a concrete realization detailed in appendix A.2, which yields equation (A.24).

The portal interactions to the SM are taken to be minimal, e.g.

Lportal = −κ |Σ|2 |H|2 − ch
Λ

(
Σ+Σ†) |H|2 + . . . , (A.4)

as in the Higgs-portal paradigm [14, 62]. We assume that these couplings are small enough to
satisfy collider and direct–detection limits (quantified in sections 5.4, 5.5, and in appendix C).

Field parametrization and physical states. We parameterize the complex scalar around its
VEV as

Σ(x) =
1√
2
(vs+ s(x)) e i a(x)/vs , (A.5)

where s is the CP–even radial mode and a is the CP–odd phase (the would–be Goldstone
boson). In the absence of VSB the phase is massless because of the shift symmetry a→a+ c; a
soft breaking term in VSB generates ma ≪ vs and can induce a small CP–even/odd alignment.
This is the standard PNGB structure of non-linear σ-models [10, 63].

The Yukawa term in (A.2) generates the dark–fermion mass and its coupling to the scalars.
Expanding (A.5) one finds

LYuk = −
yf√
2
(vs+ s) χ̄χ − i

yf√
2

a
vs

χ̄γ5χ + . . . , (A.6)

2 A discrete remnant Z2 ⊂ U(1)χ would suffice for stability. We set any bare fermion mass to zero and generate mχ

dynamically via ⟨Σ⟩.
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so that

mχ =
yf vs√
2
, gsχ̄χ =

yf√
2
, g(5)

aχ̄χ =
yf√
2vs

. (A.7)

In our phenomenology, the relevant long–range attractive potential is generated by CP–
even scalar exchange, which realizes the classic Yukawa self-interaction setup for SIDM [6].
Therefore, we define physical light mediator ϕ and heavy resonance Φh as small admixtures
of s and a: (

ϕ
Φh

)
=

(
cosθ sinθ
−sinθ cosθ

)(
a
s

)
, |θ| ≪ 1 , (A.8)

where VSB induces a small alignment angle θ (e.g. via a linear term µ3Σ+ h.c. or a CP-
violating bilinear term). This implies that scalar DM coupling is

yχ ≡ gϕχ̄χ =
yf√
2
sinθ , gDMY1 ≡ gΦhχ̄χ =

yf√
2
cosθ , (A.9)

so that ϕ mediates the required attractive Yukawa potential for self-interactions, whereas Φh

provides the heavy s–channel resonance relevant for freeze–out.

Mass spectrum at tree level. From (A.3) the CP–even mass is

m2
s = 2λv2s , (A.10)

and VSB generates the small massm2
a ≪ v2s as well as the mixing θ. To leading order in |θ| ≪ 1

the physical eigenvalues are

m2
ϕ ≃ m2

a + O
(
θ2m2

s

)
, m2

Φh
≃ m2

s + O
(
θ2m2

s

)
, (A.11)

hence

mΦh ≃
√
2λvs , mχ =

yf vs√
2
, yχ =

yf√
2
sinθ . (A.12)

These relations make explicit how the resonance condition mΦh ≈ 2mχ maps to a simple
coupling relation

√
2λ≃

√
2yf (up to small mixing effects). The light mediator mass mϕ ∼

O(10MeV) is protected by the approximate shift symmetry of a and naturally arises from VSB

(soft breaking), exactly as in PNGB frameworks [10, 59].

Density–responsive term and notation.The functionalU(Σ,X) in (A.3) encodes the density–
responsive sector responsible for the dark–energy contribution. In appendix (A.2) we show that
U induces an effective vacuum contribution by minimizing over an auxiliary scalar DOF

ρΦ (X) =
AM4

U

1+X/M4
U

, (A.13)

withMU running according to anomalous dimension γ as discussed in section 6. Importantly,
the ϕ– andΦh–mediated dark–matter phenomenology is governed by V(Σ) and the small mix-
ing θ (equations (A.9)–(A.12)), while the dark–energy behavior is controlled by U(Σ,X); this
structural separation underlies the decoupling between annihilation (early Universe) and self-
interactions (late times) emphasized in this study.

A.2. Derivation of the density–responsive energy ρΦ(X)

The density–responsive functionalU(Σ,X) introduced in equation (A.2) generates the dynam-
ical dark–energy component of the model by encoding how an auxiliary scalar reacts to the
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ambient matter density X≡ uµuνT
µν
matter. In this section we explicitly demonstrate how the

effective contribution ρΦ(X) arises from a well-defined variational principle. For clarity, we
denote the auxiliary (non-propagating) scalar by Φ (distinct from the heavy resonance Φh).
The construction is standard in EFT: one integrates out an algebraic field to obtain an X–
dependent effective potential, cf Hubbard–Stratonovich/Legendre transforms [64]. Moreover,
in section 2.3 we wrote U=minΦ[Vaux(Φ)+C(|Σ|)ΦX] with C≃M−4

∗ . Throughout this
appendix we absorb C into a field redefinition Φ→CΦ, so U=minΦ[Vaux(Φ)+ΦX]. All
final expressions for ρΦ(X) (e.g. equations (A.22) and (A.24)) are unchanged and independent
of this convention.

Set–up and dimensions.We assumed thatΦ is dimensionless3. The density–responsive piece
of the Lagrangian is defined by extremizing over Φ:

U(Σ,X) = inf
Φ

{Vaux (Φ) + ΦX} , (A.14)

where Vaux(Φ) is the convex ‘bare’ potential for Φ. The algebraic equation of motion is

∂Vaux

∂Φ

∣∣∣
Φ=Φ∗(X)

+ X = 0 , ρΦ (X) ≡ U(Σ,X)
∣∣∣
Φ=Φ∗(X)

. (A.15)

The convexity (V ′ ′
aux > 0) guarantees a unique minimum and stability.

One–field convex realization (Legendre form). A broad class of convex choices for Vaux

generates monotone, positive, and density–screened ρΦ(X). A convenient example that is fully
analytic is

Vaux (Φ) = AM4
U [ Φ − ln(1+Φ) ] , Φ >−1 , (A.16)

which is strictly convex (V ′ ′
aux = AM4

U/(1+Φ)2 > 0). The stationarity condition from (A.15)
gives

AM4
U

[
1− 1

1+Φ∗

]
+X = 0 (A.17)

=⇒ Φ∗ (X) = − z
1+ z

, z≡ X

AM4
U

. (A.18)

Substituting back yields the exact effective energy

ρΦ (X) = U
∣∣
Φ∗

= AM4
U [ ln(1+ z)− z ] + ρ0 , (A.19)

where the X-independent constant ρ0 is absorbed into the vacuum counterterm. This ρΦ(X) is
positive, strictly decreasing (∂XρΦ =−z ′/(1+ z)< 0), and convex. Its asymptotics are

ρΦ (X) = AM4
U

[
1− z+

1
2
z2 +O

(
z3
)]

(z≪ 1) , (A.20)

ρΦ (X) = AM4
U

[
lnz− 1+O

(
z−1
)]

(z≫ 1) . (A.21)

For late–time cosmology (the regime relevant for section 2.3), a compact Padé fit that preserves
the small–z behavior and smoothly interpolates is

ρ
(Padé)
Φ (X) ≡ AM4

U

1+X/M4
U

, (A.22)

3 With Φ dimensionless and X of mass dimension four, the combination ΦX has the correct dimension for an energy
density. Any overall dimensionless coupling can be absorbed by redefinitions below.
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which we adopt in the main analysis because it renders all background equations analytic and
captures the required limits4. This subsection demonstrates explicitly that equation (A.22) is
not ad hoc: it is the natural Padé representative of a family of convex, EOM–generated ρΦ(X).

Exact Lagrange–multiplier realization of the rational form. If one prefers the exact rational
form of equation (A.22) directly from an algebraic EOM, a minimal two–auxiliary–variable
construction achieves this without sacrificing stability. Introduce a positive, dimensionless
‘response’ field s and a Lagrange multiplier λ and define

U(Σ,X) = ext
s>0,λ

{
AM4

U s + λ

[
s

(
1+

X

M4
U

)
− 1

]}
. (A.23)

The variation with respect to λ imposes the algebraic constraint s(1+X/M4
U) = 1, whereas the

variation with respect to s fixes λ=−AM4
U/(1+X/M4

U). Evaluating (A.23) at the stationary
point yields

ρΦ (X) = AM4
U s∗ (X) =

AM4
U

1+X/M4
U

, (A.24)

that is the exact working expression used in section 2.3. The construction (A.23) is the EFT
analog of enforcing an algebraic equation via a Lagrange multiplier; one may optionally reg-

ularize the constraint by a convex quadratic penalty 1
2µ
[
s(1+X/M4

U)− 1
]2

and then take
µ→∞.

Running of MU and anomalous dimension. In our framework the scale MU runs with RG
scale µ according to an anomalous dimension γ inherited from the hidden strong dynamics,

d lnM4
U

dlnµ
= 4γ (αH) , γ ≃ 0.50± 0.05 , (A.25)

so that MU(µ) bridges the Planck scale and the meV scale relevant to late–time acceleration
(see sections 6 and appendix H for details). This RG improvement ensures that both realiza-
tions above maintain the required behavior at intermediate and high densities (where X/M4

U
ceases to be small), aligningwith the chameleon/symmetron intuition that the effective vacuum
contribution is environment–dependent [12, 13].

In summary, equations (A.14)–(A.24) show explicitly how a density–responsive dark–
energy term ρΦ(X) emerges from algebraic equations of motion of an auxiliary scalar sector:
either (i) from minimizing a convex functional (Legendre form) that yields a smooth, mono-
tone ρΦ(X)whose late–time behavior is captured by the Padé form (A.22), or (ii) from an exact
Lagrange–multiplier construction that reproduces (A.22) identically.

A.3. The scalar potential for dark–matter phenomenology

We now detail the structure of the scalar potential V(Σ) from equation (A.3), which governs
the particle physics of the dark sector. A single complex field Σ with a spontaneously broken
global U(1) symmetry yields a heavy CP–even radial mode (the resonance Φh) and a light

4 Over the range 0≤ z ≲ 1 relevant for late times, the relative deviation |ρΦ − ρ
(Pad́e)
Φ |/ρΦ can be made ≲5% by

a mild retuning of A, while the renormalization–group running MU(µ) (A.3) further improves the match at higher
densities.
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PNGB, which plays the role of the SIDM mediator ϕ. This is the minimal linear–σ realization
of SSB [16, 17].

Mexican–hat potential and spectrum at exact symmetry.We take

V(Σ) = λ

(
|Σ|2 − v2s

2

)2

+ VSB (Σ) , (A.26)

with λ> 0 and symmetry–breaking scale vs. In the symmetric limit VSB = 0 the vacuum satis-
fies ⟨|Σ|⟩= vs/

√
2 and the global U(1) : Σ→ eiαΣ is broken spontaneously. Parametrize the

fluctuations around the vacuum by

Σ(x) =
1√
2
(vs+ s(x)) eia(x)/vs , (A.27)

where s (CP–even) is the radial mode, and a (CP–odd) is the phase mode. Inserting (A.27)
with VSB = 0 into V yields

V(s) = λ

(
vss+

s2

2

)2

=
1
2

(
2λv2s

)
s2 + λvss

3 +
λ

4
s4 , (A.28)

so that

m2
s = 2λv2s , m2

a = 0 . (A.29)

Thus, s is heavy (TeV–scale in our benchmarks), whereas a is the Goldstone boson.

Soft symmetry breaking and a light mediator mass. To identify the SIDM mediator with
the PNGB, we provide a a small mass by introducing a technically natural5 explicit breaking.
A minimal choice, analogous to the quark–mass term in chiral perturbation theory [59], is

V(m)
SB (Σ) = −µ3

s

(
Σ+Σ†) , (A.30)

with a soft scale µs ≪ vs. ExpandingΣ as in (A.27) and keeping quadratic order in a, one finds

V(m)
SB ⊃ +

√
2µ3

s

2vs
a2 =⇒ m2

a =

√
2µ3

s

vs
. (A.31)

For representative values vs ∼O(TeV) andma ≃ mϕ ∼ 10−−20MeV one obtains a soft scale

µs ∼
(
m2
avs/

√
2
)1/3

=O(0.5−−1GeV), illustrating that the hierarchymϕ ≪ ms is natural and
technically stable.

Controlled CP–mixing and physical eigenstates. Self-interactions of fermionic DM require
CP–even scalar coupling. Our fundamental fields are CP–even s and CP–odd a. A small CP–
violating spurion canmix them, allowing the light state to inherit scalar coupling while keeping
the CP violation parametrically suppressed. Rather than introducing tadpoles, we employ a
tadpole–free bilinear in the EFT that arises from the Σ–language as

V(CP)
SB =

ξs
vs

(
Σ†Σ− v2s

2

)
i
(
Σ−Σ†) , (A.32)

5 In the’t Hooft sense: ma→0 restores the global U(1) symmetry [19].
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where ξs has dimension two and controls the size of the CP violation. Expanding (A.32) to a
bilinear order in fluctuations yields

V(CP)
SB ⊃ +m2

sa sa , m2
sa =

√
2ξs , (A.33)

with no a–tadpole, owing to the subtraction Σ†Σ− v2s/2. By collecting equations (A.29),
(A.31) and (A.33), the mass matrix in the (a, s) basis reads

M2 =

(
m2
a m2

sa
m2
sa m2

s

)
, tan2θ =

2m2
sa

m2
s −m2

a
, (A.34)

where θ is the a–smixing angle. For the phenomenologically relevant hierarchy m2
a ≪ m2

s and
small spurion |m2

sa| ≪ m2
s ,

θ ≃ m2
sa

m2
s

=

√
2ξs

2λv2s
≪ 1 , (A.35)

m2
ϕ ≃ m2

a−
(
m2
sa

)2
m2
s

, (A.36)

m2
Φh

≃ m2
s +

(
m2
sa

)2
m2
s

. (A.37)

The physical states are then

ϕ = cosθa+ sinθ s (light,mediator) , (A.38)

Φh = −sinθa+ cosθ s(heavy, resonance) . (A.39)

Coupling with DM. As in equation (A.9), the physical scalar interactions read L ⊃
−yχ χ̄χϕ − gDMY1 χ̄χΦh, with yχ ≃ (yf/

√
2)sinθ and gDMY1 ≃ (yf/

√
2)cosθ.

This exactly realizes the structure employed in section 5.1 (resonant freeze-out) and
section 5.2 (late-time self-interactions): Φh controls resonant annihilation at freeze–out, while
ϕ mediates late–time self-interactions with a coupling set by the small, technically natural
mixing angle θ.

In summary, the entire particle content and interaction structure of the SIDM sector fol-
lows from the minimal, well-understood potential (A.26): a heavy scalar Φh with m2

Φh
=

2λv2s +O(ξ2s ), a light PNGBmediatorϕwithm2
ϕ ≃

√
2µ3

s/vs, and a suppressed scalar coupling
to DM governed by θ ∼ ξs/(λv2s ). This is precisely the structure required by the phenomeno-
logy developed in sections 4 and 5 and addresses the origin of ϕ, Φh, and their relation to the
underlying field Σ.

Appendix B. Cosmological constraints on the light mediator

We work in a secluded setup where the light scalar ϕ (benchmark mϕ = 15 MeV) has no
appreciable couplings to quarks and only a tiny leptophilic portal,

L ⊃ ceϕ ēe .

Cosmological viability is reduced to three checks: (i) ϕ never thermalizes with the SM plasma,
(ii) it decays before the BBN, and (iii) its energy injection is negligible so that |∆Neff| remains
small. Below we provide compact formulas that support section 5.3.
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B.1. Freeze-in (no thermalization)

Production proceeds via the inverse decay e+e−→ϕ (‘freeze-in’). A conservative non-
thermalization criterion compares the decay rate to the Hubble rate at T≃ mϕ:

Γϕ→e+e− =
c2emϕ

8π
, H(T) = 1.66

√
g∗

T2

MPl
, (B.1)

Γ

H

∣∣∣
T≃mϕ

≃ c2eMPl

13.3π
√
g∗mϕ

≪ 1 . (B.2)

Numerically, for mϕ = 15 MeV, g∗ ≃ 10.75, and ce = (3–5)× 10−11 one finds Γ/H∼ 0.05–
0.15, i.e. ϕ never equilibrates (freeze-in). The corresponding freeze-in abundance is tiny and
a small change of ce further suppresses it quadratically.

B.2. BBN and ∆Neff

The decay into electrons is

Γ
(
ϕ→ e+e−

)
=

c2emϕ

8π
, τϕ =

8π
c2emϕ

. (B.3)

For mϕ = 15 MeV, requiring τϕ ≲ 1 s (decay before BBN) implies ce ≳ few× 10−11; e.g.
ce = 5× 10−11 yields τϕ ≃ 0.44 s. Because the freeze-in population is minuscule, the ϕ energy
fraction at decay, fdec ≡ ρϕ/ρrad, is well below the percent level. The corresponding contribu-
tion to the effective number of relativistic species is

|∆Neff| ≈
4
7

(
11
4

)4/3

fdec ≪ 10−2 , (B.4)

comfortably below current bounds.

Cosmological and laboratory constraints. (i) Formϕ < 2mµ only ϕ→ e+e− is open, so had-
ronic BBN limits are kinematically avoided; the electromagnetic BBN bounds are satisfied in
our benchmark where τϕ≪1 s and the freeze-in abundance is tiny [65]. (ii) Fixed-target/beam-
dump and SN1987A limits on light scalars are weak in the window mϕ ≃ 10–20 MeV and
ce ∼ 10−11, because production is ∝ c2e and decays occur outside detectors; see the summary
in [66]. (iii) These checks are consistent with the narrative in section 5.3, so no additional
cosmological ingredients are required for our benchmark.

Appendix C. Spin-independent (SI) direct detection

In this appendix we derive the SI scattering of χ on nucleons from the Lagrangian defined in
section 2 and provide a numerical prediction for our benchmark. We follow the standard work-
flow: (i) integrate out the scalar mediators to obtain an effective χ̄χ q̄q interaction appendix
(C.1), (ii) match to the nucleon level using scalar form factors f(N)Tq and the trace anom-
aly appendix (C.2), (iii) write the closed-form expression for σSI appendix (C.3), and (iv)
evaluate the benchmark and explain the suppression of the light mediator ϕ appendix (C.4).
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C.1. Effective χ–quark interactions

The relevant dark-sector terms in the mass basis (ϕ,Φh) read (cf section 2.2)

L ⊃−yχ χ̄χϕ− gDMY1 χ̄χΦh −
∑
q

(gϕqqϕ + gh,SMΦh) q̄q, (C.1)

where the quark coupling of the heavy scalar resonanceΦh is parameterized by a (small) Higgs-
portal mixing6. In the absence of kinematic thresholds, tree-level exchange of a scalar S ∈
{ϕ,Φh} induces an effective operator on the quark level

L(q)
eff =

∑
q

C(S)
q χ̄χ q̄q, C(S)

q =
yχS gSqq
m2
S

, (C.2)

with yχS ∈ {yχ, gDMY1 }. For Φh one has gΦhqq = (gh,SMmq/v). For the light state ϕ, gϕ qq

depends on the chosen portal in which we assume a leptophilic quark-silent portal such that
gϕqq = 0 at tree level appendix (C.4).

C.2. Matching to the nucleon level

Scalar quark operators are matched to nucleon matrix elements via ⟨N|mqq̄q|N⟩= mNf
(N)
Tq .

Heavy quarks Q= c,b, t contribute through the trace anomaly (gluon operator) [40, 41, 67].
For scalar exchange we obtain

fN =
∑

q=u,d,s

f(N)Tq +
2
27

1−
∑

q=u,d,s

f(N)Tq

 , fN ≃ 0.30± 0.03, (C.3)

where numerically we used global fits of [41]. The effective χ–nucleon coupling induced by
the scalar mediator S is then

f(S)N =
yχS gSNN
m2
S

=
yχS
m2
S

mN

v
fN

{
gh,SM (S=Φh) ,

g̃ϕNN (S= ϕ) ,
(C.4)

where g̃ϕNN denotes the (generally highly suppressed) effective ϕ–nucleon coupling.

C.3. SI cross section

The SI scattering on a nucleon N takes the canonical form

σ
(N)
SI =

µ2
χN

π

∣∣∣∣ ∑
S=ϕ,Φh

f(S)N

∣∣∣∣2, µχN =
mχmN

mχ +mN
. (C.5)

In our benchmark the Φh contribution dominates appendix (C.4), yielding

σ
(N)
SI ≃

µ2
χN

π

[
gDMY1 gh,SM
m2

Φh

mN

v
fN

]2
. (C.6)

6 For SM quarks we write gh,SM q̄q≡ (gh,SMmq/v) q̄q, with v≃ 246GeV.
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C.4. Benchmark and suppression of the ϕ contribution

For the benchmark in table 1,{
mχ, mΦh , g

DM
Y1 , gh,SM

}
= {600 GeV, 1201 GeV, 0.190, 0.052} , (C.7)

with mN = 0.939 GeV, v= 246 GeV and fN = 0.30, equation (C.6) gives

µχN ≃ 600× 0.939
600+ 0.939

GeV ≃ 0.938 GeV,

σ
(N)
SI (Φh)≃

(0.938 GeV)2

π

[
0.190× 0.052

(1201 GeV)2
0.939 GeV
246 GeV

× 0.30

]2
≃ 1.7× 10−23 GeV−2 ⇒ σ

(N)
SI (Φh) ≃ 6.7× 10−48 cm2, (C.8)

using 1 GeV−2 = 0.3894× 10−24 cm2. This prediction lies just below the current LZ limit for
mχ ∼O(102−103)GeV [42] and thus constitutes a sharp, testable signature of Φh-mediated
scattering.

Why ϕ does not contribute?. A light scalar mediator with mϕ ∼MeV and generic had-
ronic couplings would yield an excessively large SI cross-section owing to the∝ m−4

ϕ scaling.
Therefore, we adopt a leptophilic/quark-silent portal in the benchmark

gϕqq = 0 (tree level), L ⊃ cℓϕℓ̄ℓ, (C.9)

so that ϕ does not couple to nucleons and σSI(ϕ) = 0 at tree level7. At the same time ϕ can
decay promptly to e+e− before the BBN

Γ
(
ϕ→ e+e−

)
=

c2emϕ

8π
⇒ τϕ ≃ 8π

c2emϕ
. (C.10)

Already ce ≳ 3× 10−11 gives τϕ ≲ 1 s for mϕ = 15 MeV, consistent with the BBN.
Alternatively, an extremely small Higgs mixing ϕ−−h would be possible; the LZ limit would
then require

∣∣gϕNN∣∣≲ 10−10, well below the typical portal mixings, which motivates the lepto-
philic benchmark.

In summary, the heavy scalar resonance Φh dominates direct detection with σSI ≃ 7×
10−48 cm2, while the light mediator ϕ controls self-interactions, however, owing to quark-
silent/leptophilic portal, it does not contribute to SI scattering.

Appendix D. Numerical implementation and scan strategy

This appendix provides details on the numerical implementation of our two-mediator model
and on the strategy used to identify the viable parameter space. Relic density and self-
interaction cross-sections were computed using micrOMEGAs 6.2.3 [32].

D.1. Model implementation in micrOMEGAs

We implemented the model by extending the public DMsimp_s_spin0_MO setup from the
DMsimp framework [33], which provides a validated baseline for Dirac DM with a scalar
mediator. Our extensions were:

7 Loop-induced contributions via photons or leptons are many orders of magnitude below current sensitivities.
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• Particle content: we have added the heavy scalar resonance Φh to the particle list (internal
name Y1, PDG code 56). DM fermion χ and light mediator ϕ correspond to Xd and Y0,
respectively.

• Parameters and couplings: we introduced the mass MY1 and total width WY1 of Φh, and its
Yukawa coupling to DM gSXd1 (our gDMY1 ). The Lagrangian files are updated accordingly to
include the interactions defined in 2.

• Widths: at each parameter point we computeΓΦh = Γ(Φh → χχ̄)+
∑

SMΓ(Φh → SM) self-
consistently, including all kinematically accessible channels (see appendix E.1 for the for-
mulas). The light mediator ϕ is treated as a narrow state with the width determined by its
allowed secluded/SM decays (B).

Annihilation is modeled via an s-channel Breit–Wigner propagator E.1; the Sommerfeld
enhancement from ϕ-exchange is factorized in the non-relativistic limit as discussed in
appendices E.1 and E.2 and consistently included in the thermal average.

D.2. Scan strategy and viability criteria

We explore the multi-dimensional space {mχ, mϕ, yχ, mΦh , g
DM
Y1 , gh,SM} with a hierarchical

scan that exploits the parametric separation of observables.

Scan procedure. For a fixed mχ, we proceed in two stages:

(i) Self-interaction tuning: we mapped the (mϕ,yχ) plane to satisfy the SIDM targets
by computing the momentum-transfer cross-section σT/mχ at reference velocities v=
{10, 30, 1000}kms−1 using the non-perturbative Yukawa solver appendix (F). This iden-
tifies iso-contours that meet the dwarf-scale requirements while remaining consistent with
the cluster bounds.

(ii) Resonant annihilation tuning: along these iso-contours we tune the heavy sector, primarily
the detuning δ ≡ mΦh/(2mχ)− 1 and gDMY1 –to reproduce the observed relic density. The
thermal average uses the full s-dependence of the Breit–Wigner cross-section appendix
(E.1) with factorized Sommerfeld enhancement when relevant appendix (E.2). We used
darkOmega with a target precision of 1%.

Viability criteria. A point is deemed viable if it simultaneously satisfies:

• Relic density: 0.1176< Ωχ h2 < 0.1224 (Planck 2018, 2σ) [1].
• Self-interactions: 0.1≲ σT/mχ ≲ 10 cm2/g at dwarf velocities (v∼ 10−50 kms−1), while
σT/mχ ≲ 1 cm2/g at cluster scales (v∼ 1000 kms−1) [3, 5]. (See appendix F for definitions
and numerics.)

• Perturbativity: All dimensionless couplings in the dark sector satisfy y2χ/(4π)< 1,
|gDMY1 |2/(4π)< 1.

The intersection of these requirements defines the viability island shown in figure 1.

D.3. Numerical stability and validation

For the SIDM calculation we adopt the convergence criteria and partial-wave truncation tests
detailed in appendix F; varying the matching radius and ℓmax shifts σT by ≲ 5%. For the relic
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calculation, we checked the stability of Ωχ h2 under changes in the thermal integration toler-
ances and the treatment of the narrow resonance. The results were stable at the percent level
in the viable region. The benchmark curves from [6] (Born/classical/resonant regimes) were
reproduced as a cross-check.

Appendix E. Resonant annihilation formalism

This appendix provides a theoretical framework for resonant dark-matter annihilation, as
implemented in our numerical analysis. We summarize the standard formulas for the thermal
relic density, the Breit-Wigner resonance, relevant decay widths, and the thermal averaging
procedure. Classic references for these topics include [22, 68] and [69].

E.1. Thermal relic density

The relic abundancewas determined by solving the Boltzmann equation for the yield Y= nχ/s.
For a standard thermal freeze-out scenario at temperature TF ≈ mχ/xF with xF ≈ 20–25, the
relic density today is approximately given by

Ωχ h
2 ≃ 1.07× 109 GeV−1

MPl

√
g∗ (xF)

xF
⟨σv⟩F

, (E.1)

where ⟨σv⟩F is the thermally-averaged annihilation cross-section at freeze-out, and g∗(xF) is
the effective number of relativistic degrees of freedom.

E.2. Breit-Wigner resonance and Sommerfeld enhancement

The s-channel annihilation χχ̄→ Φ∗
h → SM is dominated by the exchange of the heavy scalar

near themass pole. The cross-section for this process is described by the Breit-Wigner formula.
In the non-relativistic limit, this can be combined with the Sommerfeld enhancement arising
from the light mediator exchange. As formally demonstrated in [8], the two effects factorize,
and the total cross-section can be written as

σv= S(v)× (σv)Breit−Wigner , (E.2)

where S(v) is the Sommerfeld factor and the bare resonant cross-section is given by

(σv)Breit−Wigner =
∑
f

16π
s

Γ(Φh → χχ̄)Γ(Φh → f)(
s−m2

Φh

)2
+m2

Φh
Γ2
Φh

, (E.3)

where s≈ 4m2
χ(1+ v2/4) near the threshold. The resonance parameter δ = (mΦh −

2mχ)/(2mχ) quantifies proximity to the pole. This factorization is crucial for our model,
and our numerical implementation in micrOMEGAs accounts for this combined effect.

E.3. Decay widths

The total width ΓΦh determines the resonance shape.

Dark matter (DM) channel:

Γ(Φh → χχ̄) =

(
gDMY1

)2
mΦh

8π

(
1−

4m2
χ

m2
Φh

)3/2

. (E.4)
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SM channels: For scalar coupling to a fermion f of the form −gΦhff̄ffΦh, the width is

Γ
(
Φh → f̄f

)
= Nfc

g2Φh ffmΦh

8π

(
1−

4m2
f

m2
Φh

)3/2

. (E.5)

We neglect loop-induced gg in ΓΦh . Gluon-fusion still dominates the production mechan-
ism at the LHC via the top loop in our quark-portal benchmark. In our quark-only portal
benchmark we take gΦhff = gh,SM(mf/v) for quarks and neglect tree level couplings to W,Z
(and loop-induced gg), which keeps the resonance narrow and the phenomenology aligned
with direct detection. With {mΦh ,mχ,gDMY1 ,gh,SM}= {1201 GeV,600 GeV,0.190,0.052}
we obtain ΓΦh ≃ 0.17GeV and BR(Φh → t̄t)≃ 99.85%, BR(Φh → bb̄)≃ 0.08%, BR(Φh →
χχ̄)≃ 0.07%. (If one instead assumes Higgs-like mixing to all SM states, WW/ZZ would
contribute at tree level and modify both ΓΦh and the branching ratios accordingly).

E.4. Thermal averaging

The thermal average of the cross-section over the Maxwell-Boltzmann distribution is given by
the integral [69]:

⟨σv⟩= 1
8m4

χTK
2
2 (mχ/T)

ˆ ∞

4m2
χ

dsσ (s)
(
s− 4m2

χ

)√
sK1

(√
s
T

)
, (E.6)

where K1,2 are modified Bessel functions. This integral was numerically calculated in our
analysis. Near resonance, it is dominated by energies s≈ m2

Φh
.

Appendix F. Self-interaction cross-section

This appendix provides the formalism for the velocity-dependent self-interaction cross-section
arising from light scalar exchange. The calculation requires a non-perturbative treatment of
scattering in the Yukawa potential.

F.1. Yukawa potential and scattering formalism

The t-channel exchange of the light mediator ϕ generates an attractive Yukawa potential

V(r) =−αχ
e−mϕ r

r
, αχ =

y2χ
4π

. (F.1)

In the non-relativistic limit, the scattering problem is solved by computing the partial wave
phase shifts, δl, from the radial Schrödinger equation. The momentum transfer cross-section,
which is an astrophysically relevant quantity, is given by [6]

σT =
4π
k2

∞∑
l=0

(l+ 1)sin2 (δl+1 − δl) , (F.2)

where k= (mχ/2)vrel is the momentum in the center-of-mass frame.
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F.2. Limiting regimes

The scattering dynamics are characterized by the dimensionless parameter β =
2αχmϕ /(mχ v2):

Born regime (β ≪ 1): For weak interactions or high velocities, the cross-section can be com-
puted perturbatively:

σBorn
T ≃

8πα2
χ

m2
χv4

[
ln

(
1+

m2
χv

2

m2
ϕ

)
−

m2
χv

2

m2
ϕ +m2

χv2

]
. (F.3)

Classical regime (β ≫ 1): For strong interactions at low velocities, multiple partial waves
contribute, and the cross-section approaches a classical limit:

σclassical
T ≃ 4π

m2
ϕ

×

{
ln(1+β) , β ≲ 102 ,

2 (lnβ)2 , β ≫ 102 .
(F.4)

For our benchmark parameters, dwarf galaxy halos (v∼ 10 km s−1) were in the classical
regime (β ∼ 103), whereas galaxy clusters (v∼ 1000 km s−1) approached the Born limit (β ∼
0.1). This natural crossover provides the required velocity dependence.

F.3. Numerical implementation

The phase shifts δl were numerically computed. Our analysis used the integrated Yukawa scat-
tering routines in micrOMEGAs, which solved the radial Schrödinger equation and summed the
partial wave series until convergence was achieved. This method correctly captured all non-
perturbative effects, including scattering resonances. For our benchmark, this yields σT/mχ =
0.96 cm2 g−1 at v= 10 km s−1.

Appendix G. Radiative stability of the resonance condition

In this appendix, we establish the radiative stability of the resonance conditionmΦh ≈ 2mχ. Our
analysis shows that quantum corrections preserve this relationship, confirming their technical
naturalness. We ask whether such a small number is stable under quantum corrections in the
sense of’t Hooft [19].

G.1. One-loop corrections

The leading one-loop contributions to the masses arise from the dark sector loops and the
Higgs portal. In the MS scheme, the leading logarithmic corrections are

Heavy scalar mass:

δm2
Φh

=−
(
gDMY1

)2
m2

χ

4π2

[
1+ ln

(
µ2

m2
χ

)]
+

3g2h,SMm
2
t

4π2

[
1+ ln

(
µ2

m2
t

)]
, (G.1)
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where the first term is from the χ loop and the second term is from the top quark loop via the
effective coupling gh,t.

DMmass:

δmχ

mχ
=

3
32π2

[
y2χ ln

(
µ2

m2
ϕ

)
+
(
gDMY1

)2
ln

(
µ2

m2
Φh

)]
. (G.2)

For our benchmark parameters, choosing the renormalization scale µ∼ mΦh minimizes these
logarithmic corrections.

G.2. Running of the resonance parameter

The key quantity for stability is the evolution of the detuning parameter δ = mΦh/(2mχ)− 1.
Its beta function is

βδ = µ
dδ
dµ

=
1

2mχ

(
µ
dmΦh

dµ

)
− mΦh

2m2
χ

(
µ
dmχ

dµ

)
. (G.3)

Using the one-loop beta functions for the masses, this yields

µ
dδ
dµ

≈ 1
32π2

[
−2
(
gDMY1

)2 − 3y2χ − 3
(
gDMY1

)2
+ 6(gh,t)

2 m2
t

m2
Φh

]
. (G.4)

For our benchmark couplings (yχ = 0.30, gDMY1 = 0.19, gh,t ∼ 0.05), the numerical result is

µ
dδ
dµ

≈−8× 10−5. (G.5)

G.3. Integrated running and stability

Integrating the running from the UV scale (e.g. µUV = 10 TeV) to the resonance scale (µlow =
1.2 TeV) yields a total shift of

∆δ = δ (µlow)− δ (µUV)≈
(
µ
dδ
dµ

)
ln

(
µlow

µUV

)
≈ 1.7× 10−4. (G.6)

This radiative shift is smaller than the required tree-level value δ ≈ 8× 10−4, demonstrating
that the resonance condition is stable under RG evolution.

The radiative analysis thus reveals that: (i) the resonance condition is stable under quantum
corrections, (ii) no large logarithms destabilize the hierarchy, and (iii) the required precision
(δ ∼ 10−4 − 10−3) is technically natural in the sense of’t Hooft [19]. This distinguishes our
scenario from genuine fine-tuning problems, in which radiative corrections are much larger
than the tree-level values. The resonance condition represents a mild numerical requirement
that can plausibly emerge from the dynamics of UV theory, as discussed in section 6.

Appendix H. UV motivation from a composite SU(3)H theory

This appendix outlines a plausible microphysical origin for the EFT presented in section 2: a
strongly-coupled hidden SU(3)H gauge theory with Nf = 10 massless flavors. We summarize
the key properties that give rise to the required anomalous dimension for DE and the composite
mass spectrum for DM.
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H.1. Two-loop beta function and Banks-Zaks fixed point

The running of the hidden gauge coupling, αH = g2H/(4π), is governed by the two-loop beta
function. For an SU(Nc) gauge theory with Nf flavors in the fundamental representation, the
coefficients in the MS scheme are [70, 71]

b0 =
11
3
Nc−

2
3
Nf,

b1 =
34
3
N2
c −

10
3
NcNf− 2CFNf, withCF =

N2
c − 1
2Nc

.

(H.1)

For our choice of (Nc,Nf) = (3,10), we obtain b0 = 13/3 and b1 =−74/3. The negative two-
loop coefficient induces an infrared Banks-Zaks fixed point [47] where β(α∗

H) = 0. The non-
trivial solution is

α∗
H =−4πb0

b1
=

52π
74

≈ 2.21. (H.2)

H.2. Anomalous dimension

Near the fixed point, the fermion bilinear operator Ψ̄Ψ acquires a large anomalous dimension,
γΨ̄Ψ. Perturbative all-orders estimates, such as the Ryttov-Sannino formula [48], suggest a
value of γ∗

Ψ̄Ψ
∼ 0.7− 0.8 at the strong coupling of equation (H.2). However, such estimates

carry significant uncertainties at strong coupling.
Amore robust guide comes from non-perturbative lattice simulations. Recent lattice studies

of near-conformal SU(3) theories with a similar number of flavors typically find values in
the range of γlat

Ψ̄Ψ
≈ 0.6± 0.1 [49]. The cosmologically relevant value, γcosmo, is an effective

average over the entire ‘walking’ RG flow from the UV to the confinement scale and can
plausibly be slightly smaller than the deep infrared value. Therefore, a value of

γcosmo = ⟨γΨ̄Ψ (µ)⟩flow ≈ 0.50± 0.05 (H.3)

is fully consistent with the theoretical expectations from lattice data. This is in excellent agree-
ment with the phenomenological requirement for the density-responsive DE mechanism.

H.3. Mass scaling relations from compositeness

At a confinement scale ΛH ≈ 2.5 TeV, the theory forms composite ‘dark hadron’ states whose
masses are proportional toΛH. We identified the particles of our EFT with the following states:

• Baryon mass (mχ): the mass of the lightest three-quark state is estimated via NDA [37]:

mχ ≈ Nc
4π

ΛH ≈ 600GeV. (H.4)

• Scalar meson mass (mΦh): the mass of the lightest scalar meson (Ψ̄Ψ state) is expected
to be of the order ΛH, written as mΦh ≈ kΦΛH. Lattice studies of near-conformal theories
suggest kΦ ∈ [0.5,0.7] [38]. We adopted a value of kΦ = 0.48, which lies at the conservative
lower edge of this range and yields the desired mΦh ≈ 1.2 TeV.

From these standard scaling relations, the crucial mass ratio emerges dynamically:

mΦh

mχ
≈ kΦΛH

(Nc/4π)ΛH
≈ 0.48

3/(4π)
≈ 2.0. (H.5)
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This demonstrates that the resonance condition mΦh ≈ 2mχ is a natural consequence of the
composite dynamics and not ad-hoc fine-tuning.

Appendix I. Structure of the viable parameter space

This appendix provides a more comprehensive characterization of the viable parameter space
and the rationale for our benchmark selection. Although the underlying SU(3)H theory motiv-
ates a DM mass of mχ ∼ 600GeV, we explored a broader mass range to demonstrate the
robustness of our solution.

I.1. Parameter correlations and scaling laws

With the resonance condition mΦh ≈ 2mχ imposed, the viable parameter space was primar-
ily determined by three phenomenological parameters: {mχ,mϕ,yχ}. For each mass mχ, the
heavy sector couplings (e.g. gDMY1 ) were subsequently fixed by the requirement that Ωχ h2 =
0.120.

Our comprehensive scan over mχ ∈ [200,1000]GeV revealed that viable solutions exist
only in a narrow, highly-correlated band. The allowed parameter ranges followed clear scaling
relations, as summarized in table I1. The correlations shown in figure 2 can be described by
the approximate power laws:

mϕ ≈ (15 MeV)×
( mχ

600 GeV

)0.83±0.04
,

yχ ≈ (0.30)×
( mχ

600 GeV

)0.51±0.03
.

(I.1)

These scaling relationships arise from the physical requirement that the self-interaction
remains effective across different mass scales. The potential range, ∼ 1/mϕ, must be scaled
appropriately with the relevant astrophysical length scales, whereas the fine-structure constant,
αχ = y2χ/(4π), must provide the correct scattering strength. The narrow width of the viable
bands (less than 20% variation in each parameter) demonstrated the high predictability of the
model.

I.2. Boundaries of the viable region

The region of viable solutions is bounded by physical constraints:

• For mχ < 200GeV, the required Yukawa coupling yχ becomes large (> 0.5), and the per-
turbativity of the light sector interactions becomes questionable.

• For mχ > 1000GeV, the self-interaction cross-section naturally becomes too weak
(σT/mχ < 0.1 cm2 g−1 at dwarf velocities), even for an optimized light mediator. This
model is then no longer able to effectively solve the small-scale crisis.

This explains why viable solutions are confined to the multi-hundred GeV to TeV mass range.

I.3. Justification of the 600GeV benchmark

Although a continuous family of solutions exists, our choice of themχ = 600GeV benchmark
is optimal for several reasons:
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Table I1. Viable parameter ranges for the light mediator massmϕ and the Yukawa coup-
ling yχ for representative dark matter masses. The bold entry indicates our primary
benchmark.

mχ (GeV) Viable mϕ (GeV) Viable yχ

200 3 – 5 0.15 – 0.20
400 8 – 12 0.22 – 0.28
600 12 – 18 0.28 – 0.32
800 20 – 25 0.33 – 0.38
1000 28 – 35 0.37 – 0.42

• Astrophysics: it provides an excellent fit to dwarf galaxy constraints, with σT/mχ on the
order of 1 cm2 g−1 at the most relevant velocities (see figure 4).

• Detectability: the associated heavy resonance at ≈ 1.2 TeV is within the discovery reach of
the HL-LHC, making it an exciting experimental target.

• Perturbativity: all couplings are well within the perturbative regime (yχ < 0.4), ensuring full
theoretical control.

• Centrality: it sits near the geometric mean of the allowedmass range, representing a ‘typical’
solution rather than an edge case.

While alternative benchmarks, for example at 400 or 800GeV, provide a qualitatively sim-
ilar phenomenology, they offer a slightly less optimal fit to either astrophysical or collider
constraints.

ORCID iD

Martin Drobczyk 0000-0001-8109-5926

References

[1] Aghanim N et al (Planck 2020 Astron. Astrophys. 641 A6
Aghanim N et al 2021 Erratum: Astron. Astrophys. 652 C4

[2] Bullock J S and Boylan-Kolchin M 2017 Ann. Rev. Astron. Astrophys. 55 343–87
[3] Tulin S and Yu H B 2018 Phys. Rep. 730 1–57
[4] Spergel D N and Steinhardt P J 2000 Phys. Rev. Lett. 84 3760–3
[5] Kaplinghat M, Tulin S and Yu H B 2016 Phys. Rev. Lett. 116 041302
[6] Tulin S, Yu H B and Zurek K M 2013 Phys. Rev. D 87 115007
[7] Oman K A et al 2015 Mon. Not. R. Astron. Soc. 452 3650–65
[8] Beneke M, Lederer S and Urban K 2023 Phys. Lett. B 839 137773
[9] Drobczyk M 2025 Class. Quantum Grav. (https://doi.org/10.1088/1361-6382/ae1ac1)

[10] Weinberg S 1996 The Quantum Theory of Fields. (Modern Applications vol 2) (Cambridge
University Press)

[11] Burgess C 2007 Ann. Rev. Nucl. Part. Sci. 57 329–62
[12] Khoury J and Weltman A 2004 Phys. Rev. Lett. 92 071104
[13] Hinterbichler K and Khoury J 2010 Phys. Rev. Lett. 104 231301
[14] Patt B and Wilczek F 2006 arXiv:hep-ph/0605188
[15] Schabinger R M and Wells J D 2005 Phys. Rev. D 72 093007
[16] Goldstone J 1961 Nuovo Cim. 19 154–64
[17] Goldstone Jand Salam A and Weinberg S 1962 Phys. Rev. 127 965–70
[18] Gell-Mann M and Levy M 1960 Nuovo Cim. 16 705
[19] ‘t Hooft G 1980 NATO Sci. B 59 135–57
[20] Gubser S S and Peebles P J E 2004 Phys. Rev. D 70 123510

39

https://orcid.org/0000-0001-8109-5926
https://orcid.org/0000-0001-8109-5926
https://doi.org/10.1088/1475-7516/2021/12/028
https://doi.org/10.1088/1475-7516/2021/12/028
https://doi.org/10.1088/1475-7516/2021/12/028
https://doi.org/10.1088/1475-7516/2021/12/028
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.1093/mnras/stv1504
https://doi.org/10.1093/mnras/stv1504
https://doi.org/10.1016/j.physletb.2023.137773
https://doi.org/10.1016/j.physletb.2023.137773
https://doi.org/10.1088/1361-6382/ae1ac1
https://doi.org/10.1146/annurev.nucl.56.080805.140508
https://doi.org/10.1146/annurev.nucl.56.080805.140508
https://doi.org/10.1103/PhysRevLett.92.031302
https://doi.org/10.1103/PhysRevLett.92.031302
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevLett.104.231301
https://arxiv.org/abs/hep-ph/0605188
https://doi.org/10.1103/PhysRevD.72.093007
https://doi.org/10.1103/PhysRevD.72.093007
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1007/BF02859738
https://doi.org/10.1007/BF02859738
https://doi.org/10.1103/PhysRevD.70.123510
https://doi.org/10.1103/PhysRevD.70.123510


Class. Quantum Grav. 42 (2025) 225006 M Drobczyk

[21] Rockafellar R 1970 Convex Analysis (Princeton University Press)
[22] Kolb E W and Turner M S 1990 The early universe Frontiers in Physics vol 69 (Addison-Wesley)
[23] Feng J L, Kaplinghat M and Yu H B 2010 Phys. Rev. Lett. 104 151301
[24] Arkani-Hamed N, Finkbeiner D P, Slatyer T R and Weiner N 2009 Phys. Rev. D 79 015014
[25] Navarro J F, Frenk C S and White S D M 1996 Astrophys. J. 462 563–75
[26] Oh S H et al 2015 Astron. J. 149 180
[27] Flores R A and Primack J R 1994 Astrophys. J. Lett. 427 L1–L4
[28] Zavala J, Vogelsberger M and Walker M G 2013 Mon. Not. R. Astron. Soc. 431 L20–L24
[29] Elbert O D et al 2015 Mon. Not. R. Astron. Soc. 453 29–37
[30] Markevitch M, Gonzalez A H, Clowe D, Vikhlinin A, FormanW, Jones C, Murray S and Tucker W

2004 Astrophys. J. 606 819–24
[31] Harvey D, Massey R, Kitching T, Taylor A and Tittley E 2015 Science 347 1462–5
[32] Alguero G, Bélanger G, Boudjema F, Chakraborti S, Goudelis A, Kraml S, Mjallal A and Pukhov A

2024 Comput. Phys. Commun. 299 109133
[33] Backovic M, Krämer M, Maltoni F, Martini A, Mawatari K and Pellen M 2015 FeynRules model

database: DMsimp (available at: https://cp3.irmp.ucl.ac.be/projects/feynrules/wiki/DMsimp
(Accessed 5 June 2025)

[34] Rocha M, Peter A H G, Bullock J S, Kaplinghat M, Garrison-Kimmel S, Onorbe J and
Moustakas L A 2013 Mon. Not. R. Astron. Soc. 430 81–104

[35] Manohar A and Georgi H 1984 Nucl. Phys. B 234 189–212
[36] Georgi H 1984 Weak Interactions and Modern Particle Theory (Benjamin/Cummings)
[37] Manohar A V 1998 arXiv:hep-ph/9802419
[38] Aoki Y T A et al 2017 Phys. Rev. D 96 014508
[39] Weinberg S 1979 Physica A 96 327–40
[40] Shifman M A, Vainshtein A I and Zakharov V I 1978 Phys. Lett. B 78 443–6
[41] Hoferichter M, Klos M J and Schwenk A 2017 Phys. Rev. Lett. 119 181803
[42] Aalbers J et al (LZ) 2023 Phys. Rev. Lett. 131 041002
[43] Aalbers J et al (DARWIN) 2016 J. Cosmol. Astropart. Phys. JCAP11(2016)017
[44] Sirunyan A M et al (CMS) 2020 J. High Energy Phys. JHEP05(2020)033
[45] Hansen T T, Simon J D,Marshall J L, Li T S, Carollo D, DePoy D L, Nagasawa DQ, Bernstein RA,

Drlica-Wagner A, Abdalla F B and Allam S (Fermi-LAT, DES) 2017 Astrophys. J. 838 44
[46] Acharyya A et al 2021 J. Cosmol. Astropart. Phys. 2021 057
[47] Banks T and Zaks A 1982 Nucl. Phys. B 196 189–204
[48] Ryttov T A and Sannino F 2008 Phys. Rev. D 78 065001
[49] Hasenfratz A, Neil E, Shamir Y, Svetitsky B and Witzel O 2023 Phys. Rev. D 108 L071503
[50] Brower R C et al (Lattice Strong Dynamics) 2024 Phys. Rev. D 110 054501
[51] Amaro-Seoane P et al (LISA) 2017 arXiv:1702.00786
[52] Witzel O (Lattice Strong Dynamics Collaboration) 2025 PoS LATTICE 146
[53] Gell-Mann M, Oakes R J and Renner B 1968 Phys. Rev. 175 2195–9
[54] Di Valentino E et al 2021 Class. Quantum Grav. 38 153001
[55] Abdalla E O 2022 J. High Energy Astrophys. 34 49–211
[56] Yamanaka N, Iida H, Nakamura A and Wakayama M 2021 Phys. Lett. B 813 136056
[57] Yamanaka N, Iida H, Nakamura A and Wakayama M 2020 Phys. Rev. D 102 054507
[58] Arcadi G et al 2018 Eur. Phys. J. C 78 203
[59] Gasser J and Leutwyler H 1984 Ann. Phys., NY 158 142–210
[60] Dashen R 1968 Phys. Rev. 183 1245–60
[61] Hinterbichler K, Khoury J, Levy A and Matas A 2011 Phys. Rev. D 84 103521
[62] Silveira V and Zee A 1985 Phys. Lett. B 161 136–40
[63] PeskinM and Schroeder D 1995An Introduction to QuantumField Theory (Advanced book classics

(Avalon Publishing)
[64] Sorella S 1991 Int. J. Mod. Phys. B 05 937–76
[65] Hufnagel M, Schmidt-Hoberg K and Wild S 2018 J. Cosmol. Astropart. Phys. JCAP11(2018)032
[66] Winkler M W 2019 Phys. Rev. D 99 015018
[67] Ellis J R, Ferstl A and Olive K A 2000 Phys. Lett. B 481 304–14
[68] Griest K and Seckel D 1991 Phys. Rev. D 43 3191–203
[69] Paolo G and Graciela G 1991 Nucl. Phys. B 360 145–79
[70] Caswell W E 1974 Phys. Rev. Lett. 33 244–6
[71] Jones D R T 1974 Nucl. Phys. B 75 531–8

40

https://doi.org/10.1103/PhysRevLett.104.151301
https://doi.org/10.1103/PhysRevLett.104.151301
https://doi.org/10.1103/PhysRevD.79.015014
https://doi.org/10.1103/PhysRevD.79.015014
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://doi.org/10.1088/0004-6256/149/6/180
https://doi.org/10.1088/0004-6256/149/6/180
https://doi.org/10.1086/187350
https://doi.org/10.1086/187350
https://doi.org/10.1093/mnrasl/sls053
https://doi.org/10.1093/mnrasl/sls053
https://doi.org/10.1093/mnras/stv1470
https://doi.org/10.1093/mnras/stv1470
https://doi.org/10.1086/383178
https://doi.org/10.1086/383178
https://doi.org/10.1126/science.1261381
https://doi.org/10.1126/science.1261381
https://doi.org/10.1016/j.cpc.2024.109133
https://doi.org/10.1016/j.cpc.2024.109133
https://cp3.irmp.ucl.ac.be/projects/feynrules/wiki/DMsimp
https://doi.org/10.1093/mnras/sts514
https://doi.org/10.1093/mnras/sts514
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1016/0550-3213(84)90231-1
https://arxiv.org/abs/hep-ph/9802419
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0370-2693(78)90481-1
https://doi.org/10.1016/0370-2693(78)90481-1
https://doi.org/10.1103/PhysRevLett.119.181803
https://doi.org/10.1103/PhysRevLett.119.181803
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1088/1475-7516/2016/11/017
https://doi.org/10.1007/JHEP05(2020)033
https://doi.org/10.3847/1538-4357/aa634a
https://doi.org/10.3847/1538-4357/aa634a
https://doi.org/10.1088/1475-7516/2021/01/057
https://doi.org/10.1088/1475-7516/2021/01/057
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.78.065001
https://doi.org/10.1103/PhysRevD.78.065001
https://doi.org/10.1103/PhysRevD.108.L071503
https://doi.org/10.1103/PhysRevD.108.L071503
https://doi.org/10.1103/PhysRevD.110.054501
https://doi.org/10.1103/PhysRevD.110.054501
https://arxiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.physletb.2020.136056
https://doi.org/10.1016/j.physletb.2020.136056
https://doi.org/10.1103/PhysRevD.102.054507
https://doi.org/10.1103/PhysRevD.102.054507
https://doi.org/10.1140/epjc/s10052-018-5662-y
https://doi.org/10.1140/epjc/s10052-018-5662-y
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1103/PhysRev.183.1245
https://doi.org/10.1103/PhysRev.183.1245
https://doi.org/10.1103/PhysRevD.84.103521
https://doi.org/10.1103/PhysRevD.84.103521
https://doi.org/10.1016/0370-2693(85)90624-0
https://doi.org/10.1016/0370-2693(85)90624-0
https://doi.org/10.1142/S0217979291000493
https://doi.org/10.1142/S0217979291000493
https://doi.org/10.1088/1475-7516/2018/11/032
https://doi.org/10.1103/PhysRevD.99.015018
https://doi.org/10.1103/PhysRevD.99.015018
https://doi.org/10.1016/S0370-2693(00)00459-7
https://doi.org/10.1016/S0370-2693(00)00459-7
https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1016/0550-3213(74)90093-5

	Naturally resonant two-mediator model of self-interacting dark matter with decoupled relic abundance
	1. Introduction
	2. Effective Lagrangian for the two-mediator dark sector model
	2.1. Complete EFT Lagrangian
	2.2. Particle content and couplings from SSB
	2.3. The density-responsive DE sector

	3. Phenomenological constraints and the tension in minimal models
	3.1. Relic density requirement
	3.2. Self-interaction requirement
	3.3. Quantifying the tension in minimal models
	3.3.1. Systematic parameter space analysis.
	3.3.2. Quantitative demonstration.
	3.3.3. General scaling arguments.


	4. Results: a consistent solution via resonant freeze-out
	4.1. Numerical methodology
	4.2. Viable parameter space
	4.3. A predictive benchmark point
	4.4. On the naturalness of the resonance condition

	5. Phenomenological implications and experimental verification
	5.1. Resonant annihilation mechanism in detail
	5.2. Velocity-dependent self-interactions
	5.3. Cosmology of the light mediator ϕ
	5.4. Direct detection
	5.5. Collider searches for the resonance
	5.6. Indirect detection

	6. A microphysical origin from a composite SU(3)H theory
	6.1. Anomalous dimension for DE
	6.2. Composite spectrum and the resonance condition
	6.3. Further predictions of the composite scenario

	7. Discussion and conclusion
	7.1. Summary of key results
	7.2. The bigger picture: from phenomenology to fundamental theory
	7.3. Final outlook

	Appendix A. The full effective Lagrangian and its properties
	A.1. Complete Lagrangian for the unified dark sector
	A.2. Derivation of the density–responsive energy ρΦ(X)
	A.3. The scalar potential for dark–matter phenomenology

	Appendix B. Cosmological constraints on the light mediator
	B.1. Freeze-in (no thermalization)
	B.2. BBN and ΔNeff

	Appendix C. Spin-independent (SI) direct detection
	C.1. Effective χ–quark interactions
	C.2. Matching to the nucleon level
	C.3. SI cross section
	C.4. Benchmark and suppression of the ϕ contribution

	Appendix D. Numerical implementation and scan strategy
	D.1. Model implementation in micrOMEGAs
	D.2. Scan strategy and viability criteria
	D.3. Numerical stability and validation

	Appendix E. Resonant annihilation formalism
	E.1. Thermal relic density
	E.2. Breit-Wigner resonance and Sommerfeld enhancement
	E.3. Decay widths
	E.4. Thermal averaging

	Appendix F. Self-interaction cross-section
	F.1. Yukawa potential and scattering formalism
	F.2. Limiting regimes
	F.3. Numerical implementation

	Appendix G. Radiative stability of the resonance condition
	G.1. One-loop corrections
	G.2. Running of the resonance parameter
	G.3. Integrated running and stability

	Appendix H. UV motivation from a composite SU(3)H theory
	H.1. Two-loop beta function and Banks-Zaks fixed point
	H.2. Anomalous dimension
	H.3. Mass scaling relations from compositeness

	Appendix I. Structure of the viable parameter space
	I.1. Parameter correlations and scaling laws
	I.2. Boundaries of the viable region
	I.3. Justification of the 600GeV benchmark

	References


